
Control of Multiple Model Systems

Thesis by
Todd Murphey

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

2002

(Defended May 2, 2002)



ii

We have not succeeded in answering all our problems. The answers we

have found only serve to raise a whole set of new questions. In some

ways we feel we are as confused as ever, but we believe we are confused

on a higher level, and about more important things.

Bernt Øskendal

Stochastic Differential Equations:

An Introduction with Applications
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Abstract:

This thesis considers the control of multiple model systems. These are systems for

which only one model out of some finite set of models gives the system dynam-

ics at any given time. In particular, the model that gives the system dynamics

can change over time. This thesis covers some of the theoretical aspects of these

systems, including controllability and stabilizability. As an application, “overcon-

strained” mechanical systems are modeled as multiple model systems. Examples

of such systems include distributed manipulation problems such as microelectrome-

chanical systems and many wheeled vehicles such as the Sojourner vehicle of the

Mars Pathfinder mission. Such systems are typified by having more Pfaffian con-

straints than degrees of freedom. Conventional classical motion planning and control

theories do not directly apply to overconstrained systems. Control issues for two

examples are specifically addressed. The first example is distributed manipulation.

Distributed manipulation systems control an object’s motion through contact with

a high number of actuators. Stability results are shown for such systems and con-

trol schemes based on these results are implemented on a distributed manipulation

test-bed. The second example is that of overconstrained vehicles, of which the Mars

rover is an example. The nonlinear controllability test for multiple model systems

is used to answer whether a kinematic model of the rover is or is not controllable.
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Chapter 1

Prelude

The music of the heavens being eternal, Leonardo understood that fric-

tion is absent from the state of grace. Thus confined to this mortal

world, friction is a consequence of original sin.

Brian Armstrong-Helouvry Control of Machines with Friction

The product of original sin or not, friction is a reality in our world. And one of the

fundamental problems friction introduces is that of nonsmoothness. That is, when

one introduces friction into a model of a system, equations that were C∞ or even

analytic become Lipschitz continuous, continuous, or even discontinuous. One of the

ways friction can introduce these errors is by producing forces of constraint–forces

that ensure some constraint is satisfied. For instance, the wheels of a car enforce

no sliding constraints both in the direction the wheel is turning and in the direc-

tion perpendicular to the wheel. One can often use these constraints to produce a

tractable model for a system.

However, it is sometimes the case that the system is overconstrained–the sys-

tem cannot satisfy all of its constraints at once. In this case, the contact state

can introduce discontinuities into the equations of motion. Such a system can be

modeled as a multiple model system. These are systems for which only one model

out of some finite set of models gives the system dynamics at any given time. In
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Smooth Dynamics

Smooth Control

All of classical control falls here. Lin-

ear, nonlinear, and most of optimal

control.

Smooth Dynamics

Nonsmooth Control

Bang-bang control and functional

analytical notions of controllability,

reachability, and solvability are here.

Nonmooth Dynamics

Smooth Control

Addressed in this thesis.

Nonsmooth Dynamics

Nonsmooth Control

Addressed in this thesis.

Table 1.1: Different combinations of smooth and nonsmooth control theory

particular, the model that gives the system dynamics can change over time. In the

case of overconstrained systems, these different models correspond to a subset of the

constraints being satisfied. There are then several questions. How does one model

such a system? Given a model, how does one design control laws that incorporate

the salient features of the overconstrained system without being so complicated

that they cannot be analyzed? Overconstrained systems often have discontinuous

dynamics. Because of these nonsmooth terms, controllers based on C∞ analysis

often fail. This thesis is concerned with aspects of how to treat nonsmooth and dis-

continuous systems, motivated by concerns of intermittent contact, overconstrained

systems, and, in general, multiple model systems. This thesis focuses on developing

analytical tools and control system design for these systems. These include tests for

controllability, kinematic reducibility, and stability. Moreover, these tools are used

in the context of two important examples and include case studies in the form of

simulations and experiments for illustration.
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1.1 Relation to Previous Work and Summary of

Contributions

This thesis has its roots in many different areas of control. Roughly speaking, it lies

at an intersection of some of the classical areas of smooth control and nonsmooth

control. Consider Table 1.1. A great deal of work has been done on control of smooth

systems using smooth control (in fact, all of classical control falls into this category).

Additionally, substantial areas of research are dedicated to control of smooth systems

using nonsmooth control schemes. Hybrid control, bang-bang control, and some

nonlinear control techniques fall in this category. However, relatively little work has

been done in the control of nonsmooth systems using smooth control or in control

of nonsmooth systems using nonsmooth control. This thesis falls in the latter two

categories. Here an overview is given of the history behind the results in this thesis.

Only brief descriptions are given here and generally more in-depth descriptions

will be given as they are needed. The contributions of this thesis address both

theoretical and practical aspects of the control of overconstrained systems. Some of

this work has already appeared in previous papers (see [61, 62, 63, 64, 65, 66, 67]).

These contributions and their relationship to previous work will be the focus of the

remainder of this section.

Modeling Overconstrained Systems

One of the primary difficulties in modeling overconstrained systems is developing a

model that incorporates the essential dynamical effects while remaining tractable.

In general, the work in two papers in particular will be used as the starting point

for developing equations of motion for overconstrained systems. In Alexander and

Maddocks [3], the power dissipation method is used to develop equations of motion

for overconstrained systems. However, they did not show any formal characteristics

of the resulting first order discontinuous differential equations. Peshkin and Sander-

son [72] showed at an intuitive level the relationship between solutions to the power

dissipation method and solutions to Newton’s equations. This thesis formalizes even
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further the power dissipation approach used by Alexander and Maddocks [3] and

Peshkin and Sanderson [72]. Rather than using “slow moving” assumptions, a more

geometric approach is taken and the work in Lewis [44] is extended to the case

of multiple model systems. Additionally several key properties of solutions to the

power dissipation method are shown. In particular, it is shown that it has unique

solutions almost always and that these solutions are easily characterized by the con-

straints. Most importantly, it is shown that the power dissipation method implies

that the dynamic states can be completely described by the contact states of the

object, where by contact state I mean the current stick/slip state of all potential

contacts in the system.

Nonsmooth Analysis

Historically, nonsmooth analysis first became important within the context of opti-

mal control. Probably the most important set of results in this area in the last 50

years was the Pontryagin maximum principle (see [74]). Later, after the importance

of set-valued analysis became more clear, Filippov wrote one of the first systematic

treatments of discontinuous differential equations (see Filippov [27]). This treatise

includes basic conditions of existence and uniqueness, notions of a derivative, and

stability results for differential inclusions. Later, Clarke extended many of these

notions by introducing, among other things, what is now termed the Clarke Gen-

eralized Differential (see [20, 19]). Recently, much of Pontryagin’s work has been

extended by Sussmann in [81] by generalizing packet variations to abstract varia-

tions so as to have a more general notion of optimality. Aubin [6] has contributed

significantly in the areas of computation for differential inclusions. Only in the past

few years have several authors studied the application of nonsmooth analysis to

understanding dynamics best modeled by discontinuous vector fields. For instance,

both Marques [56] and Moreau and Panagiotopoulos [59] discuss detailed models of

friction, viscous flow, and impacting bodies using analysis techniques largely coming

from the formalism developed in [20, 19, 27]. This formalism is used throughout the

thesis to prove extensions of existing control techniques relevant to multiple model
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systems.

Kinematic Reducibility

Kinematic reducibility answers whether or not the description of a mechanical sys-

tem can be reduced to a kinematic one. In [44], a necessary and sufficient local

condition was derived for such a reduction to be possible, although the reduction is

not given explicitly. Nevertheless, the reduction is often clear by inspection. One

of the purposes of this thesis is to extend tests of controllability to the case of

overconstrained systems. Using formal properties of the power dissipation method,

extensions of the work in Lewis [44] relevant to the class of nonsmooth systems in

this thesis are proved. In particular, it is shown that it is sufficient that the dynam-

ics of each contact state be kinematically reducible for the overconstrained system

to be kinematically reducible.

Controllability

One of the most fundamental theorems in nonlinear control, Chow’s theorem (in

[18]) states that if the involutive closure of the distribution of a drift free control

system spans Rn, then the system is locally controllable. Roughly, a system is locally

controllable if it can go anywhere in a small neighborhood of a point without leaving

that neighborhood. This important theorem gives insight into many different areas

of control, including wheeled vehicles, robotic fish, and satellite control. One of the

purposes of this thesis is to extend tests of both controllability and of kinematic re-

ducibility to the case of overconstrained systems. Again, using the formal properties

of the power dissipation method, extensions of the work in Chow [18] relevant to

the class of nonsmooth systems considered in this thesis are proved. In particular,

it is shown that a set-valued Lie bracket is appropriate for a controllability test.

Distributed Manipulation

Distributed manipulation is the study of how to affect the motion of an object

through the use of many points of contact with actuators. Typically, these actuators
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are small, inexpensive mechanisms that combined can produce large net effects on

the object being considered. Moreover, such distributed manipulation can be fault

tolerant because removing or breaking one actuator does not jeopardize the overall

system performance. Lastly, distributed manipulators can potentially perform a

large number of tasks in parallel. Distributed manipulation has many implemen-

tations. For instance, MEMS (microelectromechanical systems) Technology can be

used to make an actuator array where high numbers of micro-scaled actuators move

and control objects that rest on them. Although MEMS technology is not explicitely

considered in this thesis, this is one of the examples I ultimately have in mind.

The problem of using a highly articulated, large input space to control a rela-

tively small number of outputs has only recently become significant. Its significance

has largely been brought about by the ability to machine at extremely small scales

at a relatively low cost (such as MEMS) and the availability of basically unlimited

computational resources. An overview of some of these recent developments can be

found in [10]. One of the difficulties inherent in a many input/few output system

is a control synthesis problem–how does one get all the inputs to “cooperate” in

such a way to get the desired output? There have been several approaches to this,

ranging broadly over a set of theoretical techniques. An open loop approach pio-

neered by Böhringer et al. has been to use a programmable force field to control

an object on an array of actuators. The basic idea is to idealize the discrete array

of actuators to a continuous distribution of actuation, which can be written down

explicitly as a force field. Then design based on the mass distribution of the object

being controlled is used to control the object (see [9, 11, 12, 13]). This work has

been extended significantly by Kavraki in [79] and other works. Another approach

pioneered by Luntz et al. in [48, 49, 52, 53] uses closed loop control based on the

same fields developed by Böhringer and Kavraki. Naturally, a tremendous amount

of work has been done in the area of fabrication and design of arrays of actuators

(see, for instance, [7, 29, 40, 41, 43, 55, 77]), but as this thesis is not concerned

with fabrication, I would like to refer the reader to these references and [10] and the

references therein.
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One of the problems with the preceeding control strategies is that they do not

take into account the contact state of the distributed actuators as they make and

break contact with the object being controlled. This thesis considers distributed

manipulation as a nonsmooth problem, with kinematics defined by the power dissi-

pation method. In particular, the open loop control strategies in [9, 11, 12, 13, 79]

are analytically shown to lead to unstable rotational dynamics, a result well known

in practice. Then it is shown that in the presence of feedback the system is stabiliz-

able. In fact, if the actuators are fully actuated (can steer in any direction and rotate

with any velocity), it is shown that an analytical smooth control law is appropriate

for controlling these systems. However, when the actuators are not fully actuated,

the system can be exponentially stabilized using discontinuous feedback. Moreover,

it is shown that global exponential stability can be achieved even if feedback is only

available in a small neighborhood of the desired equilibrium point. This technique

involves “patching” together the open loop control philosophy of [9, 11, 12, 13, 79]

and closed loop philosophy just mentioned. All these results are validated both in

simulation and on an experimental apparatus. Although the test-bed used is quite

large (approximately a square meter with only 9 actuators), it approximates some

of the difficulties encountered at the micro-actuator scale. This test-bed is used as

an example of a distributed system, and it is shown that many of the techniques

used by Böhringer, Kavraki, and others are not always appropriate approximations

because of the overconstrained nature of the problem. The feedback control laws

are then implemented using visual feedback.

Nonholonomic Motion Planning

Control of what are termed term essentially nonlinear systems–systems which do

not have controllable linearizations–has been an active area of research for many

decades. An important subclass of these systems, nonholonomic systems, has been

studied intensively in many works which not related here. Instead, for an overview

I recommend Kolmanovsky and McClamroch [39]. For an excellent example of a

nontrivial nonholonomic system, Lewis et al. [46] is very good. For somewhat more
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in depth analysis I recommend Bloch et al. [8]. Since the work here is most closely

related to the problem of controllability and stabilization of a vehicle, the work here

starts from a formalism and uses many results found in Murray et al. [69, 70, 82].

Lastly, there has been quite a lot of work done on stabilizing nonholonomic systems

using discontinuous feedback laws. In particular, Hespanha et al. [35] uses many of

the same ideas I will use in this thesis for control of overconstrained systems, and I

owe many of the insights in this thesis to their work.

This thesis considers the control of overconstrained wheeled vehicles. In partic-

ular, a chapter focuses on the example of the Rocky 7 Mars rover, a prototype Mars

rover exploratory vehicle. Such a vehicle is overconstrained because of the nature

of its nonholonomic constraints. Moreover, because each of the individual contact

states for the wheels reduces to a nonholonomic problem, the system is essentially

nonlinear. The controllability theory developed in earlier chapters is used to show

under what conditions overconstrained vehicles are controllable. There are, in fact,

conditions under which they do not meet the sufficiency condition for a system to be

controllable. Some preliminary results regarding the stabilization of such vehicles

are developed and simulations are provided.

Other Application Areas

Although this thesis does not specifically consider application areas beyond those

just mentioned, the theory developed in this thesis is relevant to a number of other

areas. In particular, systems with dynamic graphs are an important area of study.

These are systems that have a graph structure describing the interconnection of

various components of the system. This graph structure can change over time,

hence making the system a multiple model system if changing the graphs changes

the dynamics. An example is a system of vehicles that communicate with each other

to accomplish some joint task that requires cooperation between the vehicles. This

cooperation is enabled through the use of feedback. Each individual vehicle enacts

a controller that is a function of not just that vehicles state but also of the state

of some set of other vehicles’ states. With a fixed communication pattern, certain
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properties of what is called its connectivity matrix can be used to analyze stability

of the overall connected system. However, if each vehicle can only communicate

with some subset of the vehicles around it (for instance, within a certain radius),

then over time the vehicles with which it communicates will change, possibly in

an unpredictable manner. This means that any stability analysis must include the

dynamics of the graph as well as of the individual vehicles. The theoretical part of

this thesis offers insight into how to analytically treat such discrete changes in the

description of the system.

Summary

I do not claim that the nonsmooth analysis approach is the only, or even the

best, way to understand and control overconstrained systems. However, this the-

sis demonstrates both analytically and in experiment that such an approach leads

to control laws which are both provably correct and practical with respect to im-

plementation. These assertions are backed with simulations and experimentation.

The strength of this theory is that with relatively little background one can analyze

previously largely intractable problems.

1.2 Organization of Thesis

This thesis is organized into eight chapters and an appendix. Chapter 2 gives some

of the necessary background for the succeeding chapters. Chapter 3 introduces the

power dissipation method, which gives us the ability to model overconstrained sys-

tems as first order discontinuous ordinary differential equations. Chapter 4 discusses

the first major result of the thesis, which answers the question, “When can the dy-

namic model of a complex mechanical system involving multiple contact states be

reduced to a kinematic model?” This validates to a large extent the methodology

given in Chapter 3 by giving a rigorous relationship between the governing equations

produced by the the power dissipation method and the original Lagrangian system.

Chapter 5 analyzes the issue of controllability for overconstrained systems. It essen-
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tially gives two different versions of an extension of Chow’s Theorem, starting with

the strongest assumptions and the easiest proof. The chapter continues with a much

more general result. Chapter 6 discusses in depth the application to distributed ma-

nipulation. Not only are stability theorems proved for distributed manipulators, but

additionally include significant experiments using a distributed manipulation test-

bed. The control designs developed in the chapter are demonstrated on this system.

Chapter 7 discusses the more difficult case of an overconstrained vehicle, where the

individual contact dynamics lead to what are termed essentially nonlinear dynamics.

An overconstrained vehicle is used as an example, and controllability results devel-

oped earlier are used to see under what circumstances such a vehicle is controllable.

Additionally, some preliminary results on stability for such systems are presented.

Finally, Chapter 8 is the conclusion, and has an extensive section on the worthwhile

topics not addressed in this thesis. The List of Notation and Bibliography are at

the end of the thesis.
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Chapter 2

Intermezzo: Background

Everything of importance has been said before by somebody who did

not discover it.

Alfred North Whitehead

This chapter reviews some of the mathematical concepts that are used in subsequent

chapters. Background materials appropriate to specific applications are relegated to

the chapter where they are appropriate. Rather than giving a complete background

in differential geometry or in nonsmooth analysis, I give an abbreviated overview

which will establish notation and give some intuition about the more important

results (with respect to this thesis) in each area. I give a very brief introduction to

differential geometry in Section 2.1 to establish notation. Since nonsmooth analysis

is not as mature a field as classical smooth analysis, I provide a more thorough

summary of important theorems in Section 2.2. I attempt to relate the my intu-

ition while also giving a rigorous presentation. The presentation of this material is

primarily based on Clarke ([20, 19]) and Filippov ([27]), although this presentation

certainly benefits from the work of Sussmann ([80, 81]) as well as many others.

Section 2.2.1 gives an overview of hybrid systems and “switching” dynamical sys-

tems. Section 2.2.2 discusses the relationship between differential equations with
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discontinuous right-hand sides (hereafter referred to as DEDRHSs) and differential

inclusions. Section 2.2.3 compares and contrasts the Lyapunov theorems of Clarke

and Filippov.

2.1 Differential Geometry

I assume the reader is familiar with the basic notation and formalism of differential

geometry and nonlinear controllability theory (see [68, 76]). There are many good

references on differential geometry (for instance, [1, 14, 23, 28, 85]), and I would

like to direct the reader to them for more information. I would like to review

the following definitions and classical theorems so that it may be clear where we are

starting from. Let Q be an n-dimensional configuration space, and TQ its associated

2n-dimensional tangent bundle. The space of inputs, U , is m-dimensional. If a map

is k times differentiable, we will say it is Ck. Moreover, denote the real numbers by

R, the rational numbers by Q, and the natural numbers by N.

The governing mechanics of classical nonholonomic systems can in many cases

be put into the form of a drift free affine system:

q̇ = g1(q)u1 + g2(q)u2 + · · · + gm(q)um (2.1)

where q ∈ Rn is the system’s state space, (u1, . . . , um) are the controls, and g1, . . . , gm

are analytic vector fields termed the control vector fields. Controllability tests for

such systems are based on the following definitions.

Definition 2.1. A vector space V over the R is a Lie Algebra if there exists a

bilinear operation [·, ·] : V × V → V satisfying skew symmetry and the Jacobi

identity. That is, [v,w]=-[w,v] and [v,[w,z]]+[z,[v,w]]+[w[z,v]]=0.

A Lie algebraic structure has proven to be extremely useful in many applications.

Here, it is desirable to give the space of vector fields a Lie algebra structure, and do

so by defining the Lie bracket.



13

Definition 2.2. The Lie bracket between two smooth vector fields f and g on Q is

defined to be

[f, g](q) =
∂g

∂q
f(q)− ∂f

∂q
g(q) (2.2)

Definition 2.3. The distribution associated with a set of vector fields {g1, . . . , gm}

to be

∆ = span {g1, g2, . . . , gm} ,

where the span is defined over the set of real valued functions on Rn

A distribution is said to be regular if the dimension of ∆(q) does not vary

with q. It is said to be involutive if it is closed under the Lie Bracket operation.

Involutivity implies that the Lie Brackets of the basis elements of the distribution

are contained with the distribution. The involutive closure of a distribution is the

smallest involutive distribution containing ∆, and is denoted by ∆. The constraints

considered in this thesis are nonholonomic constraints. Nonholonomic constraints

can be written in the form of

ω(q)q̇ = 0, (2.3)

where ω(q) consists of covectors (also called one forms) acting on the elements of

TqQ.

Two theorems play a fundamental role in much of differential geometry and

nonlinear control theory. The first, one of the most important results of elementary

differential geometry, relates involutive distributions to integral manifolds.

Theorem 2.1 (Frobenius). A regular distribution is integrable if and only if it is

involutive.

Therefore, from a controls perspective, integrability is undesirable. It leads to

the restriction of the control system to a submanifold. Instead, we want a condition

that guarantees the control system in Equation (2.1) can be driven anywhere on the

configuration manifold Q. This leads to the following definition of controllability.

Definition 2.4. We say a drift free control system of the form in Equation 2.1 is
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controllable if for any q0, qf ∈ Rn there exists a T > 0 and u : [0, T ] → U ⊂ Rm

such that q(0) = q0 and q(T ) = qf .

A system is locally controllable if there exists a neighborhood N of q such that the

system is controllable for any q0, qf ∈ N . The next theorem relates controllability

of a system to the closure of its distribution. Chapter 5 focuses on extending this

theorem to a class of nonsmooth systems. The main controllability test for systems

of the form Equation (2.1) is

Theorem 2.2 (Chow [18]). The control system 2.1 is locally controllable at q ∈ Rn

if ∆q = TqRn.

2.2 Nonsmooth Systems

This section covers some of the basic aspects of the theory of nonsmooth systems.

In particular, it covers the different contexts in which discontinuity can arise, when

the need for set-valued differentials becomes apparent, and finally some standard

stability theorems for differential equations with discontinuous right-hand sides (DE-

DRHSs). The primary reference for this material is Filippov [27].

2.2.1 Analysis of Discontinuous and Hybrid Systems

There are two main philosophies in control that give rise to discontinuous behavior

in a system. By the far the more well known is that of hybrid control. In this

control strategy, one has a finite number of controllers, each relevant to different

scenarios in the configuration space of the control system. The fields of sliding mode

control, hybrid automata, and supervisor based adaptive control all fit within this

philosophy. A lesser known philosophy, and the one I will use, is essentially that

of model reduction. Given some complicated system that can be bounded by a

conservative approximation of the dynamics, this conservative approximation can

be used to design control laws. Consider Figure 2.1. Here we see a point q on

the sphere S2, and the associated tangent plane TqS2 at q. Typically a dynamical

system on the sphere would be described by the flow of a single vector in TqS
2.
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Figure 2.1: A differential inclusion on a manifold

For reasons that will be clear shortly, the governing equations are modeled as a set

γ(q) ⊂ TqS
2. This set will typically be convex, leading to a scenario where solutions

to the dynamical equations are no longer unique. Therefore, we only require that

the time derivative of the system flow lies within the set γ(q) shown in the figure.

The vectors of ordinary differential equations are now replaced by sets, vector

fields are replaced by differential inclusions, and existence and uniqueness of solu-

tions is replaced only by existence. Moreover, in this context, sets can arise due to

disturbances as well as inputs. This thesis will primarily use sets to model specific

classes of disturbances, those that arise due to switching contact states. In partic-

ular, it will arise as a natural way of viewing multiple model systems. These are

systems where the actual plant governing the dynamics of the system is only known

to lie in some set P of potential plants. Switching between plants can occur arbi-

trarily. P is in our case finite, but can be countably infinite or even a continuum.

More general classes of disturbances may be modeled as sets in this framework.

Discontinuities in t

Many people have looked at the case when the discontinuity of the right-hand side

of a differential equation is solely dependent on time t. Most often, the discontinuity

in this case is a result of controller design. That is, in optimal control, the optimal

solution may be a function φ(t) which takes its values in {−1, 1} (known as “bang-
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bang” control). It may also arise when actual control input, say an alternating

current, is necessarily discontinuous. In this case, the mathematical treatment of

the discontinuity can almost entirely be treated by the Caratheodory case. In the

Caratheodory case, the original system is

ẋ = f(x, t),

which is known to be equivalent to

x(t) = x(t0) +
∫ t

t0

f(x(s), s)ds. (2.4)

If the function f(x, t) is only discontinuous in t (and continuous in x), then functions

satisfying Equation 2.4 can be considered solutions of ẋ = f(x, t). Then, using the

concept of the Lebesgue integral, one obtains the definition of a solution in the sense

of Caratheodory. This is not terribly different from the normal definition. Moreover,

since it is not the case with which I am primarily concerned, I will not comment

further on it. Complete treatments of the Caratheodory case can be found in [21].

Discontinuities in x and t

Now consider differential equations with discontinuities with respect to x and t.

Even in this case, there are two relatively important distinctions to be made. In

one case, one can use the state to decide when discontinuities should occur. For

instance, the entire methodology of sliding mode control falls into this category (see

[83] for example). In the other case one has no control over when the discontinuities

occur. That is, in the first case, the discontinuities are an effect of feedback, whereas

in the second case they are a result of environmental factors. We will see later

that the dynamics of overconstrained mechanical systems can be viewed as this

latter kind of problem. Physically, one can think of using differential inclusions or

differential equations with discontinuous right-hand side(s) (DEDRHS) as a type

of model reduction. Take, for instance, the case of friction. The interplay between

“stick” and “slide” is a phenomenally complicated problem, but the decision to only
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include those two states and not model the transition is a philosophical statement

about how much one thinks the transition is of vital importance to understanding

the control problem. In general, we expect that detailed modeling of friction will

not be very fruitful, so instead we do this “model reduction” to the discontinuous

case. That said, I acknowledge that if one looks at a fine enough scale, dynamics

we model as discrete should actually be continuous. (Alternatively, if one goes to

an even finer scale, the molecular level, one could argue that then no dynamics are

actually continuous, and that they are in fact discrete!)

Given discontinuities in x and t, it is reasonable to ask what one should count

as admissible solutions. Solution concepts are complicated in the case of DEDRHS

largely due to the strong coupling between the physical meaning of a solution and

its mathematical existence. Here are the main ideas that need to be considered

(primarily from [27]).

1. The continuous case should be a special case of the discontinuous case.

2. For the case when discontinuities only occurs in t, there should only be the

solution x(t) =
∫ t
t0
f(x, s)ds.

3. The definition must be physically meaningful.

4. Solutions that uniformly converge must converge to a solution.

5. Change of variables of a solution must also be a solution.

Examples 2.1 and 2.2 show that in order to realize these properties, one must allow

the solution to satisfy a differential inclusion, rather than satisfy a single-valued

differential equation.

2.2.2 Equivalence of DEDRHSs to Differential Inclusions

First consider two illustrative examples. In the first, we will see that even when we

can explicitly calculate the solution to a DEDRHS, we will see that this solution does

not satisfy the differential equation. In the second example, we see that generalizing
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the condition for satisfying the differential equation is the right approach, and see

that in fact differential inclusions provide the right existence properties.

Example 2.1

Consider the following example of a differential equation with a discontinuous

right-hand side.

ẋ = 1− 2 sgn(x), (2.5)

where sgn is the sign function which takes values

sgn(x) =


1 for x > 0

0 for x = 0

−1 for x < 0


The solution to this differential equation can be found explicitly. We know that

for x < 0, ẋ = 3, and that for x > 0 we have ẋ = −1. Therefore, the solution

looks like (purposefully omitting the case x = 0 for now):

x(t) =

 3t+ c1 for x > 0

−t+ c2 for x < 0

 (2.6)

Now we have the question of how to continue the solution past the point x = 0.

Notice that x = 0 is an equilibrium point for this system. This implies that

ẋ = 0. But if we substitute in x = 0 in Equation 2.5, we get ẋ = 1! ♦

We are now faced with a question as to what is the best way to include x(t) = 0 as

a solution. However, the only way to get the differential equation to make sense at

x = 0 is to have sgn(x) = 1
2 , an untenable solution. Consider the generalization of

Example 2.1 in Example 2.2:
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Example 2.2

We now consider the DEDRHS:

ẋ = 1− a sgn(x) (2.7)

This equation leads to requiring that sgn(x) = 1/a, which leads to sgn(x) not

being well defined. There are two possible ways to resolve this dilemma. The

classical way is to only require that the solution satisfies Equation 2.5 almost

always (a.a.). The problem with this is that it makes it then difficult to talk

about equilibria. More importantly, the solutions in the case of Example 2.5 do

not satisfy the inclusion everywhere, because the solution x = 0 is stable. This

definition would only work if we knew that the solutions would pass through

x = 0 transversely, thus ensuring the “almost always” condition. Instead, we

allow the function sgn(·) to become a multivalued map defined by


sgn(x) = 1 for x > 0

sgn(x) = [−1, 1] for x = 0

sgn(x) = −1 for x < 0


In this way we produce the natural necessary condition for equilibrium, that

0 ∈ F (x0), which can then be tested for stability using other techniques. ♦

There are two interesting properties of the system in Example 2.2 which are quite

different from solutions to ordinary differential equations. First, solutions are not

unique. The point x = 0 has multiple solutions running through it. In fact, in this

case, all solutions pass through it as t → ∞. Second, solutions reach the origin in

finite time. This is clear from the solution in Equation 2.6.

Returning to the original goal of this section, which is to formalize the relation-

ship between DEDRHSs and differential inclusions, consider the differential equation

ẋ = f(x, t), (2.8)
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where f is piecewise continuous in some domain G, x ∈ Rn, ẋ = dx
dt , and M is a

set of measure zero upon which the function f is discontinuous. As in Filippov [27,

page 50], we say that a map is a solution to Equation 2.8 if it satisfies the differential

inclusion

ẋ ∈ F (x, t), (2.9)

where F (x, t) is convex and appropriately defined to approximate whatever physi-

cal process in which we are interested. The solution is required to be an absolutely

continuous vector-valued function x(t) which satisfies Equation 2.9 almost every-

where (a.e.). (Note that the solution to Equation 2.5 does satisfy the inclusion

everywhere.) Aside from the fact that on G/M F (x, t) must be single valued and

equal to f(x, t), there is no a priori restriction on the definition of F (x, t).

Remark 2.1

Note that if we have no information about the stability or lack of stability of

the set M , Example 2.5 illustrates why we cannot arbitrarily allow F (x, t) to

be single valued, but must instead make the conservative allowance that on the

boundary F (x, t) is some multivalued map. In the case of time delay systems

and dry friction systems, it is traditionally accepted to define F (x0, t) to be the

convex hull of all possible values of the limit as the limit approaches the bound-

aryM upon which x0 lies. See [59] and [56] for more information on the interplay

between the detailed modeling of friction and the use of differential inclusions. ♦

2.2.3 Lyapunov Theorems of Clarke and Filippov

As previously mentioned, there are two important camps of nonsmooth analysis, at

least from the author’s perspective. These stem from the point of view of Clarke

and Filippov, respectively, and although their work overlaps in many ways, they

have decidedly different interests philosophically. The most important difference is

the reason that the set-valued natures of their problems arise. For Clarke, from the
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perspective of control, set-valued maps arise in the form of an equation:

ẋ ∈ F (x, u) (2.10)

where u ∈ U . U can be thought of as the space of admissible inputs for the sys-

tem ẋ = F (x, u). He then uses this structure to show the existence of stabilizing

controllers, as in [20].

On the other hand, Filippov views these things quite differently. Motivated by

the need to have a reasonable definition of a solution of Eq. (2.10), he is implicitly

thinking of a system where the dynamics are known (and smooth) almost every-

where, but must be extended to the set-valued case in order to guarantee existence

of solutions. Example 2.1 and Example 2.2 are examples of this dilemma.

This fundamental difference in their perspectives on the world of differential in-

clusions leads to similarly stated but radically different theorem meanings. Shortly,

we will see Lyapunov theorems based on the work of both Clarke and Filippov, and

will illustrate the fundamental differences between them. First we need to define

some notions of stability.

Definition 2.5. The equilibrium point x = 0 is uniformly stable if for all ε > 0

there exists δ > 0, independent of t0, such that the trajectories Φ(t, t0, x0) of the

system satisfy ‖x0‖ < ε⇒ ‖Φ(t, t0, x0)‖ < δ ∀ t > t0.

Definition 2.6. The equilibrium point x = 0 is uniformly asymptotically stable if

it is uniformly stable and for all ε, δ > 0 there exists T ≥ 0, independent of t0, such

that the trajectories Φ(t, t0, x0) of the system satisfy ‖x0‖ < ε ⇒ ‖Φ(t, t0, x0)‖ < δ

∀ t > T + t0.

Definition 2.7. The equilibrium point x = 0 is locally exponentially stable if there

exists constants α, β > 0 and a neighborhood U of the origin such that the trajec-

tories Φ(t, t0, x0) of the system are bounded by

‖Φ(t, t0, x0)‖ ≤ β‖x0‖e−α(t−t0) ∀ t0,∀ x0 ∈ U
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Definition 2.8. For any of the notions of stability in Definitions 2.5, 2.6, and 2.7,

we say a differential inclusion is strongly stable if every solution of the differential

inclusion is stable, and we say that it is weakly stable if there exists a solution of

the differential inclusion which is stable.

