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ABSTRACT

The hydrodynamic dispersion in concentrated sedimenting suspensions is in-
vestigated by numerical simulation. The particle Reynolds number is zero, and the
Péclet number is infinite( the particles are non-Brownian). Particle trajectories are
calculated by Stokesian dynamics. Stokesian dynamics is a molecular-dynamics-
like simulation that provides an accurate representation of the suspension hydro-
dynamics. Detailed in this thesis is a technique that accelerates the convergence
of the mobility interactions among particles in an infinite suspension. The simula-
tions are of a monolayer of identical spheres sedimenting in the plane of the mono-
layer. Relative motion among the spheres arises from hydrodynamic interactions.
The displacement related to this relative motion may constitute a random walk,
giving rise to diffusive behavior of the spheres. This hydrodynamically induced
self-diffusivity has been seen in sheared suspensions of non-Brownian, neutrally

buoyant spheres.

Results of the numerical simulations show that the motion of spheres in sed-
imenting suspensions is also diffusive. The diffusion coefficient is relatively insen-
sitive to the nature of the microstructure, as expressed by the pair-distribution
function and the short-time, self-diffusion coefficient. The coefficient of diffusion
decreases as the concentration increases for concentrated suspensions (it increases
in the shear case). The ratio of the diffusion coefficient to the velocity variance of
the spheres should be proportional to the time scale of the diffusive interactions.
The diffusion time scale and the diffusion velocity scale ( the square root of the
velocity variance) both decrease as the concentration increases. In the shear case,
the velocity scale (sphere radius multiplied by the shear rate) is independent of
concentration, and the time scale (the product of the square of the concentration
and the inverse of the shear rate) increases with increasing concentration. At the
lowest concentrations, the spheres whose centers are separated by less than 2.05
radii prefer to align in the direction of sedimentation. At the highest concentra-

tions, the preferred alignment is in the perpendicular direction.
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Figure 2.1

Non-dimensional sedimentation velocity of a simple cubic array of
spheres as a function of volume fraction ¢. The solid curve is the re-
sult of the Stokesian dynamics method, the dashed curve is the exact
result of Zick & Homsy (1982), and the dotted curve is the point-force
solution of Saffman (1973). To facilitate comparison at high and low
¢, the ordinate and abscissa scales change for ¢ > 0.1. The exact and

Stokesian dynamics results are indistinguishable up to ¢ = 0.1.

Figure 2.2 The spin viscosity function £ for a SC lattice as a function of volume

Figure 2.8

Figure 2.4

Figure 2.5a

fraction. The solid curves are the Stokesian dynamics results, the
dotted curves are the far-field results obtained from (M{;!), and the

dot-dashed curves are the asymptotic forms as @ — @mqaz and as ¢ — 0.

The spin viscosity function £ for a BCC lattice as a function of volume
fraction. The solid curves are the Stokesian dynamics results, the
dotted curves are the far-field results obtained from (Mg '), and the

dot-dashed curves are the asymptotic forms as ¢ — @mqz and as ¢ — 0.

The spin viscosity function £ for a FCC lattice as a function of volume
fraction. The solid curves are the Stokesian dynamics results, the
dotted curves are the far-field results obtained from (Mg '), and the

dot-dashed curves are the asymptotic forms as ¢ — ¢z and as ¢ — 0.

The shear viscosity function « for a simple cubic array as a function of
volume fraction. The solid curves are the Stokesian dynamics results,
the dashed curves are the exact solutions of Nunan & Keller (1984),
which terminates at ¢ = 0.48, the dotted curves are the far-field results

obtained from (M}g'), i.e. no lubrication, and the dot-dashed curves



Figure 2.5b

Figure 2.6a

Figure 2.6b

Figure 2.7a

Figure 2.7b

Figure 2.8a

Figure 2.8b

Figure 2.9a

Figure 2.9b
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are the singular form as ¢ — @maz.

The shear viscosity function § for a SC lattice as a function of volume

fraction. See Figure 2.5a for an explanation of the curves.

The shear viscosity function a for a BCC lattice as a function of volume

fraction. See Figure 2.5a for an explanation of the curves.

The shear viscosity function g for a BCC lattice as a function of volume

fraction. See Figure 2.5a for an explanation of the curves.

The shear viscosity function « for a FCC lattice as a function of volume

fraction. See Figure 2.5a for an explanation of the curves.

The shear viscosity function S for a FCC lattice as a function of volume

fraction. See Figure 2.5a for an explanation of the curves.

A “snapshot” of sphere positions. The inner box is the periodic cell.
These are the sphere positions at ¢ = 490.0 time units for an FT, non-
Ewald simulation. The time step is 0.1 time unit and the mobility

matrix is inverted every 10 steps.

A “snapshot” of sphere positions. The inner box is the periodic cell.
These are the sphere positions at ¢ = 1000.0 time units for an FTS,
non-Ewald simulation. The time step is 0.1 time unit and the mobility

matrix is inverted every 10 steps.

A “snapshot” of sphere positions. The inner box is the periodic cell.
These are the sphere positions at ¢ = 300.0 time units for an F, non-
Ewald simulation. The time step is 0.1 time unit and the mobility

matrix is inverted every 10 steps.

A “snapshot” of sphere positions. The inner box is the periodic cell.
The specifications are the same as in Figure 2.9a, except that the

number of spheres in the simulation is 49, instead of 25.
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Figure 2.10 A “snapshot” of sphere positions. The inner box is the periodic cell.

Figure 2.11

Figure 2.12

Figure 2.13

Frigure 2.14
Figure 2.15

Figure 2.16

These are the sphere positions at ¢ = 299.0 time units for an F,
non-Ewald simulation. However, unlike the previous simulations, the
sphere trajectories are integrated using an explicit, first-order, Euler
integrator. The time step is 0.005 time unit and the mobility matrix

is inverted every 200 steps.

Schematic of two spheres in a linear shear field. The solid curve is the

actual trajectory and the dashed line is the tangent to this curve.

A “snapshot” of sphere positions. The box is the periodic cell. These
are the sphere positions at t = 500.0 time units for an FTS, non-Ewald
simulation (referred to as run FTSn5 in Chapter 4). The time step is

0.001 time unit and the mobility matrix is inverted every 100 steps.

A “snapshot” of sphere positions. The box is the periodic cell. These
are the sphere positions at ¢ = 500.0 time units for an F, non-Ewald
simulation when there are repulsive interparticle forces between the
spheres (referred to as run nfrl in Chapter 4). The time step is 0.001
time unit and the mobility matrix is inverted every 100 steps. The

range parameter of the interparticle force, 7, is 103.
Schematic of a monolayer suspension of non-neutrally buoyant spheres.
The periodic cell in the monolayer.

Physical representation of the application of Ewald sums to the mono-
layer problem. The monolayers extend into and out of the plane of the

page. The central cell is considered the object cell.

Figure 2.17 The dependence of the “sedimentation” velocity, (v,), on the distance

between the monolayers, which is characterized by z;. The dots (e) are
simulation results calculated from Equation (2.6-1). The solid line is a

plot of Equation (2.6-5), which results from the falling planes analysis.



Figure 2.18

Figure 2.19

Figure 8.1

Figure 3.2

Figure 3.8

Figure 3.4

Figure 3.5

Figure 3.6

Figure 8.7a
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The analogous problem of falling parallel planes: a single plane falls
at a constant velocity with parallel planes of zero mass flux a distance

of 1(2;- H + a) on either side of the plane.

Simulation results for (v;) (the filled squares), ((vy — (vy))2) (the filled
upside-down triangles), and ((vz — (vz))2) (the filled triangles), as a
function of the distance between the monolayers, which is characterized

by z;. The curves connect the simulation results for each case.
Defining sketch for the pair-distribution function.

Short-time, self-diffusion coefficient as a function of z;, Ny = 16. The
coefficient is calculated from the mobility matrix, which is approxi-

mated by M* (+) or the full mobility approximation (x).

D¢ as a function of N —%. The mobility matrix is approximated by the

uninverted Ewald-summed mobility matrix.

D} as a function of N=%. The mobility matrix is approximated by

(Rry) ™"

D¢ as a function of N ~%. The mobility matrix is approximated by the

full mobility approximation.

Short-time, self-diffusion coefficient as a function of areal fraction for
spheres in a regular array in a monolayer (see inset). The number
of spheres in the object cell is 81 (solid line), 49 (dashed line), or 25
(dotted line). ‘

Short-time, self-diffusion coefficient as a function of areal fraction for
random, hard-disk distributions of spheres in a monolayer. The regular
array results from Figure 3.1 are included for comparison. The number
of spheres in the object cell is 16 (e), 25 (x), or 49 (+). The result of
Bossis & Brady (1987) is denoted by a filled triangle (¢4 = 0.453).



Figure 8.7b

Figure 8.8a

Figure 8.8b

Figure 3.8¢c

Figure 3.9
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A detailed view of the low concentration results in Figure 3.7b.

The evolution of the short-time, self-diffusion coefficent in time for
a non-Ewald sedimentation simulation using the FTS method, ¢4 =
0.453 and N; = 25 (this run is denoted as FTSn1-5 in Chapter 4). The
top two curves are the zz and yy components of D. Note that, as
expected, there is no significant directional dependence of these results.
The bottom curve is the zy component of Di. The time average of

this component is very close to zero.

The evolution of the short-time, self-diffusion coefficent in time for a
non-Ewald sedimentation simulation using the FT method, ¢4 = 0.453
and N; = 25 (this run is denoted as FTnl in Chapter 4). See Figure

3.8a for explanation of curves.

The evolution of the short-time, self-diffusion coefficent in time for a
non-Ewald sedimentation simulation using the F method, ¢4 = 0.453
and N; = 25 (this run is denoted as Fnl in Chapter 4). See Figure

3.8a for explanation of curves.

The evolution of the short-time, self-diffusion coefficent in time for
a non-Ewald sedimentation simulation; the short-time, self-diffusion
coefficient has been calculated using the FTS method in all cases, but
the configurations are those from the runs shown in Figures 3.8a-c.
The solid curve with filled circles are for FTS run configurations. The
dashed curve with filled stars are for FT run configurations. The dotted
curve with filled triangles are for F run configurations. The symbols
indicate that D] was calculated for that given configuration, and the

curves connect the symbols for each case.

Figure 8.10 The pair-distribution function for the FT run described in Figure 3.8b.

Only configurations occurring from ¢ = 150 — 500 contribute to this

distribution.



Figure 8.11

Figure 3.12a

Figure 8.12b

Figure 3.18

Figure 8.14

Figure 8.15

Figure 4.1

Figure 4.2
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The pair-distribution function for the F run described in Figure 3.8c.

Only configurations occurring from t = 250 — 500 contribute to this

distribution.

The pair-distribution function for the FTS run described in Figure
3.8a. Only configurations occurring from ¢ = 300 — 400 contribute to

this distribution.

The pair-distribution function for the FTS run described in Figure
3.8a. Only configurations occurring from ¢t = 380 — 500 contribute to

this distribution.

A “snapshot” of sphere positions. The box is the periodic cell. These
are the sphere positions at ¢t = 500.0 time units for an FTS, non-Ewald

simulation (referred to as run FTSn5 in Chapter 4).

A “snapshot” of sphere positions. The box is the periodic cell. These
are the sphere positions at t = 750.0 time units for an Ewald F simu-
lation (referred to as run ef3 in Chapter 4). The range parameter of

the interparticle force, 7, is 103,

A “snapshot” of sphere positions. The box is the periodic cell. These
are the sphere positions at ¢t = 500.0 time units for an F, non-Ewald
simulation when there are repulsive interparticle forces between the
spheres (referred to as run nfrl in Chapter 4). The range parameter

of the interparticle force, 7, is 102,

The time trace of (v,) for run efr2. This simulation uses the Ewald, F
method. The interparticle force variable 7 is 10%. The areal fraction is

0.453, and there are 25 spheres in the periodic cell.

The time trace of (v;) for run efr2. This simulation uses the Ewald, F
method. The interparticle force variable 7 is 105, The areal fraction is

0.453, and there are 25 spheres in the periodic cell.



Figure 4.8

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9
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The time trace of v, variance for run efr2. This simulation uses the

Ewald, F method. The interparticle force variable 7 is 10°. The areal

fraction is 0.453, and there are 25 spheres in the periodic cell.

