
High-order unconditionally-stable FC-AD PDE solvers for
general domains

Thesis by

Mark Lyon

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2009

(Defended July 29, 2008)

ii

c© 2009

Mark Lyon

All Rights Reserved

iii

To

Jen, Matthew, Sarah, and Alyssa

iv

Acknowledgements

I am extremely grateful for the time I have been allowed to spend at the California Institute

of Technology. In particular I am deeply indebted to my advisor, Prof. Oscar P. Bruno.

I greatly benefited from his mathematical insight and rigor, his guidance in all aspect of

my work and career, and, last but not least, for his patience. I would like to thank the

members of my committee, namely, Prof. Niles Pierce, Prof. Dale Pullin, and Prof. Peter

Schröder, for their insights and suggestions on this work. I am also grateful for the support

I have received for my research from the Applied and Computational Mathematics option

at Caltech, Prof. Bruno, the National Science Foundation, the Department of Defense, and

the ARCS foundation. My wife has stood by me for the last five years through the ups and

the downs and I would not have made it to this point without her support. I would like to

thank my children as well. They have given stability to my life and brought me joy even

on my worst days.

v

Abstract

A new methodology is introduced for the numerical solution of Partial Differential Equa-

tions in general spatial domains. The methodology is based on the use of the well-known

Alternating Direction Implicit (ADI) approach of Peaceman and Rachford in conjunction

with one-dimensional and high-order accurate Fourier representations of non-periodic data,

obtained by way of a certain “continuation method” introduced recently for the resolution

of the Gibbs phenomenon. We construct a number of high-order convergent PDE solvers on

the basis of this strategy. Unlike previous alternating direction methods for general domains

of order higher than one, the new algorithms possess the desirable property of unconditional

stability for general spatial domains; the computational time required for these methods

to advance one time-step, in turn, grows in an essentially linear manner with the number

of spatial discretization points. In particular, the new methodology yields significant ad-

vantages over traditional low-order methods for computations involving wave propagation

and “large domains,” as well as PDEs including diffusive terms. In all, we treat Dirichlet

problems for the Heat Equation, the Poisson Equation, and the Wave Equation in two- and

three-dimensional spatial domains with smooth boundaries. A stability analysis we present

hinges upon the numerical evaluation of certain singular value decompositions. Numeri-

cal results arising from the implementations of two- and three-dimensional versions of the

method for linear parabolic, hyperbolic and elliptic PDEs, exhibit unconditional stability

and high-order convergence, in agreement with our theoretical results.

vi

Contents

Acknowledgements iv

Abstract v

1 Introduction 1

1.1 Overview of Chapters . 4

2 Background: Numerical Solution of PDEs 6

2.1 Finite-Difference Methods . 6

2.2 Finite-Element Methods . 8

2.3 Pollution Error . 9

2.4 Time-Step Stability Restrictions . 11

3 Background: Pseudospectral Methods and the Gibbs Phenomenon 13

3.1 Connection to Finite Difference Techniques 13

3.2 Fourier Methods . 15

3.3 Chebyshev methods . 17

3.4 Difficulties for General Domains . 17

3.5 Towards the Resolution of the Gibb’s Phenomenon 19

3.5.1 Continuation Methods . 20

4 Background: Alternating Direction Methods 23

4.1 Basic Concepts and Computational Strengths 23

4.2 Iteration Parameters . 25

4.3 Extensions of the Method . 25

4.4 Alternating Direction Developments Related to the Current Work 26

vii

5 FC(Gram) Continuations 28

5.1 The FC(Gram) Algorithm . 28

5.1.1 Useful Gram Polynomial Pairs and Accurate FC(SVD) Continuations

of Gram Polynomials . 34

5.2 Accuracy of the Approximation . 40

5.3 Numerical Examples . 47

6 FC-AD Algorithm for the Heat Equation 52

6.1 Alternating Direction Splitting for the Heat Equation 53

6.2 Mesh Structure . 57

6.3 FC-ODE Algorithm: Solution of ODEs by Means of Fourier Continuation . 60

6.4 Accuracy of the Solution to ODEs . 65

6.5 Numerical Results for the Heat Equation 69

7 FC-AD Algorithm for the Poisson Equation 76

7.1 Derivation of Technique for the Poisson Equation 76

7.2 Numerical Results for the Poisson Equation 79

8 FC-AD Algorithm for the Wave Equation 85

8.1 Derivation of Wave Equation FC-AD Algorithm 85

8.2 Numerical Results for the Wave Equation 87

9 Comparative Discussion 94

9.1 Transient and Time-harmonic Wave Propagation: Pollution Error 95

9.2 Comparison for Heat Type Equations . 96

10 Stability and Singular-Value Decompositions 101

10.1 Reduction to a Singular-Value Problem for the FC-ODE Solver 101

10.2 Evaluation of Singular-Values . 104

10.3 A Note on Consistency and Convergence . 112

11 Conclusions 116

Bibliography 117

viii

List of Figures

1.1 Evenly spaced discretization for a non-rectangular domain that provides lines

of data in both directions. 4

1.2 Sample discretization mesh for the ODEs resulting from an alternating direc-

tion splitting of a PDE. 4

2.1 Maximum error arising in the solution of the Wave Equation up to a final time

T=1, where w is the number of wavelengths in the domain. The PDE has been

set up in such a way that the solution is given by sin(2πw(x− t)). The error

is shown as a function of w for both a second-order finite-difference method

and a fourth-order finite-difference method. Sufficiently many time steps were

taken to insure the error was due to the spatial discretization. 10

3.1 Maximum interpolation error resulting from a discrete Fourier transform for

the function esin(x) as a function of the number of discretization points in one

dimension. 14

3.2 Demonstration of the Gibbs’ phenomenon on the Fourier interpolation of

f(x) = x with 60 Fourier modes. 16

3.3 Discretization mesh associated with Chebyshev polynomials in a rectangular

domain. 18

3.4 Smooth periodic function resulting from the continuation method applied to

the function f(x) = x over the unit interval. 21

5.1 Calculation of a periodic extension of f(x) = esin(5.4πx−2.7π)−cos(2πx) using only

a small number of points of the original data (n∆ = 10). Raised for visibility,

the function fmatch(x) is displayed in the upper-right portion of the figure. . 30

ix

5.2 Display of the calculated functions: (a) f0
even, (b) f0

odd, (c) f1
even, (d) f1

odd, (e)

f2
even, (f) f2

odd, (g) f3
even, (h) f3

odd scaled over the unit interval and sampled at

1000 discrete points for display purposes. 38

5.3 Sample smooth windowing function w(x) = e
2e1/x

x−1 over the unit interval. . . 41

5.4 Coefficient Lε(m) for the polynomial error bound in Equation (5.52) and cal-

culated as a maximum over 30000 points (see Equation (5.13)). 47

5.5 Maximum interpolation error for the function f(x) = esin(2.7πx)+cos(πx) with a

variety of interpolation schemes including a tenth-order accurate FC(Gram)

continuation on top and a sixth-order version on the bottom. 49

5.6 Maximum interpolation error for the function f(x) = 1
25(2x−1)2

with a variety

of interpolation schemes, including a tenth-order accurate FC(Gram) contin-

uation on top and a sixth-order version on the bottom. 50

5.7 Maximum interpolation error of the second derivative for the function f(x) =
1

25(2x−1)2
with a sixth-order accurate FC(Gram) continuation and a tenth-order

version. 51

6.1 Sample discretization for the ODEs resulting from an alternating direction

splitting of a PDE: n discretization points xj are shown in addition to the

boundary points x` and xr, . 58

6.2 Spatial PDE domain Ω, showing the spatial discretization DΩ. 58

6.3 Sample geometry and discretization for our FC-AD algorithm demonstrating

a local refinement designed to maintain high-order accuracy near portions of

the boundary for which the sampling is not sufficiently fine. 59

6.4 Coefficient Lε
B(m) for the polynomial error bound in Equation (6.54), calcu-

lated as a maximum over 30000 points (see Equation (5.13)). 68

6.5 Domain used for the solution of the Heat Equation, where the boundary is

defined in Equation (6.67). 70

6.6 Time convergence for the Heat Equation on the domain depicted in Figure 6.5. 71

6.7 Spatial convergence for the Heat Equation on the domain depicted in Figure

6.5. 71

6.8 Unconditional stability demonstrated by refining the spatial discretization for

fixed ∆t = 10−4 and ∆t = 10−5. 72

x

6.9 Unconditional stability demonstrated by refining the time step ∆t for fixed

spatial resolutions of h = 5.0 · 10−3, h = 3.3 · 10−3, and h = 2.5 · 10−3. . . . 73

6.10 Processing time for a single time-step of the Heat Equation on a single pro-

cessing core of a 2.33 GHz Intel Core 2 Duo processor. 74

6.11 Maximum error from a full three-dimensional simulation of the Heat Equation

for fixed h = 1
60 and various time-steps demonstrating first-order temporal

accuracy and stability well above typical stability limits. The domain consisted

of the volume contained within a unit cube but outside a sphere with radius

r = 0.125 that is centered in the cube. 75

7.1 Behavior of the multiplier 1−γjP 2k2

1+γjP 2k2 . 78

7.2 Refined coarse mesh on a circle showing the primary discretization points

in black, refinement interior points in green, boundary points in blue, with

additional boundary points required by the refinement shown in red. 80

7.3 Domain used for solution of the Laplace Equation given by the region within

−2π ≤ x ≤ 2π and the curves |Ψ(x, y)| = log{cosh(3π)−1}− log{cosh(π)−1}.
The black dots denote the locations of singularities of the function in (7.12). 82

7.4 Convergence results for the Laplace Equation with Dirichlet boundary data

imposed on the boundary of the region shown in Figure 7.3. The true solution

is given by Equation (7.12). Results shown for three mesh spacings h = 0.02,

h = 0.013, h = 0.01 which resulted in 274068, 617399, and 1098396 unknowns

respectively. 83

7.5 Convergence results for the Laplace Equation with Dirichlet boundary data

imposed on the boundary of the region shown in Figure 7.3, where the true

solution is given by Equation (7.12), demonstrating the expected fifth-order

convergence of the FC-AD algorithm. 84

8.1 Domain test problem for the Wave Equation. 87

8.2 Maximum error as a function of the time-step for the Wave Equation with

Gaussian initial data, using h = 0.002. 88

8.3 Maximum error as a function of the spatial resolution h for the Wave Equation

with Gaussian initial data, using ∆t = 1/3000. 89

xi

8.4 Solution to the Wave Equation with solution given in Equation (8.11) with

fixed spatial resolution of h = 0.01667 for a range of values for ∆t. The

domain boundary is defined by x4 + y4 = 1 and the maximum error for each

time-step is reported. 90

8.5 Numerical errors arising in the solution of a Wave Equation, with exact solu-

tion given in Equation (8.11), as a function of the spatial mesh-size h. Fourth-

order Richardson Extrapolation was used. The domain boundary is defined by

x4 + y4 = 1 and the maximum error at any time step is reported. Sixth-order

convergence is shown in the region where the error is determined by the spatial

discretization. 91

8.6 Numerical errors arising in the solution of a Wave Equation, with exact solu-

tion given in Equation (8.11), as a function of the spatial mesh-size. Fourth-

order Richardson Extrapolation was used. The coarsest time-step of the ex-

trapolation was taken to equal h; the other time-steps used were h/2, h/3, and

h/4. Fourth-order convergence is observed as h and therefore ∆t are refined. 92

8.7 Solution to the Wave Equation with Gaussian initial data in a domain consist-

ing of the complement of a sphere within a cube. The gray-scale on the three

planar sections x = 0.5025, y = 0.5025, and z = 0.5025 display the planer

values of the solution. 93

9.1 Maximum errors arising from applications of FC-AD and second-order finite-

difference algorithms for increasing number of wavelengths and various fixed

numbers of PPW. 96

9.2 Maximum errors arising from applications of FC-AD and fourth-order finite-

difference algorithms for increasing number of wavelengths and various fixed

numbers of PPW. 97

9.3 Extension of otherwise periodic function sin(10πx). 97

9.4 Estimated PPW required to obtain a 1% error in the solution of the Wave

Equation with solution sin(2Wπ(x− t)) to a final time T = 1 where W is the

number of wavelengths. 98

xii

10.1 Largest singular value of the linear map L1 as a function of (x1 − x`)/h with

xr − xn = 0 and m = 5 (sixth-order accuracy). The top and bottom plots

assume α = 0.1, and α = 0.01, respectively. 105

10.2 Largest singular value of the linear map L1 as a function of (x1 − x`)/h with

xr − xn = 0 and m = 5 (sixth-order accuracy). The top and bottom plots

assume α = 0.001, and α = 0.0001, respectively. 106

10.3 One minus the largest singular value of the linear map L1 with n = 50, m = 5

(sixth-order accuracy); α = 0.01 and α = 0.001 in the top and bottom graphs,

respectively. 108

10.4 One minus the largest singular value of the linear map L1 maximized over a

discrete sampling of (x1−x`)/h and (xr−xn)/h as a function of α with m = 5

(sixth-order accuracy). 109

10.5 One minus the largest singular value of the linear map L2 with m = 4 (fifth-

order accuracy) maximized over a discrete sampling of (x1 − x`)/h and (xr −
xn)/h as a function of α for several values of n. 110

10.6 One minus the largest singular value of the linear map L2 with m = 5 maxi-

mized over a discrete sampling of (x1−x`)/h and (xr−xn)/h as a function of

α for several values of n. Note that, for the present case m = 5, the stability

condition ‖L2‖`2 ≤ 1 is violated. The FC-AD algorithm is unconditionally

stable for spatial accuracy orders m ≤ 4 for the Heat and Poisson Equations. 111

10.7 Sample calculations demonstrating the complexity inherent in the consistency

property of the FC-AD algorithm. The error in the first step of an algorithm

decays as α and not α2, but this error does not accumulate over many itera-

tions. 113

10.8 Demonstration of convergence for the case where ∆t is taken proportional

to h6. The first calculation was performed with ∆t = 1.0 · 10−2 (right-side

of the figure) and h = 6.0 · 10−3. The last calculation was performed with

∆t = 1.3 · 10−5 and h = 2.0 · 10−3 (left-side of the figure). 115

xiii

List of Tables

5.1 Lebesgue constants for various parameters of interest in the present section

and calculated as a maximum over 30000 points (see Equation (5.13)). . . . 34

5.2 Maximum errors (evaluated as maxima over 1800 points in the set [1−∆, 1]∪
[1+d, 1+d+∆]) that result from the even and odd continuations of the Gram

Polynomials for the parameter values n∆ = 10, d/∆ = 26/9, g = 63, and

Υ = 150. 37

5.3 Maximum errors over a slightly extended interval (evaluated as maxima over

2000 points in the set [1−∆, 1+1/h]∪ [1+d−1/h, 1+d+∆]) that result from

the even and odd continuations of the Gram Polynomials for the parameter

values n∆ = 10, d/∆ = 26/9, g = 63, and Υ = 150. 48

7.1 Maximum errors produced in the solution of Laplace Equation on a circle with

the mesh shown in Figure 7.2. 80

9.1 Computational times required to produce various accuracies by means of an

explicit second-order finite-difference solver for the Heat Equation in a square

domain (see Equation (9.1)). Computations performed on a 3.4 GHz Pentium

D processor. 98

9.2 Computational times required to produce various accuracies by means of the

FC-AD algorithm for the Heat Equation in a square domain (see Equation (9.1)).

Computations performed on a 3.4 GHz Pentium D processor. 99

9.3 Computational results for the FC-AD algorithm applied to the Heat Equation

over the domain bounded by x4 +y4 = 1 using the parameters from Table 9.2.

Computations performed on a 3.4 GHz Pentium D processor. These results

show only minor variations in computational time and accuracy versus those

produced by the FC-AD algorithm for the square domain. 99

1

Chapter 1

Introduction

This thesis is concerned with the numerical solution of Partial Differential Equations (PDEs)

of Parabolic, Hyperbolic and Elliptic type, and considers algorithms related to the well-

known Alternating Direction Implicit approach introduced in reference [105] and further

developed in [44, 45, 48, 49]. Such algorithms, which address each one of the dimensions of

the spatial domains of the PDE sequentially, have been aggressively pursued over the last

half century. They have been demonstrated to yield unconditional stability at approximately

the same cost per time step as explicit (conditionally stable) finite difference formulations.

The application of alternating direction algorithms has been hindered by a significant lim-

itation however; previous algorithms could not be directly applied to arbitrary domains

without reducing the truncation error near the boundary to first order [97]. The few ap-

plications of high-order alternating direction methods to non-rectangular geometries have

relied upon prohibitive domain mappings (e.g., [54, 85, 92]) to effectively map the problem

into a rectangular geometry. To the author’s knowledge, prior to this work, unconditionally

stable high-order alternating direction algorithms for general domains, without some form

of domain mapping, have not been produced. In this thesis a new, simple, Fourier Con-

tinuation based Alternating Direction (FC-AD) algorithms is presented that can produce

high-order accurate and unconditionally stable results for general geometries with limited

computational cost—on the order of a Fast Fourier Transform over the space-discretization

per time-step.

Over the more than 50 years since Peaceman and Rachford introduced their Alternating

Direction Implicit method for the Heat Equation and Laplace’s Equation, many variations

have been introduced (c.f., [123] and references therein), including methods for solving other

differential equations (e.g., [7, 12, 87, 96, 101, 142]) and nonlinear equations (e.g., [78, 81, 136,

2

138]), additionally improving both spatial and temporal accuracy (e.g., [60, 65, 94, 128, 139]).

The alternating direction technique has been studied in a wide range of applications in

nearly all areas of science and engineering, and frequently appears in textbooks concerning

numerical methods. Although other types of operator splittings, including partial splittings,

have also been introduced under the name of ADI (e.g., [13, 69]), the algorithms of interest

in the present context are those that split differential operators spatially, thus reducing the

solution of a PDE to the solution of sequences of ODEs.

The treatment of boundaries and boundary conditions in high-order finite difference

schemes for PDEs entails significant difficulties—even for the simple rectangular domains,

if the solution is not periodic. Recent advances in these regards include [3, 4, 35]; these

methods allow for high-order on the basis of a “simultaneous approximation term” (SAT)

approach for enforcement of the boundary conditions. The development of alternating

direction schemes using high-order finite difference discretizations have thus far restricted

attention to rectangular/parallelepiped domains (c.f., [94]), and even, in some cases, to

situations in which the solution is periodic (c.f., [139]): the development of higher-order

finite difference alternating direction schemes for rectangular geometries are currently an

active research area (e.g., [39, 86, 128, 139]).

There has been some previous work in which, as in the present approach, a combination

of a Fourier basis and ADI operator splitting is used [7, 55, 100, 141]. Like other ADI

approaches, these previous techniques have also been restricted to rectangular geometries—

in spite of a variety of efforts seeking generalization to general domains (see Section 4.4).

Spline collocation methods have also been introduced in this context (c.f., [16, 43] and

references therein.) In particular, Cubic-spline interpolation was used with an alternating

direction algorithm in an embedding scheme to solve elliptic PDEs for complex geometries

(c.f., [39] and references therein). Only conditional stability was achieved by this method

and, further, the authors point to certain geometric issues (for instance, inability to solve

on the region in between two squares) that remain unresolved.

Chebyshev methods [30, 141] and any other methods that rely on use of unevenly

spaced discretizations do not provide a consistent basis for alternating direction splittings

on complex geometries—unless domain mappings into suitable rectangular domains are

used; clearly, however, such domain mappings are generally prohibitively complex. Spec-

tral element methods and related techniques do simplify the required mappings [33]; yet

3

construction of adequate three-dimensional finite element meshes, existence of restrictive

time-step (CFL) conditions (especially for higher-order spectral methods), and the appear-

ance of considerable pollution error for the lower-order spectral methods often considered,

remain significant issues under investigation in this area.

A unique characteristic of a Fourier basis, utilized by the present approach, is that it

diagonalizes constant coefficient differential operators. Use of Fourier bases for the approx-

imation of non-periodic functions requires resolution of a classical problem in numerical

analysis, namely: the Gibbs phenomenon. A variety of methods have been introduced to

reduce or eliminate the Gibbs phenomenon. The problem of continuation is discussed in

Section 3.5; additional information about these methods can be found in [30, 68, 73] and the

references therein. Briefly, the present approach uses a form of the “continuation methods”

(e.g., [22, 27, 28]) which evaluates a periodic extension of a smooth function; the overall

continuation approach and the particular continuation strategy we have introduced for use

in conjunction with the alternating direction algorithm, which differs significantly from pre-

vious continuation approaches, is presented in detail in Sections 3.5.1 and 5.1. The bulk of

the computational cost for the Fourier continuation used in this thesis lies in the application

of the Fast Fourier Transform (FFT) (see [41, 108]): the continuation Fourier series we use

can be evaluated very efficiently.

Historically, the primary challenge in extending alternating direction methods to gen-

eral geometries has been the lack of stability: it has been shown that the classical ADI

convergence estimates [49, 105] only hold for simple rectangular geometries (see [18, 97]).

Although the analysis of alternating direction methods has continued to develop (e.g.,

[5, 77, 81, 91, 114]), in particular to tensor product methods (e.g., [54, 92]), there is no com-

plete theory for the ADI on general domains. The lack of unconditionally stable algorithms

for complex geometries has heretofore severely limited the use of alternating direction meth-

ods in practical applications.

In this thesis a class of unconditionally stable high-order accurate alternating direction

methods for general domains is introduced. For a given domain, the algorithm uses a

Cartesian grid as shown in Figure 1.1. The PDE is discretized in time and then split into

uncoupled ODEs by Alternating Direction techniques. Each one of the resulting separate

ODEs is then solved with high-order accuracy over the resulting 1D grids that are evenly

spaced for all interior points xj , j = 1, . . . , n with two boundary points, x` and xr, spaced

4

−4 −3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

Figure 1.1: Evenly spaced discretization for a non-rectangular domain that provides lines
of data in both directions.

Figure 1.2: Sample discretization mesh for the ODEs resulting from an alternating direction
splitting of a PDE.

such that for h = xj+1 − xj and therefore x1 − x` ≤ h and xr − xn ≤ h (see Figure 1.2).

The computational cost required for solution of the resulting ODEs, which is based on

our new Fourier Continuation approach, is proportional to that of one dimensional FFTs.

The resulting unconditionally stable FC-AD methodology is fast, accurate, and memory

efficient.

1.1 Overview of Chapters

The next three chapters present a brief overview of existing methods for PDE solution as

well as basic concepts relating to pseudo-spectral methods and ADI techniques, the main

thesis work and conclusions are then presented in Chapters 5 to 11. Chapter 2 provides

a brief overview of the main characteristics of finite-difference and finite-element methods

5

with an emphasis on certain and some specific challenges they present which are successfully

addressed by means of the FC-AD methodology introduced in this thesis. In Chapter 3 we

discuss pseudo-spectral methods and we consider Chebyshev polynomials as well as methods

for the resolution of Gibbs phenomenon (see Sections 3.3 and 3.5 respectively). Chapter 4

contains a discussion of the continued development and some limitations of previous Al-

ternating Direction implicit methods. In particular, related work that combines spectral

methods with directional splitting will be discussed in detail in Section 4.4. In Chapter 5,

our new Fourier-polynomial continuation method, FC(Gram) is introduced, on the basis

of the Gram polynomials and the continuation methods of Section 3.5.1. Theoretical and

numerical results are presented in this chapter demonstrating the high-order accuracy of

the FFT-fast FC(Gram) algorithm. In Chapter 6, the FC-AD methodology is introduced

through consideration of an application to the Heat equation. Numerical results are also

presented in this chapter, demonstrating both the speed and accuracy of the FC-AD ap-

proach. Chapters 7 and 8 extend the FC-AD methodology to the Poisson Equation and

Wave Equation respectively. Chapter 9 discusses the particular benefits of the FC-AD

approach, including the effective elimination of both the so called “pollution error” and

restrictive CFL conditions; this chapter also compares the accuracy, stability, and compu-

tational cost of the FC-AD to those arising from other available techniques. A theoretical

discussion of the stability of the FC-AD algorithm is presented in Chapter 10. The thesis

is concluded in Chapter 11.

6

Chapter 2

Background: Numerical Solution
of PDEs

Most algorithms for the numerical solution of PDEs fall into one of the three categories: ei-

ther Finite-Difference Methods (FDM), Finite-Element Methods (FEM), or Pseudospectral

Methods. In view of their special significance to the present work, Pseudospectral meth-

ods will be discussed in greater detail in Chapter 3. Both FEM and FDM can be used to

solve a wide range of PDEs in a variety of applications; it is often the case that particular

applications are dominated by either FEM or FDM approaches. For example, most of the

work in Computational Aeroacoustics, is pursued by means of FDM (see [40]). In contrast,

structural mechanics computations are typically based on FEM methods, owing in part

to the inherent geometric versatility of finite-element methods. Finite-Difference Methods

and Finite-Element Methods are each very broad classes of numerical techniques and, in

particular, they both admit explicit and implicit implementations. In what follows, we give

a very brief overview of FDM and FEM and discuss two significant challenges posed by

methods which are addressed successfully by the algorithms introduced in this work.

2.1 Finite-Difference Methods

Finite-difference methods are obtained as derivatives in a PDE are approximated by dif-

ference quotients. The accuracy of finite-difference methods can be estimated by means of

Taylor series approximations; we refer to the works [123] and [97] for thorough introductions

to FDM and its application to PDEs of elliptic, parabolic, and hyperbolic types.

A significant benefit of the FDM method lies in its simplicity. Implementations of

7

explicit FDM algorithms can be completely straightforward if one uses low-order accurate

methods in rectangular domains. Difficulties arise in applying high-order FDM techniques

even on rectangular domains for simple, but non-periodic PDEs. Stable methods have

been devised to treat this difficulty by maintaining a discrete summation-by-parts formula

although such methods result in some degradation of the order of accuracy toward the

boundary [34, 102, 103, 120]. Alternate formulations have also been developed which rely

on use of unevenly spaced discretization around boundaries to regain stability, allowing for

high-order accuracy with minimal modifications to the mesh [79].

Unlike FEM, FDM must be modified significantly in order to account accurately for

the presence of curved boundaries. Various methods for handling non-rectangular domains

have been developed which primarily rely on domain or coordinate mappings. In particular,

we note that curvilinear coordinate systems have been used to produce accuracies of very

high-order in a variety of contributions, including [80, 117]. Of course, the construction of

such domain mappings is prohibitively complex for wide ranges of engineering and scientific

geometries. Combinations of low- and high-order finite-differences have been used as well

(see [71] and references therein): in these approaches fine unstructured meshes (resembling

those used in connection with FEM) are utilized around complex boundary regions, while

high-order structured FD methods are used in interior regions.