Additionally define the upper and lower derivatives of a function as:

Definition 2.9. The upper and lower derivatives for a function V (t, x) ∈ C1 are

defined, respectively, by

V̇ ∗ = sup
y∈F (t,x)

(Vt +∇V y) V̇∗ = inf
y∈F (t,x)

(Vt +∇V y) (2.11)

Consider Filippov’s theorem, Theorems 2.3, and Clarke’s theorem, Theorem 2.41.

Theorem 2.3 (Filippov’s Lyapunov Theorem). Let, in a closed domain D(t0 ≤

t < ∞, |x| ≤ ε0), the differential inclusion ẋ ∈ F (t, x) satisfy the basic conditions

of existence (from [27]) and 0 ∈ F (t, 0); in this domain, let there exist functions

V (t, x) ∈ C1, V0(x) ∈ C for which

V (t, 0) = 0, V (t, x) ≥ V0(x) > 0(0 < |x| < ε0)

Then:

1) If V̇ ∗ ≤ 0 in D, the solution x(t) = 0 of the inclusion ẋ ∈ F (t, x) is stable.

2) If, moreover, there exist functions V0(x), V1(x) ∈ C, W (x) ∈ C (for |x| ≤ ε0) and

0 < V0(x) ≤ V (t, x) ≤ V1(x), V̇ ∗ ≤ −W (x) < 0,

(0 < |x| < ε0), V1(0) = 0
1I should note that I have rewritten Clarke’s theorem so that both will use the same notation

and to generally make the relationship between them more explicit.
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then the solution x(t) = 0 is asymptotically stable.

3) Finally, if there exist k1, k2, k3, c > 0 such that

V0(x) ≥ k1‖x‖c

V1(x) ≤ k2‖x‖c

W (x) ≥ k3‖x‖c

then the solution x(t) = 0 is exponentially stable.

Theorem 2.4 (Clarke’s Lyapunov Theorem). Let, in a closed domain D(t0 ≤

t < ∞, |x| ≤ ε0), the differential inclusion ẋ ∈ F (t, x) satisfy the basic conditions

of existence and 0 ∈ F (t, 0); in this domain, let there exist functions V (t, x) ∈

C1, V0(x) ∈ C for which

V (t, 0) = 0, V (t, x) ≥ V0(x) > 0(0 < |x| < ε0)

Then:

1) If V̇∗ ≤ 0 in D, then for every (t0, x0) ∈ D there exists a solution x(t) with

x(t0) = x0 of the inclusion ẋ ∈ F (t, x) which is stable.

2) If, moreover, there exist functions V0(x), V1(x) ∈ C, W (x) ∈ C (for |x| ≤ ε0) and

0 < V0(x) ≤ V (t, x) ≤ V1(x), V̇∗ ≤ −W (x) < 0,

(0 < |x| < ε0), V1(0) = 0

then for every (t0, x0) ∈ D there exists a solution x(t) with x(t0) = x0 which is

asymptotically stable.

3) Finally, if there exist k1, k2, k3, c > 0 such that

V0(x) ≥ k1‖x‖c

V1(x) ≤ k2‖x‖c

W (x) ≥ k3‖x‖c

then for every (t0, x0) ∈ D there exists a solution x(t) with x(t0) = x0 which is



24

exponentially stable.

It is most likely apparent to the reader that not only do these theorems greatly

resemble classical Lyapunov theorems, but that they are also nearly identical, except

that one is robustness theorem and the other is a existence theorem. That is,

Theorem 2.3 shows that all trajectories go to the origin as time goes to infinity.

However, Theorem 2.4 shows that there exists a solution with the desired properties.

I will complete this introduction by applying Theorem 2.3 to a relatively simple

example.

Example 2.3 First-Order Time-Varying Stability

Consider the example:

ẋ = −(a+ cos2(t))x

where a > 0. This system is, of course, asymptotically stable, as can be seen from

looking at it as a time-varying system. However, the purpose of this example

is to convince the reader that in some cases differential inclusions are a more

natural way to prove stability. In this case, we can replace cos2(t) with the set

[0, 1] and we get

ẋ = −(a+ [0, 1])x.

Choose a Lyapunov function, say V = x2, and get

V̇ =
∂V

∂x
ẋ = 2x · (−(a+ [0, 1])x) = −2(a+ [0, 1])x2

which is strictly less than 0 for all values in [0, 1]. Then, by Theorem 2.3, the

resulting system is asymptotically stable. The beauty of this example is that

it is a smooth system which can be solved using classical techniques, but has

a much cleaner solution when thought of from the vantage point of differential

inclusions. ♦
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Chapter 3

Theme I: Overconstrained Mechanical

Systems

It ain’t what a man don’t know that makes him a fool, but what he does

know that ain’t so.

Josh Billings

This chapter presents techniques for deriving equations of motion for overcon-

strained mechanical systems. The goal is to capture essential features of the mechan-

ics of overconstrained systems in a tractable way. The power dissipation method,

abbreviated PDM, will be used for determining first order governing equations for

an overconstrained system. The basic ideas behind this method were first proposed

in the context of overconstrained wheeled systems Alexander and Maddocks [3]. It

has been used successfully to model many types of systems (see, for instance, [73]).

Moreover, preliminary work has been done at an intuitive level showing the relation-

ship between equations of motion coming from the PDM and equations of motion

coming from a Lagrangian framework (see [72]). One of the purposes in this chapter

and Chapter 4 is to develop this relationship. Section 3.1 describes a Lagrangian

approach, and points out some of the additional complexities the Lagrangian ap-

proach brings with it. Section 3.1.1 presents an example to explain some of the

intuition behind using this method. Section 3.2 formally states the power dissipa-
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tion method. Section 3.3 gives some important characteristics of PDM solutions

which will be used later. Section 3.4 gives some final remarks on this method and

how it will be used.

3.1 Lagrangian models

Constrained mechanical systems can be modeled using conventional Lagrangian

mechanics through the use of Lagrange multipliers. Consider a generic mechanical

system with n contacts, whose contact state can vary. It will therefore have 2n

possible contact states. Let L(q, q̇) denote the Lagrangian (kinetic minus potential

energy) of the overconstrained system. If the ith contact is not slipping, then this

constraint on the mechanical system’s motion can be expressed as ωi(q)q̇ = 0. If

the ith contact is slipping, then the Coulomb law governs the reaction force at

that contact: FRi = − vi
||vi||µiNi, where µi, Ni, and vi are respectively the Coulomb

friction coefficient, normal force to the ground, and slipping velocity of the contact

at the ith contact. Hence, the system’s equations of motion are described by:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
+

∑
i∈S

FRi +
∑
j 6∈S

λjω
T
j (q) = T (3.1)

where S is the slipping set, the {λj} are undetermined Lagrange multipliers, and

T are the generalized applied forces. That is, k ∈ S if the kth contact contact is

slipping. If the kth contact is not slipping, λk corresponds to the reaction force

necessary to maintain the no-slip constraint at the kth contact. There are two

primary practical problems with the Lagrangian approach. First, one must solve

for the Lagrange multipliers—a tedious task that often leads to complex equations.

Second, an additional (and often complicated) analysis is necessary to determine

which contacts are slipping at any given instant. I will discuss the reduction of

these equations of motion to first order equations of motion in Chapter 4. That

chapter shows that the power dissipation method has the appropriate “quasistatic”

solutions, which are kinematic.
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3.1.1 Motivation–A Two-Wheeled Bicycle

NN

µµ

2 1

2 1

τ1τ2

Figure 3.1: Planar bicycle

As an example, consider the planar bicycle (Fig. 3.1). The downward normal

force on each wheel will depend on the bicycle’s weight distribution. Assume that

each wheel is actuated, with torques τ1 and τ2, and that each of the wheels may

slip (depending upon the ground reaction force). Using Eq. (3.1) and solving for

the Lagrange multipliers, there are four equations of motion, each corresponding to

a different contact state. Let q = [x, θ1, θ2]T , where θ1 is the front wheel angle and

θ2 is the rear wheel angle. Then the dynamics are as shown in Table 3.1. Here I

is a wheel’s moment of inertia about its rotational axis, ρ is total bicycle mass, R

is the wheel radius, and FRi = − ẋ−Rθ̇i

‖ẋ−Rθ̇i‖
µiNi. If λi is the reaction force for each

contact, the Coulomb friction model implies that the boundary between slipping

and nonslipping states occurs at some value of λi = λnom, thereby implying that

the λ space is divided into regions of different slipping states. Generally, for an

n-contact system, the slipping regions are separated by hyperplanes which bound a

hypercube. The problem of state determination arises from the inherently compli-

cated dependency of λ on the current state. In the case of the planar bicycle, we

compute that

λ1 =
I(τ1 − τ2)−R2ρτ1
R(R2ρ+ 2I)

λ2 =
I(τ2 − τ1)−R2ρτ2
R(R2ρ+ 2I)

.

Moreover, the critical λnom takes the value µiNi. This fact implies that the bound-
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q̈ =


R

2I+ρR2

1
2I+ρR2

1
2I+ρR2

 τ1 +


R

2I+ρR2

1
2I+ρR2

1
2I+ρR2

 τ2 (3.2)

q̈ =


FR

1
I+ρR2

−RFR
1

I

RFR
1

I+ρR2

 +


0
1
I

0

 τ1 +


R

I+ρR2

0
1

I+ρR2

 τ2 (3.3)

q̈ =


FR

2
I+ρR2

RFR
2

I+ρR2

−RFR
2

I

 +


R

I+ρR2

1
I+ρR2

0

 τ1 +


0

0
1
I

 τ2 (3.4)

q̈ =


FR

1 +FR
2

ρ

−FR
1 R
I

−FR
2 R
I

 +


0
1
I

0

 τ1 +


0

0
1
I

 τ2 (3.5)

Table 3.1: The Lagrangian dynamics of the planar bicycle
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ary of these regions is terrain dependent. I.e., the hypercube delineation of switching

regions is a purely local phenomena. The analysis based on Lagrangian mechanics

would suggest that there are four possible contact states, corresponding to Equa-

tion (3.2) where neither wheel is slipping, Equation (3.3) where wheel A is slipping,

Equation (3.4) where wheel B is slipping, and Equation (3.5) where both wheels are

slipping.

3.2 The Power Dissipation Methodology

To analyze control system performance, one would like models for overconstrained

mechanical systems that faithfully capture the system’s essential physics, and that

are tractable and amenable to control and motion planning analysis. In particular,

we are interested in models that have the salient features we are interested in, while

still avoiding some of the complications associated with the full Lagrangian modeling

process. I should point out, however, that many of the techniques described in this

thesis are not only relevant to the reduced system, but are additionally applicable to

the full Lagrangian modeling framework. Nevertheless, as an interim step, consider

the conceptually easier “quasi-static” or “kinematic” states of an overconstrained

system. In pursuit of this goal, I will use a “power dissipation model” (PDM)

approach to model the governing dynamics of a mechanical system. This method

typically produces unique models that are relatively easy to compute, and to which

one can apply nonsmooth control system analysis methods. Since the method is a

quasi-static modeling method, it produces first-order governing equations, instead of

second order equations that are associated with Lagrange’s equations. The primary

disadvantage is that the method only applies to quasi-static systems.

Let q denote the configuration of the system, consisting of the object’s planar

location. Let ω(q) be one forms acting on TQ. It is well known that the relative

motions between the object and a point of contact can be modeled in the form

ω(q)q̇. If ω(q)q̇ = 0, then the contact is not slipping (i.e., it is nonholonomic),

while if ω(q)q̇ 6= 0, then ω(q)q̇ describes the slipping velocity of the contact point.
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In general, from kinematic considerations, one or more of the contact points must

be in a slipping state. The power dissipation function measures the object’s total

frictional energy dissipation due to contact slippage.

Definition 3.1. The Dissipation or Friction Functional for an n-contact state is

defined to be

D =
n∑
i=1

µiNi | ωi(q)q̇ | (3.6)

with µi and Ni being the Coulomb friction coefficient and normal force at the ith

contact, which are assumed known.

In the case of wheeled vehicles, ωi(q)q̇ represents the velocity of the ith wheel’s

point of contact with the ground. Alexander and Maddocks showed that D is

convex as a function of q̇; therefore its local minima are global minima [3]. Let

us revisit the planar bicycle example. Note that the minimum of D must occur

at a nondifferentiable point of D, since the function is monotone everywhere else.

By direct comparison of the two nondifferentiable states, which correspond to one

wheel not slipping or the other wheel not slipping, the minimum is associated with

whichever has a lower value of µN . Consequently, the zero level set of the function

Ψ(g) = µ1N1 − µ2N2

determines which state the bicycle’s kinematics lie in. This determination becomes

nonunique when µ1N1 = µ2N2. This model has only two states, making it much

simpler to analyze than the Lagrangian model. Additionally, the governing equa-

tions take the simplified form:

ẋ = Rui (3.7)

where i is the wheel not slipping. With sufficiently many contacts between the

object and the manipulating surface, it will often be true that one or more contacts

must slip during object motion, thereby dissipating energy. I.e., no motion exists

where all of the contacts can be simultaneously slipless. These ideas lead to the

following formal statement.
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Power Dissipation Principle: An object’s motion at any

given instant is the one that minimizes D with respect to q̇.

The power dissipation method assumes that the object’s motion at any given instant

is the one that instantaneously minimizes power dissipation due to contact slippage.

Remark 3.1

I should comment further on the relationship between the kinematics that the

power dissipation method predicts and the dynamics predicted by the Lagrangian

approach. Consider a particle subject to some holonomic constraint (that is, the

particle is moving on some surface). If there is friction between the particle and

the surface, then if the particle slips against the surface there will be a reaction

force due to friction. The Lagrangian analysis would suggest that there are two

possible states–one slipping and one not slipping. The PDM predicts that the

particle will not slip, however, so it misses some dynamics predicted by the La-

grangian framework. At the same time, however, the dynamics it does predict

(those with no slipping) are consistent with a Lagrangian analysis.

In the case of an overconstrained system with inputs, the PDM leads to more

interesting dynamics than those of a particle on a surface (which doesn’t move

at all). In the case where one can divide all elements q of the configuration

manifold Q into two components q = (g, r) (where we refer to g as the group

variable and r as the shape variable), Equation (3.6) implies that the PDM will

predict ġ given a set of ṙ. The variable ṙ corresponds to the inputs ui and ġ

corresponds to the motion in SE(2) in the case of planar motion. The important

thing to note is that in general ġ will be nonzero if ṙ are nonzero. ♦

To compare the PDM method to conventional Lagrangian analysis, consider the

bicycle with torque inputs on both the front wheel A and the back wheel B. The

PDM analysis (which we will see in Section 3.2), using velocities as the wheel in-

puts instead of torques, suggests that there are only two different contact states
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corresponding to either A or B slipping as compared to the four contact states

the Lagrangian model predicts. Equations (3.2) and (3.5) both imply that the

inertial terms dominate the system’s dynamics, thereby violating the quasi-static

assumption. Equation (3.5) implies that the bicycle is skidding out of control. The

conditions corresponding to Equation (3.2) are unlikely to be found in an actual sys-

tem, as this implies that both contacts must be driven at exactly compatible speeds,

or the normal forces are so high that they dominate the contact speeds instead of

the contact speeds determining the motion. In the case of Equation (3.2) where

the speeds are exactly the same speed, the dimension of the subspace spanned by

the constraints drops in any case, implying that constraint is essentially duplicated

(I will discuss this more later, as it turns out this is a good way of designing con-

trollers for certain high input systems). Therefore the power dissipation will give

results satisfying this constraint even if it is practically unlikely. This leaves the

second two states in Equations (3.3) and (3.4), which are the same as those found

in Equation (3.7) using the power dissipation model. This is an indication of how

the quasi-static assumption helps to simplify our problem, while yielding similar

insights to Lagrangian analysis.

3.3 Characteristics of the PDM

This section describes some of the main properties of solutions to the PDM. In

particular, we will see that the PDM gives rise to multiple model driftless affine sys-

tems. Chapter 4 explores formally the relationship between the governing equations

coming from the PDM and the governing equations coming from the Lagrangian

framework. These traditionally arise in the context of adaptive control (see Sec-

tion 6.7), but are additionally well suited to our case.

Definition 3.2. A control system Σ is said to be a multiple model driftless affine

system (MMDA) if it can be expressed in the form

Σ : q̇ = f1(q)u1 + f2(q)u2 + · · ·+ fm(q)um (3.8)
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where for any q and t, fi ∈ {gαi |αi ∈ Ii}, with Ii an index set, gαi analytic in (q, t)

for all αi, and the controls ui ∈ R are piecewise constant and bounded for all i.

Moreover, letting σi denote the “switching signals” associated with fi (which will

be refered to as “MMDA maps”),

σi : Q× R −→ N

(q, t) −→ αi

then the σi are measurable in (q, t).

An MMDA is a driftless affine nonlinear control system where each control vector

fields may “switch” back and forth between different elements of a finite set. The σi

which regulate this switching may not be known, so we have no guarantees about

the nature of the switching except that it is measurable. Note that it is easy to

see that fi is measurable in (q, t) since σi is measurable and the gαi are analytic.

In our case, this switching corresponds to the switching among different contact

states (i.e., different sets of slipping contacts) due to variations in contact geometry

and surface friction properties. Moreover, so that we can distinguish between the

overall control system and the smooth control systems that comprise it, define the

following.

Definition 3.3. Let Σ be an MMDA control system. Then we define Σσ1,σ2,...,σn

to be the individual control systems made up of

Σσ1,σ2,...,σm : q̇ = gσ1u1 + gσ2u2 + · · ·+ gσmum

We will additionally refer to a system as a multiple model system if it is an

MMDA system with um = 1. That is, it is an MMDA system with a drift term. In

the next section it is shown that the PDM generically leads to MMDA systems as

in Definition 3.2.
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3.3.1 The PDM Leads to Multi-model Systems

Ideally the dissipation function defined in Definition 3.1 would always have a unique

minimum. Unfortunately, as shown by the planar bike’s indeterminacy in the case

of µ1N1 = µ2N2, a unique minimum cannot be expected. This section shows that

the power dissipation approach generically leads to MMDA systems, which gener-

ically exhibit unique minimum in D. Alexander and Maddocks [3] show that the

dissipation model is convex, so local minima are global minima, should they exist.

They also show that if such a minimum exists, it must exist at a point of nondif-

ferentiability of D. However, there may be other points at which the minimum is

obtained. Let Ω = {ω1, · · · , ωm} and Q = {q̇1, q̇2, · · · , q̇r} where q̇k is the kinematic

solution to a non-overconstrained subset Ω′ ⊂ Ω consisting of n − m constraints,

i.e.,

Ω′q̇k =


ωk1
...

ωkm−n

 q̇k = 0.

This means that Q consists of
 n

n − m

 points for which no directional derivatives

of D exist and that we therefore only have a finite number of points to check in

order to find the minima. It is straightforward to show that these minima must

at least occur at points in Q. See, for instance, Clarke [19]. Reorder Q so that

D(q̇1) ≤ D(q̇2) ≤ · · · ≤ D(q̇r). Although Q has at least one of the minima achieved

by D, it does not necessarily contain all of them. In fact, if more than one element

of Q is a minimum, then every element of the convex hull of these minima are also

minima. Hence, if there is more than one solution, there are an infinite number of

solutions. Unfortunately, the condition 0 ∈ ∂D is only necessary for a minimum, but

the next proposition proves that in the case of the function D, it is also sufficient.

Proposition 3.1. If q̇1 and q̇2 both minimize the dissipation functional found in

Definition 3.1, then so does co{q̇1, q̇2}.



35

Proof:

Assume D(q̇1) = D(q̇2) = a and δ ∈ [0, 1]. Then

D(q) (δq̇1 + (1− δ)q̇2) =
n∑
i=1

µiNi |ωi (δq̇1 + (1− δ)q̇2)|

≤ δ

n∑
i=1

µiNi |ωi (q̇1)|+ (1− δ)
n∑
i=1

µiNi |ωi (q̇2)| = a

Assume that D is strictly less than D(q̇1) somewhere in co{q̇1, q̇2}. Then ∃ δ′ such

that D (δ′q̇1 + (1− δ′)q̇2) is at a minimum by an extension of Rolle’s Theorem for

the real line. Then q̇′ = δ′q̇ + (1 − δ′)q̇ is at a point where D is nonsmooth in all

its directional derivatives [3] (because D is monotone elsewhere). This implies that

q̇′ ∈ Q and that D(q̇′) < D(q̇1), thus violating our assumption that D(q̇1) is a min-

imum of D. Therefore D(q) (δq̇1 + (1− δ)q̇2) = a ∀δ ∈ [0, 1]. The proof for higher

numbers of q̇i having equal dissipation is by induction on this argument. �

This result formalizes the intuition that if the power dissipated is equal for two

velocities q̇i, then all possible trajectories whose velocity lies in the convex hull of the

q̇i will satisfy the minimum also. That is, in the nongeneric case when D does not

have a unique minimum, we can still bound the object’s motion. Now co{q̇i, i ∈ J} is

a set of points on which D is nondifferentiable, just not in all directions. It therefore

still meets the criterion to be a minimum [3]. Now let us consider the extent to

which the function D having a unique minimum is generic. We denote the function

space of the coefficient of friction by Ξ, the function space of normal forces by N .

Proposition 3.2. Assume D : (U ,Ξ,N , TQ) → R is of the form in Definition 3.1

and that the µ is measurable in x and t. Then the dissipation functional D has a

unique minimum almost always (i.e., except on a set of measure 0 relative to the

space (U ,Ξ,N , TQ))

Proof:

Case 1: If q̇1 is a unique minimum in Q, then it is the unique global minimum
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since Alexander and Maddocks showed that the minimum must occur in Q by our

definition of Q.

Case 2: If ∃ q̇1 and q̇2 such that both are minima, then by Proposition 3.1,

we know that co{q̇1, q̇2} also minimizes the D. However, this only occurs when

(ui, Nj , µk) ∈ U × N × Ξ satisfy the constraint D(q̇1) = · · · = D(q̇n). This implies

that the constraint is only satisfied on a set of measure 0 in the space U ×N ×Ξ. �

That is, the PDM will almost always lead to a unique set of governing equa-

tions. The reader should note that the proof of Proposition 3.2 is only useful if we

have already found Q, and moreover for a high number of states it may be very

difficult to find the minimum of Q. This problem, thus stated, bears more than

a passing resemblance to the simplex method found in LP theory and techniques

from that theory can be applied to the problem of finding the minimum of the func-

tion D in the presence of high numbers of contact states. Also note that in the

non-overconstrained case of n−m constraints, the dissipation method leads to the

classical kinematic solution. Proposition 3.2 allows us to now state what we mean

by the dissipation functional leading generically to an MMDA system.

Corollary 3.3. The multivalued map F : TQ → TQ implicitly defined by D(q̇) =

min(D) is single valued almost everywhere.

Corollary 3.3 implies that we can generically expect the power dissipation method

to lead to a uniquely defined set of kinematics. In particular, it implies that the dis-

sipation modeling approach will generically give a well defined set of kinematics, and

that it will almost never lead to an indeterminate system. This makes rigorous the

comment made in [3] referring to the physical expectation of continually switching

back and forth between the dominance of one wheel or another, rather than staying

in an indeterminate state. See [25] for a discussion of implicitly defined multivalued

maps. Corollary 3.3 is additionally the relationship between solutions to minimiz-

ing D and MMDA systems. The power dissipation function has a unique minimum

almost always, so we have unique solutions almost always. In cases when we do not

have unique solutions we have a point of discontinuity in the governing equations.
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Moreover, we will see in Chapter 4 that the contact states the PDM predicts are

(U ,U) reducible, implying among other things that there is no drift. However, I

cannot justify the requirement that σ be measurable in (q, t). It is unclear what

requirements on (U ,Ξ,N , TQ) are necessary to guarantee that the switching signal

σ is measurable. I will use the fact that σ is measurable extensively in Chapter 5,

so it must be viewed as an additionally necessary assumption to make the problems

I am considering more tractable. Moreover, it is unclear how to interpret what it

would physically mean for σ to not be measurable.

Remark 3.2 Sets of Measure 0

I should discuss sets of measure 0 and their physical meaning. Intuitively, sets

of measure 0 can be as sparse as disjoint points in Q or as replete as a subman-

ifold of Q. As an example, consider a vehicle moving on some smooth terrain.

In its full three-dimensional ambient space, a vehicle is always constrained to

a set of measure 0, yet that set is precisely where the interesting dynamics oc-

cur. Therefore, the dynamics which occur on this set of measure 0 cannot be

dismissed. On the other hand, sets of measure 0 can represent arbitrary al-

gebraic relationships between parameters and the state space. Unless there is

some reason to believe that these relationships are necessarily satisfied, we can

feel physically motivated in asserting they will never occur. This is the case that

I am considering, and therefore I feel that the preceding results do imply the

genericity I assert. Nevertheless, the important thing to keep in mind is that

whether or not these sets are important in the analysis is a physical assumption,

not a mathematical result. For a reference on measure theory, see [2]. ♦

3.4 Some Final Remarks on the PDM

Here I make some final comments on the power dissipation method. Consider Equa-

tion (3.7), the kinematic equations for the planar bicycle. If we define u2 = u1, then
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the system is never overconstrained. In this way, we can take a system that is over-

constrained turn it into a non-overconstrained problem. In doing so, we additionally

reduce the number of control inputs we need to design. This structure will be put to

advantage in Chapter 6 in an application to distributed manipulation. However, as

we will see in Chapter 7, there are times when such a simplification is not possible.

We call these situations essentially overconstrained.

I do not claim that the PDM is a better model than the full Lagrangian setup,

only that it is more tractable. It produces first order equations of motion that are

amenable to analysis, as we will see in the next chapters. Moreover, the fact that

it allows us to compute explicit controllers that work on a real experiment is an

indication of its validity. Nevertheless, eventually the work in this dissertation will

need to be extended to apply to full Lagrangian mechanical systems, as even in the

example of the planar bike there are important dynamic states not accounted for

in the PDM. Chapter 4 explores more formally, via the concept of (U ,U) reducible

mechanical systems, the relationship between the PDM and Lagrangian analysis.
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Chapter 4

Theme II: Kinematic Reducibility

It is far better to foresee even without certainty than not to

foresee at all.

Henri Poincare

This chapter strengthens the relationship between the governing equations produced

by the power dissipation method from Chapter 3 and the dynamics given by the

Euler-Lagrange equations (Equation (3.1)) for the case of overconstrained systems.

This relationship is phrased in terms of “reducibility”, that is, the ability to reduce

equations of motion for mechanical systems down to first order equations of motion.

In particular, the notion of (U ,U)-reducibility formalizes what is meant by kinematic

reducibility. It is basically the requirement that all paths on TQ coincide in the

right way with paths on Q when they are projected onto Q. The definition can be

found near the end of Section 4.1. Lewis [44] proved that the symmetric product

could be used to provide a local test for reducibility, which I will define rigorously

in a moment. Lewis’ result is extended to the case of overconstrained mechanical

systems that are modeled as multiple model systems. The result states that if all of

the individual models comprising the multiple model system are (U ,U) reducible,

then the multiple model system is (U ,U) reducible. This result is later applied to

the case of multiple model mechanical systems and it is shown that the kinematics

derived from the power dissipation method correspond to (U ,U) reducible dynamics
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derived from the Lagrangian mechanics. This verifies that the PDM is consistent

with Lagrangian mechanics in the appropriate context. Section 4.1 reviews the

results from Lewis [44]. Section 4.2 gives the theorem statement and proof regarding

(U ,U)-reducibility of multiple model mechanical systems. The proof methodology

will basically be the following. For each model that makes up a multiple model

mechanical system, we will have reduced equations that come from Lewis [44]. Any

map that has its time derivative in the convex hull of all these model equations

is a solution to the multiple model mechanical system. These solutions will be

approximated with a limit of solutions that are piecewise explicitly known to be

(U ,U) reducible. Then they will be reduced to first order equations and a result

from Filippov [27] will be used to show that the limit of these in the reduced space

is also a solution. Then the process is reversed to show that for any solution to the

MMDA system there is a solution to the multiple model mechanical system.

4.1 (U , U) Reducibility: The Smooth Case

For mechanical systems, I will consider inputs u : [0, T ] → Rm that are essentially

bounded and Lebesgue integrable. In Lewis [44], it was assumed that the inputs

were absolutely continuous since piecewise continuous inputs imply that one can

change the systems velocity instantaneously. With inertia this can only occur given

infinite forces. However, in the cases relevant to the systems described in this thesis,

state transitions are being approximated with piecewise continuous signals. This is a

common approximation in many areas of physical modeling–for example, the study

of impacting bodies often includes this assumption. Therefore, I will only require

that absolute continuity hold almost everywhere in my subsequent treatment.

Definition 4.1. f : [a, b] → Rm is absolutely continuous if for each ε > 0 ∃ δ > 0

such that for every finite collection {(ti, t
′
i)}1≤i≤N of non-overlapping intervals in

[a, b] with the property that

N∑
i=1

|t′i − ti| < δ we have
N∑
i=1

‖f(t
′
i)− f(ti)‖ < ε
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This implies Df exists almost everywhere. Let us define some of the basic notions

from differential geometry, including the covariant derivative, the distribution, and

the symmetric product. As in Lewis [44], I restrict my attention to simple mechanical

systems whose Lagrangian takes the form L = K.E. − V . Assume that Q is an n-

dimensional configuration manifold, and g is a riemannian metric on Q defining the

kinetic energy. Also, since many of the applications of interest are systems with no

potential energy (such as flat terrain problems), let us simplify to the case where

L = K.E. (i.e., V = 0).

First, some more definitions are necessary so that the symmetric product can

be defined. Denote by vq elements in the tangent space of Q at q, TqQ. Assuming

that the potential energy is zero, the system Lagrangian is L = 1
2g(vq, vq). Next we

recall Christoffel symbols so that we can define the covariant derivative and then

the symmetric product.

Definition 4.2. The Christoffel symbols for the Levi-Civita connection ∇ are

Γijk =
1
2
gil

(
∂gjl
∂qk

+
∂gkl
∂qj

−
∂gjk
∂ql

)
(4.1)

where the standard convention of implied summation over repeated indices is used

unless otherwise stated and upper indices indicate the inverse.

Now we can define the covariant derivative and finally the symmetric product.

Definition 4.3. In coordinates, the covariant derivative of Y with respect to X is

∇XY =
(
∂Y i

∂qj
Xj + ΓijkX

jY k

)
∂

∂qj
(4.2)

Definition 4.4. The symmetric product between two vector fields X and Y is

defined to be

〈X : Y 〉 = ∇XY +∇YX (4.3)
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Given a metric g on the manifold Q and inputs ua, it is possible to show that the

Euler-Lagrange equations can be written in the form:

∇c′(t)c
′(t) = ua(t)Ya(c(t)) (4.4)

where t → c(t) is a path on Q and c′(t) = d
dtc(t). On the other hand, given input

velocities uα, kinematic equations can be written in the form:

q̇(t) = uα(t)Xα(q(t)) (4.5)

Let {Y1, . . . , Ym} and {X1, . . . , Xm} be two sets of vector fields on TQ for m,m ∈ N.

Denote by Ddyn the distribution spanned by the vector fields {Y1, . . . , Ym} and by

Dkin the distribution spanned by the vector fields {X1, . . . , Xm}. Although the

formulation is not presented here, I will use the fact that mechanical systems with

constraints can be written in the form of Equation (4.4) [45]. The next definition

formalizes the class of admissible solutions to Equation (4.4) and Equation (4.5).

Definition 4.5. If we have a control system q̇ = f(q, u) on Q and u coming from

some space of inputs U ⊆ Rm, a (U , T )-solution is a pair (c, u), where u : [0, T ] → U

and c : [0, T ] → Q satisfy c′(t) = f(c(t), u(t)).

Let
τQ : TQ → Q

(vq, q) → q

be the tangent bundle projection. We now can define what it means for a mechanical

system of the form in Equation (4.4) to be (U ,U) reducible to Equation (4.5).

Definition 4.6. Let ∇ be an affine connection on Q, and let U and U be two

families of control functions. The system in Equation (4.4) is
(
U ,U

)
-reducible to

the system in Equation (4.5) if the following two conditions hold:

i ) for each (U , T )-solution (η, u) of Equation (4.4) with initial conditions η(0)
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in the distribution Dkin, there exists a
(
U , T

)
-solution (c, u) of Equation (4.5)

with the property that c = τQ ◦ η;

ii ) for each
(
U , T

)
-solution (c, u) of Equation (4.5), there exists a (U , T )-solution

(η, u) of Equation (4.4) with the property that η(t) = c′(t) for almost every

t ∈ [0, T ].