The time trace of v, variance for run efr2. This simulation uses the
Ewald, F method. The interparticle force variable 7 is 105. The areal

fraction is 0.453, and there are 25 spheres in the periodic cell.

The time trace of v,y variance for run efr2. This simulation uses the
Ewald, F method. The interparticle force variable 7 is 10°. The areal

fraction is 0.453, and there are 25 spheres in the periodic cell.

The radial pair-distribution function for run efr2. This simulation uses
the Ewald, F method. The interparticle force variable 7 is 105. The
areal fraction is 0.453, and there are 25 spheres in the periodic cell.
Only configurations that occur after ¢ = 150 are averaged into the

distribution.

The full pair-distribution function at for the near-touching spheres in
run efr2. This simulation uses the Ewald, F method. The interparticle
force variable 7 is 105. The areal fraction is 0.453, and there are
25 spheres in the periodic cell. Only configurations that occur after
t = 150 are averaged into the distribution. The dashed curve results

when the distribution is forced to be symmetric about 8 = 90°.

The time trace of D} run efr2. This simulation uses the Ewald, F
method. The interparticle force variable 7 is 10°. The areal fraction
is 0.453, and there are 25 spheres in the periodic cell. The upper two
curves are the zz and yy components of DS. The lower curve is the

zy component of DJ.

An idealized graph of one-half the mean-squared displacement of a

sphere divided by time vs. time. The plateau in the curve is the
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definition of DZ,.

Figure .10 Schematic of the data enhancement technique used to calculate the

Figure 4.11

Figure .12

Figure 4.13

Figure 4.14

Figure 4.15a

Figure 4.15b

long-time dispersion.

(D%,)yy-defining curves for run efr2. This simulation uses the Ewald,
F method. The interparticle force variable 7 is 10°. The areal fraction
is 0.453, and there are 25 spheres in the periodic cell. Data is taken
from ¢t = 100 — 500, and the averaging lengths are 150, 200 and 300

time units.

(D2,) zz-defining curves for run efr2. This simulation uses the Ewald,
F method. The interparticle force variable 7 is 105. The areal fraction
is 0.453, and there are 25 spheres in the periodic cell. Data is taken
from ¢t = 100 — 500, and the averaging lengths are 150, 200 and 300

time units.

The vy velocity variance trace for a non-Ewald, F method run (Fn2-
3). Note the small-scale fluctuations imposed on the the larger-scale

fluctuations.
The vy, velocity variance trace for an Ewald, F method run (ef3-4).

A “snapshot” of the sphere positions at ¢ = 840 time units in the ef4
simulation. This is an Ewald, F method simulation. Note the presence
of hexagonal packing and the vertical nature of the large cluster. The
U-C pair of spheres generate an important contribution to the high

value of the v, velocity variance at this time (v, = 0.0945).

A “snapshot” of the sphere positions at ¢t = 950 time units in the ef4
simulation. This is an Ewald, F method simulation. Note the increase
of hexagonal packing and the horizontal nature of the large cluster. All
the spheres in the periodic cell are in the cluster, and the v, variance

is correspondingly small (v, = 0.00043).



Figure 4.16

Figure 4.17

Figure 4.18

Figure 4.19a

Figure 4.19b

Figure 4.20

Figure 4.21

Figure 4.22
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A “snapshot” of the sphere positions at ¢ = 500 time units in the
nfrl simulation. This is an Ewald, F method simulation, and 7 is 103,

Notice the absence of hexagonal packing and large clusters of spheres.

The time-averaged v, variance vs. ¢ 4 for the Ewald-summed, F method

cases (1 = 10°).

The time-averaged v, variance vs. ¢4 for the Ewald-summed F method

cases (r = 10°).

(D& )yy vs. ¢4. There are 25 sphere in the periodic cell. The Ewald-

summed, F method cases (7 = 10°) are denoted by filled circles.

(D&)yy vs. 4. The Ewald-summed, F method cases (r = 10°) are
denoted by filled circles. The bar indicates the range of all previous
simulations except the FT, non-Ewald cases. They are denoted by the

x’s.

(D& )zz vs. ¢a. The Ewald-summed, F method cases (1 = 10°) are
denoted by filled circles. The bar indicates the range of all previous
simulations 7 = oo except the FT, non-Ewald cases. They are denoted
by the x’s. The non-Ewald, F method, ¢4 = 0.1 case is denoted by a
+.

(D2) vs. ¢a. The Ewald-summed, F method cases (r = 10°) are
denoted by filled circles. The bar indicates the range of all previous
simulations 7 = oo except the FT, non-Ewald cases. The FT, non-
Ewald cases are denoted by the x’s. The non-Ewald, F method, ¢4 =
0.1 case is denoted by a +.

The full pair-distribution function at for the near-touching spheres
at ¢4 = 0.6. Only configurations that occur from t = 250-500 are
averaged into the distribution. The dashed curve results when the

distribution is forced to be symmetric about § = 90°.



Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4
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The full pair-distribution function for spheres whose surfaces are sepa-
rated by less than 0.05 radii using data from the philefr2 run (¢ = 500
- 1000). ¢4 = 0.1. The dashed curve represents this function when it

is forced to be symmetric about § = 90°.

The full pair-distribution function for spheres whose surfaces are sep-
arated by less than 0.05 radii using data from the phi25efr2 run (¢ =
500 — 1000). ¢4 = 0.25. The dashed curve represents this function

when it is forced to be symmetric about § = 90°.

The full pair-distribution function for spheres whose surfaces are sep-
arated by less than 0.05 radii using data from the efr2 run (¢ = 100 —
500). ¢4 = 0.453. The dashed curve represents this function when it

is forced to be symmetric about 8 = 90°.

The full pair-distribution function for spheres whose surfaces are sep-
arated by less than 0.05 radii using data from the phi6efr3 run (¢ =
250 — 750). ¢4 = 0.6. The dashed curve represents this function when

it is forced to be symmetric about § = 90°.
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Table 3.1 The relation between the microstructure of the monolayer, D, and the

Table 4.1

pair-distribution function for runs reported in Chapter 3. ¢4 = 0.453
for all cases. The shear results are from Bossis & Brady (1987). The F,
FT, and FTS sedimentation runs are non-Ewald simulations and are
described in detail in Table 4.1 (they are designated Fnl, FTnl, and
FTS8nl1-5, respectively). ef3 designates an Ewald, F method simulation
run (¢t = 500-700). nfrl designates a non-Ewald, F method simulation
run in which interparticle forces (7 = 10%) are present (¢ = 0-500). See

Tables 4.4 and 4.5 for the results of all the sedimentation simulations.

The simulation conditions for all reported sedimentation runs. The
first column is the memnonic case name for that simulation — ‘¢’ implies
Ewald, ‘r’ implies repulsive forces, and ‘f’, ‘t’, or ‘s’ denotes the level
of approximation. 25 spheres are used in all simulations except for
the n49 simulations. The mobility matrix was inverted every 0.1 time

units in all simulations.

Table 4.2 (vy) and the time-averaged v, and v, variances for the sedimentation

runs.

Table 4.8 (v;) and the time-averaged v,y variance for the sedimentation runs.

Table 4.4 Radial pair-distribution results for the sedimentation runs.

Table 4.5 Steady-state values of D for the sedimentation runs.

Table 4.6 The average, minimum, and maximum values of the yy-component of

D¢, for the sedimentation runs.
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Table 4.7 The average, minimum, and maximum values of the zz-component of

DZ, for the sedimentation runs.

Table 4.8 The effect of interparticle forces on the velocity variances. All simula-

tions use the non-Ewald, F method.

Table 4.9 The effect of periodic cell size on the properties of a sedimenting sus-
pension. Increasing the number of spheres from 25 to 49 increases
the periodic cell size by a factor of 1.96. Both simulations use the

non-Ewald, F method, and 7 is 10%.

Table 5.1 Comparison of (DZ2,)yy, the v, variance, and the ratio of the two for
the ¢ 4 = 0.453 simulations. The average value of the ratio is 16.6, and

the standard deviation is 7.5.

Table 5.2 Comparison of (D%,)zz, the v, variance, and the ratio of the two for
the ¢4 = 0.453 simulations. The average value of the ratio is 8.3, and

the standard deviation is 3.3.

Table 5.8 The concentration dependence of (DZ,),y, the v, variance, and the
ratio of the two. Note the decrease in the ratio as the concentration

increases.

Table 5.4 The concentration dependence of (DZ,),;, the v, variance, and the
ratio of the two. Note that the ratio is relatively insensitive to the

concentration.

Table 5.5 The ratio of velocity variances (rétio 1) and the ratio of the yy- and
zz- components of the long-time, self-diffusion coefficient (ratio 2) for
the ¢4 = 0.453 simulations. The average value of ratio 1 is 3.3, and
the standard deviation is 0.9. The average value of ratio 2 is 7.0, and

the standard deviation is 4.1.

Table 5.6 The concentration dependence of the ratio of the velocity variances and

the ratio of the yy- and zz-components of the long-time, self-diffusion



— XIX —

coefficient. Note the stronger increasing degree of anisotropy in the

components of the diffusion coefficient as the concentration decreases.
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CHAPTER 1: INTRODUCTION

Particles suspended or dispersed in a fluid medium occur in a wide variety of
natural and industrial settings, e.g. slurries, porous media, composite materials,
colloids, polymers, proteins, etc. Investigators are beginning to understand and
predict the macroscopic behavior of such systems from a knowledge of the fun-
damental microstructural mechanics — that is, from the interactions among the
particles and from their distribution in space and time. In this thesis, we are
concerned with dispersion of particles in sedimenting suspensions where Brown-
ian forces are negligible. Recent experiments by Leighton & Acrivos (1987) have
shown that the dispersion of neutrally-buoyant non-Brownian spheres in simple
shear flow is a diffusive process; i.e., at long times the mean-squared displacement
of the particles grows linearly with time. Generally, self-diffusion has been con-
sidered a property of colloidal suspensions, whose particles are strongly affected
by Brownian forces. Our investigation focuses on the hydrodynamic dispersion
occurring in sedimenting suspensions of non-Brownian particles; particularly, we
seek to answer the question of whether dispersion is or is not diffusive, as well as to

provide estimates of the dispersion as a function of the concentration of particles.

Self-diffusion is an important property of colloidal suspensions and has been
the subject of theoretical, experimental and numerical studies. Self-diffusion can
convey static information through the short-time diffusivity measuring the prop-
erties of the local structure, as well as dynamic information in the behavior of the
long-time diffusivity, as a particle must wander far from its starting point, deform-
ing the local structure, and exchanging places with its neighbors. The long-time
diffusivity in colloidal systems arises from non-deterministic Brownian impulses
that give the particles a series of displacements that result in an irreversible ran-
dom walk. Statistical mechanicians and fluid dynamicists have developed theories
to predict the self-diffusion coefficient and its dependence on concentration (Ralli-
son & Hinch 1986). Experimentally; measurements of the self-diffusion coefficients

by dynamic light scattering are used to infer particle size and/or shape and infor-
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mation about the interparticle forces (Berne & Pecora 1976). Recently, Bossis &
Brady (1987) have studied the self-diffusion of a concentrated suspension of neu-

trally buoyant Brownian spheres in a simple shear flow by numerical simulation.

In non-colloidal suspensions, random Brownian forces are negligible and do
not affect the dispersion of the particles. If the suspension does not contain Brown-
ian or interparticle forces, the governing equations of motion are linear and the
trajectories of the particles should be reversible. The question is how such a
suspension can produce long-time dispersion that is diffusive. In the shear sys-
tem studied by Leighton & Acrivos, the motion of the spheres was shown to be
diffusive, despite the fact that the governing Stokes equations demand that the
sphere paths be reversible. (For a discussion of this and other types of microscop-
ically reversible diffusion processes, see Leighton & Acrivos 1987, and Okagawa,
et al. 1978). The diffusive nature of the sphere trajectories resulted from the
shear-induced multi-body hydrodynamic interactions. Although the particle tra-
jectories are completely deterministic, the equations of particle motion are highly
non-linear, forming a non-linear dynamical system that should display determin-
istic chaos, and hence, diffusive behavior. Determining whether the dispersion of
particles in a sedimenting solution exhibits this type of self diffusion is the goal of

this research.

