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ABSTRACT

A two-dimensional mathematical model of cochlear mechanics is
developed, based on classical assumptions. The basilar membrane is
represented by an acoustic admittance function with longitudinal coup-
ling only through the cochlear fluid. The fluid is assumed to be
inviscid and incompressible and all motion in the cochlea is assumed to
be linear. The integral equations of Allen (1977) and Siebert (1974)
are presented for the infinite cochlea and shown to be Fourier transforms
of each other. A two-dimensional finite difference scheme based directly
on the model equations is shown to be as accurate as Allen's published
solutions and requires only 1/100 the computation time. Numerical
solutions are obtained by this direct method for parameters chosen to
fit the cochlear map. Traveling-wave solutions are obtained even when
the stapes is motionless and the cochlear walls vibrate instead. It
is suggested that the initial 9 db/octave slope of the magnitude of the
basilar membrane displacement could provide a mechanism for encoding
Toudness. A new one-dimensional model of the cochlea is proposed which
assumes the properties of the basilar membrane to vary slowly along the
length of the cochlea. The one-dimensional model provides a link
between the two-dimensional model and other one-dimensional, long-wave

models.
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1.  INTRODUCTION

The cochlea is the inner-ear structure in which mechanical vibra-
tions, representing sound information, are transformed into the neural
impulses received by the brain. Evidently, the mechanical structure
of the cochlea plays a role in processing the sound signals before they
reach the brain. The cochlea is a spiraling tunnel through the temporal
bone with a radius of about 1 mm and a length of about 35 mm. Experi-
mental observation of motion within the cochlea is very difficult due
to the small amplitudes of vibration and the inaccessibility of the
cochlea itself. Hence, there is a need for mechanical and mathematical
models to complement our understanding of the function of the cochlea.
The purpose of this thesis is to present some new developments in the
mathematical modeling of cochlear mechanics. These developments are,
basically, 1) a Fourier transform fe]ation between previously published
integral equations, 2) a direct numerical procedure for obtaining
solutions to a two-dimensional cochlear model, and 3) a one-dimensional
model based on a "slowly varying" approximation.

The foundation of this thesis is a simple two-dimensional model
of the cochlea. This model is not new, but has evolved through the
work of Lien and Cox (1973), Siebert (1974), Lesser and Berkley (1972),
and Allen (1977). The model represents the cochlea as a rectangular
region filled with an inviscid, incompressible fluid.

Chapter 2 will present a more detailed description of the cochlea

and what is known about its function. In chapter 3 the mathematical
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equations for the two-dimensional model will be formulated. Chapter 4
presents two integral equations, derived from the model equations, which
have been used in an attempt to find solutions to the two-dimensional
model. Chapter 5 deals with choosing parameters for the mathematical
model which are based on the physical cochlea. Numerical solutions
obtained directly from the model equations are presented in chapter 6.
A description of the numerical procedure will be found in Appendix A.
A one-dimensional model based on the assumption of slowly varying
properties within the cochlea is presented in chapter 7. Included in
chapter 8 is a discussion of the fidelity of the mathematical modeling
and the relation of results obtained to theories and experiments in

hearing.



2.  BACKGROUND INFORMATION

The central concern of the mathematical models presented in this
thesis is a description of the basilar membrane motion within the human
cochlea. The purpose of this chapter is to provide a proper context
for the remainder of the thesis: first, a brief description of the
anatomy and function of the ear with emphasis on the structure of the
cochlea (Wever.and Lawrence, 1954), and second, a survey of some relevant

hearing research.

2.1 Anatomy of the ear

The anatomy of the ear is usually divided into three regions: the
outer ear, the middle ear, and the inner ear. The outer ear consists
of the pinna and the external auditory meatus. The pinna is the expanded
flap of skin on the side of the head which is commonly referred to as
the ear. The meatus is a short curved tube about 2.5 cm in length which
leads inward from the pinna to the eardrum. The middle ear apparatus
lies in an air-filled cavity,kthe tympanic cavity, just beyond the ear-
drum in the mastoid portion of the temporal bone. The vibrations of |
the eardrum are transmitted through the middle ear by means of three
small bones: the malleus, the incus, and the stapes. A passageway from
the middle ear to the pharynx, called the Eustachian tube, allows the
air pressure to be equalized across the eardrum. Finally, the inner ear
consists of the cochlea, the vestibule, and the semicircular canals

which lie in the bony labyrinth deeper in the petrous part of the
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temporal bone. Of these, only the cochlea is concerned with hearing.
The other parts of the inner ear serve the sense of spatial orientation.
The principal parts of the ear are shown in Fig. 1.

The cochlea is the primary receptor organ for hearing. It is coiled
like a snail shell in a flat spiral of two and a half turns. The
cochlear chamber is divided into an upper duct and lower duct partly by
a thin bony shelf called the spiral lamina and partly by the cochlear
partition. The partition stretches across from the spiral lamina to
the spiral ligament which attaches it to the outer wall. The upper
duct is called the scala vestibuli, because it is nearer the vestibule.
The lower duct is called the scala tympani, because it is nearer the
tympanic cavity. The cochlear partition is itself a duct, the scala
media, bounded by the stiff gelatinous basilar membrane on one side
and the more compliant Reissner's membrane on the other. A cross-
section of the cochlea which shows the three scalae appears in Fig. 2.

The scala vestibuli and scala tympani contain a liquid caT]ed
perilymph. They communicate with one another through an opening called
the helicotrema, which is located at the apical end of the cochlea. The
partition is filled with a different liquid, the endolymph, which provides
nutrients to the sensory cells.

At the basal end of the cochlea, the scala vestibuli communicates
with the vestibule. Located in the outer wall of the vestibule is the
oval window, which is ﬁovered by the footplate of the stapes. A
corresponding opening in the bony outer wall of the scala tympani, the
round window, is covered simply by a thin membrane.

The basilar membrane and bony shealf both terminate at the helico-
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trema. The basilar membrane is about 35 mm in length and tapers from

a width of about 0.08 mm at the base to about 0.5 mm at the apex. The
area of the helicotrema 1is about 0.15 sq. mm.

The process of hearing begins with an acoustic signal in the
vicinity of the ear which propagates through the air as a wave of alter-
nating compression and rarefraction. The variation of air pressure in
the external auditory meatus sets the eardrum in vibration. These
vibrations are transmitted through the malleus and the incus to the
footplate of the stapes and produce a displacement of the fluid in the
region of the footplate. Very slow vibrations of the stapes result in
a to-and-fro movement of fluid between the scala vestibuli and the
scala tympani through the opening at the helicotrema. Higher frequency
vibrations are transmitted through the yielding coch]ear partition. In
either case, the volume displacement at the round window is equal to
that initiated by the stapedial footplate (von Bekesy, 1960).

Within the cochlear partition and lying on the basilar membrane is
the organ of Corti containing the final receptor cells, the hair cells.
These cells are innervated by nerve fibers that originate in the spiral
ganglion a little distance toward the axis of the cochlear spiral. The
motion of the cochlear partition stimulates the hair cells by means of
the cilia, or tufts of hair, growing on each hair cell. These hairs,
at least those of the outer hair cells, are believed to be attached to
the tectorial membrane (see Fig. 2). The relative motion between the
basilar membrane and the tectorial membrane will bend these tiny hairs
causing an electrical pulse to be sent to the brain via one of the

30,000 nerve fibers which innervate the cochlea {Schroeder, 1975).
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There is an abundance of data on the nerve firings recorded in single
nerve fibers of the auditory nerve. The transformation from basilar

membrane motion to neural firing is unknown.