Let χ∞(D) denote those C∞ vector fields taking values in the distribution D. The

following theorem states the local test for Equation (4.4) to be (U ,U) reducible to

Equation (4.5).

Theorem 4.1 (Lewis [44]). Let ∇ be an affine connection, and let Y1, . . . , Ym and

X1, . . . , Xm be vector fields on a manifold Q. The control system in Equation (4.4)

is
(
U ,U

)
reducible to a system of the form in Equation (4.5) if and only if the

following two conditions hold:

i ) spanR{X1(q), . . . , Xm(q)} = spanR{Y1(q), . . . , Ym(q)} for each q ∈ Q (in

particular, m = m)

ii ) 〈X : Y 〉 ∈ χ∞(Ddyn) for every X,Y ∈ χ∞(Ddyn).

As noted in Lewis [44], the symmetric product plays a similar role in establishing(
U ,U

)
reducibility to the Lie bracket in establishing controllability. The goal in the

next section will be to extend Theorem 4.1 to the case of multiple model systems.

It will turn out that such an extension is relatively straightforward and has natural

interpretations both in terms of the symmetric product and in terms of the individual

models making up the multiple model system.

4.2 Kinematic Reducibility for MMDA Systems

This section considers the problem of whether or not a dynamic multiple model

system is kinematically reducible to an MMDA system. Let us start with a state-

ment that should not be surprising. Lemma 4.2 states that if the solution to the
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dynamic equations only has switches which are separated by some small amount of

time (making the switching signal piecewise continuous), the resulting solution is

also kinematically reducible. Recall from Chapter 3 that a multiple model system

is an MMDA system with um = 1, i.e., it has a drift term.

Lemma 4.2. Let Σ be a multiple model system such that the switching signal σ is

piecewise constant. Then, Σ is (U ,U) reducible iff Σσi,··· ,σj are all (U ,U) reducible.

Proof:

Since σ is piecewise constant, we know that the number of times that σ changes

are countable. Therefore, let the times when σ changes its value be {t1, t2, · · · , }

for i in some index I. Then on the intervals (ti, ti+1) Σ is (U ,U) reducible, making

it (U ,U) reducible almost always. It therefore satisfies the requirements of Defini-

tion 4.6. �

I will use this theorem to prove Theorem 4.4, which says that solutions to the dif-

ferential inclusion defined by multiple model systems are kinematically reducible if

and only if the individual models are kinematically reducible. Before proving the

next theorem I will use the following result from Filippov [27].

Theorem 4.3 (Filippov [27]). Let f : Q × R → TQ be a set-valued map and let

{Φi} be a sequence of solutions to the differential inclusion

q̇ ∈ f(t, q) (4.6)

such that lim
i→∞

Φi → Φ. Then Φ is also a solution to Equation (4.6).

I will use Theorem 4.3 several times in the proof of Theorem 4.4. Roughly speaking,

I will show how to use piecewise continuous (U ,U) reducible solutions of the multiple

model mechanical system as approximations to arbitrary elements of f , and then use

Theorem 4.3 to show that their kinematic counterparts on TQ must also converge

to an element of the differential inclusion defined on TQ.
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Theorem 4.4. A multiple model system Σ is (U ,U) reducible iff Σσi,··· ,σj are all

(U ,U) reducible.

Proof:

First note that it is obviously necessary that all the individual models be (U ,U)

reducible in order for the resulting multiple model mechanical system to be reducible,

because otherwise a perfectly valid solution to a multiple model mechanical system

is the smooth, non-reducible solution. So let us show sufficiency. We must therefore

show that when the individual models are (U ,U) reducible, the MMDA system

satisfies parts i) and ii) of Definition 4.6.

(i) A multiple model mechanical system has the form

gl∇c′(t)c
′(t) ∈ uα lYα(c(t)) (4.7)

where l ∈ Λ is the index for a given model, gl is the metric appropriate to that

model, gl∇ is the affine connection associated with gl, and lY i
α is the ith component

of vector field representing the force input corresponding to uα of the lth model of

the multiple model system. Equation (4.7) is equivalent to

q̈i + glΓijkq̇
j q̇k = uα lY i

α. (4.8)

Setting lY iα = −glΓijkq̇
j q̇k + uα lY i

α and Yi
α = co{lY iα : l ∈ L} we get that

q̈i ∈ Yi
α (4.9)

For a given solution Φ of Equation (4.9) we know that d
dtΦ ∈ Y, so we can choose

a selection of Y which is locally representative of the time evolution. Denote this

selection by s(Y)iα ∈ Y. Therefore,

s(Y)iα = δ1Y
i
α1

+ δ2Y
i
α2

+ · · ·+ δmY
i
αm

(4.10)
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such that δj > 0 and
m∑
j

δj = 1. Let us denote the composition of a flow Φ with

itself n times by Φn. That is,

Φn(q) = Φ ◦ Φ ◦ · · ·Φ ◦ Φ(q). (4.11)

Dropping the index i, choose the following map to approximate the flow of the

selection s(Y)iα:

Φt,n
dyn(q)

def
=

(
Φδ1Yα1

t
n ◦ Φδ2Yα2

t
n ◦ · · · ◦ ΦδmYαm

t
n

)n
(q) (4.12)

Φt,n
dyn(q) consists of flows along (U ,U) reducible mechanical systems. Moreover, it is a

solution of Equation (4.9) on TQ which is absolutely continuous almost everywhere

for every n. Lastly, it converges to the selection s(Y) as n → ∞. That is, by

construction we get

lim
n→∞

Φt,n
dyn = ΦYα

By assumption, we know that each segment ΦδiYαi
t
n of Φt,n

dyn is (U ,U)-reducible.

Therefore, for every choice of n, Φt,n
dyn is (U ,U) reducible by Lemma 4.2. This then

gives us, for each n, a corresponding map on Q:

Φt,n
kin(q)

def
= τQ ◦ Φt,n

dyn(q) =
(
Φδ1Xa1

t
n ◦ Φδ2Xa2

t
n ◦ · · · ◦ ΦδmXam

t
n

)n
(q) (4.13)

where each ΦδiXai
t
n is the reduced equations of ΦδiYαi

t
n . Moreover, from Theorem 4.3

we know that lim
n→∞

Φt,n
kin exists and that its limit is a solution to

q̇ ∈ uaXa (4.14)

where Xa = co{lXa|l ∈ L}, lXa are the reduced equations for a given model in

Equation (4.5). Therefore, part i) of Definition 4.6 is satisfied.

(ii) This has the same essential steps as the above argument, but now we start with

the kinematic solution and work towards a dynamic solution. Starting with the
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kinematic solutions from Equation (4.5), we know that for the model with index l:

q̇i = ua lXi
a (4.15)

Therefore, this MMDA system has kinematics of the form in Equation (4.14). Let

us choose an arbitrary solution of Equation (4.14), and choose the selection s(Xa)

to be locally representative of the time evolution. That is, locally, we have ΦXa , for

Xa ∈ Xa. As before, we construct a sequence of solutions converging to ΦXa . By

construction, Φt,n
kin satisfies this. We must show there exists a η solution with

d

dt
ΦXa = η.

We know that

lim
n→∞

Φt,n
kin = ΦXa(q0, t)

and that for every n and Φt,n
kin there exists a corresponding Φt,n

dyn (as defined in (i)

above). Taking the limit of this, we have

lim
n→∞

Φt,n
dyn = ΦYα ,

which is a solution of Equation (4.9), again by Theorem 4.3. Taking the derivative

of both sides, we get (after repeated application of the chain rule)

d

dt
ΦYα =

d

dt
lim
n→∞

Φt,n
dyn = lim

n→∞

d

dt
Φt,n
dyn = lim

n→∞
Φt,n
kin

so part ii) is satisfied. �

Notice that the proof of Theorem 4.4 relied heavily on specifically constructing

a solution with the desired properties based on known solutions to the individual

models comprising the multiple model system. This is the key idea in proving that

an MMDA system is kinematic, but we will see in Chapter 5 that it is insufficient

for the purposes of proving controllability.
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4.3 The PDM and (U , U) Reducibility

This section addresses the relationship between the models produced by the power

dissipation methodology and the kinematically reducible states of a generic mechan-

ical system. First, however, I prove the following simple corollary to the work found

in Lewis [45]. A reasonable question to ask is, given a metric g for some mechanical

system and some set of constraints described by one forms ωj , what are sufficient

conditions for the resulting system to be (U ,U) reducible? Lemma 4.5 gives one

sufficient condition which is invariant with respect to the metric g.

Lemma 4.5. Given a “constraint distribution” Dcon which annihilates the con-

straints ωj and an input distribution Ddyn, if Ddyn = Dcon the mechanical system

described by ∇q̇ q̇ = uY is (U ,U) reducible.

Proof:

Denote by ∇ the connection and by ∇ the constrained connection defined by the

Lagrange-dÁlembert principle (see Lewis [44] for details of this construction). We

know that

∇XY ∈ Dcon ∀Y ∈ Dcon and X ∈ T (M),

which implies

∇XY +∇YX ∈ Dcon ∀X,Y ∈ Dcon.

This in turn implies by Theorem 4.1 that ∇q̇ q̇ = uY is (U ,U) reducible. �

Therefore, (U ,U) reducibility of a multiple model mechanical system is guaran-

teed regardless of the metric g when the constraint distribution is covered by the

input distribution. Moreover, from the previous chapter we already know that the

power dissipation model only admits solutions where this is true. This allows us to

interpret the use of the power dissipation method. The power dissipation is a way of

choosing a more tractable subset of contact states from the full Lagrangian contact

mechanics. In other words, when we make the “quasistatic” assumption, we are
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merely restricting our attention to (U ,U) reducible systems. Moreover, when the

reaction forces due to friction do not lie in Dkin, then those contact states are not

(U ,U) reducible. Consider, for instance, the planar bicycle example in Section 3.1.1.

The only contact state which does not satisfy the requirements of Lemma 4.5 is

that where both wheels are slipping. The other three states are precisely the states

that the power dissipation method predicts. However, I should be very clear that

this only shows that the power dissipation captures (U ,U) reducible states when

Dcon = Dkin. That is, the correspondence only goes one direction: all PDM con-

tact states are kinematic states, but not all kinematic states can be predicted by

the PDM. There are examples of mechanical systems which are (U ,U) reducible by

virtue of properties of the metric g. For examples of such systems, see Lewis [44].

I should also remark on the relationship between Theorem 4.1 and Theorem 4.4.

In the smooth case, (U ,U) reducibility is basically equivalent to geodesic invariance

(for details, see Lewis [44]). However, in the nonsmooth case there is no well defined

notion of geodesic invariance. Nevertheless, I was able to extend the notion of (U ,U)

reducibility relatively easily. Therefore, the concept of (U ,U) reducibility is in some

sense more general than that of geodesic invariance.

4.4 Summary

I would like to end this chapter with a comment on the relationship between this

result and the controllability result found in the next chapter. One of the intu-

itive aspects of Theorem 4.4 is precisely that it is sufficient for each model to be

(U ,U) reducible in order to guarantee that the multiple model mechanical system is

(U ,U) reducible. That is, piecewise (U ,U) reducibility is enough. However, in the

case of controllability, this no longer holds. An MMDA system can switch amongst

individually controllable systems in such a way as to destroy controllability. This

will be the focus of the next chapter.



50

Chapter 5

Theme III: Controllability

I am sufficiently proud of my knowing something to be modest about

my not knowing everything.

Vladimir Nabokov

This chapter focuses on the issue of controllability of MMDA systems. Under-

standing controllability for MMDA systems is a first step in understanding what

techniques we must employ to stabilize such systems. The issue of controllability

for such systems has not been extensively addressed. While controllability was not

studied by Hespanha, Liberzon, and Morse [35], they did consider a related sta-

bilization problem arising from a kinematic nonholonomic vehicle with parametric

uncertainty. Goodwine and Burdick [32] developed a local controllability test for sys-

tems of the form in Definition 3.2 when the switching boundaries and configuration

space have an a priori known stratified structure. While they did not study multiple

model systems, Rampazzo and Sussmann [75] have recently developed a nonsmooth

version of Chow’s theorem that applies to Lipschitz vector fields. The results ob-

tained in [75] have strong analogues with the result presented here. Section 5.1

gives a controllability condition for an MMDA system where the switching signal is

controlled. Section 5.2 provides conditions for controllability when we assume that

the “switching” boundaries (where the model changes as trajectory crosses it) are
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locally at least C1 and unknown. Section 5.3 presents conditions for controllability

for an even broader class of MMDA systems. This condition is the same as the one

found in the Section 5.2. These results are summarized in Section 5.4 in Table 5.1.

As an example of a physical system where these concepts are important, Chap-

ter 7 uses the results of this chapter to analyze the issue of controllability of a simple

model of an overconstrained wheeled vehicle. This model is inspired by novel high-

mobility wheeled robots (e.g, the Mars Sojourner) that operate in rough terrain.

5.1 Aside: Controlled Switching

In this section I will temporarily take an aside to consider controllability in the case

when the switching signal can be directly controlled. Certainly, for a system where

the individual models are controllable, one may choose to stay with one smooth

system and use its controllability to achieve overall system controllability. However,

when none of the individual models are controllable, can switching be used to achieve

controllability? Not surprisingly, the answer is yes, as we will see illustrated below.

Let ∆σi denote the involutive closure of the control vector field distribution asso-

ciated with switching state σi. When ∆σi is full rank, controllability is immediately

realized, as one can (with the assumption of complete control over the switching pro-

cess) switch to the controllable state σi. Conventional results for smooth systems

then apply to this state. However, if none of the ∆σi are full rank, then controlla-

bility may still exist, but is not obvious. To motivate this situation, consider the

example in Fig 5.1. This fixed wheel kinematic car (FWKC) has three wheels, of

which only the middle is driven. None of the wheels are steerable: the back one

remains straight, and the front remains at a constant angle of π/4. I include the

mechanical arm above the body as an example of a mechanism that can control

switching. As the arm moves forward and backward, it can shift the center of mass

sufficiently to switch the vehicle into a new dynamic state—i.e., the arm position

determines which wheel is slipping. Each dynamic state by itself is uncontrollable,

though we shall see that this system is indeed controllable. While this example
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Mechanical Manipulator

Passive Wheel Driven Wheel Passive Wheel
at 45 degrees

Figure 5.1: The fixed wheel kinematic car

generally has no practical value, it is illustrative of the idea, and may possibly rep-

resent the vehicle in a singular configuration of its suspension or a state of steering

actuator failure. Based on the power dissipation approach, the governing dynamics

of this vehicle are

q̇ = gσ(q)u1 σ : (q, t) → {1, 2}

g1 =


1√
2
cos(θ)

1√
2
sin(θ)

1

 , g2 =


cos(θ)

sin(θ)

0

 .
Recall that the classical Lie bracket between two differentiable vector fields, which

does not have any meaning in this multiple model context, is equivalent to

[f, g] (q) = lim
ε→0

1
ε2

(
Φ−f
ε ◦ Φ−g

ε ◦ Φf
ε ◦ Φg

ε(q)− q
)

where Φf
ε represents the flow along f for time ε. The total flow can be seen schemat-

ically in Fig. 5.2.

g
f
εf

gε

−εf

g−εnet motion
nonzero 

Figure 5.2: Flows associated with a Lie bracket motion.
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The interpretation of the Lie bracket as a flow makes the following extension

to the switched case almost trivial. Rather than forming the Lie Bracket between

two separate smooth control input vector fields, form a Lie Bracket of a control

input vector field fiui where fi ∈ {gi|i ∈ {1, 2}}. Do this by setting u = 1 for

0 ≤ t < 2ε and u = −1 otherwise, while i = 1 for 0 ≤ t < ε and 3ε ≤ t ≤ 4ε,

i = 2 otherwise. This produces the flow seen in Figure 5.2. This simple controlled

switched Lie bracket(CSLB) can therefore be used to control the mechanism. This

leads us to the following corollary of Chow’s Theorem.

Corollary 5.1. Consider an MMDA system of the form Definition 3.2, where the

switching signals σi can be controlled directly. Let ∆σi denote the distribution of the

control vector fields associated with state σi. Let ∆H,σ denote the involutive closure

of ∪i∆σi. The system is locally controllable if ∆H,σ = TqRn for all q.

The proof of this corollary is similar to a standard proof of Chow’s Theorem (see

[76] for example) with the modification that the flows are produced by a switching

vector field. In other words, the switching acts like a control that can only take on a

finite number of values (in the case of the FWKC, only two values). For this reason

I omit details of the proof.

Applying this result to the FWKC, the Lie bracket along with the vector fields

g1 and g2 are found to be

g1 =


1√
2
cos(θ)

1√
2
sin(θ)

1

 , g2 =


cos(θ)

sin(θ)

0

 , [g1, g2] =


− sin θ

cos θ

0

 .

This leads to a full span of the three-dimensional vector space. Therefore the FWKC

is controllable. Simulations in Section 7.4 bear out this result.

5.2 Uncertain C1 Stratified Systems

This section develops a local controllability result for Multiple Model Driftless Affine

(MMDA) control systems. The controllability result can be interpreted as a non-
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smooth extension of Chow’s theorem, and uses a set-valued Lie bracket. This sec-

tion considers systems of the form in Definition 3.2 with the added requirement

that switching can only occur through crossing a C1 manifold. I.e., the control

vector fields may change amongst a finite collection of vector fields, each repre-

senting a model, P , in a set of models P. In the case studied in this section, the

changes between models are determined by a collection of C1 continuous submani-

folds {Nk} ⊂ Rn, k = 1, . . . , p. Fig. 5.3 depicts the state space of a simple example,

Region B

Region A

N1

N2

Figure 5.3: Cellular separation of kinematic states

where two different regions, A and B, correspond to different governing equations.

The region boundaries are denoted by N1 and N2. Within each region, the govern-

ing model is unique. As the system trajectory flows from one region to the other, its

governing equations change at the boundary. The difficulty addressed in this section

lies in the fact that the regions’ geometries may be a priori completely unknown, and

moreover may be local in nature, i.e., Fig. 5.3 may correspond to an arbitrarily small

neighborhood of the operating point. Moreover, allow the {Nk} to lie anywhere in

Rn with an arbitrary, but countable, number of intersections between submanifolds.

The goal, then, is to have a theory which incorporates the arbitrary nature of

these regions, and to produce algorithms which are not sensitive to this kind of

switching. Such systems are intimately related to multiple model systems such as

studied in [35]. However, I should emphasize that the “switching” which occurs

when the trajectory q(t) crosses state space boundaries is not like the switching

phenomena found in [15], [47], [24], or [87], or as typically studied in the hybrid

control systems literature (e.g., [71, 5]). In these studies, the switching is part

of a control strategy to be implemented in the controller. Rather, it is switching
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induced by environmental factors, such as variations in the contact state between

rigid bodies. Systems of this sort are actually quite common in engineering practice

(see Chapter 7 for an example). As a first step in understanding such systems, we

would like a local controllability test that works in the presence of a priori unknown

switching behavior.

5.2.1 Background

The goal of this section is to extend Chow’s Theorem to the MMDAs of Definition

3.2. I will use several aspects of the formalism of [27] for investigating the prop-

erties of ODEs with discontinuous right-hand sides. Eq. (3.8) can be viewed as

a differential inclusion, i.e., a system of the form q̇ ∈ F , where F is a set-valued

multi-function. For equations of the form q̇ = f(q) with f discontinuous in q at a

point q∗, one must generally allow f to take on the convex hull of limit values lim
q→q∗

f

at q∗ in order to guarantee existence of solutions (see [27, Chapter 2] for details).

To account for this issue at the switching boundaries, define the following at each

q:

fi(q) = co{fi(q)} = co {gαi(q)|αi ∈ Ii(q)} . (5.1)

where Ii(q) is the set of limiting values of fi(q) at q, and co{·} denote the convex

hull of a set. For notational convenience, let si(fi) denote a selection of fi(q)—i.e.,

a choice of a particular element in fi(q). Let Si1,i2,...,ik denote the set of all possible

selections from fi1 , . . ., fik .

The result presented here uses the notion of a set-valued Lie bracket. Rampazzo

and Sussmann [75] also used a set-valued Lie bracket to prove the controllability of a

driftless affine control system whose single valued governing equation includes Lips-

chitz control vector fields. They showed that this choice of Lie bracket is a General

Differential Quotient of the product of exponentials formulation of a Lie bracket.

Although these two applications seem different, the choice of Lie bracket is the same,

and the resulting nonsmooth versions of Chow’s theorem are analogous. Rampazzo

and Sussmann [75] use the following Lie bracket definition, adapted appropriately:
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Definition 5.1. Let f1 and f2 be as in Def 3.2. I.e., fi ∈ {gαi |αi ∈ Ii(q)}. The Lie

bracket of f1 and f2 is defined as

[f1, f2](q) = co{ lim
j→∞

(Df1(qj) · f2(qj)−Df2(qj) · f1(qj))} (5.2)

for all sequences {qj}j∈N such that

1. f1 and f2 are differentiable ∀ qj ,

2. limj→∞ qj = q,

3. the limit of (5.2) exists.

nonzero
net motion

Φf2
ε

Φ−f1
ε

Φ−f2
ε

Φf1
ε

Figure 5.4: Schematic of a set-valued Lie bracket motion.

This concept is illustrated in Figure 5.4.

As noted in [75], this has the skew symmetry properties associated with the Lie

bracket. Note that this Lie bracket is a set-valued object, which can be shown to

be both compact and convex. Definition 5.1 is appropriate to the case where the

dynamics are single valued in open neighborhoods, but multi-valued on “switching

boundaries.” In the case where f = co{fi} and g = co{gj} on the boundary

submanifold Nk, it is straightforward to show that [f, g] = co{[fi, gi]}. Once again

for notational convenience, let sij([fi, fj ]) denote a selection of [fi, fj ] and Sij denote

the set of all possible such selections. To analyze the controllability of MMDAs,

define:

Definition 5.2. Let fi be as in Def 3.2 and fi as in Eq. (5.1). Define a distribution
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∆s1s2···sn(q) as

∆s1s2···sn(q) = span{v| v = si(fi(q)), i = 1, . . . , n} (5.3)

I.e., ∆s1s2···sn(q) is formed from a particular selection of vectors from each fi(q).

Define the distribution ∆(q) as

∆(q) =
⋂

S1,...,n

∆s1s2···sn(q) (5.4)

I.e., ∆(q) is formed by intersecting the ∆sis2···sn(q) over all possible selections of

f1(q), . . ., fn(q). Next define

∆1(q) =
⋂

S12,13,...

(span{v| v = sij([fi, fj ])} (5.5)

and analogous higher order distributions formed from higher order set-valued Lie

brackets. Finally, define ∆(q) as

∆(q) = ∆(q)
⋃

∆1(q)
⋃
· · · . (5.6)

5.2.2 Main Result

Before stating and proving the section’s main result, I would like to describe the

underlying intuition. Fig 5.5 shows the local geometry of the state space in the

vicinity of a point q∗ on a switching boundary. The shaded cone represents fi, the

set of possible control vector field selections that might occur when ui is activated.

In particular, if fi(q∗)
⋂
TN1(q∗) = 0, activating u1 will ensure that the trajectory

of Σ can escape N1 for any selection in fi(q∗). Then one can apply the classical

Chow’s theorem to get local controllability. The goal is to apply the preceding idea

to the case where q∗ lies at the intersection of an arbitrary, but countable, number

of switching boundaries.

Theorem 5.2. Let {Nk} ⊂ Rn be a countable set of C1 submanifolds, Σ be a control

system as in Definition 3.2 where the governing equations are determined by crossing
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Figure 5.5: Neighborhood of boundary submanifold.

submanifolds in {Nk}, and q∗ be a point such that ∆(q∗) = Rn. Then Σ is small

time locally controllable at q∗.

Proof:

Proceed by recursion on pq∗ , the number of submanifolds of {Nk} intersecting at q∗.

Assume V is an open subset of Rn, q0, qf ∈ V , and T > 0. Moreover, assume that

∆(q∗) = Rn.

First, let pq∗ = 0. That is, assume that q∗ does not lie in any submanifold of the

set {Nk}. Then all the fi in Definition 3.2 are single valued, and [·, ·] is therefore

single valued, and the classical Chow’s theorem holds as in Theorem 2.2. Therefore

the system is small time locally controllable.

For purposes of clarity, before going on to the recursion step, let pq∗ = 1 (i.e.,

q∗ ∈ Ni for some i). Order the indices of {Nk} so that q∗ ∈ N1. Now ∆ = Rn implies

that there exists fi such that fi
⋂
TN1 = 0 (if fi

⋂
TN1 6= 0 for all i, then elements

of TN1 are common to all fi, implying by Definition 5.2 that ∆(q∗) does not span

Rn). The condition fi
⋂
TN1 = 0 implies that there exists ui : [0, T2 ] → Rn such

that q(0) = q0, q
(
T
2

)
= q1 where q1 ∈ V/N1 (i.e. input ui will move the system off

of N1 to some point q1 not on N1 regardless of the selection from fi). By Theorem

2.2 ∃ u0
i : [T2 , T ] → Rn such that q

(
T
2

)
= q1,q(T ) = qf . This implies that the choice

of

ui =

 u1
i , if 0 < t < T

2

u0
i ,

T
2 < t ≤ T
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satisfies the condition q(0) = q∗, q(T ) = qf ∀qf ∈ V .

q
*

N

N

N

1

2

3

Figure 5.6: As an example of the proof methodology, q∗ lies at the intersection of

N1, N2, N3. ∆ = Rn guarantees that the system trajectory can at least be made to

move away from the intersection N1
⋂
N2

⋂
N3.

Intuitively, it seems that as pq∗ →∞ it will be more and more difficult for Σ to

be controllable. This difficulty, however, is embedded in the definition of ∆, for if

there exists a selection restricting the flow of Σ to a submanifold, then by definition

∆ does not span Rn.

Assume that for some k the above proposition holds. Then for k + 1 subman-

ifolds intersecting at q∗, if ∆ = Rn then there exists fi such that fi
⋂
TNk+1 = 0.

Therefore, as before, there exists uk+1
i : [0, Tk ] → Rn such that q(0) = q0, q

(
T
k

)
= qk

where qk ∈ V/Nk+1. By assumptions on the case k there exists uki : [Tk , T ] → Rn

such that q
(
T
k

)
= qk, q(T ) = qf , where

uki =


uki , if T

k+1 < t < 2T
k+1

...

u0
i ,

kT
k+1 < t ≤ T

(5.7)

This implies that

uk =


uk+1
i , if 0 < t < T

k+1
...

u0
i ,

kT
k+1 < t ≤ T

(5.8)

satisfies the condition q(0) = q∗, q(T ) = qf . It is therefore true for all k > 0. �

An advantage of this approach is the geometric simplicity of the controllability
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condition. On the other hand, we are restricted to the assumption that the subman-

ifolds {Nk} determine the governing equations. In the next section I will get rid of

the C1 manifold requirement, and show controllability for MMDA systems using an

entirely different technique based in large part on methods developed by Sussmann.

Figure 5.7: Controllability vs. noncontrollability

Intuitively, Theorem 5.2 says that if we have some set of n nominally inde-

pendent control directions, there exists a switching sequence which can make two

control directions the same if and only if their associated convex hulls intersect.

Therefore, worst-case scenario switching can make the system locally uncontrollable

if the convex hulls associated with sufficiently many MMDA vector fields intersect.

One advantage of this approach is that it does lead to such a geometrically simple

interpretation of the controllability condition. If a system fails this controllability

test, then this does not imply that the system is not controllable, only that it is

not locally controllable. Theorem 5.2 can also, of course, be extended to a global

controllability result by patching together open neighborhoods between two points

q0 and qf . See Sastry [76, page 516] for details. However, in many cases such as

the one considered in Chapter 7, we are interested in local controllability so that

fine maneuvering can be achieved. An equivalent statement of Theorem 5.2 can be

found in Corollary 5.3, where an algebraic, as opposed to a geometric, condition for

necessary and sufficient conditions on controllability is found.

Corollary 5.3. Given the assumptions in Theorem 5.2 and writing fi as fi =
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co{v1, · · · , vl} =
∑n

i=1 δivi such that
∑n

i=1 δi = 1 and δi ∈ [0, 1], then the control sys-

tem is locally controllable if rank(∆(f1, · · · , fk) = n ∀{δ1, δ2, . . . , δltotal
} ∈ [0, 1]ltotal

5.3 General MMDA Systems

Now let us consider the following dilemma: Section 5.2 provides a test for controlla-

bility, but i) it uses the C1 boundary assumption, and more importantly ii) its proof

does not give any intrinsic insight into how to treat discontinuous systems. It uses

a constructive technique similar to the proof of Chow’s Theorem found in [76], but

it does not lead to explicit control laws. What we desire is a proof more similar to

the original proof of Chow’s Theorem (found in [18]) which uses the open mapping

properties of smooth maps. Therefore, let us now proceed with a more topological

approach to controllability which will allow us to both get a more general result and

significant insight into the proper formalism for dealing with MMDA systems (and

Multiple Model systems in general).

I will cover some of the basic formalism found in [81] needed to prove the next

result. In particular, I need the notion of a GDQ (Definition 5.4) which can be

thought of as a generalized differential. I will use an open mapping theorem for

GDQs from [80] to prove this extension of Chow’s theorem. Denote a set-valued map

by the triple (S, T,Gr(h)), where S is the source set (denoted by So(h)), T is the

target set (denoted by Ta(h)), and Gr(h) is the set {(s, t)|s ∈ S t ∈ T with h(s) =

t}. When S and T are understood, I will denote such a map merely by h(s), where

if s ∈ S, h(s) = {t|(s, t) ∈ Gr(h)}. Denote the set of all set-valued maps from S

to T by SVM(S, T ). Define SVMcomp(S, T ) to be the subset of SVM(S, T ) whose

members are set-valued maps having compact graph.

Given a set-valued map h, we say that a sequence {hj}j∈N of set-valued maps

with compact graph inward graph converges (denoted by hj
igr→ h) to h (also a

set-valued map with compact graph) if for every open subset Ω ⊆ S × T such that

Gr(h) ⊆ Ω there exists a jΩ ∈ N such that Gr(hj) ⊆ Ω whenever j ≥ jΩ. Moreover,

define the flow of h, Φh, to be the set-valued map from Ω × R to Ω whose value,
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for a given (q0, t) ∈ Ω× R, is the set of all y ∈ Ω such that there exists an integral

curve q(t) : [0, T ] → Ω of h satisfying q̇ ∈ h almost everywhere which is defined on

some subinterval [0, T ] ⊆ R such that t ∈ [0, T ], q(0) = q0, and q(t) = y.

Definition 5.3. Let X and Y be metric spaces. A regular set-valued map from X

to Y is a set-valued map f such that for every compact subset K ⊂ X the restriction

f |K is a set-valued map with compact graph, and is a limit, in the sense of inward

graph convergence, of a sequence of continuous single-valued maps from K to Y .

That is, regularity of a set-valued map requires that the map must be approx-

imated by single-valued continuous maps. I now introduce the extended notion of

the differential of a map, the generalized differential quotient (GDQ).

Definition 5.4. Let f : Rm −→ Rn be a set-valued map, and let Λ be a nonempty

compact subset of Rn×m. Let S be a subset of Rm. We define Λ to be a generalized

differential quotient (GDQ) of f at (q, f(q)) in the direction of S, if for every positive

real number δ there exist U and g such that:

1. U is a compact neighborhood of q ∈ Rm and U ∩ S is compact.

2. g is a regular set-valued map from U ∩ S to the δ-neighborhood Λδ of Λ in

Rn×m.

3. g(q) · q ⊆ f(q) for every q ∈ U ∩ S.

If Λ is a GDQ of f at (q, f(q)) in the direction of S we write Λ ∈ GDQ(f , q, f(q), S).

That is, GDQ(f , q, f(q), S) is the set of all GDQs of f at (q, f(q)) in the direction

of S. I should note that GDQ theory is a generalized differentiation theory in the

sense of [20]. Moreover, the GDQ theory has a strong directional open mapping

property which I will use later to prove controllability.

Theorem 5.4 (Open Mapping Theorem [80]). Let C be a convex cone in Rm.

Let f : Rm → Rn be a set-valued map, and let Λ ∈ GDQ(f ; 0, 0, C). Let D be a

closed convex cone in Rn such that D ⊆ Interior(LC)∪{0} for every L ∈ Λ (where

LC is the cone produced by the linear operator L acting on C). Then there exists
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a convex cone ∆ ⊆ Rn such that D ⊆ Interior(∆) ∪ {0}, and positive constants

ε, κ having the property that if y ∈ ∆ and ‖y‖ ≤ ε, then there exists a q ∈ C such

that ‖q‖ ≤ κ‖y‖ and y ∈ f(q). Moreover, the cone ∆ and the constants ε, κ can

be chosen so that if y ∈ ∆ and ‖y‖ = ε ≤ ε then there exists a compact connected

subset Zy of (C ∩ Bn(κε) (where Bn(r) is the closed ball of radius r in Rn), and

ry ∈ f(q) whenever 0 ≤ r ≤ 1 and (q, r) belong to Zy.