Consider the trajectories of particles in a sedimenting suspension of non-
Brownian particles with no non-hydrodynamic interparticle forces. If the particles
did not interact hydrodynamically, there would be no relative motion among the
particles; they would all fall vertically at the sedimentation velocity. When the
particles do interact hydrodynamically, their displacement will no longer simply
arise from their sedimentation velocity. Imagine labeling a single particle at a
given time and following its trajectory. As it interacts with the other particles
and moves to its next position, it will drift laterally from its line of fall in a non-
hydrodynamically-interacting suspension. Also, its displacement in the direction
of settling may be more or less than the displacement in a non-hydrodynamically

interacting suspension, or more or less than that accounted by the average sedimen-
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tation velocity in a hydrodynamically interacting suspension. These displacements
may constitute a random walk — the time-averaged displacement in the direction
perpendicular to gravity will be zero, as will the time-averaged displacement in the
direction of gravity minus the displacement owing to the average sedimentation
velocity. It is our task to determine if this series of displacements is diffusive. The

next question is how we shall accomplish this.

As in the colloid studies, three avenues of study present themselves — the-
ory, experiment, and numerical simulation. The only published studies of non-
Brownian systems have dealt with the shear-induced self diffusion of suspensions
of neutrally buoyant sphere in shear flow. Both experiments and numerical sim-
ulations have shown that the displacement of spheres in these systems is indeed
self diffusive (Leighton & Acrivos 1987, Bossis & Brady 1987). Quick analysis of
rate of the three-body interactions in these flows (two-body interactions cannot
lead to diffusive behavior) show that the long-time self diffusion coefficient should
be proportional to ¥¢2a? as ¢ — 0, where 4 is the shear rate, ¢ is the volume
fraction of spheres, and a is the sphere radius. This scaling prediction is supported
by the experimental results. There have been no rigorous theoretical analyses of

this diffusion process.

To date, no studies of the dispersion in sedimenting suspensions have been
reported in the literature. Theoretical studies of long-time dispersion in dilute sus-
pensions are under way. Early work indicates that the long-time dispersion is diffu-
sive and is proportional to the inverse of the volume fraction as the volume fraction
goes to zero (Koch & Shagfeh 1987). We are also aware of experiments in progress
by Ham & Homsy (1987) and Davis & Hassen (1987); however, these are still
restricted to dilute suspensions. Our approach to this problem is to numerically
simulate concentrated sedimenting suspensions. Thus, the particle trajectories are
completely available for analysis, and non-hydrodynamic or Brownian forces can
be ignored or included in an exact way. We shall use a molecular-dynamics-like

approach known as Stokesian dynamics.



—4 -

Stokesian dynamics is capable of dynamically simulating the behavior of par-
ticles in infinite suspensions. In its most general form, the particles may interact
through both hydrodynamic and non-hydrodynamic forces, which may be any type
or combination of Brownian, interparticle or external forces. The central element
of this method is the approximation of the complex hydrodynamic interactions
among all particles in the suspension. Since we are interested in hydrodynamic
dispersion in suspensions, it is essential that the simulation accurately accounts
for the many-body interactions, which are necessary for diffusive displacement of
particles. Since it is a dynamic simulation, lubrication forces that prevent the
overlap of particles (a physical impossibility) are also essential. Stokesian dynam-
ics includes both of these important elements and has been successfully applied to
a variety of finite and infinite systems. Bossis & Brady (1987) used this technique

in their study of self-diffusion in sheared suspensions.

In Chapter 2, the basic Stokesian dynamics method is outlined. There are two
important features of sedimenting suspensions that need to be recognized. The
first is the long-range nature of the hydrodynamic interactions, particularly among
particles on which external forces act. In an infinite suspension, these long-range
interactions can lead to divergent expressions for the velocity of the particles. In
previous simulation studies of infinite suspension, these interactions have been
rendered convergent by applying the method of O’Brien (1979). These previous
simulations all dealt with neutrally buoyant spheres in simple shear flow, whose
long-range interactions decay as O(r~2), where r is the distance from the center
of the sphere. The long-range interactions in a sedimenting suspension decay as
O(r~1), so that more particles are required to satisfy the conditions of O’Brien’s
method. As will be seen, the computational cost increases as the cube of the
number of particles in the simulation, and thus an efficient means for calculating
the long-range interactions is needed. This has been accomplished by using Ewald
sums, as first developed for the hydrodynamic problem by Beenakker (1986). We
have applied this technique to all long-range (previously divergent or conditionally

convergent) hydrodynamic interactions, drastically reducing the cost of calculating



these interactions.

The importance of reducing the calculation time is clear when the second im-
portant feature of sedimenting suspensions is considered. In sheared suspensions,
the rate of the interactions of the particles causing relative motion is set by the
shear flow forcing them past one other. In sedimenting suspensions, however, only
the hydrodynamic interactions among the particles themselves, not the imposed
flow, give rise to relative motion. The microstructure changes at a much slower
pace than in the sheared suspensions, and thus, longe'r simulations are needed. It
takes longer for the suspension to achieve a steady state, and it takes longer for a
particle to experience sufficient uncorrelated interactions for its motion to become
diffusive. Chapter 2 details all of the steps we have taken to produce simulations
that capture the necessary physics to study dispersion in sedimenting suspensions

in reasonable computational times.

We present the results of our investigations in Chapters 3 and 4. In Chap-
ter 3 we compare the short-time, self-diffusion coefficient, which is configuration-
dependent only, found in infinite regular arrays of spheres, in random suspensions,
and in steady-state sedimenting suspensions. Included in this chapter is the de-
pendence of the short-time, self-diffusion coefficient on concentration in randomly
distributed suspensions. In Chapter 4 we present the results of our study of the
long-time dispersion in sedimenting suspensions. The effect of repulsive interpar-
ticle forces and the concentration dependence are discussed. Chapter 5 presents

our overall conclusions, including recommendations for continuing research.
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CHAPTER 2: THE STOKESIAN DYNAMICS METHOD

We now take a closer look at the tool we have chosen to investigate the
sedimentation-induced, self-diffusion of non-Brownian particles in suspensions of
infinite extent. The tool is Stokesian dynamics, a molecular-dynamics-like ap-
proach to simulating dynamically the behavior of many particles suspended or
dispersed in a fluid medium. The method is very general and is applicable to
systems with a finite number of particles or suspensions of infinite extent. The
particles may interact through both hydrodynamic and non-hydrodynamic forces,
such as Brownian, colloidal, and/or other types of interparticle or external forces.
Possible applications of Stokesian dynamics include problems of sedimentation,
flocculation, diffusion in many types of suspensions, polymer rheology, transport
in porous media, etc. The simulation method is capable of predicting both static
(i.e., configuration-specific) and dynamic microstructural properties, as well as
macroscopic properties in a variety of systems at all concentrations. This section
presents the method at its most general and will clearly show how our present

study fits into the larger research area accessible to Stokesian dynamics.

First, we present the evolution equation for the suspension microstructure.
The equation will include contributions from Brownian, interparticle, external
and hydrodynamic forces acting on the particles. Of course, not all these forces
will be present in the particular systems we wish to investigate, so the necessary
simplifications of the evolution equation are outlined. The equation is completely
general and exact for N particles suspended in a volume, V; the central role of
the hydrodynamic interactions in the evolution of the microstructure is explicitly
shown. Secondly, we define a variety of macroscopic properties. These definitions
involve the appropriate averaging of the microstructural evolution equation or
its solution. All of these properties involve, explicitly or implicitly, the averages
of hydrodynamic interaction tensors that relate the dynamic properties of the

particles to their kinematic conditions.

Approximating the N-body hydrodynamic interactions accurately and quickly
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is at the heart of the Stokesian dynamics method. This approximation, which
includes both the near-field lubrication forces and the dominant many-body in-
teractions among the particles, is presented in Section 2.31. In Section 2.3.2, we
show how the hydrodynamic interactions in unbounded, infinite systems, i.e., the
thermodynamic limit N — oo, V — oo, with N/V fixed, are simulated. This
is not a trivial problem because of the long-range (1/r) nature of the hydrody-
namic interactions. Specifically, we introduce the Ewald-sum technique to speed
the convergence of the hydrodynamic interactions, after O’Brien’s method has

insured their convergence.

2.1 The Microstructural Mechanics

For N rigid particles suspended in an incompressible Newtonian fluid of vis-
cosity, n, and density, p, the motion of the fluid is governed by the Navier-Stokes
equations, and the particle motion is described by the coupled N-body Langevin

equation, which can be written

m-%UTzFH +Fp+Fp, (2.1-1)

that simply states the mass times the acceleration equals the sum of the forces.
m is a generalized mass/moment of inertia matrix of dimension 6N x 6N, U is
the particle translational/rotational velocity vector of dimension 6N, and the 6 N
force/torque vectors, F, represent: 1) the hydrodynamic forces, F g, exerted on
the particles due to their motion relative to the fluid, 2) the deterministic non-
hydrodynamic forces, F p, which may be interparticle and/or external, and 3) the
stochastic forces, F g, that give rise to Brownian motion. We will study only
suspensions whose motion on the particle scale is such that the LHS of Equation
(2.1-1) is zero. Thus, the evolution equation is a linear combination of the forces
acting on the particles; of course, in actual practice we would include only those
forces relevant for the given problem. From now on, we consider only systems

where the Brownian forces are negligible; the infinite Péclet number limit.

When the motion of the particle scale is such that the particle Reynolds
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number is small (the exact statement of this condition is given below), the hydro-
dynamic force/torque exerted on the particles in a suspension undergoing a bulk

linear shear flow is
Fyg=-Rpy- (U - U°°) +Rpg : E® (2.1—2)

(see Brenner & O’Neill 1972, Kim & Mifflin 1985, Bossis & Brady 1984). U
is the imposed flow at infinity evaluated at the particle center, i.e., U = 2
for rotation and U = E® - x,, for translation, where x, is the particle postion
vector of the a** particle. E® and f3* are the symmetric (and traceless from con-
tinuity) and anti-symmetric parts of the the velocity gradient tensor, respectively.
Both are constants in space, but may be arbitrary functions of time. Rpy(x) and
Rrg(x) are resistance matrices that give the hydrodynamic force/torque on the
particles because of their motion relative to the fluid (Rry(x)) and because of the
imposed shear flow (Rpg(x)). These matrices depend only on the configuration
of the particles since the Reynolds number is zero. X represents the generalized
configuration vector, specifying the location and orientation of all N particles,
and U is the particles’ translational /rotational velocity vector. Note that the sub-
scripts on the matrices indicate the coupling between the kinematic and dynamic

quantities. If there is no imposed shear flow, Equation (2.1-2) reduces to

FH = - RFU . (U - Uoo) (2.1—30)
(U-U®)=-M-Fy, (2.1-3b)

where M, the exact mobility matrix, is the inverse of the resistance matrix (M =
(Rry)~!). In all problems, this mobility matrix is the central element describing

the hydrodynamic interactions among the particles.

The deterministic, non-hydrodynamic force, F p, can be most any form of
interparticle and/or external force. For example, Bossis & Brady(1984) included
a pairwise electrostatic repulsive force between neutrally buoyant spheres in a
shear flow. For sedimentation problems, F p will simply be the buoyancy force.

It is also possible to link together some of the particles permanently through
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an interparticle force; we would then be able to extract information about the
internal dynamics of the linked particles and their effect on the bulk properties of

the suspension.

Solving Equation (2.1-1) and (2.1-2) for U and integrating that expression
over time produces the evolution equation for the particle positions and orienta-

tions with an error of O(At?):
Ax = {U* + (Rpu) "' [¥* Rrg : E® + Fp|}At. (2.14)

Ax is the vector representing the change in position and orientation of every par-
ticle during the time step At. x has been non-dimensionalized by the particle
size a, the time by 67rna?/|Fp|, the shear force by 6rny (¥ = |E®| is the mag-
nitude of the shear rate), and the interparticle and/or external forces by |Fp|.
4* = 6mna®y/|F p| is the non-dimensional shear rate that gives the relative im-

portance of the shear flow and the imposed interparticle and/or external forces.