While the finite-difference methodology has been advanced greatly through decades of

research, some broad challenges have still not been addressed successfully. For wave propa-

gation problems, which arise in both elliptic and hyperbolic PDE forms, the error typically

accumulates in a linear manner with the number of waves involved in the solution. There-

fore, in order to keep the compound error below a certain tolerance, it is often necessary

to greatly increase the number of points in the discretization. For explicit FDM, further,

the CFL stability condition limits the largest allowable time-step that the algorithm may

take and remain stable [124]. These stability conditions can be highly restrictive, especially

for domains containing curved boundaries. Unlike wave propagation problems, in the case

of diffusive PDEs the error does not tend to compound; in this case, however, the stability

conditions for explicit FDM are severe: they require at minimum that the time-step be pro-

portional to the mesh spacing squared. Again, curved boundaries can significantly amplify

this effect. Sections 2.3 and 2.4 provide detailed discussions of both the compounding of

error for wave propagation (known as the “pollution error” in the FEM [11]) and time-step

8

CFL restrictions along with the expenses associated with implicit formulations frequently

used to overcome this difficulties.

Recent advances in FDM techniques have led to several notable algorithms that are

able to directly handle some simple curved geometries with high-order accuracy. While

representing important progress, these methods still suffer from either significant time-step

restrictions in the diffusive case or are prone to pollution errors otherwise. In particular,

the simultaneous approximating term (SAT) methods of [34] have been applied to some

non-rectangular domains. In [1], SAT methods are applied to fourth-order accuracy for

the Heat Equation resulting in an explicit FDM approach. Similar to the current work, a

Cartesian mesh is overlaid on the geometry; a corresponding implicit formulation has not

been produced as yet. Similarly the SAT methods are applied to wave type equations in [2]

and electrodynamics in [90]; naturally, these methods give rise to significant pollution errors,

particulary in the work in [2] in which only second-order spatial accuracy was obtained.

A novel approach is taken in [89], where, once again, a Cartesian mesh is overlayed on

the complex geometry, but in which, for evaluation of spatial derivatives certain interior

mesh points that are too close to the boundary are ignored. It is shown for a few simple test

cases that, in this technique, the stability is not further restricted by the irregular geometry

for incompressible fluid flow. While this is a significant advance, as no implicit formulation

is given, the method still requires time-steps proportional to the square of spatial mesh size.

Additionally, the work in [88] avoids the additional time-step restrictions imposed by a

curved domain for the Wave Equations by using a certain integral equation formulation to

enforce the boundary conditions. While some stable results were obtained, the method did

not prove to be stable for all of the test cases considered, in [88].

To the author’s knowledge current high-order FDM techniques for complex geometries

are restricted to fourth-order spatial accuracy at most. These methods are thus subject

to either severe stability restrictions or costly implicit implementations (for diffusion prob-

lems), or to pollution errors (for wave propagation/advection problems).

2.2 Finite-Element Methods

Finite-elements were introduced many years before a theoretical understanding of their

convergence was developed [62]; the theoretical understanding of these methods has since

9

increased dramatically and convergence has been estabilished for many important cases. We

refer the readers to [9, 10, 121] for a discussion of significant contributions to the theoretical

developments of FEM. Since its emergence in the later 1950s, FEM has grown at a fast

pace resulting in hundreds of books on the topic and billions of dollars spent on software

and computer time for FEM codes (see [63])—a trend that will likely continue well into the

future.

A primary advantage of FEM over FDM and other methods is that it conforms well to

applications in general domains. FEM methods can use unstructured meshes and therefore

do not require significant modification for complex domains, though generation of meshes of

good quality for a given arbitrary geometry is a significant problem in and of itself. Many

of the geometric difficulties mentioned in the previous section for FDM algorithms do not

arise in the FEM context. FEM algorithms have been broadly applied to a wide-range of

fields including structural mechanics, fluid flow, and semi-conductor modeling [37]. As the

methods have continued to develop, significant variations have been produced to improve

performance for various applications, including the development of Discontinuous Finite

Elements and Characteristic Finite Elements [37].

Another significant advantage of FEM over other traditional techniques is the relative

ease with which adaptive mesh refinement may be performed. FEM element methods can

also be constructed to high-order or spectral accuracy [33] with specific requirements; note,

in particular, that for true high-order accuracy to result, the elements must approximate

the domain boundary to high-order as well. This requirement can be best met by utilizing

appropriate mappings at the level of the individual elements.

The FDM and FEM are related in some ways: they both suffer from pollution errors

(see [11]) and conditional stability which can be “very restrictive, particularly for long time

integration”(see [38]). The additional computational cost required by unconditionally stable

implicit methods per time-step is significant, making the benefit of implicit FEM methods

highly dependent on the details of a specific problem.

2.3 Pollution Error

Often the accuracy of a given PDE solution technique for wave propagation problems is

stated in terms of a number of points required per wavelength (PPW) for the approximate

10

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

Wavelengths

M
ax

im
um

 E
rr

or

2nd order FD 20 PPW
4th order FD 15 PPW

Figure 2.1: Maximum error arising in the solution of the Wave Equation up to a final time
T=1, where w is the number of wavelengths in the domain. The PDE has been set up in
such a way that the solution is given by sin(2πw(x− t)). The error is shown as a function
of w for both a second-order finite-difference method and a fourth-order finite-difference
method. Sufficiently many time steps were taken to insure the error was due to the spatial
discretization.

solution to be correct to within a given accuracy (see [40]). Due to the accumulation of error

over multiple waves, finite-difference and finite-element methods typically require significant

increases in the number of PPW, for large-scale problems. This issue has been discussed

for FDM in [84] and in [11] for the closely related “pollution error” effect exhibited by

finite-element methods.

For example, it is shown in [84] that, for a simple one-way Wave Equation and for a

fixed number of PPW, the finite-difference error increases linearly with the total number

of wavelengths across the domain. This is demonstrated in Figure 2.1 where the Wave

equation was solved using explicit second- and fourth-order finite-difference methods. From

Figure 2.1, we see that for a fourth-order Finite Difference scheme with 15 PPW, if the

domain has 10 wavelengths then the maximum error at any time step is about 2%. If the

number of wavelengths increases to 100, then the error is 20%. These results are consistent

with those shown in [84].

11

In order to mitigate this pollution effect as much as possible, high-order methods should

be used, as they reduce the number of additional PPW required to reach a given accuracy.

Indeed, Pseudospectral methods exhibit essentially no pollution error due to the spectral

accuracy of the approximation, but unfortunately are prohibitively complicated for complex

domains, as will be discussed in the next chapter.

2.4 Time-Step Stability Restrictions

In general for explicit methods, the approximation at a future time step, at a given location,

is dependent only upon values at neighboring grid locations. This locality allows for fast

computations per time-step, but the maximum size of the time-step is severly limited by

stability conditions. In practice the stability restriction is often most severe for parabolic

equations like the Heat Equation where the maximum time-step is limited by the smallest

mesh spacing squared. For complex geometries, either significant work must be done to op-

timize the mesh for the particular geometry, or the time-step restriction will be exceedingly

severe (consider Figure 1.1 where the closest boundary point to and interior point may be

arbitrarily small).

Implicit methods are used to reduce, and in many cases eliminate altogether, the stability

restrictions on the time-step, but they require the solution of a linear system at each time

step and therefore can give rise to significant computational costs. Implicit methods have

been improved with the introduction of Conjugate Gradient (CG) and other Krylov subspace

algorithms which can sometimes dramatically reduce the time required to solve the linear

system (see [112]). In particular as the solution approaches a steady state, these iterative

solvers may require very few iterations and be very effective indeed. The convergence can

be prohibitively slow in other cases, and therefore considerable effort has also been devoted

to the development of adequately preconditioned iterative methods; see [112]. In general

the convergence of the CG algorithm depends on the conditioning of the system—which, as

it happens, deteriorates rapidly as the size of the problem increases (see [36]). Indeed, our

own numerical results demonstrate that for a sample problem switching from a first-order

accurate in time explicit FDM for the Heat Equation to second-order accurate in time,

implicit and unconditionally stable, FDM yielded an efficiency improvement of about a

factor of three to achieve a 10% maximum error but actually decreased the efficiency when

12

attempting to reach a 1% maximum error. The efficiency increase in the 10% case was

obtained by modifying the parameters of the CG algorithm and the time-step to maximize

efficiency for the given problem. More details of the calculation are shown in Section 9.2.

It should be noted that while the time-step stability restrictions are the most severe

for parabolic problems, they can be significant for hyperbolic problems as well if either the

individual mesh points are not optimized for the geometry or other significant modification

to the basic algorithms are made. Assuming the geometry has been appropriately meshed,

hyperbolic and elliptic problems are still prone to the pollution error, discussed in the

previous section; we note that for parabolic problems, pollution errors do not arise. By

considering sufficiently simple situations, a comparison of the FC-AD algorithms presented

in this thesis to other techniques will be presented in Chapter 9. In particular, in that set

of comparisons the main topics of the present and previous sections, stability restrictions

and pollution error, are examined in detail.

13

Chapter 3

Background: Pseudospectral
Methods and the Gibbs
Phenomenon

Pseudospectral methods are a class of algorithms which use discrete data to construct ap-

proximate solutions for which the error decays spectrally fast as the discretizations are

refined. Figure 3.1 displays typical convergence for a one-dimensional spectral approxima-

tion (upon which pseudospectral methods are based). A mere doubling of the number of

discretization points yields a decrease in error of the approximation by six orders of mag-

nitude. The present text will only attempt to give a very broad overview of the features of

pseudospectral methods relevant to this thesis. Detailed information on these methods can

be found in the references [21, 30, 64, 72].

3.1 Connection to Finite Difference Techniques

It is interesting to note that, according to [64] pseudospectral methods can be viewed as

the limit of finite difference methods, as the stencil and the order of the approximation are

maximized. This analogy is most easily appreciated when dealing with periodic solutions

where each discrete point may be considered to have infinitely many neighboring points.

The approximate value or approximate derivatives of a function could then be calculated

using a stencil of effectively unlimited size and therefore an unlimited order of accuracy.

A more typical finite difference calculation would normally calculate the value of the

function or a derivative using the values of the function at a small number of nearby points.

This allows for efficient algorithms since the cost of calculating derivatives is on the order of

14

10
1

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of points

M
ax

im
um

 E
rr

or

Figure 3.1: Maximum interpolation error resulting from a discrete Fourier transform for the
function esin(x) as a function of the number of discretization points in one dimension.

the number of unknowns, resulting in a sparse and banded matrix, which can be significantly

easier to invert than a full matrix—either by direct or iterative methods. For instance, in

1-D and over n discrete data points, a derivative can be calculated with finite differences at

each of the n points in O(mn) operations where m is the size of the stencil.

The corresponding cost for a pseudo-spectral method would nominally be O(n2) since

the value of the function at each point depends on the value at every other point. This

would be the cost of applying an unaccelerated discrete Fourier transform to the data. The

FFT uses a recursion algorithm to reduce the computational cost to O(n log(n)) ([41]).

Fourier, Cosine, Sine, and Chebyshev transformations all benefit from the efficiencies of

the FFT and therefore the computational costs for these techniques are nearly the same as

lower-order finite-differences for an equivalent number of points. When applicable, pseudo-

spectral methods have significantly higher accuracy, and thus require significantly smaller

discretizations than finite difference or finite element methods to reach a given level of

accuracy: spectral convergence gives rise to significantly more efficient algorithms.

15

3.2 Fourier Methods

If a function, f(x), periodic on the unit interval, is known at the n evenly spaced points

xj =
2πj

n
, j = 0, . . . , n− 1, (3.1)

then one can approximate the function as Fourier series of the form

f(x) ≈
∑

k∈t(n)

ake
2πikx, (3.2)

where t(n) = {k ∈ N : −n/2 + 1 ≤ k ≤ n/2} for n even and t(n) = {k ∈ N : −(n− 1)/2 ≤
k ≤ (n−1)/2} for n odd. This particular form is chosen because of the discrete orthogonality

property
n−1∑

j=0

e2πikxje−2πik̃xj = n if k = k̃, 0 otherwise, (3.3)

which allows the coefficients ak to be calculated efficiently by

ak =
n−1∑

j=0

f(xj)e−2πikxj , ∀k ∈ t(n). (3.4)

It is precisely the calculations in Equations (3.2) and (3.4) that are accelerated by the FFT.

The exact error bounds for approximating a function by a discrete Fourier series depends

on the smoothness of the function; these approximation properties are considered in detail

in many texts on spectral methods (c.f., [30]); a standard result is

‖f(x)−
∑

k∈t(n)

ake
2πikx‖L∞(0,1) ≤ C log(n)n−m‖fm(x)‖L∞(0,1) (3.5)

for a function f(x) with bounded mth derivative, fm(x), and with f q(x) continuous and

periodic for q < m. In particular this result accounts for the error made by truncating

Fourier series to n terms and the interpolation error arising from discrete sampling the

function at n points (see [31]). If the function is not periodic and the discrete Fourier

series is taken, the “Gibbs phenomenon” results: near discontinuities, oscillations develop

and slow convergence is achieved as n grows. Figure 3.2 demonstrates this effect on the

interpolation of f(x) = x. Alternatively, if the function has significant number of bounded

16

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.2: Demonstration of the Gibbs’ phenomenon on the Fourier interpolation of f(x) =
x with 60 Fourier modes.

derivatives, the Chebyshev polynomials can be used to obtain an accurate approximation.

Methods designed to alleviate the Gibbs phenomenon (i.e., represent a non-periodic function

accurately using trigonometric polynomials) have also been researched for the last 30 plus

years; a discussion of efforts in these regards is presented in Section 3.5. In its original

form, the FFT is limited to the case of equally spaced data. But in the past two decades

significant advances have been made in extending Fourier methods to unevenly spaced data

(e.g., [15, 20, 51–53, 61]).

It has been noted that for high Reynolds number turbulent flow problem and for cases in

which the solution is smooth and periodic, the numerical solution by means of a fourth-order

finite-difference scheme would require “typically a factor of 10 longer in time and a factor

of 20 larger in storage,” relative to a Fourier spectral method and that for a second-order

finite difference scheme, the difference would be three orders of magnitude (see [32]).

17

3.3 Chebyshev methods

The usefulness of the Chebyshev methods can be easily appreciated by considering its

relationship to the Fourier methods. Consider a smooth but non-periodic function f(x) ∈
Ck[−1, 1] for some integer k. By making a change of variables x = cos(θ), the function

f(cos(θ)) is now a 2π even periodic function of the variable θ which can be expanded in

a Cosine series. The Cosine series converges rapidly for k large enough since f(cos(θ)) ∈
Ck[0, 2π]. This transform then can be accomplished fast by a FFT or even slightly faster

by specialized Discrete Cosine transform algorithms.

It can easily be shown that the resulting approximating functions Tk(x) = cos(kθ) are

in fact polynomials in the space of the variable x through the recurrence relation

Tk+1(x) = 2xTk(x)− Tk−1(x), (3.6)

which in itself is a very useful property of the Chebyshev polynomials. A related recurrence

relation can be formulated for the derivatives of the polynomials, allowing for the fast

computation of derivatives.

The most serious restriction on Chebyshev methods is that the point values at which the

function f(x) must be known are given by xj = cos(θj), where typically the θj are evenly

spaced. While unevenly spaced FFT methods could be applied, a significant deviation from

the required point spacing might severely decrease the accuracy of the approximation. In

particular if the point values of xj are evenly spaced as in Equation (3.1) then the approxi-

mation would suffer from the “Runge phenomenon” (see [109]): polynomial approximations

to a smooth function over evenly spaced nodes may diverge as the number of interpolation

points tends to infinity. It should be noted that the restriction to a particular point spacing

is often not a problem for 1-D or even higher-dimensional problems on rectangular domains,

but a significant limitation for general domains.

3.4 Difficulties for General Domains

Chebyshev and Fourier methods can be easily extended to higher dimensional problems, as

long as the PDE domain is rectangular. Figure 3.3 displays a two-dimensional Chebyshev

grid: given values of a smooth function f on such a grid, a fast Cosine transform can easily

18

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.3: Discretization mesh associated with Chebyshev polynomials in a rectangular
domain.

be applied in each one of the two dimensions, sequentially, to obtain, rapidly, spectrally

accurate numerical approximations of the true Chebyshev coefficients of f . Clearly, for a

general domain, including domains as simple as Figure 1.1, it is not possible to represent a

function, with spectral accuracy, by means of iterated Chebyshev transforms.

While it is possible to generate a spectral expansion basis functions specifically designed

for each geometries, the difficulties make it impractical for all but a few simple domains

(e.g., circle, sphere, or annulus) [104]. An approach that is often mentioned, but used only

rarely in practice, is based on the fact that complicated geometries can be mapped into

simpler domains for which a spectral basis of interpolating functions is available. Even in

the cases where such a mapping can be efficiently obtained, it can significantly complicate

an otherwise simple PDE.

A significant area of current research interest is the “spectral-element methods” which

combine pseudospectral methods with finite-element techniques. Such approaches are based

on mapping individual elements to a simple geometry over which a high-order approximation

may be made. While simplifying the mapping process, some of the challenges of finite-

element methods are also introduced, including those discussed in Chapter 2. The interested

19

reader is referred to [33] for more information about the accomplishments and challenges of

these techniques.

3.5 Towards the Resolution of the Gibb’s Phenomenon

A glance to Figure 1.1 suggests new ways to apply pseudospectral methods that become

available if the Gibbs phenomenon is resolved, the rapid oscillations eliminated, and con-

vergence of Fourier methods to non-periodic functions is adequately accelerated. In this

section recent advances in this area are described.

The earlier contributions in this area include filtering of high-order Fourier coefficients [93],

use of a specialized integration rule [95], and smoothing [76], all of which increase the ac-

curacy away from the discontinuity but do not provide accuracy over the entire domain of

the function. The first real advance that provided spectral accuracy across the domain was

the development of the Gegenbauer polynomial methods [75] for which convergence can be

proven under certain conditions. These methods reproject the oscillating Fourier functions

into an alternate orthogonal basis which minimize the rapid Gibbs oscillations and overall

slow convergence. The convergence of Gegenbauer polynomial method is slower than one

would hope for and has numerous conditioning and other difficulties (e.g. [23]), some but

not all of which have been subsequently addressed in (see [68, 73, 74, 127]); in particular, this

approach requires very fine discretizations to produce even minimal accuracy and to reach

the convergence regime—upon which, with subsequent mesh refinements fast convergence

is obtained.

Other developments include several algorithms that require knowledge of the jumps in

the values of the function and its derivatives at discontinuity points [55, 66, 67, 82]. These

methods have been demonstrated to give rise to significantly improved convergence but

the determination of jumps in derivatives remains a significantly challenging problem. As

mentioned in the introduction, the methods [55, 82] have been applied to the solution of

differential equations. In particular the contributions [6–8, 24–26, 130–132] present various

methods built upon the technique [82] to solve a range of differential equations. For ex-

ample, [131] extends earlier efforts to complex geometries by domain mapping and relies

on conjugate gradient iterations to deal with the more complicated PDEs arising from the

mapping. Building off of the techniques for singularity detection and subtraction in [56]

20

and [55], the work [100] uses spectral methods with resolution of the Gibbs phenomenon

on the basis of a singularity subtraction technique. The work was limited to rectangular

domains and, in order to obtain high-order accuracy, a number of additional grid points

were added near the domain boundaries—essentially for evaluation of jumps of the function

and its derivatives.

3.5.1 Continuation Methods

One of the more recent efforts towards the resolution of Gibbs’ phenomenon is considered

by [22, 27, 28] and is related to earlier work on embedding partial differential equations,

[57, 58], where a related procedure was proposed. These methods rely on the construction

of a function which is periodic in a domain larger than the domain of interest. Unlike the

traditional Fourier series, no orthogonality condition exists in this case—a fact that has

profound consequences for both computation and analysis. Following [28], the continued

function f c(x) is given by the series

f c(x) =
∑

k∈t(m)

ake
2πi
b

kx, (3.7)

where again t(m) = {k ∈ N : −m/2 + 1 ≤ k ≤ m/2} for m even and t(m) = {k ∈ N :

−(m − 1)/2 ≤ k ≤ (m − 1)/2} for m odd and let xj be a set of n discrete points in the

range from 0 to 1. The solution can then be obtained (as in [22, 27, 28]) by solving the least

squares system of equations

min
ak∀k∈t(m)

n−1∑

j=0

∣∣∣∣∣
∑

k∈t(m)

ake
2πi
b

kxj − f(xj)

∣∣∣∣∣
2

. (3.8)

The method of solution that has yielded the best results is to solve for the coefficients

ak by using a regularized Singular-Value Decomposition (SVD). Although formally the

system can be solved in O(n2) operations by either Vandermonde techniques (see [70]) or

related recursive techniques of orthogonal polynomials over the unit circle, (see [29]), the

performance of the SVD can be significantly more accurate for large numbers of points.

Throughout this thesis, this particular method of Fourier approximation will be denoted as

the FC(SVD).

The function f c(x) constructed in this manner has periodicity interval b and therefore

21

0 0.5 1 1.5 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.4: Smooth periodic function resulting from the continuation method applied to
the function f(x) = x over the unit interval.

lies in the space of smooth functions, C∞[−∞,∞]. In what follows we denote by C∞
per[c, d]

the space of infinitely differentiable functions defined over the real line with periodicity

length d− c; with this notation we have f c(x) ∈ C∞
per[0, b].

Let us consider once again the function f(x) = x defined on the unit interval. Applying

the FC(SVD) approximation with n = 32, m = 16, and b = 2 yields Figure 3.4, which

accurately approximates the function to more than six digits of accuracy with just 16 Fourier

modes. In reference [28], accurate approximations were obtained using several values of b

and different ratios of n and m. For m sufficiently small relative to n (m = n/2), spectral

convergence was demonstrated to both the function and its derivatives.

The computational strengths of the continuation method include its ability to handle

both evenly and unevenly spaced grids over complicated geometries in high dimensional

space. Also, the continuation method loses very little accuracy due to the conditioning of

the system compared to other Gibbs resolution techniques (see [50, 68, 73, 74, 127]). The

continuation method will not be applied directly in this work because in this context it

would lead to loss of computational efficiency. As was noted above, using an m length

stencil, O(mn) operation would be required to calculate the derivatives at all n points by

22

finite-differences. In contrast, calculating the SVD for a fixed ratio of m to n, requires O(n3)

operations. In Chapter 5 a variation of this Fourier continuation technique is developed that,

for functions of a one-dimensional variable, yields high-order accuracy at operation counts

equivalent to the FFT’s O(n log(n)). The application of the new technique to the solution

of PDEs then requires a method to reduce the PDE to one or more differential equations in

a single dimension. This is exactly what is accomplished by alternating direction methods.

23

Chapter 4

Background: Alternating Direction
Methods

The Alternating Direction Implicit (ADI) algorithm was introduced in [105] and further

developed in [44, 45, 48, 49] as well as hundreds of additional contributions. The basic idea

of the method is to treat each spatial direction of the PDEs separately. A single direction is

chosen and then the value of the solution at each point on a line in the specified direction is

advanced in time by using only the values on the same line. The process is then repeated, but

in an alternate direction. The basic algorithm is simple and computationally efficient, and

thus extensions have been attempted to extend the technique to numerous PDE problems.

4.1 Basic Concepts and Computational Strengths

The ADI algorithm was developed initially for parabolic problems; following the initial

contributions, we use the example of the Heat Equation to detail the main characteristics

of this algorithm. Let us thus consider a simple homogenous Heat Equation over the unit

cube with some initial condition and zero Dirichlet boundary conditions,

ut = uxx + uyy, u(x, y, 0) = u0(x, y). (4.1)

Let Ax be the matrix associated with a centered finite difference scheme over a discrete

equi-spaced mesh (n × n, h = 1/n) the second derivatives with respect to x. The matrix

Ax is tridiagonal along each line of data for fixed y and, therefore, it can be inverted in

O(n2) operations by means of LU decompositions (c.f., [110]). Analogously, let Ay be the

corresponding matrix for evaluation of second derivatives in the y direction, which, similarly,

24

can be efficiently inverted. As discussed in what follows, these matrices play central roles

in the ADI algorithm. A discrete implicit method for stepping forward a discrete solution

of Equation (4.1) by a time increment ∆t is given by

un+1 − un

∆t
= (Ax + Ay)

un+1 + un

2
+ O(∆t2) + O(h2), (4.2)

which can be simplified to

(I − ∆t

2
Ax +

∆t

2
Ay)un+1 = (I +

∆t

2
Ax +

∆t

2
Ay)un + O(∆t3) + O(∆th2). (4.3)

While each matrix Ax and Ay can be easily inverted, the combined matrix

(I − ∆t
2 Ax + ∆t

2 Ay) cannot. Peaceman and Rachford (see [105]) noted that the factored

product (I − ∆t
2 Ax)(I − ∆t

2 Ay), which approximates (I − ∆t
2 Ax + ∆t

2 Ay) to within an error

of the order of ∆t2 can be easily inverted; using this approximation we obtain the iterative

scheme,

un+1 = (I − ∆t

2
Ax)−1(I − ∆t

2
Ay)−1(I +

∆t

2
Ax)(I +

∆t

2
Ay)un + ε(h,∆t), (4.4)

where the error term, ε(h, ∆t), is given by

ε(h,∆t) =
∆t2

4
AxAy(un+1 − un) + O(∆t3) + O(∆th2). (4.5)

The additional error term, ∆t2

4 AxAy(un+1 − un), is known as the splitting error; since

un+1 − un = O(∆t), the splitting error is of order ∆t3 (see [46, 134] for ADI variations

leading to further reductions of the splitting error) and we obtain,

ε(h,∆t) = O(∆t3) + O(∆th2). (4.6)

Over a rectangular domain, the operators (I − ∆t
2 Ax)−1, (I − ∆t

2 Ay)−1, (I + ∆t
2 Ax),

and (I + ∆t
2 Ay) commute and a von Neumann stability analysis shows that the symmetric

discrete operator combinations (I − ∆t
2 Ax)−1(I + ∆t

2 Ax) and (I − ∆t
2 Ay)−1(I + ∆t

2 Ay) have

eigenvalues less than one and therefore produce a stable numerical algorithm. Coupling

this stability with the bound for the local error from Equation (4.6) gives the convergence

of the method. The stability analysis can be generalized to other PDEs as long as the one-

25

dimensional operators commute. Unfortunately, however, this useful property only holds

for a very restricted class of PDEs and most importantly, only for rectangular geometries

(c.f., [18, 129, 140]). It has been demonstrated in explicit constructions that instabilities can

occur in the noncommutative case (see [114]).

