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ABSTRACT

We investigate the nonlinear parabolic equations of chemical
tubular reactors. For various ranges of certain physical parameters
perturbation procedures are applied to reduce the problem to various
questions involving periodicity of solutions of ordinary and partial
differential equations, multiplicity of solutions, bifurcation phenomena,
existence, and stability of solutions. The main results include an
investigation of the implications of the direction and stability of bi-
furcating branches and the multiplicity of periodic solutions for non-
linear diffusive systems. For the non-adiabatic chemical reactors
the response diagrams are given for all relevant ranges of all physical

parameters.
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Chapter 1

INTRODUCTION

Section 1, Introduction - Physical Motivation

The nonlinear diffusion processes which we investigate are of

the type that are mathematically expressed as

2
8T o T _ T .
""Tt‘ 'a—‘Z‘“h(Ts'a—;c"c:l\:):
ox
(1.1.1)
2
oC 0°C _ aC
2 ECE T

and a set of initial and boundary conditions where \ is a vector of
physical parameters in the problem and h and g depend nonlinearly
on T and C. This type of nonlinear diffusion process is a commonly
occurring one in chemical reactor theory where the main objective

is to answer the questions of existence, multiplicity, stability, and
oscillatory behavior of the solutions as some physical parameter in
the problem is changed.

The particular problem from chemical reactor theory of the
form (1.1.1) which we investigate is the problem of a simple, first
order, exothermic reaction processed in a nonadiabatic tubular
reactor. The governing equations for axial heat and mass transfer

in this problem may be expressed in the dimensionless form (see

H. Hlavacek and H. Hofmann [12]):
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oT 8T 1 8T . .
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(1.1.2) 'é;z*(o,t) = PeT(O,t), fa“}z“(o ,t) = PGC(O,t),

8T _ oC _
-—5‘-}-(-(1,t)-—-0, ‘8")‘;(1513)—0:

T(x,0) = dx), C(x,0) = ¥(x).

The nonlinearity f£(T,C) is given by

(1.1.3) f(T,C)z(i—C)exp( T1_~> :
i +-\—{-T

Tc is a constant and Pe, B, B, Da, and %{- are nonnegative con-~
stants., T is a dimensionless temperature while C is the conversion
or product concentration. The term -B(T—TC) represents heat removed
from the reactor due totheheat exchanger surrounding the reactor and
DaBf(T,C) the heat added to the reactor due to the chemical reaction.

For the case P =0 the investigation of the time independent

solutions of (1.1.2) reduces to the study of

2
—1—é§-'§— -g-g = Da(B-T) exp< Ti >,
ox 1 +=T
Y
8T oy
(1.1.4) 27 (0) = Pe(0),

8T (11
= 1) =0
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where the concentration, C, is givenby C = T/B. The questions
of multiplicity and stability were investigated by Cohen [ 4].

For P> 0 the problem (1.1.2) has becen investigéted numeri-
cally by C. R. McGowin and D. D. Perlmutter [ 16], V. Hlavacek
and H. Hofmann [ 13] , and V. Hlavacek, H. Hofmann, and M. Kubicek
[14] . References to other literature on problem (i{.1.2) can be found
in these references. The existence of one, three, and five steady
states and the existence of oscillatory solutions are reported.
Physically, the oscillatory behavior seems to occur because of the
balance (;r imbalance of the heat added through DaBf(T,C) and heat
removed through - p{T - TC) in the system (1.1.2). We shall show
for certain combinations of the parameters this is indeed the case.

Our investigation of the problem (1.1.2) will be for the case
0 < Pe << 1 which means physically that the diffusion coefficients
are "Iargeg " We will treat all constant values of B, B, Da, and TC
of physical interest. By the formal methods of singular perturba-
tions we show in C-hapter 2 that the proble_m (1.1.2) can be reduced
to the study of a far more tractable set of nonlinear ordinary differ-
ential equations.

This set of nonlinear ordinary differential eqruations governs
the enthalpy and mass balances for a simple, first order, exothermic
reaction being processed in a CSTR (continuously stirred tank re-
actor)., Mathematically, this problem can be written in the dimen-

sionless form (see V. Hlavacek, M. Kubicek, J. Jelinek [ 11]):



dx

1 _
ol Xxi - f3(x1 - Xc) +Dan(x1,x2),
c’lx2
(1.1.5) Tl )\.XZ +Daf(x1,x2),

xi(O) = Ao’ and XZ(O) = Bo’

where Xy is the dimensionless temperature, xzr is the dimension-
less concentration of the product, and X, = Tc' The variable X\
represents a recycle factor with 0< X =1 where A =1 means no
reéycle. As for the tubular reactor problem, the term Da,Bf(x1 ’XZ)
represents heat added and - f3(x1 ~xC) represents heat removed.

X, is the temperature of the heat exchanger and f(x1 ’XZ) is the
same as in (1.1.3) for x = T and X, = C.

The investigation of the system (1.1.5) has been quite inten-
sive in the last ten years culminating with the article by V. Hlavacek,
M. Kubicek, and J. Jelinek [11] . The pertinent chemical engineering
literature is given there. It is known that changing the feed tempera-
ture can cause oscillations large enough to make the produce unde-
sirable., These oscillations can also cause the temperature to sur-
pass the limitations of the reactor (see R. Luus and L. Lapidus [ 15]).
Thus, the question of how these large oscillations occur is important
from the applied point of view. An answer is given in Section 5.5
and Chapter 6.

The problem of a chemical reaction along a long wire is

another problem which has been intensely investigated in the last
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decade by Frank-Kameneteskii] 7] and M. F. Cardoso and D. Luss
[21] . We include this example not only because the governing
equations are identical for most parameter ranges with the equations
of the CSTR under an appropriate change of variables but also to
show how the oscillafory behavior (flickering) is also present in the
constant flow system during the ignition process. Recently,

D, Luss and M. A. Erwin [ 20] concluded that these oscillations
are possibly due to the unsteady flow velocity along the wire. We
are able to show that this same flickering phenomena can be accom-
plished in a constant flow system. The mechanism by which we
achieve the ignition or extinction process is through a change in the
temperature of the gas surrounding the wire as cpposed to changing
the flow velocity used by Luss., For the CSTR, this is equivalent to
a change in the feed temperature when the bath temperature and the
feed temperature are the same. We shall, however, examine only

‘the CSTR.

Section 2. Introduction - Mathematical Questions

We should point out that the techniques we use to study the
specific problem (1.1.2) apply also to the study of the more general
nonlinear diffusion problem of the form (1.1.1).

The equivalence between the tubular reactor and the CSTR is
a problem that has been intensely investigated. The paper by
V. Hlavacek and H. Hofmann [ 12] list most of the chemical reactor

literature. The technique ascribed to this equivalence is called the
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"lumping approach" [12] . We use a singular perturbations procedure
in Chapter 2 to show that the temperature T(x,t) and concentration

C(x,t) are given formally by

@
(1.2.1) T(x,t) ~ Xi(t) + Z An exp (-nzﬂ?'%) cos nwx *+ O(¢)
n=1
as €~ 0,
2.8}
(1.2.2) Cix,t)~ xz(t) + Z Bn exp (-nZ*rr2 -z—) cos nmx + O(€)
=1
as € —~ 0,
where
i (‘1
(1.2.3) A= SO $(€) d&, A = ZJO $(£) cos nn§ dE,
pi i
Wzw) By W@ e, B =2 e cosuat at,
(1.2.5) Xi(o) = Ao’ XZ(O) = Bo’

and x4 (t) and xz(t) satisfy the equation (1.1.5) for the CSTR with
A=1. We have set TCE X in these equations. It is in this sense
that the two are equivalent.

The remainder of the work focuses on the study of the CSTR.
In Chapter 3 we dispose of the questions of uniqueness, boundedness,
and existence in the large. The "long time" behavior of the solution
of the problem (1.1.5) is characterized in Theorem 3.2.1. In

Section 2.2 we discuss the approximation



exp(m?*r)zexpT
1+-\7T

and use this in Chapters 4 through 6.

The main results in this thesis begin in Chapter 4 where we
give the necessary and sufficient conditions for multiplicity,
stability, index, and type of the critical point (steady state). The
main achievement here is in Section 5 where we give an exhaustive
classification of the relations between stability and multiplicity. We
believe that we have some new and surprising results here. In the
last section we invoke results of Chapter 3 to prove existence and
nonexistence of periodic solutions.

Chapter 5 contains the major achievements of this thesis. We
prove that when there is a change in the stability of the critical point
of index +1 as the parameter Da varies that there is an associated
bifurcation of periodic orbits. The stability of these bifurcating
?eriodic orbits and the connection with the direction of bifurcation
are rigorously established. We shall see that the direction of a
bifurcating branch of periodic orbits and its stability can have some
surprising implications concerning both the number of periodic orbits
and the stability of various segments of the response diagram for the
reactor process.

In Chapter 6 we exploit the direction of bifurcation and its con-
nection with oscillatory instabilities occurring in reactor problems.
We first discuss the classical "jump" phenomena and then show two

new types of "jump" phenomena in which there is a "jump" into



oscillatory steady states.
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Chapter 2

THE REDUCED PROBLEM AND THE
EXPONENTIAL APPROXIMATION

Section 1. Introduction

In Section 2 we give the singular perturbation procedure which
reduces the tubular reactor problem to the consideration of the
CSTR through equation (1.2.1) and (1.2.2). In Section 3 we briefly
discuss the exponential approximation used so extensively in the

literature and here.

Section 2. The Singular Perturbation Procedure

By a singular perturbation procedure we now reduce the
problem of the tubular reactor to considerations of the CSTR. This
procedure is for small Pecket numbers.

Set Pe = €, The tubular reactor problem discussed in

Chapter 1 is formulated mathematically as

i T
- + = - - + -
T T et Ty B(T-T_) +DaB(t - C) exp<1 +_1_T>,
1 ' T\
¢ -=C +C _ = Da(l -C)exp (——-—-——-—-—) s
£t € Tyxx ,X 1+-—1-T
Y
(2.2.1) . T,x(o’t) = €T(0,t) , T’X(i,t) =0,

C,X(O,t) = €C(0,t) , C,X(i,t) = 0,

T(X’O) = ¢’(X), C(X,O) = LP(X) e
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(see Cole [ 5]) there is an initial boundary layer at t =0 for

expansion {outer expansion) is of the form

(2.2.2)

o0

Tb@t)NZLTRJX,ﬂSn and Clx,t) ~ ZS C%Jx,ﬂen.

n=0

n=0

By substituting (2.2.2) into {(2.2.1) and equating coefficients of the

like powers of €, we generate a sequence of problems which to first

order in €

ﬁ

(2.2.3) ﬂ

(2.2.4) ¢

is given by

o?T, oT_ OT,

— o .

= 57 + S {B(TO-—TC) - DaB(i—CO) exp(
Ox
2
o C1 E)C-O 8CO To

o= + -—Da_(i—C)eXp<-—*-w-~">,
aXZ ot ox o 1+_£ T

Y o

8T 5C.

i
ox

8T1
ﬁ;(i,t) =0 I

i
“""‘"(ott) :TO(O:t) s —-—5-}-;—-(0,13):(:0(0,1?),

BCi

—532—(1,1:)::0 .

T
o

RN
v

P

0= x=1 of thickness O(¢). Away from this layer the asymptotic

(o]

By the methods of singular perturbations

)
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The solution of problem (2,2.3) is
To(x,t) = xi(t) and C-O(x,t) = xz(t) s

where at this stage xl(t) and Xz(t) are arbitrary functions of time.
To generate a self-consistent perturbation scheme, the functions

Xy (t) and Xz(t) must be determined {rom a consistency condition

in problem (2.2.4).

We now proceed to solve problem (2.2.4). The problem
(2.2.4) is solvable only if a consistency condition is satisfied (see
Stakgold [ 18]). This consistency condition is equivalent to integrating
the equations in (2.2.4) from zero to one and using the boundary

conditions. Since To(x,t) = Xl(t) and Co(x,t) = xz(t), this yields

dx1 %,
(2.2.5) Y
_xz(t) = - Da(i—xz) exp(-——_f—-> .
i+==
y 1
or, equivalently,
dxi %,
- = —xi—ﬁ(xi—Tc) +DaB(1-x2) exp(.i_:_l—a-) s
- X
!
(2.2.6)
dx2 %y
- = - X, + Da(isxz) exp (.1_;—1-——-) .
¥

The solution to problem (2.2.4) is then
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1

Ti(X,t) = - “Z'-

(- )%, (0) +x,(0)
(2.2.7)
Cybet) = = 5 b - D), (0) + 3,00

where X, and x, are arbitrary functions of time and must be deter-

. , - . 2 .
mined from a consistency condition in the O(¢”) problem. At this

stage we determine the initial conditions for the problem (2. 2.6).

Make the change of variables 7 = t/€; then the problem

(2.2.1) is
T -T _=¢|-T -B(T-T )+DaB(1-C) exp[—mr
T § XK _ » X C ) 1+-—1«T ’
y
C_-C __=e|-C_+Da(l-C) exp|i—
Y
(2.2.8) T (0,¢c7)=¢eT(0,e7), C (0,e71) =€C(0,e7) ,
X s X

Tx(i,»e'r):o Cx(i,s'r):O,

T(x,0) = ¢{x), and C(x,0) = Y(x) .

