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ABSTRACT

The hydrodynamic dispersion in concentrated sedimenting suspensions is investigated by numerical simulation. The particle Reynolds number is zero, and the Péclet number is infinite( the particles are non-Brownian). Particle trajectories are calculated by Stokesian dynamics. Stokesian dynamics is a molecular-dynamicslike simulation that provides an accurate representation of the suspension hydrodynamics. Detailed in this thesis is a technique that accelerates the convergence of the mobility interactions among particles in an infinite suspension. The simulations are of a monolayer of identical spheres sedimenting in the plane of the mono- layer. Relative motion among the spheres arises from hydrodynamic interactions. The displacement related to this relative motion may constitute a random walk, giving rise to diffusive behavior of the spheres. This hydrodynamically induced self-diffusivity has been seen in sheared suspensions of non-Brownian, neutrally buoyant spheres.Results of the numerical simulations show that the motion of spheres in sedimenting suspensions is also diffusive. The diffusion coefficient is relatively insensitive to the nature of the microstructure, as expressed by the pair-distribution function and the short-time, self-diffusion coefficient. The coefficient of diffusion decreases as the concentration increases for concentrated suspensions (it increases in the shear case). The ratio of the diffusion coefficient to the velocity variance of the spheres should be proportional to the time scale of the diffusive interactions. The diffusion time scale and the diffusion velocity scale ( the square root of the velocity variance) both decrease as the concentration increases. In the shear case, the velocity scale (sphere radius multiplied by the shear rate) is independent of concentration, and the time scale (the product of the square of the concentration and the inverse of the shear rate) increases with increasing concentration. At the lowest concentrations, the spheres whose centers are separated by less than 2.05 radii prefer to align in the direction of sedimentation. At the highest concentrations, the preferred alignment is in the perpendicular direction.
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CHAPTER 1: INTRODUCTION

Particles suspended or dispersed in a fluid medium occur in a wide variety of natural and industrial settings, e.g. slurries, porous media, composite materials, colloids, polymers, proteins, etc. Investigators are beginning to understand and predict the macroscopic behavior of such systems from a knowledge of the fundamental microstructural mechanics - that is, from the interactions among the particles and from their distribution in space and time. In this thesis, we are concerned with dispersion of particles in sedimenting suspensions where Brownian forces are negligible. Recent experiments by Leighton & Acrivos (1987) have shown that the dispersion of neutrally-buoyant non-Brownian spheres in simple shear flow is a diffusive process; i.e., at long times the mean-squared displacement of the particles grows linearly with time. Generally, self-diffusion has been considered a property of colloidal suspensions, whose particles are strongly affected by Brownian forces. Our investigation focuses on the hydrodynamic dispersion occurring in sedimenting suspensions of non-Brownian particles; particularly, we seek to answer the question of whether dispersion is or is not diffusive, as well as to provide estimates of the dispersion as a function of the concentration of particles.Self-diffusion is an important property of colloidal suspensions and has been the subject of theoretical, experimental and numerical studies. Self-diffusion can convey static information through the short-time diffusivity measuring the properties of the local structure, as well as dynamic information in the behavior of the long-time diffusivity, as a particle must wander far from its starting point, deforming the local structure, and exchanging places with its neighbors. The long-time diffusivity in colloidal systems arises from non-deterministic Brownian impulses that give the particles a series of displacements that result in an irreversible random walk. Statistical mechanicians and fluid dynamicists have developed theories to predict the self-diffusion coefficient and its dependence on concentration (Ralli- son & Hinch 1986). Experimentally, measurements of the self-diffusion coefficients by dynamic light scattering are used to infer particle size and/or shape and inf or-



- 2 -mation about the interparticle forces (Berne & Pecora 1976). Recently, Bossis & Brady (1987) have studied the self-diffusion of a concentrated suspension of neutrally buoyant Brownian spheres in a simple shear flow by numerical simulation.In non-colloidal suspensions, random Brownian forces are negligible and do not affect the dispersion of the particles. If the suspension does not contain Brownian or interparticle forces, the governing equations of motion are linear and the trajectories of the particles should be reversible. The question is how such a suspension can produce long-time dispersion that is diffusive. In the shear system studied by Leighton & Acrivos, the motion of the spheres was shown to be diffusive, despite the fact that the governing Stokes equations demand that the sphere paths be reversible. (For a discussion of this and other types of microscopically reversible diffusion processes, see Leighton &. Acrivos 1987, and Okagawa, 
et al. 1978). The diffusive nature of the sphere trajectories resulted from the shear-induced multi-body hydrodynamic interactions. Although the particle trajectories are completely deterministic, the equations of particle motion are highly non-linear, forming a non-linear dynamical system that should display deterministic chans, and hence, diffusive behavior. Determining whether the dispersion of particles in a sedimenting solution exhibits this type of self diffusion is the goal of this research.Consider the trajectories of particles in a sedimenting suspension of non- Brownian particles with no non-hydrodynamic interparticle forces. If the particles did not interact hydrodynamically, there would be no relative motion among the particles; they would all fall vertically at the sedimentation velocity. When the particles do interact hydrodynamically, their displacement will no longer simply arise from their sedimentation velocity. Imagine labeling a single particle at a given time and following its trajectory. As it interacts with the other particles and moves to its next position, it will drift laterally from its line of fall in a non- hydrodynamically-interacting suspension. Also, its displacement in the direction of settling may be more or less than the displacement in a non-hydrodynamically interacting suspension, or more or less than that accounted by the average sedimen-



-3-tation velocity in a hydrodynamically interacting suspension. These displacements may constitute a random walk - the time-averaged displacement in the direction perpendicular to gravity will be zero, as will the time-averaged displacement in the direction of gravity minus the displacement owing to the average sedimentation velocity. It is our task to determine if this series of displacements is diffusive. The next question is how we shall accomplish this.As in the colloid studies, three avenues of study present themselves - theory, experiment, and numerical simulation. The only published studies of non- Brownian systems have dealt with the shear-induced self diffusion of suspensions of neutrally buoyant sphere in shear flow. Both experiments and numerical simulations have shown that the displacement of spheres in these systems is indeed self diffusive (Leighton & Acrivos 1987, Bossis & Brady 1987). Quick analysis of rate of the three-body interactions in these flows (two-body interactions cannot lead to diffusive behavior) show that the long-time self diffusion coefficient should be proportional to -γ≠2α2 as ≠ → 0, where *γ is the shear rate, φ is the volume fraction of spheres, and a is the sphere radius. This scaling prediction is supported by the experimental results. There have been no rigorous theoretical analyses of this diffusion process.To date, no studies of the dispersion in sedimenting suspensions have been reported in the literature. Theoretical studies of long-time dispersion in dilute suspensions are under way. Early work indicates that the long-time dispersion is diffusive and is proportional to the inverse of the volume fraction as the volume fraction goes to zero (Koch &: Shaqfeh 1987). We are also aware of experiments in progress by Ham & Homsy (1987) and Davis & Hassen (1987); however, these are still restricted to dilute suspensions. Our approach to this problem is to numerically simulate concentrated sedimenting suspensions. Thus, the particle trajectories are completely available for analysis, and non-hydrodynamic or Brownian forces can be ignored or included in an exact way. We shall use a molecular-dynamics-like approach known as Stokesian dynamics.



- 4 -Stokesian dynamics is capable of dynamically simulating the behavior of particles in infinite suspensions. In its most general form, the particles may interact through both hydrodynamic and non-hydrodynamic forces, which may be any type or combination of Brownian, interparticle or external forces. The central element of this method is the approximation of the complex hydrodynamic interactions among all particles in the suspension. Since we are interested in hydrodynamic dispersion in suspensions, it is essential that the simulation accurately accounts for. the many-body interactions, which are necessary for diffusive displacement of particles. Since it is a dynamic simulation, lubrication forces that prevent the overlap of particles (a physical impossibility) are also essential. Stokesian dynamics includes both of these important elements and has been successfully applied to a variety of finite and infinite systems. Bossis & Brady (1987) used this technique in their study of self-diffusion in sheared suspensions.In Chapter 2, the basic Stokesian dynamics method is outlined. There are two important features of sedimenting suspensions that need to be recognized. The first is the long-range nature of the hydrodynamic interactions, particularly among particles on which external forces act. In an infinite suspension, these long-range interactions can lead to divergent expressions for the velocity of the particles. In previous simulation studies of infinite suspension, these interactions have been rendered convergent by applying the method of O’Brien (1979). These previous simulations all dealt with neutrally buoyant spheres in simple shear flow, whose long-range interactions decay as O(r-2), where r is the distance from the center of the sphere. The long-range interactions in a sedimenting suspension decay as O(r-1), so that more particles are required to satisfy the conditions of O’Brien’s method. As will be seen, the computational cost increases as the cube of the number of particles in the simulation, and thus an efficient means for calculating the long-range interactions is needed. This has been accomplished by using Ewald sums, as first developed for the hydrodynamic problem by Beenakker (1986). We have applied this technique to all long-range (previously divergent or conditionally convergent) hydrodynamic interactions, drastically reducing the cost of calculating



- 5 -these interactions.The importance of reducing the calculation time is clear when the second important feature of sedimenting suspensions is considered. In sheared suspensions, the rate of the interactions of the particles causing relative motion is set by the shear flow forcing them past one other. In sedimenting suspensions, however, only the hydrodynamic interactions among the particles themselves, not the imposed flow, give rise to relative motion. The microstructure changes at a much slower pace than in the sheared suspensions, and thus, longer simulations are needed. It takes longer for the suspension to achieve a steady state, and it takes longer for a particle to experience sufficient uncorrelated interactions for its motion to become diffusive. Chapter 2 details all of the steps we have taken to produce simulations that capture the necessary physics to study dispersion in sedimenting suspensions in reasonable computational times.We present the results of our investigations in Chapters 3 and 4. In Chapter 3 we compare the short-time, self-diffusion coefficient, which is configuration- dependent only, found in infinite regular arrays of spheres, in random suspensions, and in steady-state sedimenting suspensions. Included in this chapter is the dependence of the short-time, self-diffusion coefficient on concentration in randomly distributed suspensions. In Chapter 4 we present the results of our study of the long-time dispersion in sedimenting suspensions. The effect of repulsive interparticle forces and the concentration dependence are discussed. Chapter 5 presents our overall conclusions, including recommendations for continuing research.



- 6-
CHAPTER 2: THE STOKESIAN DYNAMICS METHOD

We now take a closer look at the tool we have chosen to investigate the sedimentation-induced, self-diffusion of non-Brownian particles in suspensions of infinite extent. The tool is Stokesian dynamics, a molecular-dynamics-like approach to simulating dynamically the behavior of many particles suspended or dispersed in a fluid medium. The method is very general and is applicable to systems with a finite number of particles or suspensions of infinite extent. The particles may interact through both hydrodynamic and non-hydrodynamic forces, such as Brownian, colloidal, and/or other types of interparticle or external forces. Possible applications of Stokesian dynamics include problems of sedimentation, flocculation, diffusion in many types of suspensions, polymer rheology, transport in porous media, etc. The simulation method is capable of predicting both static (i.e., configuration-specific) and dynamic microstructural properties, as well as macroscopic properties in a variety of systems at all concentrations. This section presents the method at its most general and will clearly show how our present study fits into the larger research area accessible to Stokesian dynamics.First, we present the evolution equation for the suspension microstructure. The equation will include contributions from Brownian, interparticle, external and hydrodynamic forces acting on the particles. Of course, not all these forces will be present in the particular systems we wish to investigate, so the necessary simplifications of the evolution equation are outlined. The equation is completely general and exact for N particles suspended in a volume, V ; the central role of the hydrodynamic interactions in the evolution of the microstructure is explicitly shown. Secondly, we define a variety of macroscopic properties. These definitions involve the appropriate averaging of the microstructural evolution equation or its solution. All of these properties involve, explicitly or implicitly, the averages of hydrodynamic interaction tensors that relate the dynamic properties of the particles to their kinematic conditions.Approximating the 2V-body hydrodynamic interactions accurately and quickly



-T -is at the heart of the Stokesian dynamics method. This approximation, which includes both the near-field lubrication forces and the dominant many-body interactions among the particles, is presented in Section 2.31. In Section 2.3.2, we show how the hydrodynamic interactions in unbounded, infinite systems, i.e., the thermodynamic limit N → ∞, V → oo, with N∣V fixed, are simulated. This is not a trivial problem because of the long-range (l∕r) nature of the hydrodynamic interactions. Specifically, we introduce the Ewald-sum technique to speed the convergence of the hydrodynamic interactions, after O’Brien’s method has insured their convergence.
2.1 The Microstructural MechanicsFor N rigid particles suspended in an incompressible Newtonian fluid of viscosity, η, and density, p, the motion of the fluid is governed by the Navier-Stokes equations, and the particle motion is described by the coupled Λr-body Langevin equation, which can be writtenm∙-=Ffi+Γ∕> + Fβ, (2.1—1)that simply states the mass times the acceleration equals the sum of the forces, m is a generalized mass/moment of inertia matrix of dimension 6Λr × 6N, U is the particle translational/rotational velocity vector of dimension 6N, and the GN force/torque vectors, F, represent: l) the hydrodynamic forces, F∏, exerted on the particles due to their motion relative to the fluid, 2) the deterministic non- hydrodynamic forces, Fp, which may be interparticle and/or external, and 3) the stochastic forces, Fp, that give rise to Brownian motion. We will study only suspensions whose motion on the particle scale is such that the LHS of Equation (2.1-1) is zero. Thus, the evolution equation is a linear combination of the forces acting on the particles; of course, in actual practice we would include only those forces relevant for the given problem. From now on, we consider only systems where the Brownian forces are negligible; the infinite Péclet number limit.When the motion of the particle scale is such that the particle Reynolds



- 8 -number is small (the exact statement of this condition is given below), the hydro- dynamic force/torque exerted on the particles in a suspension undergoing a bulk linear shear flow is Fff = -Rptz - (U - U∞) +Rfb :E°° (2.1-2)(see Brenner & O’Neill 1972, Kim & Mifflin 1985, Bossis & Brady 1984). Uo° is the imposed flow at infinity evaluated at the particle center, i.e., U“ = Ωo° for rotation and U“ = Eo° ∙ xa for translation, where xa is the particle postion vector of the ath particle. Eo° and Ωo° are the symmetric (and traceless from continuity) and anti-symmetric parts of the the velocity gradient tensor, respectively. Both are constants in space, but may be arbitrary functions of time. Rpcr(x) and Rpp(x) are resistance matrices that give the hydrodynamic force/torque on the particles because of their motion relative to the fluid (Rpy(x)) and because of the imposed shear flow (Rpp(x)). These matrices depend only on the configuration of the particles since the Reynolds number is zero, x represents the generalized configuration vector, specifying the location and orientation of all N particles, and U is the particles’ translational/rotational velocity vector. Note that the subscripts on the matrices indicate the coupling between the kinematic and dynamic quantities. If there is no imposed shear flow, Equation (2.1-2) reduces to
Fh = - Rptz ∙ (U - U∞) (2.1-3α)(U-U∞) =-M∙Fκ, (2.1-36)where M, the exact mobility matrix, is the inverse of the resistance matrix (M = (Rpj∕)-1). In all problems, this mobility matrix is the central element describing the hydrodynamic interactions among the particles.The deterministic, non-hydrodynamic force, Fp, can be most any form of interparticle and/or external force. For example, Bossis & Brady(1984) included a pairwise electrostatic repulsive force between neutrally buoyant spheres in a shear flow. For sedimentation problems, Fp will simply be the buoyancy force. It is also possible to link together some of the particles permanently through



-9-an interparticle force; we would then be able to extract information about the 
internal dynamics of the linked particles and their effect on the bulk properties of the suspension.Solving Equation (2.1-1) and (2.1-2) for U and integrating that expression over time produces the evolution equation for the particle positions and orientations with an error of Ο(Δί2):∆x = {Uo° + (Rpu)~1 ∙ [5* TSLfe : Eo° + Fp]}∆t. (2.1—4)∆x is the vector representing the change in position and orientation of every particle during the time step ∆i. x has been non-dimensionalized by the particle size α, the time by 6π>7a2∕∣Fp∣, the shear force by 6πi77 (7 = ∣E00∣ is the magnitude of the shear rate), and the interparticle and/or external forces by ∣Fp∣. -γ* = 6πr∕α25∕∣Fp∣ is the non-dimensional shear rate that gives the relative importance of the shear flow and the imposed interparticle and/or external forces.Equation (2.1-4) simply states that the motion of a particle is composed of two parts, each resulting from the basic forces in Equation (2.1-1). There is a contribution due to the hydrodynamic shear forces, [Uo° + (Rptz)~1 ∙Rps : Eo°] ∆f, and a contribution from the interparticle or external forces, [(Rpj∕)^1 ∙ Fp] ∆f. In general, the motion of the particles in a suspension depends on the dimensionless parameters characterizing the suspension and flow conditions: zγ*> and φ, the volume fraction of particles. No restriction has been made to particles of identical size and shape. If the particles are not spherical, other dimensionless parameters characterizing their shape must be included. If more than one type of particle is present, there will be a volume fraction, φi, for each type. If interparticle forces are present, in general, we will need dimensionless parameters to specify their range (as opposed to their amplitude).For sedimentation of non-Brownian particles in the absence of a shear flow, F# is determined from Equation (2.1-1) for the specified external and/or inter- particle forces, and then Equation (2.1-3δ) is solved for the translational and rotational velocities of the particles. For sedimentation, the requirement that



-10-the particle Reynolds number be small takes the form Re = pU0a∕η ≪ 1, where 
Uo{= 2{pp- p}gai ∕ (Qη}} is the sedimentation velocity of an isolated particle (characteristic length is a and density is pp} in a fluid of density p and viscosity η. Equation (2.1-3δ) is the core of our dynamic simulation of the sedimentation problem. It is an exact description for N particles of arbitrary size and shape suspended in a volume, V. Given an initial configuration and specified external and/or interparticle forces, Equation (2.1-3δ) is integrated to follow the dynamic evolution of the suspension microstructure. The only task remaining is to approximate the hydrodynamic interaction matrices. The description of our approximation of these matrices is in Section 2.3 and the solution of the evolution equation is in Section 2.4. The Stokesian dynamics formulation is completely general, describing the motion of N particles suspended in a volume, V, interacting through hydrodynamic, interparticle, or external forces. Simulating specific suspension flows only requires identifying the correct time scale and setting the correct dimensionless parameters, e.g., -γ*> ≠5 etc., in the evolution equation. Thus, the sedimentation problem and the shear problem, are both seen as special cases to the general problem of suspension dynamics. In all of these problems, the central element is the hydro- dynamic interaction tensors, and we will see that they are explicitly present in the definitions of important macroscopic properties that characterize the suspension. In the next section we will show how the macroscopic properties of various suspension types are determined from the appropriate averaging of the microscale evolution equation.

2.2 The Macroscopic PropertiesWe now consider the bulk properties of the suspension, which can be determined from the corresponding averaged expressions of the microscale results. These expression, in general, depend on the property to be investigated, and we shall only discuss a few of them here. Most of the general formulae for the macroscopic properties have been derived by Batchelor (1970, 1972, 1976, 1977), and all



- 11 -involve (generally explicitly) averages of the hydrodynamic interaction tensors.For sedimentation relative to zero volume flux axes, Uo° = 0, a macroscopic property of interest is the average velocity of the particles, (U). For identical particles all experiencing the same external force, F, the average sedimentation velocity would be given by(U) = ((Rf1z)^1 ∙ F) = (M) - F. (2.2-1)This equation can be generalized for suspensions of unlike particles (Batchelor 1982).Other important macroscopic properties of a suspension are related to the deviatoric stress felt by the individuell particles. The anti-symmetric part of the bulk deviatoric stress, Tx, is given as
(c0Tx) = (Rra.(Ω-n0β)), (2.2-2)where vo is the volume of an individual particle, and Rτn is the resistance matrix that gives the hydrodynamic torque on the particles because of their rotational motion relative to the fluid. The symmetric part of the bulk deviatoric stress is known as the bulk stress, (Σ), and is defined(Σ) = I.T. + 2^E∞ + £{<S*> + (Sp)}. (2.2-3)

This property defines the rheology of the suspension. I.T. stands for an isotropic term of no interest. The particles make two contributions to the bulk stress: a mechanical or contact stress transmitted by the fluid because of the shear flow, <Sp) and an “elastic” stress due to the interparticle forces, (Sp). The particle contributions to the bulk stress are given by(Sκ) = -(Rsσ ∙ (U - U∞) - Rse : E∞), (2.2-4 α)(Sp) = -(xFp). (2.2-46)Rst∕(x) and Rsc(×) are configuration- dependent resistance matrices, similar to Rfcz and Rfβ, relating the particle stresslet, S, to the particle velocities (Rst∕) and to the imposed rate of strain (Rss).



12 -The general Λτ-particle diffusion tensor for Brownian particles, D, is related to the resistance and mobility matrices as follows:
D ≡ kT(RFv)~1 = (2.2-5)where T is the temperature and k is Boltzman’s constant. Several “particle diffu- sivities” may be defined. Self-diffusion is a basic property in many types of suspensions and it may be induced a variety of ways. The short-time self-diffusivity, D®, measures the average instantaneous mobility of a particle in its local environment and is defined

D: = (D,∙,∙). (2.2-6)The angle brackets denote an average over all configurations as well as the average over the particles in a given configuration, and D,∙* denotes the self-submatrix that relates a particle’s kinematic quantities to its own dynamic quantities.The long-time self-diffusivity, D⅛o, measures the ability of a particle to wander far from its starting point and is definedd~ = <!⅛ ⅛<<x “ t2∙2^7> 
where x is the vector representing the displacement of the particles from their initial configuration at a given time, and x is the displacement resulting from the bulk motion. In this case, the angle brackets indicate the average over all initial configurations of the particles as well as the average over all the particles. If the limit in Equation (2.2-7) is a constant, the dispersion of the particles as they wander among their neighbors is diffusive. Both the short- and long-time self-diffusivities are accessible by light scattering techniques, being the long- and short-wave scattering limits, respectively (Rallison &: Hinch 1986, van Megen et 
al. 1986).In addition to these (and other) macroscopic properties, we can also calculate all types of statistical properties, since the complete microstructural dynamics is followed. These statistical properties include all normal particle distribution functions, such as the pair-distribution function, ff(r), the triplet-distribution function,



-13-<7(r1,r2), etc., cluster sizes and cluster-distribution functions. One can also calculate particle velocity fluctuations about the average and so define a “suspension temperature”, and so on.In summing up this section, several points need to be emphasized. From the definitions of the macroscopic properties, the fundamental role of the hydrodynamic resistance matrices is obvious. All of the above equations, as written, are exact; all that remains is to approximate the hydrodynamic interactions. The entire evolution of the suspension microstructure and the macroscopically observed properties depend on these interactions, so an accurate representation of the N- body resistance matrices is essential. In succeeding section we will discuss the core of the Stokesian dynamics method, the accurate and computationally efficient approximation of the Λ’-body resistance matrices for finite and infinite systems. This approximation, within the context of Stokesian dynamics, has already been applied successfully to a variety of suspension flows. Such investigations include the rheology of concentrated suspensions of neutrally-buoyant non-Brownian spheres in simple shear flow (Brady &: Bossis 1985), the self-diffusion of Brownian particles in concentrated suspensions under shear (Bossis & Brady 1987), the sedimentation rate of disordered suspensions (Brady & Durlofsky 1987), among others. Our study focuses on the sedimentation-induced self- diffusivity of non-Brownian spheres in suspension.
2.8 The Hydrodynamic InteractionsIn this section, we will describe the general Stokesian dynamics method and its application to the present sedimentation problem. Our object is to study the long-time diffusive behavior of monodisperse, non-Brownian spherical particles settling in an infinite suspension. This problem demands that the method do several tasks well: long-range multi-body hydrodynamic interactions, lubrication interactions, and the computationally efficient calculation of all of the above. Since we are studying diffusive behavior, the importance of including the multi-body hydrodynamic interactions is obvious. Section 2.3.1 describes how the method



- 14 -includes these important interactions. The inclusion of lubrication forces, which becomes increasingly important as the concentration increases, is also described in this section. This method was developed by Durlofsky, et ai. (1987) for a finite number of particles, and we start with this basic methodology.Simulating a suspension of infinite extent is not a simple extension of the finite particle case. A simple summation of hydrodynamic interactions among the particles results in badly divergent expressions; this difficulty is overcome by the method of O’Brien (1979). O’Brien’s method allows us to write convergent expressions for the hydrodynamic interactions for a particle in a suspension, yet to deal only with a finite number of its neighbors.Although O’Brien’s method allows us to consider only N particles of the suspension when determining the kinematic behavior of a particle, N may still be too large for practical computation. From O’Brien, we know that the effect of particles outside the volume, V, which contains the N particles, on the velocity of a sedimenting particle at the center of V is zero, within an error of O(R~1}, where 
R is the characteristic radius of V. As R increases, the effect of the surrounding particles can be made arbitrarily small. The same effect in systems of neutrally buoyant spheres in a linear shear field is also zero, but the error is of O(R~2) (Brady & Bossis 1985). Since increasing the number of spheres is computationally expensive, we opt to speed the convergence of the interaction expressions another way. That way is to choose a smaller number of spheres, Λrχ, in a smaller volume, 
V1, and replicate their images throughout V. By creating a lattice of these images, we can invoke Ewald ’s method of accelerating the convergence of lattice sums. This technique is common in the study of electrostatic problems and was first applied to the Rotne-Prager tensor by Beenakker(1986). Details of O’Brien’s method and further discussion can be found in Section 2.3.2.
8.S.1 The Hydrodynamic Interactions: Finite Particle SystemsWe consider the problem of determining the motion of particles subject to a constant body force, such as the buoyancy force. After rewriting Equation (2.1-



- 15 -3δ>) after solving for the hydrodynamic force in Equation (2.1-1), the motion of the particles in Stokes flow can be calculated from
U-U∞ = M∙Fp. (2.3.1-1)

The mobility matrix depends on the instantaneous configuration of the particles only. The mobility matrix is symmetric, as can be shown from the reciprocal theorem, and positive definite, because of the dissipative nature of the system. Since there is no general solution to the 7V-body Stokes equation, we must approximate M. Durlofsky ef al. (1987) developed an excellent approximation to the true mobility matrix that preserves the dominant multi-body interactions and lubrication forces among an arbitrary number of spheres. This section is a brief description of the way the exact mobility matrix for a finite number of spheres is approximated in our simulation.The basic problem is to generate an approximate 7V-particle mobility matrix, M, that relates the particles’ translational and rotational velocities to the forces and torques imposed on them. We start with the exact integral representation of the velocity field in Stokes flow, in conjunction with Faxén’s laws; the force density on the surface of each particle is expanded in a series of moments about the center of each particle. The monopole, or zeroth moment of the force density, corresponds to the total force on the particle, F⅛ (the subscript t indicates that the force is related to the translational motion of the particles). The dipole, or first moment of the force density, has both symmetric and anti-symmetric parts: the anti-symmetric part is the total torque, L, and the symmetric part is known as the stresslet, S, which in sedimentation problems is an induced quantity resulting from the interaction with the other particles. We can truncate the multipole expansion at any order, depending on the level of accuracy we desire, but to include the effects of lubrication, all moments are necessary. Since we will include the effects of lubrication in the resistance formulation, we truncate the expansion after the first moment. (We also include two higher order multipole contributions that result from the finite size of the particles. A more complete derivation that



- 16-cons id ers explicitly the quadrupole contribution to the mobility matrix can be found in Brady e< al. 1987.) For the sedimentation problem, we approximate the mobility matrix by the GN × GN matrix M∏p and write Equation (2.3.1-1) as
where U⅛ and Ω are the Λr-particle translational and rotational velocity vectors. When Mtztκ is formed for two particles, it is commonly called the Rotne-Prager tensor.We can increase the accuracy of our mobility matrix by including the stresslet interactions. This is necessary for problems where there is an imposed linear shear field. We form the grand mobility matrix, X, which includes the stresslet interactions, as follows:

(uje∏=>Φ). )with X partitioned as
where the imposed rate of strain, —Eoo, is zero for sedimentation problems. The grand mobility matrix, X, is written as an UN × UN matrix, since the stresslets are traceless and symmetric. The GN × 5N matrix relates the velocitiesand the stresslets, the 5N × GN matrix relates the rate of strain and forces,and the 5N × 5N matrix relates the rate of strain and the stresslets. Inaddition, Eo° and S are written in a compact form, which takes advantage of the fact the stresslets are traceless and symmetric; this is done so that M is not singular and may be inverted. To include higher order multipole moments, the vector on the RHS is extended by including the irreducible (quadrupole, octupole, etc.) moments, and the kinematical vector on the LHS is extended with zeros, as all higher velocity gradients must be zero. As we construct them, X, andMβs are all symmetric and positive definite like M. Details of the construction of these matrices can be found in Durlofsky et al. (1987).