2.2 History of experiments and models

The early Greeks, in the fifth century B.C., conceived of sounds
much as we do today, as vibratory movements through the air. They were
aware that hearing is the result of the passage of these vibrations into
the ear, but had little understanding of the hearing process. Little
progress was made in the theory of action of sound until the sixteenth
century A.D., when the great anatomists of that age brought to 1ight
many hidden parts of the ear. Our modern conception of the anatomy of
the ear is a product of many centuries of inquiry (Wever and Lawrence,
1954).

Helmholtz (1954) did considerable physiological work on the anatomy
of the ear. Based on his observations, Helmholtz proposed a resonance
theory of hearing which first appeared in 1863. The He]mho]ti resonance
theory considers the éoch1ear partition as a series of tuned resonators
with high tones located at the base and low tones at the apex. In
response to a single tone, the cochlear partition would vibrate only
in the restricted region which resonates with that particular tone. The
analogy is that of a piano, with damper raised, whose strings will vibrate
selectively in response to single acoustic tones. This resonance theory
had to be revised with the advent of von Bekesy's observations of motion
of the cochlear partition.

Much of what we know about the functioning of the ear is due to

experimental studies of G. von Békésy. von Bekesy's observations of
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human cadavers, animals, and models began in 1928 and earned him a Nobel
prize in 1961. von Békésy devised a technique for measuring the dis-
placement of the cochlear partition in respbnse to a sinusoidal tone.

He observed cochleas from animals and fresh human cadavers under a
microscope with stroboscopic illumination. Fig. 3 shows a sample of von
Bekésy's experimental results from a human cochlea. von Békésy was

able to observe traveling waves on the basilar membrane; waves that
travel up the cochlea with progressively shorter wavelengths and
increasing amplitude. These waves reach a maximum at some positions

and then fall away rapidly. The location of the displacement maximum

or characteristic place, varies with frequency as in the resonance theory.
High frequencies travel only a short distance on the basilar membrane,
while low frequencies travel further toward the helicotrema. von Békésy
observed that, at least at low frequencies, Reissner's membrane vibrates
in phase with the basilar membrane, that is, the whole scala media
vibrates as a single partition. He also found curious vortex movements
of the cochlear fluid in the vicinity of the maximum amplitude. He
believed that these eddies also played a significant role in the
excitation of the hair cells. von Békesy's experimental results provided
a substantial challenge to those who would try to explain the behavior
of the cochlea with mathematical models.

Peterson and Bogert (1950) derived a Tong-wave model based on von
Békésy's observations. They assumed that waves propagated in the cochlea
were long compared to the cross-sectional diameter and made an analogy
to waves on an electrical transmission line. They determined the stiff-

ness of the basilar membrane from von Békésy's test-hair measurements
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and used the fluid mass inside the cochlear duct as the partition mass.
They assumed elements of the basilar membrane to have no coupling in
the longitudinal direction. Neglecting both fluid viscosity and
partition damping, they obtained a numerical solution for the basilar
membrane motion.

Ranke (1950) believed that waves in the cochlea were long in the
basal region and short near the characteristic place. He developed a
short-wave model in which he assumed the wave length to be short
throughout and the fluid to be incompressible and inviscid. He compared
his results to those of von Békésy.

The next significant step in the direct observation of the basilar
membrane displacement was the introduction of the Mossbauer technique
by Johnstone and Boyle (1967). This technique was refined by Rhode
(1971) who was able to measure both amplitude and phase of basilar
displacement in Tiving squirrel monkeys. An example of Rhode's experi-
mental results is shown in Fig. 4. Rhode's results inspired new mathe-
matical models of cochlear mechanics.

Lien and Cox (1973) developed a quite elaborate three-dimensional
cochlear model based on hydrodynamical equations. However, in order to
find solutions to the basilar membrane displacement, they were forced to
make simplifications which reduced the model to one dimension. They
showed that Tongitudinal coupling in the basilar membrane was insignifi-
cant for tﬁe parameters chosen.

Schroeder (1973) presented a simplified Tong-wave one-dimensional
model with an electrical transmission line analogy. By assuming that

the place of the basilar membrane motion scaled with frequency, he was
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Rhode's experimental results using the Mossbauer technique
(a) Amplitude of vibration of the malleus

and the basilar membrane versus frequency for a sound level pressure

of 80 db SPL.
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(b) and (c) Amplitude and phase of the basilar membrane

From Rhode (1971).
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able to obtain analytical expressions for amplitude and phase slopes.

Siebert (1974) developed a two-dimensional model assuming an
incompressible, inviscid fluid. His model took the form of an integral
equation which he related to the long-wave model of Zwislocki (1965)
and the short-wave model of Ranke (1950). Siebert made a short-wave
approximation before finding solutions to his model.

Steele (1974) was concerned with structural features within the
cochlea. He modeled the basilar membrane as a tapered plate immersed
in a fluid and analyzed the fluid-elastic interaction for various
approximations.

Zweig, Lipes, and Pierce (1976) improved on Schroeder's model by
using a WKB approximation on the transmission line equations. They
compared plots of numerical solutions with data due to Rhode.

Inselberg and Chadwick (1976) developed a two-dimensional model
with viscous, incompressible fiuid. They represented the basilar
membrane as a beam with only Tongitudinal stiffness and obtained
numerical solutions.

Allen (1977) was able to solve, numerically, the integral equation
which was a kéy part of Lien and Cox's model. Allen presented numerical
results for the two-dimensional cochlear model filled with an inviscid,
incompressible fluid. His results appear to be the most accurate
mathematical representation of cochlear mechanics yet published. Fig. 5
compares results of Zweig's model and Allen's model with experimental
data of Rhode.

Non-linearities in the basilar membrane motion are also of interest.

The basilar membrane displacement was observed by von Békésy to be a
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linear function of the Toudness of the stimulus. Rhode and Robles (1974)
observed non-linearities in the displacement for the living squfrre1
monkey, which were not present when the monkey died. Other evidence
for non-Tinearities in hearing comes from psychoacoustic experiment. A
non-linear loss mechanism was proposed by Kim, Molnar, and Pfeiffer (1973)
and found to account for the known non-linearities. Hall (1974) used a
non-linear damping parameter to match the non-linearities observed by
Rhode (1971).

There are other sources of experimental data which depend indirectly
on cochlear mechanics and should eventually be taken into consideration.
Most important is the psychoacoustic evidence of hearing perception.

The ear is remarkable in its ability to distinguish frequency differences
and operate over a very wide dynamic range. Other experimenters have
provided voluminous measurements of the activity of the auditory nerve

in response to various acoustic stimulations. There is electrical
activity in the cochlea other than that of the nerve cells; measurement
of cochlear potentials provides another source of expérimentaT data.