This basically says that if all possible selections of the GDQ of a map are sur-

jective at q, then the map is open is at q. I will now give an example to illustrate

the previous theorem.

Example 5.1 Open Mapping Example

Consider the map1

f(x) = x+ sin(
1
x

).

The Clarke Generalized Differential (CGD) of f(x) at x = 0 is

CGD(f(x))|x=0 = 1 + [−1, 1] = [0, 2].

CGDs are GDQs, but by the open mapping theorem for GDQs all elements of

the GDQ must be surjective. Since 0 ∈ CGD(f), we can make no conclusions

about the open mapping properties of this map. However, it is possible to prove

that 0 is a GDQ of sin( 1
x) at x = 0 , which implies that 1 is a GDQ of f(x) at

x = 0. Therefore, GDQ(f, 0, f(0),R) is full rank for all elements of the GDQ,

implying that the map f is open at x = 0. This illustrates the power of the GDQ

approach: one need only find a sufficiently small GDQ in order to establish the

open mapping property of a map. Therefore, the nonuniqueness of GDQs is

actually an advantage analytically. The primary disadvantage is that one must

have a guess of what the GDQ is, and then go about showing that it satisfies

the definition of a GDQ. ♦

1I would like to thank Hector Sussmann for suggesting and discussing this example with me

over email.
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I will end this introduction to GDQs with the intuitive result that the classical

differential of a map is a GDQ of that map whenever the classical differential is well

defined.

Theorem 5.5 ([75]). If F : Rn −→ Rm is a continuous map, q ∈ Rn, and F is

classically differentiable at q, then {DF (q)} ∈ GDQ(F, q, F (q),Rn).

I use the notation {DF (q)} to emphasize the fact that DF is itself a set-valued

map.

5.3.1 Aside: Lipschitz Vector Fields

In this section I describe a result in [75] and apply their result to a simple example.

Define a linear map Lf (q∗) : Rn × R → Rn by

Lf (q∗)(v, r) = v + rf(q∗) (5.9)

for v ∈ Rn and r ∈ R. This first result shows that a single valued continuous (but

not necessarily Lipschitz) vector field, f , is a GDQ of its flow, Φf . Although this

is obvious for vector fields with unique flows, it is nontrivial for continuous vector

fields without unique flows.

Theorem 5.6 ([75]). Assume Ω is an open subset of Rn, f : Ω −→ Rn be a

continuous vector field on Ω, and q∗ ∈ Ω. Then the set {Lf (q∗)} is a GDQ of Φf

at (q∗, 0) in the direction Rn.

The next result uses a set-valued Lie bracket (in fact, the same one used in

the previous section) to take brackets of Lipschitz vector fields. The set of these

elements forms a GDQ of Ξ defined below.

Ξf,g(q, ε) =

 ψf,g(q,
√
ε,
√
ε) if ε ≥ 0

ψf,g(q,
√
−ε,

√
−ε) if ε ≤ 0

(5.10)

where ψf,g(q, t, s) = Φ−sg ◦ Φ−tf ◦ Φsg ◦ Φtf (q).
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Theorem 5.7 ([75]). Assume Ω is an open subset of Rn, f and g are locally

Lipschitz vector fields on Ω, and q∗ ∈ Ω. Then the set {Lw(q∗)|w ∈ [f, g]} is a GDQ

of the map Ξf,g at (q∗, 0) in the direction Rn.

We now arrive at the sufficient condition for controllability developed for Lip-

schitz vector fields. It basically says that if the continuous vector fields and the

Lipschitz vector fields combined with every possible elements of the Lie bracket of

Lipschitz vector fields span Rn, then the system is controllable.

Theorem 5.8 ([75]). Assume Ω is an open subset of Rn and that f1, . . . , fm, g1, . . . , gr

are vector fields on Ω with fi continuous and gj locally Lipschitz. Let Σ be the drift-

less control system

Σ : q̇ =
∑m

i=1 uifi(q) +
∑r

j=1 vjgj(q)

with control constraints |ui|, |vj | ≤ 1. Let q∗ be a point of Ω such that, for every

choice V = {vkl}1≤k<l≤r of members vkl ∈ [gk, gl](q∗) the set of vectors

{fi(q) : i = 1, . . . ,m}∪{gj(q) : j = 1, . . . , r}∪{vkl(q) : k = 1, . . . , r−1, l+k+1, . . . , r}

linearly spans Rn. Then Σ is locally controllable from q∗ in small time. More

precisely, there exists a positive constant A having the property that for every suf-

ficiently small r it is possible to reach every point within a distance smaller than

r from q∗ in time not exceeding A
√
r by means of a piecewise constant bang-bang

control such that at each time t only one of the quantities ui, vj is nonzero.

I do not give a proof in full because I will use many of the same techniques

in the proof of Theorem 5.12. Having shown that both of the previous set-valued

objects are GDQs of their respective maps, [75] then use the considerable machinery

developed in [80] to prove controllability using an open mapping theorem developed

therein.
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Remark 5.1 Characteristics of Lipschitz Vector Fields

I should comment on the relationship between this result and the one I will show

in the next section. In proving Theorem 5.8, Rampazzo and Sussmann [75] used

the following key facts about Lipschitz vector fields to arrive at their result:

1. Lipschitz vector fields are almost everywhere differentiable.

2. Lipschitz vector fields are regularizable.

3. Solutions to ODE’s with Lipschitz vector fields are guaranteed to exist for

small time and satisfy a local linear growth criterion.

These characteristics are shared by MMDA systems. MMDA systems are almost

everywhere differentiable. Due to the fact that they are almost everywhere ana-

lytic they are regularizable. Moreover, we know that solutions exist for MMDA

systems and that they satisfy local linear growth conditions by [27]. The main

point here is that MMDA systems have the key properties Lipschitz vector fields

have with respect to the proof of Theorem 5.8. ♦

I now present an example system to illustrate the usefulness of the result in the

case of Lipschitz vector fields. Choose a Lipschitz extension of a nonholonomic

integrator, although what the reader should keep in mind is a carangiform fish with

drag - see [60]:

Example 5.2 Lipschitz Nonholonomic Integrator

Let

f =


1

0

y

 g =


0

1

ax+ |x|


Due to the presence of |x| in the equation, classical analysis does not allow give

us a well defined Lie bracket. So instead we turn to Sussmann’s formalism.
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Taking the bracket [f, g] as defined in Definition 5.1, we get

lim
xi→x

Df · g −Dg · f =


0 0 0

0 0 0

0 1 0




0

1

ax+ |x|

−


0 0 0

0 0 0

a+ lim
xi→x

∂|x|
∂x

0 0




1

0

y



=


0 0 0

0 0 0

0 1 0




0

1

ax+ |x|

−


0 0 0

0 0 0

a+ [−1, 1] 0 0




1

0

y



=


0

0

1− (a+ [−1, 1])


Hence, at the origin, as long as a /∈ [0, 2], the system is controllable. If, however,

a ∈ [0, 2] we can draw no conclusion. ♦

5.3.2 Main Result

I will show that MMDA systems share these characteristics and that, with relatively

minor extensions, one can prove a theorem analogous to Theorem 5.8. Note that the

three key properties mentioned in Remark 5.1 are not only true of the set-valued

maps, but of their GDQs as well. This allows us to take higher-order brackets

without resorting to stronger regularity conditions (such as those found in [75]). I

will first prove that a set-valued map f from an MMDA system is a GDQ of its flow.

Then I will prove that the Lie bracket defined in Definition 5.1 is indeed a GDQ

for an appropriately defined map. This will in turn allow us to prove the desired

theorem. I will leave the proofs of these to Sections 5.3.3 and 5.3.4.

Theorem 5.9. Assume Ω is an open subset of Rn, f is an MMDA vector field on

Ω as in Definition 3.2, and q∗ ∈ Ω. Then the set Lf , defined by

Lf (q∗)(v, r) = v + rf(q∗) for f ∈ f , (5.11)
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is a GDQ of the set-valued map Φf at (q∗, 0) in the direction of Rn.

I will then show that [f, g] from Definition 5.1 is a GDQ of the map:

Ξf ,g(q, ε) =

 ψf,g(q,
√
ε,
√
ε) if ε ≥ 0

ψf,g(q,
√
−ε,

√
−ε) if ε ≤ 0

(5.12)

for f ∈ f and g ∈ g, and where ψf,g(q, t, s) = Φ−sg ◦ Φ−tf ◦ Φsg ◦ Φtf (q). Note that

Ξ is set-valued since f and g are set-valued. Moreover, this definition implies a type

of symmetry in the switching which we cannot necessarily always expect to have.

However, even with this assumption, this result significantly extends the one found

in the previous section.

Theorem 5.10. Assume Ω is an open subset of Rn, f and g are MMDA vector

fields on Ω as in Definition 3.2, and q∗ ∈ Ω. Then the set {Lw(q∗)|w ∈ [f ,g]} is a

GDQ of the map Ξf ,g at (q∗, 0) in the direction of Rn.

I would like to reiterate that because MMDA systems are almost everywhere

analytic, higher order brackets are well defined. This is due to the fact that the GDQ

of [f ,g] (with f and g coming from an MMDA system) is again almost everywhere

analytic. Therefore, we can take unlimited brackets, whereas Theorem 5.8 allows

only first order brackets. In this way, discontinuous systems with enough regularity

in their description can actually be more transparently controllable than single-

valued Lipschitz systems, a result which is somewhat surprising! Moreover, we can

take higher order brackets of some Lipschitz vector fields as well. For instance, |x|

can be treated as an MMDA map that switches at x = 0. Having shown both

of those are GDQs of their respective maps, I will use the considerable machinery

developed in [80] to prove controllability using an open mapping theorem developed

therein. Here is a restricted version of the chain rule here, adapted to the case of

GDQs.

Theorem 5.11 (Chain Rule for GDQs [80]). Let X1, X2, X3 be finite-dimensional

real linear spaces, and let qi ∈ Xi i ∈ {1, 2, 3}. For i = 1, 2, let fi : Xi → Xi+1 be

a set-valued map from Xi to Xi+1. Let Ci be a closed convex cone in Xi and let S
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be a linear subspace of X2 spanned by C2, and let Π be a linear projection from X2

onto S. Finally, assume that Λi ∈ GDQ(fi, qi, fi(qi), S) and f1(q1 + C1) ⊆ q2 + C2.

Then

Λ2 ◦Π ◦ Λ1 ∈ GDQ(f2 ◦ f1, q1, f2 ◦ f1(q1), S)

where

Λ2 ◦Π ◦ Λ1 = {L2 ◦Π ◦ L1 : L2 ∈ Λ2, L1 ∈ Λ1}.

This leads us to the following sufficient condition for MMDA systems to be

controllable. The proof is analogous to that found in [75], with small modifications

made for the existence of higher order brackets. It relies on constructing a map

composing flows of all the MMDA fields and their associated brackets. Then one

uses the theory in [80] to show that this map is open, thus showing controllability.

Theorem 5.12. Let Σ be a control system as in Definition 3.2, and q∗ be a point

such that ∆(q∗) = Rn, where ∆(q∗) is defined in Definition 5.2. Then Σ is small

time locally controllable at q∗

Proof:

Start by making a slight change of notation, and letting Φf (q, ε) be denoted by

Φf
ε (q). Moreover, denote the bracket of two maps fi and fj by fij . Define the map

Θm
ε (q) by:

Θm
ε (q) = Φf1

ε ◦ Φf2
ε ◦ · · · ◦ Φfn

ε ◦ Φf12
ε ◦ Φf13

ε ◦ · · · ◦ Φ
f(n−1)n
ε ◦ · · · ◦ Φ

f(n−m)(n−m+1)···n
ε

Taking the GDQ of Θm
ε (q) at q∗ and applying the Chain Rule for GDQs, we get

that Θm
ε (q) is open if ∆ = Rn. (see [80]) Then, by standard arguments in [68] we

get that Σ is controllable. �
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5.3.3 Proof of Theorem 5.9

Before I begin, I need to define some operators and quantities. Choose a δ neigh-

borhood of q∗ to be U . Then define the following:

Λ(q − q∗, t) = {Lf (q∗)(q − q∗, t) + En+1,n
(q−q∗,t),p−q−tf(q∗)

(q − q∗, t)} (5.13)

such that p ∈ Φf , f ∈ f and where Em,nq,p (u) = <q,u>
‖q‖2 p for q ∈ Rm, p ∈ Rn, and

u ∈ Rm. Extend the definition of Λ to t = 0 by defining Λ(q, t) = {Lf (q∗)} (that is,

the set of Lf with f ∈ f at q∗).

I shall prove this theorem by directly showing that f is a GDQ of Φf . To do so

I need only show that f satisfies the properties of Definition 5.4. The proof goes in

three stages:

1. Show Λ(q∗ − q∗, t) · (q − q∗) ⊆ Φf for a sufficiently small neighborhood of

q∗ ∈ Rn.

2. Show Λ is a map from neighborhoods of q∗ to Λδ.

3. Show Λ is regular.

Choose p̂ so that p̂ > 0 and

V̂
def
= {q ∈ Rn : ‖q − q∗‖ ≤ p̂} ⊆ Ω. (5.14)

Let k = sup{‖f(q)‖|q ∈ V̂ }. For every ρ1, ρ2 define

ω(ρ1, ρ2)
def
= sup{‖f(q)−f(q′)‖ : ‖q−q′‖ ≤ ρ1, ‖q−q∗‖ ≤ ρ2, ‖q′−q∗‖ ≤ ρ2}. (5.15)

Define ρ such that ρ > 0, (2 + k)ρ ≤ ρ̂, and ω((1 + k)ρ, ρ̂) ≤ δ. Finally, let

V
def
= {q ∈ Rn : ‖q − q∗‖ ≤ ρ} (5.16)

and

W = V × [−ρ, ρ]. (5.17)



71

Now to the proof.

Proof:

1) Let M ∈ Λ(q, t) and (q, t) be in a sufficiently small ε-ball of (q∗, 0) (i.e., (q, t) ∈

(q∗ +Bε1 , Bε2) with Bε denoting a ball of ε radius and ε1 and ε2 sufficiently small).

Let f ∈ f . Then q∗ +M(q − q∗, t) =

q∗ + Lf (q∗)(q − q∗, t) + En+1,n
(q−q∗,t),p−q−tf(q∗)

(q − q∗, t)

= q∗ + q − q∗ + tf(q∗) + p− q − tf(q∗) = p.

So Λ((q − q∗), t) · (q − q∗) ⊆ Φf ∀ f ∈ f .

2) We must show that d(Λ, Lf (q∗)) < δ, where d(·, ·) is the Hausdorff set distance

function defined by

d(A,B) = max
(

max
b∈B

min
a∈A

d(a, b),max
a∈A

min
b∈B

d(a, b)
)
. (5.18)

with A and B sets and d(a, b) is the Euclidian distance function. (Note that this

is not the standard notion of the distance of from a point to a set. In this case,

the distance between two sets will only be zero if they are the same. (That is, of

course, up to sets of measure 0.) I will abuse notation somewhat by allowing d(·, ·)

to denote the distance between sets, distance from a point to a set, and the distance

from a point to a point, and depend on context to make the correct interpretation

clear.) Let M ∈ Λ(q, t) and let ξ : [0, t] → Ω be an integral curve of f such that

ξ(0) = q and ξ(t) = p. Then,

sup ‖M − Lf (q∗)‖ = sup
f∈f

‖p− q − tf(q∗)‖
(‖q − q∗‖2 + t2)

1
2

. (5.19)

For all f ∈ f we know that

‖p− q − tf(q∗)‖ = ‖
∫ t

0
(f(ξ(s))− f(q∗))ds‖.
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Moreover, we know that

‖ξ̇(s)‖ ≤ max(sup{‖fi(q)‖ : q ∈ V̂ } : i ∈ I) = k

so

‖f(ξ(s)− f(q∗)‖ ≤ ω((1 + k)ρ, ρ̂)

where ω is defined in Equation (5.15). This then implies

‖p− q − tf(q∗)‖ ≤ |t|ω((1 + k)ρ, ρ̂) ∀f ∈ f

which means that

‖p− q − tf(q∗)‖ ≤ |t|δ ∀f ∈ f .

Thus, we can show Equation (5.19) must be small for t and ‖q − q∗‖ sufficiently

small, showing that d(Λ, Lf (q∗)) < δ.

3) I need to show that Λ : W → Lin(Rn+1,Rn) (where Lin(U, V ) is the set of

all linear maps from a vector space U to a vector space V and W is defined in

Equation (5.17)) is a regular set-valued map. This reduces to showing that the

restriction of Λ to a compact subset K is compact and then showing that Λ is a

limit, in the sense of inward graph convergence, of single-valued continuous maps.

First, let us show that Λ|K is compact. Choose a sequence of (qj , tj) such that

qj → q∗ and tj → t0 as j → ∞. We know that (q∗, t0) is in W because W is

compact. The (qj , tj) clearly define a corresponding set of pj for all f ∈ f through

the absolutely continuous map Φf . Moreover, observe that the limit p∗ of pj is in

the flow of f , Φf , that is, p ∈ Φf . Let Mq,t,p = {Lf (q∗)+En+1,n
(q−q∗,t),p−q−tf(q∗)

: f ∈ f}

and let M i = Mqi,ti,pi . Then we know that M j has a limit in Λ by the continuity

of M ∈ Λ (which is continuous because L and E are continuous). Therefore, Λ is

compact.

Now let us show that Λ is the limit of single-valued continuous maps. We know

that MMDA systems are almost everywhere differentiable. This implies that we can
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construct regularizations of f at all points of discontinuity, where the regularization

of the transition of f from fi to fj at q∗ is defined by

f ζij =
∫

Rn

φ(h)f(q + ζ)dh (5.20)

where φ(h) ≥ 0, is C∞,
∫

Rn φ(h) = 1, φ(h) = 0 for ‖h‖ > 0, and ζ > 0. This forms

a finite set of regularizations. These regularizations form the smooth single valued

maps which converge in the sense of inward graph convergence to Λ as ζ → 0. �

5.3.4 Proof of Theorem 5.10

To prove that the Lie bracket as described in Definition 5.1 is a GDQ of Ξ as

defined in Equation 5.10 I will utilize some of the additional tools found in [81]. In

particular, I will use a general sufficient condition for a set to be a GDQ of a map

(Theorem 5.13) to show that the set-valued Lie bracket is a GDQ of Ξ. However,

before I can state these theorems, I will need a few more definitions. A cone in a

real linear space X is a nonempty subset C ⊂ X such that r ·c ∈ C whenever c ∈ C,

r ∈ R, and r ≥ 0. Changing notation slightly from previous sections, I will refer to

the flow of f starting from q∗ from time a to time b as Φf
a,b. Use Traj(f) to refer

to all trajectories of f , and use Trajc(f) to refer to all ξ ∈ Traj(f) whose domain

is a compact interval. Let C(1) be the set of all cones in R and C(2) be the set of all

cones in R2 that are products C+ × C−, where C+ ∈ C(1) and C− ∈ C(1). Lastly,

denote by ξ∗(t) a trajectory of f at time t. I will additionally need the notion of

a variational generator to state Theorem 5.13. If ξ : [a, b] → Rn is a continuous

curve, and α > 0, define T n(ξ, α)
def
= {(q, t) : q ∈ Rn, a ≤ t ≤ b, ‖q − ξ(t)‖ ≤ α}.

Definition 5.5. Let f be a map from Rn × R to Rn. Let a, b ∈ R, a ≤ b, and

ξ be a continuous map from [a, b] to Rn. A variational generator for f about ξ

is a measurable set-valued map Λ : [a, b] → Rm×n with compact convex nonempty

values such that there exist kΛ, α,k having the following three properties:

1. kΛ : [a, b] → [0,+∞] is integrable and sup{‖L‖ : L ∈ Λ(t)} ≤ kΛ(t).



74

2. α > 0 and T n(ξ, α) ⊆ So(f). (Where So(f) is the source of f .)

3. k = {kα}0≤α≤α is a family of Lebesgue-integrable functions:

kα : [a, b] → [0,+∞], for 0 ≤ α ≤ α,

such that

lim
α→0

∫ b

a
kα(t)dt = 0 (5.21)

and

sup{inf{‖∆f
ξ (q, t, L)‖ : L ∈ Λ(t)} : ‖q − ξ(t)‖ ≤ α} ≤ αkα(t) (5.22)

for all t ∈ [a, b] and all α ∈ (0, α], where

∆f
ξ (q, t, L)

def
= f(q, t)− f(ξ(t), t)− L · (q − ξ(t)). (5.23)

Now I would like to state a special case of the general sufficient condition in [81]

for a set to be a GDQ of a map f .

Theorem 5.13 ([81]). Assume a, b ∈ R, a ≤ b, f is locally integrally continuous2

, and Λ is a variational generator for f along ξ. Then the set Mb,a(Λ) is a GDQ of

the map Φf at (ξ(a), ξ(b)) in the direction of Rn, where Mt,s(Λ) is the set defined

by

Mt,s(Λ)
def
= {ML(t, s) : L is a measurable selection of Λ}

and ML(t, s) satisfies ML(t, s) = IRn +
∫ t
s L(r) ·ML(r, s)dr where IRn is the identity

map on Rn.

Now I will proceed to prove Theorem 5.10.
2This property is basically that f is measurable, integrable, and bounded by continuous inte-

grable maps. See [81] for details. For our purposes this property will be automatically satisfied

because the solutions to a differential inclusion satisfy a version of Gronwall’s Lemma, resulting

locally in a linear growth rate of the solution.
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Proof:

I will use Theorem 5.13 to show that the set-valued Lie bracket is indeed a GDQ of

the map Ξ. Regarding the integral continuity of Theorem 5.13, I will not prove that

the Ξ is locally integrally continuous here. It is a simple consequence of the fact

that each f is almost everywhere analytic. The rest of this proof will be dedicated

to showing that the set-valued Lie Bracket is a variational generator of Ξ.

Assume that we have an MMDA system as in Definition 3.2. If q∗ is a point where

the system is analytic (i.e., the switching signal σ is constant in a neighborhood of

q∗), then the Lie bracket is single valued, is a GDQ by Theorem 5.5, and we can

apply the classical Chow’s theorem to conclude the proof. Therefore, the only case

of interest to us is when q∗ is a point of discontinuity of σ. At such a point we know

that

q̇ ∈ fu1 + gu2 (5.24)

where f = co{fi} and g = co{gj} Let ρ̂ and V̂ be as in Equation (5.14). Let K1

denote an upper bound of both‖fi‖ and ‖gj‖ on V̂ for all i, j. Such a bound exists

since V̂ is compact and fi and gi are analytic. Let Diff(h) denote all the points q

such that a map h is differentiable. Moreover, for maps h1 and h2

γ(ρ) = sup
q∈{q | ‖q−q∗‖<ρ}

d([h1, h2](q), [h1, h2](q∗)) (5.25)

such that q ∈ Diffh1 ∩ Diff(h2). The function γ(ρ) will play the role of the

function kΛ and ρ will play the role of α in Definition 5.5. As before, let f ζij and

gζkl be the regularizations at q∗ of the transition of f from fi to fj and of g from gk

to gl, respectively. We are guaranteed such regularizations exist locally for MMDA

systems because they are piecewise analytic and V̂ is compact. Then let f ζ and gζ

be the sets of all such regularizations of f and g, respectively.

Let K2 be an upper bound on both ‖Dfi‖ and ‖Dgj‖. Again, such an upper

bound exists for ‖Dfi‖ ‖Dgj‖ because fi and gj are analytic for all i, j and V̂ is
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bounded. Let K = max{K1,K2}. Lastly, let Qw denote the linear map

Qw : Rn × R −→ Rn

(v, r) −→ v + rw
(5.26)

and if W is a set of vectors in Rn, define QW by

QW = {Qw|w ∈W}.

Now I will proceed to show that Q[f ,g] is a variational generator for the map Ξ. We

know from [75] that for the smooth maps f ζij and gζkl (defined in Equation (5.20))

∥∥∥ψfζ
ij ,g

ζ
kl(q, t, s)− q −

∫ s
0

∫ t
0

(
[f ζij , g

ζ
kl](Φ

(τ−t)fζ
ij ◦ Φσgζ

kl ◦ Φtfζ
ij (q))

)
dτdσ

∥∥∥
≤ 2K3|s|2|t|e|s|K(1 +K|t|e|t|K).

where ψ is as defined in Equation (5.10). For any given p we are trying to estimate

the distance

∆(p, ζ)
def
= d([f ζ ,gζ ](p), [f ,g](q∗)) (5.27)

where d(·, ·) is the distance function defined in Equation (5.18). We will do so by

bounding the total difference between the set of the regularized vector field’s Lie

brackets and the set-valued Lie bracket defined at q∗. Rewrite [f ζij , g
ζ
kl](p) as

Dgζkl(p)f
ζ
ij−Df

ζ
ijg

ζ
kl =

∫
Rn

φ(h)Dgkl(p+ζh)f ζij(p)dh−
∫

Rn

φ(h)Dfij(p+ζh)gζkl(p)dh

where φ(h) and h are defined in Equation (5.20). Note that D makes sense as an

operator here because we are only in a neighborhood of q∗, we are only considering

points in this neighborhood that are also in Diff(f) ∩ Diff(g), and fij and gkl

are almost everywhere analytic and are therefore Lesbesgue integrable. Rewrite the

above equation as

Dgζkl(p)f
ζ
ij −Df ζijg

ζ
kl = I1(p) + I2(p) (5.28)
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where
I1(p) =

∫
Rn φ(h)ω(p+ ζh)dh

ω(z) = Dgkl(z)fij(z)−Dfij(z)gkl(z)

I2(p) =
∫

Rn φ(h)Dgkl(p+ ζh)
(
f ζij(p)− fij(p+ ζh)

)
−

∫
Rn φ(h)Dfij(p+ ζh)

(
gζkl(p)− gkl(p+ ζh)

)
.

This implies that

d (I1(p), [fij , gkl](q∗)) ≤ γ (‖p− q∗‖+ ζ) ∀i, j, k, l.

(We know this from Equation 5.25 and the fact that I1(p) is the average of [fij , gkl](z)

for f(z) and g(z) differentiable with ‖z − q∗‖ ≤ γ (‖p− q∗‖+ ζ).) This in turn

implies that

d (I1(p), [f, g](q∗)) ≤ γ (‖p− q∗‖+ ζ) . (5.29)

Moreover, we know that ‖f ζij(p) − fij(p)‖ ≤ Kζ. This along with the Cauchy

Schwartz inequality implies that ‖f ζ(p)− f(p)‖ ≤ Kζ. Therefore,

‖f ζ(p)− f(p+ ζh)‖ ≤ 2Kζ

which implies

‖I2(p)‖ ≤ 4K2ζ. (5.30)

Equations (5.29) and (5.30) imply that we have the following estimate of ∆ (where

∆ is defined in Equation (5.27):

∆(p, ζ) ≤ γ (‖p− q∗‖+ ζ) + 4K2ζ.

Let p = Φ(τ−t)fζ ◦ Φσgζ ◦ Φtfζ
(q). This implies that

‖p− q‖ ≤ K(2|t|+ |s|)
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which implies by the Cauchy-Schwartz inequality

‖p− q∗‖ ≤ K(2|t|+ |s|) + ‖q − q∗‖.

Finally, we have

d
(
[f ζij , g

ζ
kl](p), [f ,g](q∗)

)
≤ γ (K(2|t|+ |s|) + ‖q − q∗‖+ ζ) .

This implies that

d
(
[f ζ ,gζ ](p), [f ,g](q∗)

)
≤ γ (K(2|t|+ |s|) + ‖q − q∗‖+ ζ) .

For s > 0 and t > 0 (actually, only st > 0 is necessary), we have

d
(

1
st

(
ψf

ζ
ij ,g

ζ
kl(q, t, s)− q

)
, [f ,g](q∗)

)
≤

2K3|s|e|s|K(1 +K|t|e|t|K) + γ (K(2|t|+ |s|) + ‖q − q∗‖+ ζ) + 4K2ζ.

Let ζ → 0 and find

d
(

1
st

(
ψfij ,gkl(q, t, s)− q

)
, [f ,g](q∗)

)
≤

2K3|s|e|s|K(1 +K|t|e|t|K) + γ (K(2|t|+ |s|) + ‖q − q∗‖) for all i, j, k, l.

Define

K(r, q) = 2K3rerK(1 + rKerK) + γ (3rK + ‖q − q∗‖) .

The family of functions K(r, q) satisfies the requirements of k in Definition 5.5.

Therefore, we have

d

(
1
st

(
ψfij ,gkl(q, t, s)− q

)
, [f ,g](q∗)

)
≤ K(max(|s|, |t|), q) for all i, j, k, l. (5.31)

Using Ξ from Equation 5.10, we see that Equation 5.31 implies:

d

(
1
ε
(Ξf ,g(q, ε)− q), [f ,g](q∗)

)
≤ K(

√
ε, q)
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for ε ≥ 0 and

d

(
1
−ε

(Ξf ,g(q, ε)− q), [f ,−g](q∗)
)
≤ K(

√
−ε, q)

for ε ≤ 0. Therefore, since [f ,g](q∗) = −[f ,−g] we have

d

(
1
|ε|

(Ξf ,g(q, ε)− q), [f ,−g](q∗)
)
≤ K(

√
|ε|, q)

for all ε sufficiently small. Therefore, for v ∈ [f ,g](q∗) we have

inf
v∈[f ,g](q∗)

‖Ξf ,g(q, ε)− q − εv‖ = O(ε+ ‖q − q∗‖).

So, using Q as defined in Equation 5.26, we get that

inf
v∈[f ,g](q∗)

‖Ξf ,g(q, ε)− Ξf ,g(q∗, 0)−Qv(q − q∗, ε)‖ = O(ε+ ‖q − q∗‖)

implying

inf
M∈Q[f ,g]

‖Ξf ,g(q, ε)− Ξf ,g(q∗, 0)−M(q − q∗, ε)‖ = O(ε+ ‖q − q∗‖). (5.32)

Equation 5.32 implies that as ε→ 0 and as q → q∗,

dist(Ξf ,g(q, ε)− Ξf ,g(q∗, 0),Q[f ,g]) → 0.

Thus, Q[f ,g] is a variational generator for Ξ and is, by Theorem 5.13, a GDQ of Ξ. �

5.4 Summary

Understanding the issue of controllability is often a first step toward understanding

how to control a class of nonlinear systems. This chapter studied multiple model

systems where the individual plants are driftless affine but switching can change

plants over time. We will use this to examine controllability of the Rocky 7 Mars
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rover in Chapter 7.

Author Assumptions Theorem Conditions

Murphey and Burdick
MMDA switching across

regular boundaries
∆ = Rn

Sussmann and Rampazzo Lipschitz vector fields ∆ = Rn

Murphey and Burdick MMDA systems ∆ = Rn

Table 5.1: Different Chow’s Theorems with the same condition

Lastly we comment on how generic the condition for controllability is. Table 5.1

is a table of conditions for small time local controllability. It gives the authors,

the assumption, and the conditions for controllability. Perhaps surprisingly, the

conditions are all the same (as long as ∆ and ∆ are interpreted properly in each

case).
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Chapter 6

Variation 1: Distributed Manipulation

This was our paradox: no course of action could be determined by a

rule, because every course of action can be made out to accord with the

rule.

Ludwig Wittgenstein Philosophical Investigations

Distributed manipulators typically consist of a large number of similar or identical

actuators combined together with a control strategy to create net movement of an

object or objects. The goal of most distributed manipulation systems is to allow

precise positioning of planar objects from all possible starting configurations. In

effect, a distributed manipulator is a “smart conveyor”. They can be used for sepa-

rating parts and precisely positioning them for the purpose of assembly operations.

Distributed manipulation systems offer potential for micro-assembly using MEMS

technology. Distributed manipulator actuation methods ranges from air jets and

wheels on the macroscale, to microelectromechanical systems (MEMS) and flexible

scilia at the microscale. This chapter concerns itself with a broad class of dis-

tributed manipulation problems which involve rolling and sliding contacts between

the moving object and actuator surfaces. In such cases friction forces and inter-

mittent contact play an important role in the overall system dynamics. Hence, the

analysis here is not necessarily intended for applications such as air jets, for exam-
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ple. However, this will generally apply when manipulation is generated by moving

mechanical contacts. I will use the PDM from Chapter 3 to produce equations of

motion which are both first order and implicitly include contact forces of constraint.