-17-In our simulation, these matrices are far-field approximations to the hydro- dynamic interactions between spherical particles. Consider the small (as opposed to grand) mobility matrix, M∏p∣ and neglect the stresslets for a moment. Solving Equation (2.3.1-2) for the sphere velocities will sum only the pairwise interactions between spheres. If we attempt to move the spheres based on these velocities, the spheres will overlap since the far-field approximations to the sphere interactions do not include the strong lubrication interactions that will prevent this overlap. To include these lubrication interactions, we first invert Mujp. The invert, (Mι∕j>)-1, is the far-field approximation to the resistance matrix R. More importantly, this invert is a true many-body approximation of R. Whatever elements are included in the mobility matrix - point force, finite size effects, stresslet interactions, etc. - upon inversion, the reflections among all elements and all spheres are summed. The proof of this is in Durlofsky et al. (1987).The invert, (Mvjp)-1, is still only a far-field approximation to the true resistance matrix. Lubrication effects would occur only if all multipole moments were included in the mobility matrix. We include these important near-field interactions in a pairwise fashion to the resistance formulation. To each element of the (Mj∕f)~1 we add the known exact two-sphere resistance interactions. This additional two-sphere resistance matrix is known as R2ι>∙ However, (Mtzjr)~1 already contains the the far-field part of the two-sphere interactions. These far-field interactions, denoted by Rj⅛, must be subtracted from R2fc. Our approximation to the exact resistance matrix isR « (Mtzr)-1 + R26 - Rg. (2.3.1-5)In an actual simulation, we would then solve the equation set in Equation (2.1-3o) for the translational and rotational velocities of the spheres. This is known as the FT formulation and method.When there is no imposed linear shear flow, Durlofsky et al. (1987) have shown that the FT method gives accurate results. If we want more accurate results by including the effect of induced stresslets and if we are willing to pay the



- 18 -computational costs to obtain them, we form the grand mobility matrix, Λf. The invert of the grand mobility matrix is the grand resistance matrix Λ:(f,∙)-<("-b"-∙). ∣2.3.1-6}
where Æ is partitioned as *=(£:£:)· <2∙3∙ι-7>
The effect of the induced stresslets is obvious when one realizes that Rpu ≠ 
(Muf)"1. The approximation for the true resistance matrix is now

R ≈ Rjι∕ + R∙2fc ~ ^∙2fc∙ (2.3.1—9)This is the FTS formulation. Note that inverting the larger grand mobility matrix is approximately 6.25 times slower than inverting the small mobility matrix (cf. Section 2.6).The results of these methods, when applied to several known cases involving the interactions among a finite number of spheres, compare excellently with reported results (cf. Durlofsky ei at. 1987). The procedure reproduces both the proper near-field lubrication forces and the dominant many-body interactions that occur among a finite number of spheres subject to imposed forces.
S.S.S The Hydrodynamic Interactions: Infinite SystemsWe are interested in the behavior of particles settling in an infinite suspension, i.e., letting the number of particles, N → ∞, as their containing volume, 
V → ∞, keeping the number density, n = N∕V, fixed. The long-range nature of the hydrodynamic interactions among the particles (for example, the disturbance velocity from a falling sphere decays as O(r-1), where r is the distance from the sphere’s center) demands that care be taken in simulating suspensions of infinite extent; a simple summation of interactions among the particles produces badly divergent expressions for certain kinematic quantities, such as the particle’s translational velocity. This convergence problem can be overcome by several alternative



-19-methods, but only the method of O’Brien (1979) can be applied to dynamic simulations. Although O’Brien’s formulation assures us of convergence, it does not promise us speedy convergence. To improve computational efficiency, we rewrite the lattice sums that can occur in O’Brien’s method into a rapidly converging form. This recasting of the lattice sums is called Ewald’s method. This technique was first applied to the Rotne-Prager tensor by Beenakker (1986); we have applied this technique to the additional mobility matrix elements in our simulation (cf. Appendix A and below). We will discuss, in detail, these methods at the level of point forces; extensions to include finite-size effect, torques, stresslets, etc., are briefly explained.In O’Brien’s method, we start from an integral representation for the solution to Stokes equation for the velocity field u(x) at the point x in the suspension in terms of integrals of the force distribution on the surfaces of the N particles, and an integral over a mathematical surface Γ of large radius R and volume V that cuts through the fluid and particles. The exact solution of the velocity field for a suspension of rigid particles is 1 N Γu(x) =--------V I J ∙ σ ■ ndS

- ∕ [J∙σ + K∙u]∙ndS, (2.3.2-l)
°πrl JSγwhere J is the Green function for Stokes flow, J = (I+rr∕r2)∕r, K = — 6ητττ∕r5,1 is the unit isotropic tensor, r = x — y, y being a point on the surface, σ is the fluid stress tensor, and n is the outward normal from the particle surfaces Sa and the surface Γ. Only particle surfaces within Γ are included in the sum. This volume 

V is surrounded by an unbounded statistically homogeneous suspension. If the volume radius is taken to be very large, the variation of J and K will be small over a surface element dSr that cuts though many particles and the fluid. At that point we may replace σ and u in the second integral by their suspension averages 
(σ} and (u). This is the only assumption made in O’Brien’s method, (σ) and (u) are either constant or linear functions of position in a statistically homogeneous suspension.



-20-Invoking the above assumption and using the divergence theorem, Equation (2.3.2-1) becomes
u(x) - (u(x)) = ji- 52j(x-xa) -F“

- (2.3.2-2)where Fa = — fs σ ∙ ndS, is the force the atÄ particle exerts on the fluid, (F) is the average force. It is now permissible to let R → <x>, because at large distances from xtt, the difference between the summation and integral terms in the above equation go to zero; we now have a convergent expression for u — (u). Physically, the integral term represents a “back flow” of fluid relative to zero volume flux axes (u) = 0 caused by the macroscopic pressure gradient that balances the excess weight, (F) ≠ 0, of the particles. No assumptions have been made about the distribution of the particles within V.In a similar manner, we manipulate the equations relating the rotational velocity and rate of strain to the torques and stresslets, including the effect of the finite size of the particles. These expressions will have the appropriate volume integrals of the average force (F), torque (L), and stresslet (S), analogous to that appearing in Equation (2.3.2-2). With these expressions, a convergent representation for the grand mobility matrix Λ( of Equation (2.3.1-4) can be written. In this equation, Uo° and Eo° must now be interpreted as the suspension average velocity and rate of strain evaluated at the center of particle α, etc.We return to the point-force expression in Equation (2.3.2-2), which is not yet in a form suitable for simulations. Note that neither the sum nor the integral in Equation (2.3.2-2) converge as R increases; only their difference is finite. In general, many particles are needed before the sum approximates a continuous distribution and convergence is obtained; in simulations, the required computer time increases dramatically as the number of particles increases. In order to reduce the number of particles needed and to accelerate convergence of the elements of the mobility matrix, we take a finite number N∖ particles and replicate them



- 21 -periodically within the volume V. We rewrite Equation (2.3.2-2) for the velocity of particle a at the center of its periodic cell, as1 Nl 'Uα - (u(xβ)) = — 52 ∑ j(x∕* - χβ) *Fß 
Ί β=l

- ^^°°J∙(F)dF, (2.3.2-3)

where 7 labels the periodic cells, and the , on the sum indicates that for a = β in cell 7 = 1, J is replaced by I, giving the correct self term.If we use only one periodic cell ( 7 = 1), and if 7V1 is suitably large, then the contribution to the ath particle velocity from particles outside the periodic cell will cancel the part of the integral from L to ∞, where L is the characteristic length of the periodic cell. A constant contribution from the back-flow integral evaluated from 0 to L will remain. Simulation runs that invoke only one periodic cell will be called non-Ewald runs. Of course, the slow convergence of the difference between the discreet sum and the continuous integral may require that Ni be prohibitively large in terms of computational time constraints. This problem is particularly acute in sedimentation problems as opposed to problems concerning sheared suspensions of neutrally buoyant spheres. In a force-free system, particles outside of V, in total, contribute nothing to the velocity of the particle at the center of the periodic cell within an error of O(L-2). In sedimenting suspensions, particles outside of V, in total, also contribute nothing to the velocity of a falling particle at the center of the periodic cell, but the error is of O(L-1). Whether it is feasible to simulate dynamically settling suspensions depends on how quickly we can obtain convergent expressions for the mobility matrix elements.Expressions of the type in Equation (2.3.2-3) contain so-called lattice sums, i.e., J37∙ The convergence of these sums can be accelerated using a method developed by Ewald (1921), which rewrites the lattice sums into two rapidly converging parts, one in real space and the other in reciprocal space. This technique has been used in electrostatic problems for some time. Beenakker (1986) has recently worked out the Ewald sums for both J and the more complete Rotne-Prager ten-
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SOΓ (Mt,,f from Equation (2.3.1-2)), which includes the effect of finite particle size. Beenakker assumed that the average force on the particles in suspension was zero ((F) = 0) in order to remove a singular term from the reciprocal-space lattice sum; this singular term occurs when k = 0, where k is a reciprocal lattice vector. However, when the average force is non-zero, the back-flow integral in Equation(2.3.2-3) exactly cancels this singular term at k — 0. Thus, Beenakker’s Ewald-summed Rotne-Prager tensor is correct whether or not there is a non-zero average force on the particles. This makes intuitive sense - the mobility matrix is a purely geometric quantity, which cannot depend the kinematic or dynamic properties of the system.We have applied O’Brien’s method (which guarantees convergence) and the Ewald-sum procedure (which simply speeds the convergence) to all divergent or conditionally convergent interactions occurring in the grand mobility matrix. A brief description of of this process and explicit expressions for the interactions can be found in Appendix A. Any mobility matrix whose elements have undergone the above procedures will be denoted by a *; i.e., At* will replace At in Equation (2.3.1- 3). It should be noted that the Ewald sums and the periodic boundary conditions are computational conveniences; they accelerate the convergence guaranteed by O’Brien’s method, and they speed matrix inversion and solution time by reducing the number of particles we need to consider, but they are not essential. However, at high concentrations and fixed values of 7Vi, the mobility matrix calculated by the non-Ewald method may lose positive definiteness. The Ewald-summed mobility matrix will not lose positive definiteness, even at high concentrations.To illustrate that we have correctly constructed the grand mobility matrix A<*, we test our method against the only known results for particulate systems of infinite extent - spatially periodic suspensions, such as an infinite cubic array of spheres. Periodicity is a highly restrictive microstructure, but it does allow the “exact” solution of the many-body problem on the unit cell From this solution, we can calculate the bulk properties such as the sedimentation velocity and the spin and shear viscosities. Our method does not depend on the periodicity of the



-23-microstructure as do the “exact” calculations. These results are also discussed in detail in Brady et al. (1987).For us to calculate these bulk properties accurately, the hydrodynamic interactions among the particles must be accurately accounted for in ∙M*. In Figure 2.1 we show a comparison of the sedimentation velocity of an infinite simple cubic array of spheres as a function of volume fraction φ (Brady & Bossis 1988 and Brady 
et al. 1987). The solid curve is the Stokesian dynamics result, the dashed curve is the results of Zick & Homsy (1982), who solved the integral equation for Stokes flow using the periodic Green function, and the dashed curve is the point-force solution of Saffman (1973). Convergent solutions using the periodic Green functions will be termed exact, but it should be noted that it becomes increasingly difficult and time-consuming to obtain convergent solutions as the concentration increases. At low concentrations, the exact and Stokesian dynamics results are indistinguishable. If we form the Ewald-summed mobility matrix at the level of point forces only, we recover the point-force calculation of Saffman exactly. The importance of including the effect of the finite size of the spheres is obvious from Figure 2.1. The point-force solution will diverge significantly from the exact solution for φ > 0.1 and give unrealistic negative sedimentation velocities for φ > 0.19; inclusion of finite size effects in Mytf is sufficient to reproduce the exact results for φ ≤ 0.1. At higher concentrations, the agreement between the exact and Stokesian dynamics results is good, but not exact; the agreement worsens as φ → φmaχ, where φmax is the maximum volume fraction {φmaχ = f for a simple cubic array). Physically, there are relatively large channels in a sedimenting periodic array through which the upwardly flowing fluid may pass; we would not expect the effect of lubrication forces between the spheres to influence the sedimentation velocity. Indeed, the inclusion of the near-field lubrication interactions in the resistance matrix has little effect on the results. The deviation of the exact and Stokesian dynamics results for higher concentrations is caused mainly by the truncation of the many-body interactions in the mobility matrix. The preceding results are also discussed in Brady et al. (1987), and we would like to acknowledge the contribution of our



-24-colleague Ron Phillips to this work (see also Phillips et al. 1988).Comparisons between “exact” and Stokesian dynamics results for the spin and shear viscosities of spatially periodic suspensions demonstrate the importance of the near-field lubrication interactions in properly approximating the hydrodynamic interactions among the spheres. The spin viscosity of a cubic array (see Equation (2.2-2)) can be written in terms of one scalar, ξ, because of the symmetry of the array geometry. In Figures 2.2, 2.3 and 2.4, we compare our simulation results for the spin viscosity of a variety of cubic arrays to the dilute and close-packed asymptotic results given by Zuzovsky et al. (1983) (close-packed asymptotic results for simple cubic arrays only). The solid curves are the Stokesian dynamics results, the dot-dashed curves are the dilute (to O(≠2)) and close-packed limits calculated by Zuzovsky et al., and the dotted curves are the far-field, many-body results (no additional two-body interactions included). The simulation (without lubrication forces) and the asymptotic results are identical to O(φ). For the spin viscosity, the far-field interactions included in the mobility matrix are insensitive to array type; the effects of array type first arise at O(φ2). In the close-packed limit for the simple cubic array, the asymptotic solution shows a logarithmic rise in the spin viscosity as φ∕φmax -÷ 1∙ θur simulation method reproduces this asymptotic behavior (see Figure 2.2). It is important to note that if we do not include the lubrication forces, the simulation incorrectly predicts the behavior of the spin viscosity as φ → φmax∙ The close agreement at high and low concentrations is not simply fortuitous, since our approximation to the true resistance matrix is simply the combination of the correct long-range, multi-body interactions for suspensions of infinite extent and near-field “lubrication” interactions. The limitations of our approximation would show up only at moderate concentrations when a sphere’s nearest neighbors are neither very close nor very far away. Unfortunately, no “exact” solution for the spin viscosity exists over the whole concentration range.Nunan & Keller (1984) have determined the shear viscosity for a variety of cubic arrays over the entire concentration range following the procedure of Zick & Homsy (1982); the dilute and close- packed limits were first worked out by



-25-Zuzovsky ei al. (1983). The particle contribution to the shear viscosity is contained in the fourth-order tensor, Rss (see Equation(2.2-3,4α)). (Note that for a sheared periodic suspension U ≡ Uoo, and only the second term contributes in Equation(2.2-4o).) The shear viscosity can be uniquely written in terms of two scalars, a and β, because of the symmetry of the cubic array geometry. Figure 2.5α is representative of the shear viscosity results - in this case , the shear viscosity function a is shown as a function of φ for a sheared simple cubic lattice. In Figures 2.5-2.7, the solid curves are the full Stokesian dynamic results, the dotted curves are the far-field Ewald-sum contribution with no lubrication, i.e., andthe dashed curves are the “exact” result of Nunan & Keller (1984). Agreement is again seen to be quite good, being exact as to O(≠2) in the dilute limit. As 
φ Φmax∙, « a-nd β may approach infinity as either a function of In e or a function of l/e (e = 1 — {φ∣φmax)^}∙, depending on the lattice type. Our full simulation exactly reproduces these singularities for all array types. Agreement at moderate concentrations is good, though not exact - errors generally range from 5% to 20% depending on array type and viscosity function except for the face-centered cubic array β viscosity function (cf. Figure 2.76).The periodicity of these arrays provides an especially strict test of our simulation technique. Remember that we expect our simulation to approximate best the hydrodynamic interactions between spheres for two-sphere center-to-center separations of greater that 4 radii or less than 2.02 radii; the largest error in the resistance interactions will occur when a sphere’s nearest neighbors are an intermediate distance of between 2.02 and 4 radii away. In periodic cubic arrays, the error resulting from truncating the many-body interactions is exaggerated at moderate concentrations because of the relatively high percentage of spheres separated by intermediate distances. In a random suspension at the same moderate concentration, we would expect, on average, fewer spheres to be separated by these intermediate distances; the errors seen in the periodic array cases should be seen as fairly high upper bounds of the effect of truncation on the many-body hydrodynamic interactions in the mobility matrix. Further discussion of this subject can



- 26 -be found in Brady e£ al. (1987).From the above comparisons, it is evident that our simulation method captures the essential physics of the dominant, many-body interaction among spheres in an infinite suspension and of the lubrication forces between these spheres. Indeed, we achieve not only good qualitative results with our method, but good quantitative results over the entire concentration range. It must be stressed that the method does not depend on the periodicity of the microstructure. Unlike the “exact” calculations, the computation time requirements do not increase as the concentration rises.In summary, O’Brien’s method allows us to obtain exact convergent expressions for the hydrodynamic interactions affecting a particle at the center of a volume V containing N particles; V is immersed in a statistically homogeneous suspension of infinite extent. The use of Ewald’s technique to speed the convergence of interactions is of computational importance, but adds concerns about the possible effects of long-range periodicity on simulation results. The only approximations in the method are the calculation of the hydrodynamic interactions and the use of periodic boundary conditions to simulate an unbound medium. These approximations have been quite good when compared against “exact” results for a number of finite and infinite systems of spheres. The approximations can be improved by including more moments in the integral expansions and/or increasing the number of spheres in the periodic cell.
2.4 Integration of the Sphere TrajectoriesIn this section we shall discuss how the trajectories are determined. From an initial configuration, (Rfcz)"1 is calculated, and then Equation (2.1-3o) is integrated to find the configuration at the next time step. Periodic boundary conditions are used to simulate the infinite suspension. After the particles have been moved, the program checks for any overlap among the particles. During the course of a simulation, spheres spend a large fraction of their time very close to one another, even at low and moderate areal fractions. This is clear from the



-27-pair-distribution functions determined from the simulation data. Lubrication interactions added to the invert of the mobility matrix should, in principle, prevent the spheres from overlapping, but sphere overlap can and does occur since the time step is finite. Of course, we can decrease the time step, but computation costs become large. To avoid taking prohibitively small time steps, we tolerate a small amount of overlap. Typical overlaps are about 10-β or 10^7 radii, with the largest overlap being about 10-δ radii. Since we cannot calculate the lubrication interactions between spheres less than two radii apart (the calculation would require the evaluation of a logarithm of a negative number), we set the sphere separation to 2 + 10-8 radii for the resistance calculations, but leave the actual sphere positions unaffected. If the spheres overlap more than 10^2 radii, the program is terminated.A sphere’s position at the next time step is calculated by multiplying a weighted average of its velocity at a given number of previous time steps by the time step. Historically, Stokesian dynamic simulations have used the explicit, fourth-order Adams-Bashforth integrator. In the course of our research we experimented with other types of integrators. The motivation behind this study and its results are explained in this section.In previous simulations of sheared monolayer suspensions of neutrally buoyant spheres, the explicit, fourth-order Adams-Bashforth intergrator was used, and a typical time step was O(10-3) dimensionless time unit. The time step had to be small because the relative motion in sheared suspensions is quite large; the shear flow forces particles past each other on a time scale *γ^1. If the time step was too large, the program would terminate because of excessive sphere overlap. In a settling suspension of identical particles, gravity will act equally on all the particles, and relative motion results only from the non-uniform configuration of the particles. This causes the configuration of the particles in a settling suspension to change much more slowly than in a sheared suspension. Program termination due to overlap did not occur in simulations of sedimenting monolayer suspension (at an areal fraction of 0.4), even when the time step was 0.1 dimensionless time



-28-unit.In our original simulations of monolayer sedimenting suspensions (areal fraction was 0.4), the FT method was used, and the time step was varied from 0.1 to 0.01. The resulting steady-state configurations showed a high degree of nonterminal overlapping and the “dumping” of most of the spheres in the periodic cell. This clumping consisted of a majority of the spheres connected to each other, often in hexagonally packed formations (see Figure 2.8α). These clumps often spanned the periodic cell. Decreasing the time step did not change the general characteristics of the steady-state microstructure or other suspension statistics.We included the effect of induced stresslets by using the FTS method, but this merely accelerated and worsened the clumping (see Figure 2.96).Varying the time step or the level of accuracy had little effect on the degree of clumping or hexagonal packing. Doubling the number of spheres still resulted in clumping at long times; however, doubling the number of spheres only increases the edge of the periodic cell by 40% (see Figures 2.9o-6). Further increasing the number of spheres becomes prohibitively expensive for dynamic simulation, even in the monolayer. To insure the convergence of the long-range, hydrodynamic interactions, we introduced the Ewald-summed mobility interactions described in Section 2.3. However, as we shall see in Chapter 4, the simulation still results in a high degree of hexagonal packing and clumping in a sedimenting monolayer suspension at steady state.Still disturbed by the high degree of clumping, we began to experiment with the order and method of the integrator. In addition to the explicit fourth-order, Adams-Bashforth integrator, we have used the fourth-order, Adams-Moulton predictor corrector, the explicit second-order, Adams-Bashforth integrator, the first-order, Euler predictor-corrector, and the explicit first-order, Euler integrator in simulation runs. All integrators except for the first-order methods led to clumping and “overlap”. There was little difference in the suspension properties calculated from these higher-order methods. There was little difference between the explicit and



-29-the predictor-corrector methods. The first-order methods differ from their higher- order cousins in that only the velocity at the present instant in time is used to calculate the position at the next time step. The amount of overlapping seen in runs using the explicit first-order, Euler integrator was an order of magnitude less than in the higher-order methods. The steady-state configurations were free of hexagonal packing and large clusters (see Figure 2.10). The time step could be as large as 0.1 for ≠χ = 0.4, and simulations could be carried out to quite long times - 1000-3000 time units. Steady-state statistics and distributions were extracted, and the long-time sphere motion was diffusive. An entire series of simulations at different levels of accuracy and different concentrations was completed over a period of a few months. ( See Appendix C for the results of these simulations.)At this time, simulations of sheared monolayer suspensions of neutrally buoyant spheres using the first-order integrator produced an angular dependence in the pair-distribution function - more particles were found upstream of a test partcle than downstream of it. (These simulations were performed by Dr. Georges Bossis). Without repulsive forces between the spheres, the symmetry of the hydrodynamic forces demands that there be no angular structure. The appearance of angular structure can be understood by considering how an integration method determines the trajectory of two isolated, nearly touching spheres imbedded in a shear flow (see Figure 2.11). The analytic solution to this problem shows that the spheres tumble over each other in constant closed orbits. Dr. Louis Durlofsky solved this problem using Stokesian dynamics with a wide variety of integrators. He found that the fourth-order methods correctly reproduced the closed orbit trajectories of the spheres to within five significant figures. The second- and third-order methods also captured the closed orbit trajectory, although they were slightly less accurate. The first-order method integrator failed miserably; the calculated trajectories are no longer closed, and the spheres quickly wandered away from each other. Even drastically reducing the time step does not eliminate this error.Analysis of the first-order integrator explains why it fails in the two-sphere case and produces angular structure in the shear problem. Simply put, the first-



-30-order integrator cannot accurately capture the tangential motion of the spheres moving around each other. This is seen by considering the two-sphere problem, which is schematically shown in Figure 2.11. The solid line is the actual trajectory that the sphere should follow. The dashed line shows the tangent to this trajectory. An explicit first-order method will always advance the sphere along this tangent, explaining why the method cannot accurately produce the correct trajectory. Higher-order methods use velocities at previous points on the trajectory and can accurately follow the curved nature of the sphere path. This explains why angular dependence was seen in the shear case when the first-order integrator was used. Spheres approaching from the upstream side were carried away from the spheres they were approaching, instead of following a more semicircular path around them. This results in more spheres being seen upstream of a given sphere and angular dependence when there should be none. This is not seen when the higher-order integrators are used. It should be stressed that the first-order integrator did not produce any unwanted angular dependence in the sedimentation problem. However, the first-order integrator obviously does not capture adequately the trajectories of particles moving relative to one another.So we come full circle. When appropriate, we will comment on results of the first-order simulations, but in general, an explicit fourth-order integrator is used in all simulations reported in this thesis. Of course, the simulations still produce steady-state microstructures that are characterized by large clusters and a high degree of hexagonal packing (see Figure 2.12). To better gauge the effect of these clusters on the short- and long-time dispersion, we would want to see the results of sedimenting suspensions whose configurations are free of these features. The addition of repulsive forces between the particles can eliminate this clumping and hexagonal packing in the steady-state configurations of the sedimenting suspensions (see Figure 2.13).
2.5 Repulsive Interparticle ForcesIn Bossis & Brady (1984), pairwise repulsive forces between the neutrally



- 31 -buoyant spheres in a shear flow affected the resulting steady-state microstructure. The addition of these repulsive forces inhibited clustering, particularly cell- spanning clusters. Adding these repulsive forces to the simulation of sedimenting suspensions inhibits such cluster formation. We want to see if the change in the microstructure affects the long-time dispersion properties of particles in a sedimenting suspension. Thus, in certain simulation runs we include pairwise repulsive DVLO-type colloidal forces, as was done in Bossis & Brady (1984). The DVLO theory holds that the colloidal forces are of two types - a London-van der Waals attractive force and an electrostatic repulsive force due to the interaction between the particle double layers. In these simulations we have included only the repulsive double-layer forces. We will vary the strength and range of the repulsive force to consider its effect on the local structure and dispersion in sedimenting suspensions.For particles larger than a micron in size, the double layers are usually small compared with the particle radius, and the pairwise electrostatic repulsive force can be written
τe — T€ (2.5-1)Frep = Fc 1 -where e = r — 2 is the separation distance between the sphere surfaces, and r is their center-to-center separation. Both have been made dimensionless by the particles’ characteristic length scale, a. τ = κα, where κ^^1 is the Debye length. The amplitude of Fo (the direction is outward along the line of centers) is given by ∣F0∣ = 2πe≠2, (2.5-2)where ε is the electrical permittivity of the fluid and V, is the surface potential of the particles when e → ∞. The derivation of Equation (2.5-1) assumes that the surface potentials for the two particles are the same, and the surface charge densities remain constant as the particles move relative to each other.∣Fo I sets the magnitude of the force and τ sets its range in space. The repulsive force varies as l/e as e → 0 and decays to 0(l0~2∣Fθ∣r) when e ~ O(4.5τ-1). At



-32-separations greater than 4.5r-1, the interparticle force will generally be negligible compared with the hydrodynamic force, and as τ → ∞, there is essentially no effect from the interparticle force. The total interparticle force on a particle is built by summing the force calculated from Equation (2.5-1) for the particle paired with all other particles in the simulation.In our simulations, we set ∣Fo∣r = 1.0, so the range, r, is the only independent parameter. In most simulations that include interparticle forces between the particles, τ = 10s; one simulation was run where τ = 103. The effect of the repulsive forces on the steady-state short-time self-diffusion coefficient in sedimenting suspensions is discussed in Chapter 3. Its effect on the long-time dispersion is discussed in Chapter 4.
2.6 Monolayer SimulationsDespite the decrease in computation time from using lattice sums and Ewald’s method, full three-dimensional simulations are still too time consuming. We choose to simulate monolayer suspensions instead of the three-dimensional problem because the computations are much faster and can be accomplished without sacrificing the goal of this research, which is to study the diffusional nature of particle motions in sedimenting suspensions. In a full three-dimensional FTS simulation, each sphere has 11 degrees of freedom (three force, three torque and five stresslet unknowns), resulting in a grand mobility matrix of UN × UN, where N is the number of spheres in the object cell. In the monolayer problem, this matrix is 
6N × 67V. Inverting the mobility matrix will be 6.25 ((⅛∙)3) times more costly in the three-dimensional problem than in the monolayer problem. Solving the equation set will be 8 times more costly. In addition, it requires N‡ more particlesto do a three-dimensional simulation whose periodic cell edge length is the same 

2.as the monolayers. Thus, the full three-dimensional problem can be up to 87V12 times more expensive than the monolayer problem, per time step. Since an average monolayer simulation requires 25 spheres, an equivalent, three-dimensional run would be ~ 1000 times slower. Since a single simulation run can require in



-33-verting the mobility matrix from 5,000 to 10,000 times and solving the equation set from 500,000 to 1,000,000 times, simulating the monolayer instead of the full three-dimensional problem results in a substantial reduction in computing time.We restrict our attention to monolayer simulations - spheres in a monolayer sediment within the plane of the monolayer (see Figure 2.14). Instead of characterizing a suspension by the volume fraction of spheres (≠), in the monolayer we define the areal fraction,
Φa

Nπa2 (2.5-1)
where α is the radius of the spheres, and A is the area enclosing the N spheres. We want to consider the effect of lattice sums on the monolayer formulation. This is not straightforward since the lattice is still fully three-dimensional.The use of lattice sums (and of Ewald’s method to speed their convergence) in calculating the mobility matrix elements needs to be considered in more detail, especially as applied to monolayer suspensions. A lattice of cells of volume Vj fills a larger convergence volume of V. The shape of the cells is constrained only by the fact that they must fit together to fill V. For ease of explanation, consider a cubic cell of volume V∖ (edge length is H) containing Ni spheres. The cell has periodic boundary conditions on its edges; each sphere can be considered as being at the center of its own periodic cell. If we do not invoke lattice sums (*γ = 1 in Equation (2.3.2-3)), the suspension outside the cell is considered statistically homogeneous. If we do invoke the lattice sums, the cell will be surrounded by a given number of images of itself, and this finite cluster of cell will itself be surrounded by a statistically homogeneous suspension. Convergence is improved by increasing the volume, V; in the non-Ewald method, we increase N such that N/V is constant; in the Ewald method, we extend the lattice of cells. Extending the lattice is much cheaper than increasing Vi. The cost of inverting the mobility matrix and the solving of the equation set both increase as (j∖zi)3. The Ewald method involves extra 0((Λ7'1)2) algebraic operations when forming the mobility matrix, but the size of the mobility matrix does not change. Computationally, the use of lattice



-34-sums in conjunction with Ewald ’s method is clearly favored to produce convergent expressions for the elements of the mobility matrix. Additionally, at higher concentrations the mobility matrix looses positive definiteness when the non-Ewald method is used. Unresolved is the effect of the long-range periodicity that periodic boundary conditions and the lattice sums introduce to the simulation. We have performed simulations both with and without lattice sums.Although solving the sedimentation problem in a monolayer is computationally advantageous, the use of lattice sums is not as straightforward as in the full three-dimensional problem. The lattice sum remains fully three-dimensional, even though the spheres are confined to a monolayer. Figure 2.15 describes schematically the periodic cell used in monolayer simulations. The area of the cell A is 
Hl Ή2, where H∖ and Zf2 are the cell edges in the x and y directions, respectively. The non-Ewald method (lattice sums are not invoked) explicitly sums only the interactions among the spheres in this object cell. For computational purposes, each sphere is considered at the center of its own periodic cell. This technique to simulate monolayer suspensions has been applied and discussed in Bossis and Brady(1984) and Brady and Bossis(1985). Figure 2.16 describes schematically the application of lattice sums to the monolayer formulation. The object cell is now fully three dimensional with edge lengths of Hi, H2, and L, in the x, y, and z directions, respectively. The spheres are still confined to a monolayer. Image cells also extend into and out of the plane of the paper. The lattice can be extended indefinitely, although the mobility matrix elements usually converge to within 0.1% of a constant value with about 124 image cells surrounding the object cell. (Elements of all matrices except M∏tF usually converge with only 26 image cells around the object cell. This makes intuitive sense considering the long-range nature of the given hydrodynamic interactions.) The sphere at the center of its object cell will be affected by spheres inside and outside, the monolayer. As long as the lattice is symmetric about the z-axis (object cell monolayer at z = 0), the spheres will remain in the monolayer, but there is no doubt that the presence of image spheres outside the z = 0 plane will affect the behavior of the spheres in
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the monolayer.