For further discussion of these aspects of hearing research, the reader

is referred to Zwicker and Terhardt (1974) or Schroeder (1975).
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3.  THE TWO-DIMENSIONAL MATHEMATICAL MODEL

A two-dimensional mathematical model of the cochlea will be developed
from a consideration of the principal physical features of the human
cochlea. The objective of this model is tc provide a means of solving
for the basilar membrane displacement when the stapes is vibrating with
a sinusoidal motion. The entire cochlear partition is assumed to move as
the basilar membrane. The mathematical development follows Peterson
and Bogert (1950), Lien and Cox (1973), Siebert (1974), and Allen (1977).

As a first step in simplifying the cochlear structure, we consider
the cochlea to be extended in a straight line, as shown in Fig. 6,
instead of being curled into a spiral. The cochlea is coiled in most
mammals, providing a more rigid structure, but the coiling arrangement
apparently has no effect on the propagation of the acoustic wave in the
cochlear fluid (Lien and Cox, 1973). Coordinate axes are also introduced
in Fig. 6. The x-axis is perpendicular to the basilar membrane, the
y-axis runs longitudinally along the cochlea, and the z-axis runs
transversely across the cochlea.

The next simplification is to consider only the x and y-dimensions
of the cochlea and assume there is no variation of any quantity in the
z-direction. A two-dimensional representation of the cochliea is shown
in Fig. 7.

The fluid which fills the cochlea is assumed to be incompressible
and inviscid. The fluid will pass freely through the helicotrema as it

does in the actual cochlea. The basilar membrane is an elastic partition
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The cochlea 1is uncoiled and approximated by two fluid-filled, rigid-
walled compartments separated by the basilar membrane. From Zweig et

al. (1976).
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Figure 7. Two-dimensional representation of the cochlea. Two fluid-
filled canals, the scala tympani and the scala vestibuli, are bounded
by an upper and Tower rigid wall and separated by the basilar membrane.
The height of each canal is H and its length is L. The stapes and
round window vibrate out of phase with each other and the helicotrema
provides a connecting passage between the scalae.
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between the two scalae which will be deformed by a pressure difference
across it. The round window is assumed to be displaced by an amount
equal to the displacement of the stapes in response to a sound signal.

The upper and lower walls in Fig. 7 represent the bony walls of
the cochlea and will be assumed to be perfectly rigid. The height, H,
of both scalae will be the distance from the basilar membrane to the
rigid wall. The length, L, will be the distance from the stapes to
the helicotrema.

These basic assumptions are the classical ones (Siebert, 1974 and
Allen, 1977) and a discussion of their validity will be deferred to
section 8.1. With these assumptions it will be possible to express
our model equations entirely in terms of the pressure difference across
the basilar membrane. We will proceed to discuss the fluid dynamics

in such a two-dimensional region.

3.1 Cochlear hydrodynamics

The approach will be to specify the pressure P(x,y,t) and vector
velocity V(x,y,t) at each point in the fluid. The fluid is assumed to
be incompressible, inviscid, and homogeneous with volume density, op.
Since every differential volume of fluid is incompressible, we have, by

continuity
v - V(x,y) = 0. (3.1)
From conservation of momentum applied to the differential volume

dv
P (oy) = - wPlxy). (3.2)
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Eq.(3.2) is our equation of motion; the time derivative is the substan-
tial or material derivative (Huebner, 1975). If the velocity has an

x-component u(x,y,t) and a y-component v(x,y,t) then

dv. v v v

-— = = % = 4 y-=

t ot Yox " Vay - (3.3)
Since the velocity of the fluid in the cochlea is very small under
normal hearing conditions, we will linearize the equation of motion
by assuming that

v oy

dt ot . (3.4)

In this case, We can take the divergence of both sides of eq.(3.2) to

obtain
v2P(x,y) = 0, (3.5)

that is, the pressure in the fluid satisfies Laplace's equation. Note
that eq.(3.5) depends on our assumptions of incompressibility and
linearity, but not on our inviscid assumption.

Any dependence on time will be simplified by considering only
sinusoidal displacements of the stapes. Only single frequency tones
will be considered and the frequency will be varied as a parameter, w.
To implement this assumption of harmonic time dependence, we let P(x,y)

and V(x,y) be complex functions such that

P(x,y,t) = Re[P(x,y)e*"]



- 20 -

V{x,y,t) = Re[y_(x,y)eiwt] (3.6)

In the remainder of the thesis P and V will refer to the complex
functions of pressure and velocity. Our basic fluid egs.(3.1) and (3.2)

can now be written as

continuity:

au Vv

i . +’— . = 0 3.7

3X(x y) ay(x y) (3.7)
motion: 5P . .

gg(x,y) = ~jwpu(X,y) , (3.8)

5P i

5&'(’(’)’) = -TwpVv(X,y) (3.9)

3.2 Mathematical formulation

We will use the hydrodynamic equations of section 3.1 to describe
the pressure in each scala and then use the pressure difference across
the basilar membrane to formulate our model equations. Let Pv(x,y)
describe the pressure of the fluid in the scala vestibuli and let
Pt(x,y) describe the pressure in the scala tympani. We assume that
each scala has the same effect on the basilar membrane and consider

the pressure distributions to be mirror images
P (%:y) = - PiX,-y). (3.10)

This assumption is substantiated by von Békésy's observation that the
round window vibrates exactly out of phase with stapedial footplate

and with equal volume displacement.
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From eq.(3.5) we have in the cochlear fluid

VZPV(x,y) = vat(x,—y) = 0. (3.11)

Let ug be the velocity of the stapes and u, be the velocity of the
round window. We assume the velocity of the fluid at these two boundaries
is entirely in the x-direction. In order to normalize our solutions to

unit displacement at the stapes for all frequencies, we set

ug = -u. = -1w. (3.12)
From eq.(3.8) we have
BPV aPt )
'5')(_(03}’) = - W(o:"y) = -wop. (313)

Let vb(x) be the velocity of the basilar membrane. We assume that
the basilar membrane has only a y-component to its velocity. From
eq.(3.9)

aP BPt

sy!(x,o) = - §y~(x,0) = -impvb(x). (3.14)

Along the rigid upper and lower walls, the y-component of the

velocity must be zero. Hence, from eq.(3.9)

X,-H) = 0. (3.15)

The helicotrema is the connecting passage between the scala

vestibuli and the scala tympani. We will require the pressures to be
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equal across the helicotrema,

PV(L:.Y) = Pt(L’—y). (3-16)

We will proceed to define Pd(x,y) as the "pressure difference"

between the scala vestibuli and the scala tympani,
Pd(Xa.V) = Pt(X:"Y) - pv(XsY) 1) (3-17)

for 0 < x <L and 0 <y < H. This pressure difference will create a
force acting on the basilar membrane in the positive x-direction. We
will use Pd(x,y) to define our model equations. Egs.(3.11) and (3.13)

to (3.16) can be expressed in terms of Pd(x,y) as

vad(x,y) = 0 (3.18)

BPd

3% (0.Y) = 2u%p (3.19)

BPd

Sy—‘(x,o) = Ziwpvb(x) (3.20)

BPd

'5-}7— (X,H) =0 (3.21)
Pd(L,y) = 0. (3.22)

We could now solve for Pd(x,y) if we could express v in terms of
Pd' In order to accomplish this task we need to characterize the
complex structure of the basilar membrane by an acoustic admittance Y(x),

which can be determined by experiment. Movre specifically, we need an
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expression of the form

vb(x) = Y(x)Pq(x,0). (3.23)

In order to obtain this relation, we observe that the force which causes
the basilar membrane to deflect at any point is given by the pressure

difference between the two scalae at that point. Thus,
t
Pd(x,O) =M T ¢t va + K/ﬂ‘vbdt (3.24)

where M(x), R(x), and K(x) are the mass, damping, and stiffness of the
basilar membrane per unit area. The fundamental assumption underlying
this equation is that an element of the basilar membrane dx have no
direct mechanical coupling to neighboring elements (Peterson and Bogert,
1950). In accordance with our assumption of harmonic time dependence,

eq.(3.24) becomes

Pd(x,O) = (fuM + R + K/im)vb(x). (3.25)

From which we define our acoustic admittance function as

Y(x) = (ieM + R + K/iw) . (3.26)
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3.3 Summary of model equations

In summary, our two-dimensional mathematical model is based on the
following equations.