4.2 Iteration Parameters

The Laplace equation, over a rectangular domain, is an interesting example of a PDE to

which the above theory can directly be applied. One can use the algorithm for the Heat

Equation and advance the up to a point in which a steady state is reached: the result is,

of course, a solution of the Laplace equation. Instead of taking a constant “time-step”,

iteration parameters, γj , are used which change with each step, so that at the jth step the

next approximation is calculated by

uj+1 = (I − γj

2
Ax)−1(I − γj

2
Ay)−1(I +

γj

2
Ax)(I +

γj

2
Ay)uj . (4.7)

It can be shown [118] that if the matrices Ax and Ay each has n common linearly independent

eigenvectors, then in at most n iterations the solution of the discrete problem can be found.

Thus this algorithm requires a total of O(n3) operations, which can be compared with

O(n4) operations required by the fastest direct method. Thus, the ADI is also considered

an iterative method for the solution of a linear system (c.f., [113]). In practice, a set of

iteration parameters can be chosen for more general problems that are in some sense optimal

(c.f., [133, 140]).

4.3 Extensions of the Method

There have been several extensions of the original theory for ADI and related techniques

(e.g., [5, 77, 78, 87, 91]), but there is no general stability theory for non-rectangular domains.

Despite this, significant work on the noncommutative case has been performed. By far, the

largest portion of the work on the noncommutative case for alternating direction schemes

has focused on the application to nonlinear differential equations. A particulary notable

result is the use of scaling for non-linear systems (see [136–138]). In essence the scaling

procedure chooses the iteration parameters as functions of the spatial variables, rather than

26

fixed constants, as was previously done. Another interesting contribution to ADI theory

for the non-commutative case was the development of a criterion for the convergence of

an alternating direction scheme where commutativity was not assumed, but in practice

the condition can be “cumbersome to verify” (see [81]). Consideration of issues relating

to complex geometries is nearly absent from the plentiful ADI literature. An early paper,

[47], demonstrated on a single fixed mesh, numerical result showing that the ADI could

be applied successfully, with at best low-order accuracy, to a complex geometry through

the use of fictitious boundary points. Despite this isolated contribution, and as mentioned

above, subsequent work has either been rectangular geometries, or relied upon domain

mappings, related curvilinear coordinates, domain decomposition, and their combination

(e.g., [17, 54, 85, 116, 122]).

Even with this limited geometric generality, the ADI has been applied to various PDEs

and innumerable applications; the manifold key developments in this area includes high-

order methods (c.f., [60, 94]), application to Maxwell’s equations (c.f., [142]), application

to Navier-Stokes Equations (c.f., [7, 12]), application to inhomogeneous media (c.f., [116]),

application in conjunction with Perfectly Matched Layer (PML) absorbing boundary con-

ditions (c.f., [115]), time-extrapolation for higher temporal accuracy (c.f., [65]), application

with spline collocation methods (c.f., [17, 42, 43]), and spectral methods (c.f., [7, 141]). The

use of ADI in conjunction with higher-order compact finite difference schemes is a current

research area (c.f., [86, 128, 139]).

4.4 Alternating Direction Developments Related to the Cur-

rent Work

The approach presented in this thesis gives rise to significant improvements over previous

approaches, including the applicability to general domains with unconditional stability for

elliptic, parabolic, and hyperbolic equations, with a computing time per time-step compa-

rable to those arising from a single step of an explicit finite-difference method. The author

knows of no previous alternating direction algorithms possessing these properties, despite

significant efforts in these regards. However, the algorithm developed in the present work

is not the first high-order accurate alternating direction method that has been produced.

A cubic-spline method presented in references [42, 43] demonstrated the capability to solve

27

some separable elliptic partial differential equations over certain irregular geometries. The

fourth-order accurate approach is based on alternating direction splittings, but does not ex-

hibit unconditional stability, and, in fact fails to produce correct solutions for some simple

geometries, such as the region contained between two squares.

A notable contribution [7], uses an approach based on alternating directions for the

solution of non-linear Navier-Stokes equations. Domain decomposition was used in [7] to

implement the solver in a parallel manner and high-order accuracy was obtained by means

of the Multi-Domain Local Fourier Basis Methods (MDLFB) (see [82]), which extends (or

continues) a function and then applies a smooth window to produce periodicity. The re-

sulting periodic function can then be approximated to high-order in a Fourier basis. Their

technique has many similarities with our FC-AD approach. While reference [7] demon-

strates the power of alternating direction schemes to handle nonlinear equations efficiently

and in a parallel computational infrastructure, the work is restricted to rectangular do-

mains. The authors did note however that “The proposed algorithm has the potential for

treating efficiently complex geometries. This is a work in progress,” but in the decade since

this paper was published, no citing paper addresses the issues relating to applying this

algorithm for complex geometries. A subsequent paper, [24], by some of the same authors

states that “Generally, spectral solution of equations in complex geometries employs either

transformation or patching.”

We conclude this section on related techniques with a reference first outlined in [55]

which presents a method based on removal of discontinuities in function values and deriva-

tives for the resolution of Gibbs phenomenon. In that paper, which does not present any

results on the solution of differential equations, an expectation is expressed that the Gibbs

resolution methodology presented there, coupled with a suitable splitting scheme, could

yield high-order accurate solvers for partial differential equations, “only limited by the re-

quirement that the full scheme shall be stable.” The paper itself only speculated on how

one might proceed to apply the algorithm in a 2D or higher dimensional setting. The effort

apparently culminated in [100], which successfully applied the technique to the solution of

the Helmholtz equation in one, two, and three dimensions over rectangular domains. The

technique required extra points near the boundaries to obtain the desired accuracies and,

as mentioned in Section 3.4 of this thesis, this requirement rules out a direct application to

complex geometries.

28

Chapter 5

FC(Gram) Continuations

In previous chapters, a range of efforts were mentioned [7, 17, 42, 43, 55], which have sought

to produce high-order, unconditionally stable alternating direction solvers for complex do-

mains without recourse to domain mappings. The algorithms resulting from those contribu-

tions apply with unconditional stability only for simple combinations of rectangular or par-

allelepipedal domains. In this chapter, an approximation methodology is presented which,

as is shown in Chapter 6, when used in conjunction with the idea of Alternating Directions,

gives rise to unconditionally stable high-order solvers for complex geometries. This ap-

proximation methodology, which we refer to as the Gram-polynomial Fourier-continuation

method (FC(Gram)), combines Fourier continuations and Gram orthogonal polynomial

projections; the result is a high-order accurate Fourier-based approximation method which,

for one-dimensional approximation problems on a discrete mesh of size n requires only

O(n log(n)) operations—as opposed to the full O(n3) cost of computing the SVD required

for the FC(SVD) continuation [22, 27, 28].

5.1 The FC(Gram) Algorithm

Consider a smooth function f ∈ Ck[x`, xr] (see Chapter 1 and in particular Figure 1.2) for

some positive integer k or k = ∞. In our application, approximate values of the function

we wish to approximate are given on a discrete grid xj , j = 1, . . . , n. With reference

to Figure 1.2, we mention that the FC-AD algorithm introduced in Chapter 6 uses the

FC(Gram) continuation method by applying it to the restriction of f to the domain [x1, xn]-

from the slightly larger interval [x`, xr]. Naturally, as noted in Section 5.2.3, this restriction

operation has an effect on the overall error and error bounds for the FC approximation of

29

f in the interval [x`, xr]. For clarity but without loss of generality, within Chapter 5 we

replace the interval [x1, xn] by the unit interval [0, 1]. The discrete grid

xj = (j − 1)h, j = 1, . . . , n, h = 1/(n− 1); (5.1)

the results of this chapter apply, via simple transformations, to the case of a general interval

[x1, xn] and associated (slightly larger) intervals [x`, xr] which contains [x1, xn]

Using the FC(SVD) methods described in Section 3.5.1, a periodic continuation of f

can be obtained, although at a computational cost that is significantly higher than is de-

sirable for use as an element of a PDE solver (we mention, however, that, for other uses,

including high-order surface representations [28] the use of an O(n3) continuation algorithm

is perfectly adequate). In order to introduce the significantly faster (but one-dimensional)

FC(Gram) method, consider a graph displaying both f(x) and f(x− d− 1), each one over

its domain of definition: [0, 1] and [1 + d, 2 + d] respectively; see Figure 5.1.

As indicated in the figure, we focus on a small portion on the right end of the graph of

f(x) as well as a small portion on the left end of the graph of f(x−d−1), say, the portions

defined by in the intervals [1−∆, 1] and [1 + d, 1 + d + ∆]. The FC(SVD) algorithm can be

applied in these two line segments to produce a periodic function, with periodicity interval

[1−∆, 1 + 2d + ∆] which simultaneously approximates f(x) on the interval [1−∆, 1], and

f(x−d−1) on the interval [1+d, 1+d+∆]—so that, indeed, the periodic continuation can

be used to match f(x) to f(x− d− 1). This new function, fmatch ∈ C∞
per[1−∆, 1 + 2d + ∆],

which is shown in the upper right of Figure 5.1, can be used to produce a smooth transition

between the right-end of f(x) and the left-end of f(x− d− 1). Thus the prescription

fde(x) =





f(x) for x ∈ [0, 1]

fmatch(x) for x ∈ (1, 1 + d]

fde(x + 1 + d) = fde(x) for all x in R,

(5.2)

defines a 1 + d-periodic function fde (a “discontinuous extension”) that is, in fact, discon-

tinuous, but it is equal to a smooth function up to the error arising from the FC(SVD)

continuation.

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

1

2

3

4

5

6

7

x

Figure 5.1: Calculation of a periodic extension of f(x) = esin(5.4πx−2.7π)−cos(2πx) using only
a small number of points of the original data (n∆ = 10). Raised for visibility, the function
fmatch(x) is displayed in the upper-right portion of the figure.

The Fourier continuation series may now be obtained easily. To do this, let

n∆ = ∆/h + 1 and nd = d/h + 1; (5.3)

throughout this thesis we assume the constants ∆ and d are selected in such a way that n∆

and nd are positive integers. The Fourier continuation for fde is then obtained by sampling

this function at the n + nd − 2 evenly spaced points

xj = (j − 1)h, j = 1, . . . n + nd − 2 (5.4)

followed by evaluation of an approximating Fourier series by means of an FFT of the discrete

fde values. (Note that evenly spaced points are not used by necessity—one could use an

unequally spaced FFT instead—but, rather, because this is the relevant case for the FC-AD

methodology to be introduced in Chapter 6).

Out of the n + nd − 2 points used in the interval [0, 1 + d], the points xj , j = n− n∆ +

1, . . . , n fall within the set [1 −∆, 1] and the points xj + 1 + d, j = n − n∆ + 1, . . . , n fall

31

within the set [1+d, 1+d+∆], for a total of 2n∆ points in the set [1−∆, 1]∪[1+d, 1+d+∆].

Then, for a fixed ratio d/∆, and taking ∆ such that n∆ ≤ Cn1/3 for some constant C, the

total number of operations required to construct the Fourier transform of fde is of order

O(n + nd log(n + nd)). Additionally, if n∆ is chosen so that n∆ ≥ Cnγ for some γ > 0 and

some constant C, then, due to the spectral convergence of the FC(SVD) algorithm [28],

spectral convergence is expected for this continuation algorithm as well.

Our overall FC(Gram) continuation method results as a slight, but necessary, variation

of the algorithm just described: note that, even for “reasonable” values of the number n

of one-dimensional samples, the number n∆ ∼ O(n1/3) of discretization points contained in

the boundary intervals, which was chosen small to maintain the FFT-type efficiency, is not

large enough to give rise to optimally accurate SVD continuations. For reasonable values

of n it is much more efficient to use small values of ∆ and n∆ and to precede the FC(SVD)

calculation by a projection into a space of orthogonal polynomial, as detailed below. The

advantage of this procedure is that the value of the functions which form polynomial basis

are known over the entire interval. Thus FC(SVD) continuation of these basis functions can

be constructed with an unlimited number of discrete data points, making the continuations

very accurate. These separate continuations can be combined to form the continuation of

the original function. While the direct evaluation of each individual FC(SVD) will require

more computing time, these continuation functions only need to be computed once and

stored for each choice of n∆, nd, and the parameters of the FC(SVD) continuation: this

precomputation does not affect the O(n log(n)) complexity of the FC(Gram) algorithm.

To provide a complete description of the FC(Gram) algorithm, we thus let ∆ ∼ 1/n

(typically we use ∆t = 9/n) and we define the spaces

Ck[1−∆, 1] and Ck[1 + d, 1 + d + ∆] (5.5)

of smooth boundary functions, which we endow with the semi-positive definite discrete

scalar product

(f, g) =
∑

f(xj)g(xj), (5.6)

(where the sum extends to all n∆ discretization points xj contained either in [1 − ∆, 1]

(j = 1, . . . , n∆) or in [1 + d, 1 + d + ∆] (j = n − n∆ + 1, . . . , n), as appropriate). Taking

fixed values of n∆ (in all of our examples we use n∆ = 10), the smooth boundary functions

32

fleft ∈ Ck[1 − ∆, 1], fleft(x) = f(x) for x ∈ [1 − ∆, 1], and fright ∈ Ck[1 + d, 1 + d + ∆],

fright(x) = f(x − d − 1) for x ∈ [1 + d, 1 + d + ∆], are approximated with high-order

accuracy (in the ∆-length boundary intervals and with an explicit error bound as displayed

in Equation (5.15)) by their orthogonal projections, with respect to the scalar product (5.6),

onto the subspaces of polynomials of appropriately high degrees. In our examples we use

projections onto the space of polynomials of degree ≤ m with values such as m = 4, m = 5

and m = 9. (These choices of the numerical values of m are dictated, in part, by stability

considerations, as discussed in Chapter 10).

In view of these considerations, the algorithm FC(Gram) proceeds as follows:

1. Orthonormal bases {Pr,n∆−1(x)}m
r=0 (the Gram polynomials [14, 19]) of the subspaces

of polynomials of degree m with regard to the corresponding discrete scalar prod-

uct (5.6) in both Ck[1−∆, 1] and Ck[1 + d, 1 + d + ∆] are obtained.

2. The smooth boundary functions fleft and fright are projected orthogonally onto ele-

ments fp
left and fp

right of the polynomial subspaces:

fp
left(x) =

m∑

r=0

ar
leftPr,n∆−1(x) and fp

right(x) =
m∑

r=0

ar
rightPr,n∆−1(x), (5.7)

where

ar
left = (fright, Pr,n∆−1) and ar

right = (fright, Pr,n∆−1) . (5.8)

3. Very accurate FC(SVD) continuations fP,Q ∈ C∞
per[1 −∆, 1 + 2d + ∆] are produced

for pairs {P, Q} of Gram polynomials, P ∈ Ck[1−∆, 1] and Q ∈ Ck[1 + d, 1 + d + ∆],

resulting in a continuation function fP,Q ∈ C∞
per[1−∆, 1+2d+∆] that approximates P

in [1−∆, 1] and approximates Q in [1+d, 1+d+∆] for each pair {P, Q}; various types

of polynomial pairings are admissible as are methods to effect their joint continuation;

full details concerning our prescriptions in these regards are presented in Section 5.1.1.

Here we note that, as prescribed in Section 5.1.1, the method we use leads to certain

continuation functions f r
even(x) and f r

odd(x), r = 0 . . . m.

4. The function fmatch(x) (see Equation (5.2) and the paragraph immediately preceding

it) is obtained as the following linear combination of the FC(SVD) continuations

33

mentioned in point 3.:

fmatch(x) =
m∑

r=0

ar
left + ar

right

2
f r
even(x) +

ar
left − ar

right

2
f r
odd(x). (5.9)

5. The function fdp(x) is constructed according to the formula

fdp(x) =





fp
right(x− 1− d) for x ∈ [0, ∆]

f(x) for x ∈ (∆, 1−∆)

fp
left(x) for x ∈ [1−∆, 1]

fmatch(x) for x ∈ (1, 1 + d)

fdp(x + 1 + d) = fdp(x) for all x in R,

(5.10)

and the unique n+nd−2 term Fourier series, f c, that interpolates fdp at the points xj

for j = 1 . . . n + nd− 2 (see Equation (5.4)) is calculated by an FFT, thus completing

the approximation.

Remark 5.1.1. The specific selection prescribed in Step 5. for fdp is important for the

specific use within the FC-AD methodology to provide stability; c.f., the stability analysis

presented in Chapter 10; otherwise alternate and simpler functions might be considered.

Clearly, a necessary requirement for the FC(Gram) approximation to be accurate is

that the functions f(x) and f(x− d− 1) are well approximated by their Gram-polynomial

projections over the intervals [1 − ∆, 1] and [1 + d, 1 + d + ∆] respectively. For smooth

functions such as those in either of the boundary spaces defined in Equation (5.5), let pleft

and pright be the optimal m degree polynomial approximations in the maximum norm in

the ∆-length boundary regions. The error made by approximating by the best polynomial

is well known (c.f., [106]) and gives, for the present case gives, for example, equality

‖fleft(x)− pleft(x)‖L∞[1−∆,1] =
∆m+1|f (m+1)(ξ)|
22m+1(m + 1)!

, (5.11)

for some point ξ in the ∆-length interval, with a similar equality for fright and pright. Since

pleft is in the space of polynomials of degree ≤ m, its projection, according to (5.6), into

a polynomial basis is equal to itself. Thus, the error made in projecting a fleft into an

34

L(m) m = 4 m = 5 m = 9
n∆ = 10 1.7021 1.9261 17.849

Table 5.1: Lebesgue constants for various parameters of interest in the present section and
calculated as a maximum over 30000 points (see Equation (5.13)).

orthogonal m degree basis over the interval [1−∆, 1] is bounded by

‖fleft(x)− fp
left(x)‖L∞[1−∆,1] ≤ ‖fleft(x)− pleft(x)‖L∞[1−∆,1] (5.12)

+
m∑

r=0

(fleft(x)− pleft(x), Pr,n∆−1) Pr,n∆−1(x).

Introducing the constant L(m) (related to and a bound for the Lebesgue constant, c.f.,

[107]) for the discrete projection, which is defined by

L(m) = max
x∈[1−∆,1]

m∑

r=0

(1, |Pr,n∆−1|) |Pr,n∆−1(x)|, (5.13)

we then obtain the bound

m∑

r=0

(fleft(x)− pleft(x), Pr,n∆−1) Pr,n∆−1(x) ≤ L(m)‖fleft(x)− pleft(x)‖L∞[1−∆,∆], (5.14)

and therefore the bound on the error of the projection is given by

‖fleft(x)− fp
left(x)‖L∞[1−∆,1] ≤ (1 + L(m))

∆m+1|f (m+1)(ξ)|
22m+1(m + 1)!

. (5.15)

A similar bound is obtained for the projection of fright over the interval [1+d, 1+d+∆]. The

calculated values of the bounds L(m) on the Lebesgue constants for the values pertinent to

this chapter are shown in Table 5.1.

5.1.1 Useful Gram Polynomial Pairs and Accurate FC(SVD) Continua-

tions of Gram Polynomials

Recall that Point 3. in the description of the FC(Gram) algorithm (above in Section 5.1)

does not prescribe either how to select pairs {P, Q} of Gram polynomials, P ∈ Ck[1−∆, 1]

and Q ∈ Ck[1 + d, 1 + d + ∆] for subsequent continuation via the FC(SVD) approach, or

how the corresponding continuations are to be performed; in this section we present the

35

details of such choices and their FC(SVD) continuations. Our choice of polynomial pairs is

made in such a way as to require SVDs of the smallest possible dimensionality. We thus use

polynomial pairs of the form {P, Q} with P (x) = Pr,n∆−1(x) and Q(x) = Pr,n∆−1(x−d−∆)

for each r ≤ m; see Point 1. in the prescription of the FC(Gram) algorithm. We will call

this an even pair, since an FC(SVD) continuation can be produced, which will be denoted

by f r
even, that uses only even Fourier coefficients; see Equation (5.22). Similarly, the pair

{P,−Q} can be represented by a FC(SVD) continuation f r
odd, shown in Equation (5.25),

that incorporates odd Fourier coefficients only. The set of all continuations of these pairs of

Gram polynomials contains 2m+2 elements that, clearly, can be used to form the matching

function fmatch—since

f r
even + f r

odd

2
≈





Pr,n∆−1(x) for x ∈ [1−∆, 1]

0 for x ∈ [1 + d, 1 + d + ∆]
, (5.16)

f r
even − f r

odd

2
≈





0 for x ∈ [1−∆, 1]

Pr,n∆−1(x− d−∆) for x ∈ [1 + d, 1 + d + ∆]
, (5.17)

while the set of all Pr,n∆−1(x) can be used to approximate fleft in the interval [1 − ∆, 1]

and the set of all Pr,n∆−1(x − d − ∆) can be used to approximate fright in the interval

[1 + d, 1 + d + ∆].

To produce the functions f r
even, each one of which should clearly be periodic with period

2d + 2∆,

f r
even(x) =

∑

k∈t(g)

ar
ke

πi
d+∆

(x−1+∆)k, (5.18)

(where the quantity t(g) is defined below Equation (3.2)) we apply the FC(SVD) method to

match the polynomial pair {Pr,n∆−1(x), Pr,n∆−1(x−d−∆)} at the points x̂j and x̂j +d+∆

for j = 1 . . . Υ where

x̂j = 1−∆ +
(j − 1)∆
Υ− 1

, j = 1, . . . , Υ. (5.19)

Note that g in Equation (5.18) equals the number of Fourier modes used in the FC(SVD)

continuation.

We obtain the Fourier coefficients ar
k by solving, in sense of least squares and by means

36

of an SVD, the system of equations formed by the left-interval equations

f r
even(x̂j) ≈

∑

k∈t(g)

âr
ke

πi
d+∆

x̂jk = Pr,n∆−1(x̂j), j = 1 . . .Υ, (5.20)

together with the right-interval equations

f r
even(x̂j) =

∑

k∈t(g)

(−1)kâr
ke

πi
d+∆

x̂jk = Pr,n∆−1(x̂j), j = 1 . . .Υ. (5.21)

In view of the uniqueness of solution for this least-squares problem, it is easy to show

that the odd-indexed coefficients vanish, so that, indeed, the overall system is reduced to a

least-squares problem for the even-indexed coefficients:

f r
even(x̂j) =

∑

k∈t(g)
k even

âr
ke

πi
d+∆

x̂jk = Pr,n∆−1(x̂j), j = 1 . . . Υ. (5.22)

Similarly, an odd continuation is calculated with the left-interval equations

f r
odd(x̂j) ≈

∑

k∈t(g)

b̂r
ke

πi
d+∆

x̂jk = Pr,n∆−1(x̂j), j = 1 . . . Υ, (5.23)

and the right-interval equations

f r
odd(x̂j) =

∑

k∈t(g)

(−1)k b̂r
ke

πi
d+∆

x̂jk = −Pr,n∆−1(x̂j), j = 1 . . . Υ. (5.24)

These constraints can similarly be reduced by the previous uniqueness arguments to

f r
odd(x̂j) =

∑

k∈t(g)
k odd

b̂r
ke

πi
d+∆

x̂jk = Pr,n∆−1(x̂j), j = 1 . . .Υ. (5.25)

The functions f r
even and f r

odd just constructed allow us to obtain the matching function

fmatch by means of the expression given in Equation 5.9.

A requirement for the accuracy of the FC(Gram) approximation is that the continuations

of Gram polynomials must themselves be accurate approximations of the polynomials. In

our examples, the number g of Fourier modes used is typically set to equal Υ/2 (c.f., [28]).

In order to achieve approximations of the desired accuracy, as noted in the previous section,

37

Error Error

f0
even 5.6 · 10−17 f0

odd 1.7 · 10−16

f1
even 6.1 · 10−16 f1

odd 5.6 · 10−16

f2
even 2.9 · 10−15 f2

odd 2.5 · 10−15

f3
even 1.4 · 10−14 f3

odd 1.6 · 10−14

f4
even 1.4 · 10−13 f4

odd 5.6 · 10−14

f5
even 4.2 · 10−13 f5

odd 5.3 · 10−13

f6
even 5.5 · 10−12 f6

odd 1.8 · 10−12

f7
even 1.8 · 10−11 f7

odd 3.2 · 10−11

f8
even 4.4 · 10−10 f8

odd 1.4 · 10−10

f9
even 2.2 · 10−9 f9

odd 4.0 · 10−9

Table 5.2: Maximum errors (evaluated as maxima over 1800 points in the set [1−∆, 1] ∪
[1+d, 1+d+∆]) that result from the even and odd continuations of the Gram Polynomials
for the parameter values n∆ = 10, d/∆ = 26/9, g = 63, and Υ = 150.

we select appropriately large values of Υ. The number g of Fourier continuation modes, on

the other hand, must lie below 2n∆(1 + d/∆) to prevent aliasing. The explicit values of

these parameters used for the numerical examples in this thesis are given in Remark 5.1.3.

When the method is used as intended, as explained in Remark 5.1.2, these parameter values

give rise to errors that are smaller than those implicit in other portions of the FC(Gram)

approximations. Figure 5.2 shows the calculated basis for r ≤ 3.

Remark 5.1.2. We see from Table 5.2 that the error in the continuation of the pairs of

Gram polynomials increases with the polynomial degree. In practice this has no negative

effect on the actual convergence of these continuations to the original functions fleft and

fright for the small values of ∆ encountered in our applications, since, as follows from

Equation (5.15), the scalar product (f, Pr,n∆) decreases as O(∆r). For example, even though

an error of 4.21 · 10−13 is made for the even continuation of P5,9(x), the coefficient is of

order O(∆5) and thus all the values in Table 5.2 result in errors that, as indicated above

and as demonstrated in Section 5.3, are smaller than those implicit in other portions of

the algorithm. The error can be made to decrease spectrally fast [28] by increasing the

parameters n∆, g, and Υ since g can be chosen proportional to n∆ and then, for fixed d/∆,

as g and Υ increase, spectral accuracy is obtained.