Consider the effect of varying the distance between the image planes. For 

convenience of discussion, we consider the edges of the cell to be of length H in 

the X and y directions. The edge length in the z direction will be L = zι ∙ H; 

we vary the distance between the monolayer images by changing zι. Specifically, 

we will be judging the effect of varying the monolayer separation on the number- 

averaged suspension properties, such as ‹vz› ‹vy› (the “sedimentation” velocity), 

‹(vx — ‹vx›)2›, and ‹(vy — ‹vy›)2›. The object cell contains 25 spheres randomly 

distributed at an areal fraction of φA = 0.4 The sphere velocities are calculated 

by solving

Ut =MUtF ∙F, (2.6-1)

where F = 1, and velocity interactions are pairwise additive. The monolayer sep

aration factor, zι ranged from 0.25 to 16.0. The extent of the lattice varied for 

different separations, but all values for the suspension-averaged quantities con

verged to six decimal places.

The dependence of the sedimentation velocity ‹vy› on the monolayer separa

tion distance is seen in Figure 2.17. The dots (∙) are simulation results; the line 

was calculated independently and will be discussed below. It is obvious from Fig

ure 2.17 that the sedimentation velocity in the monolayer is strongly dependent 

on the separation distance. This is not necessarily a matter of concern - even 

without lattice sums, the sedimentation velocity in the monolayer problem is not 

a well-defined quantity. In a three-dimensional suspension, the fluid that is dis

placed by the falling particles is called the backflow — the displaced fluid must 

flow up around the particles since it has nowhere else to go. Thus, the sedimenta

tion velocity in a three-dimensional suspension decreases as the volume fraction of 

particles increases. In a monolayer suspension, the backflow may flow up around 

the particles, or it may flow out of the plane of the monolayer. The sedimenta

tion velocity is a function of the backflow returning in the plane of the monolayer; 

backflow in the monolayer increases the drag on the particles. As the areal fraction



-36-increases, the backflow finds it easier to return outside of the monolayer. Thus, the sedimentation velocity in the monolayer increases as the areal fraction increases.The behavior of the sedimentation velocity can be rather easily understood by considering the analogous problem of parallel, infinite flat plates, of thickness 2α, moving at a constant velocity U through an infinite fluid; a zero mass flux plane exists perpendicular to the direction of motion (see Figure 2.18). We can solve this problem by considering one such plate with no-slip conditions on its surfaces and free surfaces a distance of ∣2j ∙ H from either side of the center of the plate. Solving the equation of motion
∂2u _ dp 
∂x2 ∂y,where μ is the fluid viscosity, u is the fluid velocity and p is the pressure, in conjunction with the boundary conditions and mass conservation, we can determine the unit drag force on the plate

_ 6UμAxβ draδ ~ α⅛, ∙ H - 1) ’where Axe is the unit cross-sectional area of the plate. The Stokes drag on all the spheres in that unit cross-sectional area isf _
awhere U8 is Stokes velocity and Φa is the areal fraction of spheres. Equating these two forces gives

^ = ∖Φλ(z,-H-2}. (2.6-5)

This equation is the straight line plotted in Figure 2.17. For zι ≥ 1, the difference between the simulation and equation results are less than 1%.The dependence of (vx} and the velocity variances, {(υx — (v1))2} and ((υy — (vy))2}, on the monolayer separation distance is seen in Figure 2.19. The curves merely connect the simulation results for each quantity: a indicates each {vx} result, a Δ indicates each ((vx-(υ1))2) result, and a V indicates each ((vy-(υt,))2)



-37 =result. For zι ≥ 1, all these averaged quantities are constant, ±0.5%. This is important since we expect the relative motion of the spheres in suspension to be related to the velocity variances. As long as z∕ ≥ 1, the separation distance between the monolayers should not affect the diffusion of spheres in the monolayer.To confirm the correct construction of the monolayer problem in terms of the lattice sums, we performed a simple check. Spheres were arranged in a regular array in the monolayer. The factor z; was set such that the distance between the monolayers was the same as the nearest neighbor distance between spheres in the monolayer - i.e., a simple cubic lattice of spheres was formed from the object and image spheres. Results for the full three-dimensional formulation and the special monolayer formulation were exactly equal, as they should be. We can now use the lattice-sum technique with confidence in the monolayer problem.
2.7 Specific Aspects of the Simulation ProgrammingThis section deals with the actual programming of our Stokesian dynamic simulations of sedimenting suspensions. The method outlined in the last three sections will accurately simulate the dynamic behavior of spheres in a sedimenting suspension. However, several important decisions must be made when we actually implement the method. We can choose the level of approximation of the mobility matrix, the level of acceptable convergence (with or without the lattice-sum technique), how often the far-field and near-field interactions need to be calculated, not to mention the particular suspension conditions to be simulated. All of these choices can affect how well we simulate the true behavior of settling spheres in suspension, and all of them have an effect on computing time. In all cases, increasing the level of accuracy of the simulation increases computing time. The importance of finding the most efficient program is obvious when one considers that determining the long-time displacement of the particles requires relatively long computer runs and large amounts of stored data. Even at the lowest levels of approximation and accuracy, a “short” simulation run will take about 25 CPU hours to complete and produce over 12 million bytes of data on a SUN 3/260 with



- 38 -a floating point accelerator. Increasing the level of approximation and accuracy can increase these requirements drastically.We do not invert the mobility matrix as often as we solve the equation set. The elements of the mobility matrix are far-field approximations to sphere-sphere interactions and change significantly only when the relative separation of two particles has changed by an amount comparable to the sphere size. Conversely, the elements of the resistance matrix can change significantly with small changes in the surface separation of two spheres close to one another. Thus, there are two natural length (time) scales, and a multiple time-scale method can be used. Thus, relatively small time steps are used when solving the equation set, and the mobility matrix is formed and inverted less frequently.For each simulation run, we need to choose the level of approximation in the mobility matrix, the number of spheres in the periodic cell, the step size, how often we will invert the mobility matrix, whether to use lattice sums or not, the extent of the lattice and the spacing between monolayers if we choose to use lattice sums, and how often we will store the simulation data. The effect of these decisions needs to be gauged, since this is the first application of this method to the problem of dynamic settling. Chapter 4 will discuss the effect of the decisions we outline in this section on the long-time dispersion.We consider three levels of approximation of the mobility matrix. The first level is called the F method and implies that there is no rotation of the spheres. It is the fastest method, but obviously spheres will rotate in real suspensions and probably enhance any diffusive motion in the suspension. The second level of approximation is called the FT method and allows the free rotation of the spheres. Durlofsky ei al. (1987) have shown that this method performs well for problems that do not involve an imposed shear flow. The third level of approximation is called the FTS method; even though there is no imposed shear flow, the motion of the spheres will give rise to induced stresslets on the spheres that may affect their diffusion. Although it is the most accurate method, it is also the most time-



-39-consuming. In Chapter 4 we discuss the effect of approximation level on variance of the spheres’ velocity, their pair-distribution function and their dispersion.The smallest step size in the simulations is the interval at which two-body, near-field resistance interactions are added to the mobility invert, the equation set is solved, and the new sphere positions are calculated. This step size was reduced until the time-averaged suspension velocities and velocity variances were relatively unaffected by further step-size reduction. The unit time step is (α∕Uβ), where Uβ is the Stokes settling velocity. The equation set was solved every 0.001 time unit. The mobility matrix was formed and inverted every 0.1 time unit.The Ewald runs set zι=2, so the monolayers are separated by the twice the distance H (the edge of the object cell in the monolayer). The reasons behind this choice are discussed in Chapter 3. Convergence of the lattice sum is obtained by extending the lattice. Preliminary results for the three-dimensional and monolayer problems indicate that, in general, an acceptable level of convergence (within 5% of final answers) can be obtained if the lattice size is 5 ∙ H in all directions (124 image cells) for elements in the Mtrtjp matrix, and if the lattice size is 3 ∙ H in all directions (26 image cells) for the elements of all the other submatrices. We would expect it to require a larger lattice to obtain convergence in the M(ztκ matrix because the disturbance velocity from a settling sphere decays as O(r-1), whereas the disturbance velocities from rotating or sheared spheres decay as O(r-2) or faster.At given time intervals the program will store all sphere velocity and position data. These data are used to calculate time-averaged sphere velocities and velocity variances, pair-distribution functions and mean-squared displacements of the spheres. Although all of these can be calculated as during simulation runs, we often make a posteriori decisions on which part of the data we would like to analyze. Storage limitations of the computer disk and core memory make it impossible to store and analyze the data for a complete run if we store the data at every time step. Data were stored every 0.05 time unit (every 50 time steps). In



-40-several simulations, we calculated the time-averaged velocities and variance, as well as the pair-distribution function, while the program was running - data at every time step were included. The difference between the run-time results and the reduced-data results was negligible.The actual CPU time requirements for different type of simulation runs deserve consideration. Runs were done on a Sim 3/260 computer with floating point accelerator or the CRAY-XMP at the San Diego Supercomputing Center. For conditions cited for the non-Ewald runs at ≠χ = 0.453, the F method required about 301 CPU minutes per 100 time units, the FT method, about 837 CPU minutes, and the FTS method, about 1024 CPU minutes on the Sun3∕260. An F method Ewald run (^χ = 0.453) required about 717 CPU minutes. Simulation runs lasted 3 to 6 CPU days, or even more, because the analysis of the long-time diffusion coefßcients generally required that data over 500 to 1000 time units be used. Extending the method, as it is now, to three-dimensional systems would require a 50- to 100-fold increase in the CPU time.
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⊃1⊃
Figurc 2.1 Non dimensional sedimentation velocity of a simple cubic array of spheres as a function of volume fraction φ. The solid curve is the result of the Stokesian dynamics method, the dashed curve is the exact result of Zick & Homsy (1982), and the dotted curve is the point-force solution of Saffman (1973). To facilitate comparison at high and low φ, the ordinate and abscissa scales change for φ ≥ 0.1. The exact and Stokesian dynamics results are indistinguishable up to φ = 0.1.
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Figure 8.8 The spin viscosity function ξ for a SC lattice as a function of volumefraction. The solid curves are the Stokesian dynamics results, thedotted curves are the far-field results obtained from and thedot-dashed curves are the asymptotic forms as φ → φmax and as φ → 0.
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Figure 2.8 The spin viscosity function ξ a BCC lattice as a function of volumefraction. The solid curves are the Stokesian dynamics results, thedotted curves are the far-field results obtained from (M∩"21), and thedot-dashed curves are the asymptotic forms as φ → φmaχ and as φ → 0.
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Figure 8.4 The spin viscosity function ξ a FCC lattice as a function of volumefraction. The solid curves are the Stokesian dynamics results, thedotted curves are the far-field results obtained from (M∩"21), and thedot-dashed curves are the asymptotic forms as φ → φmax and as φ → 0.
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Figure S.5a The shear viscosity function a for & simple cubic array as a function of volume fraction. The solid curves are the Stokesian dynamics results, the dashed curves are the exact solutions of Nunan <k Keller (1984), which terminates at φ = 0.48, the dotted curves are the far-field results obtained from i.e. no lubrication, and the dot-dashed curvesare the singular form as φ → ≠mβx.
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Figure S.5b The shear viscosity function β for a SC lattice as a function of volumefraction. See Figure 2.5α for an explanation of the curves.
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Figure 8.6α The shear viscosity function a for a BCC lattice as a function of volumefraction. See Figure 2.5a for an explanation of the curves.
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Figure 8.6b The shear viscosity function β for a BCC lattice as a function of volume
fraction. See Figure 2.5<t for an explanation of the curves.
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Figure 8. 7a The shear viscosity function α for a FCC lattice as a function of volumefraction. See Figure 2.5a for an explanation of the curves.
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Figure S. 7b The shear viscosity function β for a FCC lattice as a function of volumefraction. See Figure 2.5α for an explanation of the curves.
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Figure S.8a A “snapshot” of sphere positions. The inner box is the periodic cell.These are the sphere positions at t = 490.0 time units for an FT, non- Ewald simulation. The time step is 0.1 time unit and the mobility matrix is inverted every 10 steps.
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Figure. 2.8b A “snapshot” of sphere positions. The inner box is the periodic cell.These are the sphere positions at t = 1000.0 time units for an FTS, non-Ewald simulation. The time step is 0.1 time unit and the mobility matrix is inverted every 10 steps.
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Ftgurc 8.9a A “snapshot” of sphere positions. The inner box is the periodic cell.These are the sphere positions at t = 300.0 time units for an F, non- Ewald simulation. The time step is 0.1 time unit and the mobility matrix is inverted every 10 steps.
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Figure. 8.9b A “snapshot” of sphere positions. The inner box is the periodic cell.The specifications are the same as in Figure 2.9α, except that the number of spheres in the simulation is 49, instead of 25.
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Figure S.10 A “snapshot” of sphere positions. The inner box is the periodic cell.These are the sphere positions at t = 299.0 time units for an F, non-Ewald simulation. However, unlike the previous simulations, the sphere trajectories are integrated using an explicit, first-order, Euler integrator. The time step is 0.005 time unit and the mobility matrix is inverted every 200 steps.
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Figure 2.11 Schematic of two spheres in a linear shear field. The solid curve is the actual trajectory and the dashed line is the tangent to this curve.
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Figure. 2.12 A “snapshot” of sphere positions. The box is the periodic cell. These are the sphere positions at t = 500.0 time units for an FTS, non-Ewald simulation (referred to as run FTSn5 in Chapter 4). The time step is 0.001 time unit and the mobility matrix is inverted every 100 steps.
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Figure 2.IS k “snapshot” of sphere positions. The box is the periodic cell. These are the sphere positions at t = 500.0 time units for an F, non-Ewald simulation when there are repulsive interparticle forces between the spheres (referred to as run nfrl in Chapter 4). The time step is 0.001 time unit and the mobility matrix is inverted every 100 steps. The range parameter of the interparticle force, r, is 103.
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Figure 2.14
Schematic of a monolayer suspension of non-neutrally buoyant spheres.
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Figure 2.15 The periodic cell in the monolayer.
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Figure 2.16 Physical representation of the application of Ewald sums to the mono-layer problem. The monolayers extend into and out of the plane of thepage. The central cell is considered the object cell.
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Figure. 2.17 The dependence of the “sedimentation” velocity, (υy), on the distance between the monolayers, which is characterized by z∕. The dots (∙) are simulation results calculated from Equation (2.6-1). The solid line is a plot of Equation (2.6-5), which results from the falling planes analysis.
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Figure 2.18 The analogous problem of falling parallel planes: a single plane falls at a constant velocity with parallel planes of zero mass flux a distance of ∙j(z∕ ∙ H + α) on either side of the plane.
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Figure S.19 Simulation results for (vs) (the filled squares), ((vv- (vy))2) (the filled upside-down triangles), and ((t>s — (vx))2) (the filled triangles), as a function of the distance between the monolayers, which is characterized by zι. The curves connect the simulation results for each case.
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CHAPTER 3: SHORT-TIME SELF-DIFFUSION IN A MONOLAYER

The coefficient of short-time self-diffusivity, D*, measures the average instan- taneous mobility of a particle in a suspension. Unlike the long-time dispersion, it is independent of the dynamics of the suspension. D‡ is the configuration average of the instantaneous mobility of a forced particle when the other particles are considered neutrally buoyant; from a computational viewpoint, it is the number average of the self submatrices in the mobility matrix that couples the translational velocity of the particle to the force on that particle. Clearly, how we approximate the mobility matrix will affect D’, and we will be able to show clearly the effect of the induced stresslets and the near-field, two-body interactions. Since there is no preferred direction in the suspensions we are considering, we report the value of Dgo = |frD®. In this chapter we consider the effect of concentration and microstructure on this diffusivity for spheres in monolayer suspensions, although the basic analysis is not limited to monolayer suspensions. The distribution of spheres within the monolayer may be a regular square array, a random hard-disk distribution generated by a Monte-Carlo simulation, or a distribution resulting from the dynamic settling simulations of Chapter 4.The first section of this chapter defines the pair-distribution function, and it tells how this and Dg are calculated for the random and sedimenting monolayer suspensions. The second section presents the results of Ewald calculations of D%. The application of Ewald sums to monolayer suspensions requires special consideration. We shall see that the Ewald sums for the monolayer produces effects to be expected in the analogous case of a series of parallel plates, as shown in Section 2.6 for the “sedimentation” velocity. Varying the distance between the image monolayers (keeping the number of spheres in the periodic cell constant) can alter the relative contributions of the far-field pairwise interactions, the multibody and stresslet interactions, and the near-field interactions. Varying the number of particles in the periodic cell (keeping the ration of the distance between the



-66-monolayer to the length of the periodic cell constant) exposes a relationship between the Ewald and non-Ewald results. The third section presents the results of non-Ewald calculations of P® that consider its concentration dependence for random and regular array distributions. The fourth section reports the results of P® for the steady-state configurations of the dynamic simulations of sedimenting monolayers. The concluding section discusses the consistent relationship between the pair-distribution function and short-time, self-diffusion coefficient seen in these results.
S.l Determination of Configuration-Related PropertiesThe pair-distribution function, g(r), is the probability density of finding a second particle a distance r from the test particle and is, in general, a function of both r and θ (see Figure 3.1). The arc of θ = 0° to 180° is divided into 10 equal wedges, each spanning a ∆θ = 18°. The first wedge is centered at 9° and the last, at 171°. The radial distance from the test sphere is divided into sections of ∆r = 0.05. The value of g(r,θ) in a given region of size ∆r∆0 is determined by considering each sphere at the center of its own periodic cell and by averaging over the configurations the number of sphere centers found in this region. In the dynamic simulations, configurations from each data step, after the system reachs a stationary state, are averaged to determine the pair-distribution function. The value of r in the radial distribution function varies from 2.0 to a distance half the periodic box length. The definition of a near-touching pair of spheres is that the sphere centers are separated by 2.05 sphere radii or less.For the random distributions, we are not generally interested in the short- time, self-diffusion coefficient for a given configuration. However, in dynamic simulations, it is interesting to consider the time evolution of the short-time selfdiffusion coefficient (see Figure 3.8o). The upper two curves are the xx and yy components of D® and, as expected because of symmetry, are roughly equivalent. P® is the average of these two curves. The lowest curve is the xy component of D®, which should be zero because of symmetry. D® is a run-time calculation and



-67-has been used as a quick measure of the development of the microstructure in a simulation. The reported value of J9® for the dynamic simulations is the time average of D8o.

8.2 Ewald Results and Discussion

This section contains the results of a series of studies on the effect of the application of the Ewald method on determining D8 for spheres in a monolayer. Unless otherwise noted, the configuration within the monolayer will be a regular array with the spheres on the lattice points of a square grid, Φa = 0.453, and the FTS method is used to approximate the mobility matrix. Just as the application of the Ewald method to the monolayer has certain implications for the velocity and velocity variance of the spheres, it also has implications for the value of Dεo. In particular, we will discuss the effect of varying zι (where L = zι ∙ H is the distance between neighboring monolayers, and H is the length scale of the periodic cell), keeping N∖ fixed and varying 7Vχ, keeping 2/ fixed. Since the mobility matrix can be approximated in various ways, we will consider the following contributions to 2?®: 1) the far-field pairwise mobility interactions in the grand mobility matrix,(this would be 1.0 in the non-Ewald case); 2) the far-field many-body mobility interactions, including the effect of the induced stresslets, in the inverse of the small resistance matrix that has not had the two-body interactions included, (Rj-t7)-1; and 3) the full approximation to the mobility matrix interactions, (R)-1. One of the greatest advantages of the Ewald method is that the mobility matrix will not lose positive definiteness, regardless of concentration or N± - this will be discussed at the conclusion of this section. At that time we will also look at the effect of varying the microstructure in the monolayer and general implications of applying the Ewald method to dynamic monolayer sedimentation simulations.
8.2.1 D8o vs. zι, Ni fixedWe have studied the effect on D8 of varying the distance between the mono- layers, keeping Nι fixed. In all cases, jV1 = 16, Φa = 0.453, the spheres are in a



-68-regular array, and convergence in D° is guaranteed to at least 4 significant figures. Using an analysis similar to the one in Section 2.6 (except that {F} ψ 1, but (F) = l∕Λr1), we might expect thatP‡oc j≠Atf1-1H∙zh (3.2.1-1)when 2V1, ≠χ, and H are fixed (see Equation 2.6-5). Figure 3.2 shows the results of our study; the pluses are the Dβo results when the mobility matrix has not been inverted (M*), the dots indicate that the far-field (many-body and induced stresslets) interactions have been added ((H-fl'')-1)> an^ the x’s indicate the full approximation results. The dotted line through the direct Ewald contribution results is a least squares fit of those data; it has a slope of 0.1492 and a correlation coefficient of 0.99998. The factor of ∣≠A.TV1-1.ff from Equation 3.2.1-1 is 0.1492 for this case. The (R^tz)^1 results lie along a basically parallel line slightly below the direct Ewald contribution curve. This shows the mobility-reducing effect of the many-body and induced stresslet interactions, which also occurs in the full three- dimensional case (cf. Brady & Durlofsky 1988). When the near-field two-body interactions are not included, the relationship between Dso and zι is as predicted. However, when the full approximation to the mobility matrix is used, P’ does not behave as predicted; indeed, P* levels off as 2/ → ∞. Two things clearly need to be discussed: How can P‘ increase as the apparent three-dimensional concentration decreases (z[ increasing), and why does P* approach a constant value, greater than 1, when the full mobility approximation is used, instead of increasing linearly with zι as predicted and in the far-field approximations?The first question can be answered by understanding the nature of the Ewald sums. Theoretically, P* is calculated by applying a force to a given sphere when all other spheres are force-free and then determining the mobility of that particular sphere. However, in invoking the lattice sums and the Ewald method, each sphere at the center of its periodic cell and all of its images will feel an applied force on them. Thus, we have a similar situation to the one in Chapter 2.3; monolayer planes with a given average force “move” feister as the distance between them increases (see Equation 3.2.1-1).



- 69 -The second question is answered by considering the relative contributions of the near-field and Ewald-summed components. Remember that the mobility matrix is constructed as follows:
M = R"1 « (R⅛u + R2b -R∞b)^l, (3.2.1-2)

where R^σ is (∙M*)J^ and Λi* is the Ewald-summed grand mobility matrix. The behavior of the Ewald-summed elements of the mobility matrix coincides with the predicted behavior. The elements of Λi* (especially the important self terms) increase as zι increases, and the same elements in Rj>ιz decrease (they are related to the inverse of the mobility elements). Now, let us include the difference of the two-body terms. This difference is a constant for any given configuration. We have seen that the difference is, in general, quite small (cf. the permeability results in Brady, et al. 1987 and Chapter 2.2.2), but as zι increases, the elements of RJ.σ become as small as, and then smaller than, the difference of the two-body terms. Thus, as Z} → ∞, M ~ (R2b — R2i)^lι which is independent of Z[.

8.2.2 D8o vs. Nι, zι fixedWe have studied the effect on D8 of varying the number of spheres in the periodic cell, Λrι, keeping zι fixed. Although zι is fixed, the actual distance between the image monolayers, L, will change, since L = H ∙ zι and H is a function of 2V12 . Again, we predict the behavior of D8 from Equation (3.2.1-l), in this case,
D8 oc N1^ 2. (3.2.2-l)

The areal fraction in all cases is Φa — 0.453, and the spheres are in a regular array within the monolayer. Figure 3.3 shows D8 vs. N1 2, where D8 is calculated from the non-inverted Ewald-summed mobility matrix. Each curve represents a different value of 2; and the pluses indicate actual data points. Figure 3.4 graphs 
D8 vs. N1 2, where D8 is calculated from (RJ<σ)^1. Figure 3.5 graphs D8 vs. 
N1 2, where D8 is calculated from full mobility matrix approximation. The curves on Figure 3.3 represent the best least-squares fit of the data at that value of zι. The



-70-curves on Figures 3.4 and 3.5 are lines drawn though the results of the two largest values of Nι. The triangle on the j∕-axis represents the appropriate D*o calculated without Ewald sums (7V1 = 81). In general, all the curves on each figure meet approximately at a given y-intercept, close to the non-Ewald result. In all cases, increasing Nγ gives a predicted value of the y-intercept closer to the non-Ewald result. As N-i increases, the actual distance between the monolayer increases, even though zι is fixed. The average force on the spheres in each periodic cell, (F1), decreases as 7V∖-1 as Nχ increases. For finite values of 2∣, N↑, = inf implies that the slope of Da0 vs. zι will be zero (the slope is oc JV1 2 ; thus, Deo will be independent of zι at Nι = oo. The effect of the image monolayer can now be neglected and the average force on the spheres in the monolayer will be zero; the Ewald results for Da should be equivalent to the non-Ewald results in the limit as 
Nι → ∞.