In the fluid, 0 < x <L and 0 <y < H,

Vde(x,y) = Q. (3.27)

At the stapes, x =0and 0 <y < H,

an )
g(— (O,Y) = 2w p. (3-28)

Along the basilar membrane, 0 < x <L andy =0,

— (x,0) = Ziwa(x)Pd(x,O). (3.29)

Along the upper wall, 0 <x < L andy =H,

gy—‘ (X,H) = 0. (3.30)
At the helicotrema, x =L and 0 <y < H,

Pd(L,y) = 0. (3.31)

When these equations have been solved for the pressure difference
across the basilar membrane Pd(x,O), we can find the displacement of

the basilar membrane by

D(x) = vb(x)/iw = Y(X)Pd(X,O)/iw. (3.32)
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Our model is normalized to unit displacement at the stapes, so D(x)
represents the ratio of basilar membrane displacement to stapes displace-

ment. Numerical solutions for D(x) will be presented in section 6.1.
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4. THE INTEGRAL EQUATIONS
FOR THE INFINITE COCHLEA

One way to approach a solution of the model equations presented
in chapter 3 is to reduce the problem to one variable by incorporating
the y-dimension into an integral equation. Two ways of developing inte-
gral equations will be presented in this chapter for the simplified case
of an infinitely long cochlea. The boundary conditions at the stapes
and at the helicotrema are ignored in the infinite cochlea, so that
the relation between the integral equations can be shown more easily.
These boundary conditions can be re-introduced by taking a second
derivative with respect to x of the final equation. In this chapter
we will define P(x) as the pressure difference across the basilar

membrane

P(x) = Pd(x,O). (4.1)

4.1 Green's function approach

An integral equation is desired of the form

P(x) ==2iup [ G(x|£)vy ()de, (4.2)

where G(x|g) is a Green's function (Weinberger, 1965). Physically,
G(x|g) is the velocity potential at x due to a unit velocity source at £.
Consider that vb(x) = 0 on the basiTar membrane except that

vb(g) = 1. The y-dimension boundary conditions will be met by
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constructing an appropriate array of image sources in the * y-direction.
The two boundary conditions, v (x,H) = 0 for all x and v (x,0) = 0 for
all x # g, require images to extend infinitely in the * y-direction,
each separated by a distance 2H. This array of image sources is
illustrated in Fig. 8.

The velocity potential on the basilar membrane due to a single
velocity source at y = 2nH and x = &, we will call gn(x,g). The
Green's function for a single velocity source resting on a single

rigid wall will be (Allen, 1977)

1}

g,(x]g) = - %; 1n[ (x-£)2 + (2nH)2 ] (4.3)

The total Green's function for the infinite cochlea will be the summa-

tion over all images:

6' (x]£) = - 3= Zw: m[ (x-£)2 + (2nH)2 ] (4.4)

N=-o

A modification to the Green's function is still required. The summation
does not converge, but can be separated into a convergent part and a
divergent part which is constant, independent of x

[ee]

' 1 ‘? X=-£ 2 .
G'(x|g) = - = In|x-g| + 2 In|l + §HH] +21In(2nH) ; (4.5)
n=1

The last term dinside the brackets can be dropped, since it is independent

of x. After replacing the sum of the logarithm by a logarithm of a
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H Upper wall

Basilar membrane

Y

L

Figure 8. The velocity source resting on the basilar membrane at the
point x = g, with some of the images used to meet the boundary conditions
of a rigid upper wall and rigid basilar membrane. The images extend
infinitely in the = y-direction. The upper wall and basilar membrane
extend infinitely in the + x-direction.
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product, our modified Green's function becomes

i o P

n=1

G(x]&)

-%1n{sinh(-§g[x—gf]}’ (4.6)

where the infinite product is replaced by the hyperbolic sine function
(Gradshteyn and Ryzhik, 1965).
Integrating the velocity source over the entire basilar membrane

gives the desired integral equation

=]

P(x) = gif@]f.1n [sinh{%ﬁ}xfg}]] Y(g)P(g)de, (4.7)

where vb(g) has been replaced by the product of the basilar membrane
admittance and the pressure difference according to eq.(3.23). The
derivation of this equation follows the approach of Allen (1977) and
Sondhi (1977). The stapes and the helicotrema boundary conditions
are re-introduced by taking a second derivative of this integral
equation with respect to x. When this is done, the resulting equation
is a very good approxfmation to the two-dimensional model of chapter 3.
The error is significant only for the pressure near the stapes and
helicotrema boundaries.

The exact Green's function for the finite cochlea can be found
in the same manner and can be expressed in terms of elliptic functions.

Allen was able to solve numerically the integral equation, eq.(4.7),
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modified for a finite length cochlea. An example of his numerical solu-

tion appears in Fig. 5.

4.2 Fourier transform approach

Another way to incorporate the y-dimension into an integral equation
was published by Siebert (1974). The approach is to consider the travel-
ing wave in the cochlea in terms of its sinusoidal components. We will

define the spatial Fourier transform of P(x) as

, 00

p(w) f P(x)e” "Xdx. (4.8)

In order to satisfy Laplace's equation in the fluid and the upper wall

boundary condition, we require that

o

Py(xsy) = %;-J{.EEEﬁLHLXZEQ eiuxp(u)du- (4.9)

cosh pH

[eo]

By applying the boundary condition on the basilar membrane, we have
2iwpY(x)P(x) =i%;./r1;tanh;ﬁieTuXp(u)du. (4.10)

Or by taking the Fourier transform of both sides of eq.(4.10), we have

©0 [oo]

~TuX g, =~2iup i
J( P(x)e ""dx = S oRTm Y(x)P(x)e™ 'Wdx. (4.11)
Siebert (1974) derived eq.(4.10) (modified for a finite cochlea)
and noted its relationship to the long-wave and short-wave cochlear

models, as well as the truncated Fourier series of Lesser and Berkley
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(1972). This integral equation is closely related to the one-dimensional

model of chapter 7.