Equation (2.1-4) simply states that the motion of a particle is composed of
two parts, each resulting from the basic forces in Equation (2.1-1). There is a con-
tribution due to the hydrodynamic shear forces, [U® + (Rry)~!-Rrg : E®] At,
and a contribution from the interparticle or external forces, [(Rry)~! - Fp] At.
In general, the motion of the particles in a suspension depends on the dimension-
less parameters characterizing the suspension and flow conditions: 4*, and ¢, the
volume fraction of particles. No restriction has been made to particles of identical
size and shape. If the particles are not spherical, other dimensionless parameters
characterizing their shape must be included. If more than one type of particle is
present, there will be a volume fraction, ¢;, for each type. If interparticle forces are
present, in general, we will need dimensionless parameters to specify their range

(as opposed to their amplitude).

For sedimentation of non-Brownian particles in the absence of a shear flow,
F p is determined from Equation (2.1-1) for the specified external and/or inter-
particle forces, and then Equation (2.1-3b) is solved for the translational and

rotational velocities of the particles. For sedimentation, the requirement that
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the particle Reynolds number be small takes the form Re = pUj,a/n < 1, where
Uo.(= 2(pp—p)ga?/(9n)) is the sedimentation velocity of an isolated particle (char-
acteristic length is a and density is p,) in a fluid of density p and viscosity #. Equa-
tion (2.1-3b) is the core of our dynamic simulation of the sedimentation problem.
It is an exact description for N particles of arbitrary size and shape suspended
in a volume, V. Given an initial configuration and specified external and/or in-
terparticle forces, Equation (2.1-3b) is integrated to follow the dynamic evolution
of the suspension microstructure. The only task remaining is to approximate the
hy.drodynamic interaction matrices. The description of our approximation of these
matrices is in Section 2.3 and the solution of the evolution equation is in Section

2.4.

The Stokesian dynamics formulation is completely general, describing the mo-
tion of N particles suspended in a volume, V, interacting through hydrodynamic,
interparticle, or external forces. Simulating specific suspension flows only requires
identifying the correct time scale and setting the correct dimensionless parame-
ters, e.g., ¥*, @, etc., in the evolution equation. Thus, the sedimentation problem
and the shear problem, are both seen as special cases to the general problem of
suspension dynamics. In all of these problems, the central element is the hydro-
dynamic interaction tensors, and we will see that they are explicitly present in
the definitions of important macroscopic properties that characterize the suspen-
sion. In the next section we will show how the macroscopic properties of various
suspension types are determined from the appropriate averaging of the microscale

evolution equation.

2.2 The Macroscopsc Properties

We now consider the bulk properties of the suspension, which can be de-
termined from the corresponding averaged expressions of the microscale results.
These expression, in general, depend on the property to be investigated, and we
shall only discuss a few of them here. Most of the general formulae for the macro-

scopic properties have been derived by Batchelor (1970, 1972, 1976, 1977), and all
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involve (generally explicitly) averages of the hydrodynamic interaction tensors.

For sedimentation relative to zero volume flux axes, U% = 0, a macroscopic
property of interest is the average velocity of the particles, (U). For identical
particles all experiencing the same external force, F, the average sedimentation

velocity would be given by
(U) =(RFv)~'-F) =(M)-F. (2.2-1)

This equation can be generalized for suspensions of ‘unlike particles (Batchelor

1982).

Other important macroscopic properties of a suspension are related to the
deviatoric stress felt by the individual particles. The anti-symmetric part of the

bulk deviatoric stress, T x, is given as
(voTx) = (Rra- (02— 0%)), (2.2-2)

where v, is the volume of an individual particle, and Rrgq is the resistance matrix
that gives the hydrodynamic torque on the particles because of their rotational
motion relative to the fluid. The symmetric part of the bulk deviatoric stress is

known as the bulk stress, (£), and is defined
N
(Z) = LT. +29E> + V{(SH) + (SP)}. (2.2-3)

This property defines the rheology of the suspension. I.T. stands for an isotropic
term of no interest. The particles make two contributions to the bulk stress: a
mechanical or contact stress transmitted by the fluid because of the shear flow,
(SH) and an “elastic” stress due to the interparticle forces, (SF). The particle

contributions to the bulk stress are given by
(SH) = —(Rspy - (U-U®) — Rgg:E®), (2.24aq)
(ST) = —(xFp). (2.2-4b)
Rsy(x) and Rgg(x) are configuration- dependent resistance matrices, similar to

Ry and Rpg, relating the particle stresslet, S, to the particle velocities (Rs¢/)

and to the imposed rate of strain (Rsg).
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The general N-particle diffusion tensor for Brownian particles, D, is related

to the resistance and mobility matrices as follows:
D = kT(Rry)~ ! = kTM, (2.2-5)

where T is the temperature and k is Boltzman’s constant. Several “particle diffu-
sivities” may be defined. Self-diffusion is a basic property in many types of suspen-
sions and it may be induced a variety of ways. The short-time self-diffusivity, D},
measures the average instantaneous mobility of a particle in its local environment
and is defined

D = (Dy). (2.2-6)

The angle brackets denote an average over all configurations as well as the average
over the particles in a given configuration, and D;; denotes the self-submatrix that

relates a particle’s kinematic quantities to its own dynamic quantities.

The long-time self-diffusivity, D, measures the ability of a particle to wander

far from its starting point and is defined

8 _ 1 1d LAY
DS, = lim o —((x -%)*), (2:2-7)

where x is the vector representing the displacement of the particles from their
initial configuration at a given time, and X is the displacement resulting from
the bulk motion. In this case, the aﬁgle brackets indicate the average over all
initial configurations of the particles as well as the average over all the particles.
If the limit in Equation (2.2-7) is a constant, the dispersion of the particles as
they wander among their neighbors is diffusive. Both the short- and long-time
self-diffusivities are accessible by light scattering techniques, being the long- and
short-wave scattering limits, respectively (Rallison & Hinch 1986, van Megen et

al. 1986).

In addition to these (and other) macroscopic properties, we can also calculate
all types of statistical properties, since the complete microstructural dynamics is
followed. These statistical properties include all normal particle distribution func-

tions, such as the pair-distribution function, g(r), the triplet-distribution function,
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g(ri,r2), etc., cluster sizes and cluster-distribution functions. One can also cal-
culate particle velocity fluctuations about the average and so define a “suspension

temperature”, and so on.

In summing up this section, several points need to be emphasized. From the
definitions of the macroscopic properties, the fundamental role of the hydrody-
namic resistance matrices is obvious. All of the above equations, as written, are
exact; all that remains is to approximate the hydrodynamic interactions. The en-
tire evolution of the suspension microstructure and the macroscopically observed
properties depend on these interactions, so an accurate representation of the N-
body resistance matrices is essential. In succeeding section we will discuss the core
of the Stokesian dynamics method, the accurate and computationally efficient ap-
proximation of the N-body resistance matrices for finite and infinite systems. This
approximation, within the context of Stokesian dynamics, has already been ap-
plied successfully to a variety of suspension flows. Such investigations include the
rheology of concentrated suspensions of neutrally-buoyant non-Brownian spheres
in simple shear flow (Brady & Bossis 1985), the self-diffusion of Brownian particles
in concentrated suspensions under shear (Bossis & Brady 1987), the sedimentation
rate of disordered suspensions (Brady & Durlofsky 1987), among others. Our study
focuses on the sedimentation-induced self- diffusivity of non-Brownian spheres in

suspension.

2.3 The Hydrodynamic Interactions

In this section, we will describe the general Stokesian dynamics method and
its application to the present sedimentation problem. Our object is to study the
long-time diffusive behavior of monodisperse, non-Brownian spherical particles
settling in an infinite suspension. This problem demands that the method do
several tasks well: long-range multi-body hydrodynamic interactions, lubrication
interactions, and the computationally efficient calculation of all of the above. Since
we are studying diffusive behavior, the importance of including the multi-body

hydrodynamic interactions is obvious. Section 2.3.1 describes how the method
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includes these important interactions. The inclusion of lubrication forces, which
becomes increasingly important as the concentration increases, is also described
in this section. This method was developed by Durlofsky, et al. (1987) for a finite
number of particles, and we start with this basic methodology.

Simulating a suspension of infinite extent is not a simple extension of the
finite particle case. A simple summation of hydrodynamic interactions among
the particles results in badly divergent expressions; this difficulty is overcome by
the method of O’Brien (1979). O’Brien’s method allows us to write convergent
expressions for the hydrodynamic interactions for a particle in a suspension, yet

to deal only with a finite number of its neighbors.

Although O’Brien’s method allows us to consider only N particles of the
suspension when determining the kinematic behavior of a particle, N may still
be too large for practical computation. From O’Brien, we know that the effect of
particles outside the volume, V', which contains the N particles, on the velocity of
a sedimenting particle at the center of V is zero, within an error of O(R~!), where
R is the characteristic radius of V. As R increases, the effect of the surrounding
particles can be made arbitrarily small. The same effect in systems of neutrally
buoyant spheres in a linear shear field is also zero, but the error is of O(R™2)
(Brady & Bossis 1985). Since increasing the number of spheres is computationally
expensive, we opt to speed the convergence of the interaction expressions another
way. That way is to choose a smaller number of spheres, N;, in a smaller volume,
V1, and replicate their images throughout V. By creating a lattice of these images,
we can invoke Ewald’s method of accelerating the convergence of lattice sums. This
technique is common in the study of electrostatic problems and was first applied
to the Rotne-Prager tensor by Beenakker(1986). Details of O’Brien’s method and

further discussion can be four_ld in Section 2.3.2.

2.3.1 The Hydrodynamsic Interactions: Finite Particle Systems

We consider the problem of determining the motion of particles subject to a

constant body force, such as the buoyancy force. After rewriting Equation (2.1-
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3b) after solving for the hydrodynamic force in Equation (2.1-1), the motion of

the particles in Stokes flow can be calculated from
U-U® = M -Fp. (2.3.1-1)

The mobility matrix depends on the instantaneous configuration of the particles
only. The mobility matrix is symmetric, as can be shown from the reciprocal the-
orem, and positive definite, because of the dissipative nature of the system. Since
there is no general solution to the N-body Stokes equation, we must approximate
M. Durlofsky et al. (1987) developed an excellent approximation to the true mo-
bility matrix that preserves the dominant multi-body interactions and lubrication
forces among an arbitrary number of spheres. This section is a brief description of
the way the exact mobility matrix for a finite number of spheres is approximated

in our simulation.

The basic problem is to generate an approximate N-particle mobility matrix,
M, that relates the particles’ translational and rotational velocities to the forces
and torques imposed on them. We start with the exact integral representation
of the velocity field in Stokes flow, in conjunction with Faxén’s laws; the force
density on the surface of each particle is expanded in a series of moments about
the center of each particle. The monopole, or zeroth moment of the force density,
corresponds to the total force on the particle, F; (the subscript ¢ indicates that
the force is related to the translational motion of the particles). The dipole, or
first moment of the force density, has both symmetric and anti-symmetric parts:
the anti-symmetric part is the total torque, L, and the symmetric part is known as
the stresslet, S, which in sedimentation problems is an induced quantity resulting
from the interaction with the other particles. We can truncate the multipole
expansion at any order, depending on the level of accuracy we desire, but to
include the effects of lubrication, all moments are necessary. Since we will include
the effects of lubrication in the resistance formulation, we truncate the expansion
after the first moment. (We also include two higher order multipole contributions

that result from the finite size of the particles. A more complete derivation that
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considers explicitly the quadrupole contribution to the mobility matrix can be
found in Brady et al. 1987.) For the sedimentation problem, we approximate the

mobility matrix by the 6N x 6 N matrix Myp and write Equation (2.3.1-1) as
U;-U) _ (My,r My (F: _

(G-0F) = (Mor Mus) (), pary

where U; and ] are the N-particle translational and rotational velocity vectors.

When My, r is formed for two particles, it is commonly called the Rotne-Prager

tensor.