Remark 5.1.3. The calculation of the FC(SVD) continuations of the Gram polynomials

depends on a small number of parameters: d/∆, n∆, g, and Υ. A single set of values of

these parameters, namely n∆ = 10, d/∆ = 26/9, g = 63, and Υ = 150, can be used for

38

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

1.5

(a)
0 0.2 0.4 0.6 0.8 1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b)

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

(c)
0 0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d)

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10

12

(e)
0 0.2 0.4 0.6 0.8 1

−8

−6

−4

−2

0

2

4

6

8

(f)

0 0.2 0.4 0.6 0.8 1
−50

−40

−30

−20

−10

0

10

20

30

40

50

(g)
0 0.2 0.4 0.6 0.8 1

−80

−60

−40

−20

0

20

40

60

80

(h)

Figure 5.2: Display of the calculated functions: (a) f0
even, (b) f0

odd, (c) f1
even, (d) f1

odd, (e)
f2
even, (f) f2

odd, (g) f3
even, (h) f3

odd scaled over the unit interval and sampled at 1000 discrete
points for display purposes.

39

general applications and arbitrary accuracy, up to essentially the level of machine precision

roundoff. These values were used, in particular, for all of the numerical examples presented

in this thesis. In view of the near-universality of these parameters, it becomes possible to

obtain generic continuation functions f r
even and f r

odd (0 ≤ r ≤ 9) that can be used to deal

with all continuation problems that may arise in an application of the PDE solver proposed

in this thesis. The Fourier coefficients of these functions were thus calculated and their

values at 35 points were stored in a 20× 35 double precision matrix F . (Seventy points xj

lie in the interval 1−∆ ≤ xj < 1 + 2d + ∆; only half of the corresponding values f r
even(xj)

and f r
odd(xj) need to be stored, however, since the values of the function f r

even (resp. f r
odd) in

the interval [1+d, 1+2d+∆] equal the corresponding value (resp. minus the corresponding

values) over the interval [1−∆, 1].) This matrix can be applied to calculate the FC(Gram)

continuation of any function. The effect of using the fixed matrix F on the error of the

FC(Gram) approximation is considered in Remark 5.2.2 below. The calculation leading to

the matrix F was performed in Maple’s high precision environment to eliminate all (small)

errors arising from the conditioning of the FC(SVD) linear system. It was found that with

the parameters given above, 48 digits of arithmetic precision were sufficient to guarantee all

matrix values were obtained with 16 correct digits (double precision) which were eventually

stored. (Interestingly, the computational time required by these one-time-only high-precision

computations amounted to a few tens of minutes.) All other computations leading to results

in this thesis were performed in the standard double precision environment. In particular,

the maximum errors reported in Table 5.2 resulted from use of the values stored in the

matrix F , followed by a double precision inverse FFT to produce the approximating Fourier

series which was eventually subtracted from the actual Gram-polynomial values to obtain

the approximation error at a large number of comparison points.

Remark 5.1.4. Since n∆ is taken to be fixed (see Remark 5.1.3 above), the associated value

of ∆ may be such that the various cases in Equation (5.10) may give rise to conflicting

definitions. Indeed, if n < 2n∆ then the segments [0, ∆] and [1−∆, 1] will overlap at least

at a point. There are two options to resolve this. One is that mesh refinement within the

FC-AD framework may be performed as shown in Section 6.2 to avoid the occurrence of

such small values of n. The other is to first approximate the function f over all n < 2n∆

points by a m degree polynomial which ensures that fp
left(x) = fp

right(x − 1 − d) over their

40

common domain of definition. For n ≤ n∆, while mesh refinement still leads to stable and

accurate solutions, our numerics indicate that latter option should not be chosen as it does

not maintain the stability of FC-AD algorithms.

5.2 Accuracy of the Approximation

In this section we provide an estimate of the error resulting from the FC(Gram) approx-

imation of a smooth function f ∈ Ck[0, 1], where k is either a sufficiently large positive

integer or k = ∞. To obtain our error bound we evaluate the errors arising from each of

the error-generating elements of the method, namely steps 2., 3., and 5. of the algorithm

described in Section 5.1. A certain blending of fmatch and f used in this section, which

results from use of a smooth windowing function (see Figure 5.3) is an important element

of the analysis. As pointed out in Remark 5.2.1, however, the final results apply, up to a

small correction, even when the blending procedure is not used. In a couple of instances

within our analysis it will prove necessary to perform such blending operations on functions

defined previously in this text which, like fde, differ by little from a smooth function. The

resulting smooth functions will be distinguished by superimposing a bar to the function

name so that, e.g., the smooth, blended version of fde becomes fde; see Equation (5.31)

below.

Error arising from step 2. of the FC(Gram) algorithm. Step 2. of the FC(Gram)

algorithm projects the boundary functions fleft and fright arising from f onto spaces of

polynomials of degree ≤ m. Recall that for the prescriptions in Section 5.1, the polynomial

projections use n∆ discrete evenly spaced points in ∆-sized intervals, resulting in the error

bound shown in Equation (5.15) for the interval [1−∆, 1]. Including the equivalent result

for the interval [1 + d, 1 + d + ∆], we have

‖fleft(x)− fp
left(x)‖L∞[1−∆,1] ≤ (1 + L(m))

∆m+1M

22m+1(m + 1)!
, (5.26)

and

‖fright(x)− fp
right(x)‖L∞[1+d,1+d+∆] ≤ (1 + L(m))

∆m+1M

22m+1(m + 1)!
, (5.27)

41

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.3: Sample smooth windowing function w(x) = e
2e1/x

x−1 over the unit interval.

where M is the largest value of fm+1(x) over the intervals, [1 − ∆, 1] and [0,∆] (whose

values coincide with those of the corresponding derivatives of fleft and fright on the intervals

[1 −∆, 1] and [1 + d, 1 + d + ∆] respectively). The relevant values of the parameter L(m)

are shown in Table 5.1.

Error arising from step 3. of the FC(Gram) algorithm. An additional compo-

nent of the error in the FC(Gram) algorithm arises from the inaccuracies in the FC(SVD)

continuations of the Gram polynomial pairs as defined in Section 5.1.1. In a more general

setting the existence of such continuations and the convergence properties of FC(SVD) con-

tinuations have been considered in references [28]. This error in FC(SVD) continuation of

the Gram polynomial pairs can be measured by noting how well fmatch approximates the

polynomials fp
left and fp

right over the domains [1 −∆, 1] and [1 + d, 1 + d + ∆] respectively.

Since, by Equation (5.9), the function fmatch is a linear combination of the functions f r
even

and f r
odd, for r = 0, . . . m, the error is a linear combination of the errors listed in Table 5.2

with coefficients given by Equation (5.8). An orthonormal basis was selected in step 1.,

42

with the coefficients ar
left and ar

right

|ar
left| ≤

√
n∆‖f(x)‖L∞[1−∆,1] for r = 0, . . . , m, (5.28)

and

|ar
right| ≤

√
n∆‖f(x− 1− d)‖L∞[1+d,1+d+∆] for r = 0, . . . , m. (5.29)

Therefore,

∥∥∥fmatch(x)− fp
left(x)

∥∥∥
L∞[1−∆,1]

≤ S0(m) (5.30)
∥∥∥fmatch(x)− fp

right(x)
∥∥∥

L∞[1+d,1+d+∆]
≤ S0(m),

where S0(m) depends on d/∆, n∆, g and Υ: S0(m) = S0(m, d/∆, n∆, g, Υ). In particular

if η is the maximum error in Table 5.2 for r ≤ m, then S0(m) = ηm
√

n∆‖f(x)‖L∞[0,1]. The

value of S0(m) decays spectrally as the values of g, Υ, and n∆ are increased (c.f. [28]) since

it results from convergent FC(SVD) continuations. As previously noted in Remark 5.1.2,

the errors arising in step 3. are negligible in practice.

A smooth approximation fde of the discontinuous function fde can be obtained using a

smooth windowing function (see Figure 5.3), scaled to a ∆-length interval:

fde =





f(x) + w(x/∆)(fmatch(x + 1 + d)− f(x)) for x ∈ [0, ∆]

f(x) for x ∈ (∆, 1−∆)

f(x) + w((1− x)/∆)(fmatch(x)− f(x)) for x ∈ [1−∆, 1 + d + ∆]

, (5.31)

and directly from the property 0 ≤ w(x) ≤ 1 and from the bounds (5.30), (5.26), and (5.27),

it follows that

∥∥∥f(x)− fde(x)
∥∥∥

L∞[0,1]
≤ S0(m) + (1 + L(m))

∆m+1M

22m+1(m + 1)!
. (5.32)

Finally considering the definition of fdp in Equation (5.10) yields,

∥∥∥fdp(x)− fde(x)
∥∥∥

L∞[0,1]
≤ S0(m) + (1 + L(m))

∆m+1M

22m+1(m + 1)!
. (5.33)

43

Error arising from step 5. of the FC(Gram) algorithm. Step 5. of the algorithm

produces the full FC(Gram) approximation f c by applying an FFT to fdp and thus providing

a Discrete Fourier Transform (DFT) approximation. This gives rise to additional errors

except at the discretization points, xj , j = 1, . . . , n, since the DFT is interpolatory. In

order to obtain a bound for the error arising from this Fourier series approximation we

consider the exact Fourier series of the smooth and (1 + d)-periodic function fde

fde(x) =
1

1 + d

∞∑

k−∞
ce
ke
−Ψkx. (5.34)

and its DFT

DFT
(
fde

)
(x) =

1
1 + d

∑

k∈t(n+nd−2)

cke
−Ψkx, (5.35)

with Ψk = 2πik
1+d and where h is given by (5.1). The coefficients ck in Equation (5.35) do not

match the exact Fourier coefficients of the function fde, which are given by

ce
k =

∫ 1+d

0
fde(x)eΨkxdx. (5.36)

The error Etot introduced by approximating the function fde by the function DFT
(
fde

)
can

be decomposed into the error Etrunc arising from the series truncation, and the error arising

by approximating the coefficients ce
k by ck. As is known [31, 83], however, the combined

error Etot can be bounded in terms of the truncation error: there is a constant CI such that

|Etot| ≤ CI log(N)|Etrunc|, (5.37)

where N is the number of data points used for the evaluation of the DFT. To obtain a

bound on Etot we thus seek a corresponding bound on the truncation error Etrunc.

We clearly have

|Etrunc| ≤
∑

k/∈t(n+nd−2)

|ce
k|. (5.38)

In order to bound the magnitude of the coefficients ce
k, we apply integration by parts q times

to Equation (5.36) which yields

ce
k =

(−1)q

Ψq
k

∫ 1+d

0
fde

(q)
(x)eΨkxdx,

44

where the boundary terms of the integration by parts procedure vanish since fde is a smooth

periodic function. Considering the derivatives of the function fde(x), we note that over the

interval [1, 1+d], fde
(q)

(x) = f
(q)
match(x), but fmatch(x) is a linear combination of f r

even(x) and

f r
odd(x) for r = 0, . . . , m. It can be seen easily that the latter functions, in turn, are scaled

versions of a set of C∞ functions that are independent of d, ∆ and h. From Remark 5.1.3

we have d = 26/9∆, and we therefore see that for all q ≥ 0 f
(q)
match(x) is bounded by ∆−q

times a value independent of h, d, and ∆. Similarly, w(q)(x) has bounded derivatives for

any q ≥ 0, so that both dq/dxq (w(x/∆)) over the interval [0, ∆] and dq/dxq (w((1− x)/∆))

over the interval [1−∆, 1] are bounded by ∆−q times a value independent of h, d, and ∆.

Thus if f ∈ Cq[0, 1], by application of the chain rule for differentiation, there exist constants

Fq and Mq independent of h, d, and ∆ such that

∣∣∣∣
dq

dxq
fde(x)

∣∣∣∣ ≤





Mq∆−q for x ∈ [0, ∆]

Fq for x ∈ [∆, 1−∆]

Mq∆−q for x ∈ [1−∆, 1 + d].

(5.39)

Equation (5.39) then gives rise to the following bound for the coefficients ce
k

|ce
k| ≤

(1 + d)q

(2πk)q
Fq +

(d + 2∆)(1 + d)q

(2πk∆)q
Mq. (5.40)

From the definition of the function t just below Equation (3.2) note that for k /∈ t(n +

nd − 2) we have |k| ≥ (1 + d)/2h. Clearly for all q ≥ 1 and n ≥ 1 we also have

∞∑

k=n

1
kq
≤ 1

nq
+

∫ ∞

n

1
kq

dk =
1
nq

+
1

(q − 1)(n)q−1
≤ q

(q − 1)nq
. (5.41)

Therefore from Equations (5.40) and (5.38), we obtain the bound

|Etrunc| ≤ q(1 + d)hq−1

(q − 1)πq
Fq +

q(d/∆ + 2)(1 + d)hq−1∆
(q − 1)(π∆)q Mq. (5.42)

Then from the bound (5.37) it follows that

∥∥∥DFT
(
fde

)
(x)− fde(x)

∥∥∥
L∞[0,1]

≤ CI log(n + nd − 2)
q(1 + d)hq−1

(q − 1)πq
Fq (5.43)

+CI log(n + nd − 2)
q(d/∆ + 2)(1 + d)hq−1∆

(q − 1)(π∆)q Mq.

45

We can thus state the main results of this section, which present as a series of three remarks.

Remark 5.2.1. A windowing function was used as part of the preceding analysis but is

not part of prescription of the FC(Gram) method as described in Section 5.1. Following

that prescription exactly involves the calculation error resulting from a Fourier series of fdp

instead of fde. Noting the result (5.33) and considering again the bound (5.37) immediately

gives

∥∥∥f c(x)−DFT
(
fde

)
(x)

∥∥∥
L∞[0,1]

≤ CI log(n+nd−2)
[
S0(m) + (1 + L(m))

∆m+1M

22m+1(m + 1)!

]
,

(5.44)

from which we obtain a bound for the error of the FC(Gram) approximation as prescribed

in Section 5.1:

‖f(x)− f c(x)‖L∞[0,1] ≤ log(n + nd − 2) (ζ1 + ζ2 + ζ3 + ζ4) , (5.45)

with

ζ1 = (CI + 1)(1 + L(m))
∆m+1M

22m+1(m + 1)!
, (5.46)

ζ2 = (CI + 1)S0(m), (5.47)

ζ3 = CI
q(1 + d)hq−1

(q − 1)πq
Fq, (5.48)

and

ζ4 = CI
q(d/∆ + 2)(1 + d)hq−1∆

(q − 1)(π∆)q Mq. (5.49)

Remark 5.2.2. Recall from Equation (5.3), that ∆ = (n∆ − 1)h. Using this value for ∆

in equation (5.49) gives

ζ4 = CI
q(d/∆ + 2)(1 + d)

(q − 1)(π(n∆ − 1))q Mq, (5.50)

which clearly does not tend to zero as h and consequently d and ∆ are refined. This bound

is therefore not ideal. Consider the alternate definition ∆ = I(n∆ − 1)h, for some positive

integer I. One could still project the functions fleft and fright into the Gram polynomials

using n∆ points in step 2. of the FC(Gram) algorithm (just use every Ith point to do

the projection). Therefore the terms ζ2, ζ3 will not be affected by the change, nor will the

parameter Mq be changed but the value of ζ4 will be decreased by a factor of nearly Iq−1

while ζ1 is increased by a factor of Im+1. Therefore there exists a procedure to enforce that

46

the sum (ζ1 + ζ2 + ζ3 + ζ4) ≤ ε for any positive value ε and proceeds as follows: choose

parameters n∆, g, and Υ for fixed values of m and d/∆ such that ζ2 ≤ ε/4. Next the

parameter I may be chosen such that ζ4 ≤ ε/4. The remaining terms, ζ1 and ζ3 decay

as hm+1 and hq−1 respectively and therefore for small enough h will produce the prescribed

error. It is numerically observed (see Section 5.3) that taking I = 1, as is prescribed by

the FC(Gram) approximation, is sufficient to ensure that the non-vanishing errors (relating

to the bounds ζ2 and ζ3) are indistinguishable from machine precision roundoff errors and

O(hm+1) convergence is observed. The logarithmic term, log(n + nd − 2), is bounded by a

small number for all reasonable values of n.

Remark 5.2.3. It was noted at the beginning of Section 5.1 that the FC-AD PDE solver

involves restriction of the function f from a certain interval [x`, xr] to a certain interval

[x1, xn] which, in the context of this section, was assumed (without loss of generality) to

equal the interval [0, 1]. In order to extend our error bounds to yield bounds on the error of

the approximation of f by f c over an interval slightly larger than [0, 1], we need only consider

the errors that arise in steps 2. and 3. where the accuracy of the orthogonal polynomial

projection must be considered over a slightly larger interval and consequently the accuracy

of the FC(SVD) continuations of Gram polynomial pairs must also be considered in the

marginally extended interval. Consequently only the parameters ζ1 and ζ2 in Equation (5.45)

are changed from the case presented above. Recall from Chapter 1 (see Figures 1.1 and 1.2)

that x1 − x` < h and xr − xn < h and then let

ε = max(x1 − x`, xr − xn) and ∆ε = ∆ + ε. (5.51)

Then following exactly the same bounding procedures presented above but extrapolating to a

slightly larger interval yields the results:

ζ1 = (CI + 1)(1 + Lε(m))
(∆ε)m+1 M

22m+1(m + 1)!
(5.52)

and

ζ2 = (CI + 1)Sε
0(m), (5.53)

where the value of Lε(m) for all ε ∈ [0, h] is shown as a function of ε in Figure 5.4. The

effect of the extrapolation is significant since Lε(m) increases rapidly with ε; note that,

47

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

ε/h

L
ε
(m

)

m=5
m=6

Figure 5.4: Coefficient Lε(m) for the polynomial error bound in Equation (5.52) and calcu-
lated as a maximum over 30000 points (see Equation (5.13)).

amongst the cases considered in this section, and the effect is most significant for Lε(9).

The figure lists only m = 4 and m = 5 since due to the stability considerations, examined

in Chapter 10, only these values of m will be used within the FC-AD methodology. In our

FC(Gram) algorithm, Lε(m) is independent of the mesh and therefore a constant in the

convergence analysis of the FC(Gram) continuation approximation. The value of Sε
0(m) is

determined in the same manner as S0(m) (see text below Equation (5.30)) except that the

values in Table 5.3 are used instead of those in Table 5.2. Table 5.3 assumes the worst

possible case ε = h.

5.3 Numerical Examples

Results for the continuation of the function f(x) = esin(2.7πx)+cos(πx) are shown in Figure 5.5

for the FC(Gram) continuation just introduced, as well as Barycenter Chebyshev interpola-

tion [135], and linear interpolation. The maximum error produced by each method is shown

for a range of values of n. The error was calculated at 20n discrete data points. Note that

the error of the Chebyshev interpolation decreases faster than any power of h, while the

48

Error Error

f0
even 5.6 · 10−17 f0

odd 2.9 · 10−15

f1
even 4.8 · 10−14 f1

odd 5.6 · 10−16

f2
even 6.7 · 10−15 f2

odd 1.2 · 10−13

f3
even 2.2 · 10−12 f3

odd 2.3 · 10−14

f4
even 4.8 · 10−13 f4

odd 6.0 · 10−12

f5
even 1.2 · 10−10 f5

odd 2.2 · 10−12

Table 5.3: Maximum errors over a slightly extended interval (evaluated as maxima over
2000 points in the set [1−∆, 1+1/h]∪ [1+d−1/h, 1+d+∆]) that result from the even and
odd continuations of the Gram Polynomials for the parameter values n∆ = 10, d/∆ = 26/9,
g = 63, and Υ = 150.

FC(Gram) used here is high-order but not spectrally accurate. We point out that, as dis-

cussed earlier in Chapter 3 however, the Chebyshev method requires data points arranged

in a special fashion, which makes it unsuitable for solution of PDEs in general domains. If

an FC(Gram) algorithm based on approximations by Gram polynomials of degree five at

the left and right ends of the approximation interval is used (m=5), the FC(Gram) con-

tinuation cannot be better than sixth-order accurate. If a ninth-degree polynomial is used

instead (m=9), then tenth-order convergence results. Figure 5.5 shows the results m = 9

on the top and the results with m = 5 on the bottom.

Another interesting test case is provided by the Runge function,

f(x) =
1

25(2x− 1)2
, (5.54)

here scaled to the domain x ∈ [0, 1]. The Runge function is a classic example of the

difficulties that can be encountered when a non-periodic function is interpolated over an

evenly spaced discretization of points. Figure 5.6 shows the maximum interpolation error of

the FC(Gram) approximation of the Runge function for m = 9 and m = 5 again compared

with Barycenter Chebyshev interpolation, and linear interpolation.

In this case the superior performance of the continuation method is clearly demon-

strated in the tenth-order case, while the oversampled version (sixth-order) also displays an

excellent performance. Notice also that with nearly 1000 points, the limiting resolution of

the FC(Gram) continuation is within approximately one order of magnitude from machine

precision.

The error made in second derivative after approximating the Runge function with

49

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

n

M
a
x
im

u
m

E
r
r
o
r

Continuation
Chebyshev
Linear

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

n

M
a
x
im

u
m

E
r
r
o
r

Continuation
Chebyshev
Linear

Figure 5.5: Maximum interpolation error for the function f(x) = esin(2.7πx)+cos(πx) with a
variety of interpolation schemes including a tenth-order accurate FC(Gram) continuation
on top and a sixth-order version on the bottom.

50

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

n

M
a
x
im

u
m

E
r
r
o
r

Continuation
Chebyshev
Linear

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

n

M
a
x
im

u
m

E
r
r
o
r

Continuation
Chebyshev
Linear

Figure 5.6: Maximum interpolation error for the function f(x) = 1
25(2x−1)2

with a variety
of interpolation schemes, including a tenth-order accurate FC(Gram) continuation on top
and a sixth-order version on the bottom.

51

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

n

M
a
x
im

u
m

E
r
r
o
r

6th order
10th order

Figure 5.7: Maximum interpolation error of the second derivative for the function f(x) =
1

25(2x−1)2
with a sixth-order accurate FC(Gram) continuation and a tenth-order version.

FC(Gram) continuation of orders six and ten are shown in Figure 5.7. It shows initially spec-

tral but ultimately fourth- and eight-order accurate approximations of the second derivative,

respectively, in which cases the largest error occurs near the boundary. Note that the tenth-

order scheme hits a limiting threshold and then the error grows as the mesh is refined, so

that at 1000 points approximately five digits have been lost. For a traditional finite differ-

ence method, standard Fourier series, or even Chebyshev approximation one would expect

to lose approximately six digits with as many points.

52

Chapter 6

FC-AD Algorithm for the Heat
Equation

The high-order accuracy of the FC(Gram) continuation approximation was demonstrated

in the last chapter. In this chapter, a certain FC-AD PDE solver is introduced. The FC-

AD solver results as a combination of the FC(Gram) continuation method presented in

the previous chapter with the classical Alternating Direction framework. To illustrate the

methodology, here we present the FC-AD algorithm in its application as a solver for the

Heat Equation. A splitting is developed that reduces the problem to one of solving ODEs

over the simple 1D geometries shown in Figure 1.2. A detailed algorithm is presented which,

using the FC(Gram) continuations to solve Alternating Direction ODEs produces a stable

numerical scheme. A theoretical discussion of the stability properties of this algorithm is

presented in Chapter 10. The unconditional stability and high-order accuracy of the FC-AD

methodology is illustrated in this section through a variety of numerical results. Additional

FC-AD algorithms for Elliptic and Hyperbolic problems in two and three dimensions are

presented in Chapters 7 and 8, respectively.

53

6.1 Alternating Direction Splitting for the Heat Equation

To introduce the FC-AD algorithm we consider, the 2D Heat Equation with Dirichlet bound-

ary data:

ut = k(uxx + uyy) + Q(x, y, t), (x, y, t) ∈ Ω× (0, T],

u(x, y, t) = G(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, T], (6.1)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω,

k ∈ R, k > 0,

where Ω ⊂ R2 is a smoothly bounded domain, and where the functions Q, G, and u0 are

given smooth functions. Let tn = n∆t and further let un and Qn+ 1
2 be equal to u(x, y, tn)

and Q(x, y, (n+1/2)∆t) respectively. Using a centered finite difference scheme to discretize

the time derivative gives

un+1 − un

∆t
=

k

2
∂2

∂x2
(un+1 + un) +

k

2
∂2

∂y2
(un+1 + un) + Qn+ 1

2 + E1(x, y, ∆t), (6.2)

where

E1(x, y, ∆t) ≤ ∆t2

24
‖uttt(x, y, t)‖L∞(Ω×(tn,tn+1)) (6.3)

+
k∆t2

8
‖uttxx(x, y, t)‖L∞(Ω×(tn,tn+1))

+
k∆t2

8
‖uttyy(x, y, t)‖L∞(Ω×(tn,tn+1)),

results from use of Taylor series expansions with the Cauchy form of the remainder. Col-

lecting the terms for un and un+1 in the above equations gives

(
1− k∆t

2
∂2

∂x2
− k∆t

2
∂2

∂y2

)
un+1 =

(
1 +

k∆t

2
∂2

∂x2
+

k∆t

2
∂2

∂y2

)
un (6.4)

+∆tQn+ 1
2 + ∆tE1(x, y, t).

54

Factoring (6.4) into directional components yields

(
1− k∆t

2
∂2

∂x2

)(
1− k∆t

2
∂2

∂y2

)
un+1 =

(
1 +

k∆t

2
∂2

∂x2

) (
1 +

k∆t

2
∂2

∂y2

)
un

+
k2∆t2

4
∂2

∂x2

∂2

∂y2
(un+1 − un) (6.5)

+∆tQn+ 1
2 + ∆tE1(x, y, t).

Again using Taylor series with the Cauchy form of the remainder, we see that

E2(x, y, t) =
k2∆t2

4
∂2

∂x2

∂2

∂y2
(un+1 − un) ≤ k2∆t3

4
‖utxxyy(x, y, t)‖L∞(Ω×(tn,tn+1)); (6.6)

note that E2(x, y, t) is of order O(∆t3). In order to solve for un+1 in Equation (6.5),

operators of the form
(
1− k∆t

2
∂2

∂x2

)
and

(
1− k∆t

2
∂2

∂y2

)
must be inverted. The application

of the inverse operators on a function f gives as a result the solution of the one-dimensional

boundary value problem

−α2u′′ + u = f, u(a) = B`, u(b) = Br, (6.7)

with

α2 =
k∆t

2
, (6.8)

for given boundary values B` and Br, prescribed at locations a and b respectively (see

Remark 6.1.1). The points a and b are the intersection of the line over which the ODE is

to be solved with the domain boundary.