4.3 Comparison of the integral equations

The two integral equations describe the same model of the cochlea
and, hence, must be equivalent if they are correct. With slightly
modified notation:

Allen's equation:

p(x) = Zluo lm(sinh?%[x[] } * Y(x)P(x) (4.12)

m

Siebert's equation:
f[P(x)] —Heo . [Y(X)P(x)] (4.13)

where * denotes convolution and f[ - ] denotes a spatial Fourier trans-

form. Introducing the second derivative of P(x) with respect to x

into both equations gives

%—i%x) = /21,;”" [g;zgz Tn Sinhg%IXI} * Y(x)P(x) (4.14)
f[-f%(x)} - %ﬁ’-ﬁ%m [Y(X)P(X)] (4.15)

Eq.(4.15) is the Fourier transform of eq.(4.14) provided that

1 d2 s T _ H
f{;&? In S"ll"mZH[X!] = m (4.16)
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We will proceed to verify eq.(4.16). First, note that

1 d? ceom g o d2 i o]
7 axz Insinhoglx| = o igplx| + = n _1—exp[- ﬁ[xl}_]
_1 142 . T w0 ]
=g 8(x) + = = 1n _1~exp[— FIX!J_ (4.17)

where §(x) is the Dirac delta function. Substituting eq.(4.17) into

eq.(4.16) and using the properties of the Fourier transform

1 d? . 1 1
][[?H—ZZ Tn s1nh—2%|xl]= il T fl:m[l-eXP(' ’;HXIH]
- %_ - £ uzﬁ n [1—exp{— ﬁ- X H cosuxdx
1_2 5 L m
H™ %" ) 2HuZ ~ 2u tanh o
= B
" utanh uH ° (4.18)

Hence, the equivalence of Allen's equation and Siebert's equation is
demonstrated. Evaluation of the integral in eq.(4.18) may be found

in Gradshteyn and Ryzhik (1965) eq.4.383.2.



5.  FITTING THE EXPERIMENTAL DATA

Because our mathematical model was derived from physical principles,
its parameters can be related directly to meaningful physical properties
of the cochlea. The relationship is not completely satisfying, partly
because of the many simplifying assumptions and partly due to the
sparsity of physical measurements available. Our choice of parameters
will be presented in this chapter and numerical solutions for the

displacement of the basilar membrane in chapter 6.

5.1 Physical dimensions

Our model reduces the complex physical structure of the cochlea
to two parameters, the length L and height H. According to von Békésy
(1960), the average length of the cochlea is 35 mm and the average
height of the canal is 1 mm. These are the parameters we will use for
our numerical solution. The more significant of these two parameters
is the height. The height represents the vertical djameter of the
roughly circular canal. The solutions of our mathematical model are
much more sensitive to the height of the canal than to its length.

The density of the cochlear fluid is approximately the same as

water. Hence, we choose p = 1 gm/cm3.

5.2 The admittance function

In section 3.2 we made the assumption that the velocity at a given
point on the basilar membrane is proportional to the pressure difference

at that point. With this assumption we are able to incorporate the
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complexity of the entire cochlear partition into an admittance function,

Y(x). The admittance has the following form
Y(x) = [daM(x) + R(x) + K(x)/iw ]"? (5.1)

where M(x), R(x), and K(x) are the mass, damping, and stiffness of the
basilar membrane per unit area and w is the radian frequency of vibration.

Our choice for the mass, damping, and stiffness is the following

M(x) = 0.15 gm/cm?
R(x) = 200 dyn-sec/cm3
= 10%-2X% 3
K(x) = 10% dyn/cm (5.2)

Qur justification for this choice comes from a consideration of some
experimental measurements of von Békésy. Our first interest was to
approximate the cochiear map shown in Fig. 9.

The cochlear map shows the location of maximum activity on the
basilar membrane due to a given sinusoidal tone. von Békésy's measure-
ment of the location of maximum displacement is represented by the
open circles. Localization from hearing loss measurements is repre-
sented by a dashed 1ine. The "resonance" of our admittance function
was chosen so that

1 (Kl% -
f(x) =5 [ﬁ} 22 1.3 x 10% X Hz. (5.3)

If this function were plotted on Fig. 9, it would be a straight line

which would lie on top of the dashed 1ine. Instead, we plot the location
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Figure 9. The cochlear map. Comparison of localization of tonal action
on the basilar membrane. The open circles represent the direct obser-
vation of von Békésy, the dashed Tine was derived from measurement of
hearing loss, and the solid circles are the results of our two-dimen-
sional model. Adapted from von Bekésy (1960).
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Figure 10. Ratio between the volume displacements of the stapes and the
maximum amplitude of the cochlear partition as function of frequency.
The open circles are the results of von Békésy's measurements. The
closed circles are the results of our two-dimensional model assuming

the cross-sectional area of scala vestibuli to be 1.5 sq. mm. Adapted

from von Békésy (1960).



- 36 -
of the maximum displacement obtained by our numerical solution. This
is represented by the solid circles in Fig. 9. The complete numerical
solutions appear in chapter 6.

The damping, R(x), was chosen so that the amplitude of the maximum
displacement would approximate von Békésy's data shown in Fig. 10. The
open circles represent von Békésy's measurement and the solid circles
represent our numerical solution, assuming the cross-sectional area of
the canal to be 1.5 sq. mm.

The mass and damping were chosen to be constant for simplicity
and from a consideration of the shape of the displacement amplitude and
phase curves. The stiffness varies because the width of the basilar
membrane changes. The basilar membrane is narrow near the stapes and
wide near the helicotrema. Hence, the basilar membrane is stiffer near
the stapes and more compliant near the helicotrema.

Table I gives a comparison of our admittance function with others
that have been previously used. Allen's (1977) was "derived" by con-
sidering the basilar membrane as an inhomogeneous elastic plate with
no stiffness in the longitudinal direction. Lien and Cox (1973) and
Siebert (1974) used von Békésy's measurement of the static elasticity
of the cochlear partition for their stiffness parameter. Peterson and
Bogert (1950) used von Békésy's measurement of depression of basilar
membrane due to a test hair for their stiffness. Damping and mass
parameters tend to be unsubstantiated due to a lack of direct experiment
measurement. In thé case of Lien and Cox, the effective mass and damping
were dependent on the viscosity of the fluid in a way which is not

represented in Table I.
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Table I.  Comparison of Admittance Functions
K(x) R(x) M(x)

Neely 109 e~ 2% 200 0.15
Allen 2 x 109 ¢34 600 e 7% 0.10
Lien and Cox 8.6 x 108 ¢~ 1-61X 600 x 0.2
Peterson and 9 =2X

Bogert 1.72x 107 e 0 0.143
Siebert 2 x 108 ¢™1- 5% 5 o2+ 28X 0.01
units: dyn/cm3 dyn-sec/cm3 gm/ cm?

For other aspects of basilar membrane modeling see Steele (1974),

Allaire et al. (1974), and Novoselova (1975).
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6.  NUMERICAL SOLUTIONS OF
THE TWO-DIMENSIONAL MODEL

In order tc find solutions to the model equations of chapter 3, a
two-dimensional finite difference scheme was used. In this chapter,
plots of the numerical solutions are shown. Computation was performed
on the Institute's time-sharing digital computer, a Digital Equipment
Corporation PDP-10.

The pressure difference Pd(x,y) was represented at a finite number
of points in the fluid. Our two-dimensional array of points had 245
points in the x-direction and 8 points in the y-direction. Points had
equal spacing in both directions, 7 points per millimeter. Finding the
pressure difference at each point required solution of 1960 simultaneous
equations. A description of the numerical procedure is given in
Appendix A. On the PDP-10 computer, the solution for one set of

parameters required about 70 seconds of CPU time.