S.S Non-Ewald Results and Discussion

In the preceding section, we only considered regular arrays of spheres. In considering the short-time, self-diffusion coefficient in random suspensions, we form and invert the grand mobility matrix for 50 to 1000 configurations of a fixed number of spheres. Unfortunately, the Ewald method is very time consuming, especially for large values of 2V∖ and/or 2;; it can require 30 to 100 CPU minutes per configuration or more to obtain convergence in the mobility interaction expressions. A non-Ewald calculation will commonly take 30-50 CPU seconds per configuration. ( These comparisons are for 7V1 = 25 and φ = 0.453). To sample enough configurations to insure a truly random distribution of spheres, time constraints strongly recommend that a non-Ewald method be used to form the grand mobility matrix. The last section implies that the Ewald and non-Ewald methods produce close to the same results for the short-time, self-diffusion coefficient. This section contains the results for non-Ewald calculations (*γ = 1 in Equation 2.3.2-3), and the mobility matrix is approximated using the FTS method, unless otherwise noted. We begin our study of the short-time self diffusivity by investigating the



- 71 -concentration and cell size dependence of the mobility of spheres in a regular array within a monolayer. The number of spheres in the periodic cell is N±, and the maximum packing for this microstructure is ≠χ = 0.785 (^). The regular array results are presented in Figure 3.6. The solid curve connects the Nι = 81 results, the dotted curve, the Λ7ι = 49 results, and the dashed curve, the 2Vχ = 25 results. Each curve ends when the grand mobility matrix loses positive definiteness. As the periodic cell size decreases (increasing ≠χ or decreasing 7Vχ), the magnitude of the truncation errors, (O(r-6)), in the mobility elements will increase, and the mobility matrix will lose positive definiteness. This is one advantage to using the Ewald method since the convergence of the mobility elements (and therefore, positive definiteness) can be guaranteed for any value of Ni. Note that at any given concentration, the addition of other spheres to the periodic cell reduces D%, which is the expected result. The small hump seen at about ≠χ = 0.19 is an artifact of our method; the Rîb — Rjb term is truncated at a sphere-sphere distance of 4 radii, and the effect of this will, of course, be exaggerated in a regular array.Now consider monolayer suspensions of spheres whose average distribution is a random, hard-disk distribution. Bossis & Brady (1987) have shown that the Stokesian dynamic simulation of pure Brownian motion produces this hard-disk distribution. However, we use a Monte-Carlo simulation to produce the configurations in our study. Where possible, we have compared the pair-distribution function of our actual configurations to the hard-disk distributions reported in Chae, Ree &; Ree (1969). We used between 100 and 1000 configurations to obtain an average D80. After considering the effect of cell size (number density constant), we will show the relationship between De0 and ≠χ and end this section with a discussion of the effect of microstructure on D*. This last point will include the results from non-Ewald dynamic simulations of sedimenting spheres in a mono- layer.Figure 3.7o graphically presents the random distribution results; the regular array results are repeated for comparison. (See Figure 3.76 for an expanded view of the small concentration results.) The (∙),s indicate that Λrχ = 16, the (+)⅛



- 72 -indicate that Ni = 25, and the (×),s indicate Λ7ι = 49. Bossis k Brady’s (1987) result for Pe = 0 is denoted by a Δ {D8o is calculated from 30,000 configurations). The most striking feature of Figure 3.7o is that the random distribution results all lie beneath the regular array results for ≠χ < 7. This clearly shows the dominant mobility-reducing effect of the near neighbors in a random distribution. Consider the decrease in D8o as we increase Nι. In the random distribution case the decrease is only 60% of the decrease for the regular array (Nι = 25,49, ≠χ = 0.453,0.544l). This is another indication of dominant, near-sphere interactions. In general, D8 is a monotonically decreasing function of increasing areal fraction for any given type of microstructure. This is expected since the mobility of a particle will decrease as its local environment gets more crowded.
8.4 D8 in sedimenting monolayer suspensionsThe last microstructure we will consider is that resulting from our dynamic simulation of sedimentation in a monolayer. These runs are at different levels of approximation, may or may not use Ewald sums, and may or may not have repulsive forces between the spheres. All of these variables may affect the steady- state configuration and D8 of the suspension. Instead of presenting the pair- distribution functions and the time traces of DJ for all the simulation runs, the next paragraph will illustrate the basic trends we notice in the relationship between the steady-state configuration and D8. The results for these dynamic simulations are presented in Table 3.1 and are discussed below. The complete D® results for the dynamic simulations are presented in Table 4.5.Figures 3.8o-c show the dynamic evolution of D® in sedimenting monolayers from the same initial configuration using the FTS, FT, and F methods, respectively, for both the dynamics and diffusivity calculations. The solid curves are the Dyy and Dyy components of the short-time self diffusivity, and the dotted line its Dxy component. The initial condition is a configuration taken from the Monte-Carlo hard-disk simulation. The mobility-reducing effect of the stresslets can be seen by comparing the De0 results of each method at t = 0. D8 is cal-



-73-culated to the level of accuracy of the simulation run, and the actual difference among the steady-state values of D8o is misleading if we wish to characterize the microstructure with this coefficient. To remedy this, we calculate D* for certain configurations produced by the F and FT dynamic simulations using the FTS method. This is done at intervals of 50 time units. The results are shown in Figure 3.9. The curves are solid with filled circles for FTS run configurations, dashed with filled stars for FT run configurations, and dotted with filled triangles for F run configurations. In general, the FT configuration results lie above the F configuration results, which, in turn, lie above the FTS configuration results, all of which lie beneath the random distribution result of Dζ = 0.72. These results are easily understood by considering the pair-distribution functions in each case. Figure 3.10 is the pair-distribution function for the FT configurations (i = 150 to 500). Figure 3.11 is the pair-distribution function for the F configurations (f = 250 to 500). Figures 3.12a,b are pair-distribution functions for the FTS configurations (a:i = 300 to 400, b:i = 380 to 500). These figures have been arranged such that the figure number increases as P® decreases (see Table 3.l). The key feature in this case is the peak at r = 3.5; this peak is associated with the presence of hexagonal packing of spheres in the monolayer (see Figure 3.13 for a “snapshot” of the configuration at t = 500 for the FTS run). Of course, hexagonal packing will strongly limit the mobility of spheres in such a configuration.We see similar results when Ewald sums are applied to the mobility approximation (zι = 2.0); the pair-distribution function shows a high degree of hexagonal packing and P® is correspondingly small. Figure 3.14 shows the configuration of the spheres at t = 750.0 for an Ewald, F method run. P® « 0.30 compared to P® ≈ 0.36 for the non-Ewald result (the F method is used in both runs). The discrepancy is due to the higher degree of hexagonal packing and near-pairs, and to the fact that at this value of zι and 2V1, the Ewald results will be slightly less than the non-Ewald results (see Section 3.2.2 and Figure 3.5).Now consider the effect of repulsive interparticle forces on the microstructureand short-time self-diffusion coefficient of steady-state sedimenting suspensions.



- 74 -Remember that as we increase the value of τ, the range of the interparticle force decreases; the interparticle force will generally be negligible compared to the hydrodynamic forces at surface separations greater than 4.5r-1. The most important feature of these results is the absence of hexagonal packing as denoted by the lack of a <7 (3.5) peak in the radial pair-distribution function. ( The absence of hexagonal packing can be seen in Figure 3.15, which is the configuration at t = 500 for a non-Ewald, F method simulation where τ = 103). This is true for all values of τ that are considered (r = 103 and τ = 105). De0 is 0.69, 0.60 and 0.36 for τ = 103, 105 and ∞ (no repulsive forces), respectively; this is for non-Ewald F method simulations, but the trend is the same in the Ewald F method simulations. The value of D80 for a random, hard-disk configurations (to this level of approximation) is 0.78. When repulsive forces are present, we see again that the radial pair-distribution function is closely related to D*. As τ decreases, the p(2) and g(4) peaks decrease; this indicates an decrease of near-pairs as the range of the interparticle force increases. The sedimentation of spheres without repulsive forces produces a dense, steady-state microstructure that severely restricts the instantaneous mobility of the spheres. The addition of repulsive interparticle forces increases this instantaneous mobility; as the range of this force increases (r decreases), the mobility increases, but is still less than that in the random suspension. The evolution of the structures in sedimenting suspensions, with and without repulsive forces, will be discussed in more detail in Chapter 4.
S.5 Conclusions

Other microstructures than the regular arrays, random or steady-state sedimentation distributions are possible; a common suspension flow is a system of neutrally buoyant particles in a linear shear flow. Bossis & Brady (1987) studied the self-diffusivity of Brownian hard spheres within a monolayer subjected to a simple shear flow. The value of the shear Péclet number, which is the ratio of the importance of the shear flow to the Brownian motion, directly affected the sphere distribution and thus, the short-time self-diffusion coefficient. At the areal



-75-fraction they studied, ≠χ = 0.453, Dto decreased monotonically from 0.74 (±0.01) to 0.57 (±0.01) as the Péclet number increased from zero to infinity. The pair- distribution function shows a rapid increase of the r = 2 peak, as well as the formation of a significant second near-neighbor peak at r = 4, as Pe → <x>. This occurs as more and more spheres become clustered. This increase in clustering is clearly related to the decrease in D*, as we have seen in comparing the regular array and random distribution results. It must be noted that the pair-distribution function for the Pe = ∞ case reported by Bossis & Brady (1987) is very similar to the FT pair-distribution function, with the exception that the small <7(3.5) peak (<7(3.5) = 1.0l) is missing in the shear result. We would expect that Dq for the shear case would be greater than that in any of the sedimentation cases that do not have repulsive interparticle forces. In a similar vein, the radial pair-distribution function for sedimentation simulations that included repulsive interparticle forces are qualitatively similar to the infinite Pe case for the sheared suspension. The trend here is that PJ will decrease as the g(2) and <7(4) peaks increase in the radial pair-distribution function; there are a greater number of near pairs in the sheared suspension and the corresponding short-time diffusivity is smaller.Both types of suspension flows considered here, shear and sedimentation, produce steady-state configurations that reduce the instantaneous mobility of their particles compared to the random Brownian suspension. In the absence of repulsive interparticle forces, sedimentation produces the densest microstructure and, of course, is characterized by the smallest short-time self-diffusion coefficient. With the addition of repulsive interparticle forces, we can essentially set the instantaneous mobility of the particles in the sedimenting suspension. Table 3.1 sums up the relationship among the short-time diffusivity, the microstructure of the monolayer, the suspension character and flow type, and concentration.
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TabU 8.1 The relation between the microstructure of the monolayer, Deo, and the pair-distribution function for runs reported in Chapter 3. ≠χ = 0.453 for all cases. The shear results are from Bossis & Brady (1987). The F, FT, and FTS sedimentation runs are non-Ewald simulations and are described in detail in Table 4.1 (they are designated Fnl, FTnl, and FTSnl-5, respectively), ef3 designates an Ewald, F method simulation run (f = 500-700). nfrl designates a non-Ewald, F method simulation run in which interparticle forces (r = 103) are present (t = 0-500). See Tables 4.4 and 4.5 for the results of all the sedimentation simulations.

Microstructure Ds0 g(2.0) g(3∙5) g(4∙0)
regular
array 0.801

random
hard-disk 0.72 2.68 0.78 0.91

shear
(Pe=∞) 0.57 = 20 = 0.80 = 3.0

FT
sedimentation 0.50 16.2 1.08 2.74

F
sedimentation 0.45 16.3 1.61 3.12

FTS
sedimentation 0.35 12.6 4.27 4.82

ef3
sedimentation 0.30 15.4 2.28 4.34

nfrl
sedimentation 0.69 11.5 0.92 1.44

For regular array: g(2.63)=33.6, g(3.75)=23.7
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Ftgure S.l Defining sketch for the pair-distribution function.
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Figure. S. S Short-time, self-diffusion coefficient as a function of zi, Λτ1 = 16. The coefficient is calculated from the mobility matrix, which is approximated by M* (+) or the full mobility approximation (x).
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Figure S.S Dso as a function of N a. The mobility matrix is approximated by the uninverted Ewald-summed mobility matrix.
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Figure S.j D8o as a function of N~⅛. The mobility matrix is approximated by (R∙Ftz) 1∙
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Figure S.5 D* as a function of N ». The mobility matrix is approximated by the full mobility approximation.



-82-
SH

0R
T-

TI
M

E D
O

Ftgure S.6 Short-time, self-diffusion coefficient as a function of areal fraction for spheres in a regular array in a monolayer (see inset). The number of spheres in the object cell is 81 (solid line), 49 (dashed line), or 25 (dotted line).
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Figure. 8.7a Short-time, self-diffusion coefficient as a function of areal fraction for random, hard-disk distributions of spheres in a monolayer. The regular array results from Figure 3.1 are included for comparison. The number of spheres in the object cell is 16 (∙), 25 (x), or 49 (+). The result of Bossis & Brady (1987) is denoted by a filled triangle (<∕>χ = 0.453).
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Ftgure S. 7b A detailed view of the low concentration results in Figure 3.7o<
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«Ο Ο
Figure 8.8α The evolution of the short-time, self-diffusion coefficent in time for a non-Ewald sedimentation simulation using the FTS method, ≠χ = 0.453 and 2V∖ = 25 (this run is denoted as FTSnl-5 in Chapter 4). The top two curves are the xx and yy components of D*. Note that, as expected, there is no significant directional dependence of these results. The bottom curve is the xy component of D*. The time average of this component is very close to zero.
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Figure S.8b The evolution of the short-time, self-diflusion coefficent in time for a non-Ewald sedimentation simulation using the FT method, ≠χ = 0.453 and Nι = 25 (this run is denoted as FTnl in Chapter 4). See Figure 3.8o for explanation of curves.
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Figure S.8c The evolution of the short-time, self-diffusion coefficent in time for a non-Ewald sedimentation simulation using the F method, <∕>½ = 0.453 and Nι = 25 (this run is denoted as Fnl in Chapter 4). See Figure 3.8α for explanation of curves.
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Figure S.9 The evolution of the short-time, self-diffusion coefficent in time for a non-Ewald sedimentation simulation; the short-time, self-diffusion coefficient has been calculated using the FTS method in all cases, but the configurations are those from the runs shown in Figures 3.8o-c. The solid curve with filled circles are for FTS run configurations. The dashed curve with filled stars are for FT run configurations. The dotted curve with filled triangles are for F run configurations. The symbols indicate that D° was calculated for that given configuration, and the curves connect the symbols for each case.
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Ftgure S.10 The pair-distribution function for the FT run described in Figure 3.8b.Only configurations occurring from t = 150 - 5∞ contribute to this distribution.
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∕'tpurc S.11 The pair-distribution function for the F run described in Figure 3.8 c.Only configurations occurring from t = 250 - 500 contribute to thisdistribution.
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Figure 8.12a The pair-distribution function for the FTS run described in Figure 3.8α. Only configurations occurring from t = 300 — 400 contribute to this distribution.
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Figure S. 12b The pair-distribution function for the FTS run described in Figure 3.8α. Only configurations occurring from t = 380 - 500 contribute to this distribution.
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Figure S.IS A “snapshot” of sphere positions. The box is the periodic cell. These are the sphere positions at t = 500.0 time units for an FTS, non-Ewald simulation (referred to as run FTSn5 in Chapter 4).
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Figure 8.i4 A “snapshot” of sphere positions. The box is the periodic cell. These are the sphere positions at t = 750.0 time units for an Ewald F simulation (referred to as run ef3 in Chapter 4).
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Figure. S. 15 A “snapshot” of sphere positions. The box is the periodic cell. These are the sphere positions at t = 500.0 time units for an F, non-Ewald simulation when there are repulsive interparticle forces between the spheres (referred to as run nfrl in Chapter 4). The range parameter of the interparticle force, r, is 103.
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CHAPTER 4: LONG-TIME DISPERSION IN SEDIMENTING

SUSPENSIONS

This chapter reports the results of our investigation of hydrodynamic dispersion in concentrated sedimenting suspensions. We simulate monolayer suspensions of equal-sized spheres falling within the plane of the monolayer. Monolayer simulations are computationally much faster than a full three-dimensional simulation (cf. Chapter 2), but the particle dynamics that could lead to diffusive behavior are preserved. Our focus is a fuller understanding of the basics of hydrodynamic dispersion in sedimenting suspensions and its relation to suspension conditions and simulation variables. The raw data from a simulation run are the positions and velocities (and angular velocities, if the FT or FTS method is used) of the spheres at given time intervals during the run; data are generally recorded every 0.05 time unit, or every 10 to 50 time steps. It is not our intention to inundate the reader with a large number of graphs of simulation run results. Instead, the first section will present the results of one simulation run and will explain how we extract the various statistical, distribution and transport properties from the raw data. Appendix B contains the results of these analyses for all the reported simulation runs. We will refer to this appendix when appropriate. Table 4.1 lists the simulation conditions of all reported runs. In the succeeding sections we discuss how these properties vary (or do not vary) when suspension or simulation conditions change.In the second section we examine the effect of the level of accuracy in approximating the hydrodynamic interactions on the suspension properties. This consists of comparing results from non-Ewald simulations using the F, FT, and FTS methods. In the third section, the effect of Ewald sums is considered. Based on conclusions from Chapter 3, zι = 2.0 for all Ewald simulations. In the fourth section, we add pairwise electrostatic-type repulsive forces to the simulation and examine how their strength and range affect suspension properties. We will consider the effect of increasing the periodic box size for the runs at an areal fraction



-97-of 0.453 in the fifth section. In the sixth section we willexamine the concentration dependence of the suspension properties, particularly the dispersion.
4∙1 Sample Analysis of a Simulation RunBefore we derive the properties from a simulation run, we list the suspension conditions and simulation inputs. In the run considered in this section the areal fraction is 0.453 and there are interparticle repulsive forces on the spheres (r = 10δ and Fo = 10~δ). The initial configuration of the spheres in the periodic cell is taken from a Monte-Carlo random, hard-disk simulation. The run goes from 
t = 0 — 500. This run can be continued from this point using a restart file that the simulation periodically produces - the file contains previous velocities and the present configuration needed to continue the the Adams-Moulton integration of the sphere trajectories. The mobility matrix is approximated by the Ewald F method (z∕ = 2.0), and the short-time diffusion coefficient is also calculated at this level of approximation. The time step is 0.0025, the mobility matrix is inverted every 40 time steps, the short-time self-diffusion coefficient is calculated every 400 time steps and the data is saved every 20 time steps.
4.1.1 Velocity-related StatisticsLet us start with the basic definitions of the particle-averaged velocity and velocity variance. In our general notation, the subscript y refers to the direction parallel to the gravity vector (specifically, gravity is in the negative y direction), and the subscript x refers to the direction perpendicular to the gravity vector. At each time where data are stored, we calculate

1 nthe x velocity, (v1) = — ∑(vx)i (4.1.1-l)
s=l

»■=1
the y velocity, (4.1.1-2)



-98 -the vx variance, «». - <v1>)s) = i £»? - w2 (4.1.1-3) »=1the vy variance, ((v„ - (t√,)2} = ~ £>,,)? - (»„)’ (4.1.1→)t=land the vxy variance, 1 N
{{vx - (vx))(vy - {vy))} = N∑(vxvy)i - {vx}(vy}. (4.1.1-5)t=lObviously, the vx variance and the vy variance are always positive. Time averages of these quantities (denoted by an overbar) calculated from simulation data sets and calculated during the simulation ( data taken at each time step) are indistinguishable when the data are saved every 50 to 100 small time steps. Figures 4.1 - 4.5 are the time traces of the particle-averaged velocity and velocity variance. The absolute value of the time average of (vx} for all runs is ≤ 0.02 and is usually ≤ 0.01. The absolute value of the time average of the vxy variance for all runs is ≤ 0.0008. These near-zero results are consistent with the symmetry imposed by the gravitational force vector. Table 4.2 lists (vy} and the time-averaged vx and vy variances for all reported simulation runs. Table 4.3 lists (υx) and the time-averaged vxy variance for these runs.

4.1.2 Configuration-related Statistics and PropertiesAs shown in Chapter 3, the pair-distribution function, g(r), is the probability density of finding a second particle a distance r from the test particle and is, in general, a function of both r and θ. The arc of θ = 0° to 180° is divided into 10 equal wedges, each spanning a Δ0 = 18°. The first wedge is centered at 9° and the last, at 171°. The radial distance from the test sphere is divided into sections of ∆r = 0.05. The value of g{r, θ} in a given region of size ∆r∆0 is determined by averaging over time the number of sphere centers found in this region. The time averaging is done after the system reaches a stationary state. The stationary state is said to begin when the values of y velocity and Deo no longer change significantly



-99-with time. Each sphere in the periodic box is taken as the test sphere, so
ff(r,9)=g(r,9 + π). (4.1.2-1)We also know that the presence of the external body force parallel to the 9 = 0° axis should mean that g(riθ} is symmetric about that axis. Coupled with the symmetry through the origin stated in Equation (4.1.2-1), we would expect that our 9 distributions should exhibit a four-fold symmetry - symmetry about the 0 = 0° and the 9 = 90° axes. For each simulation, we report both the radial distribution function, g(r)i and the full pair-distribution function for the near- touching spheres; the radial distribution function is the full distribution function integrated over 9. The value of r in the radial distribution function varies from 2.0 to a distance half the periodic box length. The definition of a near-touching pair of spheres is that the sphere centers are separated by 2.05 sphere radii or less. Figure 4.6 shows the radial pair-distribution function for our specified run - only configurations occurring after t = 150 are included in this calculation. This is done to insure that only steady-state results are reported. Figure 4.7 is the full pair-distribution function at r∕α = 2.025. The curve denoted by the filled circles is forced to be symmetric about 9 = 90°, allowing us to see how well the simulation actually preserves the symmetry we expect. Because of the finite amount of data and the size of the ∆r bins, the error bars in Figure 4.7 are fairly large and may be up to 5 to 10 % of the value of the distribution function. Table 4.4 lists the important radial pair-distribution function information.The other measure of the microstructure that we consider is the time evolution of the short-time, self-diffusion coefficient (see Figure 4.8). As seen in Chapter 3, the evolution of the microstructure can be followed by considering the time trace of D*. D* is a run-time calculation and has been used as a quick measure of the development of the microstructure in a simulation. We have noted that the sedimentation velocity of the suspension may reach a steady value at a different time than DJ, and in general, we wait for both properties to settle down before beginning to calculate the pair-distribution function and the mean-squared displacement of the spheres. Table 4.5 lists the steady-state values of D£.
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4.1.S Disper si on-r elated PropertiesThe long-time coefficient of sedimentation-induced sphere self-diffusion, D⅛o, is defined in terms of the mean-squared displacement of spheres from'their original positions. It is defined such that
d~ = ,⅛5⅛<<x^*>2>' <4∙1∙3-1>where x = (v} ∙ t. The displacement of the spheres is not taken directly from the raw data set because those positions are for sphere positions within the periodic box. Instead, we compute the actual displacement of the N spheres from their positions at chosen time, to. This is done by systematically reversing the processes which kept the spheres in the periodic box in the simulation.The mean-squared displacement is calculated from the above trajectory data. At each time step the effects of bulk motions are removed by subtracting the mean displacement in each direction. Although the time-averaged mean displacement perpendicular to the direction of settling should be zero, the actual mean may be non-zero. In the direction of settling, the largest portion of the actual displacement results from the applied force. In both directions, we subtract off the time-averaged displacement; i.e., the displacement of a single sphere is considered to be x — x, and the mean displacement ((x — x)) will be identically zero for the entire run. Classical self-diffusion processes have a zero-mean displacement, and the long-time coefficient of self-diffusion is found by considering the mean-squared displacement as t → ∞. Any displacement related to local or large-scale concentration gradients, or the bulk motion in response to applied forces, will have non-zero means, and diffusion related to these displacements will not be considered in this thesis.We report the mean-squared displacement as a function of time in the following way: l{(χ-*)2)

2 i VS t. (4.1.3—2)
{(x-x)2} = 2 D∞∙f as t ∞. (4.1.3-3)

The reason for this is simple. If the motion of the spheres is truly diffusive, wewould expect that



- 101 -If the motion is deterministic, we would expect((x — x)2) ~ O(f2) as t → ∞. (4.1.3-4)Therefore, if the graph of the relation in Equation (4.1.3-2) levels off as f → oo, we conclude that the sedimenting system is self-diffusive, and its long-time coefficient of self-diffusion, D∞, is the height of the plateau. (Figure 4.9 is an idealized graph of Equation 4.1.3-2 for a diffusive process.).We use a technique, also used by molecular-dynamicists, to improve the accuracy in finding the long-time coefficient of self-diffusion without additional simulation computation costs. This technique essentially averages the curves of 
I ∙ki—j-j-z vs t calculated from a number of initial configurations. This is not the same as running the simulation from different initial configurations. If the simulation data run from an initial time of to, to a final time of t f, we can just follow the spheres’ trajectories from their original configuration to their final configuration. Alternatively, we can choose to follow the trajectories for an interval of time, ΔTj ≤ (if — io). Now, we can choose the data at any time before {tf — ΔT∕) as the initial configuration for the displacement measurements. Actually, we take the position data from a number of such times, graph the function in Equation(4.1.3-2) and average the resulting curves. The averaged curve is much smoother than the individual curves, making it much easier to determine D∞. Figure 4.10 schematically shows this data enhancement technique. The time between the start of each ∆7j interval is 2 to 100 data time steps. The smaller this time is (i.e., the more curves that we average), the smoother the curve is. The error in reading off D^o from the unaveraged curves is much greater than the averaged curves, even when the unaveraged curves are much longer than the averaged curves. Regardless of how much time is taken between interval starts, the difference in the values of Dæ from the averaged curves is much smaller than the error associated with the unaveraged curves.Figures 4.11 and 4.12 are actual graphs of one-half of the mean-squared displacement divided by time vs. time for sphere motion in the y and x direction,



- 102 -respectively. Data are taken from t = 100 — 500. ∆7j is 150, 200, and 300 time units, where the interval between ‘initial’ configurations is 2 time steps (except for ∆2j = 400, which is an unaveraged curve). It is noted that the sphere motion in the x direction resulted consistently in dispersion that is diffusive. The sphere motion in the y direction also shows diffusive behavior, but the behavior is generally more complicated than that seen in the a>direction. Remember that more intervals are used as the length of the interval decreases. In all cases studied, the sphere motion exhibits diffusive behavior; the degree to which the dispersion varies for different suspension conditions and simulation variables will be considered in the succeeding sections. Tables 4.6 and 4.7 list the minimum, maximum and average values of Dæ.
4∙S Approximation-level Dependence

The mobility matrix can be approximated to three different levels of accuracy - the F method, the FT method, and the FTS method. Although the FTS method is the most accurate method, it is also the most computationally expensive. It would be advantageous to use the lowest level of accuracy that preserves the properties of the suspension, particularly those related to the dispersion. We compare non-Ewald F, FT and FTS runs that begin at the same initial configuration and the same simulation run-time inputs. There are no repulsive forces, and the areal fraction, which will be the same in all sections except when we consider the concentration dependence of the long-time dispersion, is 0.453. The F and FT runs are 1000 time units long, and the FTS run is 800 time units long. We conclude that the F method is accurate enough to investigate the long-time dispersion of spheres in a sedimenting suspension. The similarities and differences in the suspension properties resulting from the three types of simulations are discussed in detail below. The first four sections of Appendix B contain the results of the analysis of the raw data for the simulations discussed in this section. The results from the FTS simulation are in Appendix B.l. The results from the FT simulation first discussed are in Appendix B.2. At the end this section, we shall discuss



- 103 -another FT simulation that starts from a different initial condition; the results from this simulation are in Appendix B.3. The results from the F simulation are in Appendix B.4. These results include relevant “snapshots” of sphere positions that occur during the simulation.We begin with the velocity-related averages. The “sedimentation” velocity, 
(vy}, reaches a steady value after 400 (FTS), 100 (FT) and 250 (F) time units. The value of (vy} for the different methods varies less than 2%. The vx variance of the F and FTS runs is « 0.0030(±15%); it is ≈ 0.0082 for the FT run. The vy variance of the F and FTS runs is ≈ 0.010(±15%); it is ≈ 0.030 for the FT run. The prominent feature of the time traces of the vx and vy variance in the F and FTS results is that short periods of high variance interrupt generally near-zero variance that occur over most of the time history. In contrast, the variances in the FT run are fairly uniform in time. This behavior is related to microstructure evolution and affects both the configuration-related properties and the dispersion.The time history of P® shows the evolution of the microstructure from a random, hard-disk distribution. The steady-state distribution function determined for all methods indicates that hexagonal packing and clustering of the spheres occurs. These clusters in the F and FTS cases are fairly dense and very persistent; the time history of P® after steady-state is achieved is relatively smooth and P® is small ( ≈ 0.30 for the FTS method and ≈ 0.36 for the F method). The pair- distribution function in these two cases shows a high degree of hexagonal packing; the g(2) ≈ 13.0(±0.5) and g(3.5) and ^(4.0) are ≈ 3.7(±0.5) each for the F case and ≈ 9.5(±1.0) each for the FTS case. Contrast these results with the FT results. The time history of D® at steady-state has more high-frequency fluctuations and large (10% of P®) low-frequency (20 - 60 time units) fluctuations. The steady-state value of P®ts0.47, which is greater than in either the F or FTS case. Although the pair-distribution function indicates some hexagonal packing among the spheres (g(3.5) = 1.4), the higher ^(2)(=15.2) peak and the lower g(3.5) and flr(4.0) peaks (≈ 2.3 ± 0.7 each) show that there is less hexagonal packing than in the F or FTS case. The ^-distribution of the ^(2) peak is fairly level and symmetric around
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θ = 90° for all cases, although the F and FTS results show more variation about the mean value of the peak. This is another indication of the slow dynamics that occurs in these two cases; the relative position spheres changes so slowly that given configurations of spheres have a large impact on the statistics collected for the full pair-distribution function. A slight asymmetry is seen in the FTS case, but this is related to the incredibly slow dynamics and dense hexagonal packing in this case.The picture emerges that the microstructure in the FT case consists of a loose cluster (or clusters), including many of the spheres in the cell. ( Please refer to the microstructure pictures in Appendix B.l, B.2, B.4). This cluster generally spans the cell. There is a good deal of relative motion among the spheres, and the clusters themselves break and reform. In the F and FTS case, the microstructure is characterized by a much denser single cluster of spheres (particularly the FTS case), which includes almost all of the spheres. There is little relative motion among the spheres and the cluster can last 50-2∞ time units, or more. Most of the time relative motion occurs as the cluster “breathes” - expands and contracts - because ofthe hydrodynamic interactions in the sedimenting suspension. At rare times, the cluster will radically reform itself. This accounts for the short periods of high velocity variance, which are very dramatic in the direction of settling (see above). Our experience has shown that once a suspension evolves into a microstructure with a high degree of hexagonal packing, it becomes locked into this type of microstructure. Although the FT run has not manifested this microstructure by t = 1000, analysis of the pair-distribution function indicates an increase in the g(3.5) and <j(4.0) peaks and a decrease in g(2) as time increases. It is likely that if the FT run is continued, it would eventually evolve a microstructure similar to that in the F and FTS cases. (The anomalous results from the FT case, especially given the results of later simulations, demand fuller investigation. We have run another FT simulation, starting from a different initial condition. The results of this simulation run are discussed at the end of this section.) In the conclusion of this chapter we shall discuss, in a broader context, the slow dynamics and the dense clustering that occur in sedimenting suspensions.