The inner asymptotic expansion (the asymptotic expansion in

the boundary layer) is

R o0

T(x,eT) ~ Z Tn(x,'r)sn and C{x,eT) NZ Cn(x,7)€n .

n=0 n=0

Within first order in € we obtain



8_'1"0 BTO : ‘S'C'O B'CO
e A o -T2 =0
o9x ox
6TO 8@0
(2.2.9) —5-;{—(0:7):0: : —5;(0,"')=0 ’
8T aC,
‘5‘{(197)309 —&-(1,7)20,

—'I—‘O(X,O) = 4’(3‘) 9 -Co(xyo) = LIJ(X) ®

The solution of this linear diffusion problem is

9O

To(x,'r) = Ao +Z An exp (-nZvZT) cos nmx ,
(2.2.10) n=l
Eo(x,'r): B, + z B exp (-nz-rrz'r) cos nwx ,
n=1
where
i i
Al =§0 $(€) 4t , A= 25‘0 $(E) cos nwf dE ,
(2.2.11)
i i
B, :S‘O W(5) db , B,= ZSO y(€) cos nwt d§ .

To match the inner expansion and outer expansion, it is required that

Ilim T (x,t)=1lIm T (x,7) and
t—0t © = o °
(3.2.12)
lim  C {x,t) = lim T (x,7) .
t—o0t © =00 ©

Therefore, we obtain the following initial conditions for the problem

(2.2.6)
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1
xi(O) = A = g HE) dg and

(2.2.13) ¢
x,(0) = B =§0 W(€) d§ .

Subtracting off that part of the expansion common to both expansions
[5], we obtain an expansion which is uniformly valid within first

order in €:

Tix,t) ~ Xi(t) + Z Anexp (wnz'frzvg-) cos nmwx + Ofe)

n=1
as € 0,
(2.2.14) o)
- N 2
C(x,t) ) + Z/ exp -n"w -——) cos nwx + O(g)
n=1

as € —+ 0,

where xi(t) and xz(t) satisfy (2.2.6) and (2.2.13) and An and Bn

are given by (2.2.11).

Section 3. The Exponential Approximation

In Chapters 4 through 6 we use the exponential approximation

exp(ﬁﬁ) = exp (T)
Y

which is used so extensively in the chemical engineering literature
(for example, see V. Hlavacek and H. Hofmann [12], V. Hlavacek,
M. Kubicek, and J. Jelinek [ 11], and the references in these two

papers). A discussion of this approximatzz_on can be found in Frank-

Kamenetskii [ 7] . The main support for this approximation is that
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1/y is small so that the qualitative features for both forms should
be the same.. We use this approximation because without it the
algebra would become hopelessly complicated and we wish to see

what qualitative features this approximation produces,
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Chapter 3

PROPERTIES OF THE SOLUTION
OF THE REDUCED PROBLEM

Section 1. Existence, Uniqueness, and Boundedness

In this chapter we present all the theoretical results conern-
ing questions of existence, uniqueness, and boundedness of the solu-
tions of the CSTR problem whenever the initial conditions are
physically meaningful. In Section 2 we characterize the "léng—time"
behavior of these solutions. All the results in this chapter apply to
a CSTR in which the reaction is simple but of arbitrary order regard-
less of the exponential approximation made in the Arrhenius rate
constant. The main results are contained in Theorems 3.1.1 and
3.2.1. The information is necessary for our later analysis, but the
results and proofs are relatively straightforward. We include them
here for the sake of completeness. The principal results of this
dissertation actually start in Chapter 4.

Recall (see equations (2.2.6) and (2.2.13)) that we have reduced

our investigation to a special case of

dx
i -
il )\.X1 - ﬁ(xi-xc) + Bf(x1 ,XZ) = Fi(x1 ’XZ)’
de
(3.1.1) il sz +f(x1,x2) = FZ(Xl’XZ)’

x,(0) € (-y,o) for - = -y <x, x,(0) € (0,1).
i c 2

The nonlinearity f(x1 ,XZ) is given by
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B x
(3. 152) f(xi ,XZ) = Da(1 - xz)n exp (_1__+_1r.__> .
; ¥

where the n denotes the order of the reaction. When y = + o0, we

have the approximation discussed in Chapter 2.

The domain on which the problem is to be analyzed is

{(3.1.3) Dz{(xi,xz)l-y<x1<oo,0<x2<1} .

We will show that for (xi(O),xz(O)) € D and for all t> 0 there
exists a unique solution (xi(t),xz(t)) of (3.1.1) which remains in a
compact subéet of D. This compact subset depends on (xi(O),xZ(O))
and the parameters in the problem. We assume that A and Da are
positive and B and B are non-negative.

and F

i 2
satisfy a Lipschitz condition on both Xy and Xy in some neighbor-

Since F1 and FZ are analytic in all variables, F

hood of every point of the domain D. Therefore we can conclude that
(see Hurewicz [ 22]) there exists a unique solution to the problem
{(3.1.1) with the further properties that

(1) the solution is defined for all real values of t= 0; or

(2) if the solution is not defined for t> fc1 for some t, > 0,

1
then either the point (x1 (t),xz(t)) approaches the boundary

of D or either Xi(t) or xz(t) becomes unbounded as t-t, .

We first show that (2) cannot occur. Note that for X, = i,
dxz/dt = - A<0 and for Xy = 0, dxz/dt = f(xl,O) > 0 so that no
solution can enter that part of the boundary of D at which X, = 0

or x, = i. Thus xz(t) € (0,1) whenever xZ(O) € (0,1). For
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- < -y<0 we note that as x, = -y, f~—0 so that dx1/dt—*

1
Ay - By -x ) >0 if x.> - Y. Thus (Xi ’XZ) cannot enter that part
of the boundary X ==Y when - vy is finite. Next we show that

Xi(t) remains bounded; this resolves the case - y = - oo. First

assume t<t,, then the differential equations (3.1.1) can be written

as

_fi._(e()\Jrﬁ)txi) = e()\+ﬁ)tﬁxc + Be()\'.*'f?))tf(x1 ,XZ),
(3.1.4)

.dg.{(e)"txi) = e)‘tf(xi ,Xz)o

Using the second of these equations in the first we obtain

(3.1.5) —é—i-i-(e()\+p)tx1) = e()”ﬂ?’)tﬁxc + Beﬁt—(%:— e)"txi) .

Integrating (3.1.5) from zero to t< ’c1 , we obtain
Bx
Bt APt

(3.1.6) (MP) x, (£)  -x,(0) = ﬁ(e( Pt _ )

+ BS‘ 57—-----(e)‘ ('r)) dr .

By performing integration by parts on the last integral in (3.1.4) and

by multiplying through by e—()d’ﬁ)t’ we obtain
px ﬁx
(.1.7) %, (1) - Biy(6) - gy - (Xi(o) - Bx,0) - B“‘) S(MBIt

¢
_BpSO e()‘+5)(7't)x2(rr) ar .

Since xz(t) € (0,1) for all tQ[O,ti] , every term in (3.15) remains

bounded except possibly x,(t) as t-—*t-i. It follows that x(t)
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remalns bounded as t — tfo Hence, there exists no t1 > 0 such that

We can conclude, therefore, that only (1)

{ -
is possible, that is, the unique solution (xi(t),xz(t)) of (3.1.1) exists

<, ()] = 0 as t—t

for all t= 0 and remains in D. It remains to show that (xi(t),xz(t))
is contained in a compact subset of D which will depend upon
(xi(O),xz(O)) € D and the parameterrs in the problem.

From (3.1.5), the fact that X\ + 3> 0, and xz(t) € (0,1) it
follows that every term in (3.1.5), except possibly Xi(t) , remalins
bounded as t— + oo. Consequently, Xi(t) must remain bounded as
t -~ + oo, The solution (:x:1 (t),xz(t)) which is initially-in D remains
in a bounded subset of D for all t > 0. Thus M = M(xi(O),xz(O))
2 is

bounded away from that part of the boundary on which X, = 0 or

such that lxi(t)] =M for all t=0. We now show that x

Xy = i. By continuity of £ it follows that de /dt > 0 for all Xy and

x, satisfying lxzf =M and 0=x, =g, and dxz/dt <0 for all x,
and X, satisfying ]le =M and 1 - €, = xy =1 for some suffi-
ciently small positive numbers €, and €,e Consequently, the solu-

tion (x1 (t),xz(t)) is bounded away from the boundary X, = 0 or
X, = 1. We can now claim that for (xi(O) ,XZ(O)) € D the solution,
(x1 (t),xz(t)), of (3.1.1) is contained in some compact subset of D

for all t= 0.

We define a positive semiorbit as (see J. Hale [ 9])

v = {ry ) ey o3y) = Gy (0,55, (0) where G (8),,(8)

is the unique solution of (3.1.1),

t = O}
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Then, we can summarize all the preceding information in

Theorem 3.1.1. If

(i) \>0,B=0,Da>0,B=0 and xc>—y,
and

. %4
(i1) f(xi ,XZ) = Da(l - Xz)n exp (T...:T._._ ,
!

there exists a unique solution of (3.1.1) which is defined for all t= 0,

The positive semiorbit, y , is contained in the interior of a compact

subset of D. This compact subset depends on (Xi ,0),}:2(0)) and the

parameters in assumption (i).

Section 2. Preliminaries Concerning Periodic Solutions

The previous theorem mentions only the positive semiorbit.
In order to apply certain classical theorems to establish the existence
of periodic solutions we shall need to consider the negative semiorbit,
v . If it is known, a priori, that there exists a compact set, say K,
of D such that (xi(t),xz(t)) is contained in the interior of K for
t < 0 and cannot approach the boundary of K as t— t1+ for any

t, < 0, then it follows in a manner similar to the argument in

i

Theorem 3. 1.1 that the solution of (3.1.1) is uhique and exists for

all t< 0, In this case we define

v :{(xi,xz) |G 3,) = (2, (8),3,(8)) where (x, ()5, (1) is the

unique solution of (3.1.1) for t <0,
t= 0}

and the a-limit set or negative limit set of the negative semiorbit vy~
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as

aly’) = {(x +X )[ < a sequence {t, } suchthat lim t_= - oo
172 k k—oo k

and () = Tim (g () ()]

The positive semiorbit is always defined for our problem
(3.1.1) and so we define the w-limit set or positive limit set (see

J. Hale [9]) as

w(y+) :{(x %) | 3 a sequence {t,} suchthat lim t,_ = + co
1772 k ko0 k

and lim (x,(t;),x,(t)) = (x, ,x,)¢ .
foo AR T2 K Xixz}

We now classify all the possible cases of a(y ) and w(y+)

in Theorem 3.2.1 below (see J. Hale [ 9]).

+ -
Theorem 3.2.1. Let y be a positive semiorbit (y a negative

semiorbit) contained in a compact subset, say K, of D and suppose

K has only a finite number of critical points. Then one of the

following is satisfied:

(i) w(y+) (a{y ™)) is a critical point;

(i) oy (aly™)) is a periodic orbit with either vy = w(y’)

(= aly ) or wly’) = v'\y' @)=y \y) where the

bar denotes closure;

(1ii) w(y+) (a(y")) consists of a finite number of critical points

and a set of orbits vy, with a(yi) and w(yi) consisting of

a critical point for each orbit vy;.
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In the next chapter we will analyze the local structure of the
critical points of the autonomous system (3.1.1). Theorems 3.1.1
and 3.2.1 will then be useful in establishing global behavior of the
problem (3.1.1). In particular, when there is only one critical point
and it is unstable, we can prove that only case (ii) of Theorem 3. 2.1
is applicable, This then establishes the existence of periodic solu-

tions in the large.
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Chapter 4

ANALYSIS OF THE STEADY STATES

Section 1. Introduction

In this and the remaining chapters we consider the case of a

simple first order reaction with the approximation

*1
(4.1.1) exp(-—-—f——-> & exp (Xi) .

This means that the differential equations in (3.1.1) now becomes

dx

.EE&. = - Mxy -p(x1 -x) + DaB(i - xz) exp (xi),
(4.1.2)

dx2=-)\x + Da(l - x,) ex |

T 2 2) &P ()

x1(0) € (~oo,00), XZ(O) €(0,1) .

By the change of variables At -—~t, B/\— B, and Da/\ — Da the

system (4.1.2) becomes

dx
o T %y - ﬁ(x1 -xc) +DaB(1—x2) exp (xi)

i
dt
= Fi(xi s‘xziﬁyDa,B)v
(4.1.3)

dx
“&'t‘% = - x2+ Da(i-—xz) exp (xi) = FZ(Xi ,xz;ﬁ,Da,B),

x,(0) € (-, ), x,(0) € (0,1).