Definition 6.1.1. For notational convenience, we define

(
1− k∆t

2
∂2

∂x2

)−1

=
(

1− k∆t

2
∂2

∂x2

)−1

a,b;B`,Br

(6.9)

and (
1− k∆t

2
∂2

∂y2

)−1

=
(

1− k∆t

2
∂2

∂y2

)−1

a,b;B`,Br

(6.10)

as the operators that produce the solution u of the boundary value problem (6.7) from the

right hand side f with boundary values B` and Br and boundary locations a and b.

A numerical algorithm (based on the FC(Gram) continuation method presented in the

55

previous chapter) for the solution of ODEs such as Equation (6.7) is presented in Section 6.3.

In the special case Q = 0, Peaceman and Rachford obtained an approximation, ũn+1,

to un, the solution to Equation (6.5), using a scheme of the form

(
1− k∆t

2
∂2

∂x2

)
ũn+ 1

2 =
(

1 +
k∆t

2
∂2

∂y2

)
ũn

(
1− k∆t

2
∂2

∂y2

)
ũn+1 =

(
1 +

k∆t

2
∂2

∂x2

)
ũn+ 1

2 ,

(see also [125]). In order to account for the presence of the inhomogeneity Q, we use instead

(
1− k∆t

2
∂2

∂x2

)
ũn+ 1

2 =
(
1 + k∆t

2
∂2

∂y2

)
ũn + ∆t

2 Qn+ 1
4 (6.11)

(
1− k∆t

2
∂2

∂y2

)
ũn+1 =

(
1 + k∆t

2
∂2

∂x2

)
ũn+ 1

2 + ∆t
2 Qn+ 3

4 , (6.12)

where Qn+ 1
4 and Qn+ 3

4 are equal to Q(x, y, (n+1/4)∆t) and Q(x, y, (n+3/4)∆t) respectively.

It is easy to check that a solution of Equations (6.11) and (6.12) provide an approximate

solution of Equation (6.5). To show this we multiply Equation (6.11) by
(
1 + k∆t

2
∂2

∂x2

)
and

Equation (6.12) by
(
1 + k∆t

2
∂2

∂x2

)
—noting that the operators

(
1− k∆t

2
∂2

∂x2

)
and

(
1− k∆t

2
∂2

∂x2

)

commute and subtracting the two resulting equations, we obtain

(
1− k∆t

2
∂2

∂x2

)(
1− k∆t

2
∂2

∂y2

)
ũn+1 =

(
1 +

k∆t

2
∂2

∂x2

) (
1 +

k∆t

2
∂2

∂y2

)
ũn

+
∆t

2

(
1 +

k∆t

2
∂2

∂x2

)
Qn+ 1

4 (6.13)

+
∆t

2

(
1− k∆t

2
∂2

∂x2

)
Qn+ 3

4 .

We now introduce the splitting

Qn+ 1
2 =

1
2

(
1 +

k∆t

2
∂2

∂x2

)
Qn+ 1

4 +
1
2

(
1− k∆t

2
∂2

∂x2

)
Qn+ 3

4 + E3(x, y, t), (6.14)

where, applying a Taylor series expansion with the Cauchy form of the remainder to the

function Q we obtain the bound

E3(x, y, t) ≤ ∆t2

16
‖Qtt(x, y, t)‖L∞(Ω×(tn,tn+1)) +

k∆t2

8
‖Qtxx(x, y, t)‖L∞(Ω×(tn,tn+1)). (6.15)

56

It follows that, as claimed above, a solution of Equations (6.11) and (6.12) is also a solution

to Equation (6.5) with error equal to

∆tE1(x, y, t) + E2(x, y, t) + ∆tE3(x, y, t). (6.16)

Boundary values for ũn+ 1
2 in Equation (6.11) and for ũn+1 in Equation (6.12) are all that

are needed in order to complete the scheme.

Remark 6.1.1. The boundary values for ũn+1 are simply given by the value G(x, y, tn+1)

for the appropriate boundary points (x, y) ∈ ∂Ω. The boundary values of ũn+ 1
2 for the

traditional ADI on a square domain are given by

ũn+ 1
2 (x, y) =

1
2
(1 +

k∆t

2
∂2

∂y2
)G(x, y, tn) +

1
2
(1− k∆t

2
∂2

∂y2
)G(x, y, tn+1) (6.17)

+
∆t

4
(Q(x, y, tn+ 1

4)−Q(x, y, tn+ 3
4)), (x, y) ∈ ∂Ω,

a relation that follows directly from Equations (6.11) and (6.12), c.f., [125]. In the case of

a complex domain, the spatial derivatives of G are not known a priori. In order to handle

complex domains, the FC-AD algorithm uses the boundary values

ũn+ 1
2 (x, y) = G(x, y, (n + 1/2)∆t). (6.18)

This approximation introduces an additional time discretization error E4 that satisfies

E4(x, y, t) ≤ k∆t2

4
‖utyy(x, y, t)‖L∞(Ω×(tn,tn+1)) +

∆t2

4
‖utt(x, y, t)‖L∞(Ω×(tn,tn+1))(6.19)

+
∆t2

8
‖Qt(x, y, t)‖L∞(Ω×(tn,tn+1)).

Accounting for the time discretization errors (6.16) and the error (6.18) on the boundary

values, the overall error arising from one step of our Heat-Equation FC-AD algorithm is

of order O(∆t2). This bound thus predicts an overall FC-AD error of O(∆t) Despite this

argument, our numerical experiments, shown in Section 6.5, indicate that in practice the

overall accuracy of the algorithm remains O(∆t2). In any case, Richardson Extrapolation

can also be employed to increase the accuracy in time as has been shown in reference [65]

and which we demonstrate in Chapter 8 for the Wave Equation.

57

For both algorithmic and analysis reasons it is convenient to introduce the notation

wn =
(

1 +
k∆t

2
∂2

∂y2

)
ũn, (6.20)

and

wn+ 1
2 =

(
1 +

k∆t

2
∂2

∂x2

)
ũn+ 1

2 . (6.21)

In terms of these new variables and the notation of Definition 6.1.1, the algorithm becomes

wn+ 1
2 =

(
1 +

k∆t

2
∂2

∂x2

) (
1− k∆t

2
∂2

∂x2

)−1 (
wn +

∆t

2
Qn+ 1

4

)
(6.22)

wn+1 =
(

1 +
k∆t

2
∂2

∂y2

)(
1− k∆t

2
∂2

∂y2

)−1 (
wn+ 1

2 +
∆t

2
Qn+ 3

4

)
.

The operators
(
1 + k∆t

2
∂2

∂x2

)(
1− k∆t

2
∂2

∂x2

)−1
and

(
1 + k∆t

2
∂2

∂y2

)(
1− k∆t

2
∂2

∂y2

)−1
acting

on a function f give the equations

−α2u′′(x) + u(x) = f(x), u(a) = B`, u(b) = Br, (6.23)

α2u′′(x) + u(x) = q(x),

for some function q where again α2 = k∆t
2 . By adding the two equations in (6.23), it is

observed that

q(x) = 2u(x)− f(x), (6.24)

where u(x) is the solution to Equation (6.7), and therefore each half-step of (6.22) only

requires one to solve Equation (6.7) and then simply apply Equation (6.24).

6.2 Mesh Structure

The discrete mesh for the FC-AD methodology has already been introduced in Chapter 1

(in particular see Figures 1.1 and 1.2). It involves simply overlaying the geometry with

a Cartesian mesh and using, in addition, all boundary points (denoted by x` and xr in

Figure 6.1) lying at the intersection of the domain boundary with all Cartesian horizontal

and vertical lines. Note that on a single line (see Figure 6.1), n interior points are positioned

in an arbitrary manner with respect to x` and xr, with the only limitation that x1−x` and

58

Figure 6.1: Sample discretization for the ODEs resulting from an alternating direction
splitting of a PDE: n discretization points xj are shown in addition to the boundary points
x` and xr,

Figure 6.2: Spatial PDE domain Ω, showing the spatial discretization DΩ.

xr − xn are both less than or equal to h, where h is the spacing of the interior points.

In order to facilitate reference to the grid points in the interior of the domain, we

introduce some additional notation. Let the bounded open set Ω (which is the domain of

the PDE, see Figure 6.2) be contained in [ax, bx] × [ay, by]. Let (xi, yj) be a point in a

Cartesian mesh over the rectangle [ax, bx]× [ay, by]. Then we define the interior mesh points

DΩ as the set

DΩ = {(xi, yj) ∈ [ax, bx]× [ay, by] : (xi, yj) ∈ Ω} . (6.25)

For a given point (xi, yj) ∈ DΩ, let nxi be the number of points in DΩ on the same vertical

line as (xi, yj), and let nyj be the corresponding number of points in DΩ on the same

horizontal line.

We introduce some spaces associated with these meshes, which will be useful in the

59

Figure 6.3: Sample geometry and discretization for our FC-AD algorithm demonstrating a
local refinement designed to maintain high-order accuracy near portions of the boundary
for which the sampling is not sufficiently fine.

stability discussion presented in Chapter 10. We define the vector space `2(n) = Rn with

the Euclidean norm; in our constructions n may be either nxi or nyj for some xi or yj .

Also letting NΩ be the total number of points in DΩ, we define the space `2(DΩ) = RDΩ ;

that is, the set of all functions from DΩ to R with the usual Euclidean norm: for a given

θ ∈ `2(DΩ), θij = θ(xi, yj) the norm of θ is given by

‖θ‖`2(DΩ) =

√√√√ ∑

(xi,yj)∈DΩ

θ2
ij

NΩ
. (6.26)

The mesh structure and definitions above will be used for all PDEs considered in this thesis.

For some domains Ω, the mesh lines may cross the boundary more than twice (see

Figure 8.1). In such a case, each segment of data is treated separately. Additionally, consider

the geometry in Figure 6.3 with the evenly spaced discrete Cartesian mesh shown. Lines of

data are available in this geometry in both spatial directions over which the ODEs (6.22)

may be solved. But it may occur that an insufficient number of points are available for high-

order accuracy in the FC(Gram) continuation along a given line (see Remark 5.1.4). In this

60

case, local refinement may be used, as is shown on the right portion of Figure 6.3. This

simply involves refining the mesh in a single spatial direction, but that refinement must be

extended into the mesh some distance so that high-order FC(Gram) approximations can be

obtained along all lines of data in the mesh (once again, see Remark 5.1.4). The boundary

conditions needed for the fine scale mesh in the interior of Ω may be interpolated from

the results obtained on the coarser mesh. This local refinement strategy should also be

applicable to capture fine details in the solution in an adaptive framework as well. Clearly

a more detailed study of mesh refinement for the FC-AD and its potential uses would be

beneficial, but results obtained thus far have maintained the accuracy and stability of the

overall approach. In the next chapter we present an example in which this type of mesh

refinement was used.

6.3 FC-ODE Algorithm: Solution of ODEs by Means of Fourier

Continuation

In view of the discussion presented in the preceding sections, the last remaining steps

required to implement the FC-AD for the Heat Equation is to obtain an accurate approxi-

mation of the solution of ODEs of the form

−α2u′′(x) + u(x) = f(x), u(x`) = B`, u(xr) = Br, (6.27)

and, using that solution, to determine a corresponding approximation for the function q

in Equation (6.24). It is not difficult to obtain such high-order approximations for u and

q; a number of additional steps must be followed, however, to insure the stability of the

associated FC-AD algorithm—as described below in this section, and studied in detail in

Chapter 10. The first step in our approximate solution of Equation (6.27) approximates f

by a continuation Fourier series f c

f c(x) =
∑

k∈t(n+nd−2)

ake
2πi xk

(xr−x`)(1+d) (6.28)

61

as discussed the previous chapter. A particular solution to

−α2v′′(x) + v(x) = f c(x), v(x`) = B`, v(xr) = Br, (6.29)

is easily obtained: including the appropriate solution of the associated homogeneous prob-

lem, the solution v of (6.29) is given by

v(x) =
∑

k∈t(n+nd−2)

ak

1 + 4α2π2k2

(xr−x`)2(1+d)2

e
2πi xk

(xr−x`)(1+d) + c1h1(x) + c2h2(x), (6.30)

where c1 and c2 are constants chosen to fit the boundary conditions in (6.27) and where

the homogeneous solutions to (6.27) are given by,

h1(x) = ex/|α| and h2(x) = e−x/|α|. (6.31)

As shown in Section 6.1, in the context of the FC-AD algorithm we have α2 = k∆t/2:

α → 0 as ∆t → 0. However, we note that as α → 0, v(x) does not converge to u(x) as it

would be the case were one to use Finite Difference Approximations; instead

u(x)− v(x) → f(x)− f c(x) 6= 0 as α → 0 for x away from x` and xr. (6.32)

Remark 6.3.1. In view of the lack of convergence to zero as shown in Equation (6.32), use

of a scheme such as (6.29) as part of our FC-AD algorithm would result in certain types

of conditional convergence—e.g., lack of convergence as ∆t tends to 0 much faster than h

tends to zero. In order to eliminate this difficulty we introduce corrections ensuring that the

corrected solution uj satisfies

u(xj)− uj → 0 as α → 0 for all x. (6.33)

A simple correction that restores the aforementioned convergence to zero as α → 0, (and,

additionally, gives rise to high-order accuracy) is obtained by means of low-order accurate

Finite Difference techniques—as indicated in what follows. The correction ηj is obtained as

62

the solution of the equation

−α2 ηj+1 − 2ηj + ηj−1

h2
+ ηj = f(xj)− f c(xj), (6.34)

with boundary conditions η0 = 0, ηn∆+1 = 0, ηn−n∆ = 0, and ηn+1 = 0 (A banded LU

Decomposition allows η to be calculated in O(n∆) operations (c.f., [110])). Clearly, the

alternate choice of ηj = f(xj) − f c(xj), which would suffice for convergence to 0, lacks a

connection to the actual ODE and would result in a lack of convergence to solutions of the

PDE as the spatial discretization tends to zero. Notice that the values ηj are essentially “all

error” (they arise from the error f(xj)− f c(xj) on the right hand side of Equation (6.34))

that we are required to keep to ensure convergence of the FC-AD algorithm as the spatial

and temporal mesh sizes converge to zero independently). It is easy to check that the

corrected solution v(xj) + ηj satisfies u(xj)− (v(xj) + ηj) → 0 as α → 0, as required.

Additional steps are needed in order to ensure the stability of the full FC-AD algorithm.

The steps we list later in this section, which where obtained through a significant amount

of experimentation, involve a series of orthogonal projections that, as is established in

Section 10, give rise to a stable and high-order accurate numerical scheme. To present the

stability restoring steps we introduce the following two important definitions:

Definition 6.3.1. For a given function f defined in [x`, xr], the open boundary projection

fp of f is defined as follows: an orthonormal Gram polynomial [14] basis {P o,1
s (x)}m

s=0 is

formed by polynomials of degree ≤ m that are orthogonal with respect to the discrete scalar

product (f, g)o,` =
∑

f(xj)g(xj) over the set of points

{xj , j = 1, . . . , n∆}. (6.35)

An additional orthonormal Gram polynomial basis {P o,2
s }m

s=0 is formed orthogonal with re-

spect to the discrete scalar product (f, g)o,r =
∑

f(xj)g(xj) over the set of points

{xj , j = n− n∆ + 1, . . . , n}. (6.36)

63

The function fp is then defined by

fp(x) =





∑m
s=0(f, P o,1

s)o,`P
o,1
s (x) for x ∈ [x`, xn∆]

f(x) for x ∈ (xn∆ , xn−n∆+1)
∑m

s=0(f, P o,2
s)o,rP

o,2
s (x) for x ∈ [xn−n∆+1, xr].

(6.37)

Clearly, on the boundary segment [x`, xn∆] (resp. [xn−n∆+1, xr]), fp equals the projection

of f according to the scalar product (·, ·)o,` (resp. (·, ·)o,r).

Definition 6.3.2. For a given function f defined in [x`, xr], the closed boundary projection

f b of f is defined as follows: an orthonormal polynomial basis {P c,1
s (x)}m

s=0 is formed by

polynomials of degree ≤ m that are orthogonal with respect to the discrete scalar product

(f, g)c,` =
∑

f(xj)g(xj) over the set of points

{x`} ∪ {xj , j = 1, . . . , n∆}.

An additional orthonormal polynomial basis {P c,2
s }m

s=0 is formed orthogonal with respect to

the discrete scalar product (f, g)c,r =
∑

f(xj)g(xj) over the set of points

{xj , j = n− n∆ + 1, . . . , n} ∪ {xr}.

The function f b is then defined by

f b(x) =





∑m
s=0(f, P c,1

s)c,`P
c,1
s (x) for x ∈ [x`, xn∆]

f(x) for x ∈ (xn∆ , xn−n∆+1)
∑m

s=0(f, P c,2
s)c,rP

c,2
s (x) for x ∈ [xn−n∆+1, xr].

(6.38)

Clearly, on the boundary segment [x`, xn∆] (resp. [xn−n∆+1, xr]), f b equals the projection of

f according to the scalar product (·, ·)c,` (resp. (·, ·)c,r).

We are now ready to introduce our final, consistent and stability-corrected solution uj

mentioned earlier in this section and presented in point 4. below. To obtain uj we proceed

as follows:

1. Construct the open boundary projection vp of v according to Definition 6.3.1.

2. Construct the closed boundary projection vb of v according to Definition 6.3.2.

64

3. Project the calculated finite difference solution ηj into the open Gram polynomial

basis (see Defintion 6.3.1) to obtain the projection

ηp
j =





∑m
s=0(η, P o,1

s)o,`P
o,1
s (xj) for j = 1, . . . , n∆

0 for j = n∆ + 1, . . . , n− n∆

∑m
s=0(η, P o,2

s)o,rP
o,2
s (xj) for j = n− n∆ + 1, . . . , n,

(6.39)

where P o,1
s and P o,2

s are as defined in Definition 6.3.1 and the inner products notations

(η, g)o,` and (η, g)o,r are slight modifications of those used in Definition 6.3.1: here

these symbols are taken to denote
∑

ηjg(xj) over the sets of points (6.35) or (6.36)

as appropriate.

Our stability corrected solution uj , presented in step 4. below, results as a combination

of the projections mentioned in steps 1. through 3. The main goal leading to the specific

combination of projections we use is to preserve, at the same time, the validity of (6.33)

and the stability of the algorithm; we obtained our final expression for the solution uj by

seeking to achieve such dual goal through a combination of heuristic arguments and a degree

of experimentation. In particular we found that use of the closed boundary projection vb

gives rise to stability but, owing to the inclusion of the boundary points x` and xr in the

projection scheme, vb(xj) actually does not tend to v(xj) as α → 0: use of this approach

would not give rise to a fully convergent overall PDE solver. While vp(xj) does tend to

v(xj) as α → 0, it happens not to give rise to stable numerics when used in conjunction

with the FC-AD methodology. We found that a linear combination in terms of a variable

coefficient χ = χ(α, h)

χ = min(25α2/h2, 1) (6.40)

induces stability while giving rise to convergence of the boundary values. The specific

form (6.40) and in particular, the constant (25) we use, were obtained through experimen-

tation, and was found to insure unconditional stability as the resulting ODE solver is used

as part of the overall FC-AD method. We note that both vp and vb are high-order accurate

approximations of v and therefore so is their linear combination. The projection in Step

3. was similarly undertaken for stability considerations and since ηj is an error term, this

projection has no significant effect on the overall error. Thus:

65

4. The solution uj is constructed as

uj = ηj − ηp
j + (1− χ)vp(xj) + χvb(xj). (6.41)

Once the approximate solution uj to the differential equation (6.27) has been obtained,

our approximation gj to the function q is then given by

qj ≈ 2uj − f(xj). (6.42)

All the elements are now in place for the implementation of our stable and high-order

accurate FC-AD methodology for the Heat Equation; elliptic and hyperbolic PDEs are

considered, in turn, in Chapters 7 and 8. An analysis of the error arising from this correction

and all other approximations is given in Section 6.4

6.4 Accuracy of the Solution to ODEs

A theoretical study of the accuracy of the FC(Gram) approximation to a smooth function

was presented in Section 5.2 and a bound was given in Equation (5.45) for the corresponding

approximation error, including the error arising from “accurate extrapolation slightly be-

yond the interior mesh”, as discussed in Remark 5.2.3. The expected O(hm+1) convergence

was also demonstrated with a variety of numerical results in Section 5.3.

In the previous portion of Chapter 6, in turn, we introduced a method, outlined in

Section 6.3, which, based on the FC(Gram) approach, can be used to produce numerical

solutions uj for ODEs of the type

−α2u′′(x) + u(x) = f(x), u(x`) = B`, u(xr) = Br, (6.43)

that arise in connection with Alternating Direction PDE solvers. In the present section

we present a study of the error that results as these methods are used to produce such

numerical ODE solutions; an additional portion of our theoretical discussion is presented in

Chapter 10 where certain singular-values that relate to the stability of the overall FC-AD

approach are studied.

The error analysis presented in this section results from an application of the maximum

66

principle [59, 98]. Let f ∈ Ck[x`, xr] and u ∈ Ck+2[x`, xr] for sufficiently large k, and

let f c be the FC(Gram) approximation to f . Further, call A(f, h) the error implicit in a

FC(Gram) continuation:

A(f, h) = ‖f(x)− f c(x)‖L∞[x`,xr]. (6.44)

In order to determine the error of the approximate solution uj given by Equation (6.41) we

consider the Green’s function associated with the differential operator in Equation (6.43).

For clarity, and without loss of generality, in this section we let x` = 0 and xr = 1 so that

the Green’s function for zero Dirichlet data is given by

G(x, x̃) =





2e1/|α|
|α|(e2/|α|−1)

sinh
(

x̃
|α|

)
sinh

(
1−x
|α|

)
for x̃ < x

2e1/|α|
|α|(e2/|α|−1)

sinh
(

1−x̃
|α|

)
sinh

(
x
|α|

)
for x < x̃.

(6.45)

Since the function v (defined in Equation (6.30)) is the exact solution of

−α2v′′(x) + v(x) = f c(x), v(x`) = B`, v(xr) = Br, (6.46)

it follows that

u(x)− v(x) =
∫ 1

0
(f(x̃)− f c(x̃))G(x, x̃)dx̃. (6.47)

Clearly this quantity is bounded by

‖u(x)− v(x)‖L∞[0,1] ≤ A(f, h)
∫ 1

0
|G(x, x̃)| dx̃. (6.48)

Noting that G(x, x̃) ≥ 0 for x, x̃ ∈ [0, 1] and that, further,

0 ≤
∫ 1

0
G(x, x̃)dx̃ = 1−

sinh
(

1−x
|α|

)
+ sinh

(
x
|α|

)

sinh
(

1
|α|

) ≤ 1, (6.49)

we obtain

‖u(x)− v(x)‖L∞[0,1] ≤ A(f, h). (6.50)

Thus the error in the ODE solution is bounded by the maximum error in the FC approxi-

mation of the right-hand-side.

67

In order to correct for consistency in the algorithm, certain discrete values ηj were

introduced as the finite difference solution to the ODE (6.34) in Section 6.3. From the

definition of A(f, h) (Equation (6.44)), we have

|ηj | ≤ |f(xj)− f c(xj)| ≤ A(f, h) for j = 1, . . . , n, (6.51)

where the first inequality follows directly from the discrete maximum principle (see [98]),

and therefore

max
j=0,...,n

|u(x)− v(x)− ηj | ≤ 2A(f, h). (6.52)

We now consider the error resulting from the projections introduced in Section 6.3,

which, as will be discussed in Chapter 10, relate to stability issues. Let up and ub be the

open and closed boundary projections of the function u according to the Definitions 6.3.1

and 6.3.2 respectively. The approximation error in these projections can be bounded as in

Chapter 5. Recalling the definitions of ε and ∆ε from Equation (5.51), we have

‖u(x)− up(x)‖L∞[0,1] ≤ (1 + Lε(m))
(∆ε)m+1 Mu

22m+1(m + 1)!
, (6.53)

and

‖u(x)− ub(x)‖L∞[0,1] ≤ (1 + Lε
B(m))

(∆ε)m+1 Mu

22m+1(m + 1)!
, (6.54)

where Mu is the maximum of the (m+1)th derivative of u over the set [0, xn∆]∪[xn−n∆+1, 1].

The new constant Lε
B(m) in Equation (6.54) is a quantity analogous to Lε(m) which uses

a set of discrete sampling points that includes the relevant boundary point (u(x`) or u(xr))

in the boundary projection (see Definition 6.3.2). (Note that, by symmetry, the same value

Lε
B(m) applies to both possible configurations, namely, a) adding a point x` or b) adding a

point xr.) All the possible values of the constant Lε
B(m) are plotted in Figure 6.4; compare

the corresponding values of Lε(m) shown in Figure 5.4.

In order to bound the magnitude of the values ηj−ηp
j (calculated as part of the stability

corrected solution uj where the projection is ηp
j is defined in Equation (6.39)) we use the

relation 
∑

j

y2
j




1/2

≤
√

N max
j
|yj | ≤

√
N


∑

j

y2
j




1/2

: (6.55)

68

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

ε/h

L
ε B

(m
)

m=5
m=6

Figure 6.4: Coefficient Lε
B(m) for the polynomial error bound in Equation (6.54), calculated

as a maximum over 30000 points (see Equation (5.13)).

It follows that ηj − ηp
j is bounded by

max
j=1,...,n

|ηj − ηp
j | ≤

√
n∆A(f, h), (6.56)

since ηp
j is calculated by an orthogonal projection for which




n∆∑

j=1

(
ηj − ηp

j

)2




1/2

≤



n∆∑

j=1

(ηj)
2




1/2

(6.57)

and 


n∑

j=n−n∆+1

(
ηj − ηp

j

)2




1/2

≤



n∑

j=n−n∆+1

(ηj)
2




1/2

(6.58)

hold. (Note from Section 6.3 that ηj = ηp
j = 0 for j = n∆ + 1, . . . , n − n∆). The error in

the approximation uj , defined in Equation (6.41) as

uj = ηj − ηp
j + (1− χ)vp(xj) + χvb(xj), (6.59)

69

can then be bounded by combining the previous bounds. With some algebra using Equa-

tions (6.50), (6.53), (6.54), and (6.56) we obtain

max
j=1,...,n

|u(xj)− uj | ≤ (
√

n∆ + 1 + 2
√

n∆ + 1)A(f, h) (6.60)

+(1 + Lε(m) + Lε
B(m))

(∆ε)m+1 Mu

22m+1(m + 1)!
. (6.61)

Since

qj ≈ 2uj − f(xj), (6.62)

and

q(x) ≈ 2u(x)− f(x), (6.63)

then clearly from the bound (6.60) we obtain

max
j=1,...,n

|q(xj)− qj | ≤ 2(
√

n∆ + 1 + 2
√

n∆ + 1)A(f, h) (6.64)

+2(1 + Lε(m) + Lε
B(m))

(∆ε)m+1 Mu

22m+1(m + 1)!
. (6.65)

Since A(f, h) = O(hm+1) we conclude that maxj=1,...,n |u(xj)−uj | = O(hm+1) and therefore

maxj=1,...,n |q(xj)− qj | = O(hm+1), as desired.