- 105 -Finally, we consider the effect of the level of accuracy on the long-time dispersion of the spheres. After calculating the actual displacement, we plot the relation in Equation (4.1.3-2) with and without the averaging technique. These plots tell us whether the motion of spheres in a sedimenting suspension exhibits long-time self-diffusivity. The plots, particularly the unaveraged ones, do not always mimic the idealized curve seen in Figure 4.9. Instead, the curve may level off for a while, then will climb or fall to a new level. Remember that a linear rise or fall indicates deterministic sphere motion. Some plots, particularly the unaveraged curves and those pertaining to the displacement in the direction perpendicular to gravity, show an overshoot at small times.The diffusive behavior in the x-direct ion (the direction perpendicular to the gravity vector) is qualitatively similar for all methods. All simulations of sedimenting suspensions exhibit long-time, self-diffusive behavior in the x-direction, regardless of the level of accuracy (or anything else, for that matter). The degree of self-diffusivity, as measured by the long-time self-diffusion coefficient in this direction, {D6oo}xx, is relatively independent of method type. {D∞}xx ≈ 0.022(±0.002) for the F and FTS cases. (P⅛o)11 ≈ 0.030 for the FT case, but it should be noted that at earlier times (f = 300 — 500), this is the value of (D∞)xx for the F and FTS methods. All curves in this direction show overshoot at small times, sometimes as much as 100%. The rise time is relatively fast for all cases, ≈ 20-40 time units in the initial rise.The dispersion in the y-direction (the direction parallel to the gravity vector) is, in general, diffusive and an order of magnitude greater than in the perpendicular direction. The plots of the time derivative of the mean-squared displacement 
vs. time are qualitatively and quantitatively similar in the F and FTS cases. The initial rise took ≈ 80-100 time units and the average value of (P^o)j,jz ≈ 0.13 in the FTS case, and {D∞}yy ≈ 0.20 in the F case. The curves in the y- direction may have several plateaus, ranging from 0.09 to 0.38 (in the FTS case). This is related to the behavior of the vy variance - long periods of relatively small or near-zero variance interrupted by short bursts of greater variance. The



-106-motion within the cluster is diffusive over a long time, but is characterized by a small diffusion coefficient. When the cluster breaks up or re-forms, this period of time is characterized by greater velocity variance ( particularly in -the direction of gravity) during which the sphere motion may or may not be diffusive. In the F and FTS cases, this motion (during cluster reformation) is generally diffusive. In the FT case, we see a short period (≈ 100 time units) of diffusive behavior ((,E>∞) yy « 0.30) succeeded by a long (≈ 200 time units) of deterministic behavior. At this time, the results of the FT run are inconclusive since both “long-time” deterministic and diffusive behavior have been observed. However, given the trend in the pair-distribution function, we believe that the FT case has not reached its terminal microstructure. We note that in all cases, a steady “sedimentation” velocity does not guarantee that the microstructure distribution has settled down, though one could still plot the time derivative of the mean-squared displacement 
vs. time.To establish that the anomalous results of the FT simulation are not because of a particular initial configuration, we did another FT simulation, starting from a different initial configuration. The velocity variance and long-time, self-diffusion coefficient in the direction of settling are slightly closer to the F and FTS results, but are still greater than seen in any other simulation (at this concentration). The velocity variance and long-time, self-diffusion coefficient in the perpendicular to the direction of settling are in the same range as the F and FTS results for both FT simulations. The results of the second FT simulation can be found in Appendix B.3. It would seem that allowing the spheres to rotate increases the diffusivity in the direction of settling, but the affect of the induced stresslets decreases this diffusivity; the net effect is that there is little difference in the resulting diffusivity seen in the F and FTS simulations.It is our conclusion that the level of accuracy in approximating the mobility interactions has little effect on the long-time dispersion of spheres in sedimenting suspensions. A run of 500 time units took 5150 CPU minutes (the FTS method), 4186 CPU minutes (the FT method), or 1510 CPU minutes (the F method) on a



- 107 -SUN 3/260 computer with floating-point accelerator. In light of the insensitivity of the long-time microstructure evolution, velocity variance and dispersion to the level of accuracy and the much faster run time, we use the F method in the succeeding runs.
4∙S Ewald vs. non-EwaldThe application of Ewald sums to the mobility interaction insures the convergence of the long-range interactions present in sedimenting suspensions. In this section we shall consider the difference in suspension statistics and properties, particularly the dispersion, when Ewald sums are used to calculate the far-field mobility interactions. As stated above, all the Ewald runs are at the F method level of approximation. The results of the Ewald, F method simulations (no interparticle forces present) are presented in Appendix B.5. This includes selected “snapshots” of the suspension microstructure. The distance between the monolayers in the Ewald analysis is twice the edge length of the periodic cell. This length is chosen based on the relative independence of P* on Nγ. To insure convergence, 126 image cells are used. The “sedimentation” velocity, {υv}, which is a function of zι, is approximately 20% less than the non-Ewald velocity. The Ewald and non-Ewald runs (≠χ = 0.453) both start at the same initial configuration and end at t = 1000.In general, there are few significant differences between the Ewald and non- Ewald results in the configuration- or dispersion-related properties. The difference in the “sedimentation” velocities is a function of zι and does not affect the dispersion. The time averages of the velocity variances in the Ewald run are in the same range as the non-Ewald runs, and there are few qualitative differences in the time traces. Figure 4.13 is the time trace of the vy variance for the non-Ewald, F simulation for t = 500-1000 time units. Figure 4.14 is the time trace of the 
vv variance for the Ewald, F simulation for t = 500-1000. In the Ewald run, the periods of near-zero variance in the y-direction are shorter than seen in the non- Ewald runs. The time traces for the Ewald method results do not exhibit the



- 108 -small, short-time fluctuations seen in the non-Ewald traces. The motion of the spheres in the ^-direction is diffusive throughout most of the run for both cases; see the discussion below. The maximum level (D%o)yy attains is 0.29 ± 0.01 for the two methods. The average value of (D∞)yv is about 25% smaller in the non- Ewald case due to the periods of near-zero variance in this direction. The Ewald mean-squared displacement curves more closely resemble the idealized curve in Figure 4.9 than do the non-Ewald ones. This is related to the consistency of the variance through time (except as noted below). Both cases have a large increase in the variance between t ≈ 750 — 950. The mean-squared displacement during this time is deterministic as a large vertical cluster forms and then returns to the the more common horizontal cluster. Figures 15a-b show these clusters, which occur at t = 840 and t = 950 time units in the Ewald simulation. This behavior is seen in the non-Ewald case also.In the direction perpendicular to the gravity vector, there are no such long periods of deterministic motion. The variance curves are much more qualitatively similar than in the ^-direction. (P^o)sx for both runs is 0.022 ± 0.001, with minimum levels at 0.014 ±0.002 and maximum levels at 0.033 ± 0.003. The mean- squared displacement curves in the Ewald run are smoother than in the non-Ewald case; there are less fluctuations and the overshoot is small.The steady-state configurations are relatively insensitive to the application of Ewald sums. The microstructure are still characterized by a high degree of hexagonal packing. The difference in the relative size or the g{2), <z(3.5), and g(4) peaks is less than 7%, and the actual difference is less than 14%. Pictures of the microstructure are qualitatively similar.At the initial condition, D8o = 0.78 in the non-Ewald case, as compared to 
D8 = 0.71 in the Ewald case. In the non-Ewald case, Dq quickly drops to within 0.1 of its steady-state value of ~ 0.35 at t ≈ 100, though it does not come within 0.05 of its steady-state value until t ≈ 600. In the Ewald case, Dlo declined gradually to within 0.05 of its steady-state value of ~ 0.28 by t ≈ 600. The difference in the



- 109 -values of D® does not indicate a difference in the steady-state configuration, but simply the difference in calculating the mobility with and without Ewald sums.All things being equal, the Ewald simulations require more computer time than the non-Ewald ones. For these two cases, a run of 250 time units required 1515 CPU minutes for the non-Ewald, F method simulation, and 3446 CPU minutes for the Ewald, F method simulation. These timings are for a SUN 3/260 computer with a floating point accelerator.
4∙4 The Effect of Repulsive Interparticle ForcesTo study the dispersion in sedimenting suspensions where the microstructure is not dominated by the hexagonal clumping of the spheres, we add a pairwise repulsive interparticle force, as shown in Section 2.5. As we construct it, the range of the interparticle force, r-1, is the only adjustable parameter. In the previous simulation runs, τ can be considered infinite. The first two runs with repulsive forces are non-Ewald F method rims; τ is set to 103 and 105, based on previous work by Dr. Louis Durlofsky. Appendix B.6 contains the results of the 
τ — 103 run, and Appendix B.8 contains the results of the τ = 105 run.The sedimentation velocity is unaffected by the addition of repulsive forces. The velocity variance in both directions decreases as τ increases (more notably in the x-direction). The time traces of the velocity variances are much more regular - the minimum variance is constant and non-zero, and the range between the maximum and minimum variances is smaller in simulations with interparticle forces. There are no periods of intense variance and no periods of deterministic motion (other than that which occurs right after the measurement of the displacement begins). The sphere motion exhibits well-behaved long-time diffusive behavior in both directions when interparticle forces are present. Dispersion in the y-direction is relatively unaffected by the interparticle forces; (D2o)vy = 0.17, 0.21, and 0.20 for τ — 103, 105, and ∞, respectively. Dispersion in the x-direction is more influenced by the interparticle forces; (∙D∞)n = 0.065, 0.084, and 0.021 for 
τ = 103, 10δ, and ∞, respectively. There is minimal or no overshoot in the



- 110-mean-squared displacement curves. As τ decreases, the simulation reaches its steady state faster. Additionally, the mean-squared displacement curves are much easier to interpret; the range of values when the averaging length is varied is much smaller when interparticle forces are present. The steady-state microstructure radically changes when repulsive forces are added to the simulation; this is seen in both the coefficient of short-time self diffusion and the radial, pair-distribution function. Deo = 0.69, 0.61, and 0.35 for τ = 103, 10δ, and ∞, respectively. More importantly, a steady value of D80 is established much more rapidly as τ decreases. When interparticle forces are absent, the time trace of D‘ is characterized by a long, slow downward drift as the degree of hexagonal packing increases. There is little or no hexagonal packing when repulsive forces are present (see Figure 4.16). This can be seen by considering the radial, pair-distribution function; the <∕(3.5) peak characteristic of hexagonal packing is completely absent. The g(2) and g{4) peaks decrease as τ decreases; longer-ranged (smaller τ) repulsive forces reduce the number of near-touching pairs.The addition of repulsive interparticle forces eliminates the hexagonal packing among the spheres, increases P®, shortens the time a suspension needs to reach a steady-state, and quickens the dynamics of the sphere motion. Its effect on the long-time dispersion is interesting; it eliminates the extremes in the velocity variance, meaning that Dξo can be calculated more accurately and with less data. However, the actual value of Dξo (particularly D⅜o)yy is relatively insensitive to the addition of interparticle forces, despite the changes in the microstructure. Thus, further studies of the long-time dispersion will include repulsive interparticle forces (r = 105), because the accuracy and speed of the Dæ calculations are better and the long-time average value of D⅛o is fairly unaffected.Our next step is to increase the time step size to see if we can decrease the computational time without affecting accuracy. Increasing the time step from 0.001 to 0.005 results in the mobility matrix losing positive definiteness at t — 270. Appendix B.9 contains the results of this simulation. We eliminate the problem of losing positive definiteness by switching to the Ewald-sum method (F level of



- Ill -approximation). Using this method and a time step of 0.005 results in excessive sphere overlap, causing the simulation to terminate itself at i = 88. (Terminal sphere overlap also occurs in the non-Ewald run whose time step is- 0.0025 - see Appendix B.10). This sphere overlap does not occur in simulations without inter- particle forces, even with a time step as large as 0.1 time unit. Since the buoyancy force acts equally on all the equal-sized, equal-density spheres, the relative motion between two spheres occurs because of the hydrodynamic interactions with the other spheres. The presence of interparticle forces can give rise to a greater degree of relative motion between two particles, leading to a greater degree of overlap. Reducing the time step to 0.0025 for the Ewald-summed F method case (φ = 0.453 still) results in no excessive sphere overlap from t = 0 — 500, the complete run time (see Appendix B.ll for the results of this run).The results of this run confirm that the long-time dispersion in a sedimenting suspension is relatively insensitive to the presence of repulsive interparticle forces. The sphere motion in both directions continues to be diffusive. (P∞)yj, = 0.22, which is within 23% of all F method results, regardless of whether there are interparticle forces or whether Ewald sums are invoked. The maximum value of (¾)w is 0.29, compared to 0.28 and 0.30 for the r = ∞, Ewald and non-Ewald cases, respectively. The average value of (¾)1z is 0.027, which is much smaller than in the non-Ewald cases (r ≠ ∞) but within 25% of the τ = oo results (Ewald and non-Ewald runs). The Ewald sums appear to reduce the velocity variance in the x-direction, which significantly increases with the addition of interparticle forces to the non-Ewald simulations. The maximum (D%o)xx differs less than 7% for the Ewald runs, τ = 105, and oo.The application of Ewald sums to the τ — 10δ case affects the steady-state microstructure only slightly; D°, g(2), and g(4) decrease less than 3%. In general, the addition of repulsive interparticle forces eliminates the hexagonal packing that had characterized the previous steady-state configurations. The dispersion results show that the addition of repulsive forces has little effect on the long-time coefficient of self-diffusion, although it does affect qualitatively the time traces of the



- 112 -time derivative of the mean-squared displacement.
4∙5 Periodic Cell Size Dependence

A major consideration in the numerical simulation of any infinite system is the effect of periodic cell size - the results of interest should not be dependent on this size. All of the other simulations presented in this thesis use 25 spheres within the periodic cell. We increased the number of spheres in a simulation to 49, which has the effect of increasing the area of the periodic cell by a factor of 1.96. This is a non-Ewald, F method simulation, and r = 103. Except for the number of spheres, this is the same simulation described in the preceding section (see Appendix B.6). It took over 6 times more computer time to complete the N = 49 simulation compared to the N = 25 simulation (CPU time = 9215 minutes for t = 0 — 500 time units). The results of the simulation done with 49 spheres can be found in Appendix B.7. Except for the “sedimentation” velocity, the other reported results are the same for the simulations with 25 or 49 spheres (see Table 4.9). This insensitivity of the diffusion-related properties to the increase in periodic cell size is important; we can have greater confidence in the simulations that employ 25 spheres in the periodic cell. Since the periodic cell size must usually increase as the areal (or volume) fraction decreases, any low concentration study will have to perform similar tests of cell size dependence.
4.6 Concentration Dependence

All previous simulations were done at ζ⅛½ = 0.453. In this section we consider the concentration dependence of the long-time dispersion in sedimenting suspensions. Changes in the microstructure, Dsc, and the velocity-related averages will be noted. Based on the results of the preceding sections, these simulations use an Ewald-sum F method with τ = 10δ. The suspensions have areal fractions of 0.1, 0.25, 0.453, and 0.6. The time step is 0.005 (φΑ = 0.1, 0.25), 0.0025 (φΑ = 0.453), and 0.001 (φΑ = 0.6). Appendix B.12 has the phiA = 0.1 results. Appendix B.14



- 113 -has the ≠½ = 0.25 results. As noted before, Appendix B.ll has the Φa, = 0.453 results. Appendix B.15 has the Φa = 0.6 results. Also included is an older ≠χ = 0.1 non-Ewald, F method run with τ = ∞ (see Appendix B.13).The time-averaged sedimentation velocity increases as the concentration increases. As discussed in Section 2.6, the backflow that occurs outside of the plane of the monolayer increases as the concentration increases. Since less fluid flows back through the monolayer as the concentration increases, the velocity of the spheres increases. The sedimentation velocity in the older, non-Ewald run described in the last paragraph did not reach a constant value; the simulation ended at 1000 time units.The time-averaged velocity variances in both directions increased as the concentration decreased, although the time-averaged vx variance levels off for <∕>χ ≤ 0.25 (cf. Figures 4.17 and 4.18). The motion in both directions exhibits long-time diffusive behavior. Figures 4.19o-δ and 4.20 show the concentration dependence °f {Dςχ>)yy and (∙^^qφ)xij respectively, 'l1he bar indicates the range of all previous simulation (except the FT non-Ewald case) results (≠χ = 0.453). The FT non- Ewald case results are denoted by a x and the non-Ewald, τ = oo, φ∕i = 0.1 case results are denoted by a +.As in the random distribution results, Dao decreases as the concentration increases (cf. Figure 4.21). g{2} is approximately the same for ≠χ = 0.25 and 0.453 and increases slightly for ≠χ = 0.6 (g(2) = 15.7 compared to 12.1 for 
Φa = 0.25, 0.453). The only other interesting feature is the increasing angular dependence of the near-touching spheres as the concentration increases from 
Φa = 0.453 to Φa = 0.6. Figure 4.22 indicates that for ≠χ = 0.6 there is a stronger preference for near-touching spheres to spend more time settling with their line of centers perpendicular to the gravity vector (the dashed curve results from forcing the occurs to be symmetric about θ = 90°).
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Table √.2 The simulation conditions for all reported sedimentation runs. The first column is the memnonic case name for that simulation - ‘e’ implies Ewald, ‘r* implies repulsive forces, and ‘f’, ‘t’, or ‘s’ denotes the level of approximation. 25 spheres are used in all simulations except for the n49 simulations. The mobility matrix was inverted every 0.1 time units in all simulations.

Case Method Ewald(?) dt ΔΤ τ Comments
Φλ =0.453 
FTSnl-6 FTS no 0.001 0-800 ∞
FTSn6 FTS no 0.001 500-800 oo

FTnl FT no 0.001 0-500 oo

FTn2 FT no 0.001 500-1000 oo
FTal FT no 0.001 0-500 oo new initial
FTa2 FT no 0.001 500-1000 oo condition
Fnl F no 0.001 0-500 oo

Fn2-3 F no 0.001 500-1000 oo

efl-4 F zi=2.0 0.001 0-1000 oo

ef3 F zi=2.0 0.001 500-750 oo

ef4 F zz=2.0 0.001 750-1000 oo

nfrl F no 0.001 0-500 103
n49a F no 0.001 0-500 103 7√=49
n49b F no 0.001 500-1000 103 N=49
nfτ2 F no 0.001 0-500 105
nfr3 F no 0.005 0-270 105 lost pos. def.
nfr4 F no 0.0025 0-202 105 overlap
efrl F z,≈2.0 0.005 0-88 10s overlap
efr2 F zi=2.0 0.0025 0-500 10s

Φλ≈0.1 
phi 1 efrl F z, =2.0 0.005 0-500 105
philefr2 F zz=2.0 0.005 500-1000 1O5

^lnl-2 F no 0.001 0-1000 oo

Φa=0.25
Phi25efrl F Z∕=2.0 0.005 0-500 105

JE>hi25efr2 F zz=2.0 0.005 500-1000 105
Φa=0.6

Phi6effl F z,=2.0 0.0025 0-126 10s overlap
Phi6efr2 F zi=2.0 0.001 120-250 105
phi6efr3 F zi=2.0 0.001 250-500 105
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Table 4.2 (vv} and the time-averaged vx and vv variances for the sedimentationruns.

Case <Vy > <(vy-<vy>)5> <(Vχ-cv1>)2>
φx =0.453 
FTSnl-6 -6.2694 0.00582 0.00582
FTSn6 -6.2567 0.00884 0.00287
FΓn2 -6.3708 0.03168 0.00847
FΓal -6.3742 0.02569 0.00893
FTa2 -6.3589 0.01533 0.00704
Fn2-3 -6.3555 0.01156 0.00336
ef3~4 -5.0931 0.01699 0.00210
ef3 -5.0846 0.00854 0.00196
ef4 -5.1015 0.02544 0.00224
nfrl -6.3849 0.01990 0.00781
n49a -8.9036 0.02358 0.00622
n49b -8.9084 0.02087 0.00655
nfr2 -6.3813 0.01785 0.00677
nfr3 -6.3804 0.01344 0.00543
nfr4 -6.3815 0.01426 0.00684
efrl -5.0020 0.00895 0.00246
efr2 -5.0062 0.01318 0.00274

φx=0.1
philefrl -3.2908 0.09987 0.01011
philefr2 -3.3023 0.11198 0.01157
.lnl-2 - - 0.02284

φx=0.25
phi25efrl -4.2552 0.04535 0.00894
phi25efr2 -4.2650 0.05193 0.00998
Φλ=0.6
phi6efrl -5.3614 0.00330 0.00062
phi6efr2 -5.3407 0.00251 0.00043
phi6efr3 -5.3486 0.00213 0.00062



-116-

Table 4∙ S (vx} and the time-averaged vxy variance for the sedimentation runs.

Case <vx> <(yy -<vy >)(vj -→≈vi >)>
φx =0.453 
FTSnl-6 -0.00277 0.00033
FTSn6 -0.02200 -0.00066
FTn2 0.00351 0.00023
FΓal 0.00392 0.00022
FTa2 -0.00268 -0.00004
Fn2-3 0.00542 O.OOO43
ef3-4 -0.00489 -0.00017
ef3 -0.01051 0.00008
ef4 0.00074 -0.00042
nfrl -O.OO388 -0.00082
n49a -O.OO188 -0.00047
n49b -0.00216 -0.00025
nfr2 -0.00886 -0.00014
nfr3 -0.01161 -0.00028
nfr4 -0.00496 0.00002
efrl -0.00405 -0.00048
efr2 0.00289 -0.00008

Φa=0.1
philefrl 0.00104 -0.00201
philefr2 0.00250 0.00075
.lnl-2 0.00822 -

Φλ=0,25
phi25efrl 0.00752 0.00024
phi25efr2 -0.00187 0.00091

φx=0.6
phi6efrl -0.00637 0.00007
phi6efr2 -0.00173 0.00004
phi6efr3 0.00217 0.00001
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Tablc 4 4 Radial pair-distribution results for the sedimentation runs

Case g(2.0) g(3-5) g(4.0)
Φλ =0.453

FTSn5 12.1 5.38 5.32
FTSn6 12.5 10.8 8.85
FTnl 16.2 1.08 2.74
FTn2 15.2 2.31 3.06
FTa2 15.8 2.44 4.03
Fnl 15.9 1.43 3.03

Fn2-3 13.3 3.36 4.19
ef3-4 15.4 3.55 5.19
ef3 15.4 2.28 4.34
ef4 15.3 4.83 6.04
nfrl 11.5 0.92 1.44
n49b 10.5 .89 1.38
nfr2 15.8 0.83 1.82
efr2 12.1 0.86 1.45

φx=0.1
philefr2 13.0 0.80 1.07

.ln2 26.4 3.70 3.98
Φa=0.25

phi25efr2 12.1 0.81 1.11
φx=0.6

phi6efr3 15.7 0.78 2.10
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Table ⅛.5 Steady-state values of DJ for the sedimentation runs

Case {Ds0)a (‰
Φλ =0.453 

FTSn5 0.355 0.345 -0.0032
FTSn6 0.315 0.299 0.0042
FTnl 0.546 0.544 -0.0004
FΓn2 0.478 0.467 -0.0034
FTal 0.544 0.540 0.0038
FTa2 0.421 0.402 -0.0018
Fnl 0.452 0.453 -0.0025

Fn2-3 0.364 0.364 0.0003
ef3-4 0.289 0.287 0.0019
ef3 0.300 0.294 0.0043
ef4 0.279 0.280 -0.0006
nfτl 0.690 0.695 -0.0045
n49a 0.672 0.682 -0.0012
n49b 0.687 0.693 -0.0031
nfr2 0.615 0.611 0.0076
efr2 0.601 0.603 0.0035

Φa=0.1
philefr2 0.896 0.894 0.0006
Φλ=0,25
phi25efr2 0.772 0.776 -0.0021

Φλ=0.6
phi6efr3 0.416 0.427 0.0006
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Tabîe 4.6 The average, minimum, and maximum values of the j/y-c'omponent of D* for the sedimentation runs.

Case average
(PL‰

minimum
level

maximum
level

φΛ =0.453
FTSn5 0.11 0.09 0.13
FTSn6 0.13 0.09 0.38
FTnl 0.46 0.45 0.50
FTn2 - 0.22 -
FTa2 0.34 0.20 0.40
Fnl 0.18 0.17 0.22

Fn2-3 0.20 0.10 0.30
ef3 0.27 0.27 0.28
nfrl 0.17 0.15 0.22
n49b 0.21 0.20 0.23
nfr2 0.21 - -
efr2 0.22 0.10 0.29

φx=0.1
.1∏2 - - -

philefr2 4.77 - -
Φλ=0,25

phi25efr2 1.05 1.0 1.6
Φa=0.6

phi6efr3 0.012 0.010 0.023



-120-
Tabîe 4.7 The average, minimum, and maximum values of the xz-comρonent of Dfn for the sedimentation runs.