We can increase the accuracy of our mobility matrix by including the stresslet
interactions. This is necessary for problems where there is an imposed linear

shear field. We form the grand mobility matrix, M, which includes the stresslet

(U_—Eg“) _ M. (1;,,) (2.3.1-3)

M (MUF MUS) (2.3.14)

interactions, as follows:

with M partitioned as
Mgr Megs

where the imposed rate of strain, —E°, is zero for sedimentation problems. The
grand mobility matrix, M, is written as an 11N x 11N matrix, since the stresslets
are traceless and symmetric. The 6 N x 5N matrix Myg relates the velocities
and the stresslets, the 5N x 6 N matrix M g relates the rate of strain and forces,
and the 5N x 5N matrix M ggs relates the rate of strain and the stresslets. In
addition, E* and S are written in a compact form, which takes advantage of
the fact the stresslets are traceless and symmetric; this is done so that M is not
singular and may be inverted. To include higher order multipole moments, the
vector on the RHS is extended by including the irreducible (quadrupole, octupole,
etc.) moments, and the kinematical vector on the LHS is extended with zeros, as
all higher velocity gradients must be zero. As we construct them, M, Myr and
Mg are all symmetric and positive definite like M. Details of the construction

of these matrices can be found in Durlofsky et al. (1987).
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In our simulation, these matrices are far-field approximations to the hydro-
dynamic interactions between spherical particles. Consider the small (as opposed
to grand) mobility matrix, Myp, and neglect the stresslets for a moment. Solving
Equation (2.3.1-2) for the sphere velocities will sum only the pairwise interactions
between spheres. If we attempt to move the spheres based on these velocities, the
spheres will overlap since the far-field approximations to the sphere interactions do
not include the strong lubrication interactions that will prevent this overlap. To
include these lubrication interactions, we first invert MUF. The invert, (Myr) 1,
is the far-field approximation to the resistance matrix R. More importantly, this
invert is a true many-body approximation of R. Whatever elements are included
in the mobility matrix — point force, finite size effects, stresslet interactions, etc.
- upon inversion, the reflections among all elements and all spheres are summed.

The proof of this is in Durlofsky et al. (1987).

The invert, (Myr)~1, is still only a far-field approximation to the true re-
sistance matrix. Lubrication effects would occur only if all multipole moments
were included in the mobility matrix. We include these important near-field in-
teractions in a pairwise fashion to the resistance formulation. To each element of
the (Myr)~! we add the known exact two-sphere resistance interactions. This
additional two-sphere resistance matrix is known as Rj;. However, (Myr)~! al-
ready contains the the far-field part of the two-sphere interactions. These far-field
interactions, denoted by R3?, must be subtracted from Rz;. Our approximation

to the exact resistance matrix is
R~ (Myr) '+ Ry — RE. (2.3.1-5)

In an actual simulation, we would then solve the equation set in Equation (2.1-3a)
for the translational and rotational velocities of the spheres. This is known as the

FT formulation and method.

When there is no imposed linear shear flow, Durlofsky et al. (1987) have
shown that the FT method gives accurate results. If we want more accurate

results by including the effect of induced stresslets and if we are willing to pay the
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computational costs to obtain them, we form the grand mobility matrix, M. The

invert of the grand mobility matrix is the grand resistance matrix R:

( Fg’) =R- (U_—E?ow) : (2.3.1-6)

where R is partitioned as
- (B B, wsan

The effect of the induced stresslets is obvious when one realizes that Rpy #

(Myr)~!. The approximation for the true resistance matrix is now
R~Rpy+Ry — Rg‘g (2.3.1—9)

This is the FTS formulation. Note that inverting the larger grand mobility matrix
is approximately 6.25 times slower than inverting the small mobility matrix (cf.

Section 2.6).

The results of these methods, when applied to several known cases involv-
ing the interactions among a finite number of spheres, compare excellently with
reported results (cf. Durlofsky et al. 1987). The procedure reproduces both the
proper near-field lubrication forces and the dominant many-body interactions that

occur among a finite number of spheres subject to imposed forces.

2.8.2 The Hydrodynamsic Interactions: Infinite Systems

We are interested in the behavior of particles settling in an infinite suspen-
sion, i.e., letting the number of particles, N — oo, as their containing volume,
V — oo, keeping the number density, n = N/V, fixed. The long-range nature of
the hydrodynamic interactions among the particles (for example, the disturbance
velocity from a falling sphere decays as O(r~?!), where r is the distance from the
sphere’s center) demands that care be taken in simulating suspensions of infinite
extent; a simple summation of interactions among the particles produces badly
divergent expressions for certain kinematic quantities, such as the particle’s trans-

lational velocity. This convergence problem can be overcome by several alternative
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methods, but only the method of O’Brien (1979) can be applied to dynamic sim-
ulations. Although O’Brien’s formulation assures us of convergence, it does not
promise us speedy convergence. To improve computational efficiency, we rewrite
the lattice sums that can occur in O’Brien’s method into a rapidly converging
form. This recasting of the lattice sums is called Ewald’s method. This technique
was first applied to the Rotne-Prager tensor by Beenakker (1986); we have applied
this technique to the additional mobility matrix elements in our simulation (cf.
Appendix A and below). We will discuss, in detail, these methods at the level
of point forces; extensions to include finite-size effect, torques, stresslets, etc., are

briefly explained.

In O’Brien’s method, we start from an integral representation for the solution
to Stokes equation for the velocity field u(x) at the point x in the suspension in
terms of integrals of the force distribution on the surfaces of the N particles, and
an integral over a mathematical surface I' of large radius R and volume V that
cuts through the fluid and particles. The exact solution of the velocity field for a

suspension of rigid particles is

u(x) = 87mZ/JandS

~ 1 [ 3.6+K u]-nds, (2.3.2-1)
87”7 Sr

where J is the Green function for Stokes flow, J = (I+rr/r2)/r, K = —6nrrr/r5,1
is the unit isotropic tensor, r = x — y, y being a point on the surface, o is the fluid
stress tensor, and n is the outward normal from the particle surfaces S, and the
surface I'. Only particle surfaces within I' are included in the sum. This volume
V is surrounded by an unbounded statistically homogeneous suspension. If the
volume radius is taken to be very large, the variation of J and K will be small
over a surface element dSp that cuts though many particles and the fluid. At that
point we may replace ¢ and u in the second integral by their suspension averages
(o) and (u). This is the only assumption made in O’Brien’s method. {(¢) and (u)
are either constant or linear functions of position in a statistically homogeneous

suspension.
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Invoking the above assumption and using the divergence theorem, Equation

(2.3.2-1) becomes
1 X
u() =~ (up) = g D Ik~ xa) P
a=1

n R
- o /0 J - (F)dv, (2.3.2-2)

where F& = — [, s, © - ndS is the force the at? particle exerts on the fluid, (F) is
the average force. It is now permissible to let R — oo, because at large distances
from x, the difference between the summation and integral terms in the above
equation go to zero; we now have a convergent expression for u — (u). Physically,
the integral term represents a “back flow” of fluid relative to zero volume flux axes
(u) = O caused by the macroscopic pressure gradient that balances the excess
weight, (F) # 0, of the particles. No assumptions have been made about the
distribution of the particles within V.

In a similar manner, we manipulate the equations relating the rotational ve-
locity and rate of strain to the torques and stresslets, including the effect of the
finite size of the particles. These expressions will have the appropriate volume
integrals of the average force (F), torque (L), and stresslet (S), analogous to that
appearing in Equation (2.3.2-2). With these expressions, a convergent represen-
tation for the grand mobility matrix M of Equation (2.3.1-4) can be written. In
this equation, U and E® must now be interpreted as the suspension average

velocity and rate of strain evaluated at the center of particle a, etc.

We return to the point-force expression in Equation (2.3.2-2), which is not
yet in a form suitable for simulations. Note that neither the sum nor the integral
in Equation (2.3.2-2) converge as R increases; only their difference is finite. In
general, many particles are needed before the sum approximates a continuous
distribution and convergence is obtained; in simulations, the required computer
time increases dramatically as the number of particles increases. In order to reduce
the number of particles needed and to accelerate convergence of the elements of

the mobility matrix, we take a finite number N; particles and replicate them



- 21 -

periodically within the volume V. We rewrite Equation (2.3.2-2) for the velocity

of particle a at the center of its periodic cell, as

N
U - (u(xa)) = = >° % I(x5 —xa) - F#

87n ol vt
(o ]
n
- — J - (F)dV, .3.2-3
e AERY (2:3.2-3)

where v labels the periodic cells, and the ’ on the sum indicates that for a = 8 in

cell v =1, J is replaced by I, giving the correct self term.

If we use only one periodic cell ( ¥ = 1), and if N; is suitably large, then
the contribution to the at? particle velocity from particles outside the periodic
cell will cancel the part of the integral from L to oo, where L is the characteristic
length of the pe;iodic cell. A constant contribution from the back-flow integral
evaluated from 0 to L will remain. Simulation runs that invoke only one periodic
cell will be called non-Ewald runs. Of course, the slow convergence of the difference
between the discreet sum and the continuous integral may require that N; be
prohibitively large in terms of computational time constraints. This problem is
particularly acute in sedimentation problems as opposed to problems concerning
sheared suspensions of neutrally buoyant spheres. In a force-free system, particles
outside of V, tn total, contribute nothing to the velocity of the particle at the
center of the periodic cell within an error of O(L~2). In sedimenting suspensions,
particles outside of V, sn total, also contribute nothing to the velocity of a falling
particle at the center of the periodic cell, but the error is of O(L~!). Whether
it is feasible to simulate dynamically settling suspensions depends on how quickly

we can obtain convergent expressions for the mobility matrix elements.

Expressions of the type in Equation (2.3.2-3) contain so-called lattice sums,
ie, > o The convergence of these sums can be accelerated using a method devel-
oped by Ewald (1921), which rewrites the lattice sums into two rapidly converging
parts, one in real space and the other in reciprocal space. This technique has
been used in electrostatic problems for some time. Beenakker (1986) has recently

worked out the Ewald sums for both J and the more complete Rotne-Prager ten-
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sor (My,r from Equation (2.3.1-2)), which includes the effect of finite particle
size. Beenakker assumed that the average force on the particles in suspension
was zero ((F) = 0) in order to remove a singular term from the reciprocal-space
lattice sum; this singular term occurs when k = 0, where k is a reciprocal lattice
vector. However, when the average force is non-zero, the back-flow integral in
Equation(2.3.2-3) exactly cancels this singular term at k = 0. Thus, Beenakker’s
Ewald-summed Rotne-Prager tensor is correct whether or not there is a non-zero
average force on the particles. This makes intuitive sense — the mobility matrix
is 'a purely geometric quantity, which cannot depend the kinematic or dynamic

properties of the system.

We have applied O’Brien’s method (which guarantees convergence) and the
Ewald-sum procedure (which simply speeds the convergence) to all divergent or
conditionally convergent interactions occurring in the grand mobility matrix. A
brief description of of this process and explicit expressions for the interactions can
be found in Appendix A. Any mobility matrix whose elements have undergone the
above procedures will be denoted by a «; i.e., M* will replace M in Equation (2.3.1-
3). It should be noted that the Ewald sums and the periodic boundary conditions
are computational conveniences; they accelerate the convergence guaranteed by
O’Brien’s method, and they speed matrix inversion and solution time by reducing
the number of particles we need to consider, but they are not essential. However, at
high concentrations and fixed values of N;, the mobility matrix calculated by the
non-Ewald method may lose positive definiteness. The Ewald-summed mobility

matrix will not lose positive definiteness, even at high concentrations.

To illustrate that we have correctly constructed the grand mobility matrix
M™, we test our method against the only known results for particulate systems of
infinite extent — spatially periodic suspensions, such as an infinite cubic array of
spheres. Periodicity is a highly restrictive microstructure, but it does allow the
“exact” solution of the many-body problem on the unit cell. From this solution,
we can calculate the bulk properties such as the sedimentation velocity and the

spin and shear viscosities. Our method does not depend on the periodicity of the
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microstructure as do the “exact” calculations. These results are also discussed in

detail in Brady et al. (1987).