6.5 Numerical Results for the Heat Equation

In this section we present our first example of application of the FC-AD algorithm (6.22).

Here the method is applied to solve the PDE given in (6.1) where right-hand-side and

boundary conditions were chosen in such a way that the exact solution of the problem is

given by

u(x, y, t) = sin(π(9x2 + 4y2 + 2t)), (6.66)

with k = 1. The boundary of the computational domain is the parameterized curve:

x(θ) = ax(10 sin2(2θ) + 3 cos3(2θ) + 40) cos(θ), (6.67)

y(θ) = ay(10 sin2(2θ) + 3 cos3(2θ) + 40) sin(θ),

70

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.5: Domain used for the solution of the Heat Equation, where the boundary is
defined in Equation (6.67).

for θ ∈ [0, 2π]. The constants ax, and ay where chosen so that domain fits in the unit

square; the resulting domain is depicted in Figure 6.5.

As shown in Chapter 10, we need to set m ≤ 4 in order for the algorithm to be un-

conditionally stable; we set m = 4 and therefore expect fifth-order spatial convergence. In

order to demonstrate the convergence with respect to the time step, in the first example a

fine spatial discretization was fixed (hx = hy = 1.0 · 10−3). The calculation was preformed

for multiple values of ∆t to a final time T = 1.0. The maximum error calculated over the

discrete mesh DΩ at and for all time ≤ T is shown as a function of ∆t in Figure 6.6: this

graph demonstrates a second-order convergence rate in time until the limiting accuracy of

the spatial resolution is reached. In a second test, we use a fixed time-step of ∆t = 10−5,

and we compute the maximum error for all points in space and all time-steps up to a final

time of T = 0.01; the errors thus obtained are shown in Figure 6.7 as a function of the

spatial discretization mesh-size along with a fifth-order slope line: clearly the expected fifth

order convergence is achieved.

To further demonstrate the unconditional stability, the time-step ∆t = 10−4 was chosen

and the value of h was refined. The maximum error at any step in time is displayed in

71

10
−4

10
−3

10
−2

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

∆t

M
ax

im
um

 E
rr

or

FC−AD
Second−Order Slope

Figure 6.6: Time convergence for the Heat Equation on the domain depicted in Figure 6.5.

0.0010.0005 0.002 0.004
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

h

M
ax

im
um

 E
rr

or

FC−AD
Fifth−Order Slope

Figure 6.7: Spatial convergence for the Heat Equation on the domain depicted in Figure
6.5.

72

10
−4

10
−3

10
−2

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

h

M
ax

im
um

 E
rr

or

time−step=0.0001
time−step=0.00001

Figure 6.8: Unconditional stability demonstrated by refining the spatial discretization for
fixed ∆t = 10−4 and ∆t = 10−5.

Figure 6.8 along with the results for ∆t = 10−5. The stability limit for an explicit method

is governed by the distance between the two closest points of the domain including the

boundary of the domain. Therefore the time step for the previous problem would have

to be significantly less than 2.57 · 10−7 unless techniques similar to those mentioned in

Section 2.1 are used for which the limit for ∆t would be approximately 2.57 · 10−7. The

FC-AD algorithm was also run one thousand iterations with ∆t = 100 for the previous

problem. Since our example problem does not have a steady state solution, due to the time

varying source Q, no accuracy was expected in the approximation but the stability of the

approximate solution was nontheless observed.

Additionally to demonstrate the unconditional stability, ∆t was refined, for the fixed

spatial resolutions of h = 5.0·10−3, h = 3.3·10−3, and h = 2.5·10−3. The maximum error at

any time-step calculated to a final time t = 0.01 is displayed in Figure 6.9. The Figure 6.9

represents the calculation of millions of time steps over tens of thousands of unknowns, all

of which can be easily handled on a standard desktop computer. Note in Figure 6.9, that

a slight cusp is observed in the computational results. In fact this cusp occurs at precisely

the location where χ (see Equation (6.41)) switches from 1 to 25α2/h2, providing evidence

of the necessity of this parameter for unconditional convergence. Beyond this cusp a strict

reduction in the maximum error is observed.

To demonstrate the computational speed of the method, and its essentially linear cost,

73

10
−10

10
−8

10
−6

10
−4

10
−2

10
−4

10
−3

10
−2

10
−1

∆t

M
ax

im
um

 E
rr

or

h=0.005
h=0.0033
h=0.0025

Figure 6.9: Unconditional stability demonstrated by refining the time step ∆t for fixed
spatial resolutions of h = 5.0 · 10−3, h = 3.3 · 10−3, and h = 2.5 · 10−3.

in Figure 6.10 we present the computational time required by the algorithm per time step

as a function of the number of spatial unknowns (Here we used our C implementation of the

algorithm, compiled with gcc, on a single 2.33 GHz processing core). We note that the al-

gorithm requires approximately one second per time step with one million unknowns, where

each iteration corresponds to a complete pass in both spatial directions. The implemented

code used approximately 170 MB of memory with approximately 4 million unknowns. The

memory usage of the algorithm was not optimized in any way and we estimate that it could

be reduced by 60% with a minimal reduction in speed.

Naturally, the FC-AD methods apply to three-dimensional problems as well. For the

Heat Equation, several Alternating Direction type splittings are available including the Lo-

cally One-Dimensional (LOD) scheme [99] which is based on Crank-Nicholson time-stepping.

Here we present results obtained in three dimensions by Backward Euler time-stepping, re-

sulting in a sixth-order spatially accurate scheme with first-order accuracy in time (noting

again that, as seen in Section 8.2, Richardson Extrapolation can be used to increase tem-

poral accuracy—something we do not do here for the sake of simplicity). The FC-AD was

applied to the Heat Equation with parameters chosen such that the exact solution is given

74

10
5

10
6

10
−1

10
0

unknowns

pr
oc

es
si

ng
 ti

m
e

in
 s

ec
on

ds

Figure 6.10: Processing time for a single time-step of the Heat Equation on a single pro-
cessing core of a 2.33 GHz Intel Core 2 Duo processor.

by

u(x, y, z, t) = e−3π2t sin(πx) sin(πy) sin(πz) (6.68)

on the domain consisting of the complement of the sphere of radius r = 0.125 in the unit

cube. The spatial resolution was fixed at h = 1
60 and the computation repeated for various

time-steps. The results are shown in Figure 6.11 demonstrating the first-order time accuracy

as well as stability well above typical stability limits.

75

0 0.5 1 1.5 2
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

T

M
ax

im
um

 E
rr

or

time−step=0.0001
time−step=0.001
time−step=0.01

Figure 6.11: Maximum error from a full three-dimensional simulation of the Heat Equation
for fixed h = 1

60 and various time-steps demonstrating first-order temporal accuracy and
stability well above typical stability limits. The domain consisted of the volume contained
within a unit cube but outside a sphere with radius r = 0.125 that is centered in the cube.

76

Chapter 7

FC-AD Algorithm for the Poisson
Equation

The FC-AD methodology that was developed in the previous chapter will now be extended

to the Poisson Equation. The most important aspect of this extension is the development

of iteration parameters akin to those mentioned in Section 4.2.

7.1 Derivation of Technique for the Poisson Equation

We consider the Poisson Equation

−uxx − uyy = Q(x, y), (x, y) ∈ Ω (7.1)

u(x, y) = G(x, y), (x, y) ∈ ∂Ω.

Since the Poisson Equation can be viewed as the steady state solution to the Heat Equa-

tion, the splitting scheme in Equation (6.5) could be directly applied in this context. For

efficiency, however, it has long been recognized that introducing sequences of iteration pa-

rameters (effectively changing ∆t for each time-step in Heat Equation solver), can give rise

to significantly faster convergence to the solution of the Poisson Equation (c.f., [119]). With

the iteration parameters γj the iteration schemes (6.11) and (6.12) adapted for the Poisson

Equation becomes

ũj+ 1
2 =

(
1− γj

∂2

∂x2

)−1 (
1 + γj

∂2

∂y2

)
ũj + γj

(
1− γj

∂2

∂x2

)−1

Q (7.2)

ũj+1 =
(

1− γj

2
∂2

∂y2

)−1 (
1 + γj

∂2

∂x2

)
ũj+ 1

2 + γj

(
1− γj

∂2

∂y2

)−1

Q,

77

where the boundary conditions for Equation (7.2) are given by G(x, y). As for the Heat

Equation it is convenient to rewrite the alternating-direction scheme in terms of the variables

wj =
(

1 + γj
∂2

∂y2

)
ũj and wj+ 1

2 =
(

1 + γj
∂2

∂x2

)
ũj+ 1

2 , (7.3)

so that Equation (7.2) becomes

wj+ 1
2 =

(
1 + γj

∂2

∂x2

)(
1− γj

∂2

∂x2

)−1 (
wj + γjQ

)
(7.4)

wj+1 =
(

1 + γj+1
∂2

∂y2

) (
1− γj

2
∂2

∂y2

)−1 (
wj+ 1

2 + γjQ
)

.

The determination of optimal iteration parameters, γj , have been extensively researched

in the finite difference case (c.f., [133, 140]). We propose a simple choice of iteration parame-

ters that provide surprisingly efficient performance. Our choice was made on the basis of the

following considerations. The result of applying the operator
(
1 + γj

∂2

∂x2

)(
1− γj

∂2

∂x2

)−1

with periodic boundary conditions to a given periodic function µ given by a Fourier series

µ(x) =
∑

k∈t(N)

ake
iPxk, (7.5)

of period 2π/P , clearly we have

(
1 + γj

∂2

∂x2

)(
1− γj

∂2

∂x2

)−1

µ(x) =
∑

k∈t(N)

1− γjP
2k2

1 + γjP 2k2
ake

iPxk; (7.6)

a graph of the multiplier 1−γjP 2k2

1+γjP 2k2 is shown in Figure 7.1. If we consider the function µ(x)

to be the error in our approximate solution, then components of the error in Fourier modes

with index k ≈ 1
P
√

γj
will be reduced significantly while the error in modes with index k far

from 1
P
√

γj
will remain nearly the same in magnitude. Our choice of iteration parameters

follows directly from insuring that every possible Fourier mode is reduced by at least a

factor of ε at least once. We thus use

γj+1 = φγj with φ = (1− ε)2/(1 + ε)2, (7.7)

78

10
−4

10
−2

10
0

10
2

10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

γjP
2k2

1
−

γ
j
P

2
k
2

1
+

γ
j
P

2
k
2

Figure 7.1: Behavior of the multiplier 1−γjP 2k2

1+γjP 2k2 .

79

giving a total of

NI = −2 log(2P/h)/ log(φ), (7.8)

iteration steps. Although the exact sequence could be varied, in particular the initial step γ0

(here we take γ0 = π2

10P 2 which we have found consistently works very well for the examples

we have considered).

The accuracy of the final result and the number of iterations depends on the choice of

ε. A smaller choice of ε requires more iterations and in turn provides greater accuracy if

the spatial resolution of mesh allows it. Very good results have been obtained with very

few iterations as will be shown in the next section.

7.2 Numerical Results for the Poisson Equation

Mesh Refinement Example In this section we present a fairly simple example which

demonstrates, at the same time, the properties of the FC-AD algorithm and the mesh

refinement strategy mentioned in Section 6.2. In detail, we consider Laplace’s Equation in

a circle with boundary condition

G(θ) = eq cos(θ). (7.9)

The exact solution is then given in terms of the Fourier coefficients of the function G(θ) as

u(x, y) =
∞∑

k=−∞
akr

ke2πikθ, (7.10)

where

G(θ) =
∞∑

k=−∞
ake

2πikθ. (7.11)

This problem was solved on a coarse mesh requiring refinement as shown in Figure 7.2. The

results of this experiment are shown in Table 7.1 for several values of q (see Equation 7.9).

The high order accuracy of the algorithm leads to high-quality solutions from a rather coarse

mesh. Decreasing the spacing of the coarse mesh shows the convergence of the algorithm,

in particular for q = 5, reducing the mesh by a factor of 4 yields reduction in error by a

factor of about (1/4)5.4 ((1/4)5 is expected), demonstrating the high-order convergence of

the algorithm.

A challenge problem for spectral embedding methods presented in [22] provides an in-

80

Figure 7.2: Refined coarse mesh on a circle showing the primary discretization points in
black, refinement interior points in green, boundary points in blue, with additional boundary
points required by the refinement shown in red.

q = 1 q = 2 q = 3 q = 5
3.39 · 10−6 2.94 · 10−4 5.72 · 10−3 2.73 · 10−2

Table 7.1: Maximum errors produced in the solution of Laplace Equation on a circle with
the mesh shown in Figure 7.2.

81

teresting test problem for our FC-AD Poisson solver. The solution in the challenge problem

is given by

Ψ(x, y) = log{cosh(y − π)− cos(x)} − log{cosh(y + π)− cos(x)}, (7.12)

and the PDE domain is the region between −2π ≤ x ≤ 2π and the curves

|Ψ(x, y)| = log{cosh(3π)− 1} − log{cosh(π)− 1}. (7.13)

This domain is shown in Figure 7.3 with black dots on the figure denoting the location of

the singularities in the solution just outside the domain of interest. These singularities,

which prevent convergence of a series expansion over the complete rectangle, present a

challenging configuration for spectral methods—since convergence of a spectral series within

the actual PDE domain often implies convergence over the complete rectangle. Figure 7.4

shows numerical results produced by our FC-AD solver, with Dirichlet boundary data given

by (7.12) on the entire boundary of the domain. In order to demonstrate the number

of iterations required to reach a given accuracy, a variety of values of the parameter ε

were used for each of three mesh spacings. For each one of the values ε = 0.2, 0.1, 0.05,

0.025, 0.01, 0.005, 0.0025, 0.001, and 0.0005, and for each one of three different meshes,

demonstrated clearly that use of the iteration parameters given by Equation (7.7) produces

rapidly decreasing errors as ε is decreased. Maximum errors, for each value of ε and each

mesh, are shown in Figure 7.4 as a function of the number of iterations. Note that with

only about 150 iterations, the solution has been obtained with an accuracy of 6 digits for

each mesh size despite there being over one million unknowns for the finest mesh. This

example clearly demonstrates the usefulness of the iteration parameters presented in the

previous section; in particular we note that the number of iterations needed to reach a

given accuracy is nearly independent of the number of unknowns. A more systematic study

and optimization of the choice of these iteration parameters could in principle reduce the

required number of iterations even further. Additionally the ultimate resolutions for several

values of h, including those used above, are shown in Figure 7.5 demonstrating the fifth-

order convergence of the method.

82

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Figure 7.3: Domain used for solution of the Laplace Equation given by the region within
−2π ≤ x ≤ 2π and the curves |Ψ(x, y)| = log{cosh(3π)− 1} − log{cosh(π)− 1}. The black
dots denote the locations of singularities of the function in (7.12).

83

10
1

10
2

10
3

10
4

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

Number of Iterations

M
ax

im
um

 R
el

at
iv

e
E

rr
or

h=0.02
h=0.013
h=0.01

Figure 7.4: Convergence results for the Laplace Equation with Dirichlet boundary data
imposed on the boundary of the region shown in Figure 7.3. The true solution is given by
Equation (7.12). Results shown for three mesh spacings h = 0.02, h = 0.013, h = 0.01
which resulted in 274068, 617399, and 1098396 unknowns respectively.

84

0.01 0.020.0150.008
10

−9

10
−8

10
−7

10
−6

h

M
ax

im
um

 R
el

at
iv

e
E

rr
or

FC−AD
Fifth−Order Slope

Figure 7.5: Convergence results for the Laplace Equation with Dirichlet boundary data
imposed on the boundary of the region shown in Figure 7.3, where the true solution is
given by Equation (7.12), demonstrating the expected fifth-order convergence of the FC-
AD algorithm.

85

Chapter 8

FC-AD Algorithm for the Wave
Equation

8.1 Derivation of Wave Equation FC-AD Algorithm

Let us now consider the Wave Equation in 2D with Dirichlet boundary data:

utt = k2(uxx + uyy) + Q(x, y, t), in Ω× (0, T],

u(x, y, t) = G(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, T], (8.1)

u(x, y, 0) = W (x, y), (x, y) ∈ Ω,

ut(x, y, 0) = V (x, y), (x, y) ∈ Ω,

where Ω ⊂ <2 is a smoothly bounded domain, and the functions Q, G, W , and V are given

smooth functions. A second-order accurate time discretization following the pattern used

previously leads to long time instability due to the occurrence of eigenvalues with small

imaginary components in the iterative scheme. Instead a first order scheme is used that

remains stable in our implementations. As shown in Section 8.2, Richardson extrapolation

can be used to regain second order and even higher orders of accuracy in time (compare [65]).

Our FC-AD splitting of the Wave Equation follows from the following time discretiza-

tion:
un+1 − 2un + un−1

∆t2
= k2

(
∂2

∂x2
+

∂2

∂y2

)
un+1 + Qn+1/2 + E1(x, y, t), (8.2)

86

where

E1(x, y, t) ≤ k2∆t ‖utxx‖L∞(Ω×(tn,tn+1)) + k2∆t ‖utyy‖L∞(Ω×(tn,tn+1)) (8.3)

+
∆t2

12
‖utttt‖L∞(Ω×(tn,tn+1)) .

Equation (8.2) can be re-expressed in the form

(
1− k2∆t2

∂2

∂x2
− k2∆t2

∂2

∂y2

)
un+1 = 2un − un−1 + ∆t2Qn + ∆tE1(x, y, t). (8.4)

The operator on the left hand side of Equation (8.4) may be split creating an additional

error

E2(x, y, t) =
k4∆t4

4
∂2

∂x2

∂2

∂y2
un+1 ≤ k4∆t4

4
‖uxxyy(x, y, t)‖L∞(Ω×(tn,tn+1)), (8.5)

inverting the split operator we obtain the alternating direction algorithm

ũn+1 =
(

1− k2∆t2
∂2

∂y2

)−1 (
1− k2∆t2

∂2

∂x2

)−1

(2un − un−1 + ∆t2Qn+1/2). (8.6)

The boundary conditions for each inverse operation are given by G(x, y, tn+1). As in the

case of the Heat Equation (see Remark 6.1.1), this choice of boundary data yields additional

error, E3, which is bounded by

E3 ≤ k2∆t2

4
‖uyy(x, y, t)‖L∞(Ω×(tn,tn+1)); (8.7)

which despite being an order of ∆t larger than any other term, in practice turns out not to

degrade the temporal accuracy order.

Note that the solution of Equation (8.6) is computed by solving ODEs of the same form

as (6.27) with

α = k∆t, (8.8)

by means of the FC-ODE algorithm described in Section 6.3. We have demonstrated the

unconditional stability of the algorithm for a variety of geometries by both explicit calcu-

lation of the eigenvalues of the full two-dimensional system and by performing millions of

time steps (which, in fact, is equivalent to using the power method for evaluation of the

largest eigenvalue). We have not yet been able to reduce the stability analysis to properties

87

Figure 8.1: Domain test problem for the Wave Equation.

of the one-dimensional operators for the Wave Equation as we do for the Heat Equation.

We do emphasize, however, that after very many computational runs for a variety of two-

and three-dimensional geometries, we have never observed an instability—for any time-

step/spatial-mesh-size whatsoever.

8.2 Numerical Results for the Wave Equation

In order to demonstrate the convergence of the FC-AD algorithm we consider the geometry

shown in Figure 8.1. The external boundary is simply a circle centered at x = 0.5 and

y = 0.5. The inner boundary curve can be parameterized in terms of θ ∈ [0, 2π] as

x(θ) =
(1 + cos(2θ)) cos(θ)

8
− 1

2
, y(θ) =

(1 + cos(2θ)) sin(θ)
8

− 1
2
, (8.9)

Gaussian initial data of the form,

u(x, y, 0) = e−1000{(x−0.75)2+(y−0.75)2}, (8.10)

88

10
−4

10
−3

10
−4

10
−3

10
−2

10
−1

10
0

∆t

Max Error
l2 Error
Second Order Slope

Figure 8.2: Maximum error as a function of the time-step for the Wave Equation with
Gaussian initial data, using h = 0.002.

was used. The boundary condition g(x, y, t), the forcing function f(x, y, t) and the time

derivative at t = 0, ut(x, y, 0), were all taken to equal zero, and we chose k = 1. The

solution was calculated until a final time T = 1 at which point the wave resulting from

the pulse had traveled through most of the domain. A convergence study was performed

to determine the accuracy. For the accuracy in time, the spatial resolution was fixed at

hx = hy = 0.002. Time steps ranged from ∆t = 1/800 to ∆t = 1/25600 and were then

compared to the result with ∆t = 1/51200. The time convergence displayed in Figure

8.2 demonstrates the expected second order accuracy in time. To study the convergence

as the spatial discretization is refined, the value ∆t = 1/3000 was fixed and the value of

hx = hy was allowed to vary from 0.008 to 0.003 and compared with the reference solution

calculated with hx = hy = 0.001. The result is shown in Figure 8.3 demonstrating the

high-order convergence in space of the FC-AD algorithm.

Additionally to show unconditional stability, the Wave Equation was solved with k = 1

over a domain with the boundary defined by the function x4 + y4 = 1. The functions Q, G,

89

10
−2.5

10
−2.4

10
−2.3

10
−2.2

10
−2.1

10
−6

10
−5

10
−4

10
−3

10
−2

Max Error
l2 Error
6th order slope

Figure 8.3: Maximum error as a function of the spatial resolution h for the Wave Equation
with Gaussian initial data, using ∆t = 1/3000.

W , and V were taken so that the exact solution would be

u(x, y, t) = sin
(√

85π(x− t)
)

+ sin
(√

85π(y − t)
)

. (8.11)

For a fixed mesh of h = 0.01667 and a fixed final time T = 1, various time steps were

chosen ranging from 1 to 3.33 · 10−7 and the maximum error at any time step during the

calculation is shown in Figure 8.4.

The solution was subsequently obtained for the same problem using Richardson Extrap-

olation (see [65]), on the basis of solutions obtained with ∆t equal to 5 · 10−4, 2.5 · 10−4

and 1.667 · 10−4 and 1.25 · 10−4 to produce a solution with errors proportional to ∆t4. The

spatial resolution was refined from h = 0.01667 to h = 0.001. The errors obtained are

displayed in Figure 8.5.

To demonstrate the benefits that arise from use of high-order Richardson extrapolation,

in Figure 8.6 we show the errors resulting from calculations using fourth-order Richardson

extrapolation and a fifth-order spatial FC-AD scheme, in which both the time-step and

the spatial mesh-size are refined simultaneously. The error is primarily dependent on the

90

10
−8

10
−6

10
−4

10
−2

10
0

10
−2

10
−1

10
0

10
1

∆t

M
ax

im
um

 E
rr

or

Figure 8.4: Solution to the Wave Equation with solution given in Equation (8.11) with
fixed spatial resolution of h = 0.01667 for a range of values for ∆t. The domain boundary
is defined by x4 + y4 = 1 and the maximum error for each time-step is reported.

time-step and therefore fourth-order convergence is observed. The error could be improved

by implementing a restarted Richardson Extrapolation (see [65]). We note some care must

be take in the extrapolation so that the parameter χ (see Equation 6.40) is either one or

less than one for each time level, as appropriate, in order to obtain the full fourth-order

convergence.

In order to demonstrate that these techniques also apply to three-dimensional complex

domains, as already shown for the Heat Equation, a sample calculation is shown in Figure

8.7 where a Gaussian pulse was initiated at the location x = 0.5, y = 0.75, and z = 0.75

with zero boundary conditions on both the surface of the sphere and the surrounding cube.

The projection of the solution into the three planes x = 0.5025, y = 0.5025, and z = 0.5025

are shown in Figure 8.7. The unconditional stability and accuracy of the algorithm are

maintained in this three-dimensional context.

91

10
−3

10
−2

10
−4

10
−3

10
−2

10
−1

10
0

h

M
ax

im
um

 E
rr

or

FC−AD
Sixth−Order Slope

Figure 8.5: Numerical errors arising in the solution of a Wave Equation, with exact solution
given in Equation (8.11), as a function of the spatial mesh-size h. Fourth-order Richardson
Extrapolation was used. The domain boundary is defined by x4 +y4 = 1 and the maximum
error at any time step is reported. Sixth-order convergence is shown in the region where
the error is determined by the spatial discretization.

92

0.010.0050.002
10

−4

10
−3

10
−2

10
−1

10
0

10
1

∆t = h

M
ax

im
um

 E
rr

or

FC−AD
Fourth−Order Slope

Figure 8.6: Numerical errors arising in the solution of a Wave Equation, with exact solution
given in Equation (8.11), as a function of the spatial mesh-size. Fourth-order Richardson
Extrapolation was used. The coarsest time-step of the extrapolation was taken to equal h;
the other time-steps used were h/2, h/3, and h/4. Fourth-order convergence is observed as
h and therefore ∆t are refined.

93

Figure 8.7: Solution to the Wave Equation with Gaussian initial data in a domain consisting
of the complement of a sphere within a cube. The gray-scale on the three planar sections
x = 0.5025, y = 0.5025, and z = 0.5025 display the planer values of the solution.

94

Chapter 9

Comparative Discussion

In this chapter, we compare the performance of the FC-AD methodology to that of other

methods for the solution of PDEs. In doing so we attempt to take into account general prop-

erties of the solution techniques rather than explore the manifold nuances of each individual

algorithm in the literature. Our focus will be on the FC-AD’s avoidance of pollution errors

(which encumber all Finite-Difference and Finite-Element approaches), and its efficient un-

conditionally stable implementation which arises primarily from the Alternating Direction

framework and use of the FFT. We will not make a direct comparison to Pseudospectral

methods due since the geometric limitations of those methods, described in Chapter 3, are

well established.