6.1 Pressure, admittance, and displacement of the basilar membrane

Solutions to the two-dimensional model equations are presented in
this section for the parameters described in chapter 5. The equations
were solved for ten different frequencies separated by one-half octave
intervals. The frequencies used were 0.40, 0.57, 0.80, 1.13, 1.60, 2.26,
3.20, 4.52, 6.39, and 9.04 kilohertz. The figures show ten plots
superimposed.

The magnitude of the admittance Y(x) is shown in Fig. 1la and the
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phase in Fig. 11b. This represents the input function for our model
equations and characterizes the assumed properties of the basilar
membrane. The abscissa represents the x-dimension of our model. The
ordinate shows the magnitude in decibels, 20 Tog;o|Y(x)|. A1l of the
remaining figures follow this format to aid comparison.

The pressure difference across the basilar membrane is shown in
Fig. 12. In Fig. 12a the functions plotted are 20 10910|Pd(x,0)[. In
Fig. 12b it was necessary to unwrap the phase so that it would not be
restricted to + w. This was done in all phase plots subject to minimum
phase slope.

The pressure distribution is multipliad by the admittance to give
the y-velocity at the basi]ar membrane, From section 3.3 the y-displace-
ment of the basilar membrane, relative to unit displacement at the stapes,
is given by

D(x) = 1= Y(x)P4(x,0).

The magnitude and phase of the basilar membrane displacement are shown
in Fig. 13. The displacement is shown as a function of distance from
the stapes for ten frequencies as in Figs. 11 and 12.

In Fig. 14 the magnitude and phase of the displacement are shown
as a function of frequency for six places on the basilar membrane.
Fig. 14 required 100 separate solutions of D(x) for 100 different fre-
quencies: only six points were kept from each solution. Approximately
7,000 seconds of processing time were required to prepare Fig. 14 as
opposed to only 700 seconds for Fig. 13. For comparison experimental
data due to Rhode are superimposed. (These are the same Rhode data shown

in Fig. 5 and were taken from Zweig et al. (1976), Fig. 4).
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6.2 Variation of model parameters

Because of the degree of freedom in choosing the input parameters
for this model, it seemed useful to show some of the results of varying
the model parameters. The numerical solutions presented in this section
are intended to provide a feeling for the range of solutions this model
produces. Only plots of displacement versus distance from the stapes
are. shown in this section. They are comparable to Fig. 13 in section 6.1.

Much of the bony wall in the cochlea is closer to the basilar membrane
than the one millimeter chosen as the height of the canal. Fig. 15
shows solutions when the height of the canal is set to one-half milli-
meter, H = 0.05 cm. The admittance function remains the same. For this
solution we used 5 points in the y-direction and 280 points in the
x-direction, that is, 8 points per millimeter.

Even if the stapes does not move hearing is possible through bone
conduction (Wever, 1949). Fig. 16 shows solutions of our model with
the stapes motionless and the upper wall vibrating sinusoidally with
unit displacement. To accomplish this the boundary condition at the
stapes and at the upper wall were interchanged. For clarity, only five
frequencies are plotted in Fig. 16.

Fig. 17 shows solutions of our model for the parameters chosen by
Allen (1977). These parameters were given in Table I in section 5.3.
(It should be noted that there is a discrepancy of a factor of 2
between the numbers given in Table I which wera found to fit Allen's
curves and the numbers which Allen published.) Allen chose these pa-
rameters in such a way that the magnitude curves scale with frequency

and are a close fit to the experimental data of Rhode (see Fig. 5).
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upper wall vibrating with unit displacement in this case.
denote frequencies in kilohertz.

The stapes was rigid and the

The numerals
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7.  THE ONE-DIMENSIONAL MODEL

Qur direct numerical solution of the two-dimensional model requires
a large computer and provides limited insight into the mechanisms where-
by the observed behavior is brought about. To overcome these limitations,
a more approximate model of the cochiea is still useful.

Iweig, Lipes, and Pierce (1976) were able to derive an analytic
representation for a one-dimensional model of the basilar membrane
displacement by making a long-wave assumption and a WKB approximation.
In this chapter a new one-dimensional model is presented. Our one-
dimensional model is based on the two-dimensional model of chapter 3
and can be reduced to the model of Zweig, et al. The one-dimensional
model is not as accurate as the two-dimensional model and does not lead
to a completely analytic expression for the pressure distribution.
Instead, it is a compromise which adds another bit of insight into the

mechanics of the cochlea.

7.1 The "slowly varying' approximation

If the admittance of the basilar membrane were a constant

Y(X) = YO . (7.1)

an exact solution of the two-dimensional model equations is available.
This situation is referred to as the untapered cochlea. For the infinite,

untapered cochlea

Pd(x,y) = P, cosh [Bo(y—Hﬂ o 'BoX (7.2)
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where

BoH tanh goH = -2upYoH. (7.3)

We can verify that this expression satisfies Laplace's equation in the
fluid and the desired boundary conditions at the basilar membrane and
the upper wall. The pressure distribution and, hence, the displacement
of the basilar membrane varies sinusoidally with x. If Xy is the
wavelength on the basilar membrane, then gy = 2n/X;.

von Békeésy (1960) observed the displacement of the basilar membrane
to be approximately sinusoidal with slowly varying amplitude and phase.
Thus, it seems reasonable that the pressure distribution in the tapered
cochlea would be approximately be the same as the untapered cochlea
within a limited range of x. We will assume that the y-variation of the

pressure is that of the hyperbolic cosine:

P4(xy) = cosh[ 8(x)(y-H)] P4 (x,H) (7.4)
where
B(x)H tanh [ B(x)H] = ~2iwpY(x)H. (7.5)
We expect that
P4 (%:H) ~ P exp[ ifxs(x)dx ] (7.6)

The function Pd(x,H) will be approximately sinusoidal with varying
amplitude and phase. The function B8(x) represents the complex "local
wavenumber" of the disturbance on the basilar membrane. Laplace's

equation in the fluid becomes
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32p
75;%—(x,y) + B2(x)Py(x,y) = 0. (7.7)

At this point we lose track of the y-dimension. Eq.(7.7) will have a
solution for only one choice of y, unless g(x) is a constant function.
We assume that Pd(x,y) as given by egs.(7.5) and (7.7) will be approxi-

mately correct when 8(x) is slowly varying.

7.2 Model equations

We choose to solve eq.(7.7) for a single value of y, say y = y;.
The same boundary conditions as given in section 3.3 will be used at the
stapes and the helicotrema. For convenience, we define f(x) = Pd(x,yo).
The one-dimensional model 1is bésed on the fellowing equations:

the transcendental equation
B(x)H tanh B(x)H =~ = -2iwpY(x)H, (7.8)
the differential equation for 0 < x < L

L (x) + g2(0F(x) = 0, (7.9)

the stapes and helicotrema boundary conditions

4T (0) = 20% (7.10)
f(L) = 0, (7.11)

and the pressure difference
Pylx.y) = SSRBRUIR) (). (7.12)
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The basilar membrane displacement, relative to unit displacement at the
stapes, will be

1 cosh g{x)H

D(x) = = cosh 8(x)(yo-H

)Y(x)f(x). (7.13)

7.3 Numerical solutions for displacement of basilar membrane

The major difficulty in obtaining a solution to this one-dimensional
model is the transcendental equation, eq.(7.8). When an approximate
value for B(x)H is known, an accurate solution of the transcendental
equation can be obtained numerically by iteration. Appendix B discusses
an iterative procedure and gives the Fortran code for the subroutine
ATNH. A sample of computed values for gH in the vicinity of resonance
is presented in Table Il for a frequency of 1600 Hz. The values of gH
could be verified by comparing the y-variation of Pd(x,y) with the two-
dimensional model.