I will only consider distributed manipulation systems that consist of (roughly

planar) arrays of actuators that can re-position an object by the movements of its

array elements (see Figure 6.1). In the future, arrays of this type should be useful

for industrial assembly operations where small parts must be robustly transported

and precisely positioned. MEMS technology offers attractive means to important

small distributed manipulation devices for precisely positioning small parts. To see

the relevance of the issues I am going to consider, one need only log onto the [58]

Web site at http://www.mems-exchange.org/ and look at the industrial view of the

challenges facing MEMS in the next decade, there are currently three main problems

making it difficult for MEMS to become a more main-streamed technology. They

are (in order of relevance to this chapter):

1. Modeling MEMS arrays in a way that captures the essential physics while

remaining tractable.

2. Simulation techniques for massively parallel systems.

3. Packaging MEMS technology for purposes of shipment and assembly.

Although this chapter does not address the third issue, it addresses some aspects of

the first two problems. This chapter considers the design of manipulation control

strategies for such distributed systems. I will focus on autonomous controllers that

stabilize an object to a precise configuration in SE(2) on the array.

Methods to design distributed manipulation control systems have been proposed

in several works, including [12, 26, 30]. A common approach is based on the notion

of programmable vector fields [9, 22]. In this methodology, one makes the possi-

bly unrealistic assumption that the array’s control capability can be idealized as a

continuous distribution of forces across the array surface. In this abstraction, the

manipulated object moves under the influence of these forces. The control design

problem reduces to the selection of a continuous force field distribution that will
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Figure 6.1: Parts on a distributed manipulator

locally transport the object to a prescribed position, and then stabilize it at that

configuration. To implement the control strategy on the real array, one must adapt

the continuous vector field control to the real (and discrete) actuator array. For a

good description of this approach, see [12].

The programmable vector field approach is experimentally known to work in

some MEMS-fabricated actuator arrays, where the array elements are “small” and

“close” together relative to the size of the object being manipulated [9, 55]. It is

additionally well suited to distributed air jets, because the aerodynamics effectively

“smooth out” the resulting forces on the object. However, in cases where only a

small number of actuators are in contact with the object being manipulated (i.e.,

the continuous actuation approximation is poor) or the coefficient of friction µ is

very high, the continuous approximation has been shown experimentally not to work

as well (see Luntz et al. [54]). In these cases, the continuous approximation does

not adequately incorporate the physics of the actual array and the object/array

interface.

This chapter has three main contributions. First I will show that when one takes

into account the discrete nature of real actuator arrays and a fairly general model

of the actuator-to-object contact mechanics using the PDM, the control systems

designed by the continuous approximation method will be unstable when deployed

on the actual array. This is not unexpected, as the programmable vector field
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approach is based on the restrictive assumption that the continuous vector field

abstraction is a good approximation to the arrays’ actual physical characteristics.

This instability result has been previously shown for specific array geometries in

Luntz et al. [54]. This thesis generalizes these findings. Section 6.3 shows that

such a rotational instability is generic to distributed manipulation when one uses

a continuous approximation, and that moreover this instability can be ascribed to

the changing contact states between the object and the array. Luntz et al. [49]

discussed some of the issues with friction, but here a set-valued analysis approach

is used to produce tractable problems while still including effects from the changing

contact states. Sections 6.3.2 and 6.3.3 additionally show that when one introduces

feedback, then these systems are in principle stabilizable. Section 6.3.4 shows that

if one incorporates the contact states, one can design a local control law based on

control Lyapunov methods. Section 6.4 considers the case of “full actuation”- when

all the actuators can be steered and driven. It gives an extremely simple, scale-able

algorithm that is provably globally exponentially stabilizing, thus showing that it is

highly desirable to have a fully actuated distributed manipulator. Section 6.5 illus-

trates how the programmable force field method can be combined with a feedback

method to produce globally stabilizing controllers while only having feedback in a

neighborhood of the origin. This control system is globally exponentially conver-

gent. The global exponential convergence result depends on estimating the changing

contact state, so work by [4, 36] is extended appropriately. These results are illus-

trated both in simulations and on an experimental test-bed in Section 6.6. Finally,

this chapter ends by extending work by [4, 36, 38] in order to provide a way of

improving the performance of a distributed manipulator.

6.1 Review of the Programmable Force Fields Approach

The use of programmable vector fields for distributed manipulator control is based

on a continuous “force field” abstraction which assumes that at each point on the

manipulation surface one can specify the manipulation force at that point. The
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Figure 6.2: Programmable vector field

dynamics of the moving object are obtained by integrating the continuous force

field to get a total force on the part. To use the controls on an actual array, where

the manipulation forces will be generated at discrete points, one must adapt the

continuous approximation to the geometry of a given discrete array. For a good

reference, see [12].

The most basic control law comes from the idea of a “squeeze” field. Squeeze

fields are in general of the form F = {−αx,−βy}, where α and β are coefficients

to be chosen by the control designer. These open loop control laws can stabilize an

object to one of several stable equilibria depending on the shape and distribution of

mass of the object. A great deal of work has been done to extend this work to more

general field capable of stabilizing more general classes of object. See, for instance,

Böhringer et al. [11, 12, 13] and Kavraki and Sudsang [79].

The distributed forces can be integrated over the body’s surface to obtain the

object’s dynamical response. This process is as follows: assume the part O can be

described by a support characteristic function ω(x, y) where ω(x, y) is 1 everywhere

on the object surface and 0 otherwise. Moreover, let the part be subject to a force

field f(x, y) : R2 → R2. Lastly, make the reference frame of O be at the object’s

center of mass, i.e., ∫
R2

ω(p)dp = 0

When the object lies at configuration q = (x, y, θ) the net force and torque on the
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object are

F =
∫

R2

ω(p)f(Aθp+ t)dp (6.1)

M =
∫

R2

ω(p)Aθp× f(Aθp+ t)dp (6.2)

with t = (x, y)T and A the 2x2 rotation matrix of angle θ. The condition for equi-

librium is F = M = 0. Moreover, in the case of many choices programmable vector

fields the equilibrium is stable. However, when the actuators are far apart or the

coefficient of friction µ is very high, the continuous approximation is known not to

work as well, because the objects being moved have dramatically different dynamics

depending on the contact state. To use these controls on an actual array, where the

manipulation forces will be generated at discrete points, one must adapt the contin-

uous approximation to the given discrete geometry, which will entail including the

contact mechanics into the modeling.

Remark 6.1

It should be noted that although the inputs for the programmable force field are

forces and the inputs considered later are vector field inputs (velocities), these

two are in reality often the same set of inputs because the forces are assumed to

be generated by the friction caused by the contact slipping at a given velocity.

That is, F = −µNv where µ is the coefficient of friction, N is the normal force,

and v is the velocity. Therefore, under these assumptions, the input classes are

typically equivalent. ♦

Remark 6.2

Here I should comment on the relationship between the philosophies of the PDM

approach and the programmable force field approach. The programmable force

field method effectively assumes that there are an infinite number of actuators,

that all of the actuators are slipping all the time, and that the physics of con-
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tact between the array surface and the object is not important. Hence, the

programmable force field method is more appropriate to the analysis and design

of gross motions where accuracy is less important and simplicity of analysis and

the design problem is appealing. The PDM assumes that there are generally

a finite number of discrete contact points, and incorporates Coulomb friction

contact physics into the model. However, the PDM can only be well justified

for quasi-static systems where the objects move slowly enough that the contact

reaction forces dominate the moments of inertia. This will be true in the case

of distributed manipulation, where the local behavior of object motion around

an equilibrium point is studied. Therefore, the PDM is more appropriate to the

analysis and control of local, quasi-static motions, near the equilibrium. These

contrasting features inspire the merging of these two techniques in Section 6.5. ♦

6.2 Modeling the Equilibrium Point of a Distributed

Manipulation System

Wheel Axes
of Rotation

Direction of Wheel Motion

Figure 6.3: Four node array centered at the origin

Here the PDM technique are applied to a specific example. Consider the actuator
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array shown in Figure 6.3. It has only four wheels whose rims are oriented towards

the origin. Actuation is generated by the contact between the rim and the body.

The wheel is assumed to make point contact with the body at all times and it is

assumed that the wheels speed ui is directly controlled. I will use the convention

that the ith wheel has a positive input ui when the top of the wheel is turning

towards the the right half plane. For this model it will be shown that if one uses

the mechanical model obtained by the PDM, one can get rotational instability in

part placement when the passive programmable vector field approach, as described

in [10], is applied to this system. Simulations are included in Section 6.2.2. The

next section generalizes this result to a broader class of actuator arrays.

The difference between the stability prediction of the continuous approximation

and the more exact model rests largely on the fact that the continuous approximation

does not take any contact mechanics into account, nor does it account for the fact

that most real arrays consist of a finite number of discrete actuators. Of course,

as previously remarked, the PDM can only be well justified for quasistatic systems

where the objects move slowly enough that the contact reaction forces dominate the

moments of inertia. This will be true in the case of distributed manipulation, where

the local behavior of object motion around an equilibrium point is studied.

Generally, there is no reason to believe that friction at the contact point will be

uniform in all directions of the contact plane. Rather, allow a smooth distribution

of coefficient of friction, like that seen in Figure 6.4 (see [33, 34] for a discussion

of such friction models). While some materials do have friction of this type, such

RSµ µ

Figure 6.4: A wheel with the vector-dependent friction
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anisotropic friction models are more generally useful as a means to approximately

model compliance effects and wheel tread effects. For instance, if the wheel shown

above was an extremely thin saw blade, then one would expect µR (the friction

coefficient along the “rim” direction) to be less than µS (the friction coefficient

along the “side” direction). However, the treads on a tank ensure that µR is greater

than µS . Note that the minimum of the dissipation function will only be nonunique

when the ellipse reduces to a circle (i.e., µS = µR). Note also that in this case,

the same indeterminacy shows up in the Lagrangian mechanics analysis. I should

also point out that much of the analysis in this chapter is valid for more general

anisotropic friction models in that I primarily utilize the non-uniformity of the

frictional constraints.

6.2.1 Equations of Motion

Let us now apply the power dissipation method to this example in Figure 6.3. Let

Ψ : Q → TQ be a velocity field on Q = R2. Assume that the equilibrium point of

Ψ(x, y) lies at the intersection point of the lines underlying the wheel rims.

With four wheel actuators, there is a potential total of 8 kinematic constraints

on the objects motion. However, since the object moves in the plane, at most three

of these constraints can be satisfied at any instant–the other constraints are violated

via contact slipping. This gives us

8

3

 = 56 possible contact states. Using the

PDM as the modeling methodology, each has its own first order governing equations.

Additionally assume that µS and µR are uniform across R2 and that |µS − µR| is

sufficiently small that the center of mass completely determines which constraints are

satisfied. That is, assume that the constraints are determined by first computing

which actuator is the closest to the center of mass, which actuator is the second

closest to the center of mass, and using the constraints from these two actuators to

determine the first order governing equations. Given this assumption, only 8 of the

56 contact states ever satisfy the minimum of the power dissipation function on a

set of full measure, therefore leaving us with a total of 8 possible contact states.



90

Assume the ui are determined by projecting Ψ onto the direction of actuation.

Let

gi =

 R(θi)

 xi

yi


0 1


be the homogeneous representation of the element of SE(2) going from the origin

to the ith actuator node location and orientation, and R(·) is an element of SO(2).

Then the constraints associated with each actuator are Ωi(q)q̇ = 01, where

Ωi(q) =



AdTg−1
i


1

0

0



T

ui

AdTg−1
i


0

1

0



T

0


(6.3)

Ad(·) is the adjoint transformation which transforms velocities from one coordinate

frame to another (see [68] for details). Note that Ωi are 2×4 matrices where the top

row represents the rolling constraint and the bottom row is the side ways constraint.

To apply the PDM, first note that the minimum only occurs when three of the

constraints are satisfied, and that moreover, the constraints satisfied are precisely

those which would otherwise dissipate the most energy if they were violated. The

contact states that dissipate the least amount of energy are those associated with

the potential constraints having the largest three αi = Niµi. Thus, the constraints

whose violation will potentially dissipate the most energy are the ones that are

satisfied. Based on these observations, if the center of mass determines the nor-

mal forces (based on assumptions about surface uniformity, etc.), and if µ(x, y) is

uniform, then the object’s motion satisfies whichever constraints are closest to its

center of mass. That is, the particular quadrant in which the center of mass lies

determines the first two actively satisfied constraints. The third actively satisfied
1Note that this is not the same Ω as in Chapter 5. It is a set of one forms on TQ.
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constraint is one of the two constraints coming from the second closest actuator and

is determined by the friction model, i.e., µS > µR or µS < µR. Let i be the index of

the closet actuator and j be the index of the next closest actuator. When µS > µR,

the system equations are found by solving for the annihilator of the Ωi(q) and the

side ways constraint from Ωj(q). Assuming unit magnitude input in each actuator,

solving each set of constraints, and doing some algebraic simplification yields the

following governing equations:


ẋ

ẏ

θ̇

 =


−
√

2
2 sgn(x)

(
sgn(y2 − x2) + 1)

)
√

2
2 sgn(y)

(
sgn(y2 − x2)− 1)

)
−
√

2
2 sgn(xy3 − x3y)

 (6.4)

where sgn(x) is the sign function found in Example 2.1. If, however, µS < µR,

the system equations are found by solving for the annihilator of the Ωi(q) and the

rolling constraint from Ωj(q). In this case, the system equations are


ẋ

ẏ

θ̇

 =


√

2
2 sgn(x)

(
sgn(y2 − x2)− 1)

)
−
√

2
2 sgn(y)

(
sgn(y2 − x2) + 1)

)
√

2
2 sgn(xy3 − x3y)

 (6.5)

6.2.2 Simulations

To illustrate these concepts, this section provides the results of simulations that

model a planar distributed manipulation system with actuators located at (i, j) for

i, j ∈ {−1, 1}. Actuation is provided by unit radius rotating wheels (which rotate

along axes orthogonal to the wheel rims depicted in Figure 6.4) with constant friction

coefficient µ and point contact between the wheel rims and the manipulated object

(a box in this case). The simulations were implemented in Mathematica, using its

NDSolve integrator, modified to allow for differential inclusions. Some extension

is necessary in order to avoid the numerical difficulties at switching boundaries

(y = x, y = −x, x = 0, y = 0 for these simulations). However, this is only a concern

for switching boundaries which are stable or attracting, because if the trajectory
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intersects the boundary transversely, standard numerical schemes still work. For

these simulations, hysteresis is introduced to simulate a discrete system as a hy-

brid automaton. This produces numerically stable simulations. I should point out,

however, that different choices of hysteresis constant h lead to slightly different so-

lutions. The main difficulty is that solutions of differential inclusions are necessarily

nonunique, therefore implying that any simulation represents only one solution φ to

the differential inclusion φ̇ ∈ F .

1 2 3 4 5

1

2

3

4

5

Y

X

θ

t

Figure 6.5: X, Y , and θ trajectory of non-feedback system

Figure 6.5 shows the simulation output. Notice that the origin’s position is

translationally stable, as the switching system equations always satisfy the Lyapunov

equation ∂V
∂q q̇ < 0 for q = (x, y) and V = x2 + y2. The simulations are done with a

slight hysteresis as the dynamics approach the diagonal y = x. Notice that with an

initial condition of θ0 = 0 (the desired θ), θ is unstable and increases linearly until

the switching begins and then hovers around a new equilibrium (not the desired

θ0 = 0). That is, the origin is asymptotically stable but the orientation is not.

6.2.3 More General Equations of Motion

This section applies the power dissipation method to the example of an array of

actuated wheels in the plane where the location of the ith actuator is located at

(xi, yi), has a fixed orientation with respect to the origin of θi, and the velocity

input at that actuator is ui. I.e., the ith wheel is spinning at speed ui. I will show
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later in Section 6.3.3 that the instability seen in the previous section arises in the

general case as well. The system equations are found by solving for the annihilator

of the constraint Ω(q). If µS < µR, and if the two dominating actuators are indexed

by i and j, then the first order governing equations derived from the PDM model

are


ẋ

ẏ

θ̇

 =


ui[sj((xi−xj)ci+yisi)+cicjyj ]−ujyi

(xj−xi)sj+(yi−yj)cj
ujxi−ui[cicjxi+si(xjsj+(yi−yj)cj)]

(xj−xi)sj+(yi−yj)cj
uj−ui cos(θi−θj)

(xi−xj)sj+(yj−yi)cj

 (6.6)

where ci = cos(θi), si = sin(θi), etc. It should be noted that here the index nota-

tion should be thought of as mapping (i, j) pairs to equations of motion in some

neighborhood (not necessarily small) around the ith and jth actuator. The transi-

tion between the equations of motion determined by actuators i and j to equations

of motion determined by actuators k and l will in general be determined by the

location of the center of mass. This in turn leads to the state space being divided

up by transition boundaries between different sets of equations of motion. To write

this as an MMDA system, rewrite the above system as


ẋ

ẏ

θ̇

 = f1u1 + f2u2 (6.7)

where

f1 ∈




−yi

(xj−xi)sj+(yi−yj)cj

−xi
(xj−xi)sj+(yi−yj)cj

1
(xi−xj)sj+(yj−yi)cj




f2 ∈




sj((xi−xj)ci+yisi)+cicjyj

(xj−xi)sj+(yi−yj)cj
−cicjxi−si(xjsj−(yi−yj)cj)

(xj−xi)sj+(yi−yj)cj
− cos(θi−θj)

(xi−xj)sj+(yj−yi)cj




I do not consider the case of µS > µR for reasons I will discuss in Section 6.3.2.



94

6.3 Local Stability

This section covers the stability and stabilizability of both the specific example con-

sidered in Section 6.2.2 and the more general case from Section 6.2.3. In particular,

we will see that we can only guarantee Lyapunov stability, not asymptotic stability,

for the programmable vector field approach. This will match the intuition behind

the simulation in Figure 6.5 that the θ variable is not stabilized by the programmable

vector field. It is then shown that if one uses feedback, generalized versions of the

example in Section 6.2 are indeed stabilizable to the origin even when the actuators

cannot be re-oriented.

6.3.1 XY Stability and θ Instability

In this section it is shown, for the equations of motion in Equation (6.4) and (6.5),

that the translational component (x, y) of the object’s location in SE(2) is asymp-

totically stable and that the orientation θ is not asymptotically stable in Equa-

tions (6.4) and (6.5). First note that the above system is a differential inclusion

of the type found in Chapter 2. To check the (x, y) translational stability of the

object’s motion, choose V (x, y) = x2 + y2. Then

V̇ = co{V̇∗, V̇ ∗} =
∂V

∂x
ẋ+

∂V

∂y
ẏ

= x(−sgn(x)(sgn(y2 − x2) + 1)) + y(sgn(y)(sgn(y2 − x2)− 1))

= (y sgn(y)− x sgn(x))sgn(y2 − x2)− (x sgn(x) + y sgn(y))

< 0 ∀ x, y

We have to check the places where the derivative of V fails to exist, i.e. where

xy = 0. First we check the case when x = 0. Taking the upper derivative as in

Equation (2.11), we get

V̇ = −ysgn(y)(1 + (sgn(y))2)
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and we know that

1 < 1 + (sgn(y))2

and that for y 6= 0

−ysgn(y) = −|y|

so

V̇ ∗ = sup
ξ∈F

∇V ξ < 0

The case for y = 0 is computed similarly.

In the case of µS < µR (Equation (6.5), we also get V̇ ∗ < 0. Moreover, we

know from Equations (6.4) and (6.5) that the rotational governing equations do not

depend in any way on θ. The angle θ is therefore dependent on the initial conditions

only, and is therefore not asymptotically stable. This matches the results in the

simulation in Figure 6.5. What we have shown is the following.

Lemma 6.1. Equation (6.4) and (6.5) are asymptotically stable to the origin in

(x, y) and are not asymptotically stable in θ.

6.3.2 Feedback for Distributed System

Note that the forms of Equations 6.4 and 6.5 are deceptively simple, as these equa-

tions assume that all of the actuator inputs assume a constant value. When the

inputs are variable, the system equations will have the form

ẋ = gσ1u1 + gσ2u2 + gσ3u3 + gσ4u4. (6.8)

Equation (6.8) is an MMDA system as in Definition 3.2. The gi therefore depend

discontinuously on the state (x, y). In the case of µS > µR, the system equations

are simply of the form ẋ = giui with i corresponding to the index of the quadrant

in which the body center of mass currently resides. Therefore the system is not

even locally controllable (although it may be globally controllable) meaning that we

cannot hope for a simple control law. This has implications from the viewpoint of

implementation of a distributed manipulator, in that wheels that favor a no-sliding
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constraint along the wheel rim will produce systems easier to control than wheels

which are designed to prevent sideways slip. However, if µS < µR, we will see in

Section 6.3.3 that the system can be stabilized to (x, y, θ) = (0, 0, θd) where θd is

some desired orientation value. We will revisit this example to illustrate such a

control law in Section 6.3.4.

Remark 6.3

I should point out another interesting characteristic of the governing equations

for the model in Equations (6.4) and (6.5). This is because the wheels can only

produce translation parallel to the direction they are turning. It is possible to

stabilize to the origin while stabilizing the orientation, but it is not possible to

stabilize to points within an arbitrarily small neighborhood of the origin. In

fact, we can only hope to stabilize to points on the manifolds x = ±y. However,

this is acceptable, as the problem we are trying to solve is point stabilization

at the origin. Moreover, if one wants to move an object around, for a larger

array it is clear that these manifolds would form a connected graph G ⊂ R2.

It is unclear if a change in geometry would help stabilize to more points in a

neighborhood of the origin. ♦

6.3.3 More General 2-Dimensional Arrays

The stability results of the previous example are not an isolated phenomena, and are

generalized in this section. That is, the lack of stability does not necessarily arise

from the specific geometry of this example. In this generalization assume that all the

actuators are a finite distance apart and make point contact with the object being

manipulated. The following theorem indicates that the induced lack of stability of

the programmable vector field approach can arise in more general circumstances.

The proof of the theorem relies essentially upon the same sorts of calculations as

found in Section 6.2.

Theorem 6.2. Given an elliptic vector velocity field Ψ(x, y) : R2 → R4 (where R4 is
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the tangent bundle of R2), and a discrete planar array geometry indexed by i, j ∈ I

in some neighborhood of the origin, the first order governing equations given by the

PDM are asymptotically stable in (x, y) to the origin but not asymptotically stable

in θ. Moreover, if µS < µR, then such a system is exponentially stabilizable through

the use of feedback.

Proof:

To see that the system is not asymptotically stable in θ, it is sufficient to note that

Adg−1 in Equation (6.3) depends only on x and y, therefore leaving the θ dynamics

with no dependence on θ. This symmetry implies that the system equations are

invariant with respect to initial condition in θ; therefore θ is not stable. To see that

the system is stabilizable, assume that the governing equations are determined at

time t almost always by two constraints at the actuator i with coordinates (xi, yi)

and input speed ui, and one constraint at the actuator j with coordinates (xj , yj)

and input speed uj . Moreover assume that µS < µR, thereby ensuring a “rolling”

constraint is satisfied rather than a “side-slipping” constraint.

The theorem is proved by explicitly showing that the requirements of Theo-

rem 2.3 are satisfied. First choose the Lyapunov function to be V (q) = 1
2‖q‖.

Moreover, choose V0 = V1 = W = V (this choice merely takes advantage of the fact

that the governing equations are first order). Clearly V0 ≤ V ≤ V1. It must be

shown that V̇ ∗ ≤ −W , where V̇ ∗ was defined in Eq. (2.11). First we must compute

V̇ ∗.

Denote sin(·) by s(·) and cos(·) by c(·). Recall the governing equations from Eq.

(6.6).

q̇ =


−(uj yi)+ui (s(θj) (c(θi) (xi−xj)+s(θi) yi)+c(θi) c(θj) yj)

s(θj) (−xi+xj)+c(θj) (yi−yj)

uj xi−ui (c(θi) c(θj)xi+s(θi) (s(θj)xj+c(θj) (yi−yj)))
s(θj) (−xi+xj)+c(θj) (yi−yj)

−(c(θi−θj)ui)+uj

s(θj) (xi−xj)+c(θj) (−yi+yj)


Then, taking V (x, y, θ) = 1

2‖q‖ = 1
2(x2 + y2 + θ2) note that in a region where only
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one set of governing equations apply (i.e. V̇ ∗ = V̇ )

V̇ = xẋ+ yẏ + θθ̇

= uj (θ−y xi+x yi)
s(θj) (xi−xj)+c(θj) (−yi+yj)

+ ui (c(θj) (y s(θi) (yi−yj)−c(θi) (θ−y xi+x yj)))
s(θj) (xi−xj)+c(θj) (−yi+yj)

+ ui (s(θj) (x c(θi) (−xi+xj)−s(θi) (θ−y xj+x yi)))
s(θj) (xi−xj)+c(θj) (−yi+yj)

or

V̇ = uifi(x) + ujfj(x) (6.9)

Note that this is split into two coefficients of ui and uj , which in turn implies that

if one has full knowledge of the state, then one can always choose the inputs so as

to make V̇ ∗ = V̇ ≤ 0. Moreover, V̇ can be made to be always nonzero through a

proper choice of inputs. Due to the form of Eq.(6.9), inputs ui and uj can always

be chosen so that

V̇ ≤ −V.

We have to check on the boundary between two different contact states. On the

boundary

V̇ ∗ = sup{∂V
∂q

q̇i,
∂V

∂q
q̇j}

where
∂V

∂q
q̇i = ui1fi1 + ui2fi2

∂V

∂q
q̇j = uj1fj1 + uj2fj2

subject to the constraint that uj1 = ui2 . Substituting and comparing,

V̇ ∗ = sup{ui1fi1 + ui2fi2 , ui2fj1 + uj2fj2}

thus implying that despite the constraint both can be made arbitrarily negative,

thus ensuring that

V̇ ∗ ≤ −V.
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Hence, the system is locally exponentially stabilizable. Moreover, one can explicitly

write down a control law once one is given a Lyapunov function that is the desired

metric on SE(2) and whose vanishing point is the desired equilibrium. Again, taking

V (x, y, θ) = 1
2‖q‖ = 1

2(x2 + y2 + θ2), one can in every region that is not a boundary

solve the equation

V̇ =
∂V

∂q
q̇ = −k‖q‖2

for ui and uj . Then

ui =
unumj

udenj
(6.10)

where

unumj = uj (θ − y xi + x yi) + k
(
θ2 + x2 + y2

)
(s(θj) (xi − xj) + c(θj) (−yi + yj))

and

udenj = s(θj) (x c(θi) (xi − xj) + s(θi) (θ − y xj + x yi))

+ c(θj) (y s(θi) (−yi + yj) + c(θi) (θ − y xi + x yj))

where uj can be chosen arbitrarily. Suppose that the system state lies on a boundary

between a state where uj and uk are the two dominating inputs and a state where

uj and uk are the dominating actuators. Then one computes the control law on the

boundary and gets

uj =
unumj

udenj
(6.11)
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unumj = (−1 + δ) uk (θ − y xi + x yi) + k
(
θ2 + x2 + y2

)
(s(θj) (−xi + xj) + c(θj) (yi − yj))

+ δ ui (s(θj) (x c(θi) (xi − xj) + s(θi) (θ − y xj + x yi))

+ c(θj) (y s(θi) (−yi + yj) + c(θi) (θ − y xi + x yj)))

udenj = δ (θ − y xi + x yi) + (−1 + δ) s(θj) (x c(θi) (xi − xj) + s(θi) (θ − y xj + x yi))

+ (−1 + δ) c(θj) (y s(θi) (−yi + yj) + c(θi) (θ − y xi + x yj))

+ δ (θ − y xi + x yi) + (−1 + δ) s(θj) (x c(θi) (xi − xj) + s(θi) (θ − y xj + x yi))

+ (−1 + δ) c(θj) (y s(θi) (−yi + yj) + c(θi) (θ − y xi + x yj))

where ui and uk are set and δ ∈ [0, 1] parameterizes the differential inclusion. The

important point here is that one can choose a set of inputs that will satisfy the

Lyapunov theorem in Chapter 2. Therefore, the origin is exponentially stable. �

A possible difficulty with this result is that the stabilizing control switches dis-

cretely as the contact state switches, which suggests the need for a way of estimating

the contact state. However, it certainly may be possible to choose control laws such

that the resulting system will be stable without this estimation–the previous argu-

ments do not consider this. In fact, the control laws computed based on the ideas

in the preceding section perform quite well, suggesting that a more general proof is

possible. The µS < µR assumption only has an obvious physical interpretation for

wheel-like contacts, and I do not yet have a formulation for generic contacts. The

case µS > µR may be stabilizable, but not in as straight forward a fashion. This is

for largely the same reason that it may be globally controllable, but is not locally

controllable, as discussed in Section 6.3.2.

Remark 6.4 Weakly Stabilizable vs. Strongly Stabilizable

Notice that the control law computed in Equation (6.11) depends on the pa-

rameter δ. This implies that the on the boundaries between contact states the

system is only weakly stabilizable in the sense defined in Chapter 2. That is,

for every selection of the differential inclusion, there exists a control that expo-
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nentially stabilizes the system to the origin. However, one can often estimate

δ based on the geometry of the contact state boundaries. See Utkin [83] for

details of this. A static estimation of δ = 0.5 works well for the example in Sec-

tion 6.2 both in simulation and in the experiment. Moreover, these boundaries

only constitute a set of measure 0 in the state space, and as we will see in the

example done in the next section, one can often choose inputs that will make

these boundaries strongly stabilizable, but I cannot yet show that it is true in

the generic case. To treat cases when the system cannot be made strongly sta-

bilizable and a static estimation of δ will not work, in Section 6.7, I will extend

work by Hespanha [38] to show that online estimation of δ can provide stability

provided certain assumption on how fast the contact state is allowed to change.

♦

6.3.4 Simulations

To these ideas, apply the method to a situation near the boundary x = y for x > 0

and then apply it near the boundary y = 0 for x > 0. Restricting attention to

this region provides all the salient features of the theory while keeping the problem

tractable. A description of this control law as it was implemented experimentally can

be found in Appendix A in Tables A.2 and A.3. Rescaling all the ui in Equation (6.8)

by 1√
2
, the governing equations in this boundary region y = 0, x > 0 are

q̇ =


−u1 − u4

−u1 + u4

co{u1, u4}

 (6.12)

Do a control Lyapunov design using V = 1
2‖(x, y, θ)‖

2. This means that V̇ = ∂V
∂q q̇ =

x(−u1+u4)+y(−u1−u4)+θ(co{−u1, u4}). Rewrite co{−u1, u4} as δ(−u1)+(1−δ)u4

thereby parameterizing all selections of co{−u1, u4} by δ. Solving the equation
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V̇ = ∂V
∂q q̇ = −k‖q‖2 (with k > 0), we see that a choice of

u1 = −kθ((1−δ)θ+x−y)+k‖(x,y,θ)‖2
δθ+x+y

u4 = −kθ
(6.13)

makes V̇ = −k‖q‖2. Therefore the system is exponentially stabilized. This example

should illustrate some of the weaknesses of the theory described in Section 6.3.3.

Since this is only a weakly stable solution, the estimation of δ is necessary. In nu-

merical simulations one knows that δ = 1
2 , and the simulation works well. However,

in a real system δ would have to be estimated on-line. Section 6.7 extends work

in [38] to the case of distributed manipulation so that the feedback law will not be

sensitive to variations in δ, and therefore not as sensitive to effects of chattering,

etcetera.

Consider the case when x = y, x > 0. In this case the governing equations in

this boundary region are

q̇ =


co{−u1 − u4,−u1 + u2}

co{−u1 + u4,−u1 − u2}

co{u2,−u4}

 . (6.14)

This situation may seem more hopeless than the one in Equation 6.12. However, as

we will see in a moment, this is not the case. In fact, this differential inclusion is

strongly stabilizable. Again do a control Lyapunov design using V = 1
2‖(x, y, θ)‖

2.

The choice of

u1 =
−(((−1+d) v2+d v4) (th+x−y))+k (th2+x2+y2)

x+y

u2 = −kθ

u4 = kθ

(6.15)

makes V̇ = −k‖q‖2. Moreover, this choice of u2 = −u4 = −kθ makes Equa-
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tion (6.15) reduce to

u1 =
−(−kθ (th+x−y))+k (th2+x2+y2)

x+y

u2 = −kθ

u4 = kθ

(6.16)

which has no dependency on δ. Therefore this differential inclusion is strongly

stabilizable.