In order to facilitate the task at hand, we perform comparisons for particularly simple

one- and two-dimensional geometries. These comparisons show that even for configurations

for which finite-difference methods show their best performance (e.g., a fourth-order finite

difference method applied to a one dimensional interval with an assumption of periodicity)

the FC-AD approach exhibits significant advantages over the classical approaches; we show

further that the performance of the FC-AD methodology remains unaffected as one moves

to more complex problems: e.g., the FC-AD accuracy and performance on a square domain

remain unchanged as the problem is ported to a more complex curved geometry. While we

mainly compare the FC-AD to the finite difference approach, we expect a similarly favorable

comparison with the finite-element method holds. We note however that we would expect

significantly more degradation in the performance for FDM methods relative to FEM for

more complex situations than considered in this section (see Chapter 2).

95

9.1 Transient and Time-harmonic Wave Propagation: Pollu-

tion Error

As discussed in Section 2.3, the error produced in representing wave propagation by means of

finite-differences or finite-elements is compounded over the length of the domain—resulting

in a requirement of increasingly finer spatial discretizations, as the number of waves in the

domain increases, to produce constant overall errors. The accumulation of error is inherent

to both FEM and FDM, as shown in [11] and [84] respectively. In Figure 9.1 we display both

the error in a spatially second-order explicit finite-difference scheme and the error arising

from our FC-AD algorithm for a simple spatially Wave Equation for which the solution

is sin(2πw(x − t)) over the unit intervals in time and space. The time step used for both

algorithms was taken sufficiently small as to have no significant affect on the error. The

maximum error for all time-steps at all discretization points is reported in the figure for

15 and 20 PPW spatial discretizations fixed for the FC-AD method and 25 and 400 PPW

for the second-order finite-difference method. This represent an extreme case where finite-

differences perform near optimally in view of the periodicity of the solution and regular

spatial grid used. Note the FC-AD method cannot benefit from the periodicity because

it extends the domain and recalculates a periodic extension on this new domain as shown

in Figure 9.3. The FC-AD algorithm yields similar performance for an arbitrarily shaped

domain in two- and three-dimensional space.

A similar graph is shown in Figure 9.2 comparing the FC-AD method with fourth-order

finite-difference method. The obvious conclusion is that low-order methods are exceed-

ingly costly for problem whose spatial dimensions span many wavelengths. This contention

is also supported by Figure 9.4, which shows the points per wavelength required by the

finite-difference and FC-AD methods to reach 1% maximum error. The improvement in the

performance from second- to fourth-order finite difference methods is remarkable but even

with fourth-order finite difference methods the growth in the required number of points

per wavelength makes 3D calculations prohibitive. This is particularly significant since

comparable FDM for complex geometries are just now reaching fourth-order accuracy (see

Section 2.1): fourth order methodologies in two- and three-dimensions are not quite estab-

lished as yet. In contrast, for the FC-AD methodology the number of points per wavelength

required for a given accuracy quickly ceases to grow—and therefore offers the method a sig-

96

10
1

10
2

10
−3

10
−2

10
−1

10
0

Wavelengths

M
ax

im
um

 E
rr

or

FC−AD 15 PPW
FC−AD 20 PPW
2nd FD 25 PPW
2nd FD 400 PPW

Figure 9.1: Maximum errors arising from applications of FC-AD and second-order finite-
difference algorithms for increasing number of wavelengths and various fixed numbers of
PPW.

nificant advantage over alternative approaches.

9.2 Comparison for Heat Type Equations

While the pollution error of the previous section is not as significant a source of error for

diffusive equations, the conditionally stability of explicit schemes and the additional cost of

implicit methods are. In a 2D square domain, consider the Heat Equation with k = 1 and

solution given by

u(x, y, t) = cos(20π(2t− x + y)), (9.1)

—representing some sort of a thermal cycle. A spatially second-order accurate explicit

finite-difference method was used to solve to accuracies of 10% and 1%. The time-step was

chosen in order to maintain stability in the finite-difference algorithm, we used ∆t = h2/4.

The required spatial resolutions are shown in Table 9.1 along with a lower bound for the

computational cost required to produce a 0.1% error. The results were obtained on a 3.4

GHz Pentium D.

97

10
1

10
2

10
−3

10
−2

10
−1

10
0

Wavelengths

M
ax

im
um

 E
rr

or

FC−AD 15 PPW
FC−AD 20 PPW
4th FD 15 PPW
4th FD 40 PPW

Figure 9.2: Maximum errors arising from applications of FC-AD and fourth-order finite-
difference algorithms for increasing number of wavelengths and various fixed numbers of
PPW.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 9.3: Extension of otherwise periodic function sin(10πx).

98

0 50 100 150 200 250 300
10

1

10
2

10
3

Wavelengths per unit interval

P
P

W
 r

eq
ui

re
d

fo
r

1%
 m

ax
im

um
 e

rr
or

FC−AD
4th order FD
2nd order FD

Figure 9.4: Estimated PPW required to obtain a 1% error in the solution of the Wave
Equation with solution sin(2Wπ(x − t)) to a final time T = 1 where W is the number of
wavelengths.

Accuracy h ∆t Comp. T ime

10% 1.52 · 10−2 5.7 · 10−5 33 secs
1% 4.9 · 10−3 6.1 · 10−6 2,940 secs

0.1% < 1.67 · 10−3 < 7.0 · 10−7 > 213, 000 secs

Table 9.1: Computational times required to produce various accuracies by means of an
explicit second-order finite-difference solver for the Heat Equation in a square domain (see
Equation (9.1)). Computations performed on a 3.4 GHz Pentium D processor.

99

Accuracy h ∆t Comp. T ime

10% 7.9 · 10−3 7.3 · 10−3 3 secs
1% 4.6 · 10−3 2.3 · 10−3 24 secs

0.1% 2.9 · 10−3 7.0 · 10−4 212 secs

Table 9.2: Computational times required to produce various accuracies by means of the FC-
AD algorithm for the Heat Equation in a square domain (see Equation (9.1)). Computations
performed on a 3.4 GHz Pentium D processor.

Accuracy h ∆t Comp. T ime

9.3% 7.9 · 10−3 7.3 · 10−3 3.2 secs
0.852% 4.6 · 10−3 2.3 · 10−3 25 secs
0.0793% 2.9 · 10−3 7.0 · 10−4 220 secs

Table 9.3: Computational results for the FC-AD algorithm applied to the Heat Equation
over the domain bounded by x4+y4 = 1 using the parameters from Table 9.2. Computations
performed on a 3.4 GHz Pentium D processor. These results show only minor variations in
computational time and accuracy versus those produced by the FC-AD algorithm for the
square domain.

The calculations were also performed using the FC-AD algorithm as detailed in Chap-

ter 6 for 10%, 1%, and 0.1% and the corresponding timings, for the same hardware as

Table 9.1, are shown in Table 9.2. Notice the dramatic difference in computational cost

driven in particular by the difference in the number of time steps required for accuracies

less than 10%. A single iteration of the full FC-AD algorithm was in fact approximately

3 to 5 times slower than a single step of the explicit finite-difference scheme on equivalent

sized meshes (can be up to about 7 on square domains with prime numbers of points).

Despite this the FC-AD algorithm was significantly faster even at the 10% error level. The

computations in Table 9.2 were repeated with the FC-AD algorithm on the non-rectangular

domain defined by x4 + y4 = 1 with the exact same spatial and temporal resolutions. The

result of this experiment are presented in Table 9.3: the performance of the FC-AD ap-

proach for this geometry is acutally better than that obtained for the rectangular geometry

considered in Table 9.2.

As mentioned in Section 2.4, an unconditionally stable finite-difference method was

also applied with Crank-Nicolson time-stepping in order to obtain an implicit second-order

accurate scheme in both time and space. The CG algorithm without preconditioning was

used to solve the linear system at each time step using the solution at the previous time step

100

as the initial guess. The tolerance of the CG algorithm was chosen to be as large as possible

while still maintaining the desired accuracy level. It was found that for h = 1.52 · 10−2, the

best performance came at a time step about 4.4 times larger than the explicit case but 9

CG iterations were needed on average per time step resulting in approximately double the

computational time. By decreasing h to 1.25 · 10−2, the number of time steps required for

10% accuracy were further reduced by another factor of 4 and only 8 CG iterations were

required. Thus with these parameters, 10% accuracy was reached in approximately 60% of

the total time of the explicit FDM which is still considerably more than was required for

the FC-AD.

For higher accuracies, we were not able to improve the overall computational cost relative

to the explicit version, even though we could take significantly larger time steps, due to the

large number of CG iterations required. Similarly it is shown in [126] that to reach the

same error tolerance, the required number of CG iterations, without preconditioning, grows

proportional to h−1. We note that a preconditioned CG iteration for the finite-difference

method would have to improve the performance by at least two orders of magnitude in order

to obtain speeds approximately those obtained by the FC-AD to 1% error. Unconditional

stability and the absence of pollution error are two significant advantages of the FC-AD

algorithm—which, in our opinion, makes it preferable to alternative algorithms for a wide

range of computational PDE problems.

101

Chapter 10

Stability and Singular-Value
Decompositions

In this Chapter we establish the stability of FC-AD algorithms introduced in Chapters 6

and 7, that is, the FC-AD algorithms for the Heat Equation and the Poisson Equation.

Our analysis relates stability to the sizes of certain singular values. The conclusions of

our analysis are drawn from a numerical evaluation of such singular values for a complete

range of values of all parameters involved, with exception of the numbers nxi and nyj

(see Section 6.2) of discretization points used in the various horizontal and vertical lines

respectively: these are taken to span a large range but, naturally, not the complete (infinite)

range of possible values.

10.1 Reduction to a Singular-Value Problem for the FC-ODE

Solver

To start our study we introduce the following definition concerning the FC-ODE solver

presented in Section 6.3.

Definition 10.1.1. Let an n point discretization of the interval [x`, xr], as described in

Section 6.2 and depicted in Figure 6.1, be given. Let L1 be the linear map from `2(n) → `2(n)

that relates the n discrete values fj = f(xj) of the function f to the approximate solution

ui = (L1f)i =
∑n

j=1 L1
ijfj, given by the algorithm described in Section 6.3, of the one-

dimensional boundary value problem

−α2u′′(x) + u(x) = f(x), u(x`) = 0, u(xr) = 0. (10.1)

102

Further let L2 be the linear map from `2(n) → `2(n) defined by L2f = (2L1 − I)f . Note

that qj =
∑n

j=1 L2
ijfj is an approximation of q(x) = 2u(x)− f(x). The linear maps L1 and

L2 are then functions of the parameters n, h, n∆, m, d/∆, g, Υ, x1 − x`, xr − xn and α,

as discussed in Chapters 5 and 6.

Remark 10.1.1. L1 is a discrete approximation to the operator
(
1− α2 ∂2

∂x2

)−1
with zero

Dirichlet boundary data (see Equation (6.9)) while L2 is a discrete approximation to the

operator
(
1 + α2 ∂2

∂x2

)(
1− α2 ∂2

∂x2

)−1
.

Definition 10.1.2. Recalling the notations introduced in Section 6.2, we define the opera-

tors
L1

x : `2(DΩ) → `2(DΩ),

L1
y : `2(DΩ) → `2(DΩ),

L2
x : `2(DΩ) → `2(DΩ), and

L2
y : `2(DΩ) → `2(DΩ)

by

L1
x[θ](xi, yj) =

∑nyj

k=1 L1
ikθkj ,

L1
y[θ](xi, yj) =

∑nxi
k=1 L1

jkθik,

L2
x[θ](xi, yj) =

∑nyj

k=1 L2
ikθkj , and

L2
y[θ](xi, yj) =

∑nxi
k=1 L2

jkθik.

The operator norms ‖L1
x‖`2(DΩ), ‖L1

y‖`2(DΩ), ‖L2
x‖`2(DΩ), and ‖L2

y‖`2(DΩ), which result

from the norm of the space `2(DΩ) (Equation (6.26)), depend on the entire spatial dis-

cretization and, yet, they can be bounded by the largest singular-value of any the linear

map L1 or L2 respectively along any line of data in DΩ. It is easy to check the validity of

this fact: for each of the four operators L1
x, L1

y, L2
x, and L2

y, each line of data (in x or y

as appropriate) gives rise to one of a complete set of invariant subspaces for the operators,

and therefore each one of the full operator norms is bounded by the maximum over all of

theses subspaces.

For the Heat Equation, recalling the Equations (6.20) and (6.21), let u(tn), be the exact

solution at time tn = n∆t calculated from the initial condition u0. As was done in [81], we

will examine our stability in the transformed variables
(
1 + k∆t

2
∂2

∂y2

)
u(tn) on the discrete

mesh. Let the operator Eu(tn) be defined as the evaluation of
(
1 + k∆t

2
∂2

∂y2

)
u(tn) on DΩ.

We can then define εn = Eu(tn)−wn where wn is the approximation to Eu(tn) calculated

103

by the FC-AD algorithm from the same initial condition u0 . Further let τn(h, ∆t) be the

error that is produced in obtaining wn+1 by the FC-AD algorithm from Eu(tn). Then by

applying the FC-AD algorithm for one full time step (going from wn to wn+1) the new

error, εn+1, can be bounded by

‖εn+1‖`2(DΩ) ≤ ‖τn(n,∆t)‖`2(DΩ) + ‖L2
x‖`2(DΩ)‖L2

y‖`2(DΩ)‖εn‖`2(DΩ), (10.2)

where the discrete `2(DΩ) norm was defined in Equation (6.26). The result is that for

‖L2
x‖`2(DΩ) ≤ 1 and (10.3)

the error is not amplified from an application of the FC-AD: the stability of the algorithm

is ensured if Equation (10.3) is satisfied.

For the Poisson Equation the operators that must be applied at each step of the algo-

rithm are of the form
(
1 + γj+1

∂2

∂x2

)(
1− γj

∂2

∂x2

)−1
(see Equation (7.2)). By simple algebra

we note

(
1 + γj+1

∂2

∂x2

)(
1− γj

∂2

∂x2

)−1

=
γj+1

γj

(
1 + γj

∂2

∂x2

)(
1− γj

∂2

∂x2

)−1

(10.4)

+
(

1− γj+1

γj

)(
1− γj

∂2

∂x2

)−1

,

which in our discrete setting with zero Dirichlet data is simply the linear combination

γj+1

γj
L2 +

(
1− γj+1

γj

)
L1, (10.5)

of the linear maps given in Definition 10.1.1 with α2 = γ. Therefore, for the Poisson

Equation, the stability is governed by all four of the operator norms ‖L1
x‖`2(DΩ), ‖L1

y‖`2(DΩ),

‖L2
x‖`2(DΩ), and ‖L2

y‖`2(DΩ). We note that if γj+1 ≤ γj (a property satisfied by the sequence

given in Equation (7.7)) and the operator norms are all less than one, the FC-AD algorithm

is stable. Thus the problem of establishing stability for the FC-AD algorithms for both

the Heat Equation and the Poisson Equation has been reduced to the problem of showing

that the operator norms ‖L1
x‖`2(DΩ), ‖L1

y‖`2(DΩ), ‖L2
x‖`2(DΩ), and ‖L2

y‖`2(DΩ) are less than

or equal to one. This task, in turn, can be accomplished by showing that the norms of the

linear maps L1 and L2 are less than or equal to one—or, equivalently, by showing that the

104

largest singular value of these one-dimensional operators is less than or equal to one.

10.2 Evaluation of Singular-Values

In what follows we will numerically demonstrate that the singular values of L1 and L2, and

therefore those of ‖L1
x‖`2(DΩ), ‖L1

y‖`2(DΩ), ‖L2
x‖`2(DΩ), and ‖L2

y‖`2(DΩ), are indeed less than

one for all real values of α2 = k∆t
2 and relevant parameter values, as discussed in what

follows.

The linear maps L1 and L2 are functions of the parameters n, h, n∆, m, d/∆, g, Υ,

x1−x`, xr−xn and α as explained in Chapters 5 and 6. In this thesis the values of n∆, d/∆,

g, and Υ have been fixed (see Remark 5.1.3); further, it is easy to check that the parameter

L = xr − x` can be scaled to L = 1 without loss of generality, and therefore we need only

consider the effect of the parameters n, α, m, x1−x`
h , and xr−xn

h . In Figures 10.1 and 10.2

we present the largest singular value of the linear map L1 as a function of (x1 − x`)/h, for

four different values of α and for several representative values of n with xr − xn = 0 and

m = 5 (sixth-order accuracy); we see that the stability conditions

‖L1‖`2 ≤ 1 and ‖L2‖`2 ≤ 1 (10.6)

are satisfied: in all cases shown the largest singular value is less than one.

Remark 10.2.1. In fact, in a similar manner we have verified that the stability condi-

tions (10.6) hold for all n ≤ 200 and many larger values of n, and, by means of adequately

refined discretizations of the parameter ranges, for all other values of the parameters defin-

ing the algorithm. In what follows we present a number of additional figures that display a

representative sample of the numerical experiments that we used for this verification.

Note from Figures 10.1 and 10.2 that as n increases the dependence of the largest

singular value on (x1 − x`)/h decreases. Although the value of the largest singular value is

quite close to one for small α, this quantity is essentially independent of n and (x1−x`)/h.

Figure 10.3 shows a more general result for which n = 50 has been fixed but the result is

shown as a function of both (x1−x`)/h and (xr−xn)/h with m = 5 (sixth-order accuracy).

The scale shows the one minus the largest singular value of L1. The largest singular value

occurs with both (x1 − x`)/h = 1 and (xr − xn)/h = 1 and, as before, that value changes

105

0 0.2 0.4 0.6 0.8 1

10
−0.044

10
−0.043

10
−0.042

10
−0.041

N=25
N=50
N=100
N=200

0 0.2 0.4 0.6 0.8 1

10
−0.00046

10
−0.00044

10
−0.00042

N=25
N=50
N=100
N=200

Figure 10.1: Largest singular value of the linear map L1 as a function of (x1 − x`)/h with
xr − xn = 0 and m = 5 (sixth-order accuracy). The top and bottom plots assume α = 0.1,
and α = 0.01, respectively.

106

0 0.2 0.4 0.6 0.8 1

10
−4.6e−006

10
−4.5e−006

10
−4.4e−006

10
−4.3e−006

N=25
N=50
N=100
N=200

0 0.2 0.4 0.6 0.8 1

10
−4.6e−008

10
−4.5e−008

10
−4.4e−008

10
−4.3e−008

N=25
N=50
N=100
N=200

Figure 10.2: Largest singular value of the linear map L1 as a function of (x1 − x`)/h with
xr−xn = 0 and m = 5 (sixth-order accuracy). The top and bottom plots assume α = 0.001,
and α = 0.0001, respectively.

107

very little with (x1 − x`)/h and (xr − xn)/h.

A more complete picture is given by Figure 10.4 which allows α to vary across a wide

range of relevant values. For each value of α, the largest singular value was calculated from

all possible combinations of a discrete set of 121 combinations of values for (x1−x`)/h and

(xr − xn)/h. This process is shown for several values of n. In order to accurately display

the result, the quantity one minus the largest singular value of L1 is plotted in the figure.

Figure 10.4 clearly demonstrates how little the largest singular value is affected by the value

of n. Similar calculations were performed for a variety of other values of the parameters

and in all cases the singular values were found to be less than one.

All of the calculations mentioned above have been repeated for the linear map L2 and

all the singular values remain less than 1 when m = 4. In particular, in Figure 10.5 we

present L2 data analogous to that presented in Figure 10.4 for the operator L1: for each

value of α, the largest singular value was calculated from the 121 combinations of values for

(x1− x`)/h and (xr − xn)/h. Again, as in Figure 10.4, the process was repeated for several

values of n.

The above calculations have been repeated with a larger values for m (degree of the

polynomials used in the FC(Gram) approximation) and clearly show that the bound on

the singular-values no longer holds. For example, if one were to attempt to apply the FC-

AD algorithm with an polynomial approximation of one order higher than the prescribed

(without changing any other parameter), the result is an algorithm that is unstable for a

certain range of values of α: the algorithm becomes conditionally stable. Computational

results are shown in Figure 10.6 and a corresponding instability for the full FC-AD solution

have been observed in this case. Thus, for unconditional stability the current version of our

FC-AD heat-equation and Poisson-equation solver is restricted to orders of accuracy ≤ 5.

In the case of the Wave Equation, for which only the operators L1
x and L1

y are used, we have

observed that the order of accuracy of the FC-AD algorithm can be ≤ 6 with unconditional

stability.

We do not have a method to show directly the stability of the our FC-AD splitting of the

Wave Equation (see Section 8.1) independently of the geometry as was done for the Heat

Equation and the Poisson Equation. This is due to the specific stability requirement of the

time stepping scheme. Using parameter values as prescribed above, our numerical results

have never given rise to instability, for any value of ∆t, despite millions of time-steps on

108

(x1 − xl)/h

(x
r
−

x
n
)/

h

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.6

9.7

9.8

9.9

10

10.1

10.2

x 10
−4

(x1 − xl)/h

(x
r
−

x
n
)/

h

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9.6

9.7

9.8

9.9

10

10.1

10.2

x 10
−6

Figure 10.3: One minus the largest singular value of the linear map L1 with n = 50, m = 5
(sixth-order accuracy); α = 0.01 and α = 0.001 in the top and bottom graphs, respectively.

109

10
−6

10
−4

10
−2

10
0

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

α

1
-
‖
L

1
‖ l

2

n=25
n=50
n=100
n=200

Figure 10.4: One minus the largest singular value of the linear map L1 maximized over a
discrete sampling of (x1−x`)/h and (xr−xn)/h as a function of α with m = 5 (sixth-order
accuracy).

110

10
−6

10
−4

10
−2

10
0

10
2

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

α

1
-
‖
L

2
‖

l
2

n=25
n=50
n=100
n=200

Figure 10.5: One minus the largest singular value of the linear map L2 with m = 4 (fifth-
order accuracy) maximized over a discrete sampling of (x1 − x`)/h and (xr − xn)/h as a
function of α for several values of n.

111

10
−6

10
−4

10
−2

10
0

10
2

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

α

1
-
‖L

2
‖

l
2

n=25
n=50
n=100
n=200

Figure 10.6: One minus the largest singular value of the linear map L2 with m = 5 maxi-
mized over a discrete sampling of (x1−x`)/h and (xr−xn)/h as a function of α for several
values of n. Note that, for the present case m = 5, the stability condition ‖L2‖`2 ≤ 1 is
violated. The FC-AD algorithm is unconditionally stable for spatial accuracy orders m ≤ 4
for the Heat and Poisson Equations.

112

a range of geometries and spatial resolutions, as described in Chapter 8. For a sufficiently

small sample geometry direct calculations of eigenvalues of the FC-AD iterative process

have demonstrated stability regardless of the value chosen for the time-step.

10.3 A Note on Consistency and Convergence

In view of Lax Equivalence Theorem (c.f., [111]), consideration of the consistency of FC-

AD algorithm would be a natural step towards a full convergence proof for the method.

The matter is more delicate, however: the boundary correction and filtering steps in the

FC-AD method give rise to truncation errors such that strict consistency for a single time

step cannot be established. Instead, the convergence exhibited by the manifold examples,

including those presented in Section 6.5, appears to arise from a cooperative handling of

errors over subsequent time-steps, which does not give rise to error accumulation.

This is demonstrated in Figure 10.7 through a simple one-dimensional problem, es-

sentially identical to a time discretization of a one-dimensional Heat Equation, using the

FC-ODE solver at each time-step. The initial condition was given by

Z0(x) = cos(
√

10πx), (10.7)

and each subsequent iteration was given by

−α2Z ′′n+1 + Zn+1 = Zn, (10.8)

with boundary conditions

Zn+1(x`) =
1

1 + 10α2π2
Zn(x`) and Zn+1(xr) =

1
1 + 10α2π2

Zn(xr), (10.9)

thus the true solution at any time step is just a scaling of the initial condition. For each

α the sequence was run up to a point for which the exact solution equals 0.8Z0. These

calculations were performed using the FC-ODE algorithm with 20 total points in the spatial

discretization and repeated for a dense sampling of values for the parameter (x1 − x`)/h

with (x1 − x`)/h = (xr − xn)/h. The maximum error over any set of boundary points

is reported in Figure 10.7. The figure shows the error generated in the first iteration as

113

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

α
2

M
ax

im
um

 E
rr

or

FC−AD
Iterations * First Step Error
First Step Error

Figure 10.7: Sample calculations demonstrating the complexity inherent in the consistency
property of the FC-AD algorithm. The error in the first step of an algorithm decays as α
and not α2, but this error does not accumulate over many iterations.

well as that amount multiplied by the total number of iterations required to reach the final

solution. The latter diverges as the error after the first iteration decreases as α instead of

as α2. Despite this fact, the actual total error produced by the algorithm remains bounded

and converges to a value dependent on the mesh spacing (hence can be reduced by spatial

refinement).

Thus, a convergence proof strictly following the lines of the classical Lax Equivalence

theorem does not seem possible for our approach, and, indeed, a convergence theory that

fully explains the properties demonstrated by the algorithm has not yet been obtained.

In particular, we note that the boundary conditions used for the Heat Equation produce

a local error of O(∆t2) (See Remark 6.1.1) and yet result in a global error of O(∆t2)

as shown in Chapter 6.We attribute both of these effects to the special handling of the

boundary conditions within the FC-ODE algorithm.

Much progress and a significant and partially complete, if not fully adequate explana-

tory convergence result, can be obtained by using the ideas inherent in the Lax Equiva-

lence Theorem. Indeed, for the Heat Equation, for example, the component of the local

114

error τn(h,∆t) resulting from the time discretization is of the order of that given in Equa-

tion (6.19): it is not worse than O(∆t2). The result of the time discretization is a series of

ODEs, which according to the results of Section 6.4, retains the order of accuracy of the

FC(Gram) approximation—which was demonstrated in Chapter 5 to be essentially O(hm+1)

where, for the Heat Equation, we have m = 4. Thus, after T/∆t iterations, we have that

‖εT∆t‖`2(DΩ) is of the order of T∆t + Th5/∆t and therefore as long h5 → 0 faster than

∆t (not a very restrictive requirement), we have ‖εT∆t‖`2(DΩ) → 0 and thus the method is

convergent.