-24-

It is this system (4.1.3) on which we now focus all of our
attention. In the {irst sections of this chapter we will examine the
local structure of the critical points of the autonomous system (4. 1. 3).
This will include necessary and sufficient conditions for uniqueness
and multiplicity, index, type, and stability of the critical points.
Within the context of reactor theory these critical points are steady
states. In Section 4 we define the concepts of stability as used in
this study; several theorems giving various conditions for stability
are then stated. In Section 5 the relationship between stability and
multiplicity is examined. We believe that we have some new and
surprising results here. In the last section we invoke the results of

Chapter 3 to prove existence and nonexistence of periodic solutions.

Section 2. Multiplicity and Index of the Steady States

We state and then prove the necessary and sufficient condi-
tions for uniqueness and multiplicity of the critical points (steady
states). The index of the steady states is also given (Figure 1 should
help to illustrate the context of Theorem 4.2.1.)

Theorem 4.2.1. Let

1.1 4(1+B)
(4. 2.1) mg=g-3 /- "5

I 4(1+p)
(40202) m2--2~+'2"/1 it B 3

m, —Brn.1 ﬁxc
(4:. 293) Dai = Da(mi) = 1_mi eXp(T—_F—ﬁ——- —T'FB)




~72h.

for i=1,2. Let (aj sa denote a cwxitical point of the autonomous

5)

system (4.1.3). Then,

[ERE—

there exists one and only one critical point of the autonomous system

(4.1.3). The index {-9(3,1,8.2) = +1 except when B = 4(1+p) and

a, = —-12— =my = m,.

2. When B > 4(1+p) and Da = Da,1 or DaL2 there exists two critical
points.

3. When B> 4(i+p) and Dact (DaZ,Dai) there exist three critical
points for each such Da, B, and B. The index cg(zi,a,z) = +1 when
a, € (O,mi)u(mz,i) and cg(ai,a,z):— 1 when aZE(mi,mZ).

Remark. When one does not use the approximation (4.1.1), there
still remain at most three steady states for certain values of the
parameters regardless of the value of 1/y 20.

Proof: The necessary and sufficient conditions for multiplicity of the

critical points for the system (4.1.3) are contained in the survey
paper of V. Hlavacek, M. Kubicek, and J. Jelinek [11]. We shall
use an argument similar to the one used by Cohen [4]. The index of
the steady states is examined in the book by Gavalas [17]; however,
we give an independent argument.

We first settle the questions of multiplicity and uniqueness of
the critical points. The critical points (a1 ,a,z) are by definition

solutions of the algebraic equations

(4.2.4) Fi(ai,az;ﬁ,B,Da) =0 and
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(4.2.5) ZE‘Z(a1 ,a.Z;Da) =0

where Ii‘i and F._ are given by (4.1.3). Using (4.2.5) ..'m (4.2.4),

2

we obtain an equivalent set of equations:

Baz BXC
(455 2. 6) ai = m + Wg and
a Ba px
- _ 2 2 c
(402; ]) Da,—-r‘:qérz‘— exp (*‘ —i—'-_F‘E "-i-:'-i_-g> °

Note that Da> 0 implies a, € (0,1}, a fact which we have already

used in Chapter 3. Since ay is linearly related to a, through (4.2.6),

2

the multiplicity conditions can be obtained from equation (4. 2.7).
From (4. 2.7) note that Da varies from zero to too as a, varies

from 0 to 1. If Da increases monotonically with a., then we have

57
uniqueness, i.e., for a fixed B, B, X and Da there exists one and
only one solution of (4.2.7). If Da does not increase monotonically
2 then for some fixed Da there still exist more than one a,
satisfying (4.2.7). This is the way we investigate the multiplicity

with a

conditions. From (4.2.7) we obtain

2
(4.2.8) dpa _ (Bay- Ba,t1+f) o ( Ba, ﬁxc)
- >— P\~ 155 ~ T/

a2 (14p) (1-ay)

et m, and m., be roots of

1 2
(4.2.9) Ba’ - Ba, + (148) = 0, i.e.,

2 2

I 4(1+p) I 4(1+p)
(4;2«10) mi-w'z-"'-z'\/i"--“g"——' and mz——2-+-z- i - = .

Note that B < 4(1+p) implies m, and m, are complex which implies
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dDa/daZ >0 for a, € (0,1). B =4({+p) implies dDa/da, >0

except for a,=mg =m, = 1 where dDa/da

> = 0. Thus for

2

B = 4(1+38) we have a unique correspondence between Da and ase
ILet B> 4(1+p) then dDa/da2 >0 for aZE (O,mi) ) (mz,l) and
dDa./da2 <0 for aZE (mi,mz), Let Da, be defined by (4. 2. 3).
Then the situation is as in Figure 1. For B > 4(14B) we have
uniqueness for Da € (O,Daz) U(Da1 ,00)s When Da € (DaZ,Dai)
there exist three solutions of (4.2.7). For Da= Da1 or Da2
there exist exactly two critical points. This completes the multi-
plicity conditions in Theorem 4.2.1.

We now determine index of the steady states. The index ¢

of a critical point is given by

if det A# 0 and where A= E,X(al ,az). (See K. O. Friedrichs [ 8]
or Coddington and Levinson [3].) Now

‘ DaB(i-aZ)exp(ai)-i-ﬁ -DaB exp(ai)’
(4.2.11) A=F, =< )

~x Da(i—az)eﬁcp(ai) -1-Da exp (ai)

Using (4.2.6) and {4.2.7), {4.2.11) simplifies to

Ba,-1-f -Baz/(i-a.z) ) |

(4.2.12) A= <
a, ~1/(1-a2)

‘Therefore
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1

iI-a

Z(Bag—Ba2+1+ﬁ).

(4.2.13) det A =

Using (4.2.8) in (4.2.13), we obtain

Ba B
2

By the definition of <9(a1 ,az) we obtain

+1 whenever dDa/da2> 0
(4.2.15) da,,a,) =
-1 whenever dDa/da2 <0.

The results on the index in the theorem now follow immediately

from our previous considerations of dDa/daZ. Q.E.D.

Section 3. Classification of the Types of Steady States

The results of this section all follow from classical theorems
on ordinary differential equations. The most important facts which
will be used later are contained in the remarks following Theorem
4.3.1.

Write system (4.1.3) as

Ba2
Yy Ba,-1-f -1 Yy

. e dt N !
: Y2 2 =, ¥

a Y y
DaBe 1((1—e 1)-y-2+(1—a2)(e 1-1~'y1))

+
a

y y
Dae ' ((1-e My, t(1-a,)e t-1oy))

where (ai ,az) is a critical point and Yy T Xm 3y for i=1,2. The
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associated linearized problem is
(4.3.2) 4y - A
° 2. dat y

where A has the obvious meaning. We now state the following
theorem:

Theorem 4.3.1. For (4.3.1) and (4.3.2) we have

1

1—&12

det A =

(BaZ - Ba, +(148)) ,

and
i

i—az

tr A= -

(Bas - (B+1+p)a, +(2+B)) .

Let A = (tr A)2 - 4 det A. Then, the critical points of the linear

system {(4.3.2) are classified as follows:

i. _I__f det A < 0, then the critical point is a saddle point.

2, Let det A> 0. The steady state is a spiral if A <0 and

tr A+ 0, a center if A<Q0 and tr A =0, a proper node (I)_i_f_ A =0,

and an improper node (II) if 4>0.

3. Let det A =0. The critical point is an improper node (III)

if A>0 and a degenerate point if A = 0.

The type of critical point for the nonlinear problem (4.3.1) is

the same as that for the linear problem in cases 1 and 2 above except

in the case of the center. This critical point is either a center or a

spiral for the nonlinear problems.

Remark 1. One of the interesting features of our autonomous system

is that for some combination of the parameters B, Da, and B each
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of the cases in (1) - (3) actually occurs.
Remark 2. Given the parameters Da, B, B, and x_, one must first

examine a, through

Da_~_i2_.e _.Ij’)j_g—_‘.s_}ig
“Toa, CP\TTIE TP

paying particular attention to the multiplicity question. In case

B> 4(1+p) and a, € (mi,m ), the critical point (a1 ,az) is a saddle

2
point. Thus for the case of three critical points we can say that the
middle critical point is always a saddle point with two trajectories

entering and two trajectories leaving the critical point.

Remark 3. Let B>3 +p +2/2 +p and

s, =B TR . —21-1-3\/(B+1+ﬁ)2—4}3(2+;3)
and
- Bti+p +J_/(B+1+ )%~ 4B(2 +p)
2= =25 ‘"z P Pr

Then s1 and s2 are roots of tr A = 0 and O<SI<SZ < 1. Let

Dao be the corresponding Da defined through (4.2.7). For p and

B fixed, assume det A> 0 for a, =8, Or s,. Then tr A changes

sign as a., passes through s, or s, and det A> 0 for a, in

2

some sufficiently small interval about s; or s,. In this case we

note that (tr A)2 - 4det A<O for a, Iin some sufficiently small

2
interval about s, or s, which means that all the critical points

are spirals except when a, = s; Or S, -For a, = s, or s, the

critical point is either a center or a spiral. An equivalent way of
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saying this is that when the index of a critical point is +1 and there
is a change in signof tr A as Da varies through some point Dao
for fixed B, B, and X the point Dao corresponds to a center in
the linearized problem (4.3.2). For Da in some sufficiently small
interval about Dao all the corresponding critical points are spirals
except at Dao which will correspond to either a center or spiral.

Proof of Theorem 4,3.1: The classification given is standard and

may be found in Coddington and Levinson [3]. Since the nonlinearity

2 2
+ v, ~+ 0, the second part of the

in (4.3.1) is O(rz) as r = \/yi
theorem regarding the persistence of the local structure of the critical

points follows from classical theorems in Coddington and Levinson

[3] or Struble [19].

Section 4. Preliminary Stability Considerations

In this section we define those types of stability which will be
used in this study and which are physically important for the CSTR.
Several theorems are then stated, These definitions can be found in
J. Hale [ 9], P. Hartman [ 10], W. Coppel [ 6], Coddington and
Levinson [ 3], or most any book on ordinary differential equations.,
Since we shall study only the stability of the critical points and the
periodic orbits of the autonomous system {(3.1.1), our definitions
are restricted to these cases. For the autonomous system

dx

(4.4.1) o = F()

the critical point a is saild to be
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(i) stable if for each € > 0, there exists a &> 0 such that
any solution :E(t) of (4.4.1) which satisfies H§(t) - all< & exists
and satisfies the inequality ”}f(t) - %” <e€ forall t=0,

(ii) asymptotically sfcable if in addit;lon to being stable
”’f(t) - %H ~~ 0 as t~— oo whenever H}f(O) - ziLH " is sufficiently
small,

(iii) unstable if it is not stable.

For the definition of orbital stability let E(t) be a non-
constant periodic solution of the autonomous system >§' = E(x).

Let I' be the closed path x = p(t) in x space. The periodic
solution E(t) is said to be |

(i) orbitally stable if for each € > 0 there exists a §>0
such that every solution x(t) of :5' = li‘(}f) whose distance from T
is less than 6 for t =0 is defined and remains at a distance less
than € from I for all t— 0,

(ii) orbitally asymptotically stable if in addition the distance

of x(t} from T tends to zero as t— w,

and

(iil) unstable if it is not orbitally stable.

We state below three theorems needed for our stability
analysis:

Theorem 4.4.1. (Coppel[6]). The solution of Z' = Ay 1is stable if

every eigenvalue of the matrix A has real part not greater than

zero, and those with zero real part are of the simple type, It is

asymptotically stable if every eigenvalue of A has negative real part.
ymp Y ¥ g g I
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Theorem 4.4.2. (Birkhoff and Rota [ 2]). If the critical point o of

the linear autonomous system

(4.4.2) y'= Ay

is asymptotically stable then so is that of the perturbed system

(4.4.3) B y' = Ay + Gly)

provided ||Gy)[| = o([[y]|?) as y —o.

Theorem 4.4.3., (J. Hale [9]). Let p(t) be a T°-periodic solution

f x'=F(x). p(t) is asymptotically orbitally stable if

.

O

~'T
(4.4.4) 30 V- F(p(t) dt <0

and is unstable if

nTO
(4. 4.5) 50 V- E(p(t) dt> 0 .

Remark 1. The norm used in the above definitions will be used to

gl =Vyi+vs

Remark 2. The instability in theorem 4.5.3 is actually quite strong.

mean

It implies that all trajectories sufficiently close lead away from p(t).

Section 5. Steady State Response Diagram for the Chemical Reactors

Some of the main results of this dissertation are contained in
this section. We completely characterize the stability and number

of critical points (steady states in reactor theory) for all parameters
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in the problem. Our classification is exhaustive; that is, we have
classified all possible cases of multiplicity and stability relation-
ships into six mutually exclusive cases.

It will be convenient to refer simultaneously to Figures 2
through 14 and Table I which give examples of the six mutually
exclusive cases. The author considers the most useful way to use
these figures is to pick a p and B from one of the six regions in
Figure 2 and then read Theorem 4.5.1 for precisely what happens.
The Figures 3 through 14 are two dimensional views of the critical
point (aL1 ,aZ) and Da. The a; axis is taken to be into the paper.
As an example let (f,B ) be in region V. Then, Figures 13 and 14
show schematically what happens. There is a unique correspondence
between Da and (ai,az). For all values of Da the critical point
(ai,az) has an index of +1. For Da € (Da3,Da4), where Da, and

3

Da, are given in Theorem 4.5.1, the critical point (a1 ,az) is an

4
- unstable spiral or node. For Da € (O,D3) U (D4,oo) the critical
point is an asymptotically stable node or spiral.