The displacement of the basilar membrane for this one-dimensional
model is shown in Fig. 18 for the same ten frequencies used in chapter 6.
The parameters used are identical to those used in Fig. 13. There was
one additional parameter which the two-dimensional model did not have,

Yo. For the solutions shown in Fig. 18, y, = 0.
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Table II.  Sample Resuits of ATNH Subroutine
~21wpY(x)H

X real imag. real imag.
0.00 0.021 -0.000 0.144 -0.000
0.01 0.021 -0.000 0.146 -0.000
0.03 0.022 ~-0.000 0.148 -0.000
1.90 2.601 -0.725 2.613 -0.699
1.91 2.809 -0.858 2.813 -0.838
1.93 3.041 -1.025 2.040 -1.010
1.94 3.300 -1.235 3.295 -1.226
1.96 2.585 -1.503 3.580 -1.500
1.97 3.896 -1.851 3.893 -1.851
1.99 4.226 -2.305 4.225 -2.306
2.00 4.556 -2.902 4.556 -2.904
2.01 4.846 -3.691 4.846 -3.690
2.03 5.017 -4.717 5.017 -4.716
2.04 4.931 -6.003 4,931 -6.004
2.06 4.385 -7.485 4.385 -7.482
2.07 3.185 -8.917 3.163 -8.945
2.09 1.328 -9.875 1.830 10.000
2.10 -0.812 -9.987 0.153 -1.542
2.11 -2.703 -9.265 0.147 -1.511
2.13 -4.001 -8.069 0.140 -1.482
2.14 -4.710 -6.783 0.134 -1.455
2.16 -4.991 -5.626 0.129 -1.430
2.17 -5.014 -4.666 0.124 -1.385
2.19 -4.898 -3.898 0.193 -1.365
2.20 -4.717 -3.290 0.149 -1.346
3.46 -1.399 -0.199 0.044 -0.970
3.47 -1.396 -0.198 0.044 -0.969
3.49 -1.393 -0.197 0.044 -0.968
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Figure 18. Basilar membrane displacement as a function of distance from
the stapes: (a) magnitude and (b) phase. These curves are computed from
our "slowly varying" model. The numerals denote frequencies in kilohertz.
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7.4 The long-wave approximation

In section 7.1 we referred to g(x) as the "local wavenumber,"

g(x) = 2n/a(x) (7.18)

where A(x) is the "local wavelength." When the wavelength is much greater
than the height of the canal, the motion of the fluid is approximately
independent of y. This makes the one-dimensional model much easier

to solve. To be more precise, a long wave approximation requires that

B(x)H << 1. (7.15)

When this is true tanh[gH] = gH and
) {_o3
B2(x) = l————-~—~——2“°ﬁy(x)] (7.16)

For the long-wave approximation Laplace's equation requires only that

d2p ,(x) .
4 2Ry (x)p,(x) = 0, (7.17)

where the pressure difference Pd(x) is now independent of y. Studies
of this, or a very similar equation, have been published by many inves=
tigators. In particular the one-dimensional model of Zweig et al. (1976)

takes the form of eq.(7.17). Note that eq.(7.17) is also a long-wave
approximation of eq.(4.15).
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8.  DISCUSSION OF RESULTS

The foundation for the mathematical model presented in this thesis
rests primarily on the work of previous authors, especially Allen (1977),
Lien and Cox (1973), and Siebert (1974). The new developments are
basically 1) a Fourier transform relationship between Allen's and
Siebert's integral equations, 2) a faster and more direct numerical
solution of the two-dimensional model, and 3) a one-dimensional model
which gives some additional insight into the qualitative features of the

basilar membrane motion.

8.1 Validity of basic assumptions

The tubular, coiled structure of the cochlea is represented by a
rectangular region filled with an inviscid, incompressible fluid. The
whole cochlear partition (including the basilar membrane, Reissner's
membrane, and everything in between) is modeled as a succession of
elastic points which are assumed to be not directly coupled to adjacent
points. ATl motion is assumed to be linear and have harmonic time
dependence. This is, admittedly, a drastic simplification of the
physical cochlea. OQur Justification for these basic assumptions lies
primarily in the extent to which they have become established in
previous studies. We will discuss some of these assumptions in more
detail.

The assumption that the fluid is incompressible is a good one. For

an incompressible fluid the sound velocity is infinite. It would not
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have been difficult to include a finite sound velocity in our model
formulation, but its effect was found to be insignificant compared to
other terms. Peterson and Bogert (1950) and Lien and Cox (1973) con-
sidered compressibility and found that the assumptions of incompressibi-
1ity did not affect their results.

The assumption of an inviscid fluid is not so well substantiated.
von Békesy measured the viscosity of the cochlear fluid and found it to
be about twice that of water. Lien and Cox showed that with certain
approximations the fluid viscosity was only significant in the vicinity
of the boundaries. Hence, the effect of the fluid viscosity could be
incorporated into the basilar membrane admittance function and would
appear nowhere else in the model equations. A viscosity term was not
included in our admittance function because its effect could be in-
corporated, for the most part, into the damping and mass parameters.

We follow Allen in assuming the pressure to be zero at the
helicotrema. For frequencies above 400 Hz this boundary condition is
of 1ift1e consequence, because the pressure has dropped nearly to zero
anyway due to losses in the basilar membrane. Below 400 Hz this
boundary condition creates standing waves in the solution due to reflec-
tion of the wave at the helicotrema. This did not seem proper, so we
simply avoided using frequencies below 400 Hz. In effect, we avoided
the helicotrema boundary.

Actually, the stapes is not in Tine with the longitudinal direction
of the cochlea. Instead it connects to the side of the vestibule as
shown in Fig. 6. This boundary condition in our model translates to

assuming that the fluid across the entrance of the cochlea moves in phase
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and with unit displacement. The exact distribution of fluid motion
across the entrance of the cochlea is relatively unimportant; other
choices produced similar shaped curves for displacement of the basilar
membrane.

The upper wall of the cochlea is certainly much more rigid than the
fluid or the basilar membrane. Rhode (1971) found no motion of the
temporal bone at any frequency as he measured the basilar membrane
motion. The bony Timbus, on the other hand, was found to vibrate about
16 db below the basilar membrane vibration. The major weakness of the
rigid upper wall assumption is that it is all that remains in our
two-dimensional model of the bony pod that encloses the physical cochlea.

Our representation of the basilar membrane has no longitudinal
coupling within itself. It is analogous to a number of transverse beams
which are not interconnected; the model has no stiffness in the Tongi-
tudinal direction. Lien and Cox (1973) found this to be a reasonable
assumption provided that the Tocal wavelength is greater than twice the
width of the basilar membrane. This condition is satisfied for the
solutions of our model using the measurements of Wever (1949) for the
width of the basilar membrane. More will be said about wavelength

in section 8.2.