While the estimate above is adequate for most purposes, our numerical tests indicate

the condition is not required for convergence. This was shown in Section 6.5, where ∆t was

refined for fixed h and it was shown that the error did not grow as may be suggested by

the estimate above (see Figure 6.9). Additionally we show a numerical example where we

refine ∆t proportionally to h6 for the same problem considered in Figure 6.9. The result is

shown in Figure 10.8 and demonstrates the continued convergence even in this case. Note

that for ∆t ≥ 10−3 the error is primarily due to the time-step. For ∆t ≤ 10−4 the error is

due to the spatial resolution.

115

10
−5

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

∆t

M
ax

im
um

 E
rr

or

Figure 10.8: Demonstration of convergence for the case where ∆t is taken proportional to
h6. The first calculation was performed with ∆t = 1.0 · 10−2 (right-side of the figure) and
h = 6.0 · 10−3. The last calculation was performed with ∆t = 1.3 · 10−5 and h = 2.0 · 10−3

(left-side of the figure).

116

Chapter 11

Conclusions

A new class of fast and high-order accurate solvers for partial differential equations on

general domains has been introduced. These methods combine the splitting of classical

ADI schemes with a newly introduced Fourier continuation method. The resulting FC-

AD algorithms have been demonstrated to yield accurate solutions for complex domains

for PDEs of Parabolic, Hyperbolic and Elliptic type in two and three dimensions. The

computational cost scales nearly linearly (FFT speeds) with the number of unknowns, and

the methods have inherently low memory requirements that are proportional to the number

of unknowns. These properties allow for rather large computations in short computational

times, even in a single processing core. These methods represent, to the author’s knowledge,

by far the highest order spatially accurate unconditionally stable Alternating Direction

schemes available for complex domains.

117

Bibliography

[1] S. Abarbanel and A. Ditkowski. Asymptotically stable fourth-order accurate schemes

for the diffusion equation on complex shapes. J. Comput. Phys., 133:279–288, 1997.

[2] S. Abarbanel, A. Ditkowski, and A. Yefet. Bounded error schemes for the wave

equation on complex domains. J. Sci. Comput., 26:67–81, 2006.

[3] S.S. Abarbanel and A.E. Chertock. Strict stability of high-order compact implicit

finite-difference schemes: The role of boundary conditions for hyperbolic PDEs, I. J.

Comput. Phys., 160:42–66, 2000.

[4] S.S. Abarbanel, A.E. Chertock, and A. Yefet. Strict stability of high-order compact

implicit finite-difference schemes: The role of boundary conditions for hyperbolic

PDEs, II. J. Comput. Phys., 160:67–87, 2000.

[5] G. Alefeld. On the convergence of the Peaceman-Rachford iterative method. Numer.

Math., 26:409–419, 1976.

[6] A. Averbuch, M. Israeli, and L. Vozovoi. A fast Poisson solver of arbitrary order

accuracy in rectangular regions. SIAM J. Sci. Comput., 19(3):933–952, May 1998.

[7] A. Averbuch and L. Vozovoi. Two-dimensional parallel solver for the solution of

Navier-Stokes equations with constant and variable coefficients using ADI on cells.

Parallel Comput., 24:673–699, 1998.

[8] A. Averbuch, L. Vozovoi, and M. Israeli. On a fast direct elliptic solver by a modified

Fourier method. Numer. Algorithms, 15:287–313, 1997.

[9] I. Babuska and T. Strouboulis. The Finite Element Method and its Reliability. Claren-

don Press, Oxford, 2001.

118

[10] I. Babuska and T. Strouboulis. Finite Elements: Theory, Fast Solvers, and Appli-

cations in Solid Mechanics. Cambridge University Press, Cambridge, second edition,

2002.

[11] I.A. Babuska and S.A. Sauter. Is the pollution effect of the FEM avoidable for

the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal.,

34(6):2392–2423, 1997.

[12] K.J. Badcock and B.E. Richards. Implicit time-stepping methods for the Navier-

Stokes equations. AIAA Journal, 34(3):555–559, 1996.

[13] K. Balakrishnan, R. Sureshkumar, and P.A. Ramachandran. An operator splitting-

radial basis function method for the solution of transient nonlinear Poisson problems.

Comput. Math. Appl., 43:289–304, 2002.

[14] R.W. Barnard, G. Dahlquist, K. Pearce, L. Reichel, and K.C. Richards. Gram poly-

nomials and the kummer function. J. Approx. Theory, 94:128–143, 1998.

[15] G. Beylkin. On the fast Fourier transform of functions with singularities. Appl. Comp.

Harm. Anal., 2:363–381, 1995.

[16] B. Bialecki and G. Fairweather. Orthogonal spline collocation methods for partial

differential equations. J. Comput. Appl. Math., 128:55–82, 2001.

[17] B. Bialecki and R.I. Fernandes. An alternating-direction implicit orthogonal spline

collocation scheme for nonlinear parabolic problems on rectangular polygons. SIAM

J. Sci. Comput., 28(3):1054–1077, 2006.

[18] G. Birkhoff and R.S. Varga. Implicit alternating direction methods. T. Am. Math.

Soc., 92(1):13–24, Jul. 1959.

[19] Å. Björck. Numerical Methods for Least Squares Problems, chapter 8, page 323.

Society for Industrial and Applied Mathematics, Philadelphia, 1996.

[20] J.P. Boyd. A fast algorithm for chebyshev, Fourier, and sinc interpolation onto an

irregular grid. J. Comput. Phys., 103(2):243–257, 1992.

[21] J.P. Boyd. Chebyshev and Fourier Spectral Methods: Second Revised Edition. Dover

Publications, New York, 1999.

119

[22] J.P. Boyd. A comparison of numerical algorithms for Fourier extension of the first,

second, and third kinds. J. Comput. Phys., 178:118–160, 2002.

[23] J.P. Boyd. Trouble with Gegenbauer reconstruction for defeating Gibbs phenomenon:

Runge phenomenon in the diagonal limit of Gegenbauer polynomial approximations.

J. Comput. Phys., 204:253–264, 2005.

[24] E. Braverman, B. Epstein, M. Israeli, and A. Averbuch. A fast spectral subtractional

solver for elliptic equations. J. Sci. Comput., 21(1):91–128, Aug. 2004.

[25] E. Braverman, M. Israeli, and Averbuch A. A hierarchical 3-d direct Helmholtz solver

by domain decomposition and modified Fourier method. SIAM J. Sci, Comput.,

26(5):1504–1524, 2005.

[26] E. Braverman, M. Israeli, A. Averbuch, and L. Vozovoi. A fast 3D Poisson solver of

arbitrary order accuracy. J. Comput. Phys., 144:109–136, 1998.

[27] O.P. Bruno. Fast, high-order, high-frequency integral methods for computational

acoustics and electromagnetics. In M. Ainsworth, P. Davies, D. Duncan, P. Mar-

tin, and B. Rynne, editors, Topics in Computational Wave Propagation Direct and

Inverse Problems Series, volume 31 of Lecture Notes in Computational Science and

Engineering, 2003.

[28] O.P. Bruno, Y. Han, and M.M. Pohlman. Accurate, high-order representation of

complex three-dimensional surfaces via Fourier-continuation analysis. J. Comput.

Phys., 227:1094–1125, 2007.

[29] M.J. Cantero, L. Moral, and L. Velazquez. Five-diagonal matrices and zeros of or-

thogonal polynomials on the unit circle. Linear Algebra Appl., 362:29–56, 2003.

[30] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Methods: Funda-

mentals in Single Domains. Scientific Computation. Springer, Berlin, 2006.

[31] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Methods Funda-

mentals in Single Domains, chapter 5, page 272. Scientific Computation. Springer,

Berlin, 2006.

120

[32] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Methods Fun-

damentals in Single Domains, chapter 1, page 27. Scientific Computation. Springer,

Berlin, 2006.

[33] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Methods: Evolution

to Complex Geometries and Applications to Fluid Dynamics. Scientific Computation.

Springer, Berlin, 2007.

[34] M. Carpenter, D. Gottlieb, and S. Abarbanel. Time-stable boundary conditions for

difference schemes solving hyperbolic systems: methodology and application to high-

order compact schemes. J. Comput. Phys., 111:220236, 1994.

[35] M.H. Carpenter, D. Gottlieb, and A. Saul. The stability of numerical boundary treat-

ments for compact high-order finite-difference schemes. J. Comput. Phys., 108:272–

295, 1993.

[36] R.-S. Chen, E. Yung, C.H. Chan, D.X. Wang, and D.G. Fang. Application of the

SSOR preconditioned CG algorithm to the vector FEM for 3-D full-wave analy-

sis of electromagnetic-field boundary-value problems. IEEE T. Microw. Theory.,

50(4):1165–1172, 2002.

[37] Z. Chen. Finite Element Methods and Their Applications. Scientific Computation.

Springer, Berlin, 2005.

[38] Z. Chen. Finite Element Methods and Their Applications, chapter 1, pages 55–58.

Scientific Computation. Springer, Berlin, 2005.

[39] C. Clavero, J.L. Gracia, and J.C. Jorge. A uniformly convergent alternating direction

hodie finite difference scheme for 2d time-dependent convection-diffusion problems.

IMA. J. Numer. Anal., 26:155–172, 2006.

[40] T. Colonius and S.K. Lele. Computational aeroacoustics: Progress on nonlinear prob-

lems of sound generation. Prog. Aerosp. Sci., 40:345–416, 2004.

[41] J.W. Cooley and J.W. Tukey. An algorithm for the machine calculation of complex

Fourier series. Math. Comput., 19:297–301, 1965.

121

[42] K.D. Cooper, K.M. McArthur, and P.M. Prenter. Alternating direction collocation

for irregular regions. Numer. Meth. Part. D. E., 12:147–159, 1996.

[43] K.D. Cooper and P.M. Prenter. Alternating direction for separable elliptic partial

differential equations. SIAM J. Numer. Anal., 28(3):711–727, Jun. 1991.

[44] J. Douglas, Jr. Alternating direction methods for three space variables. Numer.

Math., 4:41–63, 1962.

[45] J. Douglas, Jr. and J.E. Gunn. A general formulation of alternating direction methods.

Part I. Parabolic and hyperbolic problems. Numer. Math., 6:428–453, 1964.

[46] J. Douglas, Jr. and S. Kim. Improved accuracy for locally one-dimensional methods

for parabolic equations. Math. Models Methods Appl. Sci., 11(9):1563–1579, 2001.

[47] J. Douglas, Jr. and D.W. Peaceman. Numerical solution of two-dimensional heat-flow

problems. A.I.Ch.E. J., 1(4):505–512, 1955.

[48] J. Douglas, Jr. and C.M. Pearcy. On convergence of alternating direction procedures

in the presence of singular operators. Numer. Math., 5:175–184, 1963.

[49] J. Douglas, Jr. and H.H. Rachford, Jr. On the numerical solution of heat conduction

problems in two and three space variables. T. Am. Math. Soc., 82(2):421–439, Jul.

1956.

[50] T.A. Driscoll and B. Fornberg. A padé-based algorithm for overcoming the Gibbs

phenomenon. Numer. Algorithms., 26:77–92, 2001.

[51] A.J. Duijndam and M.A. Schonewille. Nonuniform fast Fourier transform. Geophysics,

64(2):539–551, 1999.

[52] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM J.

Sci. Comput., 14:1368–1393, 1993.

[53] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data, ii. Appl.

Comp. Harm. Anal., 2:85–100, 1995.

[54] W.R. Dyksen. Tensor product generalized ADI methods for separable elliptic prob-

lems. SIAM J. Numer. Anal., 24(1):59–75, Feb. 1987.

122

[55] K.S. Eckhoff. On a high order numerical method for solving partial differential equa-

tions in complex geometries. J. Sci. Comput., 12(2):119–138, 1997.

[56] K.S. Eckhoff. On a high order numerical method for functions with singularities.

Math. Comput., 67(223):1063–1087, July 1998.

[57] M. Elghaoui and R. Pasquetti. A spectral embedding method applied to the advection-

diffusion equation. J. Comput. Phys., 125:464–476, 1996.

[58] M. Elghaoui and R. Pasquetti. Mixed spectral-boundary element embedding algo-

rithms for the Navier-Stokes equations in the vorticity-stream function formulation.

J. Comput. Phys., 153:82–100, 1999.

[59] L.C. Evans. Partial Differential Equations, chapter 2, pages 54–62. American Math-

ematical Society, Providence, 1998.

[60] G. Fairweather and A.R. Mitchell. A high accuracy alternating direction method for

the wave equation. J. I. Math. Appl., 1:309–316, 1965.

[61] J.A. Fessler and B.P. Sutton. Nonuniform fast Fourier transforms using Min-Max

interpolation. IEEE T. Signal Proces., 51(2), 2003.

[62] J. Fish and T. Belytschko. A First Course in Finite Elements, chapter 1, page 3.

John Wiley and Sons Ltd., West Sussex, England, 2007.

[63] J. Fish and T. Belytschko. A First Course in Finite Elements, chapter 1, page 1.

John Wiley and Sons Ltd., West Sussex, England, 2007.

[64] B. Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge monographs

on applied and computational mathematics. Cambridge University Press, Cambridge,

1996.

[65] B. Fornberg, J. Zuev, and J. Lee. Stability and accuracy of time-extrapolated ADI-

FDTD methods for solving wave equations. J. Comput. Appl. Math., 200:178–192,

2007.

[66] J. Geer. Rational trigonometric approximations to piece-wise smooth periodic func-

tions. J. Sci. Comput., 10:325–356, 1995.

123

[67] J. Geer and N. Banerjee. Exponentially accurate approximations using Fourier series

paritial sums. J. Sci. Comput., 12:253–287, 1997.

[68] A. Gelb and J. Tanner. Robust reprojection methods for the resolution of the Gibbs

phenomenon. Appl. Comput. Harmon. Anal., 20:3–25, 2006.

[69] R. Glowinski, T.-W. Pan, and J. Periaux. A fictitious domain method for Dirichlet

problem and applications. Comput. Method. Apply. M., 111:283–303, 1994.

[70] G.H. Golub and C.F. Van Loan. Matrix Computations, chapter 4, pages 183–188.

The John Hopkins University Press, Baltimore, third edition, 2006.

[71] J. Gong and J. Nordstrom. A stable and efficient hybrid scheme for viscous problems

in complex geometries. J. Comput. Phys., 226:1291–1309, 2007.

[72] D. Gottlieb and S.A. Orszag. Numerical Analysis of Spectral Methods: Theory and

Applications. Society for Industrial and Applied Mathematics, Philadelphia, 1977.

[73] D. Gottlieb and C.-W. Shu. On the Gibbs phenomenon and its resolution. SIAM

Rev., 39(4):644–668, 1997.

[74] D. Gottlieb and C.-W. Shu. A general theory for the resolution of the Gibbs phe-

nomenon. In Tricomi’s Ideas and Contemporary Applied Mathematics, volume 147 of

Atti dei Convegni Lincei, Rome, 1998. Academia Nazionale dei Lincei.

[75] D. Gottlieb, C.-W. Shu, A. Solomonoff, and H. Vandeven. On Gibbs phenomenon

i: Recovering exponential accuracy from the Fourier partial sum of a nonperiodic

analytic function. J. Comput. Appl. Math., 43:81–98, 1992.

[76] D. Gottlieb and E. Tadmor. Recovering pointwise values of discontinuous data

within spectral accuracy. In E.M. Murman and S.S. Abarbanel, editors, Progress

and Supercomputing in Computational Fluid Dynamics, pages 357–375, Boston, 1985.

Birkhauser.

[77] W.H. Guilinger, Jr. The Peaceman-Rachford method for small mesh increments. J.

Math. Anal. Appl., 11:261–277, 1965.

[78] J.E. Gunn. On the two-stage iterative method of Douglas for mildly nonlinear elliptic

difference equations. Numer. Math., 6:243–249, 1964.

124

[79] T. Hagstrom and G. Hagstrom. Grid stabilization of high-order one-sided differencing

i:first-order hyperbolic systems. J. Comput. Phys., 223:316–340, 2007.

[80] W.D. Henshaw and D.W. Schwendeman. An adaptive numerical scheme for high-

speed reactive flow on overlapping grids. J. Comput. Phys., 191:420–447, 2003.

[81] W.H. Hundsdorfer and Verwer J.G. Stability and convergence of the Peaceman-

Rachford ADI method for initial-boundary value problems. Math. Comput.,

53(187):81–101, Jul. 1989.

[82] M. Israeli, L. Vozozoi, and A. Averbuch. Spectral multidomain technique with local

Fourier basis. J. Sci. Comput., 8(2):135–149, 1993.

[83] D. Jackson. The Theory of Approximation, volume 11 of American Mathematical

Society Colloquium Publications, chapter 4, pages 119–123. American Mathematical

Society, New York, 1930.

[84] L. Jameson. High order schemes for resolving waves: Number of points per wavelength.

J. Sci. Comput., 15(4):417–433, 2000.

[85] N.V. Kantartzis, T.T. Zygiridis, and T.D. Tsiboukis. An unconditionally stable higher

order ADI-FDTD technique for the dispersionless analysis of generalized 3-D EMC

structures. IEEE T. MAGN., 40(2):1436–1439, March 2004.

[86] S. Karaa and J. Zhang. High order ADI method for solving unsteady convection-

diffusion problems. J. Comput. Phys., 198:1–9, 2004.

[87] M. Lees. Alternating direction methods for hyperbolic differential equations. J. Soc.

Ind. Appl. Math., 10(4):610–616, Dec. 1962.

[88] J.R. Li and L. Greengard. High order marching schemes for the wave equation in

complex geometry. J. Comput. Phys., 198:295–309, 2004.

[89] M.N. Linnick and H.F. Fasel. A high-order immersed interface method for simulating

unsteady incompressible flows on irregular domains. J. Comput. Phys., 204:157–192,

2005.

125

[90] B. Lombard, J. Piraux, C. Gelis, and J. Virieux. Free and smooth boundaries in 2-d

finite-difference schemes for transient elastic waves. Geophys. J. Int., 172:252–261,

2008.

[91] R.E. Lynch and J.R. Rice. Convergence rates of ADI methods with smooth initial

error. Math. Comput., 22(102):311–335, Apr. 1968.

[92] R.E. Lynch, J.R. Rice, and D.H. Thomas. Direct solution of partial difference equa-

tions by tensor product methods. Numer. Math., 6:185–199, 1964.

[93] A. Majda, J. McDonough, and S. Osher. The Fourier method for nonsmooth initial

data. Math. Comput., 32(144):1041–1081, Oct. 1978.

[94] A.R. Mitchell and G. Fairweather. Improved forms of the alternatin direction meth-

ods of Douglas, Peaceman and Rachford for solving parabolic and elliptic equations.

Numer. Math., 6:285–292, 1964.

[95] M.S. Mock and P.D. Lax. The computational of discontinuous solutions of linear

hyperbolic equations. Commun. Pur. Appl. Math., 31:423–430, 1978.

[96] R.K. Mohanty and M.K. Jain. An unconditionally stable alternating direction implicit

scheme for the two space dimensional linear hyperbolic equation. Numer. Meth. Part.

D. E., 17:684–688, 2001.

[97] K.W. Morton and D.F. Mayers. Numerical Solution of Partial Differential Equations,

chapter 3, page 77. Cambridge University Press, Cambridge, second edition, 2005.

[98] K.W. Morton and D.F. Mayers. Numerical Solution of Partial Differential Equations,

chapter 2, pages 33–38. Cambridge University Press, Cambridge, second edition, 2005.

[99] K.W. Morton and D.F. Mayers. Numerical Solution of Partial Differential Equations,

chapter 3, pages 70–71. Cambridge University Press, Cambridge, second edition, 2005.

[100] O.F. Næss and K.S. Eckhoff. A modified Fourier Galerkin method for the Poisson

and Helmholtz equations. J. Sci. Comput., 17:529–539, 2002.

[101] T. Namiki. A new FDTD algorithm based on alternating-direction implicit method.

IEEE T. Microw. Theory., 47(10):2003–2007, Oct. 1999.

126

[102] P. Olsson. Summation by parts, projections and stability i. Math. Comp., 64:10351065,

1995.

[103] P. Olsson. Summation by parts, projections and stability ii. Math. Comp.,

64:14731493, 1995.

[104] S.A. Orszag. Spectral methods for problems in complex geometries. J. Comput. Phys.,

37:70–92, 1980.

[105] D.W. Peaceman and H.H. Rachford, Jr. The numerical solution of parabolic and

elliptic differential equations. J. Soc. Ind. Appl. Math., 3(1):28–41, March 1955.

[106] George M. Phillips. Interpolation and Approximation by Polynomials, chapter 2, pages

87–100. CMS Books in Mathematics. Springer, New York, 2003.

[107] George M. Phillips. Interpolation and Approximation by Polynomials, chapter 2, pages

100–116. CMS Books in Mathematics. Springer, New York, 2003.

[108] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes:

The Art of Scientific Computing, chapter 12, pages 640–719. Cambridge University

Press, Philadelphia, third edition, 2007.

[109] A. Quarteroni, S. Riccardo, and F. Saleri. Numerical Mathematics, chapter 7, pages

331–332. Texts in Applied Mathematics. Springer, New York, 2000.

[110] A. Quarteroni, S. Riccardo, and F. Saleri. Numerical Mathematics, chapter 3, pages

90–93. Texts in Applied Mathematics. Springer, New York, 2000.

[111] R.D. Richtmyer and K.W Morton. Difference methods for initial-value problems.

Robert E. Krieger Publishing Co., Inc., Malabar, FL, reprint of the second edition,

1994.

[112] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia, second

edition, 2003.

[113] Y. Saad and H. A. van der Vorst. Iterative solution of linear systems in the 20th

century. J. Comput. Appl. Math., 123:1–33, 2000.

127

[114] M. Schatzman. Stability of the Peaceman-Rachford approximation. J. Funct. Anal.,

162:219–255, 1999.

[115] S. Schmidt and G. Lazzi. Extension and validation of a perfectly matched layer

formulation for the unconditionally stable D-H FDTD method. IEEE Microw. Wirel.

Co., 13(8):345–347, 2003.

[116] Y. Shi, L. Li, and C.H. Liang. The ADI multi-domain pseudospectral time-domain

algorithm for 2-d arbitrary inhomogeneous media. J. of Electromagn. Waves and

Appl., 19(4):543–558, 2005.

[117] R.K. Shukla, M. Tatineni, and X. Zhong. Very high-order compact finite difference

schemes on non-uniform grids for incompressible Navier-Stokes equations. J. Comput.

Phys., 224:1064–1094, 2007.

[118] Bulirsch R. Stoer J. Introduction to Numerical Analysis, chapter 8, pages 601–602.

Springer, New York, second edition, 2004.

[119] Bulirsch R. Stoer J. Introduction to Numerical Analysis, chapter 8, page 597. Springer,

New York, second edition, 2004.

[120] B. Strand. Summation by parts for finite difference approximations for d/dx. J.

Comput. Phys., 110:4767, 1994.

[121] G. Strang and G.J. Fix. An Analysis of the Finite Element Method. Prentice-Hall,

Englewood Cliffs, N.J., 1973.

[122] W.T. Strickland and S.H. Davis. Transient response of the fluid surrounding a hot

wire. Industrial and Engineering Chemistry Fundamentals, 5(1):38–42, 1966.

[123] J.C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. SIAM,

Philadelphia, second edition, 2004.

[124] J.C. Strikwerda. Finite Difference Schemes and Partial Differential Equations, chap-

ter 1, pages 34–36. SIAM, Philadelphia, second edition, 2004.

[125] J.C. Strikwerda. Finite Difference Schemes and Partial Differential Equations, chap-

ter 7, pages 172–177. SIAM, Philadelphia, second edition, 2004.

128

[126] J.C. Strikwerda. Finite Difference Schemes and Partial Differential Equations, chap-

ter 14, page 383. SIAM, Philadelphia, second edition, 2004.

[127] J. Tanner. Optimal filter and mollifier for piecewise smooth spectral data. Math.

Comp., 75:767–790, 2006.

[128] Z.F. Tian and Y.B. Ge. A fourth-order compact ADI method for solving two-

dimensional unsteady convection-diffusion problems. J. Comput. Appl. Math.,

198:268–286, 2007.

[129] R.S. Varga. Matrix Iterative Analysis. Series in Automatics Computation. Prentice-

Hall, Englewood Cliffs, N.J., 1962.

[130] L. Vozovoi, M. Israeli, and A. Averbuch. Analysis and application of Fourier-

Gegenbauer method to stiff differential equations. SIAM J. Numer. Anal., 33(5):1844–

1863, Oct. 1996.

[131] L. Vozovoi, M. Israeli, and A. Averbuch. Multidomain local Fourier method for PDEs

in complex geometries. J. Comput. Appl. Math., 66:543–555, 1996.

[132] L. Vozovoi, A. Weill, and M. Israeli. Spectrally accurate solution of nonperiodic

differential equations by the Fourier-Gegenbauer method. SIAM J. Numer. Anal.,

34(4):1451–1471, Aug. 1997.

[133] E.L. Wachspress. Iterative Solution of Elliptic Systems and Application to the Neutron

Diffusion Equations of Reactor Physics. Prentice-Hall, Englewood Cliffs, N.J., 1971.

[134] S. Wang, F.L. Teixeira, and J. Chen. An iterative adi-fdtd with reduced splitting

error. IEEE Microw. Wireless Compon. Lett., 15(2):92–94, 2005.

[135] J.A.C. Weideman and S.C. Reddy. A MATLAB differentiation matrix suite. ACM

T. MATH. SOFTWARE, 26(4):465–519, December 2000.

[136] O.B. Widlund. On the rate of convergence of an alternating direction implicit method

in a noncommutative case. Math. Comput., 20(96):500–515, Oct. 1966.

[137] O.B. Widlund. On difference methods for parabolic equations and alternating direc-

tion implicit methods for elliptic equations. IBM J. Res. and Dev., 11(2):239–243,

1967.

129

[138] O.B. Widlund. On the effects of scaling of the Peaceman-Rachford method. Math.

Comput., 25(113):33–41, Jan. 1971.

[139] D. You. A high-order Padé ADI method for unsteady convection-diffusion equations.

J. Comput. Phys., 214:1–11, 2006.

[140] D.M. Young. Iterative Solution of Large Linear Systems. Academic Press, New York,

1971.

[141] G. Zhao and Q.H. Liu. The unconditionally stable pseudospectral time-domain (pstd)

method. IEEE Microw. Wirel. Co., 13(11):475–477, 2003.

[142] F. Zheng, Z. Chen, and J. Zhang. A finite-difference time-domain method without the

Courant stability conditions. IEEE Microw. Guided. W., 9(11):441–443, Nov. 1999.