Figure 6.6, shows the simulation results when this system is controlled using this

feedback law. Notice that the translational stability of the location of the moving

frame origin is maintained, while the rotational dynamics are stabilized to θ = 0

due to the properties of the proposed feedback law.
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Figure 6.6: X, Y , and θ trajectory of feedback system

6.4 Aside: Fully-Actuated Distributed Manipulation

This section describes in detail how a globally stabilizing smooth controller can be

constructed. This approach requires that the distributed manipulator be fully actu-

ated - i.e., at each actuator location the actuator can be oriented in any direction,

and produce a velocity in that direction of arbitrary magnitude. The former is the

important part while the latter can be made more realistic by using saturation func-

tions. This consideration allows us to ensure that none of the wheels slip. Others
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have considered this problem, particularly in [52, 53, 49]. However, their approach

differs radically from the one found here. First, they use components of the open

loop theory (using radial fields and rotation fields) to stabilize the system. This

involves switching and/or superimposing these fields, leading to significant analyti-

cal challenges. The approach here instead takes advantage of the structure of rigid

body mechanics and uses techniques from [68] to create control laws.

A 11 A 21 A 31

A 22A 12

A 13 A 23 A 33

WA 13
g

WBg

W

B

Figure 6.7: Rigid body velocities

Consider Figure 6.7. In this figure we see an abstraction of the 9 cell exper-

imental system. (Details of this system can be found in Appendix A). There is

the world frame (denoted by W ), the body frame (denoted by B) attached to the

moving object, and an actuator frame (denoted by Aij for an actuator located at

(xi, yj)) which has fixed orientation with respect to the world frame. The rigid body

transformation from the world frame to the body frame is denoted by gWB and the

rigid body transformation form the world frame to the actuator frame is denoted

by gWAij . Recall that the gab are defined by

gab =

 R(θ)

 xab

yab


0 1


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where R(θ) describes the relative orientation of frame b with respect to frame a,

and xab and yab are the translations going from frame a to frame b. Notice that

for any body frame motion, there is an equivalent motion in the actuator frame. In

particular, we know that the relative velocity Vbody = (ẋbody, ẏbody, θ̇body) of a point

above actuator Aij on the body is:

AdgWAij
Vbody

where in SE(2) the Adjoint operator Adg is defined by

Adg =

 R(θ)

 yab

−xab


0 1


This implies we can take the following approach as a control strategy. Suppose we

are given a Lyapunov function on the SE(2), denoted suggestively by V (·). Take a

“control Lyapunov” approach to the problem by defining the target dynamics to be

q̇ = −∂V (q)
∂q

where V is a Lyapunov function yet to be defined. This system is trivially exponen-

tially stable. The velocity q̇ is mapped to the actuators in order to get a feedback

law. Choose the Lyapunov function to be V (x, y, θ) = k1x
2 +k2y

2 +k3θ
2 for ki > 0.

The Adjoint operator mapping velocities from W to the Aij for actuator frames

oriented the same as the world frame is:

AdgWAij
=

 Id

 yj

−xi


0 1


Transforming the velocity into the actuator frame yields AdgWAij

· (−∂V (q)
∂q ). Sub-
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stituting in for ∂V (q)
∂q , the actuator velocities should be


k3yi(θ − θd)− k1(x− xd)

−k3xi(θ − θd)− k2(y − yd)

−k3θ


where xd, yd, θd are the desired values and x, y, θ are the state feedback values. To

transform this into wheel velocities and wheel orientations for the particular example

found here, calculate the magnitude and direction of the (x, y) velocity. This gives

for each actuator:

θij = tan−1

(
−k3xi(θ − θd)− k2(y − yd)
k3yi(θ − θd)− k1(x− xd)

)
(6.17)

and

vij =
√

(−k3xi(θ − θd)− k2(y − yd))2 + (k3yi(θ − θd)− k1(x− xd))2 (6.18)

where θij is the orientation of the (i, j) actuator and vij is the wheel velocity of

that actuator. So, given all the actuator locations, one computes Equations (6.17)

and (6.18) for each actuator, and the feedback law is complete. This control law

is impressive for two reasons. First, it is easy to implement, and scales nicely

with the number of actuators. Second, it works extremely well on the experiment

(see Section 6.6). However, it is not a control law one could easily heuristically

guess, giving credence to the value of using differential geometric methods in control

design. Moreover, this control lends itself very well to control problems beyond point

stabilization. In particular, trajectory tracking can be accomplished with little to

no modification.

Lastly, note that there is no point in simulating these equations, since the equa-
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tions of motion are defined to be

q̇ =


−k1x

−k2y

−k3θ

 .

However, experimental results in Section 6.6 illustrate that this method works ex-

tremely well. In fact, it seems to be a natural choice of feedback law in the case

of full state feedback and full actuation partially because it is empirically very ro-

bust and easy to implement. However, in the case where one does not have full

actuation, one must ask how one can achieve global stability since Theorem 6.2 is a

local result. Control strategies must be developed that govern gross motions as well

as terminal stabilization. To realize this goal, Section 6.5 addresses this issue by

extending LaSalle’s invariance principle to the case of differential inclusions. This

result is then used to combine the programmable vector field approach with the

feedback strategies found in Theorem 6.2.

6.5 Global Stability

Here the philosophies of [79, 12] and the work in previous sections are “blended”

using a variation of the classical LaSalle Invariance Principle (see [42]). That is,

the programmable vector field approach is used to govern the gross motions of the

object far away from the equilibrium point, and local stabilizing feedback law from

the previous section in the vicinity of the equilibrium configuration. The intuition

behind this result, and its application to the problem at hand, is that if one can

move a package from one point a in the plane to another point b (an equilibrium

point), and if one has feedback in a neighborhood of point b, the package can be

allowed to spin freely along its path to b, and one can wait to control the package’s

orientation after it has come sufficiently close to b. Consider Fig. 6.8. If a is in the

upper right-hand corner, then it is clear that even with switching between contact

states, a package starting at a will eventually arrive in the feedback region M in the
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middle of Fig. 6.8. In fact, Theorem 6.2 implies just that, since translation motions

(but not rotational motions) are stable under the programmable vector field model,

even when discrete contacts are taken into account. From a practical point of view

this means that as long as one has no performance goals for the orientation θ outside

of M, one does not need feedback outside of M.

6.5.1 A LaSalle Result

The goal of this section is to formally prove these intuitive notions. However, because

of the multiple model aspect of the governing equations, an extension of Lasalle’s

theorem must be found. I should note that the basic difference between the classical

b

a

Feedback
Region

Programmable Vector Field

M

Figure 6.8: A LaSalle invariance theorem

version of the LaSalle theorem and the one found here is that here we must consider

systems governed by differential inclusions. In such systems, the idea of a “flow”

does not include uniqueness. That is, rather than having a result for the unique flow

φ(t), it must be valid for the flow φ(t), in the sense of the definition in Chapter 5,

satisfying φ̇ ∈ F (t, x). Indeed, this is the underlying theme to much of the study of

stability of differential inclusions.

Theorem 6.3. Let M be the “feedback region,” a compact simply connected subset

of R2. Let V (x) be a Lyapunov function on M and let F (x, t) be a convex set-valued

map. Let φt(x0) denote a flow that satisfies ẋ ∈ F (x, t), starting from x0. Let M

be a positively invariant compact set under all flows φt(p) satisfying the differential

inclusion ẋ ∈ F (x, t) (M is positively invariant if V̇ ∗(x) ≤ 0 for all x ∈ M, where
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V̇ ∗ is defined in Equation (2.11)). Let

E = {x ∈M | 0 ∈ V̇ (x)}

N = {
⋃
φ(t, x0) | x0 ∈ E and φ(t) ∈ E ∀t > 0}

Then, for all x ∈M, φ(t, x) → N as t→∞.

That is, E is the set on which the Lyapunov function is zero, and N is the union of

all trajectories that start in E and remain in E for all t > 0.

Proof:

This proof is roughly patterned on the proof of LaSalle’s Invariance Theorem found

in [86]. First recall that the ω-limit point of a differential inclusion (or differential

equation) and a point p ∈ Rn is defined as a point q ∈ Rn where for all solutions

φt(p) to the differential inclusion ẋ ∈ F (x, t) ∃ t1, . . . , ti with i ↑ ∞ such that

φ(ti) → q as i ↑ ∞. The ω-limit set is the collection of such points, and is denoted

ω(p).

It must be shown that V̇ = 0 on ω(p) (∀p ∈ M). Assume q is an ω-limit point

of the differential inclusion, then set V (q) = cq. We will show that V is constant on

ω(p). First we will need the following fact about ω-limit sets.

Lemma 6.4. ω(p) is invariant under the flow of F .

Proof:

Let q ∈ ω(p) and qs = φs(q). We first must consider if the map φs(·) exists

for all s. First, note that since M is compact, we have existence of φs(·) for

s ∈ (0,∞). (This is a natural extension of the classical result for ODE’s -

see [27, pages 77-86]) Now we show that it is true for s ∈ (−∞, 0). Using

the fact that the limit of any uniformly convergent sequence of solutions to a

differential inclusion is also a solution (see Lemma 1 in [27, page 76]), we can

choose a sequence {ti} with ti →∞ as i ↑ ∞ such that φti(p) → q as i ↑ ∞
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(this is by definition of ω(p)). Then using the fact that φs(φti) = φs+ti(a.e.)

as one takes the limit i ↑ ∞, we get that φs(q) exists for s ∈ (−∞, 0).

Now that we have the existence of the map φs(·) for all s, we can choose a

sequence t1, . . . , ti with i ↑ ∞ such that φti → q as t → ∞. Then the map

φti+s(p) = φs(φti(p)) converges to qs as i ↑ ∞. This implies that qs ∈ ω(p)

and ω(p) is therefore invariant. �

Lemma 6.4 implies that cq = inf{V (φt(x))|t ≥ 0} because V̇ ∗ ≤ 0 everywhere in

M. Thus, V (φt(x)) = cq, so 0 ∈ V̇ ∗ on ω(p). Therefore ω(p) ⊂ E. Again, because

of the above fact that ω(p) is invariant, ω(p) ⊂ N . This leads us to the fact that

φt(x) → N as t→∞, the desired result. �

Now to apply this to the case of distributed manipulation, one must only show

that a distributed manipulator will satisfy the requirements and assumptions of

Theorem 6.3. This will lead to the following Corollary of Theorem 6.3. Assume

the distributed system can be represented by an array of actuators aij with the

coordinate location of (xi, yj) and assume that the PDM model solution depends

only on the center of mass (equivalently, that the coefficient of friction is uniform).

For us, M will be the feedback region of the distributed manipulator, that is, the

area in which one has some sort of state feedback available.

Theorem 6.5. Given a discrete planar array geometry, an elliptic vector velocity

field Ψ(x, y) : R2 → R4 outside of M = Bε × S1 for some ε > 0, and a locally stabi-

lizing feedback law (such as the one in Theorem 6.2) the solution to the governing

equations given by the PDM is globally stable.

Proof:

Assume that the desired equilibrium point is always in M. This implies that since

M ⊂ SE(2), then M = Bε × S1 where Bε is the ε-ball in R2, and M is there-

fore compact. Therefore the first part of Theorem 6.3 is supplied. M is positively

invariant by Theorem 6.2 using an elliptic vector field. Moreover, for a choice of
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V = ‖q‖2, E consists solely of the origin. This implies that the origin is stable. In

fact, asymptotically stable, because M is reached in finite time, and once inside M

the origin is asymptotically stable by Theorem 6.2. �

The following corollary indicates that the induced instability of the programmable

vector field approach can be corrected with a local feedback law, and that moreover

the performance can be made exponential.

Corollary 6.6. Given a discrete planar array geometry, an elliptic vector velocity

field Ψ(x, y) : R2 → R4 outside of M = Bε × S1 for some ε > 0, and µS < µR, the

solution to the governing equations given by the PDM is exponentially stabilizable.

Proof:

First, note that Theorem 6.2 and Section 6.4 already showed that both the under-

actuated and fully actuated systems are locally exponentially stabilizable. It will

be shown that exponential stability can be maintained outside of M. Corollary 6.2

shows that the origin is globally stable. All we need to show is that there is an

exponential k3‖q‖e−st which provides an upper bound on V̇ ∗. From Section 6.3.3

we know that outside M the x and y coordinates can be exponentially stabilized,

but the θ coordinate is only neutrally stable. Therefore, the maximum value of

‖x, y, θ‖ is d(∂M, 0) + π2, where d(·, 0) is the maximum distance from the origin

to the boundary of a set. Setting k3 = d(∂M, 0) + π2 it is clear that outside of M

the solutions converge exponentially to M, and inside M we have already shown

that the origin is exponentially stable. Therefore the origin is globally exponentially

stable. �

6.5.2 Simulations

To illustrate these concepts, this section provides the results of a simulation that

model a planar distributed manipulation system with actuators located at (i, j)

for i, j ∈ N. Actuation is provided by unit radius rotating wheels (which rotate
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along axes orthogonal to the wheel rims depicted in Fig. 6.9) with constant friction

coefficient µ and point contact between the wheel rims and the manipulated object

(a box in this case). The feedback region, M, lies in the interior of a circle of

radius 4 (in the length units used by the simulation, see Fig. 6.9), and the only

four actuators inside M are at (±1,±1). Outside of M, the actuators are located

at (±i,±j) for i, j ≥ 2. The four actuators inside the circle represent the four node

system studied in Section 6.2. The simulated task involves moving a unit mass box

from {3, 10, π4 } to the origin in R2. The final configuration’s orientation is stabilized

to θ = 0, where θ is measured between the box’s long axis and the x axis of R2.

The experimental test-bed is used to demonstrate the ideas in this and the previous

section. These experiments can be found in Section 6.6.

The simulation was implemented in Mathematica, using its NDSolve integra-

tor, modified to allow for differential inclusions. Some modification is necessary

in order to avoid the numerical difficulties at switching boundaries (y = x, y =

−x, x = 0, y = 0 for this simulation). However, this is only a concern for switch-

ing boundaries which are stable or attracting, because if the trajectory intersects

the boundary transversely, standard numerical schemes still work. For this simula-

tion, the switching boundaries (which are stable) are allowed to have the averaged,

projected dynamics. This, like the method of introducing hysteresis to simulate a

discrete system as a hybrid automaton, produces numerically stable simulations. I

should point out, however, that the choice of the averaged solution is only one pos-

sible choice satisfying the differential inclusion. That is, if one has a boundary N

and vector fields gσ1 on one side of the boundary and gσ2 on the other, the choice of

q̇ = gσ1+gσ2
2 is just one choice satisfying q̇ ∈ F = co{gσ1 , gσ2}. Again, the difficulty

is that solutions of differential inclusions are necessarily nonunique, therefore imply-

ing that any simulation represents only one solution φ to the differential inclusion

φ̇ ∈ F .

Outside M, the programmable vector field is simply {ẋ, ẏ} = {−x,−y}. Inside

M the feedback law derived in Section 6.3.4 is used to stabilize the box to the origin.

Snapshots of the box’s position are shown at integer time units t = 1, . . . , 12. The
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actual box’s boundary is larger than the one shown in the figure. This was done so

that the simulation could be visualized more easily.
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Figure 6.9: A box being transported to {x, y, θ} = {0, 0, 0} from {3, 10, π4 }

6.6 Experiments

Figure 6.10: Experimental setup
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An experimental apparatus has been developed at Caltech for testing some of

the theories in this thesis. A photograph can be seen in Figure 6.10. This experi-

ment has 9 steer-able wheels which can be controlled from a centralized computer.

The system uses visual feedback through a black and white monochrome camera.

For the manipulated object a piece of plexiglass is used. Details of the experimental

apparatus can be found in Appendix A. Moreover, movies of these and other ex-

periments can be found at http://robotics.caltech.edu/. The plot of each experiment

includes the x, y, and θ trajectories as functions of time and a plot of the (x, y) tra-

jectory in the plane. The following experiments all have relatively little output error

because are using visual feedback is being used. However, there is approximately a

0.5 cm error in the translational directions and an error of 0.05 rad in the estimated

orientation. As the theory only considers point stabilization, these are the only ex-

periments included here. However, I should point out that the experimental setup

is appropriate for doing trajectory tracking and other more challenging problems.

6.6.1 Programmable Vector Field

As in the simulations, first an experiment using the open-loop control structure

based on programmable vector field (in Böhringer et al [12]) is performed. As

expected, the object’s orientation is not stable. In fact, small perturbations in the

angle of the actuators can cause drift in the orientation. Notice, however, that the

x and y coordinates converge to the origin. This experiment used an initial state of

approximately (x0, y0, θ0) = (0.25 m,−0.2 m,−1.5 rad), and the final position was

approximately (xf , yf , θf ) = (0.01 m, 0.01 m,−1.5 rad).

6.6.2 Local Nonsmooth Feedback

Figure 6.12 shows an experiment using only four cells to emulate the example in

Section 6.2. In this experiment, the feedback controller from Section 6.3.4 is used.

Since the (x, y) origin is precisely where it is difficult to stabilize an object’s ori-

entation, an initial condition with a very high initial θ error value and very small

(x, y) error values was given. That is, the goal was to re-orient the object while
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Figure 6.11: Programmable vector field experiment
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Figure 6.12: Under-actuated feedback control

basically maintaining its position. Notice that the controller design first destabi-

lizes the (x, y) origin because θ is large, and thereby avoids the indeterminacy that

occurs at the origin. A complete description of all 16 states of this controller can be

found in Appendix A in Tables A.2 and A.3. This experiment used an initial state of

approximately (x0, y0, θ0) = (−0.15 m,−0.2 m,−0.9 rad), and the final position was

approximately (xf , yf , θf ) = (0.01 m, 0.01 m, 0.05 rad) (the angle cannot currently

be resolved any further at this point because of camera pixelization error).

6.6.3 Fully Actuated

Figure 6.13, shows the experimental results when this system is controlled using

the feedback law described in the Section 6.4. Notice that the translational sta-

bility of the origin is maintained, while the rotational dynamics are stabilized to

θ = 0 due to the feedback law. The important point to notice is the smooth-

ness of the the trajectory. This experiment used an initial state of approximately
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Figure 6.13: Fully-actuated feedback control

(x0, y0, θ0) = (0.4 m,−0.4 m, 2.6 rad), and the final position was approximately

(xf , yf , θf ) = (0.01 m, 0.01 m, 0.05 rad). This experiment clearly indicates that

when a distributed array is fully actuated, the feedback law in Equation (6.18) will

work extremely well. More importantly it is computationally very simple, and the

number of computations required to compute it goes up linearly in the number of

actuators because it only depends on the current state, not what other actuators

are doing.

6.6.4 Global Invariance

Figure 6.14 shows an experiment using the programmable vector field outside a

radius of 0.3 m from the origin. Inside this radius it uses the fully actuated feed-

back. As expected, the performance of this feedback law is quite good. It uses

the simplicity and open loop nature of the programmable vector field to drive

the state into the circle shown in the figure, and then it uses feedback locally
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Figure 6.14: Combining the programmable vector field with local feedback

to stabilize the system. This experiment used an initial state of approximately

(x0, y0, θ0) = (−0.4 m, 0.3 m, 2.2 rad), and the final position was approximately

(xf , yf , θf ) = (0.01 m, 0.01 m, 0.05 rad).

6.7 Methods for Estimating Contact States

Notice in Figure 6.12 that the speed at which the trajectories converge to zero is

not terribly good. In order to improve this, here this section adds another tech-

nique relevant to distributed manipulation and describe a method of stabilizing

distributed systems based on supervised control. After illustrating the challenges in

the under-actuated case of distributed manipulation, this section presents a more

broadly applicable control strategy which promises to be very useful. First, I will

describe some basic results from the theory of switched systems that directly applies

to distributed manipulation. The basic idea is that if there is a family (finite or pos-
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sibly countably infinite) of plants Pσ indexed by σ, then one can choose controllers

appropriate to each Pσ and orchestrate a “switching” between these controllers such

that the resulting system is stable. This is traditionally an adaptive control tech-

nique where σ is constant but unknown, but here I will show that given certain

conditions on the type of “disturbance” switching allowed to occur in an MMDA

system, many of the results in [36, 4] still apply. In particular, I will show that for

a family of plants Pσ and associated controllers Cσ the total system is stable even

if the environment causes the system to switch between plants, provided it does so

sufficiently slowly. Moreover, even given a sufficiently small, nonzero lag time τl

between the environmental signal determining the plant and the supervisor signal

determining the controller, the system remains stable. This section is intended to

correct some of the practical problems with the locally exponentially stabilizing con-

trollers found in Section 6.3.2, in that it incorporates estimating the contact state,

and therefore eliminates the need for estimating δ in Equation (6.11), it does so

at the expense of only allowing certain classes of environmental switching, namely

those that are bounded above by a sufficiently slow linear switching function.

6.7.1 Background - Scale-Independent Hysteresis Switching

Consider the figure in Figure 6.15. Here let us first review some of the basic ideas

in switching signal control theory. (Most of what is here can be found in a more

complete form in Hespanha et al. [38, 37].)

In attempting to place the foundations for a unified framework to treat stabi-

lization of overconstrained systems, first consider some results from adaptive control

theory. Ultimately, we will consider a variation on the work done in Hespanha et

al. [36, 4]. In that work, linear plants were considered and assumed to belong to

some finite or possibly infinite family of plants (the multiple model plant found in the

figure). Additionally, the assumption is made that the transfer function describing

the input output relationship for a given system belongs to the set

⋃
p∈P

F(p)
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Figure 6.15: A supervisory control system

where p is a parameter taking values in some index (or continuum) set P and F

is a transfer function. In this setting, each one of these p represents a possible

kinematic state of the distributed manipulator (or other group linear mechanical

system), and denote by p∗ the actual process at any given time. Therefore, in the

case of a distributed manipulator with 4 actuators, |P| = 56, as pointed out in

Section 6.2. Denote the set of possible admissible plants by P. In the case of linear

dynamical systems, associated with each plant Pp coming from P there is a matrix

Ap describing the dynamics and a known stabilizing controller Cq. Denote the set of

these controllers by C. To determine which model in P most closely “matches” the

actual process, the input-output relationships for all the plants in P will need to be

esetimated. Hence, the need for the estimator, denoted by E, which will generate

errors between the predicted output for each plant and the actual output of the

process. These errors will then be fed into the monitoring signal generator, denoted
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by M, which will provide monotone increasing signals µp determined by

Ẇ = −2λW +

 xE

y

 xE

y

T , W (0) ≥ 0

µp := (cp − 1)W (cp − 1)T + εµ, p ∈ P

(6.19)

where W (t) is a symmetric non-negative-definite k×k matrix with k = dim(xE)+1,

xE is the state of the estimator, εµ is a parameter determined by the monitoring

signal designer, and cp is the output one form determining y (from Figure 6.15)

from y = cpxE. The monitoring signal will be fed into the switching logic, denoted

by S, which will then determine by means of a switching signal, σc, which controller

to use to control the process. Call the triple (S,M,E) the supervisor. Depending on

the particular construction of the supervisor, many things can be proved about the

stability, robustness, and performance of such a system. I will present some of the

results key to the analysis in a moment.

Note how the switching signal generator operates. Consider, as in [36], a scale-

independent hysteresis switching logic. Let h be a positive constant set by the

supervisor. The idea is that after initializing σc = q for q ∈ P, the system evolves

and at every time step S compares (1 + h)µp to µq (where µp and µq are defined in

Equation (6.19)). If there exists a p such that (1 + h)µp ≤ µq, then the supervisor

sets σc = p, otherwise it leaves it unchanged. The advantage to this choice is that

it gets rid of chattering. The disadvantage is that in the interim time one can

potentially have an unstable plant/controller pair, a subject of the next section.

The following theorem states that if one switches between stable linear systems

sufficiently slowly, the resulting dynamics are also stable. For the proof, see [38].

This result is used by showing that for a sufficiently high hysteresis constant, one

can always make a supervisor stable. For us, the switching will arise in more than

one context, which will be discussed shortly. First, let us define some terms. For

a switching signal σ, let Nσ(t, τ) denote the number of discontinuities of σ on the

open interval (t, τ). Moreover, let Save[τAD, N0] be the set of all switching signals

for which Nσ(t, τ) ≤ N0 + τ−t
τAD

where N0 is called the chatter bound and τAD is
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called the average dwell time.

Theorem 6.7 (Hespanha and Morse [38]). Given a compact set of n×n matri-

ces A : {Ap : p ∈ P} and a positive constant λ0 such that Ap+λ0I is asymptotically

stable for each p ∈ P, then, for any λ ∈ [0, λ0), there is a finite constant τ∗AD such

that

ẋ = Aσx

is uniformly exponentially stable over Save[τAD, N0] with stability margin λ, for any

average dwell time τAD ≥ τ∗AD and any chatter bound N0 > 0.

I can now discuss the stability of a supervisor (S, M, E) plant (C,P) pair. The

goal is to extend some of the results found in Hespanha et al. to the case of dis-

tributed manipulation where an external signal is causing switching. To do this, one

of the more important theorems proved by Hespanha et al will be discussed shortly.

Then a variation of this will be proved in the next section. In it, the case of no

noise, no disturbances, and no unmodeled dynamics is considered. In this case, the

process will asymptotically approach one of the plants in P. Consequently, not only

is the resulting system stable, but switching stops in finite time. Formally:

Theorem 6.8 (Hespanha and Morse [38]). Suppose that the noise and distur-

bance signals are zero and there are no unmodeled dynamics, and set εµ = 0. Then

all the signals in the supervisory control system remain bounded for every set of

initial conditions such that W (0) > 0. Moreover, the switching stops in finite time,

and we have y(t) → 0 as t→∞.

If there are noise and disturbance signals but still no unmodeled dynamics, then

the result is still as good as one can hope–that is, in general the output becomes

small over time as long as the disturbances remain small, and if the disturbances

go to 0 as y goes to 0, then the system is still asymptotically stable. However, if

there are additionally unmodeled dynamics, then only a semi-global statement can

be made. Details can be found in [38].

There are advantages and disadvantages to this approach to control. One of

the major advantages to this approach is the simplicity of control design. That
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Advantages Disadvantages

Only design controllers for individual

Aσ
Requires many control designs

Orchestrating the switching is easy
Switching must be “slow”

(see Assumption 6.1 on page 125)

Easy to prove things about the algo-

rithms
Difficulties in including continuum

Avoids “chattering”

Difficult to provide balance between

environmental switching and con-

troller switching while maintaining

stability

Table 6.1: Advantages and disadvantages of supervisory control

is, for each plant one can choose a controller from classical control theory, and

then use the analysis found here to show that the orchestrated switching retains

the stability properties. Moreover, orchestrating this switching is relatively easy,

for it is based on the hysteresis constant in the switching signal generator and

the monitoring signal generator only. This approach also avoids “chattering”, a

phenomenon often associated with discontinuous control laws (such as those coming

from sliding mode control–see [83]). Disadvantages include that the designer must

come up with many control designs for the problem (as opposed to the programmable

vector field approach which reduces the design problem to the design of one desirable

field, for instance). Switching must be “slow,” and this method is really intended

for a finite number of elements in P. Fortunately, the PDM gives a finite number

of kinematic states. The largest disadvantage is that there is a balance to be found

between how fast one switch the control signal to reduce time delay and how slow

switching must be in order to maintain stability. This will be discussed shortly.
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6.7.2 Applications to Distributed Manipulation

Now return to the case of distributed manipulation. We already know from Sec-

tion 6.2 that distributed manipulators can be modeled as MMDA systems. Consider

each kinematically compatible dynamic state to be one possible plant governing the

equations of motion, and that the system “jumps” between these kinematic states

based on the configuration, normal forces, and dissipation forces. Based on the ideas

in Section 6.7.1, one can hope to be able to design a controller for each kinematic

state, and then use the monitoring signal to check which kinematic state the system

is in at a given time and use the switching logic to generate the controllers. Notice

that there are two discrete signals being created in the system. First, there is the

environmental signal, σe, which is effectively a disturbance, being generated in D,

the environmental signal generator. We have no direct access to this signal, and

must therefore estimate it online. The second signal, σc, is being generated by S,

the switching logic, in exactly the same way that it was in Section 6.7.1.

u
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y
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Figure 6.16: A supervisory control system

Consider the block diagram in Fig 6.16. Not surprisingly, it is quite similar to

the one found in Fig 6.15. Only here there is an environmental signal generator D
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creating σe. Now to give some other notation. Denote by τd the upper bound on

time-delay (created by the hysteresis in the switching logic). Denote by Nσe(t0, t)

the number of switches σe experiences during time [t0, t).

Now let us move on to the key assumption that will made during this section, and

comment that it is one that can only marginally be defended. Assume, in order to do

the subsequent analysis, that the environmental switching is “slow on the average,”

in the technical sense found in Assumption 6.1. One could ask: is there any reason

to expect an arbitrary environmental signal σe to have Nσe bounded above by an

affine linear function? In general, the answer is no, but for quasistatic systems

scaling down the inputs leads to a corresponding slowing down in the dynamics.

Therefore any dependence that the switching has on the configuration can be made

slow. Moreover, friction often creates hysteresis, thereby creating slow switching in

a similar fashion to the hysteresis found in the switching logic. Nevertheless, the

following theorems present a way of classifying systems. That is, for systems with

a characteristic average dwell time, one can say that they are or are not stabilizable

given certain dwell times and stability margins.

Assumption 6.1. Assume σe switching is “slow on the average,” i.e.,

Nσe(t, τ) ≤ N0 +
t− τ

τAD

where N0 > 0 is called the “chatter bound” and τAD is called the “average dwell

time.”

Two more concepts are needed before the proofs of analogs of the theorems found

in Section 6.7.1 can be presented. First, the concept of perfectly adapted is needed,

which means that the supervisor knows what the actual kinematic state is at any

given time. Secondly, a measure of how well it does so is needed: in particular, on

a given time interval what percentage of time the supervisor signal σc matches the

environmental signal σe is needed.
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Definition 6.1. We say a supervisor S is perfectly adapted if

lim
h→0

σc(h) = σe

where h is the hysteresis constant.

Definition 6.2. We say that S is ν adapted on an interval (ti, tj) if

∫ tj

ti

|σc − σe|dt = ν

Notice that ν adapted is not the same as perfectly adapted even when ν = 0. That

is, a supervisor S can be perfectly adapted with ν 6= 0.

Consider the case when there are no disturbances, no noise, no unmodeled dy-

namics, and the system is perfectly adapted with ν = 0. Then we have a system

that by Assumption 6.1 switches slowly enough to satisfy the requirements in Theo-

rem 6.7. Therefore, if all the individual systems are asymptotically (exponentially)

stable, then the resulting system

ẋ = Aσe,σcx (6.20)

is asymptotically (exponentially) stable. We therefore have:

Corollary 6.9. Assume there are no disturbances, no noise, and no unmodeled

dynamics. Assume Assumption 6.1, S is perfectly adapted, and ν = 0. Then the

resulting switched system is stable.

Remark 6.5

I should make a remark here on the applicability of this theory to distributed

manipulation. In the fully actuated case covered in Section 6.4, we saw that a

nonlinear controller was globally stabilizing. Notice, however, that in the pre-

vious sections the challenges were all in cases of underactuation. In the case of

the example in Section 6.2, this meant that wheels cannot be re-oriented. In

these cases, the governing equations for each possible contact state are linear.
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Hence, linear switching systems such as those in Equation (6.20) are appropriate

models to study. ♦

Theorem 6.7 can only apply to cases where there is no delay between the en-

vironment switching and the controller switching. This is due to the fact that any

given controller Cp is only designed for the plant Pp, and there is therefore no guar-

antee that other combinations (Cp, Pq) for q 6= p will be stable. Therefore, we need

to come up with a parallel of Theorem 6.7 to prove that with sufficiently small time

delays such a system is stable. It should not be surprising that we are balancing the

relationship between the hysteresis constant h and the average dwell time. We need

the hysteresis constant to be small, on the one hand, to reduce the time delay and

therefore the time the system is in a potentially unstable mode. On the other hand,

we need to keep h sufficiently large in order to keep switching from destabilizing

the system. Therefore, we are requiring the system (and, most significantly, σe) to

satisfy a nontrivial condition. However, as discussed earlier, the fact that we are

dealing with quasistatic systems will help us to “slow down” the switching to any

desirable level. First, we need the following theorem which states that as long as

such a balance is achieved between the unstable and stable switching modes, then

the resulting system is stable. I should point out that this result is not necessary

in [36] because it implicitly assumes that, given (Ci, Pi) controller/plant pairs, each

Ci stabilizes every Pj . This is because the goal of that work is to obtain better

performance through the adaptive control scheme.

Theorem 6.10. Given two compact set of n × n matrices A : {Ap : p ∈ P},

A′ : {A′q : q ∈ P} and a positive constant λ0 such that Ap − λ0I is asymptotically

stable for each p ∈ P, then, for any λ ∈ [0, λ0), there is a finite constant τ∗AD and

a finite constant dσ such that if ti and ti+1 are switching times for the switching

signal σ:

ẋ =

 A′qx on [ti, ti + dσ)

Apx on [ti + dσ, ti+1)

is uniformly exponentially stable over Save[τAD, N0] with stability margin λ, for any
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average dwell time τAD ≥ τ∗AD and any chatter bound 0 < N0 < 1.