For us to calculate these bulk properties accurately, the hydrodynamic inter-
actions among the particles must be accurately accounted for in M*. In Figure 2.1
we show a comparison of the sedimentation velocity of an infinite simple cubic ar-
ray of spheres as a function of volume fraction ¢ (Brady & Bossis 1988 and Brady
et al. 1987). The solid curve is the Stokesian dynamics result, the dashed curve
is the results of Zick & Homsy (1982), who solved the integral equation for Stokes
flow using the periodic Green function, and the dashed curve is the point-force so-
lution of Saffman (1973). Convergent solutions using the periodic Green functions
will be termed exact, but it should be noted that it becomes increasingly difficult
and time-consuming to obtain convergent solutions as the concentration increases.
At low concentrations, the exact and Stokesian dynamics results are indistinguish-
able. If we form the Ewald-summed mobility matrix at the levél of point forces
only, we recover the point-force calculation of Saffman exactly. The importance of
including the effect of the finite size of the spheres is obvious from Figure 2.1. The
point-force solution will diverge significantly from the exact solution for ¢ > 0.1
and give unrealistic negative sedimentation velocities for ¢ > 0.19; inclusion of fi-
nite size effects in My, p is sufficient to reproduce the exact results for ¢ < 0.1. At
higher concentrations, the agreement between the exact and Stokesian dynamics
results is good, but not exact; the agreement worsens as ¢ — ¢maz, Where dpax
is the maximum volume fraction (¢maz = § for a simple cubic array). Physically,
there are relatively large channels in a sedimenting periodic array through which
the upwardly flowing fluid may pass; we would not expect the effect of lubrication
forces between the spheres to influence the sedimentation velocity. Indeed, the in-
clusion of the near-field lubrication interactions in the resistance matrix has little
effect on the results. The deviation of the exact and Stokesian dynamics results
for higher concentrations is caused mainly by the trunc;tion of the many-body
interactions in the mobility matrix. The preceding results afe also discussed in

Brady et al. (1987), and we would like to acknowledge the contribution of our
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Comparisons between “exact” and Stokesian dynamics results for the spin and
shear viscosities of spatially periodic suspensions demonstrate the importance of
the near-field lubrication interactions in properly approximating the hydrodynamic
interactions among the spheres. The spin viscosity of a cubic array (see Equation
(2.2-2)) can be written in terms of one scalar, ¢, because of the symmetry of the
array geometry. In Figures 2.2, 2.3 and 2.4, we compare our simulation results for
the spin viscosity of a variety of cubic arrays to the dilute and close-packed asymp-
totic results given by Zuzovsky et al. (1983) (close-packed asymptotic results for
simple cubic arrays only). The solid curves are the Stokesian dynamics results,
the dot-dashed curves are the dilute (to O(¢?)) and close-packed limits calculated
by Zuzovsky et al., and the dotted curves are the far-field, many-body results (no
additional two-body interactions included). The simulation (without lubrication
forces) and the asymptotic results are identical to O(¢). For the spin viscosity, the
far-field interactions included in the mobility matrix are insensitive to array type;
the effects of array type first arise at O(¢2). In the close-packed limit for the simple
cubic array, the asymptotic solution shows a logarithmic rise in the spin viscosity
as ¢/@maz — 1. Our simulation method reproduces this asymptotic behavior (see
Figure 2.2). It is important to note that if we do not include the lubrication forces,
the simulation incorrectly predicts the behavior of the spin viscosity as ¢ — émaz-
The close agreement at high and low concentrations is not simply fortuitous, since
our approximation to the true resistance matrix is simply the combination of the
correct long-range, multi-body interactions for suspensions of infinite extent and
near-field “lubrication” interactions. The limitations of our approximation would
show up only at moderate concentrations when a sphere’s nearest neighbors are
neither very close nor very far away. Unfortunately, no “exact” solution for the

spin viscosity exists over the whole concentration range.

Nunan & Keller (1984) have determined the shear viscosity for a variety of
cubic arrays over the entire concentration range following the procedure of Zick

& Homsy (1982); the dilute and ciose- packed limits were first worked out by



- 95—

Zuzovsky et al. (1983). The particle contribution to the shear viscosity is con-
tained in the fourth-order tensor, Rsg (see Equation(2.2-3,4a)). (Note that for
a sheared periodic suspension U = U, and only the second term contributes in
Equation(2.2—4a).) The shear viscosity can be uniquely written in terms of two
scalars, a and 3, because of the symmetry of the cubic array geometry. Figure 2.5a
is representative of the shear viscosity results — in this case , the shear viscosity
function a is shown as a function of ¢ for a sheared simple cubic lattice. In Figures
2.5-2.7, the solid curves are the full Stokesian dynamic results, the dotted curves
are the far-field Ewald-sum contribution with no lubrication, i.e., (MEsg) 1, and
the dashed curves are the “exact” result of Nunan & Keller (1984). Agreement
is again seen to be quite good, being exact as to O(¢2) in the dilute limit. As
¢ — Pmaz, @ and [ may approach infinity as either a function of In € or a function
of1/e (e =1-— (¢/¢m“)%), dependi‘ng on the lattice type. Our full simulation
exactly reproduces these singularities for all array types. Agreement at moderate
concentrations is good, though not exact — errors generally range from 5% to 20%
depending on array type and viscosity function except for the face-centered cubic

array f viscosity function (cf. Figure 2.75).

The periodicity of these arrays provides an especially strict test of our simula-
tion technique. Remember that we expect our simulation to approximate best the
hydrodynamic interactions between spheres for two-sphere center-to-center sep-
arations of greater that 4 radii or less than 2.02 radii; the largest error in the
resistance interactions will occur when a sphere’s nearest neighbors are an in-
termediate distance of between 2.02 and 4 radii away. In periodic cubic arrays,
the error resulting from truncating the many-body interactions is exaggerated at
moderate concentrations because of the relatively high percentage of spheres sep-
arated by intermediate distances. In a random suspension at the same moderate
concentration, we would expect, on average, fewer spheres to be separated by these
intermediate distances; the errors seen in the periodic array cases should be seen
as fairly high upper bounds of the effect of truncation on the many-body hydrody-

namic interactions in the mobility matrix. Further discussion of this subject can
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From the above comparisons, it is evident that our simulation method cap-
tures the essential physics of the dominant, many-body interaction among spheres
in an infinite suspension and of the lubrication forces between these spheres. In-
deed, we achieve not only good qualitative results with our method, but good
quantitative results over the entire concentration range. It must be stressed that
the method does not depend on the periodicity of the microstructure. Unlike the
“exact” calculations, the computation time requirements do not increase as the

concentration rises.

In summary, O’Brien’s method allows us to obtain exact convergent expres-
sions for the hydrodynamic interactions affecting a particle at the center of a
volume V containing N particles; V is immersed in a statistically homogeneous
suspension of infinite extent. The use of Ewald’s technique to speed the conver-
gence of interactions is of computational importance, but adds concerns about the
possible effects of long-range periodicity on simulation results. The only approxi-
mations in the method are the calculation of the hydrodynamic interactions and
the use of periodic boundary conditions to simulate an unbound medium. These
approximations have been quite good when compared against “exact” results for
a number of finite and infinite systems of spheres. The approximations can be im-
proved by including more moments in the integral expansions and/or increasing

the number of spheres in the periodic cell.

2.4 Integration of the Sphere Trajectories

In this section we shall discuss how the trajectories are determined. From
an initial configuration, (Rpy)~?! is calculated, and then Equation (2.1-3q) is
integrated to find the configuration at the next time step. Periodic boundary
conditions are used to simulate the infinite suspension. After the particles have
been moved, the program checks for any overlap among the particles. During the
course of a simulation, spheres spend a large fraction of their time very close to

one another, even at low and moderate areal fractions. This is clear from the
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pair-distribution functions determined from the simulation data. Lubrication in-
teractions added to the invert of the mobility matrix should, in principle, prevent
the spheres from overlapping, but sphere overlap can and does occur since the
time step is finite. Of course, we can decrease the time step, but computation
costs become large. To avoid taking prohibitively small time steps, we tolerate
a small amount of overlap. Typical overlaps are about 10~ or 10~7 radii, with
the largest overlap being about 1072 radii. Since we cannot calculate the lubrica-
tion interactions between spheres less than two radii apart (the calculation would
require the evaluation of a logarithm of a negative number), we set the sphere sep-
aration to 2+ 1078 radii for the resistance calculations, but leave the actual sphere
positions unaffected. If the spheres overlap more than 10~2 radii, the program is

terminated.

A sphere’s position at the next time step is calculated by multiplying a
weighted average of its velocity at a given number of previous time steps by the
time step. Historically, Stokesian dynamic simulations have used the explicit,
fourth-order Adams-Bashforth integrator. In the course of our research we exper-
imented with other types of integrators. The motivation behind this study and its

results are explained in this section.

In previous simulations of sheared monolayer suspensions of neutrally buoyant
spheres, the explicit, fourth-order Adams-Bashforth intergrator was used, and a
typical time step was O(10~2) dimensionless time unit. The time step had to
be small because the relative motion in sheared suspensions is quite large; the
shear flow forces particles past each other on a time scale 4~1. If the time step
was too large, the program would terminate because of excessive sphere overlap.
In a settling suspension of identical particles, gravity will act equally on all the
particles, and relative motion results only from the non-uniform configuration of
the particles. This causes the configuration of the particles in a settling suspension
to change much more slowly than in a sheared suspension. Program termination
due to overlap did not occur in simulations of sedimenting monolayer suspension

(at an areal fraction of 0.4), even when the time step was 0.1 dimensionless time
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unit.

In our original simulations of monolayer sedimenting suspensions (areal frac-
tion was 0.4), the FT method was used, and the time step was varied from 0.1
to 0.01. The resulting steady-state configurations showed a high degree of non-
terminal overlapping and the “clumping” of most of the spheres in the periodic
cell. This clumping consisted of a majority of the spheres connected to each other,
often in hexagonally packed formations (see Figure 2.8a). These clumps often
spanned the periodic cell. Decreasing the time step did not change the general
characteristics of the steady-state microstructure or other suspension statistics.
We included the effect of induced stresslets by using the FTS method, but this

merely accelerated and worsened the clumping (see Figure 2.95).

Varying the time step or the level of accuracy had little effect on the degree
of clumping or hexagonal packing. Doubling the number of spheres still resulted
in clumping at long times; however, doubling the number of spheres only increases
the edge of the periodic cell by 40% (see Figures 2.9a-b). Further increasing the
number of spheres becomes prohibitively expensive for dynamic simulation, even
in the monolayer. To insure the convergence of the long-range, hydrodynamic
interactions, we introduced the Ewald-summed mobility interactions described in
Section 2.3. However, as we shall see in Chapter 4, the simulation still results
in a high degree of hexagonal packing and clumping in a sedimenting monolayer

suspension at steady state.

Still disturbed by the high degree of clumping, we began to experiment with
the order and method of the integrator. In addition to the explicit fourth-order,
Adams-Bashforth integrator, we have used the fourth-order, Adams-Moulton predictor-
corrector, the explicit second-order, Adams-Bashforth integrator, the first-order,
Euler predictor-corrector, and the explicit first-order, Euler integrator in simula-
tion runs. All integrators except for the first-order methods led to clumping and
“overlap”. There was little difference in the suspension properties calculated from

these higher-order methods. There was little difference between the explicit and
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the predictor-corrector methods. The first-order methods differ from their higher-
order cousins in that only the velocity at the present instant in time is used to
calculate the position at the next time step. The amount of overlapping seen in
runs using the explicit first-order, Euler integrator was an order of magnitude less
than in the higher-order methods. The steady-state configurations were free of
hexagonal packing and large clusters (see Figure 2.10). The time step could be as
large as 0.1 for ¢ 4 = 0.4, and simulations could be carried out to quite long times
— 1000-3000 time units. Steady-state statistics and distributions were extracted,
and the long-time sphere motion was diffusive. An entire series of simulations
at different levels of accuracy and different concentrations was completed over a

period of a few months. ( See Appendix C for the results of these simulations.)

At this time, simulations of sheared monolayer suspensions of neutrally buoy-
ant spheres using the first-order integrator produced an angular dependence in the
pair-distribution function — more particles were found upstream of a test partcle
than downstream of it. (These simulations were performed by Dr. Georges Bossis).
Without repulsive forces between the spheres, the symmetry of the hydrodynamic
forces demands that there be no angular structure. The appearance of angular
structure can be understood by considering how an integration method determines
the trajectory of two isolated, nearly touching spheres imbedded in a shear flow
(see Figure 2.11). The analytic solution to this problem shows that the spheres
tumble over each other in constant closed orbits. Dr. Louis Durlofsky solved this
problem using Stokesian dynamics with a wide variety of integrators. He found
that the fourth-order methods correctly reproduced the closed orbit trajectories of
the spheres to within five significant figures. The second- and third-order methods
also captured the closed orbit trajectory, although they were slightly less accurate.
The first-order method integrator failed miserably; the calculated trajectories are
no longer closed, and the spheres quickly wandered away from each other. Even

drastically reducing the time step does not eliminate this error.