The analytical description of the six regions — I through VI —
follows Theorem 4.5.1. We now state Theorem 4.5.1 which describes
in detail the relation between stability and multiplicity of the critical

points:

Theorem 4,5.1. Let

(4.5.1) s; = 2gm b - gl (BF1+p%- 4B2+p)
(4.5.2) o= BB L Jmriep? - aBitp
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_ 4(1 +
(40 503) - -2- o-z s
(4.5.4) 1 J B
2
Let Da1 = Da(mi) and Da2 = Da(mz) for B = 4(1 +B) and
Da3=Da(sl) and Da4=Da(sz) for B= 3 +}3+2\/2+p‘ where

Bx Bxc)

Dafx) = 75 exp ( T " T95

Assume that X is fixed but arbitrary. Then we have the following

six cases.

I. For B and B in this region m, and m, are imaginary while

either sy and s, are imaginary or SZ> sy > 1. There is a unique

Eorrespondence between Da and the critical point (a1 ,az) which

is an asymptotically stable node or spiral, Furthermore, all

trajectories in the domain D tend to the critical point. (See

Figure 3.)

II. In this region 0<m1 <m2<1 and for B<3 +g+2y2+3 -

84 and s, are imaginary, but for B23+§3+2\/2+[3 4 and s, are

real and 0 <m

<s,<s8,<m,<1. The critical point is an

1 i 2 2

asymptotically stable spiral or node for a, > m, or a, <m, and

is an unstable saddle point for m, < a, < m, . For Da €& (DaZ’Dai)

there exists three critical poiﬁts with “he middle one the saddle while

Afor Da € (O,Daz) U (Da1 ,00) there is exactly one critical point. (See

Figure 4.)

Ille For B and B in this region there are three critical points for
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Da € (DaZ,Dai) and one critical point for Da € (O,Daz) U (Da1 ,0).

We have 0< my < sy < m, < s, < 1. The critical point is an

asymptotically stable node or spiral for a, € (O,mi) @) (SZ’ 1),

an unstable saddle for aZE (mi’mz)’ and an unstable node or spiral

for aZE (m (For a typical case see Figure 5, 6, or 7 and

228,) and

Table 1.)

IV. In this region there are three critical points for Da & (DaZ,Dai)

and one for Da €(O,Da2) U(Dai,oo). We have O<si<m1<m2<

S5 < 1. The critical point is an asymptotically stable node or spiral

for a, € (0,51) ) (sz,i), a saddle point for a, € (m1 ,mz), and an

unstable spiral or node for aZC (s1 ,mi) U (mZ’SZ)' (See Figures 8

and 9 and TablelI for typical cases.)

V. In this region there is exactly one critical point for all Da > 0.

m, and m, are imaginary, but 4 and s, are real and

0<s

{ < S5 <1, For a, € (O’Si) U (sz,i) the critical point is a

stable node or spiral and for a,¢€ (syss,) the critical point is an

unstable node or spiral, (See Figures 13 and 14 and Table I for

typical cases.)

VI. For B and B in this region there are three critical points for

Da € (DaZ,Dai) and one for Da€ (0,Da. ) VU (Dai,oo). We have

5)

0< my < m, < sy < s, < 1. The critical peint is a stable spiral or

node for a, < (O,mi) U (mZ’Si) U (sz,i), an unstable spiral or node

for aZC (s1 ,sz), and a saddle for a, € (rn1 ,mZ). (A typical case

is shown in Figures 10, 11, and 12 and Table IL.)

Remark {. Before describing analytically the six regiohs we note
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that there are three curves separating the six regions:

(4.5.5) B = {,(p) = 4(1 +p),
(4.5.6) B=f2(ﬁ)=3+ﬁ+2‘/2+ﬁ,
(4.5.7) B=1f(p) =+ 6)3/£3 .

fi and fz intersect at B = 7/9. f, is tangent to fz at B = («/;— 1)/2

3

and to fi and B =1. The regions I through VI are defined as the set

of B and B satisfying =0, B= 0, and

3 —
I1: 4(1+ﬁ<B<.g_BtE)_ for 0<‘3S‘_/_§__:Z_i and 4(1_},5) <B<

3+4p+2/2+p for */52‘ ! s;3<-97-.

3
III:—(—i—g—@—-<B for 0= B< o ,

3
Iv: 4(1+p)<B<E_g_@__ for p> 1,

Vi 3+p+2/2+B< B <4 +]) for B>,

; _
for «/52- g

VI 3+p+z\/2_+_é <B<(1gﬁ) <}3$—g-or 4(1+B)<B<

PN
-(—}—BT——@—)—— for —%Sﬁ(i.

Proof of Theorem 4.5.1. The multiplicity question has been settled

in Theorem 4.2.1 and we shall not repeat it here except to say that
for B> 4(1_ +B) (regions II, III, IV, and VI) we have multiplicity and

for B < 4{{ +B) (regions I and V) we have only one critical point.
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We now turn to the question of stability and emphasize that the stability
analysis is for the nonlinear problem (4.3.1) as well as for the asso-
ciated linear problem (4.3.2).

Recall from (4.3.1) and (4.3.2) that

d

X
(4.5.8) = = Ay + Gly,a)

where G is the nonlinear part of (4.3.1) and
Ba

2
Baz—i-ﬁ - 1_a2
(4.5.9) A= . .
i
) T 1c a,

Since G = O(HXH) as y—~0 (HXH —':\/yf +y§), we can conclude

that the critical point is a uniformly asymptotically stable node or
spiral if det A> 0 and tr A <O0. The critical point will be a saddle
if det A <0 and an unstable node or spiral if det A> 0 and tr A> 0,

From (4.5.9) we have

(4.5.10) tr A= - 1_1&2 (BaZ - (B+1+B)a, +(2+p))
(4.5.11) det A = T_la-Z-(Bag - Ba, + (1 +p) .

et Sy and s2 be roots of tr A =0 and m1 and m2 roots of

det A = 0, These roots are then given by (4.5.1) through (4.5. 4).

For B < 4(1 +p), m, and m, are imaginary which implies that

det A >0 for all values of Da >0 and a, € (0,1) since det A>0

for a, = 0. Thus the stability in this case is determined by the sign

of tr A. For B<3 +p +2J2+B either sy and s, are imaginary



-39-

. or sz>s1>1 so that tr A< 0 for all Da >0 and aZC (0,1).

Thus all critical points are uniformly asymptotically stable spirals

or nodes when B < 4(1 +f8) and B< 3+[3+2\/2+[3 . This is case of
region I. In regionII det A>0 and tr A> 0 for a, € (si,sz) and
tr A< 0 for aZC (0,51) U(sz,i). This completes the case of
region V. For B> 4(1 +p) and B<3+p+2/2+p) )osp<%),

sy and s, are imaginary but m, and m, are real. For

2
a, < (O,mi) U (mz,i) det A>0 and tr A< 0 while for
a, € (m1 ,mz) det A< 0. This completes part of region II. Now

assume B>maX{4:(1 +{3),3+{3+2\/2+6} . Then m,, M,; Sy, and

2
s. are real and tr A< 0 for aZC(O,si)U(sZ,i), tr A> 0 for

2
aZC(Si’SZ)’ det A< 0 for a, € (mi,mz), and det A > 0 for
a, € (O,mi) U (mz,i)o By comparing the roots my, M,, Sy, and S,
we can determine the relatzlonships between stability and multiplicity.
This comparison is done in the Appendix A to give the remaining
cases in the theorem.

The fact that all trajectories in D tend to the critical point

for (B,B) in region I will be proved in Section 6. Q.E.D.

Section 6. Existence and Nonexistence of Periodic Solutions

Having analyzed the critical points with respect to multiplicity,
type, index, and stability, we now turn to the question of periodic
solutions. We shall divide the analysis into two parts. In the first
part, still very much within the spirit of the present chapter, we

shall continue to use the classical phase-plane techniques to obtain
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existence of periodic solutions via the Poincare-Bendixson type
analysis. Finally in the second part, which we reserve for Chapter

5, we come to some of the main results of this paper, namely the
study of bifurcating periodic solutions via the implicit function theorem
and the implications and relationships between multiplicity, stability,
bifurcation, and periodicity.

First; we note that if a periodic solution exists then the
periodic solution must encircle those critical points the sum of whose
indices must be + 1. We have shown in Section 4.2 that when we have a
unique critical point, the index is always + 1. For the case of three
critical points, we have shown that the upper and lower critical points
have index +1, while the middle critical point has an index of - 1.
Thus, the periodic solution must encircle only the lower critical
point, only the upper critical point, or all three critical points. It
cannot happen that the periodic solution encircles 2 of the 3 critical
points.

We shall now show that if there is only one critical point and
it is unstable then a periodic orbit exists and encircles this unique
unstable critical point. In Theorem 3.2.1 we characterized the
w-limit points of any positive half-trajectory 'y+ lying in D. Any
critical point of index + 1 is either a node, spiral, or center, Thus,
in case of a unique unstable critical point, the critical point must be
an unstable node or an unstable spiral. i(The center has special
significance and is examined in greater detail in Chapter 6.) Hence,

all trajectories must leave the unique unstable critical point. This
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implies that neither case (i) nor case (iii) can occur in Theorem 3.2.1
so long as the initial conditions for y+ are not the critical point
itself. Consequently, we have the following theorem:

Theorem 4.6.1. For B, B and Da chosen so that there is but one

critical point and it is unstable, then a periodic orbit must encircle

this unstable critical point. This unstable critical point must be

either a node or a spiral.

At the present we can say no more about the existence of
periodic orbits. We will, however, return to this in Chapter 5. For
p and B in Region I and for P and B in that part of Region IL
where B=<3 +B +2/2+p and Da€ (O,Daé) U (Da )
we now show that there are no periodic orbits; in fact,
w(y+) is the unique stable critical point for all y+ in D. To prove

this we need the following lemma:

ILemma 4.6.2. If B=3 +p +2/2+f and there exists a periodic

orbit, then it must be orbitally asymptotically stable,

Proof: Assume there is a periodic orbit of period T°. We examine

Poincares Criterion (Theorem 4. 4. 3):

: T°
&V*Fd'r:g‘ Ve Fdr
- 0
0

T
:S‘ [ -(1+[3)+DaB(1-xZ)e
0

x x
L. 1_Dae 1] dr

‘S»T" (Bxo- (B +1+p)x,+2 +6)

= dr
0 1-x
T X, :
+S‘ BXZ - 1 - dT 'y
0 %2
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The last integral is zero by periodicity so that

a1

AT (Bx% - (B4 ﬁ)xz 218
Verdre - 5 ‘

dr .
0 L-x,

But for B3 +5 + 242 +f we have Bxg - (B+1 +(5)XZ t2+p>0
for %, & (0,1} except for one point X, = (B+1+p)/2B when

B=3 +ﬁ+2m « Thus we have ng * Fd7r < 0; so, by Polncaris
Criterion the assumed periodic orbit is asymptotically orbitally
stable, (In the above proof we have used the fact that any periodic
orbit is contained in D so that x, € (0,1) ). QED

With this lemma we are ready now to prove

Theorem 4.6.3. For B and B in region I or in that part of region II

where B= 3+ + 2\[2 +mf§1 and Da & (O,Daz) U (Dai,oo), w(\(+) is the

i
unique stable critical point for each yﬁ for which (xi(O},xz(O)) = D.

In other words, all trajectories go into the critical point.

Proof: Since we know that for p, B, and Da chosen as in the
theorem the unique crritical point is asymptotically stable, w(y+)
must be either the critical point or a periodic orbit from Theorem
3.2.1. Assume that w(y+) is a periodic orbit. By Lemma 4.6.2
this periodic orbit must be asymptotically orbitally stable. Consider
now an initial value problem with (x1 , {0) ,XZ(O)) in the interior of
the periodic orbit but distinct from the critical point. Choose

(Xi (0)’XZ(O)) so close to the periodic orbit that w(y+) is this periodic
orbit. By our remark at the end of Theorem 3.1.1 and by the
stability of our periodic solution it follows that y; is defined and

does not enter this stable periodic solution. By Theorem 3.2.7
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a(y;) must be either a critical point or a periodic orbit. It cannot
be the critical point since the critical point is asymptotically stable.
Thus it must be a periodic orbit. This periodic orbit must then be
unstable contradicting Lemma 4.6.2. Thus the assumption that

w(y+) is a periodic orbit is untenable. Q.E.D.
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Chapter 5

BIFURCATION OF PERIODIC SOLUTIONS

Section 1., Introduction

In Section 3 of the previous chapter we found that when the
index of a critical point is +1 and there is a change in stability as
Da varies for p and B fixed, the point, say Day, at which the
stability changes corresponds to a center in the linearized problem

associated with the autonomous system

dx,

“"d“{‘ frd -XI - B(XI—XC) + DaB(l"XZ)eXp(Xl) = F]. (Xl ,Xz;ﬁ,B,Da.)
(5.1.1)

dx,
and T T % + Da(l-x;)exp(x;) = F, (x;, %55 Da).