Proof:

Given a family of stable plants indexed by p ∈ P with matrix representations Ap

with Ap − λ0I asymptotically stable and another set of plants indexed by q ∈ Q

with matrix representations A′q (potentially unstable), we know the following two

things:

1. As in [38], we know there exist Lyapunov functions Vp associated with each

plant such that

(a) for all p

V̇p =
∂Vp
∂x

Apx ≤ 2λ0Vp (6.21)

(b)

α(‖x‖) ≤ Vp(x) ≤ α(‖x‖) (6.22)

for class K∞ functions α and α. (Denote by K the set of all continuous

function α : [0,∞) → [0,∞) that are zero at zero, strictly increasing, and

continuous, and by K∞ the subset of functions in K that are unbounded.)

(c) there exists a µ ≥ 1 such that

Vpi(x) ≤ µVpj (x) (6.23)

for all x ∈ R pi, pj ∈ P

2. Each A′q, since they are compact (and despite being potentially unstable), has

a maximum eigenvalue which will be called λA′
q
. Moreover, since Q is a finite

set, there is a maximum among these λA′
q
, call it λA′ . Therefore, the time

derivative of any of the Lyapunov functions Vp p ∈ P along trajectories of A′q

satisfy:

V̇p =
∂Vp
∂x

A′qx ≤ 2λA′Vp (6.24)
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This is the idea that how quickly solutions blow up for linear systems can be

bounded. This fact will be important later in this proof. I should also note

that the set Q is substantially larger than the set P–for us p ∈ P represent the

matching of plants with their respective stabilizing controllers, whereas q ∈ Q

represent the matching of plants with any other controller.

Fix τ eAD, the average dwell time for the signal σe(t). First it will be proven that

for a given dwell time, the Lyapunov functions Vp decrease along trajectories of G

for dσ sufficiently small. Then it will be shown that if the switching from σe (which

determines τ eAD) is sufficiently slow, the resulting linear switched system is stable.

Let

{t0, t1, t2, · · · , tNσe (t0,T )−1, T}

be the switching times for σe. On an interval [ti, ti+1) let dσ denote the time delay

between σe switching and σc switching. Then choose dσ such that

0 < dσ <
λ− λ0

λA′ − λ0
(ti+1 − ti)

this implies that

λ0(ti+1 − ti − dσ) + λA′dσ < λ(ti+1 − ti)

which in turn implies that

Vp(x(ti+1)) < eλ(ti+1−ti)Vp(x(ti)) (6.25)

Moreover, this is true on any interval, and, because of Assumption 6.1, we can

deduce the following: if on the time intervals [ti+1 − ti) we have that

ti+1 − ti < τ eAD(1−N0)

then

N0 +
ti+1 − ti
τ eAD

< 1
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(because 0 < N0 < 1) and Nσe(t, τ) only takes values in the positive integers, so

Nσe(t, τ) = 0 on any interval shorter than that. Therefore there is a lower bound

on |ti+1− ti|. This implies there exists a lower bound on the dσ (called d∗) required

to ensure that all the Vp decrease along the trajectories described above.

If d∗ is the lower bound, then Equation 6.25 holds for all p ∈ P q ∈ Q.

Following the philosophy laid out in [38], denote by Vσ(t) the Lyapunov function

Vp at time t for σ(t) = p and set

v(t) := e−2λ0tVσ(t)(x(t))

(noticing that λ0 < 0 implies that −2λ0t will be positive). We know that v(t) is

piecewise continuous since σ(t) is piecewise continuous, and it is in particular strictly

continuous on [ti, ti+1). Therefore, we know that

lim
t→ti+1

Vp(x(t)) ≤ eλ(ti+1−ti)Vp(x(ti))

from Equation (6.25). This implies

lim
t→ti+1

v(t) = lim
t→ti+1

e−2λ0tVσ(t)(x(t)) ≤ e−2λ0tieλ(ti+1−ti)Vσ(ti)(x(ti)) = v(ti)

⇒ lim
t→ti+1

v(t) ≤ v(ti).

By Equation (6.23), we know that

v(ti+1) = e−2λ0ti+1Vσe(ti+1) ≤ µe−2λ0ti+1Vσ(ti)

so

v(ti+1) ≤ µv(ti) ∀ i ∈ {0, 1, · · · , Nσe(t)(t0, T )− 1} (6.26)

Iterating the above quantity from i = 0 to i = Nσe(t)(t0, T )− 1, we get

v(tNσe (t0,T )) ≤ µNσe (t0,T )v(t0).
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Using a limiting argument like that used to arrive at Equation 6.25, we know that

Vσe(T )(x(T )) ≤ µNσe (t0,T )e−2λ0(T−t0)Vσe(t0)(x(t0))

therefore

Vσe(T )(x(T )) ≤ e−2λ0(T−t0)+Nσe (t0,T ) log µVσe(t0)(x(t0)).

Thus, by Equation 6.26 we get

‖x(T )‖ ≤ α
(
e−2λ0(T−t0)+Nσe (t0,T ) log µα(‖x(t0)‖)

)
.

To get a stability margin of λd, we need to satisfy:

−λ(T − t0) +
1
2
Nσe(t0, T ) log µ < k − λd(T − t0)

for k > 0. Choose dσ such that the stability margin from Equation 6.25 satisfies

λ ∈ (λd, λ0). Now solve for Nσe(t0, T ) and get the following relationship:

Nσe(t0, T ) satisfies N0 := 2k
log µ and τ eAD := log µ

2(λ−λd) . Therefore, using λ from above,

we get the following relationship between τ eAD and dσ.

τ eAD >
logµ

2
(
λ0(ti+1−ti−dσ)+λA′dσ

ti+1−ti − λd

) (6.27)

Therefore, when Equation 6.27 is satisfied, the switching system is exponentially

stable. �

Consider the situation where P is exactly one of the admissible plants. That

is, there are no disturbances, no noise, and no unmodeled dynamics. Allow the

environment to switch with average dwell time τ eAD and show that for a sufficiently

“fast” supervisor (S, E, M) the resulting system is still stable. The following result

is a corollary to Theorem 6.10

Corollary 6.11. Assume that there is no noise (n = 0), no disturbances (d = 0),

and no unmodeled dynamics (δ = 0). Assume that S is perfectly adapted, and is
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moreover ν adapted for some constant ν. Let εµ = 0, and let Assumption 6.1 hold.

Then all the signals in the supervisory control system remain bounded for every set

of initial conditions such that W (0) > 0. Moreover, ∃ τ eAD and h > 0 such that

Nσc(t0, t) ≤ k(t− t0) and we have y(t) → 0 as t→∞.

Proof:

First of all, the proof of the boundedness of signals is exactly the same as that found

in [38], so I will not reiterate it here. I will only show the stability of the resulting

system. Let the times {t1, t2, · · · , tm, · · · } be switching times for σe coming from D.

Consider the interval [ti, ti+1). We know that σe = k on [ti, ti+1). Therefore, if S is

perfectly adapted, σc = k on [th, ti+1) for some th such that ti < th < ti+1.

Denote by Ai all combinations of plants Pi with their respective stabilizing con-

trollers Ci. Denote by A′ij all combinations of plants Pi with any other controller A′j

not designed to stabilize the plant Pi. We know that with h sufficiently small, the

maximum lag time dσ between σe switching and σc switching can be made arbitrar-

ily small. By Theorem 6.10, then, if τ eAD is sufficiently large, the resulting switched

system is stable. �

Corollary 6.11 indicates that if the contact states change slowly enough and

feedback is fast enough, then the system can be controlled by estimating the contact

state online. This means that one does not have to concern oneself with the friction

model to establish where switching occurs, as was done previously in Section 6.3.4

in order to derive a control law. Instead, the contact states can change arbitrarily,

so long as they do so sufficiently slowly on the average.

6.8 Summary

The work presented in this chapter provides a fundamentally different approach

to the control of distributed manipulation. Work done by others, particularly the

use of programmable vector fields, has traditionally assumed that all the actuators
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in a distributed array were operating at sufficiently high velocities that they were

all slipping all the time. This causes significant stress on both the object being

manipulated and the actuators themselves. (Indeed, I discovered this when I im-

plemented the programmable vector field on the test-bed and within three runs of

the experiment broke nearly half of the cells.) The methods presented assume that

if the actuators are moving at sufficiently slow velocities some, but not necessarily

all, actuators are always in contact with the moving body. This requires less energy

for a given motion and moreover induces smaller forces on the object and actuators.

Moreover, the methods presented here succeeded in designing feedback controllers

that stabilize an object to a point on a distributed array. It is possible to prove

performance bounds on how long it takes an object to reach the goal configuration

by showing that exponential convergence can be guaranteed. Most importantly, this

was done without explicitly modeling friction, which subsequently leads to relatively

simple control laws, improving the likelihood that these control laws can be scaled

up to high numbers of actuators.
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Chapter 7

Variation 2: Overconstrained Wheeled

Vehicles

Doubt is not a pleasant mental state, but certainty is a ridiculous one.

Voltaire

This chapter examines an application of the controllability theory in Chapter 5 to

the case of MMDA systems where the individual models are essentially nonlinear.

(Essentially nonlinear systems are those that have uncontrollable linearizations.) I

will primarily focus on an example for the following reasons. First, the concepts

from Chapter 5 are more easily illustrated in this nonlinear setting in the context of

an example. Moreover, the example I am going to treat, the Mars Rover, is itself an

important engineering application, and this chapter contributes to understanding

how to design an appropriate control structure.

7.1 The Rocky 7 Mars Sojourner

Most mobile robots use wheels since they provide one of the simplest means for

mobility. Wheels impose nonholonomic constraints on a vehicle’s motion, and thus

the subject of control and motion planning for nonholonomic wheeled vehicles has

been widely pursued [8, 70, 69, 82]. Most wheeled robots operate in relatively benign
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Figure 7.1: Photo of Rocky 7 mars rover prototype

man-made environments. In unstructured terrain where there are many obstacles,

legged robots may be used [78], although then one is faced with challenges that are

associated with balance. Therefore, the simplicity of a wheeled robot makes it an

appealing alternative to legged robots even in somewhat rough terrains.

In order to operate in moderately rough terrains without resorting to the inher-

ent complexity of legged system design, “overconstrained” wheeled vehicle designs

have been proposed. The most famous example of such a vehicle is the Sojourner

robot deployed during the Mars Pathfinder mission. Figure 7.1 shows the “Rocky

7,” a prototype for future Mars rover vehicles whose suspension and wheel kine-

matics are basically identical to the Sojourner vehicle. The Rocky 7 employs six

wheels, with both front wheels independently steered and all six wheels indepen-

dently driven, making it an eight-dimensional control space. The rear wheels on

each side are coupled through a “bogey” linkage mechanism that helps the vehicle

negotiate obstacles that are up to 1.5 times the wheels’ diameter. Below I will show

that standard nonholonomic motion planning and control theories cannot be ap-

plied to this vehicle. Moreover, its contact state changes based solely on the terrain,

which means that the motion planning algorithm must take these contact changes

into account.

To understand the key issues that are addressed in this chapter, consider a highly

simplified model of the Rocky 7 vehicle (Figure 7.2(b)). In this simplified model
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Figure 7.2: (a) kinematic car; (b) simplified Rocky 7.

vehicle, the Simplified Rocky 7, hereafter referred to as SR7, operates on flat terrain.

To realize the model of Figure 7.2, each pair of Rocky 7 wheels is conceptually

“collapsed” into a single wheel, in a manner similar to that of conventional models

of the classical kinematic car (Figure 7.2(a)). Furthermore, assume that only the

front wheel is actuated. While highly simplified, this model captures many of the

essential features and challenges of overconstrained wheeled vehicles. Obviously, the

fact that Rocky 7 operates in non-planar terrain and has additional wheel actuation

will pose further complexities.

The motion any every planar body can be characterized at each instant by

its Instantaneous Center of Rotation (ICR). In the classical kinematic car model

(Figure 7.2(a)), the assumption that the wheels do not slip defines an instantaneous

center of rotation at the intersection of the lines that are collinear with the two wheel

axes. Note that the presence of an additional wheel leads to an overconstraint and

kinematic constraints alone can not be used to determine the ICR of the SR7 vehicle

in Figure 7.2(b).

Unfortunately, current nonholonomic motion planning techniques implicitly re-

quire that the Instantaneous Center of Rotation (ICR) be known so that the state

equations are well defined before the geometry can be exploited. On the other hand,

intuition would suggest that the control algorithm for parallel parking a car should

also work to produce similar motion on a six wheeled vehicle (such as a large truck
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or a simplified model of the Rocky 7 as seen in Figure 7.2 with two parallel axes

near the back). The dynamics of such a vehicle are overconstrained because both

back wheel axes prevent the automobile wheels from sliding sideways, which means

there are two parallel constraints. In order to satisfy these constraints, the vehicle

must always drive straight forward, and if the front wheel is turned, the vehicle must

stay still. Therefore, even in the kinematic case, finding the equations of motion

governing the system is a nontrivial task.

One might argue that the “extra” wheels in the systems of Figures 7.1 and 7.2(b)

can be practically ignored. After all, 18-wheeled trucks have similar overconstrained

geometries. However, we seek dexterous maneuvering of such robots far beyond that

which is required for 18-wheelers. For example, future Mars rover mission scenarios

call for a manipulator arm with only 2 or 3 degrees of freedom (see Figure 7.1 for

an example) to collect rock samples and emplace sensors. Arbitrary displacements

of the arm’s end-effector will require the vehicle to make non-trivial local sideways

motions so as to compensate for the arm’s kinematic deficiency.

As represented by Mars exploration opportunities, overconstrained vehicles are

a potentially important class of mobile robots. It is ultimately desirable to develop

theories and algorithms that parallel those for nonholonomic mobile robots. While

the mechanics of overconstrained vehicles have previously been considered [84], no

systematic control and motion planning theory exists. This chapter makes some

first steps in this direction. The question of how to model such systems for the

purpose of motion planning is first addressed. The power dissipation model is used

to develop the governing equations, whose structure has been shown to be that

of an MMDA system. To simplify the problem, the number of contact states is

reduced by “matching” as many of the inputs as possible so as to minimize the

number of contacts that must slip when the vehicle is moving. This process is

similar to the case u1 = u2 for the planar bicycle in Chapter 3 (see page 28).

This is followed by applying the controllability test of Chapter 5 to answer the

question of whether the Rocky 7 is controllable or not. Then a variation on this

model is considered which allows for two steerable wheels. The implications of
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these two examples are somewhat surprising, because controllability depends on

how one reduces the input state. I will give details of this in Section 7.3. The

key point is that choices made by the control designer can lead to the resulting

problem satisfying or not satisfying the sufficient conditions for controllability given

in Chapter 5. After addressing controllability, motion primitives for vehicles with

changing contact states are considered. These methods are heuristic, but give insight

into how the motion planning problem for such vehicles will eventually be solved.

7.2 A Simpler Rocky 7–The Kinematic Car

ICR

θ

B

x

y

W

ψ

Figure 7.3: The kinematic car

The kinematic car as shown in Figure 7.3 has been studied extensively as an

example of a system with nonholonomic constraints. It is used here as an example

of how to apply Chow’s theorem (Theorem 2.2) to a smooth nonholonomic system.

It has been shown by Murray et al. [70] that sinusoidal inputs at integral frequencies

will produce Lie bracket motions associated with parallel parking and that global

stabilization can be obtained using feedback.

Assume that the car is driven by the front wheels and that the wheels roll without
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slipping. The constraints associated with zero wheel slip are


sin(θ + ψ) − cos(θ + ψ) −l cos(ψ) 0 0

sin(θ) − cos(θ) 0 0 0

cos(θ + ψ) − sin(θ + ψ) −l sin(ψ) R 0





ẋ

ẏ

θ̇

φ̇

ψ̇


= 0.

where R is the radius of the front wheels, x and y are the coordinates of the body

frame B, θ is the angle between the B frame and the W frame, φ is the front wheel

angle, and ψ is the angle between the front wheels and the B frame. First find g1

and g2 that annihilate these constraints, and then take their Lie brackets to find the

distribution

g1 =


cos(θ)

sin(θ)
1
l tan(ψ)

0

 g2 =


0

0

0

1



g3 = [g1, g2] =


0

0

− 1
l cos2(ψ)

0

 g4 = [g1, g3] =


− sin(θ)
l cos2(ψ)

cos(θ)
l cos2(ψ)

0

0


so ∆ = span{g1, g2, g3, g4} = R4, which implies that the system is locally control-

lable. Stabilization for the kinematic car, and other nonholonomic systems like it,

has been studied extensively in the literature (see [35, 82]).

7.3 Simplifying the Rocky 7

Here the relatively simple version of the Rocky 7 (found in Fig. 7.4) is considered

and the result of Section 5.2.1 is applied. This system is “overconstrained” because

not all of nonholonomic kinematic wheel constraints can be simultaneously satis-



140

fied. Consequently, as stated previously, the vehicle’s motion cannot be determined

directly from kinematic constraints (i.e., it’s governing equations of motion cannot

be put in the form q̇ =
∑
i

gi(q)ui with the gi smooth). At least one of the non-

powered wheels must be slipping at all times, except when the vehicle moves straight

ahead. Hence, classical nonholonomic control theories do not apply to this vehicle.

Therefore, the power dissipation methodology from Chapter 3 is used for obtaining

equations of motion. Since one or more of the contact points must always be in a

slipping state due to the overconstrained geometry, the power dissipation approach

states that the vehicle’s motion at any instant is the one that minimizes D, the

power lost to slip. It was already shown that the minimum of the power dissipation

function yields governing equations that are MMDA systems (Definition 3.2). See

Section 4.1 for some details of such a reduction in the smooth case. See Section 4.2

for details on the reduction in the MMDA case. This basically makes use of the fact

that the PDM always chooses states that satisfy Dcon = Dkin.

Section 7.3.1 discusses the full input space for a six-wheeled, fully actuated

system. As we will see, such a system is quite complex, which leads us to do an

input state reduction to two inputs which I discuss in Section 7.3.2. In Section 7.3.3,

as an example of how poor choices can be made in such a reduction, I attempt to

gain more actuation by allowing both front wheels to be independently steerable

and then show that such a system does not satisfy the sufficient conditions for

controllability.

7.3.1 Six Wheels and Two Steerable Wheels

First consider a full kinematic model of the Rocky 7 Sojourner robot. It has two

steerable front wheels (inputs u1, u2) and all six of its wheels are driven (inputs

u3, . . . , u8). Assume that the vehicle is on flat ground with only variations in the

coefficient of friction altering the contact state. Idealize the steering of the wheels

as a rotation about a vertical axis. In this model, there are a total of 12 nonholo-

nomic constraints on the system, with each wheel contributing a “no side-ways slip”

constraint and a “no rolling” constraint. Clearly, not all of these constraints can
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Figure 7.4: 6 driven wheels, 2 steerable wheels

be simultaneously satisfied except in nongeneric cases: 1) the two rear axles are

parallel, and therefore can only accommodate forward motion without slipping, and

2) there is no a priori reason to believe that the inputs ui will produce mutually

compatible velocities. Thus, the system is overconstrained. Applying the PDM to

this system, one gets 12

3

 =
12!
9!3!

= 220

kinematic states. That is, there are 220 different combinations of slipping motions.

This number is daunting both from a complexity and from practical standpoint.

To make progress tractable on the analysis front, reduce the number of inputs

by introducing “matching” constraints. Observe that for any choice of u1 and u3

one can choose the other ui inputs to be kinematically compatible with the motion

produced by u1 and u3. Therefore, reduce the dimension of the input space by

requiring the following to hold:

u6 = Ad
[2]
g63u3

u7 = Ad
[2]
g73u3

u8 = Ad
[2]
g83u3

u5 = Ad
[2]
g53u3

u4 = Ad
[2]
g43u3

u2 = Ad
[2]
g12u1

(7.1)

where Ad[k]
gij is the kth component of the Adjoint operator of the rigid body trans-
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formation going from frame i (associated with the point where the input ui acts on

the system) to frame j. Practically speaking, these constraints force the two front

wheels to steer together and the remaining wheels to have a compatible motion.

Therefore, u1 and u3 completely determine all other control inputs. One can think

of this system as being driven by two “virtual” inputs, v1 and v2 so as to get an

underactuated vehicle. This determines the model in Section 7.3.2. This technique

is basically an ad-hoc reduction in the shape space instead of the traditional group

space reduction.

7.3.2 Reduction 1

Here I take the reduction as posed in the previous section. In this example, the front

wheel is driven u1 and steered by u2, while u3 and u4 drive the middle and back

wheels respectively. Setting u3 = u1 and u4 = u1 produces the desired reduction

in Equation (7.1). Additionally, the front wheel is always assumed to be in contact

with the ground1.

x

y

θ

ψ

Figure 7.5: 1 driven and steered wheel, 2 passive wheels

Assume that this is driven by the front wheels and that the wheels roll without
1I realize this is a strong assumption, but without it the Rocky 7 is trivially uncontrollable and

not locally stabilizable because it can only move forwards and backwards. Future work will include

finding a more global framework so that this condition is not necessary



143

slipping. The constraints associated with zero wheel slip are

Ω(q)q̇ =


ω1

ω2

ω3

ω4





ẋ

ẏ

θ̇

φ̇

ψ̇


=


sin(θ + ψ) − cos(θ + ψ) −l cos(ψ) 0 0

cos(θ + ψ) − sin(θ + ψ) −l sin(ψ) R 0

sin(θ) − cos(θ) 0 0 0

sin(θ) − cos(θ) r 0 0





ẋ

ẏ

θ̇

φ̇

ψ̇


= 0.

where R is the radius of the front wheels, x and y are the coordinates of the body

frame B, θ is the angle between the B frame (located at the center of the middle

axle) and the W (world) frame, φ is the front wheel angle, and ψ is the angle

between the front wheels and the B frame. The constraints (ω1, ω2, ω3, ω4) are the

front wheel rolling, front wheel side ways slipping, middle wheel side ways slipping,

and back wheel side ways slipping. It is easy to check that for ψ 6= 0 this only has

a solution of q̇ = 0. Moreover, if φ̇ 6= 0 it has no solution when ψ 6= 0.

Using the power dissipation approach, we know that the minimum of D must

occur when either the middle or back wheel slips (because the front wheel is assumed

to always be in contact with the ground). This means that the constraint associated

with either ω3 or ω4 must not be satisfied. This leaves us with two possible sets of

constraints:

Ω1q̇ =


ω1

ω2

ω3





ẋ

ẏ

θ̇

φ̇

ψ̇


= 0 and Ω2q̇ =


ω1

ω2

ω4





ẋ

ẏ

θ̇

φ̇

ψ̇


= 0

The q̇ that annihilate these constraints are the possible governing equations in

both cases. If the vehicle configuration is q = [x, y, θ, ψ]T and the controls u1 and

u2 are associated with the drive and steering velocities respectively, the vehicle’s
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governing equations of motion are

q̇ = gσ1(q)u1 + g3(q)u2 σ1 : (q, t) → {a, b}

ga =


cos(ψ) cos(θ)

cos(ψ) sin(θ)
1
l sin(ψ)

0

 gb =


cos(θ) cos(ψ)− r sin(θ) sin(ψ)

l+r

cos(ψ) sin(θ) + r cos(θ) sin(ψ)
l+r

1
l+r sin(ψ)

0

 g3 =


0

0

0

1


The function which determines the switching boundaries is

Ψ(q) =
(
F1µ1

F2µ2

)2 (
l − r

r

)2

− 1

where Fi are the normal forces above the middle axis and back axis, and the µi

are the coefficients of friction at the two rear wheel contacts. When Ψ(q) > 0,

σ1 = a; when Ψ(q) < 0, σ1 = b. Therefore switching is determined by q ∈ Q such

that Ψ(q) = 0. Intuitively, variations in wheel-ground friction and vehicle weight

distribution can cause alternations in the choice of the slipping wheel.

Controllability is determined by the rank of the distribution:

∆ = {g3, gσ1 , [g3, gσ1 ], [[g3, gσ1 ], gσ1}) (7.2)

Computing accordingly, we get [gσ1 , g3] =

co




cos(θ) sin(ψ)

sin(θ) sin(ψ)
− cos(ψ)

l

0

 ,


r cos(ψ) sin(θ)
l+r + cos(θ) sin(ψ)

−r cos(θ) cos(ψ)
l+r + sin(θ) sin(ψ)

−
(

cos(ψ)
l+r

)
0




and
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[gσ1 , [gσ1 , g3]] = co




−1
l sin(θ)
1
l cos(θ)

0

0

 ,


−1
l+r sin(θ)
1
l+r cos(θ)

0

0




Now, using the algebraic equivalent for co{·, ·}, we can evaluate the determinant

of Equation 7.2:

det [g3, co{g1a, g1b}, [g3, co{g1a, g1b}], [[g3, co{g1a, g1b}], co{g1a, g1b}]]

= det [g3, co{g1a, g1b}, co{[g3, g1a], [g3, g1b]},

co{[g1a, [g1a, g3]], [g1b, [g1b, g3]]}]

= det [g3, δ1g1a + (1− δ1)g1b, δ2[g3, g1a] + (1− δ2)[g3, g1b],

δ3[g1a, [g1a, g3]] + (1− δ3)[g1b, [g1b, g3]]]

where δi ∈ [0, 1] for i = 1, 2, 3. The determinant is

(l + rδ3)(2l + r(δ1 + δ2) + r(δ2 − δ1) cos(2ψ))
2l2(l + r)2

which equals 0 only if δ3 < 0 and these values are not admissible. Hence, the vehicle

is always STLC, as expected. Physically, this result implies that the vehicle remains

locally controllable even as the status of slipping wheel alters unexpectedly.

7.3.3 Reduction 2

It is clearly necessary that all of the individual models in an MMDA system be

controllable in order for the condition in Theorem 5.2 to be satisfied. Now one

may ask if it is sufficient that all of the individual models in an MMDA system be

controllable. If it is, then one need only concern oneself with the analysis of the

individual smooth models. The answer to this question, perhaps surprisingly, is no.

This example illustrates the reason.

Consider a vehicle with the same two front steerable wheels as the Rocky 7, but

with only one back wheel for simplicity (Fig. 7.6). This choice, though seemingly

reasonable, will cause the resulting system to fail the controllability test. For sim-
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Figure 7.6: 2 driven and steered wheels, 1 passive wheel

plicity assume that the two front wheels are collapsed down along their respective

axes so that they both are connected to the body at the same point (see Figure 7.6).

We will see that this vehicle is only controllable when ψ1 = ψ2, or when it is in-

distinguishable from a kinematic car. An analysis of this system using the PDM

shows that there are two distinct kinematic states for this vehicle (i.e., two different

permutations of wheel slip). In each case the governing equations of motion are

equivalent to the equations of motion for a kinematic car, i.e.,

q̇ = gσ1(q)u1 + g3(q)u2 σ1 : (q, t) → {a, b}

where

ga =


cosψ1 cos θ

cosψ1 sin θ

sinψ1

0

 gb =


cosψ2 cos θ

cosψ2 sin θ

sinψ2

0

 g3 =


0

0

0

1


Restricting attention to brackets which are nonzero for the individual models, con-

trollability is determined by the rank of:

(g3, gσ1 , [g3, gσ1 ], [[g3, gσ1 ], gσ1 ])
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We then have

[g3, gσ1 ] = co




cosψ1 sin θ

cosψ1 cos θ

− cosψ1

0

 ,


cosψ2 sin θ

cosψ2 cos θ

− cosψ2

0




and

[[g3, gσ1 ], gσ1 ] =


− sin θ

cos θ

0

0


Evaluating the determinant as before, let us now determine if there exists a selection

of the differential inclusion such that this is not full rank, i.e., does there exist δ1, δ2

such that

det [g3, δ1g1a + (1− δ1)g1b, δ2[g3, g1a] + (1− δ2)[g3, g1b],

δ3[g1a, [g1a, g3]] + (1− δ3)[g1b, [g1b, g3]]] = 0
.

Computing, the above determinant equals

δ1 + δ2 − 2δ1δ2 − 1 + (δ1 + δ2 − 2δ1δ2) cos(ψ1 − ψ2).

Now, if

χ(δ1, δ2)
def
=

1
δ1 + δ2 − 2δ1δ2

− 1

the controllability condition depends on whether there exists δi such that χ(δ1, δ2) ∈

[−1, 1]. Clearly there do exist such δi; just choose δ1 = 0 and δ2 = 1 giving

χ = 0. However, one may ask if making |ψ1 − ψ2| sufficiently small makes the

system controllable. Doing so changes the requirement to χ ∈ [−ε, ε], which again

has a solution for the same choice of δi. Therefore, controllability of this vehicle

design sensitive to switching. That is, although on the one hand it is desirable to

get extra actuation by controlling ψ1 and ψ2 independently, on the other hand it is
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desirable to have a model that can be shown to be controllable.

Now, what if the selections of [gσ1 , g3] and [[gσ1 , g3], g3] are coupled in some way?

Consider the situation where, if we again parameterize the selections of [gσ1 , g3] by

δ1 ∈ [0, 1] and the selections of [[gσ1 , g3], g3] by δ2 ∈ [0, 1], we have δ2 = h(δ1). For

example, take h to be the identity. Then

χ(δ1, δ2) =
1

2δ1 − 2δ21
− 1

which only has a solution in [−1, 1] for δ1 = 1
2 . Therefore, if we allow a slightly

weaker notion of controllability by only requiring that the system be controllable

almost always, this system is controllable. However, given the choice between a

weaker notion of controllability and the standard one, it is preferable to show the

standard one.

7.4 Motion Primitives

This section describes some simple motion planning techniques for overconstrained

wheeled vehicles. As stated, classical controllability results and nonholonomic mo-

tion planning ideas can easily be extended to the case of controlled switching. The

case of uncontrolled switching is more complicated, as seen in the simulation of

Fig. 7.7. In this simulation, the SR7 drives with constant steering wheel speed

and angle. With no switching, the vehicle’s center would describe a circular motion

of constant radius. However, in this simulation the vehicle passes over terrain re-

gions with different friction coefficients, resulting in switching in the dynamics. The

path’s noncircular geometry clearly indicates that switching can introduce consid-

erable error. This simulation shows why standard nonholonomic techniques are not

directly applicable. This unpredictable switching behavior may make the open loop

motion planning problem seem insurmountable, and suggests that feedback is an

appropriate strategy in this case. However, some heuristic techniques are available.

In nonholonomic systems, motion in the linearly uncontrollable directions is

created by coupled periodic inputs (or “Lie bracket motions”). This knowledge
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Figure 7.7: SR7 with constant wheel angle and speed

guided the extension of the classical Lie bracket to the switched case. With this

extension, it appears true that many (though probably not all) of the open loop

local motion planning concepts from the classical nonholonomic literature can be

adapted to the overconstrained situation.

7.4.1 Aside: Controlled Switching

Here let us make a momentary aside to the underactuated vehicle discussed above in

Section 5.1. The fixed wheel kinematic car (FWKC) discussed is controllable when

switching is taken into account. Hence, arbitrary motions will generally require con-

trolling the switching σ. Motion in the linearly uncontrollable direction is obtained

by creating a flow along g1, inducing a switch (by “waving” the manipulator arm)

so that the system continues to flow along g2, inducing another switch to flow along

−g1 (by arm motion and wheel rotation reversal), and switching again to induce

flow along −g2. These actions are taken over time intervals of t = 0.25. At time

t = 1, we see in Fig. 7.8 that net displacement has been produced.

In general, one can adapt the approach suggested in [70] to this situation, with

discrete switches replacing the role of some sinusoidal inputs. In summary, the

algorithm is: a) turning until the desired value of θ is achieved b) move forward

until 〈(xd − x), [cos(θ), sin(θ)]〉 = 0 (i.e., the car is parallel with the desired goal),

c) compute the time needed for the car to pass through the desired point, d) stop
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Figure 7.8: (a) X and Y variables; (b) θ variables of the FWKC bracket-like motion.

at the desired goal point (θ will have already returned to its original value). This

simple algorithm was used to drive the FWKC from the origin to the point (2,2) in

Fig. 7.9.
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Figure 7.9: a) X and Y variables of Simulation 1 b) θ variable of Simulation 1

7.4.2 Uncontrolled Switching

In the uncontrolled switching case, the primary difficulty shifts from control of an

otherwise underactuated mechanism to the errors associated with switching between

models of the MMDA system. The algorithmic approach proposed is similar to the

controlled switching case. However, it is still rather ad hoc. While we wish to

use the Lie bracket motion to arrive at the final state, the actual Lie bracket is

[f, γ] = δ[f, g1] + (1 − δ)[f, g2], where δ is unknown. However, there is a natural
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choice of δ. If we know something about the environment’s properties, δ is chosen

to be the percentage of time that the vehicle is expected to be in state 1: δ = 0.5

corresponds to equal possibility of being in one state or another. I heuristically

chose to base the Lie bracket motion on the vector field g = δ[f, g1] + (1− δ)[f, g2].