Analysis of the first-order integrator explains why it fails in the two-sphere

case and produces angular structure in the shear problem. Simply put, the first-
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order integrator cannot accurately capture the tangential motion of the spheres
moving around each other. This is seen by considering the two-sphere problem,
which is schematically shown in Figure 2.11. The solid line is the actual trajec-
tory that the sphere should follow. The dashed line shows the tangent to this
trajectory. An explicit first-order method will always advance the sphere along
this tangent, explaining why the method cannot accurately produce the correct
trajectory. Higher-order methods use velocities at previous points on the trajec-
tory and can accurately follow the curved nature of the sphere path. This explains
why angular dependence was seen in the shear case when the first-order integra-
tor was used. Spheres approaching from the upstream side were carried away
from the spheres they were approaching, instead of following a more semicircular
path around them. This results in more spheres being seen upstream of a given
sphere and angular dependence when there should be none. This is not seen when
the higher-order integrators are used. It should be stressed that the first-order
integrator did not produce any unwanted angular dependence in the sedimen-
tation problem. However, the first-order integrator obviously does not capture

adequately the trajectories of particles moving relative to one another.

So we come full circle. When appropriate, we will comment on results of
the first-order simulations, but in general, an explicit fourth-order integrator is
used in all simulations reported in this thesis. Of course, the simulations still
produce steady-state microstructures that are characterized by large clusters and
a high degree of hexagonal packing (see Figure 2.12). To better gauge the effect
of these clusters on the short- and long-time dispersion, we would want to see the
results of sedimenting suspensions whose configurations are free of these features.
The addition of repulsive forces between the particles can eliminate this clump-
ing and hexagonal packing in the steady-state configurations of the sedimenting

suspensions (see Figure 2.13).

2.5 Repulstve Interparticle Forces

In Bossis & Brady (1984), pairwise repulsive forces between the neutrally
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buoyant spheres in a shear flow affected the resulting steady-state microstruc-
ture. The addition of these repulsive forces inhibited clustering, particularly cell-
spanning clusters. Adding these repulsive forces to the simulation of sediment-
ing suspensions inhibits such cluster formation. We want to see if the change
in the microstructure affects the long-time dispersion properties of particles in a
sedimenting suspension. Thus, in certain simulation runs we include pairwise re-
pulsive DVLO-type colloidal forces, as was done in Bossis & Brady (1984). The
DVLO theory holds that the colloidal forces are of two types — a London-van der
Waals attractive force and an electrostatic repulsive force due to the interaction
between the particle double layers. In these simulations we have included only the
repulsive double-layer forces. We will vary the strength and range of the repulsive
force to consider its effect on the local structure and dispersion in sedimenting

suspensions.

For particles larger than a micron in size, the double layers are usually small
compared with the particle radius, and the pairwise electrostatic repulsive force

can be written
Te—TE
1—e-Te’

Frep = Fo (2.5_1)

where ¢ = r — 2 is the separation distance between the sphere surfaces, and r
is their center-to-center separation. Both have been ‘made dimensionless by the
particles’ characteristic length scale, a. 7 = xa, where x~! is the Debye length.
The amplitude of F, (the direction is outward along the line of centers) is given
by

|Fo| = 2mey)?, (2.5-2)

where ¢ is the electrical permittivity of the fluid and ¢ is the surface potential
of the particles when ¢ — oco. The derivation of Equation (2.5-1) assumes that
the surface potentials for the two particles are the same, and the surface charge

densities remain constant as the particles move relative to each other.

[Folvsets the magnitude of the force and 7 sets its range in space. The repulsive

force varies as 1/€ as ¢ — 0 and decays to 0(10~%|F|r) when € ~ O(4.57~1). At
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separations greater than 4.57~1, the interparticle force will generally be negligible
compared with the hydrodynamic force, and as 7 — oo, there is essentially no effect
from the interparticle force. The total interparticle force on a particle is built by
summing the force calculated from Equation (2.5-1) for the particle paired with

all other particles in the simulation.

In our simulations, we set |Fo|r = 1.0, so the range, 7, is the only independ-
ent parameter. In most simulations that include interparticle forces between the
particles, 7 = 10°%; one simulation was run where 7 = 103. The effect of the repul-
sive forces on the steady-state short-time self-diffusion coefficient in sedimenting
suspensions is discussed in Chapter 3. Its effect on the long-time dispersion is

discussed in Chapter 4.

2.6 Monolayer Symulations

Despite the decrease in computation time from using lattice sums and Ewald’s
method, full three-dimensional simulations are still too time consuming. We choose
to simulate monolayer suspensions instead of the three-dimensional problem be-
cause the computations are much faster and can be accomplished without sacri-
ficing the goal of this research, which is to study the diffusional nature of particle
motions in sedimenting suspensions. In a full three-dimensional FTS simulation,
each sphere has 11 degrees of freedom (three force, three torque and five stresslet
unknowns), resulting in a grand mobility matrix of 11N x 11N, where N is the
number of spheres in the object cell. In the monolayer problem, this matrix is
6N x 6N. Inverting the mobility matrix will be 6.25 ((41)3) times more costly in
the three-dimensional problem than in the monolayer problem. Solving the equa-
tion set will be 8 times more costly. In addition, it requires N 1% more particles
to do a three-dimensional simulation whose periodic cell edge length is the same
as the monolayers. Thus, the full three-dimensional problem can be up to 8N ;;‘
times more expensive than the monolayer problem, per time step. Since an av-
erage monolayer simulation requires 25 spheres, an equivalent, three-dimensional

run would be ~ 1000 times slower. Since a single simulation run can require in-
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verting the mobility matrix from 5,000 to 10,000 times and solving the equation
set from 500,000 to 1,000,000 times, simulating the monolayer instead of the full

three-dimensional problem results in a substantial reduction in computing time.

We restrict our attention to monolayer simulations — spheres in a monolayer
sediment within the plane of the monolayer (see Figure 2.14). Instead of charac-
terizing a suspension by the volume fraction of spheres (¢), in the monolayer we

define the areal fraction,

Nra?
ba="—""s (2.5-1)

where a is the radius of the spheres, and A is the area enclosing the N spheres.
We want to consider the effect of lattice sums on the monolayer formulation. This

is not straightforward since the lattice is still fully three-dimensional.

The use of lattice sums (and of Ewald’s method to speed their convergence)
in calculating the mobility matrix elements needs to be considered in more detail,
especially as applied to monolayer suspensions. A lattice of cells of volume V; fills
a larger convergence volume of V. The shape of the cells is constrained only by the
fact that they must fit together to fill V. For ease of explanation, consider a cubic
cell of volume V; (edge length is H) containing N, spheres. The cell has periodic
boundary conditions on its edges; each sphere can be considered as being at the
center of its own periodic cell. If we do not invoke lattice sums (v = 1 in Equation
(é.3.2—3)), the suspension outside the cell is considered statistically homogeneous.
If we do invoke the lattice sums, the cell will be surrounded by a given number
of images of itself, and this finite cluster of cell will itself be surrounded by a
statistically homogeneous suspension. Convergence is improved by increasing the
volume, V; in the non-Ewald method, we increase N such that N/V is constant;
in the Ewald method, we exte_nd the lattice of cells. Extending the lattice is much
cheaper than increasing V;. The cost of inverting the mobility matrix and the
solving of the equation set both increase as (N;)2. The Ewald method involves
extra O((N;)?) algebraic operations when forming the mobility matrix, but the

size of the mobility matrix does not change. Computationally, the use of lattice
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sums in conjunction with Ewald’s method is clearly favored to produce convergent
expressions for the elements of the mobility matrix. Additionally, at higher con-
centrations the mobility matrix looses positive definiteness when the non-Ewald
method is used. Unresolved is the effect of the long-range periodicity that periodic
boundary conditions and the lattice sums introduce to the simulation. We have

performed simulations both with and without lattice sums.

Although solving the sedimentation problem in a monolayer is computation-
ally advantageous, the use of lattice sums is not as straightforward as in the full
three-dimensional problem. The lattice sum remains fully three-dimensional, even
though the spheres are confined to a monolayer. Figure 2.15 describes schemat-
ically the periodic cell used in monolayer simulations. The area of the cell A is
H,-H,,where H, and H, are the cell edges in the z and y directions, respectively.
The non-Ewald method (lattice sums are not invoked) explicitly sums only the in-
teractions among the spheres in this object cell. For computational purposes,
each sphere is considered at the center of its own periodic cell. This technique
to simulate monolayer suspensions has been applied and discussed in Bossis and
Brady(1984) and Brady and Bossis(1985). Figure 2.16 describes schematically
the application of lattice sums to the monolayer formulation. The object cell is
now fully three dimensional with edge lengths of H;, H;, and L, in the z, y,
and z directions, respectively. The spheres are still confined to a monolayer. Im-
age cells also extend into and out of the plane of the paper. The lattice can be
extended indefinitely, although the mobility matrix elements usually converge to
within 0.1% of a constant value with about 124 image cells surrounding the object
cell. (Elements of all matrices except My, ¢ usually converge with only 26 image
cells around the object cell. This makes intuitive sense considering the long-range
nature of the given hydrodynamic interactions.) The sphere at the center of its
object cell will be affected by spheres inside and outside the monolayer. As long
as the lattice is symmetric about the z-axis (object cell monolayer at z = 0), the
spheres will remain in the monolayer, but there is no doubt that the presence of

image spheres outside the 2 = 0 plane will affect the behavior of the spheres in
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the monolayer.

Consider the effect of varying the distance between the image planes. For
convenience of discussion, we consider the edges of the cell to be of length H in
the z and y directions. The edge length in the z direction will be L = z; - H;
we vary the distance between the monolayer images by changing z;. Specifically,
we will be judging the effect of varying the monolayer separation on the number-
averaged suspension properties, such as (v:), (vy) (the “sedimentation” velocity),
{(vz — (vz))?), and {(vy — (vy))?). The object cell contains 25 spheres randomly
distributed at an areal fraction of ¢4 = 0.4 The sphere velocities are calculated
by solving

U:=My,r-F, (2.6-1)

where F = 1, and velocity interactions are pairwise additive. The monolayer sep-
aration factor, z;, ranged from 0.25 to 16.0. The extent of the lattice varied for
different separations, but all values for the suspension-averaged quantities con-

verged to six decimal places.

The dependence of the sedimentation velocity (v,) on the monolayer separa-
tion distance is seen in Figure 2.17. The dots (e) are simulation results; the line
was calculated independently and will be discussed below. It is obvious from Fig-
ure 2.17 that the sedimentation velocity in the monolayer is strongly dependent
on the separation distance. This is not necessarily a matter of concern — even
without lattice sums, the sedimentation velocity in the monolayer problem is not
a well-defined quantity. In a three-dimensional suspension, the fluid that is dis-
placed by the falling particles is called the backflow — the displaced fluid must
flow up around the particles since it has nowhere else to go. Thus, the sedimenta-
tion velocity in a three-dimensional suspension decreases as the volume fraction of
particles increases. In a monolayer suspension, the backflow may flow up around
the particles, or it may flow out of the plane of the monolayer. The sedimenta-
tion velocity is a function of the backflow returning in the plane of the monolayer;
backflow in the monolayer increases the drag on the particles. As the areal fraction
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increases, the backflow finds it easier to return outside of the monolayer. Thus, the

sedimentation velocity in the monolayer increases as the areal fraction increases.

The behavior of the sedimentation velocity can be rather easily understood by
considering the analogous problem of parallel, infinite flat plates, of thickness 2a,
moving at a constant velocity U through an infinite fluid; a zero mass flux plane
exists perpendicular to the direction of motion (see Figure 2.18). We can solve
this problem by considering one such plate with no-slip conditions on its surfaces
and free surfaces a distance of -;—zz - H from either side of the center of the plate.
Solving the equation of motion

0%y Op
_— = = 2.6-2
Faz2 oy’ ( )
where p is the fluid viscosity, u is the fluid velocity and p is the pressure, in con-
junction with the boundary conditions and mass conservation, we can determine

the unit drag force on the plate
6UuA;,

T BT (2.6-3)

Fdrag =

where A, is the unit cross-sectional area of the plate. The Stokes drag on all the

spheres in that unit cross-sectional area is

_ 6U,uAz,
- a

F bas (2.6-4)

where U, is Stokes velocity and ¢ 4 is the areal fraction of spheres. Equating these

two forces gives

UES = -;-¢A(zz -H -2). (2.6-5)

This equation is the straight line plotted in Figure 2.17. For 2z; > 1, the difference

between the simulation and equation results are less than 1%.