Furthermore, for Da in a sufficiently small interval about Da, all
critical points are spirals. On one side of Da, they are stable
and on the other side, unstable. These centers correspond to the
points (a;,a,) when a, = 55 and g(al(si),si) = 4]l for izlor 2. We
shall prove that from each of these centers there is an associated
bifurcation of periodic orbits. The stability of these bifurcating
periodic orbits and the connection with the direction of bifurcation

are rigorously established.

We shall see that the direction of a bifurcating branch and

its stability can have some surprising implications concerning both
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the number of periodic solutions which exist and the stability of

various segments of the response diagram for the reactor process,

One of‘ the results of knowing the direction and stability of
the bifurcating periodic solutions is that we can determine the type
and stability of that critical point of the nonlinear system (5.1.1)
which is a center for the linearized problem associated with (5.1.1).

Recall that the linear analysis was unable to predict this,

Section 2. Friedrichs' Theory for Bifurcating Periodic Solutions.,

It will be convenient to write (5.1.1) in the form

Y
s = AL+ eGHLE)

where p is a small parameter and where the system

dy
a5 = AL
s
has period solutions. (This is the case when the eigenvalues of A

are purely imaginary or one and only one of the eigenvalues is
zero, We shall consider only the first case and leave the latter
one to further investigation. So we will consider omnly the case
where the matrix A comes from the linearization about the center.)
In order to achieve such a reformulation we shall adopt a general
theory due to K. O. Friedrichs [8]. For our purposes we shall
formulate the necessary general theory in this section and apply it

in Section 3.
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For the two dimensional autonomous system

dx

/N
(5.2.2) T Ry

Ny cr /\ Y " s : C
let a ' be defined by E@ ,v) = 0. Introduce the following change of

variables:

A . 0
aY0+E' , I_t

Y=Y +&, a“=32 sE_ et EERe,
T
T = TOWpn) , x"=a%+ uyls,p)
(5.2.3)
£
AP=F, (af5), eCP=af-a, co=2 ‘
~'x~ de lg=0

w2Q%(y, 1) = Fab uy, e) - MASX

where T%, &, n, and a° are to be determined and p is an auxiliary

parameter. Under this change of variables, the problem (5, 2.2) "

becomes
o (18) (145) (5)
(5.2.4) T on+ p{ sG'H Y+ nA H Y+ (LHpn)Q b (X;,p,)}.

Then we have

Theorem 5, 2,1. (Modification of Friedrichs [8], p.94, Theorem 6.)

Suppose the two dimensional vector E(ﬁ,s)e c?[D x (€0, €0)] where

D is a domain in IR? and &, is a positive number., Assume that
dx
the equation —— = F(x,¢) has a constant solution x :38 such that

dt
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for the value £ = 0 the matrix A° = E, (a®,0) has purely imaginary

K
~

eigenvalues + iwy with wy # 0. Suppose further that the trace of

the matrix C° does mnot vanish. Then there exists functions n=n(u)

and & = §(u) with £ = pé(p), T = TO(l+un(u)), 6(0)= 0, n(0) = 0, and

6(n) and n(un) ¢ CI[O,p,O) for some sufficiently small w,> 0 and a

function X(s,p,) with period T® in s assuming an arbitrarily pre-

scribed initial value X(O’ M) = '13,0 such that

e _ _elp) _T°
(5.2.5) x =a + “X'<T€(I¢)t’“>

is a solution of the differential equation

(5.2.6) 3 = Elxe(w)) .

In the above theorem, the case T® =T and ¢=0 is not
excluded. In this case, the point 30_ which is a center for the
linearized problem is also a center for the nonlinear problem.
Contained in the proof of Theorem 5 2.1 is the following fact:

Corollary 5, 2. 2. Bifurcation from the critical point :a:Y of
dx '

Ll

i @.(35’ v} can occur only from those g‘;’o which are centers in

the associated linearized problem or possibly when one and only

one of the eigenvalues of the matrix A is zero.

To determine the local behavior of the solution X and the
functions n and § on u, we first note that §,7ne Cl[o,p.o). Using

6(0) = n(0) = 0, we have
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dn
n(p) = pnl+ Ha——”(em) for pe [0, ) and some 0 < 0; <1land

§(u) = pol+ p—g—g (8, 1) for pe[0, ) and some 0< 0, <1 .

Note that p%(%p) and p%ﬁ(ez p) are o(p) as p— 0. Since ¢ = ud(p) =
62 + o(u?) as p— 0, the sign of ¢ is determined by the sign of §! for
p sufficiently small if §!# 0. Similarly, the sign of T®-T° is deter-
mined by the sign of n'. The most important point here is that
the direction of bifurcation is determined by 6!. Since y-y, =
82+ o(p2) as p — 0, the sign of y-y, is determined by &! for p
sufficiently, If §!> 0, then a small periodic solution grows from
g\/o as vy increases beyond y,. If §!< 0, then a small periodic
solution grows from g\{o as y decreases below vy,. It is in this

sense that we say §! determines the direction of bifurcation.

To determine 6! and n! we need the following continuity

properties of y :

Theorem 5.2.3. Under the assumed continuity assumptions on F

in Theorem 5.2.1 and the derived continuity properties of &(n) and

n{p) , we have

(5.2.7) xs.p) = x0(s) + pylls) + pyls,p)
where py(s,p) = o(y) as p— 0 uniformly for se[0, «). The functions

vy (s), v¥s), and z(s,p) are periodic of period T° for p sufficiently

small. The functions y°(s) and y!(s) are given by
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(5.2.8) Xo(s) = Y (s)bg
(5.2.9) and yi(s) = Y (s f Y HT)QO (vO (1), 0)dr

where Y(s) is the matrix solution of

dy

(5.7.10) ds = A°Y and Y(0) = I.

Proof: An equivalent formulation of the problem (5.2.4) with
initial conditions I(O,p) = }30 is

S
(5.2.11) ¥ = Y(s)b + pY(s)fO Y U ) {6B Ay (rpn)Q® (7, )} dT

where & = &(p), n=n(p) , ¢ = pd(p), and Y(s) satisfies (5.2.10).

From Theorems 2.3 and 2.4 of M. Urabe [23] it follows that

S
(5.2.12) y = Yls)bo + u¥(s) [ ¥ ') QOQ('T,O),O>d'r

+opyls,p

where i(s,p) = o(l) as p— 0 uniformly on any finite interval and
y(s,0) = Y(s)by. Y(s) is TO periodic by the definition of A° and
(5.2.10). Assuming for the moment that fosY_I('r)QO(X(T,O),O)dT is
T? -periodic, z(s,p) is T?-periodic since every other vterm in (5. 2.12)

is T%-periodic. From periodicity of each term in (5;2.12) it follows
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that (5.2.12) is uniformly valid on [0,00) as p— 0.
We now prove that foSY—l('r)Q0 (y(T,0),0)dT is TO?-periodic.

From the definition of Y(7) it follows that Y{(71) and Y -1(7') are
matrices of linear combinations of sinwy7 and coswyT where

wp = —%%I . Since QO(XO('T,O),O) is quadratic in y,°(7) and y,° (7)
where y(7,0) = {;:;g} , the expression Y “HnQo (XO('T,O),O) is a
vector whose components are linear combinations of the terms
cosd wo T, costwgTsinwgT, coswg Tsin?w, 7, and sin®wy7. Con-

s .
sequently, f Y 11RO (y(7,0),0)dT is T°-periodic and
0

fTO Y "1 (R (y(7, 0),0)dT = 0.
0

Using Theorems 5.2.1 and 5. 2.3 we obtain the following

information about §(p), n(p), 8!, and n?

Theorem 5.2.4. The functions n(p) and &(p) are obtained implicitly

from

T e6) 1 (ub)
(5.2.13) o_nfo Y "H(T)A X('T,p)d'r—!—Son (1B (7, w)dr

+fo(-l('r)(1+ o (#0) d
A 2] (7, 1), p)dT.

6! and n! are determined explicitly from

T TO
= nl -1 0,0 1 ~1 0,0
(5.2.14) 0 =n'f Y (mA%y dr+8!f Y HmBOy0dr
TO _ (&) -
+‘J; Y 1(7) -—d-—Qd—'I———(X‘('T, P,),p)) dr

p=o
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where XO is given in Theorem 5.2.3 and Y (s) is the fundamental matrix

solution mentioned in Theorem 5. 2. 3.

Proof. The expression (5.2.13) is contained in the proof of Theorem
6, p.94 of K. O. Friedrichs [8]. We now derive the expression

(5.2.14). Divide expression (5.2.13) by wu and recall from the proof

1

0 .
of Theorem 5, 2.3 that fT Y (1) Q° (X('T, 0),0)dT=0; we obtain
0

n(w) T Slw) (Lo -1 e
(5. 2.15) 0=—— [ ¥ AmaTy(r,mdre 2 [ Y (MBS (7, widr
TO _ QF (y(7, 1), p)-Q°(y(7,0),0)
+_f;Y 1('7'){ " L }d‘T
TO

+f0Y_I('r)n(p)Qs(X(T,M),P-)dT

where ¢ =pd(p). By the uniformity of the convergence of X(S,p.) as

p— 0 we obtain

n(p) T LA e
lim —— [ YA y(r,wdr=nl [ Y7 (1) lim Ay(r,p)dr
H_.,O M 0 ~ 0 M__,O
(5.2.16)
T0
=q! [ Y Y(1)A%y(7,0)d
nt [ Y (mACy(T, 00T,
() T -1 . TO -
lim —— [ Y (7)BSy(r,p)d7= 61 Y (7)lim Bfy(r,p)dr
H_.O M 0 Yo }L‘_"’O
(5.2.17)
TO
S -1 0
8t [ Y T{(mBOy(T,00d7,
TO TO
lim [ ¥ (RS (7, wdT = [ Y THmIn(0)Q° (7(7,0), p)d7= 0.
p—0

(5.2.18)
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From the continuity properties of QE(X(’T, 1), #) and the expression
{(.2.7) for ;:('r, ) we caninterchangethe limit process and integration
in the third integral in expression (5.2.15) to obtain

€

T _ Q (y(7, 1), p-Q° (y(7,0), 0)
lim [ Y Y i 2! Lar
> 0 0 ' M

TO
= [ Y"I('T)(%C:‘; (y(rw,p)|  dr.

p=0

Thus, the expressions (5.2.15) through (5.2.19) yield the desired

result (5.2.14)., Q.E.D,

Section 3. Ampplication to Reactor Equations,

We now wish to apply the results of the previous section to
the system (5.1.1). By Corollary (5. 2. 2)bifurcation of periodic
solutions can occur only from the center or possibly at those
points at which one and only one eigenvalue of the matrix A is
zero, This latter case can happen only when B > 4(1+f) and a,= m;
or m,. However, we shall investiage only the first case. For
the system (5.1.1), let B and B be restricted to one of the regions
III through VI in which case there is a Da, say Da,, and a corres-
ponding go such that 3’0 is a center in the linearized problem. Let
Da = Dag+e. Recall from (4.2.6) and (4.2.7) that the critical
points are defined through

£
B ‘
2 az  Bx,

(56.3.1) a; = T B +’i‘:§

and
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£
agz

{(5.3.2) Day + € = exp(—asl ).

1'3,2

We now proceed to reformulate our problem and show that Theorem

5.2.1 applies. With the definition of F given in (5.1.1) we find that

-1-B+B(Dagte)exp(a;)  -(Dag+e)B exp(a’)

(5.3.3) F,_(0) =

37
(Da0+g)(1~a€2) exp(agl) —1—(Dao+s)exp(a81)
Using (5.3.2), we obtain
"Ba.gz
Ba%, -1-8
l'asz
(5.3.4) A =
at -1
2
1—382
and
B -1
0 €
’ dAS (l’a 2) da 2
0~ -
(5.3.5) co =5 = (ds )
£=0 -1 £=0
1 2
(l“aoz)
Using (5.3.1) and (5.3.2), we obtain
daz (1+B a 2

(5.3.6) )l * Da,det A
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Furthermore,

(5.3.7) Fa® + py,e) = pA® + p2Q%(y, 1)
where
\
1-2af, Y, .
B exp(pyy)-1-pyy) - — {exp(py,) -1
8 . [ ety 1o)== (e tyn) 1)}
(5.3.8) Q% =—— ¢ f
1-a°, (1-a5) y
2 (exp(wl)-l-wl) -~ (GXP(WI)-1>}
/

The matrix A% has eigenvalues

0
= BA + L ErAT Y -4 det A

(5.3.9) Nise2

The requirement that the eigenvalues of A® be purely imaginary is

satisfied if and only if

(5.3.10) tr A = 0 and detA’>0

Note that this is the case if and only if the critical point (aol,a%)

is a center for the linearized problem associated with (5.1.1). Then

(5.3.11) Nia2 = T i

1
1-a%,

where wy = / detA’. Now trA° = 0 means Ba% -1-8 = or, in

an equivalent form,
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(5.3.12) Ba%) ¢ - (B+lpB)a% + 24 = 0 .