Consider Figure 7.10. This Lie bracket motion was produced using sinusoids at

integrally related frequencies based on the assumption that δ = .5. Error enters,

particularly in the orientation, due to the discontinuities in contact state. This

result illustrates that for motion planning purposes, one must use some form of

feedback.
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Figure 7.10: a) X and Y coordinates of a Lie Bracket Motion of Rocky 7 b) θ motion

Traditionally, the use of sinusoids has arisen as the solution to the optimal control

problem of how to reposition a nonholonomic system like the kinematic car in its

Lie bracket direction while minimizing J =
∫ T
0 ‖u‖2dt [17, 68, 76]. Likewise, one

can introduce an optimal control framework here where the cost function is chosen

to minimize a weighted cost function of power and of error due to switching. To

achieve this result, choose

J =
∫ T

0
a1‖u‖2 + a2‖ϕ‖2 dt (7.3)

for ai > 0 instead of J =
∫ T
0 ‖u‖2dt as in Refs. [17, 68, 76]. Here ϕ is the angle

between g1 and g2 defined by the Euclidian metric on TQ (although certainly other
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choices of metric may be made on TQ). I.e.,

ϕ = cos−1

(
〈g1, g2〉

‖g1‖2‖g2‖2

)
(7.4)

Equation 7.4 ϕ ≈ ψ to third order in q, making

J =
∫ T

0
a1‖u‖2 + a2‖ψ‖2 dt (7.5)

a natural choice of cost function. Interestingly, this cost function is the same as in

Refs. [68, 76], except that ‖ · ‖ is now relative to the choice of metric. Intuitively,

this choice of cost function encapsulates the fact that the more one is willing to keep

the wheels pointing close to straight forward (and therefore is willing to sacrifice

speed in the Lie bracket direction) the more one can reduce error. In the simulation

in Fig. 7.11, this method comes very close to the goal state of [4, 4, π4 ]T in only two

iterations.
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Figure 7.11: a) X and Y Coordinates for Simulation 2 b) θ for Simulation 2

However, I should point out that this method is not formal at all. I do not assert

that this algorithm is necessarily any better than any other algorithm, only that it

allows us use some of the classical ideas in motion planning for smooth nonholonomic

system in approaching the problem for vehicles such as the Mars rover. In the future,

work on stabilization for the vehicles will include extensions not only of the time-

varying feedback laws derived in [82] but will additionally include extensions of the
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work by [4, 35, 36] to the case of this class of nonlinear systems.

7.5 Summary

Understanding the issue of controllability is often a first step toward understanding

how to control a class of nonlinear systems. Chapter 5 developed controllability

results for MMDA systems that can be viewed as extensions of Chow’s classical

controllability theorem. This chapter examined in detail the controllability of a

simple model of the Rocky 7 Mars Sojourner. Variations of this model studied

in Section 7.3.3 illustrate that controllability of the individual models that make

up an MMDA system is not sufficient to guarantee controllability of the overall

MMDA system. Although preliminary methods for open loop motion planning of

such systems can be found in Section 7.4, the potential importance of the vehicles

discussed in Section 7.3 in future planetary exploration missions indicates the need

for more in-depth analysis of stabilization. Future work will investigate algorithms

for stabilizing the multiple model systems of Definition 3.2. In particular, I will use

the formalism of GDQs developed in Sussmann [81] to adapt the supervisor-based

algorithms discussed in Section 6.7 to this nonlinear setting.
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Chapter 8

Finale: Conclusions

I can take any amount of criticism, so long as it is unqualified praise.

Noel P. Coward

In this thesis I have presented a number of results relevant to the analysis of driftless

overconstrained mechanical systems. At one extreme of the theory/experiment spec-

trum, extremely general conditions for controllability of a driftless overconstrained

multi model system were produced. At the other extreme, systematic control strate-

gies were developed for distributed manipulation that when applied to a distributed

manipulation test-bed produced concrete control laws which worked well. Some-

where in the middle of this spectrum contributions to the foundations of stability

analysis for nonlinear overconstrained systems were made. These contributions ex-

tend classical results from the control literature, including notions of controllability

and kinematic reducibility, control Lyapunov functions, and methods for steering

nonholonomic systems to this new domain. The notion of generalized differentials

in particular plays a large role throughout this thesis. These results are described

in Section 8.1. Many of these results raise as many questions as they answer, which

leads to a list of future research in Section 8.2.
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8.1 Summary

In Chapter 3 I reviewed the power dissipation methodology for finding tractable

governing equations for overconstrained mechanical systems. Formal properties of

these equations were then developed, and they were shown to be generically dis-

continuous or multi model. The advantage of the PDM is that it yields relatively

tractable equations, whereby techniques from nonsmooth analysis can be used to

understand stability issues.

In Chapters 4 and 5 I treated some of the more formal characteristics of multiple

model driftless affine systems. These types of systems result from the power dissi-

pation methodology. First conditions for kinematic reducibility of overconstrained

systems were developed: individual models (equivalently, contact state kinematics)

must be kinematically reducible. However, this does not hold true for controllability.

That is, it is not true that a multiple model driftless affine system, which has all of

its individual models controllable, will necessarily be controllable. I did, however,

prove a sufficient condition for such controllability to hold.

Regarding distributed manipulation, it was found in Chapter 6, again using

the power dissipation method, that the rotational dynamics of systems governed

by programmable vector field controllers are not asymptotically stable. Moreover, a

feedback law that stabilizes the system was found. This feedback law is smooth if the

distributed system is fully actuated, and nonsmooth if it is not. I was additionally

able to prove that distributed manipulators can be globally exponentially stabilized

to a point by “patching” together open loop programmable vector field strategies

and the closed loop strategies. Hence, there is no reason to have to incorporate

the costly addition of feedback throughout the path followed by the object. More-

over, the power dissipation method gives significant insight into evaluation of design

philosophies, in this case leading us to believe that contact designs with µS < µR

are superior to those with µS > µR. These results were additionally verified on an

experimental test-bed.

Understanding the issue of controllability is often a first step toward understand-

ing how to control a class of nonlinear systems. In Chapter 7, I showed that standard
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nonholonomic motion planning and control theories cannot be directly applied to

the important class of overconstrained wheeled vehicles. Some initial steps towards

a motion planning were outlined and preliminary results for control of such vehi-

cles were given. The extension of Chow’s theorem proven in Chapter 5 was used to

show conditions under which vehicles like the Mars rover are controllable. Moreover,

variations of the rover were used to illustrate that controllability of the individual

models that make up a multiple model driftless affine system is not sufficient to

guarantee controllability of the overall multiple model driftless affine system.

8.2 Future

Vehicles, MEMS arrays, automated parts feeding, robotic fish, and a variety of

other mechanical devices include nonsmooth effects in their dynamics, typically due

to friction or dissipation. As there is no systematic way to treat these systems,

we must either sacrifice accuracy by idealizing them as smooth systems or sacrifice

performance by slowing them down enough so that the nonsmooth terms can be

neglected. Given the widespread occurrence of such systems, a unified approach to

control of these systems would have wide ranging benefits. In the broadest sense,

future goals focus on developing such a unified scheme. This will begin in the short

term with extensions to topics in this thesis.

Theory

There are a number of theoretical questions that need to be answered relative to the

theoretical aspects of this work. Among them are many natural extensions from the

geometry of smooth control systems to nonsmooth control systems. For instance,

as a converse condition to the controllability theorem in Chapter 5, what version

of the Frobenius theorem holds for nonsmooth systems? It is clear that if all the

vectors making up the inclusion ẋ ∈ F (x, t) = co(gi) are equally integrable, i.e.,

they have the same integral manifold, then the inclusion F is integrable. However,

there should be a version of Frobenius theorem appropriate to the case where the
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distribution is closed for all the individual models of a multiple model driftless affine

system. A related question, and perhaps more fundamental, is whether or not we

can extend the controllability criterion in Chapter 5 to more general differential

inclusions. The result given in this thesis relied heavily on the differential inclusions

we were considering to be almost everywhere not only single-valued, but differen-

tiable as well. Another question is how do we extend Brockett’s [16] requirement

for stabilizability? This will rest on the dependency of homotopy on the differentia-

bility of the maps under consideration. I anticipate the theory of GDQs should give

insight into this problem, but exactly the way these results will play out is unclear.

Another interesting problem is to ask how we can take advantage of analyticity in

the case of differential inclusions. For instance, as we define them, multiple model

driftless affine systems are analytic almost everywhere, so even if the differential in-

clusion is a closed convex set of vector fields, it is one for which the derivatives of all

its component vector fields reveal all of the local behavior. One could hope that the

sufficient condition for controllability given in Chapter 5 is also necessary. As [44]

points out, it is unclear how to extend control laws designed for a (U ,U) reducible

system on Q to TQ. Certainly future work will include this in both the smooth and

nonsmooth case. Lastly, one can ask what is the relationship between GDQs and

robust control. In particular, is there a way of stating robust stabilizability criteria

in terms of controllability of the set-valued map that includes the disturbances and

uncertainties. Such a relationship could lead the way to intrinsic representations of

robustness since GDQs are well defined on manifolds. Moreover, it could help us

make more progress towards nonlinear versions of the small gain theorem, as well

as other fundamental results in robust control.

Distributed Actuation

Distributed actuation offers many challenges in the next few years. These questions

range from relatively easy questions to extremely difficult. Naturally, even at the

relatively easy end, there are still interesting questions to answer. For instance,

computing the Lagrangian formulation including contact states to see if any addi-
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tional structure can be gleaned for the purposes of control design could potentially

lead to controllers with better performance.

An equally interesting question is to determine a way to eliminate the practical

need for visual feedback. For instance, one could use binary sensors that are active

if the object is above them and inactive if it is below them. How fine a grid of such

sensors, for a given object, is needed to uniquely identify its location and orientation?

Perhaps more realistically, how fine a grid is required to identify these with some

error ε? Moreover, are there “behaviors” that would allow better estimation of

the current location and orientation? For instance, it is easy to imagine that a

combination of open loop plans for global maneuvers could allow a computer to

discern the orientation of an object, but not without doing non-globally optimal

trajectories. Hence, it is possible that distributed manipulation may be a good

example of the trade off between information gathering through limited sensors and

optimal controls given full state feedback. More work must be done on trajectory

tracking, both theoretically and experimentally. On the physics side, how do we

deal with more general environmental switching dependencies. The models used in

this thesis all rely on the switching depending solely on the location of the center of

mass. However, one would imagine that outside the domain of a very carefully set

up experiment, additional dependencies will arise. In a somewhat similar vein, at

what point does the open loop control strategy developed by Böhringer and Kavraki

begin to be appropriate? For instance, can we make a “limit” like statement such

as: “as the number of actuators on a compact set goes to ∞, the error due to the

programmable vector field approach will approach 0.” Such a result would be very

useful in determining if a closed loop control structure is necessary for controlling

a given object on a given set of actuators. From a controls perspective, how can

we take advantage of discrete symmetries for distributed actuation. It is clear from

the control designs given in Chapter 6 that many of the control laws are symmetric

around the origin, and therefore we should use this symmetry to reduce the number

of explicit controls we need to write down. However, we have not developed any

systematic formal methods for doing so. Lastly, more experimentation must be done
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on a more realistic MEMS level.

Underactuated but Overconstrained Systems

Systems such as the Mars rover offer many opportunities for future research. They

illustrate the trade-off between static stability and easy of control. The results

presented in Chapter 7 represent only the most basic advances in understanding a

complete set of methods for such vehicles. Moreover, many choices still have to be

made at a relatively high level. For instance, is there any reason to believe that time-

varying feedback has any particular advantage of discontinuous feedback for such

systems? How do we prove global stability for nonlinear over constrained systems?

Can we extend work of [57] on stabilization of smooth nonholonomic systems to these

systems to improve performance? Another example of an underactuated system is

that of a robotic fish. It is well known that the control vector fields describing such

a fish are only Lipschitz continuous at zero velocity (see [60]). Future work should

include applying the work in [75] and in Chapter 5 to see under what conditions,

if any, the robotic fish is locally controllable. For instance, one of the problems

that This will perhaps lead to insights regarding what type of control strategies are

reasonable and what types are not.

Control of Systems with Friction

Friction and intermittent contact represent a major challenge to the control commu-

nity. This work only superficially treated friction models. Many previous methods

have involved approximating the discontinuities produced by friction with differen-

tiable ones, and then using the differentiability properties of those approximations.

This thesis offers some of the basic analytical techniques necessary to treat non-

smooth systems, in particular nonsmooth systems arising from friction. However,

much work needs to be done in order to treat systems with friction in a coherent,

systematic, and rigorous fashion.
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Appendix A

Coda: Experimental Setup

You are only as good as your last demo.

Howie Choset

This appendix describes an experimental distributed manipulation system, as well as

the nonsmooth algorithm described in Section 6.3.3. Section A.1 briefly describes

some other experimental distributed manipulation systems and how the Caltech

system is related to theirs. Section A.2 describes both the mechanical design of

the system, as well as the vision system that monitors the object’s position. This

section additionally provides an overview of the software used to run the exper-

iment. Section A.3 fully describes the algorithm used in Section 6.3.3 and that

was implemented in the experiment shown in Figure 6.12. I will end this appendix

with a comment on the superposition principle for systems with contact forces in

Section A.4.

A.1 Previous Experimental Setups

The experimental setup is related to that in used in Luntz et al. [50, 51, 48, 54].

Their setup consists of a planar table with an array of adjacent cells mounted on

a table. Each cell consists of two wheels whose rotation axes are perpendicular. A
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Figure A.1: Force Superposition

common assumption made in the field of distributed manipulation is that of force

superposition. Consider Figure A.1 depicting two wheels that are perpendicular to

each other, exerting forces on an invisible object resting on them. The superposition

principle assumes that if we know the forces F1 and F2, we can superimpose them

to get a desired force F1+2. This is the assumption made on the experiment used by

Luntz et al [50, 51, 48, 54]. Their system uses a light sensor at each cell. Therefore

it is known whether the object is above a given cell or not1. It has been used as a

test-bed in numerous experiments in distributed manipulation. As we will see, the

experimental apparatus used in this thesis has a number of key advantages.

A.2 Fully Actuated Distributed Manipulator (FADM)

The distributed manipulator used for the experiments is pictured in Figure A.2.

The design is a modular one based on a basic cell design. The Fully Actuated

Distributed Manipulation (FADM) system has a total of 10 cells. Each cell contains

two actuators. One actuator orients the wheel axis, while the other actuator drives

the wheel rotation (see Figure A.5). These cells can be repositioned easily into

different configurations - Figure A.6 has the FADM system in an 8 cell configuration

which emulates the setup used in [50, 51, 48, 54] and described in the previous

section. Both orientation and the wheel velocity are driven by Pittman brushless

12V motors which are connected to JR-Kerr Pic-Servo-3PH motor controller boards.
1This experiment will change to a vision-based feedback system soon.
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Figure A.2: Front and Underside of the FADM System

All 20 motor boards are connected through a daisy chain to a central computer

through one of its serial ports. The motors are all powered by a variable regulated

power supply rated up to 14 amps. The motor controller boards are powered by

a separate power supply rated up to 3 amps. (The motor controller boards by

themselves use around 100-140 mA each).

Motor Controller Boards

Camera

Cells

CCD

Figure A.3: Cartoon of Experiment

The cells themselves have a four-inch radius wheel made of soft foam rubber to
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accentuate the friction reaction force. These wheels were chosen because they have

the proper friction distribution described in Section 6.2.

A Sony XC-73 monochrome CCD camera with a Cosmicar C60607 6 mm lens

is used for the vision system. Images are captured by an Imagenation PXC-200

framegrabber card. For feedback, feature tracking software (written in C) developed

at Caltech in the Computational Vision Laboratory of Pietro Perona is used (see

[31]). The software was adapted to select a right triangle (seen in Figure A.6) and

track its motion so as to obtain coordinates of the moving body. This software

code is integrated with motor control software through the motor boards. Because

of the long communication delays required to send control signals to all motor

controller boards, it is only possible to realize about six to seven iterations per

second. Therefore, our feedback only has a time resolution of about 6 Hz. Moreover,

we have implemented almost no low level controls to account for aliasing, actuator

saturation, etcetera. Efforts are under way to improve the code so as to enable both

faster iterations and more robust performance.

A.3 Algorithm for Nonsmooth Feedback

This section gives the algorithm used in the underactuated distributed manipulation

experiment found in Chapter 6. Consider Figure A.4. Here is a four cell region like

that seen in Figure 6.3. It is divided up into 16 regions, labeled I−VIII and 0−2π in

increments of π4 . The roman numerals stand for the open areas in which one contact

state holds and the π regions are the boundaries between contact states. Depending

on where the object is, the algorithm chooses a different appropriate control law.

This is schematically depicted in Table A.4. In each one of these regions a control

law calculated from the Lyapunov function k(x2 +y2 +θ2) is shown, where k is some

constant to be chosen during implementation. These control laws can be found in

Tables A.2 and A.3.
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Figure A.4: Algorithm for Nonsmooth Feedback

A.4 A Comment on Superposition of Forces

An underlying assumption throughout this thesis is that the mechanics of contact

between an object and the manipulation surface matter - one can not assume them

away. Now consider Figure 6.13. In this experiment steerable wheels and a smooth

control algorithm were used to control the object being manipulated. Excellent

performance was realized. Now consider Figure A.8, which shows results of the

following experiment. In this experiment the same algorithm is used under the su-

perposition assumption while using a set up like that seen in Figure A.6. The results

were terrible. The object never comes close to the desired equilibrium. Therefore,

the superposition principle is not a good approximation when dealing with actuators

that have significant contact mechanics. The reason this algorithm does not work is

that the superposition principle does not take into account the reaction forces due

to sliding across the wheel. Consider Figure A.1 again. Suppose that F1 = 0 and F2

is some nominal force. The superposition principle assumes that F2 would be the

only contributing force in that situation, despite the fact that is known to be false.

At high enough speeds this is a good approximation, but at low speeds the contact

constraint forces must be taken into consideration.
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Figure A.5: Pictures of one of the Cells - The cells have two motors mounted to

them, each controlling a different axis of motion (marked in blue) of the cell. For a

sense of scale, the wheels are four inches in diameter.

if x>e y>e | elseif x<-e y>e

if |x|>|y|+e | if |x|<|y|-e

then I | then VII

elseif |x|<|y|-e | elseif |x|>|y|+e

then II | then VIII

else PI/4 | else 7PI/4

elseif x<-e y>e | elseif x>e

if |x|<|y|-e | then 0

then III | elseif x<-e

elseif |x|>|y|+e | then PI

then IV | elseif y>e

else 3PI/4 | then PI/2

elseif x<-e y>e | elseif y<-e

if |x|>|y|+e | then 3PI/2

then V | else ORIGIN

elseif |x|<|y|-e |

then VI |

else 5PI/4 |

Table A.1: Nonsmooth control law
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Figure A.6: 8 cell configuration of FADM system–the cells mount into a table which

makes it easy to reconfigure them into new arrays. A piece of plexiglass is used

as the manipulated object (so that an observer can see what the cells are doing

underneath) and a black triangle is used to acquire the location of the plexiglass.



167

Figure A.7: FADM Computer Interface: The interace has a continuously updated

screen that shows the user both the video output and where the algorithm is es-

timating the triangle (which is used for feedback) is located. Below the video is

the estimated path of the object as it moves. On the right-hand side the user can

choose the control scheme and select features in the video. For instance, the user

can tell the program the initial location of the cells and the triangle being used for

feedback.
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Region Control Law Region Control Law

I

u1
−(u4 (θ+x−y))+k (θ2+x2+y2)

x+y

u2 kθ

u3
−(u4 (θ+x−y))+k (θ2+x2+y2)

x+y

u4 kθ

II

u1
u2 (θ+x−y)+k (θ2+x2+y2)

x+y

u2 −kθ

u3
u2 (θ+x−y)+k (θ2+x2+y2)

x+y

u4 −kθ

III

u1 kθ

u2
u1 (θ+x+y)−k (θ2+x2+y2)

x−y

u3 kθ

u4
u1 (θ+x+y)−k (θ2+x2+y2)

x−y

IV

u1 −kθ

u2 −u3 (θ+x+y)+k (θ2+x2+y2)
x−y

u3 −kθ

u4 −u3 (θ+x+y)+k (θ2+x2+y2)
x−y

V

u1
u2 (θ−x+y)−k (θ2+x2+y2)

x+y

u2 kθ

u3
u2 (θ−x+y)−k (θ2+x2+y2)

x+y

u4 kθ

VI

u1 −u4 (θ−x+y)+k (θ2+x2+y2)
x+y

u2 −kθ

u3 −u4 (θ−x+y)+k (θ2+x2+y2)
x+y

u4 −kθ

VII

u1 kθ

u2

u3 kθ

u4
u3 (−θ+x+y)+k (θ2+x2+y2)

x−y

VIII

u1 −kθ

u2
u1 (θ−x−y)+k (θ2+x2+y2)

x−y

u3 −kθ

u4
u1 (θ−x−y)+k (θ2+x2+y2)

x−y

Table A.2: List of control laws for regions I-VIII

Figure A.8: Superposition experiment
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Region Control Law Region Control Law

0

u1 kθ

u2
−u1 ((−1+δ) θ+x+y)+k (θ2+x2+y2)

δ θ+x−y

u3 −kθ

u4
−u1 ((−1+δ) θ+x+y)+k (θ2+x2+y2)

δ θ+x−y

π/4

u1
−(−u2+δ(u2+u4)) (θ+x−y)+k (θ2+x2+y2)

x+y

u2 −kθ

u3
−(−u2+δ(u2+u4)) (θ+x−y)+k (θ2+x2+y2)

x+y

u4 kθ

π/2

u1
u2 (δ θ+x−y)+k (θ2+x2+y2)

(1−δ) θ+x+y

u2 −kθ

u3
u2 (δ θ+x−y)+k (θ2+x2+y2)

(1−δ) θ+x+y

u4 kθ

3π/4

u1 kθ

u2
(−u3+δ (u1+u3)) (θ+x+y)−k (θ2+x2+y2)

x−y

u3 −kθ

u4
(−u3+δ (u1+u3)) (θ+x+y)−k (θ2+x2+y2)

x−y

π

u1 kθ

u2 −u3 (δ θ+x+y)+k (θ2+x2+y2)
(−1+δ) θ+x−y

u3 −kθ

u4 −u3 (δ θ+x+y)+k (θ2+x2+y2)
(−1+δ) θ+x−y

5π/4

u1
(−u4+δ (u2+u4)) (θ−x+y)−k (θ2+x2+y2)

x+y

u2 −kθ

u3
(−u4+δ (u2+u4)) (θ−x+y)−k (θ2+x2+y2)

x+y

u4 kθ

3π/2

u1 −u4 (δ θ−x+y)+k (θ2+x2+y2)
(−1+δ) θ+x+y

u2 −kθ

u3 −u4 (δ θ−x+y)+k (θ2+x2+y2)
(−1+δ) θ+x+y

u4 kθ

7π/4

u1 kθ

u2
−(−u1+δ(u1+u3))(θ−x−y)+k (θ2+x2+y2)

x−y

u3 −kθ

u4
−(−u1+δ(u1+u3))(θ−x−y)+k (θ2+x2+y2)

x−y

Table A.3: List of control laws for regions 0− 7π
4
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A Note on Notation

This note attempts to introduce a systematic and consistent formalism. However,

I should note that my attempts to do so have been thwarted over time by both

the overwhelming number of things needing notation in this thesis, the number of

relatively disjoint theories all with their own notations, and this author’s inability

to create a suitable way to combine them. Therefore, the reader may notice that

the notation used in this thesis differs considerably even from some of the articles

on which this thesis is based. Nevertheless, I try to adapt as standard a notation

as possible. I encourage the reader to use the symbol index below. In general,

I will denote sets by upper case letters (A and Ω), and elements of said sets by

lower case letters (a, ω). I will deviate from this only when I need to distinguish

between subsets as a domain (say A ⊂ Ω) and a subset of a function space (i.e.

a set-valued map f : A → B). In general I will attempt to use the convention of

making set-valued maps bold face (f ,g). Sadly, even this convention does not always

seem consistent, because I will refer to the flow of a differential inclusion ẋ ∈ f(t, x)

by Φf and in the case f is single valued (i.e. f = f) I will refer to it as Φf . The

problem is that in both cases the map Φ· is a set valued map from R to Q. So, rather

than break even further from traditional convention, I accept lack of perfection in

consistency.

As much as possible, I will use the convention of stating theorems, lemmas,

and corollaries in the form Theorem 1.1 (Author [year]) so that the references

will be clear. The only exception to this will be the classical results found in the

introduction where sources and references are already made explicit, and, of course,

the results which are new in this thesis.
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General Notation

R The real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Q The rational numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

N The natural numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

a.e. almost everywhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

a.a. almost always . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Ck Differentiable k times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

[·, ·] The Lie bracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

< ·, · > The symmetric product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

TQ The tangent space to a configuration manifold . . . . . . . . . . . . . . . . . . . . . . . . . 12

Q A configuration manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

∆q Vector field distribution at a point q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

γ Set valued differential inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

D Dissipation functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

λi Lagrange multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Supervisory Control

σe(t) Environmental switching in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

σc(t) Controller switching in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

τd Upper bound on time delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Nσ(t0, t) Number of switches σx experiences in time (t0, t) . . . . . . . . . . . . . . . . . . . . . .125

p∗ The actual process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

Ap Matrix describing dynamics for plant p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

εµ Monitoring signal constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

µp Monitoring signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

P Uncertain process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

C Candidate controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

E Multi-estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

M Monitoring signal generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
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S Switching logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

D Environmental signal generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
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[18] W.L. Chow. Über systeme von linearen partiellen differentialgeichungen erster

ordinung. Math Ann., 117:98–105, 1939.



175

[19] F.H. Clarke. Optimization and Nonsmooth Analysis. SIAM, 1990.

[20] F.H. Clarke, Y.S. Ledyaev, R.J. Stern, and P.R. Wolenski. Nonsmooth Analysis

and Control Theory. Springer, 1998.

[21] E.A. Coddington and N. Levinson. Theory of Ordinary Differential Equations.

Krieger, 1955.

[22] M. Coutinho and P. Will. The intelligent motion surface: a hardware/software

tool for the assembly of meso-scale devices. In IEEE Int. Conf. on Robotics

and Automation (ICRA), 1997. Albuquerque, New Mexico.

[23] R.W.R. Darling. Differential Forms and Connections. Cambridge University

Press, 1994.

[24] W.P. Dayawansa and C.F. Martin. A converse Lyapunov theorem for a class of

dynamical systems which undergo switching. IEEE Trans. Automatic Control,

44(4):751–760, Apr. 1999.

[25] K. Deimling. Multivalued Differential Equations. Walter de Gruyter, 1992.

[26] M.A. Erdmann and M.T. Mason. An exploration of sensorless manipulation.

IEEE Journal of Robotics and Automation, 4(4), 1988.

[27] A.F. Filippov. Differential Equations with Discontinuous Right-Hand Sides.

Kluwer, 1988.

[28] T. Frankel. The Geometry of Physics: An Introduction. Cambridge University

Press, 1997.

[29] H. Fujita. Group work of microactuators. In International Advanced Robot

Program Workshop on Micromachine Technologies and Systems, pages 24–31,

Tokyo, Japan, 1993.

[30] K.Y. Goldberg. Orienting polygonal parts without sensing. Algorithmica, 143

(2/3/4):201–225, 1993.



176

[31] Luis Goncalves and Enrico Di Bernardo. Software for motion tracking. Devel-

oped at the Caltech Vision Lab, 2000.

[32] B. Goodwine and J.W. Burdick. Controllability of kinematic control systems

on stratified configuration spaces. IEEE Trans. on Automatic Control, 46(3):

358–368, 2000.

[33] S. Goyal, A. Ruina, and J. Papadopoulos. Planar sliding with dry friction. Part

1. limit surface and moment friction. WEAR, 143:307–330, 1991.

[34] S. Goyal, A. Ruina, and J. Papadopoulos. Planar sliding with dry friction. Part

2. dynamics of motion. WEAR, 143:331–352, 1991.

[35] J.P. Hespanha, D. Liberzon, and A.S. Morse. Logic-based switching control

of a nonholonomic system with parametric uncertainty. Systems Control Lett.,

38:167–177, 1999.

[36] J.P. Hespanha, D. Liberzon, A.S. Morse, B.D.O. Anderson, T.S. Brinsmead,

and Franky De Bruyne. Multiple model adaptive control, part 2: Switching.

Int. J. of Robust and Nonlinear Control Special Issue on Hybrid Systems in

Control, 11(5):479–496, April 2001.

[37] J.P. Hespanha and A. S. Morse. Stability of switched systems with average

dwell-time. In Proc. IEEE Int. Conf. on Decision and Control, 1999.

[38] J.P. Hespanha and A.S. Morse. Stability of switched systems with average

dwell-time. Technical report, EE-Systems, University of Southern California,

1999.

[39] I. Kolmanovsky and N.H. McClamroch. Developments in nonholonomic control

problems. IEEE Control Systems Magazine, pages 20–36, December 1995.

[40] P. Krulevitch, A.P. Lee, P.B. Ramsey, J.Trevino J. Hamilton, and M.A.

Northrup. Thin film shape memory alloy microactuators. Journal of Micro

Electro Mechanical Systems, 5(270), 1996.



177

[41] R. Howe K.S.J. Pister, R. Fearing. A planar air levitated electrostatic actuator

system. In Proceedings IEEE Workshop on Micro Electro Mechanical Systems

(MEMS), pages 67–71, Napa Valley, California, 1990.

[42] J.P. LaSalle. Stability theory for ordinary differential equations. J. Diff. Eq.,

4:57–65, 1968.

[43] A.P. Lee, C.F. McConaghy, P. Krulevitch, G.E. Sommargren, and J. Trevino.

Electrostatic comb drive for vertical actuation. In Proceedings of Microma-

chined Devices and Components, SPIE 1997 Symponsium on Micromachining

and Microfabrication, volume 109, Austin, Texas, 1997.

[44] A.D. Lewis. When is a mechanical control system kinematic? In Proc. 38th

IEEE Conf. on Decision and Control, pages 1162–1167, Dec. 1999.

[45] A.D. Lewis. Simple mechanical control systems with constraints. IEEE Trans-

actions on Automatic Control, 45(8):1420–1436, 2000.

[46] A.D. Lewis, R.M. Murray, and J.W. Burdick. Nonholonomic mechanics and

locomotion: the snakeboard example. In Proc. IEEE Int. Conf. on Robotics

and Automation, pages 2391–2397, May 1994.

[47] D. Liberzon and A.S. Morse. Basic problems in stability and design of switched

systems. IEEE Control System Mag., 19(5):59–70, 1999.

[48] J. Luntz and W. Messner. Closed-loop stability of distributed manipulation.

In Proc. American Control Conference (ACC), 2000.

[49] J. Luntz, W. Messner, and H. Choset. Stick-slip operation of the modular

distributed manipulator system. In Proc. American Control Conference (ACC),

1998.

[50] J. Luntz, W. Messner, and H Choset. Velocity field design on the modular

distributed manipulator system. In Proceedings, Workshop on the Algorithmic

Foundations of Robotics, 1998.



178

[51] J. Luntz, W. Messner, and H. Choset. Open loop orientability of objects on ac-

tuator arrays. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), 1999.

[52] J. Luntz, W. Messner, and H. Choset. Closed-loop distributed manipulation

using discrete actuator arrays. In Workshop on the Algorithmic Foundations

of Robotics (WAFR), 2000.

[53] J. Luntz, W. Messner, and H. Choset. Closed-loop operation of actuator arrays.

In Proc. IEEE Int. Conf. on Robotics and Automation, 2000.

[54] J. Luntz, W. Messner, and H. Choset. Distributed Manipulation, chapter Dis-

creteness Issues in Actuator Arrays. Kluwer Academic Publishers, 2000.

[55] H. Fujita M. Ataka, A. Omodaka. A biomimetic micro motion system. In Trans-

ducers - Digest International Conference on Solid State Sensors and Actuators,

pages 38–41, 1993. Pacifico, Yokohama, Japan.

[56] M.D.P. Monteiro Marques. Differential Inclusions in Nonsmooth Mechanical

Problems. Birkhäuser, 1993.
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