Case average
(DL)xι

minimum
level

maximum
level

Φa =0.453
FTSn5 0.030 0.025 0.041
FTSn6 0.024 0.011 0.050
FΓnl 0.048 0.043 0.050
FTn2 0.030 0.028 0.065
FTa2 0.023 0.022 0.025
Fnl 0.029 0.029 0.042

Fn2-3 0.021 0.012 0.035
ef3 0.023 0.016 0.030
nfrl 0.065 0.062 0.068
n49b 0.068 0.065 0.071
nfr2 0.090 0.090 0.090
efr2 0.027 0.021 0.028

φx=0.1
.ln2 0.14 0.14 0.18

philefr2 0.11 0.11 0.11
Φλ=0,25

phi25efr2 0.10 0.10 0.17
Φa=0.6

phi6efr3 0.0075 0.0050 0.0080
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Table 4-8 The effect of interparticle forces on the velocity variances. All simula tions use the non-Ewald, F method.

Case τ <(vy-cvy>)2> <(v,-<v1>)2>
φx =0.453 

Fn2-3 oo 0.01156 0.00336
nfr2 105 0.01785 0.00677
nfrl 103 0.01990 0.00781
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Table. 4-9 The effect of periodic cell size on the properties of a sedimenting suspension. Increasing the number of spheres from 25 to 49 increases the periodic cell size by a factor of 1.96. Both simulations use the non-Ewald, F method, and τ is 103.

φΑ =0.453
Result

N=25 N-49

<Vv> -6.3849 -8.9084
<V,> -0.00388 -0.00216

<(yy-cvy>f> 0.01990 0.02087
<(vx-<v1>)2> 0.00781 0.00655

<(vy -<vy >)(V1 ~<Vχ >)> -0.00082 -0.00025
(PL)» 0.17 0.21
(PL)= 0.065 0.068

Dc 0.692 0.690
g (2) 11.5 10.5
g (4) 1.44 1.38
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Figure 4.l The time trace of (vil} for run efr2. This simulation uses the Ewald, Fmethod. The interparticle force variable τ is 105. The areal fraction is0.453, and there are 25 spheres in the periodic cell.
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Figure 4.8 The time trace of (υac) for run efr2. This simulation uses the Ewald, Fmethod. The interparticle force variable τ is 10δ. The areal fraction is0.453, and there are 25 spheres in the periodic cell.
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Figure 4. S The time trace of vy variance for run efr2. This simulation uses the Ewald, F method. The interparticle force variable τ is 10δ. The areal fraction is 0.453, and there are 25 spheres in the periodic cell.
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Figure 4-4 The time trace of vx variance for run efr2. This simulation uses theEwald, F method. The interparticle force variable τ is 105. The arealfraction is 0.453, and there are 25 spheres in the periodic cell.
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Figure 4.5 The time trace of υxy variance for run efr2. This simulation uses theEwald, F method. The interparticle force variable τ is 105. The arealfraction is 0.453, and there are 25 spheres in the periodic cell.
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Figure 4.6 The radial pair-distribution function for run efr2. This simulation uses the Ewald, F method. The interparticle force variable τ is 105. The areal fraction is 0.453, and there are 25 spheres in the periodic cell. Only configurations that occur after t = 150 are averaged into the distribution.
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Figure ⅛.7 The full pair-distribution function for the near-touching spheres in run efr2. This simulation uses the Ewald, F method. The interparticle force variable τ is 105. The areal fraction is 0.453, and there are 25 spheres in the periodic cell. Only configurations that occur after 
t = 150 are averaged into the distribution. The dashed curve results when the distribution is forced to be symmetric about θ = 90°.
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Fιgure 4.8 The time trace of D* run efr2. This simulation uses the Ewald, F method. The interparticle force variable τ is 105. The areal fraction is 0.453, and there are 25 spheres in the periodic cell. The upper two curves are the xx and yy components of D’. The lower curve is the 
xy component of D®.
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Figure 4.9 An idealized graph of one-half the mean-squared displacement of asphere divided by time vs. time. The plateau in the curve is thedefinition of P®.
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∆T1

• denotes "initial" configuration at each time

Figure 4.10 Schematic of the data enhancement technique used to calculate the long-time dispersion.
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Figure 4∙H (∙^∞bi,'t^efιn,*nS curves for run efr2. This simulation uses the Ewald,F method. The interparticle force variable τ is 105. The areal fractionis 0.453, and there are 25 spheres in the periodic cell. Data is takenfrom t = 100 — 500, and the averaging lengths are 150, 200 and 300time units.
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Figure 4.IS (27⅛o)ιx-defining curves for run efr2. This simulation uses the Ewald,F method. The interparticle force variable τ is 10δ. The areal fractionis 0.453, and there are 25 spheres in the periodic cell. Data is takenfrom t = 100 — 500, and the averaging lengths are 150, 200 and 300time units.
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Figure 4∙1° The vy velocity variance trace for a non-Ewald, F method run (Fn2-3). Note the small-scale fluctuations imposed on the the larger-scalefluctuations.
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Figure 4-14 The vy velocity variance trace for an Ewald, F method run (ef3-4).
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Fιgure 4.15a A “snapshot” of the sphere positions at t = 840 time units in the ef4 simulation. This is an Ewald, F method simulation. Note the presenceof hexagonal packing and the vertical nature of the large cluster. The U-C pair of spheres generate an important contribution to the high value of the vy velocity variance at this time (vv = 0.0945).
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Fιgure 4.15b A “snapshot” of the sphere positions at t = 950 time units in. the ef4 simulation. This is an Ewald, F method simulation. Note the increase of hexagonal packing and the horizontal nature of the large cluster. All the spheres in the periodic cell are in the cluster, and the vv variance is correspondingly small (vy = 0.00043).
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Figure 4-16 A “snapshot” of the sphere positions at t = 500 time units in the nfrl simulation. This is an Ewald, F method simulation, and τ is 103. Notice the absence of hexagonal packing and large clusters of spheres.
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Ftgure J.SO (P^o)sz υs. ≠χ. The Ewald-summed, F method cases (r = 10δ) are denoted by filled circles. The bar indicates the range of all previous simulations τ = oo except the FT, non-Ewald cases. They are denoted by the x’s. The non-Ewald, F method, = 0.1 case is denoted by a
+.
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CHAPTER 5: CONCLUDING REMARKS

The behavior of sedimenting, non-Brownian particles in concentrated suspensions is very complex. At this time, neither theory nor experiments have studied the dispersion in these systems. We have studied them using a numerical simulation called Stokesian dynamics. Before discussing the general conclusions of our research, we shall discuss and evaluate both the simulation technique (as applied to this case) and the analysis of the simulation data. This first section will include discussions of the periodic cell size dependence, the level of accuracy in approximating the hydrodynamic interactions, the effect of monolayer vs. fully three-dimensional simulations. Further, we shall discuss the implications of deriving the long-time, diffusion coefficients from simulation data.The second section contains the broad conclusions of this thesis. Leighton & Acrivos (1987) and Bossis & Brady (1988) have shown that the motion of non- Brownian, neutrally buoyant spheres in shear flow is diffusive. We will show that the motion of spheres in a sedimenting suspension is also diffusive. In both cases, the diffusive motion arises from the hydrodynamic interactions among the spheres. The introduction of repulsive interparticle forces alters the microstructure set up in a sedimenting suspension. We consider the effect of microstructure on the dispersion properties.A simple scaling or dimensional analysis indicates that the diffusion coefficient should be proportional to the product of the square of the velocity scale and the time scale of the diffusive (multi-body) interactions. In the case of sheared suspensions of neutrally buoyant spheres, the relative motion among the spheres is generated by the shear flow. The velocity scale is αzγ, where a is the sphere radius and 5 is the shear rate. The time scale of interactions is set by the inverse of the shear rate, and the probability of three-body interactions in proportional to the square of the concentration. Remember that two-sphere interactions do not lead to diffusive motion. The time scale is the time over which the important three- body interactions occur is <^2zγ-1. In the case of sedimentation, the buoyancy force



- 148 -does not cause relative motion among the spheres. Therefore, the relevant velocity scale is the square root of the velocity variance, not the sedimentation velocity. We shall see that the velocity variance is a function of concentration. The velocity scale in the shear case (70) is independent of concentration. The time scale of three-body interactions is obviously a function of the concentration, but it is not as easily seen as in the shear problem. The time scale of interactions is not set by the sedimentation time scale of a∕U8, where U8 is the Stokes velocity. We shall look more closely at the time scale of the interactions that give rise to dispersion in the second section of this chapter.Two other findings will be discussed in the second section. First, we consider the concentration dependence of the ratio of the long-time, self-diffusion coefficient in the direction of sedimentation to that in the direction perpendicular to it. Second, we consider the concentration dependence of the angular dependence of the full pair-distribution function for spheres whose centers are separated by less than 2.05 radii.In the final section, we shall briefly discuss recent studies pertaining to the dispersion on non-Brownian particles in dilute suspensions (volume fractions less than 12 %). Since our results are for more concentrated, monolayer suspensions, comparison is difficult. However, certain conclusions are drawn, and future lines of research are suggested.
5.1 Evaluation of Simulations and Data AnalysisA general evaluation of the accuracy of Stokesian dynamics has been presented in Chapter 2. This includes the newest addition to the simulation - the Ewald formulation that speeds the convergence of mobility interactions. Section 2 of Chapter 4 discusses the effect of increasing the accuracy of the method on the results of a sedimentation simulation. Higher accuracy methods do not significantly change the results of the simulation. In particular, the F and FTS simulation results are very similar. This is a result of the overwhelming effect of the non-zero force vector; the effects of the induced torques and stresslets are



- 149 -very small compared to the applied force. This is true even for diffusion-related properties. Section 3 of Chapter 4 compares the results of Ewald vs non-Ewald methods. There is no significant difference in the diffusion-related properties for the τ = oo simulations. However, for cases where repulsive interparticle forces are present, the non-Ewald simulations show a significant increase in (jD∞)xx. This phenomena disappears for the Ewald simulations. Section 5 of Chapter 4 shows that the results of the simulations are relatively independent of periodic cell size - the number of spheres is increased from 25 to 49. It is important to note that all these comparisons are done for = 0.453. Especially for cell size considerations, these conclusions may not be true for other concentration regimes.All the simulations in this thesis are of monolayer suspensions. Monolayer simulations provide a considerable savings in computer time. A three-dimensional simulation, preserving the edge length of the periodic cell, will increase the run time of the simulation by approximately a factor of 1000 (see Section 6 of Chapter 2). As in previous studies using monolayer simulations (cf. Brady & Bossis 1985 and Bossis & Brady 1987), it is our belief that the interactions that occur among spheres in a monolayer are of the same type that occur in three dimensions. The fundamentals of spheres interacting and moving around each other are preserved. Results from the previous studies yield good qualitative comparison with experimental studies; rough conversions from areal fractions to volume fractions show that the results are in good quantitative agreement also. We do not believe that the sedimenting system will alter this correlation, and that the qualitative behavior exhibited in the monolayer will be seen in three dimensions. The last section of this chapter addresses this point also.It is clear after reviewing the mean-squared displacement curves in Chapter 4 and in Appendix B that they sometimes do not mimic the idealized curve in Figure 4.9. This type of analysis has also been used to find the long-time, selfdiffusion coefficient for sheared systems (Bossis & Brady 1987). For suspensions of non-Brownian spheres, the mean-squared displacement curves showed a considerable overshoot before leveling off. However, only one smooth plateau results.



- 150 -In the analysis of some sedimentation simulations, we see that the curves may level off at different values at different times. Sedimenting systems are different from sheared systems. The rate of change of the microstructure is much slower in the sedimentation case - the tempo is set by the relative motion arising from the hydrodynamic interactions as opposed to the shear flow forcing the rearrangement of the particles. Coupled with the use of periodic boundary conditions, the environment of a diffusing particle in a sedimenting suspension can remain fairly constant over long periods of time. This explains the change of levels we see in some mean-squared displacement curves. Of course, increasing the number of particles in the periodic cell would increase the types of local environments present and would produce curves that better mimic the idealized curve. Also, by using the data enhancement technique described in Section 1 of Chapter 4, increasing the length of the simulations (keeping the time interval of the curve constant) would have the same effect. It is the slow dynamics of dispersion in sedimenting systems makes this analysis difficult and, in general, more time consuming.
5.2 Conclusions and DiscussionsCertainly the major conclusion of this thesis is that the dispersion of non- Brownian, sedimenting spheres in suspension is diffusive. We have considered the dependence of the diffusivity on the accuracy that the simulator approximates the hydrodynamic interactions, the periodic cell size, the range and strength of repulsive interparticle forces, and the concentration. Detailed discussions of these issues is found in Chapter 4.Of general interest is the insensitivity of method accuracy on the diffusion- related properties. Our crudest approximation of the mobility interactions is the F method - the spheres are not allowed to rotate, as the coupling between the applied force and the rotational velocity is not included at this level. The FT method allows the spheres to rotate (there is no applied torque), and we see a slight, but consistent, increase in the diffusivity in the direction of sedimentation. Obviously, the free rotation of the spheres facilitates their diffusion. The FTS method includes



- 151 -the effect of the induced stresslets on the motion of the spheres. Induced stresslets on a sphere are caused by the flow field resulting from the relative motion of other spheres. We see that the diffusivity resulting from FTS simulations is similar to that resulting from F simulations. The effect of the induced stresslets is to negate the slight rise in diffusivity caused by the free rotation of the spheres.An interesting result of this thesis is the relative small effect of large changes in the suspension microstructure on the long-time, self-diffusion coefficient. The diffusivity of spheres is the same whether there is a large degree of hexagonal packing (r = ∞) or if it is non-existent (r ≤ ∞). Indeed, the short-time, selfdiffusion coefficient ranged from 0.31 to 0.69, with relatively small deviation in long-time diffusivity. The one exception is (D∞)ιx for the non-Ewald simulations. We see an dramatic increase in this coefficient for the τ = 103 and 105 simulations. However, this increase is not seen when the Ewald method is applied in the τ = 105 simulation. The independence of the diffusivity on large scale changes in the microstructure is an important phenomena that is not completely understood at this time.As discussed in Section 6 of Chapter 4, (D^o)vy is a monotonically decreasing function of increasing concentration for the areal fractions studied. This is also true for the xx-component, although it levels off smaller areal fractions. This basic behavior is also seen in the velocity variances associated with these directions ( see Figures 4.17 and 4.19a and Figures 4.18 and 4.20 for the y and x directions, respectively). We shall probe this relation in greater depth. (Remember that the y-direction is the direction parallel to the gravity vector, and the x-direction is perpendicular to this direction). In the shear case, the diffusion coefficient increases as a function of the square of the concentration, and the square of the velocity scale is independent of concentration. The time scale of the interactions that can contribute to diffusive motion is set by the shear rate and the probability of three-body interactions. Although the probability of three-body interactions remains the same in the sedimentation case, the rate of the interactions is no longer imposed externally. The amount of time it takes for a particle to experience



- 152 -a variety of local environments is obviously a strong function of concentration.We can not determine the time scale of the hydrodynamic interactions a 
priori for a sedimenting system. Instead, we divide the diffusion coefficient by the velocity variance to give a value that should be proportional to the time scale of the diffusive motion. Tables 5.1 and 5.2 show the ratio of the diffusivity and the velocity variance {Φa — 0.453 simulations only) for the y- and x-direction, respectively. Tables 5.3 and 5.4 show the concentration dependence of this time scale for the y- and x-direction, respectively. There is a clear decrease in the time scale in the direction of sedimentation as concentration increases (be aware of the large standard of deviation, as seen in Table 5.1). The time scale in the perpendicular direction seems to be independent of concentration. A non-zero force on the particles alters the concentration effect on the time scale of diffusion- causing interactions in the direction of that force. The time scale over which diffusion-causing interactions occur in the direction of sedimentation increases as the concentration decreases. The time scale on particle interactions in general must be growing even faster than that (seen by removing the effect of multiplying this time scale by the probability of three-body interactions). It must be clearly stated that these results only pertain to concentrations within the range of the study.Consider again the concentration dependence of the velocity variance and the diffusivity. Table 5.5 shows the ratio of the y-component to the a>component of the velocity variance and the diffusion coefficient for the Φa — 0.453 simulations. Table 5.6 shows the concentration dependence of the ratio of the y-component to the τ-component of the velocity variance and the diffusion coefficient. We note a slight concentration dependence in the velocity variance ratio, but it can be considered small compared to the standard deviation shown in the Φa = 0.453 simulations. In contrast, the concentration dependence in the diffusion coefficient ratio is quite marked at the lowest and highest concentrations. The anisotropy of the diffusion coefficient increases strongly for decreasing concentration. Analysis of these two quantities and the discussion in the preceding paragraph indicate



- 153 -that it is the time scale of the diffusion-causing interactions that gives rise to this anisotropy.In this light, consider the angular dependence of the spheres whose centers are separated by less than 2.05 radii, the near-touching spheres. Figures 5.1, 5.2,5.3 and 5.4 show this angular dependence for Φa — 0.1, 0.25, 0.453, and 0.6, respectively. As seen in Figure 3.1, θ = 90° is the direction perpendicular to gravity vector. In Figure 5.1 we see that there is a greater preference for the neartouching spheres to align in the direction of gravity for Φa = 0.1. In the middle concentration range, there is no real directional preference for the near-touching spheres. There is a slight preference in the Φa — 0.453 case, but this is not seen in all the Φa = 0.453 simulations. In Figure 5.4 we see that there is a greater preference for the near-touching spheres to align perpendicular to the direction of gravity at Φa = 0.6. The direction preference is completely opposite for the highest and lowest concentrations.We know that for two spheres sedimenting in an infinite fluid, the sedimentation velocity is greater for spheres falling along there line of centers, as opposed to perpendicular to this line. This difference is even greater when the spheres are not allowed to rotate. Whether this effect is important to understanding the concentration dependence of these diffusion-related properties is not clear yet. It is not even clear whether it is a cause, or an effect, or both.
5.3 Comparisons, Future Research Areas

ks stated in the introduction of this chapter, we can not compare our results, either qualitatively or quantitatively, to experimental or theoretical results. This is because our simulations are generally of higher concentration, monolayer suspensions. The dilute-limit theory of Koch and Shaqfeh says that the diffusion coefficient in the direction of sedimentation is proportional to the inverse of the concentration (three-dimensional analysis). Results of experiments by Ham and Homsy (1987) indicate that this diffusion coefficient increases at small concentrations, levels off around φ = 0.05, and then begins to decrease as the concentration



- 154 -continues to increase. The largest volume fraction they consider is 12%. The value °f (^oo)yy at concentrations between 5% and 12% is between 3 and 7. Although comparisons of monolayer and three-dimensional results can be suspect, {Daoo}yy is 4.8 when the areal fraction is 10%.Many questions still surround the behavior of the diffusivity as the concentration goes to zero. Numerical simulations are one method of probing this regime. An extension of this work to lower concentrations is suggested, but additional care must be taken. In particular, periodic box size dependence must be considered anew and thought must be given to the increasing length of the simulation runs.
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Table 5.1 Comparison of (-D∞)yy, the vy variance, and the ratio of the two for the φji = 0.453 simulations. The average value of the ratio is 16.6, and 
the standard deviation is 7.5.

Case .. vy variance (DL,)yy ∕ vy variance
Φλ =0.453 

FTSn6 0.13 0.00884 14.7
FTa2 0.34 0.01533 22.2
Fn2-3 0.20 0.01156 17.3

ef3 0.27 0.00854 31.6
nfrl 0.17 0.01990 8.5
n49b 0.21 0.02087 10.1
nfr2 0.21 0.01785 11.8
efr2 0.22 0.01318 16.7
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Table 5.2 Comparison of {D∞}zx, the vz variance, and the ratio of the two for the Φa — 0.453 simulations. The average value of the ratio is 8.3, and the standard deviation is 3.3.

Case (Pt)χχ vx variance ∕ vx variance
Φa =0.453

FTSn6 0.024 0.00287 8.4
FTn2 0.030 0.00847 3.5
FTa2 0.023 0.00704 3.3
Fn2-3 0.021 0.00336 6.2

ef3 0.023 0.00196 11.7
nfrl 0.065 0.00781 8.3
n49b 0.068 0.00655 8.7
nfr2 0.090 0.00677 13.7
efr2 0.027 0.00274 9.9
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Table 5. S The concentration dependence of (De00}yy, the vy variance, and the ratio of the two. Note the decrease in the ratio as the concentration increases.

Case (Doo )yy vy variance (Ps∞)yy ∕ vy variance
φx=0.1

philefr2 4.77 0.11198 42.6
φx=0,25
phi25efr2 1.05 0.05193 20.2
φΛ =0.453 

efr2 0.22 0.01318 16.7
φx=0.6

phi6efr3 0.012 0.00213 5.63



-158-

Table 5.4 The concentration dependence of (D%o)xx, the vx variance, and the ratio of the two. Note that the ratio is relatively insensitive to the concentration.

Case (Ds-)zι vx variance (Z>L)xt ∕ vx variance
Φλ=0.1
philefr2 0.11 0.01157 9.5
Φλ=0,25

phi25efr2 0.10 0.00998 10.0
Φa =0.453 

efir2 0.027 0.00274 9.9
φλ=0.6

phi6efr3 0.0075 0.00062 12.4
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Tabîe 5.5 The ratio of velocity variances (ratio 1) and the ratio of the yy- and 
XX- components of the long-time, self-diffusion coefficient (ratio 2) for the Φa = 0.453 simulations. The average value of ratio 1 is 3.3, and the standard deviation is 0.9. The average value of ratio 2 is 7.0, and the standard deviation is 4.1.

Case (vy variance) ∕ (yx variance) (DL)w ∕ (DL)xx
Φλ =0.453

FTSn6 3.1 5.4
FTnl 9.6
FTa2 2.2 14.8
Fnl 6.2

Fn2-3 3.4 9.5
ef3 4.4 11.7
nfrl 2.5 2.6
n49b 3.2 3.1
nfr2 2.6 2.3
efr2 4.8 8.1
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Table 5.6 The concentration dependence of the ratio of the velocity variances andthe ratio of the yy- and xx-components of the long-time, self-diffusion coefficient. Note the stronger increasing degree of anisotropy in the components of the diffusion coefficient as the concentration decreases.

Case (vy variance) ∕ (vx variance) (DL)γy ∕(PL)xz
Φλ=0.1
philefr2 9.6 43.3
Φλ=0,25

phi25efr2 5.2 10.5
Φχ =0.453 

___efr2 4.8 8.1
Φa==0.6
phi6efr3 3.4 1.6
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Figure 5.1 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the philefr2 run (i = 500- 1000). Φjl = 0.1. The dashed curve represents this function when itis forced to be symmetric about 0 = 90°.
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Figure 5.2 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the phi25efr2 run (i = 500 - 1000). Φa = 0.25. The dashed curve represents this function when it is forced to be symmetric about θ = 90°.
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Figure 5. S The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the efr2 run (f = 100 -500). ≠χ = 0.453. The dashed curve represents this function when itis forced to be symmetric about 0 = 90°.
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Figure 5.4 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the phi6efr3 run (f =250 - 750). Φjl = 0.6. The dashed curve represents this function whenit is forced to be symmetric about θ = 90°.
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APPENDIX A: EWALD SUM OF THE MOBILITY INTERACTIONSWe record here the real (M^1)(r)) and reciprocal (M^2)(k)) space parts of the Ewald summed mobility interactions. Use has been made of Faxén formulae for the velocities of the particles to include the finite size of the particles. The translational velocity/force coupling was first derived by Beenakker (1986); the remaining can be worked out by straightforward, but tedious, calculus, ξ is an inverse length that regulates the speed of convergence of the two sums, e is a unit vector along the line connecting the particle centers, r is the interparticle separation distance, and k is a unit vector in the reciprocal lattice. All lengths have been nondimensionalized by the particle radius a, and a common normalization of 6πηαn has been used, where n = 1,2 or 3 depending on the mobility coupling.(a) Translational velocity/force, U — F, coupling:

W = <5v { (|| + ⅛)erfc(ω + ^(4ξ7r4 + 3ξ3r2 

- 2Oξ5r2 - ∣ξ + 14ξ3 + ξ∕r2)e-ξ2r2 }

+ e,βy{ Qr ~ ! A)erfc^ + ⅛(~4ξ7r4 ^ 3ξ3r2
+ 16ξ5r2 +∣ξ-2ξ3-3ξ∕r2)e^ξ2r2 J∙,

Λ⅛2∖k) = (δij - kikj)(l - k213)(1 + ∣fc2∕ξ2 + jfc4∕ξ4)6πfc~2x exp(-∣fc2∕ξ2), (A2)
4w,7i(>∙ = 0) = ξ⅛(θf-yis)∙ (^43)

(b) Translational velocity/torque, U — L, coupling:
M%∖r) = -∣Q⅛j{ -^erfc(ξr) +-^ξ(-∣2+10ξ2-4ξ4r2)e~*2r2 ekδil

+ ^erfc(ξr) + eΛfc}, (A4)
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Mij }(k) = 3π(et∙fcj⅛(∣ + lk∕^2 + jfc3∕^4)eχp(-^2∕i2). (Λ5)

M^∖τ = O)=O. (Λ6)
(c) Rotational velocity/torque, Ω — L, coupling:

Λ⅛,(r) = ¾J-∣i⅛erfc(ξr) - (f∕r≈ + 14ξ≈, - 20ξ5r2 + 4ξ7ri)'-<^ } (47)

- ∣e,eJ-∣j⅛erfc(ir) + i(-3f∕r2 - 2ξ3 + 16ξ5r2 - 4ξ7r4)e-^ ∣
Λ⅛>(k) = y (⅛ - kik,)(1 + ⅛∕ξ2 + i⅛4∕ξ4)exp(-⅛∕ξ2), (48)

M,<> = 0) = ⅛ (49)
(d) Translational velocity∕stresslet, U — S, coupling:

∣c(jr) g (∙^4 ^∣^ 2-5)(^A^iy -∣^ Zjδik} -H 2a⅛ (et∙<5y⅛) + 2xg(et'ej∙e⅛)+ (il + I2)(e*⅛∙ + ej⅛) + 2ι2(e,∙⅞∙fc) + 2ι3(eie,∙e*) J∙, (410)
Λ⅛¾(k) = -3τr(l - j⅛)[⅛ - kikj) + kj(i,k - kikt)∖X (1∕⅛ + jfc∕ξ2 + iA2∕ξ4)exp(-iA2∕ξ2), (411)

where Λf¾>(r = 0) = 0. (412)

xι = —6—erfc(ξr) + -=(-3ζ∕r3 - 2ξ3∕r - 68ξ5r + 56ξ7r3 - 8ξδrs)e 
T y7Γ

χ2 = 4 -∣i⅛erfc(ξr) + -^=(-3ξ∕r3 - 2ξ3∕r + 16ξ5r - 4ξ7r3)e~i2r2 ?
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xz = 4 15 1 erfc(ξr) + ~2=(15ξ∕r3 + 10ξ3∕r + 4ξ5r - 40ξ7r3 + 8ξ9r5)-9*∙5)e-ξ2r2x4 = --4∙erfc(ξr) + -^=ξ(-l∕r + 10ξ2r - 4ξ4r3)e ξ∙2r∖ 

r √τr
Xs = ^erfc(ξr) + 2√πξ(l∕r - 2ζ2r}e~^r2,

x& = --⅞erfc(ξr) + -^=ξ(-3∕r -2ξ2r + 4ξ4r3)c-ξ2r2. r √π
(Λ13)

(e) Rotational velocity∕stresslet, Ω — S, coupling:
m<,1⅛(γ) = ~⅛(i∕2 - yι)[kk(kιeiik)}, (414)

λ⅛2fc(k) = - γfc⅛e∕υ) + ⅛⅛∣rt)](l + Jfc2∕i2 + jfc4∕i4)xexp(-⅛∕ξ2), (415)
M$(r = 0)=0, (Λ16)

where !Zι = -^erfc(ξr) + -^=ξ(3∕r2 + 2ξ2 - 28ξ4r2 + 8ξ6r4)e~i2r2, ro √7Γ
Î/2 = -^erfc(ξr) + -^=ξ(3∕r2 - 2ξ2 - 4ξ4r2)e-i2,^2. (417)

(f) Rate of strain/stresslet, E — S, coupling:^⅛>) = -⅛r2M⅛i∖r) - ⅛≤∖r), (418)
= γ(1 - ⅛)⅛⅛<⅛ - kikj) + klkj(δik - kikk}

+ kikk{6ij - kιkj} + kikj(δlk - kιkk)](l + j⅛2∕ξ2 
+ ^fc41 f4)exp(-⅛ I f2), (419)

δ>ijδιk + δ{kδij ⅛δnδjk (Λ20)
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where

Λf∕iy⅛∖r) ~ 2(*⅛ ÷ 2l)(^⅛⅛' + + 423⅞k⅛

+ (z2 + 3z4)(5tyeιefc + δjieiek + διkeiej + δikejeι) (j^2l) 