Recall from Section 4.5 that the roots of (5.3.12) are

B+1+3 1
(5.3.13) s; = 5§~ - 33 v (BtIHB)E-4B(2+B)
and

B+1+3 1
(5.3.14) s2 = 55t 3B V (B+1EB)2 -4B(2+8)

From Theorem 4.5.1 we know that for $ and B in Regions
III through VI the roots s; and s, are real and 0< s; <5, <1.
For (8,B) in any one of the regions IV through VI detA%>0 for
a% = s; and for (B8,B) in any one of the Regions III through VI
det A° > 0 for a% = s,. We now proceed to show that in each such

case trG%# 0. From (5.3.5) and (5.3.6) we have

T 1 (14B)a0, ] [B-22,) -177(+p)& ,
(5.3.15) trCO= [B (1—a°z)2:} [Daodetﬁf’:} - l‘ (1-a%)2 —H:DaodetAo} !

Using (5.3.13) and (5.3.14) we obtain

2 —_
(5.3.16)  B(l-a%) -1 = 55 (B-1-B7 -4B (¢ (Bi1-B)? -4B 7 (B—l—B))
where the minus corresponds to s; and the + to s,. Thus for

detA® > 0 we have
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(5.3.17) trCo >0 for a% = s,
and
(5.3.18) trC% <0 for &% =,

when 8 and B are in Regions III through VI. Since our autonomous
system (5.1.1) certainly satisfies the continuity requirements in

Theorem 5.2.1, we have

Theorem 5.3.1. Bifurcation of periodic solutions occurs from the
e . 0 0 _ le C h d .
critical points (a%;,a%) = —‘——1+B + _——HB ,51) when § and B are in any

one of the Regions IV, V or VI and from the critical points

. o Bs, BXC .
(" ,a3 ) = (T:é + —1—:18— , S,) when B and B are in any one of the

Regions III, 1V, V, or VI. That is, Theorem 5.2.1 applies in each

of these cases.

Our next aim will be to use Theorems 5.2.3 and 5.2.4 to
determine the direction of bifurcation and the local structure of the
periodic solution. We first determine y°(s) and Il(s). For con-

venience we introduce the notation

(5.3.19) a = a% and b = Ba% -1-8 .

Since trA? = 0 and det A® = wy®> 0, we have
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b -Bab
0 -
(5. 3. 20) A - ( a _b
and
(5.3.21) we? = Ba?b-b%2>0 .,
d
The fundamental matrix solution, Y(s), of = AOX
satisfies
dY _ Lo

(5.3.22) G =AY and  Y(0) = L.

By using (5.3.21), it is easily verified that

sinwg s
(5.3.23) Y(s) = (coswgs)l + ( o JAC
and
-1 sinwg s .
(5. 3. 24) Y "(s) = coswgsl -<T>A .
In the expansion
{(5.3.25) .Y,(S’P’) = Xo(s) + pyl(s) + pz(s,p.)

we have from Theorem 5, 2.3 that

(5.3, 26) ; Xo(s) = Y(s)bg



-8~

and
(5.3.27) Y(s)=Y s)f Y HT)Q0 (30 (), 0)dr .

Since }30 is arbitrary (see p.90 of K.O,Friedrichs [8]), we take
.13,0 = {(I)l} without loss of generality. This particular choice of bo
makes the algebra simpler in the succeeding determination of y(s)

and 8., Thus

: sinwg s
(5.3.28) yo(s) = Y(s){J} =

b .
Coswg s - *= sinwg s
0

Next we find that (see Appendix B for the calculations)

B ((Ba-Zb)(Z sinwg s-sinZwg s )+ 2we(coswys-cos Zwos)>

1 Ba.zb2
yi(s) = 6(0
(Ba-2b)(2sinwg s-sin2wg s )+ 2wg(coswy s-cos2wq s)
(5.3.29)
B2 b B((Ba-Zb)(l—Zcoswo s+coszwos)—wo(sinZwos—Zsinwos))
4
bwg (Ba-2b)(1-2coswy s+cos?wy s)-wg (sin2wg s)-2sinwgs)
From equation (5.2.12) in Theorem 5.2.4 we have
1 P do
1% Ty R -1 e
(5.3.30)  n'Ab, + 8'Bby = - 7 fo Y ) an H—OdT
where

(5.3.31) A= = fo Y (A Y(n)dT = A° |
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TO
N -1 0 L no_ 1 jomo0 a0
(5.3.32) B = 73 fo Y (7)) BOY()dT = S(BO- 5 A°BOA”),

da,’

B -Bb? 2

0 - —

(5.3.33) c = (1 b2 ) de

(See Appendix C for the calculations of (5.3.31) and (5.3.32.) For

bo ={(i} (5.4.30) becomes

da,® B(bwy?®+b? -Ba)

(5.3.34) b{ n' + 5 —3(——) &'
! Zag” de w?b+ (Ba-b)(b?-Ba)
T
- L -1, 9Q
= T°j; YT g, |¢=od7

Let A be the determinant of the coefficient matrix of n! and &1, then

(see Appendix D)

(5.3.35) ‘ A= -

From (5.3.17), (5.3.18), (5.3.19) and (5. 3.21) we know that A # 0.

We can, therefore, solve for st (see Appendix D for the calculations)

to obtain

2 2
(5.3.36)  &l= gfoitfco {we? (b-1) + (2b-Ba) - (2b-Ba) }
where

(5.3,37) b= Bsi-l-ﬂ for i=1lor 2,
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(5.3.38) a = 8 for i=1o0r 2,
(5.3.39) wet = BaZb-b? ,

and s, and s, are given by (5.3.13) or (5.3.14).

Thus, in the light of the remarks on direction of bifurcation
following Corollary (5.2.2) we have determined the direction of

bifurcation through the formula
Da-Da, = 82 + o(p?) .

It did not appear to the author that this expression (5.3.36) would
simplify further. Thus, we will evaluate it numerically for various
choices of 8 and B. DBefore investigating (5.3.36) numerically, we
will prove the stability (or instability) of the bifurcating branch of

periodic solutions and its relation to the sign of §!.

Section 4, Stability of the Bifurcating Branch of Periodic Solutions.

The stability of the bifurcating periodic solutions is deter-
mined for sufficiently small | by using Poincare!'s criterion (see
Section 4.4). We mnote that the periodic solution 'gf-{» ;.Lx(s,p) is
asymptotically orbitally stable if

1 0
T0

(5.4.1) ’i*"fo Ve E @5 py(rp)dr <o
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and is unstable if

TO
(5.4.2) —,I}afo V- F(a +py(T, p))dr> 0.

2 ¥]

In Appendix E it is shown that

| TO
(5.4. 3) 75 [ V. EdT= @A+ o(p?) as p-= 0
0
where
2,2 R 2.
(5.4.4) A= ~B22B" [, 20b) + (Ba-2b) + Ba-2b } .
8w
Recall that
2 212 2
(5.4.5) st = - —B 2D [ 20 h) 4+ (Ba-2b) + (Ba-2b)} .

) 8@041:1'.‘ C

Now trC%> 0 for a% =s, and trC® < 0 for a% =s,, Consider first
the case a% = s; and § and B in any of the Regions IV through VI.
If A>0 (<0) then 6! <0 (> 0). Thus & positive implies asymp-
totic orbital stability, and &! negative implies instability. For
a%=s, and B and B in anyone of the Regions III through VI we
have A> 0 (< 0) iff 81> 0 (< 0). In this case 6! positive implies
instability and ! negative implies asymptotic orbital stability of

the bifurcating periodic solut'ions.‘

Thus, the direction of bifurcation determines the stability.

An easy way to remember the foregoing remarks is that if a
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bifurcated periodic solution surrounds an unstable critical point,
the periodic solution is asymptotically orbitally stable. If it
surrounds a stable critical point, it is unstable. Of course, these

remarks hold true only for p sufficiently small.

Section 5. PBifurcation of Periodic Orbits and the Response Diagram.

In this section and in Chapter 6 we will present some of the
most important results of this study. Some of these results are

presented in Figures 5 through 14 to which we will refer later.

Since the direction of bifurcation determines the stability,
we need to examine the expression (5.3.36) for different values of
B and B. &! is a function of B and B so that in principle we
could numerically solve for 813,B) = 0. This would divide the six
BB regions into further regions where 61{(3,B)> 0 and 61(3,B) < 0.
However, we shall content ourselves with a few numerical examples
which the author believes contain all the qualitative features of
this bifurcation problem. We first set X, = 0. (It only scales Da

if x # 0.)
c

We will use Theorems 4.5.1 and 5.3.1 and the expression
(5.3.36) for the direction of bifurcation. Thle expressions for s;,
s,, m;, m,, and the corresponding value of Da have been
evaluated numerically for different values of § and B and the
results are contained in Table I and Fig‘ures 5 through 14. The
expression for §' has been evaluated in each case but only the

direction is shown. The stability of these bifurcating periodic
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solutions is also indicated, Let

1

Pl = (Dal,n'}]) 5 PZ .(Daz,mz) N

P, = (Daj,s,;) , Py (Day,s;)

where the Da in each case is given by

az Baz

Da(a,) = exp(- T;B—) .

T
The "S" shaped curves have been exaggerated to present the
qualitative features. Recall from Theorem 4,6.1 that in any case
in which there is a unique unstable critical point for a value of
B, B and Da there is a periodic orbit surrounding this unstable
critical point, In Figure 8 this means that there is a periodic
orbit for each Dae (Da,,Da,). A similar remark applies to
Figures 8,9,11,12,13,14 . This information comes entirely from

the Poincaré-Bendixison type analysis.

The results on bifurcation of periodic orbits give different
information. In Figure 5 the bifurcated branch means that for
Da > Da, but sufficiently close to Da, there is a small unstable
periodic orbit surrounding the upper asymptotically stable critical
point, In Figures 6 through 14 the bifurcated branch from (*%a‘gl,aoz)
means that for Da < Da, but sufficiently close to Da, there is a

small asymptotically orbitally stable periodic orbit surrounding the

€

Ba :
unstable critical point (T;é?“ ,asz ) where ¢ = Da-Day and ¢ < 0 here.
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A similar remark applies to Figures 10, 11, 12 and 13 but the
asymptotically orbitally stable periodic orbit bifurcates as Da
increases beyond Das. In Figures 8, 9, and 14 there are unstable
periodic orbits surrounding the asymptotically stable critical point
for Da sufficiently close to Da; but less than Da;. Of these latter
three, we can say more about the two cases in Figures 9 and 14.
For these two cases there is a unique asymptotically stable critical
point surrounded by an unstable periodic orbit for each Da < Dagz but
sufficiently close, By Theorem 3.2.1 and Remark 2 following
Theorem 4.4.3 there exists a second (presumably stable) period
orbit surrounding this small unstable periodic orbit. Thus in these
two cases we have proved the existence of two periodic orbits.
This situation has been observed numerically by V. Hlavacek, M.
Kubicek, and J. Jelinek [11] for the case in Figure 14 (for different
parameters) but not for the situation in Figure 9. More specifically,
Hlavacek considers the case (3,B) = (3.14) and X, = 0, Our results
show that (8,B) = (3,14) is in Region V in which case there is a
unique critical point for all Da > 0. The critical point is unstable
for Dae (.1650, .3366) and is asymptotically stable for Dae(0,.1650)
U(. 3366, ). The situation is as in Figure 14 with the above
appropriate number changes. By numerically integrating the auton-
omous system fokr {3,B) = (3,14) and ranges of Da < .1650, Hlavacek
shows that for .1620 < Da < ,1650 there is a stable critical point
surrounded by an unstable periodic orbit which is in turn surrounded
by a stable periodic orbit. For Da < .1620 there are no periodic

orbits. This leads us to conjecture that the branch of periodic
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orbits meet as in Figure 15, We take Da* = ,1620, Daz = .1650,
and Da, = .3366. We also conjecture that the branches emanating
from points P; and P, in Figures 10, 11, 12 and 13 connect and

that there are only stable periodic orbits in each case.

For the cases in Figures 5, 6 and 7 we conjecture that the
branch of periodic solutions emanating from point P, meet a branch
of bifurcating periodic orbits emanating from the point P,. One
reason for this conjecture is that Hlavacek [11] has shown that for
a particular Dae€ (Da,,Day) there is a stable periodic orbit surround-
ing only the upper unstable branch., Secondly, the point P, corres-
ponds to a critical point with the property that the matrix, A,
associated with linearized problem (4. 3.2) has zero as a simple
eigenvalue. Recall from Corollary 5.2.2 that this is a possible
point of bifurcation of periodic orbits and a case that has not been

investigated to the author's knowledge.

We now discuss the above mentioned example of Hlavacek
[11] since the correspondence between the parameters is exact
only after a transformation. He uses the parameters \ = 0,5,
Da = 0.0505, B=0.8, B=12.5, and x, = 0. The transformation we
. . Da
made in Section 4.1 was ~ Da , B/\— B, and X\ — 1. The
phase plane portraits are the same. For the parameters Da = ,101,
p=1.6, B=12.5 our results show that (8,B)= (1.6, 12.5) places us

in Region III, We have
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Py, = (Day,m;) = (.1013, .2951) ,
P, = (Da,,m,) = (.0806, .7049) ,
Py, = (Day,6;) = (.1072, .88l6),
81 (P,) < 0.