The dependence of (v.) and the velocity variances, {(vz — (vz))?) and {(vy —
(vy))?), on the monolayer separation distance is seen in Figure 2.19. The curves
merely connect the simulation results for each quantity: a indicates each (v)

result, a A indicates each {(v,—(v,))?) result, and a ¥ indicates each {(v,—(v,))?)
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result. For z; > 1, all these averaged quantities are constant, £0.5%. This is
important since we expect the relative motion of the spheres in suspension to
be related to the velocity variances. As long as z; > 1, the separation distance

between the monolayers should not affect the diffusion of spheres in the monolayer.

To confirm the correct construction of the monolayer problem in terms of the
lattice sums, we performed a simple check. Spheres were arranged in a regular
array in the monolayer. The factor z; was set such that the distance between the
monolayers was the same as the nearest neighbor distance between spheres in the
monolayer — i.e., a simple cubic lattice of spheres was formed from the object and
image spheres. Results for the full three-dimensional formulation and the special
monolayer formulation were exactly equal, as they should be. We can now use the

lattice-sum technique with confidence in the monolayer problem.

2.7 Specific Aspects of the Simulation Programming

This section deals with the actual programming of our Stokesian dynamic
simulations of sedimenting suspensions. The method outlined in the last three
sections will accurately simulate the dynamic behavior of spheres in a sedimenting
suspension. However, several important decisions must be made when we actually
implement the method. We can choose the level of approximation of the mobility
matrix, the level of acceptable convergence (with or without the lattice-sum tech-
nique), how often the far-field and near-field interactions need to be calculated,
not to mention the particular suspension conditions to be simulated. All of these
choices can affect how well we simulate the true behavior of settling spheres in
suspension, and all of them have an effect on computing time. In all cases, in-
creasing the level of accuracy of the simulation increases computing time. The
importance of finding the most efficient program is obvious when one considers
that determining the long-time displacement of the particles requires relatively
long computer runs and large amounts of stored data. Even at the lowest levels
of approximation and accuracy, a “short” simulation run will take about 25 CPU

hours to complete and produce over 12 million bytes of data on a SUN 3/260 with
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a floating point accelerator. Increasing the level of approximation and accuracy

can increase these requirements drastically.

We do not invert the mobility matrix as often as we solve the equation set.
The elements of the mobility matrix are far-field approximations to sphere-sphere
interactions and change significantly only when the relative separation of two
particles has changed by an amount comparable to the sphere size. Conversely,
the elements of the resistance matrix can change significantly with small changes
in the surface separation of two spheres close to one another. Thus, there are
two natural length (time) scales, and a multiple time-scale method can be used.
Thus, relatively small time steps are used when solving the equation set, and the

mobility matrix is formed and inverted less frequently.

For each simulation run, we need to choose the level of approximation in the
mobility matrix, the number of spheres in the periodic cell, the step size, how often
we will invert the mobility matrix, whether to use lattice sums or not, the extent
of the lattice and the spacing between monolayers if we choose to use lattice sums,
and how often we will store the simulation data. The effect of these decisions needs
to be gauged, since this is the first application of this method to the problem of
dynamic settling. Chapter 4 will discuss the effect of the decisions we outline in

this section on the long-time dispersion.

We consider three levels of approximation of the mobility matrix. The first
level is called the F method and implies that there is no rotation of the spheres.
It is the fastest method, but obviously spheres will rotate in real suspensions
and probably enhance any diffusive motion in the suspension. The second level of
approximation is called the FT method and allows the free rotation of the spheres.
Durlofsky et al. (1987) have shown that this method performs well for problems
that do not involve an imposed shear flow. The third level of approximation is
called the FTS method; even though there is no imposed shear flow, the motion
of the spheres will give rise to induced stresslets on the spheres that may affect

their diffusion. Although it is the most accurate method, it is also the most time-
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consuming. In Chapter 4 we discuss the effect of approximation level on variance

of the spheres’ velocity, their pair-distribution function and their dispersion.

The smallest step size in the simulations is the interval at which two-body,
near-field resistance interactions are added to the mobility invert, the equation set
is solved, and the new sphere positions are calculated. This step size was reduced
until the time-averaged suspension velocities and velocity variances were relatively
unaffected by further step-size reduction. The unit time step is (a/U,), where U,
is the Stokes settling velocity. The equation set was solved every 0.001 time unit.

The mobility matrix was formed and inverted every 0.1 time unit.

The Ewald runs set 2;=2, so the monolayers are separated by the twice the
distance H (the edge of the object cell in the monolayer). The reasons behind this
choice are discussed in Chapter 3. Convergence of the lattice sum is obtained by
extending the lattice. Preliminary results for the three-dimensional and monolayer
problems indicate that, in general, an acceptable level of convergence (within 5%
of final answers) can be obtained if the lattice size is 5 - H in all directions (124
image cells) for elements in the My, p matrix, and if the lattice size is 3 - H in all
directions (26 image cells) for the elements of all the other submatrices. We would
expect it to require a larger lattice to obtain convergence in the My, r matrix
because the disturbance velocity from a settling sphere decays as O(r~!), whereas
the disturbance velocities from rotating or sheared spheres decay as O(r~2) or

faster.

At given time intervals the program will store all sphere velocity and posi-
tion data. These data are used to calculate time-averaged sphere velocities and
velocity variances, pair-distribution functions and mean-squared displacements of
the spheres. Although all of these can be calculated as during simulation runs,
we often make a postersors decisions on which part of the data we would like to
analyze. Storage limitations of the computer disk and core memory make it im-
possible to store and analyze the data for a complete run if we store the data at

every time step. Data were stored every 0.05 time unit (every 50 time steps). In
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several simulations, we calculated the time-averaged velocities and variance, as
well as the pair-distribution function, while the program was running - data at
every time step were included. The difference between the run-time resuls and

the reduced-data results was negligible.

The actual CPU time requirements for different type of simulation runs de-
serve consideration. Runs were done on a Sun 3/260 computer with floating point
accelerator or the CRAY-XMP at the San Diego Supercomputing Center. For
conditions cited for the non-Ewald runs at ¢4 = 0.453, the F method required
about 301 CPU minutes per 100 time units, the FT method, about 837 CPU
minutes, and the FTS method, about 1024 CPU minutes on the Sun3/260. An
F method Ewald run (¢4 = 0.453) required about 717 CPU minutes. Simulation
runs lasted 3 to 6 CPU days, or even more, because the analysis of the long-time
diffusion coefficients generally required that data over 500 to 1000 time units be
used. Extending the method, as it is now, to three-dimensional systems would

require a 50- to 100-fold increase in the CPU time.
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Figure 2.1 Nondimensional sedimentation velécity of a simple cubic array of spheres
as a function of volume fraction ¢. The solid curve is the result of the
Stokesian dynamics method, the dashed curve is the exact result of
Zick & Homsy (1982), and the dotted curve is the point-force solution
of Saffman (1973). To facilitate comparison at high and low ¢, the or-
dinate and abscissa scales change for ¢ > 0.1. The exact and Stokesian

dynamics results are indistinguishable up to ¢ = 0.1.
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SPIN VISCOSITY
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Figure 2.2 The spin viscosity function £ for a SC lattice as a function of volume
fraction. The solid curves are the Stokesian dynamics results, the
dotted curves are the far-field results obtained from (Mg;'), and the

dot-dashed curves are the asymptotic forms as ¢ — ¢,,, and as ¢ — O.
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Figure 2.8 The spin viscosity function ¢ a BCC lattice as a function of volume
fraction. The solid curves are the Stokesian dynamics results, the
dotted curves are the far-field results obtained from (Mg '), and the

dot-dashed curves are the asymptotic forms as ¢ — ¢nmqaz and as ¢ — 0.
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Figure 2.4 The spin viscosity function £ a FCC lattice as a function of volume
fraction. The solid curves are the Stokesian dynamics results, the
dotted curves are the far-field results obtained from (M{;'), and the

dot-dashed curves are the asymptotic forms as ¢ — ¢maz and as ¢ — 0.
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ALPHA SHEAR VISCOSITY

PHI

Figure 2.5a The shear viscosity function afora simple cubic array as a function of

volume fraction. The solid curves are the Stokesian dynamics results,
the dashed curves are the exact solutions of Nunan & Keller (1984),
which terminates at ¢ = 0.48, the dotted curves are the far-field results
obtained from (M%g'), i.e. no lubrication, and the dot-dashed curves

are the singular form as ¢ — @maz.
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Figure 2.5b The shear viscosity function 8 for a SC lattice as a function of volume

fraction. See Figure 2.5a for an explanation of the curves.
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Figure 2.6a The shear viscosity function a for a BCC lattice as a function of volume

fraction. See Figure 2.5a for an explanation of the curves.
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Figure 2.6b The shear viscosity function A for a BCC lattice as a function of volume

fraction. See Figure 2.5a for an explanation of the curves.
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Figure 2.7a The shear viscosity function a for a FCC lattice as a function of volume

fraction. See Figure 2.5a for an explanation of the curves.
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fraction. See Figure 2.5a for an explanation of the curves.
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Figure 2.8a A “snapshot” of sphere positions. The inner box is the periodic cell.
These are the sphere positions at ¢ = 490.0 time units for an FT, non-
Ewald simulation. The time step is 0.1 time unit and the mobility

matrix is inverted every 10 steps.
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Figure 2.8b A “snapshot” of sphere positions. The inner box is the periodic cell.
These are the sphere positions at ¢ = 1000.0 time units for an FTS,
non-Ewald simulation. The time step is 0.1 time unit and the mobility

matrix is inverted every 10 steps.
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Figure 2.9a A “snapshot” of sphere positions. The inner box is the periodic cell.
These are the sphere positions at ¢ = 300.0 time units for an F, non-
Ewald simulation. The time step is 0.1 time unit and the mobility

matrix is inverted every 10 steps.
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inner box is the periodic cell.

snapshot” of sphere positions. The

[’3

Figure 2.9b A

The specifications are the same as in Figure 2.9a, except that the

number of spheres in the simulation is 49, instead of 25.
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Figure 2.10 A “snapshot” of sphere positions. The inner box is the periodic cell.

These are the sphere positions at ¢ = 299.0 time units for an F,

non-Ewald simulation. However, unlike the previous simulations, the
sphere trajectories are integrated using an explicit, first-order, Euler
integrator. The time step is 0.005 time unit and the mobility matrix

is inverted every 200 steps.



Figure 2.11 Schematic of two spheres in a linear shear field. The solid curve is the

actual trajectory and the dashed line is the tangent to this curve.
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Figure 2.12 A “snapshot” of sphere positions. The box is the periodic cell. These
are the sphere positions at ¢ = 500.0 time units for an FTS, non-Ewald
simulation (referred to as run FTSn5 in Chapter 4). The time step is

0.001 time unit and the mobility matrix is inverted every 100 steps.
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Figure 2.18 A “snapshot” of sphere positions. The box is the periodic cell. These
are the sphere positions at £ = 500.0 time units for an F, non-Ewald
simulation when there are repulsive interparticle forces between the
spheres (referred to as run nfrl in Chapter 4). The time step is 0.001
time unit and the mobility matrix is inverted every 100 steps. The

range parameter of the interparticle force, 7, is 103.



Figure 2.14 Schematic of a monolayer suspension of non-neutrally buoyant spheres.
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Figure 2.15 The periodic cell in the monolayer.
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Figure 2.16 Physical representation of the application of Ewald sums to the mono-
layer problem. The monolayers extend into and out of the plane of the

page. The central cell is considered the object cell.
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Figure 2.17 The dependence of the “sedimentation” velocity, (v,), on the distance
between the monolayers, which is characterized by 2;. The dots (e) are
simulation results calculated from Equation (2.6-1). The solid line is a

plot of Equation (2.6-5), which results from the falling planes analysis.
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Figure 2.18 The analogous problem of falling parallel planes: a single plane falls
at a constant velocity with parallel planes of zero mass flux a distance

of %(zz - H + a) on either side of the plane.
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Figure 2.19 Simulation results for (v;) (the filled squares), (v, — (vy))?) (the filled
upside-down triangles), and ((vz — (vz))2) (the filled triangles), as a
function of the distance between the monolayers, which is characterized

by z;. The curves connect the simulation results for each case.
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