+ 424(⅛eye⅛ + ijfce,∙ez) + 4sδe,∙ej,∙e⅛e∕,

Mt⅛∖r) = 2(P2z1 + 2z2 + 624 + 2‰3)(⅞⅛ + δkιδij)

+ 4(Σ‰3 + 4z4)δjkδu + 4(D2z4 + 225 + 4Dz4)(δuekej + ⅞λeiez)

4- [3(D224 + 2^5 + 4Dz4) + 4D%2 + D2z2 + 2zζ](δijzejeι 
+ δkιeiej + δjieiek + δijekeι) + 4(8P25 + Z>225)e,∙eye⅛e∕, (√422)and

z1 = -l∕r5eτic(ξr) + -∣=ξ(-l∕r4 + 10ξ2 - 4ζ4)e~^r2

z2 = 3∕r5erfc(ξr) + -⅛ξ(3∕r4 - 28ξ4 + 2ξ2 + 8ξ6r2)e^i2r2 
√π

z3 = l∕r5erfc(fr) + -^= f(1∕r4 - 2i2∕r2)e~i’·■’ 
v7r

z4 = — 3∕rδerfc(ξr) H—-=ξ(-3∕r4 — 2ξ2 + 4ξ4)e~^r2 
√7Γ

z5 = 15∕rδerfc(ξr) + -^=ξ(15∕r4 + 10ξ2∕r2 + 4ξ4 - Sζ6r2)e~^r2

Dz1 = 3∕rδerfc(ξr) + -^=ξ(3∕r4 - 8ξ4 + 2ξ2∕r2 - 20ξ4 + 8ξ6r2)e-^r2 
√7r

Dz2 - -15∕rδerfc(ξr) + -∕=ξ(-15∕r4 - 10ξ2∕r2 + 72ξ6r2 — 4ξ4 — 16ξsr4)e~^r2

Dz3 = -3∕rδerfc(ξr) + —^=ξ(-3∕r4 - 2ξ2∕r2 + 4ζ4)e~^r2

Dz4 = 15∕rδerfc(ξr) + -^ξ(lδ∕r4 + 10ξ2∕r2 + 4ξ4 - 8ξ6rz)e~^r2

Dz5 = — 105∕rδerfc(ξr) + -^=ξ(-105∕r4 - 70ξ7r2 - 28ξ4 - 8ξθr2 + 16ξ8r4)e~ξ2r2

P2zi = —6∕rδerfc(ξr) + -^ξ(-6∕r4 - 88ξ4 - 4ξ2∕r2 + 96ξ6r2 - 16ξ8r4)e→2r2 

D2z2 = 60∕rδerfc(ξr) + -^=ξ(60∕r4 + 40ξ2∕r2 + 224ξ6r2 + 16ξ4 - 224ξ8r4
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+32ξ10r6)e"ξ2r2

D2z3 = 6∕rδerfc(ξr) + -^=ξ(6∕r4 + 4ξ2∕r2 + 16ξ4 - 8ζ6r2)e~^r3 √π
D2zi = —60∕rδerfc(ξr) + -^=ξ(-60∕r4 - 40ξ2∕r2 - 16ξ4 - 32ξ6r2 + 16ξ8r4)e~er2

∑>2zδ = 630∕rδerfc(ξr) + -^=ξ(630∕r4 + 420ξ2∕r2 + 168ξ4 + 48ξ6r2 
√7Γ

+6498r4-32ξ10r6)e"i2r2
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APPENDIX B: SIMULATION RESULTS

This appendix contains the results of all the simulations discussed in Chapter 
4. The appendix is divided into fifteen sections. Each section contains the results of one particular type of simulation; e.g., Appendix Bl contains the results of a sedimenting monolayer whose mobility interactions are approximated using the non-Ewald, FTS method. At the beginning of each section will be a description of the simulations within that section. This description will include the type of method used to approximate the mobility interactions, the number of spheres in the periodic cell, the areal fraction, the total time span, the time step, the frequency at which the mobility matrix is inverted, the convergence factors (in cases where the Ewald method is used), and any comments pertaining to the simulation or its results. (Unless noted, every type of simulation began with the same initial configuration of 25 spheres. This initial configuration is the result of a monolayer, Monte-Carlo simulation. All simulation use a fourth-order, Adams-Bashforth integrator to advance the sphere positions.)After this description will appear a table listing important information for each simulation in that section. This includes the time units covered by each simulation, the computer the simulation was run on, how many CPU minutes were required, the average values of vy, vx, the vy variance, the υx variance, the vxy variance, the longtime, self-diffusion coefficient in both directions, the time-averaged components of the short-time, self-diffusion tensor, and the values of the radial, pair-distribution function at r = 2.0, 3.5, and 4.0 radii. The time averages are over the time span of the individual simulation runs. The simulations are run on either a Sun 3/260 with a floating point accelerator or the Cray XMP at the San Diego Supercomputer Center. The numbers after the Cray designations are the priority that the simulation was run at. Dividing the CPU time by the priority gives the actual CPU time required on the Cray.



-174- -In each section, after this introductory material, there will be figures expressing the results of the simulation. In general, each section will contain: 1) the time trace of vy; 2) the time trace of the vy variance; 3) the time trace of the vx variance; 4) the (Dlx)i.y -defining curves; 5) the (-D⅛o)zι-defining curves; 6) the time trace of the components of the short-time, self-diffusion tensor; 7) the radial, pair-distribution function; 8) the full, pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii; 8) any “snapshots” of the suspension microstructure taken from the simulation data.
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Appendix Bl: The FTSn simulation results

This suite of simulations uses a non-Ewald, FTS method to approximate the hydrodynamic interactions. Six separate simulation runs follow the evolution of a sedimenting system to a final time of 800 time units. There are 25 spheres within the periodic cell. The areal fraction is 0.453. There are no interparticle forces present. The time step is 0.001 time unit. The grand mobility matrix is inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D® is evaluated and reported at every time unit. The restart of run FTSn5 at t = 380 provides some idea of the effect that truncating the sphere position and velocity data at six decimal places (the computers normally carry sixteen decimal places). Attention is drawn to the time traces between t = 380 - 400.
FΓSnl FTSn2 FTSn3 FΓSn4 FTSn5 FTSn6

τ
Cray/Sun
CPU(min)

0-100
Sun
1054

100-200
Sun
1023

200-300
Sun
1024

300-400
Sun
1029

380-500
Cray 1.00

52.33

500-800
Sun
3136

vy

vy variance 
vx variance 
vxy variance

-6.33723
0.01474
0.01438
0.00797

-0.00261

-6.32760
-0.04167
0.02457
0.00976

-0.00181

-6.33077
-0.00318
0.03918
0.00766

-0.00041

-6.32677
0.01589
0.02357
0.00542
0.00100

-6.26940
-0.00277
0.00582
0.00251
0.00033

-6.2567 Ï
-0.02200
0.00884
0.00287

-0.00066
(Ps~)yy
(DL)zx 0.035

0.77
0.030

0.11
0.030

0.13
0.024

(Pt)y> 
(Dso)xx 
(Ds0)xy 
g (2) 

«(3.5)
«(4)

0.571
0.561
0.0006

0.418
0.417
0.0006

0.415
0.413

-0.0047

0.364
0.372

-0.0056

0.345
0.355

-0.0032
12.1
5.38
5.32

0.299
0.315
0.0042

12.5
10.8
8.85

Table B 1.1



-176-

t

Figure. Bl.l The time trace of vv for the simulations FTSnl through FTSn5. The double line from t=380 - 400 show the deviation that can occur when a restart of the simulation run is done.
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Figure B1.2 The time trace of vy for the simulation FTSn6.
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Figure. Bl. S The time trace of the vy variance for the simulations FTSnl through FTSn5. The double line from f=380 - 400 show the deviation that can occur when a restart of the simulation run is done. This deviation is much smaller than seen in the υy velocity trace.
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Figure Bl.4 The time trace of the vy variance for the simulation FTSn6. Note the long periods of near-zero variance.
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Figure Bl.5 The time trace of the vx variance for the simulations FTSnl through FTSn5. The double line from i=380 - 400 show the deviation that can occur when a restart of the simulation run is done. Again, the deviation is very small.
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Figure Bl.6 The time trace of the vx variance for the simulation FTSn6. Note the long periods of near-zero variance.
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t

Figure Bl.7 A (D∞) ^-defining graph using displacement data from FTSn3 (t=210 - 300). The graph interval is 50 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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Figure Bl.8 A (D∞)^-defining graph using displacement data from FTSn4 (t= 300 - 400). The graph interval is 90 time units, and the time between interval initial conditions is 0.01 time unit.
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Figure Bl. 9 A (Z>∞) ^-defining graph using displacement data from FTSn5 (f= 380 - 500). The graph interval is 99 time units, and the time between interval initial conditions is 0.01 time unit.
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((y-ÿ)2)

t

Figure B1.10 A (-D∞)yy-defining graph using displacement data from FTSn6 (t=500 - 800). The graph interval is 300 time units, which means that noaveraging over different initial conditions is done.
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Figure BI.11 A (P∞)11-defining graph using displacement data from FTSn3 {t=210 — 300). The graph interval is 50 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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Figure Bl.12 A (D∞)zx-defining graph using displacement data from FTSn4 {t-300 - 400). The graph interval is 90 time units, and the time betweeninterval initial conditions is 0.01 time unit.



-188-

Figure BI.IS A (D∞)ιx-defining graph using displacement data from FTSn5 (t= 380 - 500). The graph interval is 99 time units, and the time between interval initial conditions is 0.01 time unit.
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2ί

Figure. Bl.i4 A (Z>∞)xι-defining graph using displacement data from FTSn6 {t= 500 - 800). The graph interval is 300 time units, which means that no averaging over different initial conditions is done.
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Figure Bl.15 The time trace of D® for the simulations FTSnl through FTSn5. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero t∕-axis is the 
xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero. The double lines from i=380 - 400 show the deviation that can occur when a restart of the simulation run is done.
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Figure Bl.16 The time trace of D® for the simulation FTSn6. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero y-axis is the xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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r

Figure B1.17 The radial pair-distribution function, g[r), for the FTSn4 run (t = 300 -400).
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r
Figure B1.18 The radial pair-distribution function, g(r}, for the FTSn5 run (i = 380 - 500).
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Figure Bl.19 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the FTSn4 run (t = 300 - 400). The dashed curve represents this function when it is forced to be symmetric about 0 = 90°.
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Figure Bl.20 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 100.05 time units (FTSn2).
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Figure Bl.21 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 154.40 time units (FTSn2).
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periodic cell.(FTSn3).Ft'gure Bl. 22 A “snapshot” of sphere positions. The square is theThese are the sphere positions at t = 200.05 time units
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F∖gure Bl.SS A “snapshot” of sphere positions.These are the sphere positions at t =

The square is the periodic cell.219.50 time units (FTSn3).
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The square is the periodic cell.300.05 time units (FTSn4).Figure Bl.24 A “snapshot” of sphere positions.These are the sphere positions at t
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Figure Bl.25 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at i = 380.05 time units (FTSn5).
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Figure Bi.26 A “snapshot” of sphere positions. The square is the periodic cellThese are the sphere positions at t = 400.00 time units (FTSn5}.
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Figure Bl.87 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 425.00 time units (FTSn5).
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Λ⅛r≈ B1.SS A “snapshot” of sphereThese are the h p°sitions' The square is the periodic ceil,are the sphere positions at t = 450.00 t⅛e units (FTSn5).
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Figure Bl.29 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 475.00 time units (FTSn6).
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Appendix B2: The FTn simulation results

This suite of simulations uses a non-Ewald, FT method to approximate the hydrodynamic interactions. Two separate simulation runs follow the evolution of a sedimenting system to a final time of 1000 time units. The initial configuration is the same as in the FTSn simulations described in Appendix Bl. There are 25 spheres within the periodic cell. The areal fraction is 0.453. There are no interparticle forces present. The time step is 0.001 time unit. The mobility matrix is inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D® is evaluated and reported at every time unit.

FTnl FTn2
τ 0-500 500-1000

Cray/Sun Sun Sun
CPU(min) 4186 4185

vy -6.37155 -6.37076
vx 0.00582 -0.00351

vy variance 0.02616 0.03168
vx variance 0.00809 0.00847
vxy variance -0.00036 0.00023

(DL)yy
(∙c,t)xx

0.46
0.048 0.030

(PZ)yy 0.544 0.467
M)ιa 0.546 0.478
W)v -0.0004 -0.0034
S(2) 16.2 15.2

S(3.5) 1.08 2.31
S(4) 2.74 3.06

Table B2.1
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t

Figure, B2.1 The time trace of vy for the simulations FTnl and FTn2.
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Figure B2.2 The time trace of the vy variance for the simulations FTnl and FTn2.
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Figure. B2.S The time trace of the vx variance for the simulations FTnl and FTn2.
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t

Figure B2∙4 A (D∞) yy-defining graph using displacement data from FTnl (i= 150- 400). The graph interval is 100 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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Figure B2.5 A (D∞)yy-defining graph using displacement data from FTnl (i= 150- 400). The graph interval is 150 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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((y-y)2)
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t

Figure B2.6 A (Z}∞)o-defining graph using displacement data from FTnl (t= 0- 500). The graph interval is 500 time units, which means that noaveraging over different initial conditions is done.
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Figure B2.7 A (∑>^o)yy-defining graph using displacement data from FTnl (f= 150- 500). The graph interval is 150 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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((y-y)2)
2t

Figure B2.8 A (Z>^o) ^-defining graph using displacement data from FTn2 (i= 500 - 1000). The graph interval is 400 time units, and the time between interval initial conditions is 0.01 time unit. Note that the graph indicates deterministic behavior for much of the this run.
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((y-ÿ)2}

Figure B2.9 A (D∞) ^-defining graph using displacement data from FTn2 {t= 500 - 900). The graph interval is 400 time units, which means that no averaging over different initial conditions is done.
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Figure B2.10 A (D∞)11-definmg graph using displacement data from FTnl (t= 150 - 400). The graph interval is 100 time units, and the time between interval initial conditions is 0.01 time unit.
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Figure, BS.11 A (P^o)ιx-defining graph using displacement data from FTnl (i= 150 - 400). The graph interval is 150 time units, and the time between interval initial conditions is 0.01 time unit.
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Figure B2.12 A (D∞)xι-defining graph using displacement data from FTnl (t= 200- 500). The graph interval is 300 time units, which means that noaveraging over different initial conditions is done.
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((z-z)2)2f

Figure B2.1S A (D∞)11-defining graph using displacement data from FTnl (f= 150- 500). The graph interval is 150 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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((s~s)2)2t

Figure BS.i4 A (Z>∞)xx-defining graph using displacement data from FTn2 (i= 500- 1000). The graph interval is 400 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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2t

Figure B2.15 A (P^o)ιx-defining graph using displacement data from FTn2 (f= 500 - 900). The graph interval is 400 time units, which means that no averaging over different initial conditions is done.
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O (to

Figure B2.16 The time trace of D* for the simulations FTnl and FTn2. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero y-axis is the xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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r
Figure. BS.17 The radial pair-distribution function, g(r), for the FTnl run (i = 150 - 500).
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Figure B2.18 The radial pair-distribution function, g{r), for the FTn2 run (f = 500 - 1000).
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Figure B2Λ9 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the FTnl run (f = 150 - 500). The dashed curve represents this function when it is forced to be symmetric about θ = 90°.



-225-

Figure BS. SO The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the FTn2 run (i = 500 - 1000). The dashed curve represents this function when it is forced to be symmetric about θ = 90°.
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Figure BS.êl A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 0.05 time units (FTnl). Note that this is the initial configuration for all simulations except for the n49 and FTa runs. It is generated from a Monte-Carlo simulation.



-227"

Figure B S. 22 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 100.00 time units (FTnl).
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Figure BS. SS A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 150.00 time units (FTnl).
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Figure B 2.24 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 200.00 time units (FTnl).
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Figure B2.S5 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t — 250.00 time units (FTnl).
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Figure B2.26 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 300.00 time units (FTnl).
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Ftgure, B2.27 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 350.00 time units (FTnl).
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Fιgure BS.S8 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 400.00 time units (FTnl).



-234-

Figure B2.S9 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 450.00 time units (FTnl).
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Figure B2.S0 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at f = 500.00 time units (FTnl).
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Figure. BS.SI A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 5(X).05 time units (FTn2).
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Figure BS. 32 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 600.00 time units (FTn2).
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Figure BS. SS A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 700.00 time units (FTn2).
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Figure B2.S4 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 800.∞ time units (FT∏2).
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Figure B2.S5 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 900.00 time units (FTn2).
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Figure B2.86 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 1000.00 time units (FTn2).
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Appendix B3: The FTa simulation results

This suite of simulations uses a non-Ewald, FT method to approximate the hydrodynamic interactions. All simulation conditions are the same as in the FTn simulation described in Appendix B2, except that this suite begins with a different initial configuration of spheres. This configuration is also the result of a Monte-Carlo simulation. Two separate simulation runs follow the evolution of a sedimenting system to a final time of 1000 time units. There are 25 spheres within the periodic cell. The areal fraction is 0.453. There are no interparticle forces present. The time step is 0.001 time unit. The mobility matrix is inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D* is evaluated and reported at every time unit.
FTal FTa2

τ
Cray/Sun
CPU(min)

0-500
Sun

500-1000
Sun

vy

vy variance 
vx variance 
vxy variance

-6.37422
0.00393
0.02569
0.00893
0.00022

-6.35890
-0.00268
0.01533
0.00704

-0.00004
(DL)yy
(DL)ιx

0.34
0.023

(‰
(‰
W⅛
5(2)

5(3.5)
5(4)

0.540
0.544
O.OO38

0.402
0.421

-0.0019
15.8
2.44
4.03

Table B3.1
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Figure BS.1 The time trace of vy for the simulations FTal and FTa2.
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Figure BS.2 The time trace of the vv variance for the simulations FTal and FTa2.
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Figure BS.S The time trace of the vx variance for the simulations FTal and FTa2.
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Figure BS.4 A (-D∞)yy-defining graph using displacement data from FTa2 (i=500- 1000). The graph interval is 500 time units, which means that noaveraging over different initial conditions is dône.
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Figure BS. 5 A (D∞)i,y-defimng graph using displacement data from FTa2 {t- 500 - 1000). The graph interval is 200 time units, and the time between interval initial conditions is 0.01 time unit.
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Figure BS. 6 A (P^o)yy-defining graph using displacement data from FTa2 (t= 700- 1000). The graph interval is 200 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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Figure BS. 7 A (L>^o)xx-defining graph using displacement data from FTa2 (i= 500- 1000). The graph interval is 500 time units, which means that noaveraging over different initial conditions is done.
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Figure BS. 8 A (P^o)xx-defining graph using displacement data from FTa2 (i= 500- 1000). The graph interval is 200 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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Figure BS. 9 A (P∞)xx-defining graph using displacement data from FTa2 (i= 700- 1000). The graph interval is 200 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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00 Ο

Figure BS.10 The time trace of DJ for the simulations FTal and FTa2. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero y-axis is the xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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Figure BS.11 There is no Figure BS.11.
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Figure BS.12 The radial pair-distribution function, ÿ(r), for the FTa2 run (i = 500 - 1000).
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Figure BS.IS The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the FTa2 run (i = 500 - 1000). The dashed curve represents this function when it is forced to be symmetric about θ = 90°.
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Appendix B4: The Fn simulation results

This suite of simulations uses a non-Ewald, F method to approximate Three separate simulation runs follow the evolution of a sedimenting system to a final time of 1000 time units. The initial configuration is the same as in the FTSn simulations described in Appendix Bl. There are 25 spheres within the periodic cell. The areal fraction is 0.453. There are no interparticle forces present. The time step is 0.001 time unit. The mobility matrix is inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D® is evaluated and reported at every time unit. The * in the table denotes that the simulation data in the Fn2-3 runs are a compilation of data from the Fn2 and Fn3 simulations. The reason behind this is that the data after 700 time units for the Fn2 simulation was destroyed by the computer as it was copying the data from one disk to another. For that reason, we can report the time-averaged statistics for the full Fn2 run, but cannot report the time traces of the velocity-related properties, the diffusion coefficients, or the distribution function. Instead, we began run Fn3 at t = 700 time units and concatenated the data from this run with the preserved data from the Fn2 run.
Fnl Fn2 Fn3 Fn2-3 (*)

τ
Cray/Sun
CPU(min)

0-500
Sun
1503

500-1000
Sun
1515

700-1000
Sun

500-1000 (*) 
Sun

vy
vx

vy variance 
vx variance 
vxy variance

-6.36365
-0.00883
0.01477
0.00483

-0.00037

-6.35657
-0.00719
0.00678
0.00319

-6.35547
0.00542
0.01156
O.OO336
0.00043

(D∞)yy
(Ds~)ιx

0.18
0.029

0.20
0.021

W)„
(Ds0)xx
W)zs
8(2)

£(3.5)
8(4)

0.453
0.452

-0.0025
15.9

1.43
3.03

0.355
0.356
0.0034

0.364
0.364
0.0003

13.3
3.36
4.19

Table B4.1
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Figure B⅛.l The time trace of vv for the simulation Fnl.
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Figure B4∙S The time trace of vy for the simulation Fn2-3.
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Figure. B4.8 The time trace of the vv variance for the simulation Fnl.
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long periods of near-zero variance.Figure B4∙4 The time trace of the vy variance for the simulation Fn2-3. Note the



-261-

t

Figure B4∙5 The time trace of the vs, variance for the simulation Fnl∙
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Figure B4.6 The time trace of the vx variance for the simulation Fn2-3.
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Fιgure B4.7 A (D∞)yy-definmg graph using displacement data from Fnl (t= 300 - 500). The graph interval is 150 time units, and the time between interval initial conditions is 0.01 time unit.
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Figure B4.8 A (D⅛o) ^-defining graph using displacement data from Fn2-3 (t— 500- 1000). The graph interval is 500 time units, which means that noaveraging over different initial conditions is done.
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Figure B4-9 A (jD^o)zs-defining graph using displacement data from Fnl {t= 300 - 500). The graph interval is 150 time units, and the time between interval initial conditions is 0.01 time unit.
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Figure B4.IO A (P∞)21-defining graph using displacement data from Fn2-3 (i= 500- 1000). The graph interval is 500 time units, which means that noaveraging over different initial conditions is done.
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βο Ο
Figure B4∙ll The time trace of D* for the simulation Fnl. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occursbecause of the finite number of spheres used in our simulation. The trace that fluctuates about the zero y-axis is the xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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5∞ t 1000
Figure B4.IS The time trace of Dθ for the simulation Fn2-3. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero y-axis is the xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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Figure B4.I8 The radial pair-distribution function, gι(r), for the Fnl run (f — 100 - 400).
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Figure B4.i4 The radial pair-distribution function, g(r), for the Fn2 3 run (i 500 - 1000).
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Figure B4∙15 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the Fnl run {t = 100- 500). The dashed curve represents this function when it is forced tobe symmetric about θ = 90°.
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Figure B4.I6 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the Fnl run (t = 250- 500). The dashed curve represents this function when it is forced tobe symmetric about θ = 90°.



-273-

20.00 ~π

14.00
g(W) 12.00

18.00 _
16.00 _

10.00 _
8.00
6.00 _
4.00
2.00 _
0.00 _0 T

θ 180
Figure B⅛.17 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the Fn2-3 run (t = 500- 1000). The dashed curve represents this function when it is forcedto be symmetric about θ = 90°.
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Figure B⅛.18 There is no Figure B4.I8.
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Figure B4∙19 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 100.05 time units (Fnl).
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Figure BJ.2O A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 200.00 time units (Fnl).
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Figure B4.Sl A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 250.00 time units (Fnl).
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Figure B4∙2S A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 300.00 time units (Fnl).
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Figure BJ.SS A “snapshot” of sphere positions. The square is the periodicThese are the sphere positions at t = 350.00 time units (Fnl).
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Figure B4-&4 A “snapshot” of sphere positions. The square is the periodic cell. These are the sphere positions at t — 400.00 time units (Fnl).
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Figure B4-S5 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 450.00 time units (Fnl).
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Figure. B⅛.27 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 700.05 time units (Fn3).
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Figure B⅛.28 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 750.00 time units (Fn3).
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Figure B4∙S9 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 800.00 time units (Fn3).
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Figure B4.SO A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 822.15 time units (Fn3).
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Figure. B4∙SS A “snapshot” of sphere positions. The square is the periodic cellThese are the sphere positions at t = 900.00 time units (Fn3).
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Figure B⅛.SS A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 928.00 time units (Fn3).
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Appendix B5: The ef simulation results

This suite of simulations uses an Ewald, F method to approximate the hydro- dynamic interactions. The separation factor, zι, is 2. 126 image cells are used to insure the convergence of the mobility interactions. Four separate simulation runs follow the evolution of a sedimenting system to a final time of 1000 time units. The initial configuration is the same as in the FTSn simulations described in Appendix 
Bl.' There are 25 spheres within the periodic cell. The areal fraction is 0.453. There are no interparticle forces present. The time step is 0.001 time unit. The mobility matrix is inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D® is evaluated and reported at every time unit.

efl ef2 ef3 ef4
τ 0-250 250-500 500-750 750-1000

Cray/Sun Cray 0.80 Cray 0.70 Cray 0.70 Sun
CPU(min) 108 72 1723

v> -5.01027 -5.06561 -5.08465 -5.10151
Vχ 0.00057 0.00016 -0.01051 0.00074

vy variance 0.01008 0.01137 0.00854 0.02544
vx variance 0.00266 0.00256 0.00196 0.00224
vjςy variance 0.00019 -0.00039 0.00008 -0.00042

(PL)yy 0.08 0.12 0.27
0.032 0.023 0.011

W)yy 0.549 0.353 0.294 0.280
(Dso)xx 0.555 0.356 0.300 0.279
(Ps0)xy -0.0052 -0.0067 0.0043 -0.0006
g (2) 15.7 15.4 15.3

S(3∙5) 1.61 2.28 4.83
S(4) 3.18 4.34 6.04

Table B5.1
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Figure B5.1 The time trace of vy for the simulations efl through ef4.
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Figure B5.S The time trace of the vv variance for the simulations efl through efr4.
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Figure. B5. S The time trace of the υz variance for the simulations efl through ef4.
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Fιgure B5.J A (D∞) yy-definmg graph using displacement data from efl (i= 50 -250). The graph interval is 100, 150 and 200 time units. The timebetween interval initial conditions is 0.01 time unit, except for the200 time units curve where no averaging over initial conditions is performed.
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Figure, B5.5 A (-D∞)o-defining graph using displacement data from ef2 (£= 250 -500). The graph interval is 100, 150 and 250 time units. The timebetween interval initial conditions is 0.01 time unit, except for the250 time units curve where no averaging over initial conditions is performed.
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Figure B5.6 A (Z>∞ ^-defining graph using displacement data from ef3 (i= 500 - 750). The graph interval is 100, 150 and 200 time units. The time between interval initial conditions is 0.01 time unit.
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Figure B5. Ί A (T>⅛o) xι-defining graph using displacement data from efl (i= 50 -250). The graph interval is 100, 150 and 200 time units. The timebetween interval initial conditions is 0.01 time unit, except for the200 time units curve where no averaging over initial conditions is performed.
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Figure B5.8 A (D∞)xι-defining graph using displacement data from ef3 (i= 500 - 750). The graph interval is 100, 150 and 200 time units. The time between interval initial conditions is 0.01 time unit.
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Figure B5.9 A (P^o)sx-defining graph using displacement data from ef4 (i= 750 - 1000). The graph interval is 100 and 250 time units. The time between interval initial conditions is 0.01 time unit, except for the 250 time units curve where no averaging over initial conditions is performed.
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Figure B5.ÎO The time trace of D‡ for the simulations efl through ef3. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero y-axis is the xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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Figure B5.11 The radial pair-distribution function, g(r), for the ef2 run (i 250 500).
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r
Figure B5.1S The radial pair-distribution function, g(rf, for the ef3 run (f = 500 - 750).
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Figure B5.1S The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the ef2 run (i = 250 - 500). The dashed curve represents this function when it is forced to be symmetric about θ — 90°.
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Figure B5.1⅛ The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the ef3 run (i = 500 - 750). The dashed curve represents this function when it is forced to be symmetric about θ = 90°.
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Figure B5.15 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 750.05 time units (ef4).
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Figure B5.16 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 800.00 time units (ef4).
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?igure B5.17 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 820.00 time units (ef4).
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Figure, B5.18 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 840.00 time units (ef4).
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Figure B5.19 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 860.00 time units (ef4).
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The square is the periodic cell. 880.00 time units (ef4).Figure B5.20 A “snapshot” of sphere positions. These are the sphere positions at t =
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Fig „re B5.Si A “snapshot” of sphere positions. The square is the periodic ceil.These are the sphere positions at i = 900.00 time units (ef4).