Qualitatively, this is the same as in Figure 7. Thus, there is a
period orbit surrounding the upper unstable critical point for
Da* = ,1010€¢ (Da,,Da;). Consequently, our conjecture is tanta-

mount to Figure 16.

Finally, for the case of B and B in Region IV (Figures 8
and 9) we conjecture that the branch emanating from P; connects
with the branch emanating from P,. Hlavacek [11] shows an
example where there is a large stable periodic orbit surrounding
three unstable critical points, Our conjecture is tantamount to
saying that this is élways the case. When the situation is as in
Figure 8 there would be two periodic orbits for Da < Da; but
sufficiently close to Da;. A small unstable periodic orbit would
encircle the corresponding stable critical point on the lower branch
and a large periodic orbit, presumably stable, surrounding all

three critical points and the unstable critical point.
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Chapter 6

JUMP PHENOMENA

Section 1. Introduction

In this chapter we use the response diagrams discussed in
Section 5.6 to show how "jumps" into periodic orbits occur as the
Damkohler is changed. We first discuss (for completeness) the
classical "jump'" between steady states and then show two new
types of "jump”" phenomena in which there is a "jump" into

oscillatory steady states.

Section 2, Oscillatory Instabilities and Ignition and Extinction

Processes.

By an oscillatory instability we shall not mean an unstable
linﬁt cycle but instead a "jump" into a large limit cycle (usually
stable) from a steady state as some parameter changes. Before
discussing these instabilities we focus our attention on another
instability =~the ignition and extinctionprocesses. Crudely speaking,
an ignition process is said to occur when the temperature "jumps"
from one steady state to a much higher steady state as some param-
eter changes. The extinction process is the reverse process,

A discussion of these processes can be found in Aris [1]. The
above mentioned paramter is usually the~ feed temperature —the

temperature of the chemicals entering the reactor—or the flow
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velocity of the entering chemicals, We consider variations of the
first parameter, the feed temperature, since the Damkohler number
Da o exp -R:%O) where E and R are physical constants and T, is the
feed temperature. We note that Da is a strictly increasing function
of Ty. As we vary Ty, we will require that 5,B and X remain
constant. In terms of the concentration, Gy, and temperature of
the feed this requires that CO/TOZ remain constant and that the
temperature of the heat exchanger in the reactor be the same as
the temperature of the chemicals (see V. Hlavacek, M. Kubicek,
and J. Jelinek [11]}. Throughout the remainder of this section we
assume that these conditions are satisfied. We will first discuss
the "jump" between steady states or, in physical terms, the

extinction and ignition processes.

For 8 and B in that part of Region II in which B <3+ 8+ 2v2+8
we know by Theorem 4,6.1 that for all Da such that there is a unique
critical point all trajectories tend to the critical point. In Figure

17 we have a typical "S8" shaped curve.

Suppose we are at a steady state at point 1. As Da increases
we assume that the initial conditions (xl(O),x2(0)> are changed so
that (xl(O),xz(0)> is a small perturbation from (al(Da),az (Da)). In
this case the solution will quickly settle to the steady state
(al(Da),az (Da)), As Da increases we traverse the "S" shaped
curve from 1 to 2 to 3 to 4. Any further increase in Da beyond
Da; causes the steady state to "jump" to a much higher value at
5. We have in fact proved that this jump occurs by our previous

remark that all trajectories must tend to the unique steady state. -
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This "jump" is called an ignition process and we say that the feed
temperature has become sufficiently high to ignite the reactor.
Increasing Da further carfies the steady state to point 6. As we
decrease Da we pass through points 5 to 7 to 8. Any. further
decrease in Da at point 8 causes another "jump" downward, In

this case the reactor has been extinguished by too cold a feed.

Thus for p and B in that part of Region II where B <
34+ B+ Zm we have proved that this "jump" to a lower or
higher steady state actually occurs. When = 0, one can also
prove this; for § and B in the remaining part of Region II we

conjecture that it also is true,

Consider next the "S" shaped response curve, Figure 18,
Suppose we start at point 1. As the feed temperature increases
the steady state passes to point 2, Any further increase in Da
will cause a "jump" but now into a periodic orbit around the
critical point at point 3. This same phenomenon occurs whenever

a situation like Figure 1l occurs.

Finally consider the response curve as in Figure 19,
Suppose we start at position 1 and increase Da; we pass from 1 to
2 to 3. A slight perturbation of the initial conditions at point 3
causes the solution to jump into a large periodic orbit at this point.
By changing Da now we only change the size of the large periodic
orbit by a small amount, In this case there is a loss in the
control of the reactor. Suppose we start at point 5 and decrease -

Da. When we reach point 4, a slight perturbation in the initial
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condition causes no trouble since the solution settles back to the
steady state. Decreasing Da further causes the slow growth of a
stable periodic orbit. In this case we can control the S];.Ze of the
periodic orbit by increasing Da. Thus the direction of bifurcation
tells us when we will lose control of the reactor by changing the

feed temperature. A similar phenomena occurs in Figures 8 and

9.
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Appendix A

We compare the roots m;,m;,s;, and s, for the various
values of B and B restricted to B> 4(l48) and B> 3 + B + 2\/'3:6
(this implies that m;, m,, s;, and s, are real). In this com-
parison there are four curves which arise., They are

(A-1) B = £;(B) = 4(1+B) ,

(A-2) B=1f,(8) =3+8+2V2tp ,
(A-3) B = £, (p) = ﬂigﬁ ,
(A-4) B=1fpB) = (V5+2)1+p) .

It is easy to show that f,(B) and f; (B) have a point of tangency at

V5-1

B =1 and £,(B) and f5(B), at B = 5 . f1(B) intersects £, (B) at

V5-1
==

p = 7/9 and f, intersects f, and f; at B = The roots m;,m,,

S,,8, are defined through

(A-5) m; = 3 -3/l

. % /1__ 4(1+B) ’

os]

o fam

(A"é) m, =

(A-7) s, = 2EHE . sg V(B-L1-p)F-4B ,
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(A-8) s, = 22UB L /(BITE 4B

We seek those values of B and B which satisfy

(1) s; <m,; , (ii) Sy > MMy

(iii) s, <m; , (iv) S, > my

Since the algebra is straightforward, we give only the results:

Re(i): s, <m, iff > 1, B> 4(l+p), and B <i1igl3— .
Re(ii): sy >m, iff <1, B <2(p+3), B < (2+/5)(14p) ,

3 P
B <ﬂi§—)— , B> 4(1+p), and B> 3+B+2/2+p.
Re(iii); s, <m; never occurs for B> 4(l4+B) and B > 3+B+2/2+p

Re(iv): s, >m, iff =1 and B> 4(l+p), or
<1 and B> (14+p)/p, or
B < (2+/5)(14B), B> 4(14+p), and
B> 3+p+2/2+p .

From our definition of fi(ﬁ) (i=1,2,3,4) and remarks about the

intersections of these curves it follows that (see the definitions of
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the various regions in Section 4.5.)
s; <m,; iff(B,B)elV ,

sy > m, iff (B,B)e VI |

s, > m, iff (B,B)e III, IV, or VI.

Consequently, for B > max {4(1+f3), 3+6+Z\/2+|3}
my < 54 <m2 iff (S,B)E II or III s

m1 < SZ <m2 iff (ﬁ, B)E II .

This completes the comparison of the roots m;, m,, s;, and s,.
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Appendix B

We determine

S

S
- 1 = -1 0(+0 dr = - )00 (0
(B-1) ' =Y(s) [ ¥ (10O (r), 0)dr J, ¥(s=m)Q0 (y°(n),0)dv

where
v, - Bab sinwg s
(B"Z) Xo =" = “o b ?
vo coswys - — sinwgys
Wo
ap  |B-a)(y%)? -2y%y0))
(B-3) Q0 (y°,0) = 22 , and
(l’a)(Y°1)2'2Y02Y01)
sinwg s
(B-4) Y(s) = (coswys)I + ( 5 JAC .
0

Using (B-3) and (B-4), we obtain

(B-5)  Y(s-7)Q0(y0,0) = %b costy §

BE((l-a)(Y"l)2 -2y9%y%)sinwg T;}

+ ‘%2 sinwg s

( n f )

B(((1-a)(y%;)? -2y°,y9%) sinw, ﬂ}

+ 52 B (((L-2)(y)? -2y%y%;)coswy )
2 .
Zabocoswos (BB(;(lb)j)(x‘ )% -2y° g z)SlnwO'r;}
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Using (B-2), we obtain

8 212 .2
(B-6) fo(Yol)?"CO&QO TdT = %Z)%—a— sindwg s ,
B2bZal

s
(B-7) L(y(’l)z sinwy TdT = (2-coswy s(2+sin®w, s)) ,

30.)03

s

Bab Bb%a .
(B-8) fo y9,7% coswy TdT = 3ag? (cos® wgs-1) + 3002 sinwgs ,
° Bab Bb?a
(B-9) fo y%,v9 sinwg vdT = - 3wOZSin3 wg S + 3e0g? (2-coswgs (2+sinwys)) .

1
(1-a)

Using (1-a)—1= b (this is the fact that trA°? = b - = 0), equations

(B-1) and (B-5) through (B-9), we obtain

S
(B-10) y'(r) = [ Q°(y°(r),0)dr

BaZ b2 B{(Ba-2b)sin3cooscoswos—Zwo(cos4wos-coswos)}
T 6wy { 1" 1t }

2 4
Balb B{(Ba— 2b) (ZSinooos— sinwyscoswys (2+sin ‘o‘oos»{-Zwosin wos}

60‘)03 { " " " " }

Ba2 b2 B{(Ba-2b)sin*wg s-2w, (cos®wy s sinwg s-sinw, s)

6"‘)04 (Ba_b){ " ’ 1 " }
2 2 3
BaZb? B{(Ba—2b)<2coswos'c03mos(2+sinwos))Jr 2wy sinwoscoswos}
- 222
beog (Ba—b){ " 1" 1" }

This simplifies to
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Ba?b? B{(Ba~2b)(2.sinwos—sin2w0s +2wq (coswg s-cosZwos)}

1(g) = =222

Y ( 60003 { 1 1 if } '

B{(Ba—Zb)(1~Zcosw0s+coszco0s)-wo(sinZwos-Zsimoos)}

(Ba—b){ 1t " 1 }

Balb?

bwot
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Appendix C
We show that
~ To
1 -1
(C-1) A=w5 [ Y (1)ACY(r)dr = A°
0
and
~ TO
C-2 c__l_. Y‘l 0 = L(co —L A00 50
(C-2) =g [ Y (MCO¥(ndr = H(CO 55A0C0A%).
Recall that
sinwg T
(C-3) Y(7) = coswoTI + (—)A°
Wo
and
(C-4) Y () = Y(-1) .
Therefore,
4 sinwg T sinwy T
(C-5) Y (T)AOY(r) = Gcosonﬂ— ” ﬁ@).AOQcosonﬂ-+ " [“)
0 0

ASY TN (m)Y (1) = A°

and
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sinwyT sinwyT

-1
(C-6) Y (7)C°Y (7) = (coswo TCP - - A°C°)<cos<u01+ - AO)
0
sinfw,T sinZwyT
= cos?wyTCl - ——5—— A% COA%43————(COA%-ACY).
0 0

(C-1) and (C-2) immediately follow from (C-5), (C-6) and the fact

2

that o = TO -
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Appendix D
Starting with
~ ~ TO €
1 -1 dQ
(D-1) nlAbg + 61Cbh, = - :fb-fo YT () - dr ,

we shall show that the determinant of the coefficient matrix, A, is

given by

Bab

(D-2) A= - trCO

and the expression for §! is given by

Ba?b?

- 1 - Datb’
(D-3) 6 8wyt tr CO

(woz (b-1) + (2b-Ba)-(2b—Ba)2>

when b, = {?}‘ .

Recall from (5.3.20) and (5.3.33) that

b -Bab
(D-4) AO = ( )
a -b
and
B -Bb?,_ df,
- 0 — . —_—
(D-5) co = ( P
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Consequently,
~ 0 "B b
(D-6) Epbo=a{3}={""2}
and
~ da® | B(bwi+b?-Ba)
(D-7) Bb, = %;(Co-al—gAOCOAO){?}=-E§—:g 3 2
¢ 0" de [ ,¢bt(Ba-b)(b-Ba)
At this stage we have (5.3, 34):
bda% | B(bwd+b?-Ba) TO ¢
(D-8) b{Bla}n1+ 57 ds 1= %‘of Y I(T)gg— dr.
0 wd b+(Ba-b)(b%-Ba) o b p=0

Let A be the determinant of the coefficient matrix of §! and n! in

(C-8). Then

b2 daoz

(D=9) &= 308 e

(Ba(woz b+ (Ba-b)(b?-Ba)-B(bwd + b?--Ba)) .
To simplify the expression (D-9) we will use

(D-10) wé = Ba?b-b? and (l-a)b=1.