-312-

The square is the periodic 950.00 time units (ef4).Figure B 5. S 2 A “snapshot” of sphere positions. These are the sphere positions at t =
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Figure B5.iS A “snapshot” of sphere positions. The square is the periodicThese are the sphere positions at t = 1000.∞ time units (ef4).
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Appendix B6: The nfrl simulation results

This simulation uses a non-Ewald, F method to approximate the hydrodynamic interactions. The final time is 500 time units. The initial configuration is the same as in the FTSn simulations described in Appendix Bl. There are 25 spheres within the periodic cell. The areal fraction is 0.453. There are interparticle forces present (r = 103). The time step is 0.001 time unit. The mobility matrix is inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D® is evaluated and reported at every time unit.
nfrl

τ 0-500
Cray/Sun Cray 0.70
CPU(min) 69

vy -6.38492
vx -0.00388

vy variance 0.01990
vx variance 0.00781
vxy variance -0.00082

(DL)yy 0.17
<Ps-)xx 0.065
V⅛)yy 0.694
(Po)a 0.690
(^)xy -0.0045
g (2) 11.5

g(3.5) 0.92
g (4) 1.44

Table B6.1
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Figure B6.1 The time trace of vv for the simulation nfrl.
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Figure B6.2 The time trace of the vv variance for the simulation nfrl.
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Figure B6.S The time trace of the vx variance for the simulation nfrl.



-318-

((y -^)2>
2t

Figure B6.4 A (P^o)yi,-defining graph using displacement data from nfrl (t= 150- 500). The graph interval is 300 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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Figure B6.5 A (,D∞) ^-defining graph using displacement data from nfrl (i= 150- 500). The graph interval is 150 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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Figure B6.6 A (P^o)zι-defining graph using displacement data from nfrl (t= 150 ∖- 500). The graph interval is 300 time units, and the time between interval initial conditions is 0.01 time unit.
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Figure B6.7 A (-D∞)11-defining graph using displacement data from nfrl (Z= 150- 500). The graph interval is 150 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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Figure B6.8 The time trace of D‡ for the simulation, nfrl. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero j∕-axis is the xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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r
Figure. B6.9 The radial pair-distribution function, g(r), for the nfrl run (i = 150 - 500). Note the absence of the ^(3.5) peak present in all the preceeding simulation results. This indicates an absence of hexagonal packing.
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Figure B6.10 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the nfrl run (f = 150 - 500). The dashed curve represents this function when it is forced to be symmetric about θ = 90°.
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Figure B6.11 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 100.00 time units (nfrl). Notice the absence of hexagonal packing in this and subsequent “snapshots”.
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Figure B6.18 A “snapshot” of sphere positions. The square is the periodic cellThese are the sphere positions at t = 200.00 time units (nfrl).



-327-

Figure 6.IS A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 300.00 time units (nfrl).
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Figure B6.i4 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t == 400.00 time units (nfrl).
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Figure B6.15 A “snapshot” of sphere positions. The square is the periodic cell. These are the sphere positions at t = 450.00 time units (nfrl).
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Figure, B6.16 A “snapshot” of sphere positions. The square is the periodic cell.These are the sphere positions at t = 500.00 time units (nfrl).
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Appendix B7: The n49 simulation results

This suite of simulations uses a non-Ewald, FT method to approximate the hydrodynamic interactions. All simulation conditions are the same as in the nfrl simulation described in Appendix B6, except that the number of spheres in the periodic cell is 49. This initial configuration is the result of a Monte-Carlo simulation. Two separate simulation runs follow the evolution of a sedimenting system to a final time of 1000 time units. The areal fraction is 0.453. There are interparticle forces present (τ = 103). The time step is 0.001 time unit. The mobility matrix is inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D® is evaluated and reported at every time unit.
49a 49b

τ 0-500 500-1000
Cray/Sun Sun Sun
CPU(min) 9215 9218

vy -8.90357 -8.90844
vx -0.00188 -0.00216

vy variance 0.02358 0.02087
vx variance 0.00622 0.00655
vxy variance -0.00047 -0.00025

(DL)yy 0.21
(2>i)β 0.068
(D⅛')yy 0.682 0.693
{Ds0)xx 0.672 0.687
(Ps0)xy -0.0012 -0.0030
g® 10.5
g (3.5) 0.89
g (4) 1.38

Table B7.1
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Figure B7.1 The time trace of vy for the simulations n49a and n49b.
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Figure. B7.S The time trace of the vv variance for the simulations n49a and n49b.
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Figure B 7. S The time trace of the vx variance for the simulations m49a and n49b.
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Figure B7.J A (-D∞)yv-defining graph using displacement data from n49b (t= 500- 1000). The graph interval is 500 time units, which means that noaveraging over different initial conditions is done.
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Figure B7.5 A (-D∞)yi,-defining graph using displacement data from n49b (ί= 500- 1000). The graph interval is 200 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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Figure B7.6 A (D∞)zx-defining graph using displacement data from n49b (i= 500 - 1000). The graph interval is 500 time units, which means that no averaging over different initial conditions is done.
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Figure B7.7 A (-D∞)ιx-defining graph using displacement data from n49b {t= 500- 1000). The graph interval is 200 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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Figure B7.8 The time trace of D£ for the siπudakiθns n49a and n49b. The upper two lines are the xx and y y components of this tensor. Of course, they should be equivalent for an infinite suspension — the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero j∕-axis is the xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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Ftgure B7.9 The radial pair-distribution function, g(r}, for the n49b run (i = 500 - 1000).
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Figure B7.10 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the n49b run (i = 500 - 1000). The dashed curve represents this function when it is forced to be symmetric about θ = 90°.
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This simulation uses a non-Ewald, F method to approximate the hydrodynamic interactions. The simulation conditions are identical to the nfrl simulation described in Appendix B6, except that the interparticle variable, τ, is 105, instead of 103. The final time is 500 time units. The initial configuration is the same as in the FTSn simulations described in Appendix Bl. There are 25 spheres within the periodic cell. The areal fraction is 0.453. There are interparticle forces present (r = 105). The time step is 0.001 time unit. The mobility matrix is inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. ^D80 is evaluated and reported at every time unit.

nfr2
τ 0-500

Cray/Sun
CPU(min)

Cray 0.50

vy -6.38132
0.00886

vy variance 0.01785
vx variance 0.00677
vxy variance -0.00014

(PL)yy 0.21
(Dl)xz 0.090
(D⅛y> 0.611
<P°0)xx 0.615
(Pι)xy 0.0076
g (2) 15.8

g(3∙5) 0.83
g (4) 1.45

Table B8.1
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Figure B8.1 The time trace of vy for the simulation nfr2.
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Figure B8.S The time trace of the vv variance for the simulation nfr2.
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Ftgure B8.S The time trace of the vx variance for the simulation nfr2.
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Figure B8.4 A (D∞) ^-defining graph using displacement data from nfr2 (f= 200 - 500). The graph interval is 150 time units, and the time between interval initial conditions is 0.01 time unit.



-347-

<(*-*)2>
2t

Figure B8.5 A (P^o)xx-defining graph using displacement data from nfr2 (i= 200 - 500). The graph interval is 150 time units, and the time between interval initial conditions is 0.01 time unit.
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Figure B8.6 The time trace of D® for the simulation nfr2. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero y-axis is the xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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r
Figure. B8.7 The radial pair-distribution function, ^(r), for the nfr2 run (i = 200 - 500).
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Figure B8.S The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the nfr2 run (t = 200 - 500). The dashed curve represents this function when it is forced to be symmetric about 0 = 90°.
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Appendix B9: The nfr3 simulation results

This simulation uses a non-Ewald, F method to approximate the hydrodynamic interactions. The simulation conditions are identical to the nfr2 simulation described in Appendix B8, except that the time step is 0.005, instead of 0.001. The simulation terminated at 270.685 time units because the mobility matrix lost positive definiteness. The initial configuration is the same as in the FTSn simulations described in Appendix Bl. There are 25 spheres within the periodic cell. The areal fraction is 0.453. There are interparticle forces present (r = 105). The time step is 0.005 time unit. The mobility matrix is still inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D® is evaluated and reported at every time unit.
nfr3

τ
Cray/Sun 
CPU (min)

0-270.685 
Cray 0.70

8

v>
Vχ

vy variance 
vx variance 
vxy variance

-6.38039
-0.01161
0.01344
0.00543

-0.00028
(PL)yy
P~)xc
(P‰ 
(DsΛa 
(Ds0)xy 
g (2)

S(3∙5)
<?(4)

Table B9.1
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Figure B9.1 The time trace of υv for the simulation nfr3.
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Figure B9.S The time trace of the vy variance for the simulation nfr3.
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Figure B9.8 The time trace of the υx variance for the simulation nfr3.
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Fιgure B9.4 The time trace of D£ for the simulation nfr3. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero y-axis is the xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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Appendix BIO: The nfr4 simulation results

This simulation uses a non-Ewald, F method to approximate the hydrodynamic interactions. The simulation conditions are identical to the nfr2 simulation described in Appendix B8, except that the time step is 0.0025, instead of 0.001. The simulation terminated at 202 time units because of excessive sphere overlap. Excessive sphere overlap is defined as less than 1.99 radii separating any two sphere centers. The initial configuration is the same as in the FTSn simulations described in Appendix BI. There are 25 spheres within the periodic cell. The areal fraction is 0.453. There are interparticle forces present (r = 105). The time step is 0.0025 time unit. The mobility matrix is still inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D® is evaluated and reported at every time unit.
nfr4

τ 0-202
Cray/Sun
CPU(min)

Cray 0.50 
8.6

vy -6.38150
vx -0.00496

variance 0.01426
vx variance 0.00684
vxy variance 0.00002

(DL)yy
(βj~)xx

(Ps0)yy
(Ds0)xx
(Ds0)zy
8(2)

8(3∙5)
8 (4)

0.616
0.622

-0.0036

Table B10.1
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Fιgure B1O.1 The time trace of vy for the simulation nfr4.
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Figure BIO.S The time trace of the vy variance for the simulation nfr4.
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Figure Bl0.8 The time trace of the υx variance for the simulation nfr4.
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Figure BIO.4 The time trace of D® for the simulation nfr4. The upper two lines are the xx and y y components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero j∕-axis is the xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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Appendix Blla: The efrl simulation results

This simulation uses an Ewald, F method to approximate the hydrodynamic interactions. The separation factor, 2/, is 2. 126 image cells are used to insure the convergence of the mobility interactions. The simulation terminated at 88 time units because of excessive sphere overlap. Excessive sphere overlap is defined as less than 1.99 radii separating any two sphere centers. The initial configuration is the same as in the FTSn simulations described in Appendix Bl. There are 25 spheres within the periodic cell. The areal fraction is 0.453. There are interparticle forces present (r = 105). The time step is 0.005 time unit. The mobility matrix is inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D® is evaluated and reported at every time unit.
efrl

τ
Cray/Sun
CPU(min)

0-88
Cray 0.50 

15.2

vy
vx

vy variance 
vx variance 
vxy variance

-5.00200
-0.00405
0.00895
0.00246

-0.00048
(Dt)yy
(PL)≈
(PZ)yy 
(D^)xx 
W)x, 
g (2) 

⅛(3-5) 
g (4)

0.643
0.648

-0.0041

Table Blla.l
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Figure Blla.l The time trace of vy for the simulation efrl.
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Figure B lia. 2 The time trace of the vy variance for the simulation efrl.
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Figure Blla.S The time trace of the υx variance for the simulation efrl.
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Figure Bi la. 4 The time trace of D® for the simulation efrl. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero y-axis is the xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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Appendix Bllb: The efr2 simulation results

This simulation uses an Ewald, F method to approximate the hydrodynamic interactions. The separation factor, zι, is 2. 126 image cells are used to insure the convergence of the mobility interactions. The simulation conditions are identical to those in the efrl simulations described in Appendix Blla, except that the time step is 0.0025 time unit. The final time is 500 time units. The initial configuration is the same as in the FTSn simulations described in Appendix Bl. There are 25 spheres within the periodic cell. The areal fraction is 0.453. There are interparticle forces present (τ = 105). The time step is 0.0025 time unit. The mobility matrix is inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D* is evaluated and reported at every time unit.
efr2

τ 0-500
Cray/Sun Cray 0.50
CPU(min) 95

vy -5.00617
vx 0.00289

vy variance 0.01318
vx variance 0.00274
vxy variance -0.00008

(Di.)w 0.22
(Dt)a 0.027

0.603
(‰ 0.601
Vs0⅛ 0.0035
i(2) 12.1

S(3∙5) 0.86
«(4) 1.45

Table Bllb.l
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Fιgure Bllb.l The time trace of vy for the simulation efr2.
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Ftgure Bllb.S The time trace of vx for the simulation efr2.
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Figure Bllb.S The time trace of the vv variance for the simulation efr2.
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Figure Bllb.4 The time trace of the υ1 variance for the simulation efr2.
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Figure Bllb.5 The time trace of the vxy variance for the simulation efr2.
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((y-yΓ)
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Figure Bllb.6 A (Z>⅛o)y∣z-defining graph using displacement data from efr2 (t= 100 - 500). The graph interval is 150, 200, and 300 time units, and the time between interval initial conditions is 0.01 time unit.
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Figure Bllb.7 A (D∞)xι-defining graph using displacement data from efr2 (f= 100 - 500). The graph interval is 150, 200, and 300 time units, and the time between interval initial conditions is 0.01 time unit.
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Fιgure Bllb.8 The time trace of D® for the simulation efr2. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero t∕-axis is the xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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Figure Bllb.9 The radial pair-distribution function, <7(r), for the efr2 run {t = 100 -500).
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Figure BI lb.10 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the efr2 run (£ = 100 - 500). The dashed curve represents this function when it is forced to be symmetric about θ = 90θ.
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This suite of simulations uses an Ewald, F method to approximate the hydro- dynamic interactions. The separation factor, zι, is 2. 126 image cells are used to insure the convergence of the mobility interactions. Two separate simulation runs follow the evolution of a sedimenting system to a final time of 1000 time units. There are 25 spheres in the periodic cell. The areal fraction is 0.1. There are interparticle forces present (r = 105). The initial configuration is taken from a Monte-Carlo simulation. The time step is 0.005 time unit. The mobility matrix is inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D® is evaluated and reported at every time unit.
philefrl philef2

τ 0-500 500-1000
Cray/Sun Cray 0.50 Cray 0.50
CPU(min) 84.7 85.0

vy -3.29081 -3.30232
vx 0.00104 0.00250

vy variance 0.09987 0.11198
vx variance 0.01011 0.01158
vxy variance -0.00201 0.00075

(D~)yi
(Ps~)xx

3.8 4.77
0.11

(D°)yy 0.894 0.894
(‰ 0.896 0.897
(Pio)xy 
g (2) 

S(3∙5) 
g (4)

-0.0014 0.0006
13.0
0.80
1.07

Table BI2.1
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Figure B18.1 The time trace of vy for the simulations ρhilefrl and philefr2.
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Vy variance

Figure BIS. 2 The time trace of the vv variance for the simulations philefrl andphilefr2.
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Figure BIS.S The time trace of the vx variance for the simulations philefrl andphilefr2.
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Figure B12.4 A (Z>∞) ^-defining graph using displacement data from philefrl (i=0 - 500). The graph interval is 500 time units, which means that noaveraging over different initial conditions is done.
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Figure. BIS.5 A (¾)yj,-defining graph using displacement data from philefr2 (i=500 - 1000). The graph interval is 200 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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Figure Bl2.6 A (P^o) xx-defining graph using displacement data from philefr2 (t=500 - 1000). The graph interval is 2CX) time units, and the time betweeninterval initial conditions is 0.01 time unit.
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Figure B12.7 The time trace of D’ for the simulations philefrl and philefr2. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero y-axis is the 
xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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Figure B12.8 The radial pair-distribution function, ^(r), for the phlefr2 run (ί =500 - 1000).
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Figure BIS.9 The full pair-distribution function fo^spheres whose surfaces are separated by less than 0.05 radii using data from the philefr2 run (Z = 500 -- 1000). The dashed curve represents this function when it is forced to be symmetric about θ = 90°.
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Appendix B13: The .ln simulation results

This suite of simulations uses a non-Ewald, F method to approximate the hydrodynamic interactions. Two separate simulation runs follow the evolution of a sedimenting system to a final time of 1000 time units. There are 25 particles in the periodic cell. The areal fraction is 0.1. There are no interparticle forces present. The initial configuration is not the same as in the philefr simulations described in Appendix Bl2. The time step is 0.001 time unit. The mobility matrix is inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D® is evaluated and reported at every time unit. Note that the simulation never achieves a steady sedimentation velocity. This made finding the long-time, self-diffusion coefficient in the direction of gravity impossible.
.lnl .ln2

τ
Cray/Sun
CPU(min)

0-500
Sun
1375

500-1000
Sun

vy
vx

vy variance 
vx variance 
vxy variance

-4.08586
0.00249
0.15725
0.01714

-0.00342

-4.29924
0.00822
0.43943
0.02284

-0.00491
(PL)yy
Φt)ιx
Φ⅛y
(‰
W)v
g (2)

S(3.5) 
g (4)

0.904
0.904
0.0001

0.782
0.781
0.0008

26.4
3.70
3.98

Table BI3.1
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Figure B1S.1 The time trace of vv for the simulations .lnl and .ln2.
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Figure BIS.2 The time trace of the vv variance for the simulations .lnl and .ln2.
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Figure BIS.S The time trace of the v1 variance for the simulations .lnl and .ln2
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Figure BIS.4 A (P^o)^-defining graph using displacement data from .lnl (f= 100 - 500). The graph interval is 400 time units, which means that no averaging over different initial conditions is done.
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Figure BIS.5 A (jD∞)^-defining graph using displacement data from .ln2 (f= 500 - 1000). The graph interval is 500 time units, which means that no averaging over different initial conditions is done. Clearly, the motion is deterministic in this case - the sedimentation velocity is not constant over this time.
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Figure BIS.6 A (P^o) 11-defining graph using displacement data from .lnl (i= 100 — 500). The graph interval is 400 time units, which means that no averaging over different initial conditions is done.
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2t

Ftgure BIS. 7 A (-D∞)zz-defining graph using displacement data from .lnl (i= 100- 500). The graph interval is 150 time units, and the time betweeninterval initial conditions is 0.01 time unit.
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Figure BIS.8 A (D⅛o) 11-defining graph using displacement data from .ln2 [t= 500- 1000). The graph interval is 500 time units, which means that noaveraging over different initial conditions is done.
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Figure BIS.9 A (29^o) „-defining graph using displacement data from .ln2 (i= 100- 500). The graph interval is 250 time units, and the time betweeninterval initial conditions is 0.01 time unit.



-397-

Figure. BIS. 10 The time trace of D® for the simulations .1∏1 and ∙1∏2. T ppe two lines are the xx and yy components of this tensor. 0ι course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero t∕-axιs is the xj∕ com jinn eut of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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Figure BIS.11 The radial pair-distribution function, 47 (r), for the .lnl run {t = 100 - 500).
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Figure BIS.12 The radial pair-distribution function, g(r}, for the .ln2 run (f = 500 1000).
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Figure BIS.18 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the .lnl run (i = 100 - 500). The dashed curve represents this function when it is forced to be symmetric about θ = 90°.
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Figure. Bl8.i4 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the .ln2 run (f = 500 - 1000). The dashed curve represents this function when it is forced to be symmetric about θ = 90°.
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Appendix Bl4: The phi25efr simulation results

This suite of simulations uses an Ewald, F method to approximate the hydro- dynamic interactions. The separation factor, zι, is 2. 126 image cells are used to insure the convergence of the mobility interactions. Two separate simulation runs follow the evolution of a sedimenting system to a final time of 1000 time units. There are 25 particles in the periodic cell. The areal fraction is 0.25. There are interparticle forces present (r = 105). The initial configuration is taken from a Monte-Carlo simulation. The time step is 0.005 time unit. The mobility matrix is inverted every 0.1 time unit. Position and velocity data is saved every 0.05 time unit. D‡ is evaluated and reported at every time unit.
phi25efrl phi25efr2

τ 0-500 500-1000
Cray/Sun Cray 0.80 Cray 0.50
CPU (min) 136 85

vy -4.25520 -4.26502
vx 0.00752 -0.00187

vy variance 0.04535 0.05193
vx variance 0.00894 0.00998
vxy variance 0.00024 0.00091

(Ds~)yy 1.05
(DL)xx 0.10
(P⅛)yy 0.787 0.773
(Ps0)zz 0.789 0.775
(Ds0)xy 0.0044 -0.0021
g (2) 12.1

^(3.5) 0.81
g (4) 1.11

Table BI4.1
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Figure BlJ.l The time trace of vv for the simulations phi25efrl and phi25efr2.
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0.20

Figure Bi4.S The time trace of the vv variance phi25efr2. for the simulations phi25efrl and
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Ftgnre Bi4.S The time trace of the v1 variance for the simulations phi25efrl andphi25efr2.
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Figure Bi4.4 A (Γ>go) ^-defining graph using displacement data from phi25efr2 (i= 500 - 1000). The graph interval is 200, 300 and 450 time units, and the time between interval initial conditions is 0.01 time unit.
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Figure, B14∙5 A (-D∞)11-defining graph using displacement data from phi25efr2 (f= 500 - 1000). The graph interval is 200, 300 and 450 time units, and the time between interval initial conditions is 0.01 time unit.
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Figure. Bi4.6 The time trace of D® for the simulations phi25efrl and phi25efr2. The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero t∕-axis is the 
xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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Figure B14.7 The radial pair-distribution function, g(r), for the phi25efr2 run (t 500 - 1000).
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Figure Bl⅛.8 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the phi25efr2 run {t = 500 - 1000). The dashed curve represents this function when it is forced to be symmetric about θ = 90°.
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Appendix B15: The phi6efr simulation results

This suite of simulations uses an Ewald, F method to approximate the hydro- dynamic interactions. The separation factor, zι, is 2. 126 image cells are used to insure the convergence of the mobility interactions. Three separate simulation runs follow the evolution of a sedimenting system to a final time of 5∞ time units. The areal fraction is 0.25. There are interparticle forces present (τ = 105). The time step is 0.0025 time unit for the phi6efrl simulation run. The time step is 0.001 time unit for the phi6efr2 and phi6efr3 simulation runs. The mobility matrix is inverted every 0.1 time unit for all runs. Position and velocity data is saved every 0.05 time unit. D® is evaluated and reported at every time unit.
phi6efrl phi6efr2 phi6efr3

τ
Cray/Sun
CPU(min)

0-126.6 
Cray ?

120-250
Cray 0.50 

33

250-500
Cray 0.50 

62

vy

vy variance 
vx variance 
vxy variance

-5.36140
-0.00637
0.00330
0.00062
0.00007

-5.34074
-0.00173
0.00251
0.00043
0.00004

-5.34862
0.00217
0.00213
0.00062
0.00001

(PL)yy
(DL)a

0.012
O.OO75

(Df)yy
(‰ 
(PZ)x3∣ 
g (2) 

g (3.5)
S(4)

0.469
0.480

-0.0093

0.414
0.401
0.0018

0.427
0.416
0.0006

15.7
0.78
2.10

Table B15.1
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Figure B15.1 The time trace of vv for the simulations phi6efrl through phi6efr3.
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Figure Bl5. S The time trace of the vy variance for the simulations phi6efrl throughphi6efr3.
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Figure B15.S The time trace of the vx variance for the simulations phi6efrl through phi6efr3.
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Figure B15∙4 A (D∞)j,jf-defining graph using displacement data from phi6efr3 (i= 250 - 500). The graph interval is 150 and 250 time units. The time between interval initial conditions is 0.01 time unit, except for the 250 time units curve where no averaging over initial conditions is done.
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Figure B15.5 A (P^o)ιx-defining graph using displacement data from phi6efr3 (£= 250 - 500). The graph interval is 150 and 250 time units. The time between interval initial conditions is 0.01 time unit, except for the 250 time units curve where no averaging over initial conditions is done.
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Figure B15.6 The time trace of D® for the simulations phi6efrl through phi6efr3.The upper two lines are the xx and yy components of this tensor. Of course, they should be equivalent for an infinite suspension - the slight variation occurs because of the finite number of spheres used in our simulation. The trace that fluctuates about the zero j∕-axis is the 
xy component of the short-time, self-diffusion tensor. Again, for an infinite number of spheres, this quantity would be exactly zero.
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Figure B15.7 The radial pair-distribution function, g(r}, for the phi6efr3 run [t — 250 - 750).
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Figure B15.8 The full pair-distribution function for spheres whose surfaces are separated by less than 0.05 radii using data from the phi6efr3 run {t = 250 - 750). The dashed curve represents this function when it is forced to be symmetric about θ = 90°.
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APPENDΓX C: TABULATION OF FIRST-ORDER INTEGRATOR

RESULTS

This appendix simply reports the diffusion-related properties of early simulations that used a first-order, Euler integrator to advance the sphere positions. As is discussed in Chapter 2, Section 4, this integrator does not accurately capture the curved trajectories of spheres moving around each other. Despite this, these simulations still deserve some attention. Diffusive sphere motion is seen in these simulations at all concentrations (≠χ = 0.01, 0.1, 0.4, and 0.7). A compilation of these simulations’ results can be found in another volume, but this appendix will report the velocity variance and long-time, self-diffusion coefficient for these simulations.
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Table C.l The simulation conditions for the first-order sedimentation runs. The first column is the memnonic case name for the method used in that simulation - ‘f’, ‘t’, and/or ‘s’ denotes the level of approximation. The mobility matrix was inverted every ‘T invert’ time units.

Case Method Ewald(?) N dt Φ T invert
FTSnl FTS no 25 0.0025 0.4 1.0
FTS1 FTS zz=1.0 25 0.0025 0.4 1.0
FΓ1 FT 2z = 1.0 25 0.0025 0.4 1.0
F19 F zz=10.0 25 0.0025 0.4 1.0
F24 F zz=1.0 25 0.0025 0.4 2.0
F49 F 2z = 1.0 49 0.0025 0.4 1.0
F17 F 2z = 1.0 25 0.0025 0.4 1.0
F25 F 2z = 1.0 25 0.0025 0.4 1.0
F23 F zz=1.0 25 0.05 0.01 1.0
F22 F zz=1.0 25 0.01 0.1 1.0
F21 F zz=1.0 25 0.001 0.7 1.0
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Table C.S The time-averaged vy variance and (D^o)yy for the first-order sedimentation runs. The final column is the ratio of the diffusion coefficient to the variance, which should be proportional to the time scale of the diffusive sphere motion.

Case Φλ vy variance (P*-)yy (∕>t)yy ∕ vy variance
FTSnl 0.4 0.02123 0.49 23.1
FTS1 0.4 0.02718 0.85 31.3
FT1 0.4 0.03847 0.52 13.5
F19 0.4 0.01456 0.29 19.9
F24 0.4 0.02881 0.31 10.8
F49 0.4 0.05597 0.34 6.1
F17 0.4 0.02493 0.32 13.0
F25 0.4 0.02678 0.25 9.3
F23 0.01 0.05945 9.6 161.5
F22 0.1 0.09080 2.4 26.4
F21 0.7 O.OOO38 0.023 59.9
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Table C.5 The time-averaged υx variance and for the first-order sedimentation runs. The final column is the ratio of the diffusion coefficient to the variance, which should be proportional to the time scale of the diffusive sphere motion.

Case Φλ vx variance (Ot)xx (f>i)xz I vx variance
FTSnl 0.4 0.01242 0.095 7.6
FTS1 0.4 0.00636 0.048 7.3
FT1 0.4 0.00839 0.052 6.2
F19 0.4 0.00380 0.069 18.2
F24 0.4 0.00602 0.050 8.3
F49 0.4 0.00799 0.080 10.0
F17 0.4 0.00466 0.042 9.0
F25 0.4 0.00525 0.054 10.3
F23 0.01 0.00438 0.26 59.3
F22 0.1 0.01299 0.17 13.1
F21 0.7 0.00008 0.0019 23.0