Now
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(D-11) Ba(wg‘b—k (Ba—b)(bz—Ba)) ~B(bwé + b%-Ba)

B{a(Ba2b?-b? + Bab? - BZ%a? -b*+ Bab)-Ba2b?+b*-b? +Ba }

i

B{Ba?b?(a-1)+ b*(1-a) + Ba?b?-B2a3-ab3+ Ba?b-b%* Ba} .

In this last expression we have

(D-12) Ba?b+ Ba=Ba(ab+l)=Bab, Ba?b?(a-1)=-Ba?b, b3(l-a)=b?.

Using (D-12) in (D-11), we obtain

(D-13) B{Ba?b%(a-1)+ b3(1-a) + Ba?b?-B2a3-ab? + Ba?-b?+ Ba}

B{-Ba?b+ b%+ Ba2b? - B2a% - ab% + Ba?b-b%+ Ba}

B{Bazbz—B2a3 -ab’ 4+ Ba}

-Ba(-Bab®+ B2a?+ b® -B) = -Ba((B-b?)(Ba? -b))

Bawé
b

(B-b?) .

(D-13) and (D-9) imply that

bz daoz

de" de

5o g e (- ) - B ()

da%
Recall that trC° = P (B-b?) so that
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(D-14) A= -

This then establishes (D-2) or (5.3.35) .

We now turn to the expression (D-3).

Since we have established that A# 0 , we can solve for &!:

1 1 -1, dOF
(D-15) 6! = — det =5/ Y (n)
FAN TOC d d
b 0 ¥ M=o §

1 e -1 an®
We must determine ?I‘—Of Y (1) d drt. First, we note that

r 1, PP o 01 Xz?.(}iﬂ)i

16 B{(l-a)(yPyi+ H)- (v y P+ vy i+ ) b
(D-16)  4e 31 21
—d*;— = ab [
=0 013 ' 0(y, 0)2
a {a-a)ypyi+ L)y yfrypy+ Y2000
( ( 0)3 XOX 0
B{l-a) 3;1! T2 i
= ab {
y Oy
{(1 a) Yz ul}
B(l-a)yf-By? -By? Vi
+ ab
(1-a)yf-y?  -y? vZ

TO

£
In the expression :flﬁf Y 1(T) %—Q— dt we make the change of
0 B u=o
variables 08 = wy T to obtain
To € ) 21T €
_ 1 -1 dQ _ 1 -1 dQ
(D-17) T"fo Y g pLzodfr__z,n, fo YO 5T H_ode



Note that Y_l('r) is actually a function of wy 7.

have used the same notation for Y-I(T) and Y_l(wo T) = Y—I(B).
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We first examine the expression

2T

(D-18) —;—,;Tfo v l(6) - 22

B2a3b3
12mawd

1

233
-Bab

Next,

12"TQ)04

ab

2T

f (wpcos OI-sinOA?)

0

B(l—a)(y1°)3-3By2°(y1°)2

(1-a)(y:%)® -3y2°(y,°)?

B?a sin® 6+ 3B (wysin®Ocos 0-b sind 6)

Ba sind 6+ 3 (wy sin®0cos O-b sin® 6)

21 13Bwg? sin? Ocos? 0

do

0 3we? sin? Ocos? B

Buwy? -B(Ba-3b)

2T B (Ba-3b)sin* 6

(Ba-b)(Ba-3b)sin* 8

3B(Ba-3b)

3{Ba-b)(Ba-3b)

we? ~(Ba-b)(Ba-3b)

Consequently, we

dé

doé

do



I-a)y, % -By,°
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-BYIO

B(
(D-19) Y I(Q)ab( )
(1-a)y,® -y,° -y,°

_mn2 2
Ba sinf-Bcos &+ Bb sinf Bab sin®

Y_I(O) D Wo Wy wo

= a

-Ba sinf -cos 9+—b*sin9 Bab sin®

i

ab

Wo

+

1

Now define

_ Ba?b?

(D-20) 2, = 525
_ Ba?b?

gz - 6(1.)04

then y' = Z,+Z, .

i‘% (wocosBl-sinOAL)

ab
Q)QZ

wWo Wo

-B(Ba-b)sinf-Bw, cos §,B2absinb
-(Ba-b)sinf-wycos 6, Babsinf

-B(Ba-b)sinficos 6-Buwy,cos? B%absinfcosf

~-{Ba-b)sinfcos 0-w,cos? Bab sinfcosf )
B(Ba-b)sin? 8+ Buo sin6cos® ,  -Blabsin? 0 )

(Ba-b)? sin? 6+ (Ba-b)wy sinbBcos 0,-B(Ba-b)absin® 6

Y; + Y, , respectively,

B((Ba—Zb)(Zsine-sinZG) + 2wg(cosB-cos20

)
((Ba—Zb)(ZsinG- sin20)+ 2wg(cos G—cosZG)) ,

B((Ba—Zb)(l—Zcos 6+c0s5%0)-2wy(cos esine-sine))

(Ba—b)((Ba— 2b)(1-2co0s6+cos?0)- Zwo(cosesine-sin8)>

b4
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Therefore,
L (1-a)y,’ -By By,
(D-22) 5— [ ¥ (9)ab< )dee
0 (1-a)y;’ -y, Ylo
1 27T
=5 [ (Y 1(e))(g1 +Z2(0))do
0
1 2T 1
=~2~—T;fo Y,(6)Z, (6) de+——f Z,(0)d E"f Z,(6)d
0 0
2T

+—— f Y, (0)Z, (0)d6 .

Since the evaluation of the last four integrals in (D-22) is straight-

forward, we give only the results:

B2 3 b3 2B(Ba-2b)(Ba-b-ab)+4Bwy?

4:8co04 ’

2
(D-23) Y ,(0)Z,(6)d6 =
211' f 2(Ba-2b)(Ba-b-ab)+4wgy?

| _— B(Z(Ba—b)—?(Ba-Zb)-Zab(Ba—b))
(D-24) 'er-rf YI(G)gZ(G)dG = 18k
0 o <2(Ba—b)-7(Ba—2b)—Zab(Ba—b))
2B(Ba-2b)+ 4B
1 2T B233b3
(D-25) 5o [ Yo(0)Zy(0)d0 = ,
0 (Ba-b)(2(Ba-2b)+4)
L 2T B2.3ps | B(5(Ba-b)(Ba-2b)(l-ab)-2w?)
(D-26) E?rf Y,(8)Z,(0)d0 = 2%
0 0 (Ba-b)(5(Ba-b)(Ba-2b)(l-ab)-2wg?)
TO _ . 2
Now, the expression -,%5 fo Y 1(-r) —%—Q; dt is the sum of the

p=0

¥
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five expressions (D-18) and (D-23) through{D-26). Using Ba-B= - %
B2 |
and Ba(Ba-b)-B = —'%a— , we obtain
» 3Bwg?
B2albt | 3B 0 B
- 1 2 e 2 - - - [ A 2
(D-27) 8! =55 { = o+ —— (Ba-3b) b(Z(Ba 2b)(Ba-b ba)+4w0)
B By
-—E(2(Ba-b)-—7(Ba-2b)-2ab(Ba—b))+ - (2(Ba—2b)+4)
B 2
2 5(Ba-2b)(Ba~b)(1—ab)~2wo)
B3 a3 b
- [3w02+ 3w (2(Ba- 3b)-2(Ba-2b)(Ba-b-ab)
- 4ewy? - 2(Ba-b)+7(Ba-2b)+2ab(Ba-b)
+2uwp?(Ba-2b)+44%+ 5(Ba-2b)(Ba-b)(l-ab)-2w,?
Now

(D-28) 3w?(Ba-3b)+2we? (Ba-2b)+ 3(Ba-2b)(Ba-b)(l-ab)

5(Ba-2b)(Ba-b-Ba’btab?+ Ba?b-b?)-3w,?b

it

5(Ba-2b)(Ba-2b)-3wyb,
(D-29) (Ba-2b)(Ba-b-ab) = (Ba-2b)(Ba-2b + b(l-a)) = (Ba-2b)}+ (Ba-2b).

Using (D-28) and (D-29) in (D-27), we obtain
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B3 a3 b3
48 At

2
(D-30) &!? (w02+ 3(Ba-2b) + 5(Ba-2b)+2(ab—1)(Ba-b)—3bwoz)
But

(D-31) 2(ab-1)(Ba-b) = 2Ba?b-2ab?-2(Ba-b)

i

2002+ 2b2(1-a)-2(Ba-b) = 2w -2(Ba-2b).

So, (D-30) and (D-31) imply

3,313 2
(D-32) §1="E2 B (3,20-b)43(Ba-2b) +(Ba-2b))
0

_+B3a3pd
- 16(.0 04A

(woz (1—b)+(Ba—Zb)2+(Ba—2b))

Using the expression for A in (D-2) we have

< 2,212 2
5l = é%ﬁr%o ( wp? (1-b) + (Ba-2b) + (Ba-Zb)) .

This is the desired expression (D-3).
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Appendix E

We shall now show that

TO

(F-1) 2 f V.F@ + wyls,u))ds = AP + olu®) as u ~ 0
T° Yo -

where
Bga‘?b2 [
(-2) & = B2 20 L2 0p) 4 (Ban2p) 4 (Ba_Zb)} ,
8w~
o

¢
F o= Aoy + p,in(.u,) Agy + &) Cey + (Ttpmr{p)) o (v, g)} .

Now

(E-3) VeF=tr A% + pnp) tr A + p o) tr C°
e ) 9y, p)
where

(E-4) pveQ¥y,p) =

{B(l—ag)(exp(wl%l - B pys exp(pya)

- (exply yy) - 1)}

By definition tr A® = 0 and tr A® =tr A® + p&(u) tr C°. Thus,
using the continuity properties of Ce, e(u) = ndu), nw), and y(s, u)

in Theorems 5.2.1 and 5.2.3, we obtain
(E-5) v-F=p? 6 tr G+ p v (y(s, ), w)

+ o(pf)as p 0.
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Next we examine LW 96:

ay = asy + O (u°) as p =0
Ky, (v:°)?
(E-6) e -1 = uylo-k/fyllJrua 5 +'o(,u2) as 4 = 0
Ky
Ly € =

pys +pys vyl ys) to(f) asp - 0
where we have used Theorem 5. 2. 3.

Therefore, using (E-6) in (E-5), we obtain

2
(B-7) pv-Q° = Baf (wy’ +& @yl + 0)?)

[¢]

-Ba
T ye + biyzs + y1’ v2°) )

] 2
T by e @yt 607
.—a_2

+ o(if)as u= 0

At this point we change notation:

a = a5 and b =BaJ -1-p

Then, using b =

, we have
1-ag

o

T

1
(E-8) —Téf VeF ds = pé' tr C°

T o) fe)

— (2 )?
+ 'Hf{)‘jo (B-b)(yz + 5——) - Bb(y; +yy ys ds

TO

+‘E'"—aor (B-b)Yg-BngodSWLO(;f)asu—+0.
T ‘o
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From the expressions (5.3.28) and (5.3.29) for

yv°® and y' we obtain

T©
1 7 ) o
(E-9) ~5 J (B-b)y;” ~-Bbyzds = O P
T o
TO o

(y2')
(£-10) & [ (B-b) (v} + —— ) - Bb(y2 + v y2)ds
T "o

B a®’b® B(Ba-2b) = B®a®b®
12 wg 4 wg

3a (B-b) (Ba-b)(Ba-2b)

, (B-b)B a®b®  B%®b®
4 o,,bg 2 w02

BRa?p?

4 w‘(f

{b(Ba-Zb)(B—b) - (Ba-b)(Ba-2b)ab

-a(B-b)w® - 2 b wd |

2,22
Bab {(Ba-Zb) woZ + W2 (1-b) + (Ba-ab) (Ba-2b)

4 w04

-ab(Ba -b) (Ba-?.b)}

B®a®p®
4wyt

Ll

{(Ba-2b+b+b(1-a)) (Ba-2b)

+ (Ba-2b)wé + wg(l-a)—(Bagb—bza)(Ba—Zb)}

= (Ba~2b)@,° + (s°(1-b) + (Ba-2b)?

B2a2b2 {
4 w(f

3
S

+ b(Ba-2b) + (Ba-2b) - (ws+b) (Ba-2b),
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2,212 r
= E—L‘Li woP(1-b) + (Ba-2b)? + (Ba_Zb)}

4
4 w,

where we have used w,° = Ba®b-b® and b(l-a) = 1.

Substitution of (E-9), (E-10), and (5.3.3) into (E-8) yields

(o]
T 2,212 N
__]...,...f V'Fds = p‘z_%_d;_;b__ <..]l_ - l)(woz(l_b) + (Ba—Zb)2 + (BA—Zb))
7 ~ 4 8
(o) (o
+ o (U?)
2212
= u? E—E—-E—{wcf(l—b) + (Ba-2b)® + (Ba-Zb)}
8 wo'

+ o(uz) as p-=0

This establishes (E-1) and (E-2).
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