8.2 Comparison with experiment

Many hours were spent trying to find input parameters for our model
which would produce solutions that fit the experimental data of von
Bekesy (1960) and Rhode (1971). A close fit to both magnitude and phase

of Rhode's data was impossible, although either could be fitted separately
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for suitable parameters. Finally, the admittance function was chosen
so that the solutions would fit the cochlear map and compromise on
fitting the basilar membrane displacement.

The results of our model for the lower frequencies as shown in

Fig. 13 agree well with the results of von Békésy shown in Fig. 3b.
The phase drops about 2r radians at the characteristic place for von
Békésy's data at 300 Hz and for our results at 400 Hz. The basilar
membrane motion becomes more Tocalized with increasing frequency in
both our model and von Békésy's data as shown in Fig. 3a.

A much closer comparison is possible with Rhode's data in Fig. 14.
Rhode's cﬁrves are not exactly comparable for two reasons. Rhode's
measurements are of living squirrel monkeys while our parameters were
based on data obtained from human cadavers. The model displacement is
measured relative to fluid motion at the stapes and Rhode's displacement
is relative to vibration of the malleus. Evidently, the transformation
from malleus displacement to stapes displacement is approximately
indepéndent of fréquency up to a few kilohertz. Rhode found the incus
to malleus displacement ratio to be about -6 db from O to 10 kilohertz;
while the phase difference went from 0°to about 45°.

The magnitude curves for our model agree reasonably well with that
of Rhode in Fig. 14a. The Tow frequency slopes are similar, there 1is an
increase in slope near the characteristic frequency, and the decreasing
slope beyond the characteristic frequency is quite steep. Also, there
is the plateau, or at least a change in slope, about 60 db down from the
peak on the high frequency side.

The phase curves in Fig. 14b do not agree so well. The phase of
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our model results does not drop far enough and changes too abruptly at
the higher frequencies. Allen (1977) had a similar problem in fitting
his solutions to Rhode's data. Notice in Fig. 15b that reducing the
height of the cochlear canal causes the phase to drop further and more
gradually, more 1like Rhode's phase curves. Perhaps a three-dimensional
model could fit both Rhode's magnitude and phase. The height of the
canal cannot really be chosen properly for a two-dimensional model.

The local wavelength of the basilar motion at the characteristic
place can also be compared with experimental data, as we have done in

Table III. The model wavelength appears to be too short at high

frequencies.

Table III. Comparison of wavelength at characteristic place
(mm) Frequency (KHz)

von Békésy (1960) 4.8 0.2 - 0.3

Two-dimensional model 3.8 0.4

Rhode (1971) 1.7 6.0

Two-dimensional model 0.45 6.4

The mathematical model is certainly not ready to replace experimen-
tal observation. The role of the model must remain to complement the

experimental data.
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8.3 Direct numerical solutions

The direct numerical solutions of the two-dimensional model equations
as described in Appendix A, 1is reasonably accurate and has some compu-
tational advantage over previous solutions. The most accurate published
solutions of the two-dimensional model are those of Allen (1977) obtained
via the integral equation of section 4.1. The curves that Allen obtained
are nearly identical to the curves shown in Fig. 17. Allen indicated
that with 200 points representing the length of the basilar membrane, the
Data General S/200 Eclipse computer required about two hours for a
single solution. Our direct numerical solution for 245 points required
only about 70 seconds of CPU time on a Digital Equipment Corporation
PDP-10 computer. Allen's numerical scheme required storage of about
40,000 complex numbers and our scheme about 18,000 complex numbers.

Even with a 245-point solution there were some numerical errors
du= to an insufficient number of points. The jagged peaks at the
characteristic place on the highest frequency curve in Fig. 13a and on
all fréquency curves in Fig. 17a are apparently due to having an in-
sufficient number of points. This artifact also appeared in Allen's
solutions. The number of points was adequate when the admittance
function was not so sharply resonant.

In all the phase curves, Fig. 13b through 18b, there was an
ambiguity of an integer multiple of 2n as to the total phase difference.
The phase was unwrapped subject to minimum group delay. A multiple
of 2w radians was added to the phase so as to minimize the absolute
value of the slope of the phase. Some phase curves with steep slopes

might have been unwrapped differently if more points had been taken.
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This is especially true in Fig. 14b where the entire abscissa was re-

presented by only 100 points.

8.4 The "slowly varying" approximation

The one-dimensional model is certainly less accurate than the two-
dimensional model. The assumption was made that 8(x), as defined by a
transcendental equation, was slowly varying. Instead, 8(x) was found
to be discontinuous at the resonance of the admittance function.

In Table II the fesonance of the admittance function occurs at
about x = 2.10, where Re [—21mpY(X)H:] changes from positive to negative.

Note that just before the resonance piace
BH ~ -2iwpY(x)H (8.1)
and just after the resonance place
BH =~ - in/2. (8.2)

The character of the solution changes dramatically at the resonance
place. The change is also discontinuous whenever Im [-2iwpY(x)H] is not
zero at the resonance place.

Stil1, the one-dimensional model curves in Fig. 18 are quite similar
to the two-dimensional model curves in Fig. 13. Comparing Fig. 18a with
the Fig. 13a the agreement is quite good at low frequencies. At higher
frequencies the one-dimensional model lacks the increasing slope or
peaking on the stapes side of the characteristic place. In Fig. 13b
the phase curves have a tendency to level-off at about 4.5« for the
Towest frequencies, then there is an abrupt change to a leveling-off

at 6.57. In Fig. 18b the phase still goes to zero slope at higher
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frequencies, but the point of leveling-off changes gradually. A casual
comparison showed the pressure distribution in the y-direction to agree
with the two-dimensional model except in the vicinity of the characteris-
tic place.

The one-dimensional model has all the parameters of the two-dimen-
‘"sional model and one additional parameter, y,, the height within the
canal at which Laplace's equation would be satisfied. For the solutions
in Fig. 18, yo, was set to zero. As yp is increased, a peaking feature
appears in the magnitude curves and the back slopes become steeper.

The most interesting and useful aspect of the one~dimensional
model is the way in which the transition from "before the pnlace" to

"after the place" is embodied in the transcendental equation:
gH tanh gH = -2iwpYH. (8.3)
In a very approximate sense

X
Pd(x,O) ~ Py exp [ -1Jr B(x)dx] . (8.4)

In this approximation Re [B(x)] is proportional to the slope of the
phase of the pressure difference and hn[ B(x)] is proportional to the
slope of the magnitude of the pressure. Compare the numerical values
for g8(x)H found in Table II with the two-dimensional solution for the
pressure difference shown in Fig. 17. MNote that the slope of the
magnitude is quite small until it approaches the place. At the place
the slope becomes quite large very quickly and then changes abruptly
to an intermediate slope. The same pattern is evident in the values

of Inx[B(x)H] . The slope of the phase is gradually increasing from
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near the stapes and becomes large near the place, but then abruptly
returns to zero. The same pattern is seen in Re [B(x)H] .
The "slowly varying" model is not offered as a replacement for the
two-dimensional model, but as a Tink to other one-dimensional models

based on long or short-wave approximations.

8.5 Theories of hearing

The solutions of our model for basilar membrane motion are traveling-
wave solutions. As the stapes vibrates sinusoidally a wave travels down
the basilar membrane. The amp]itudebof the wave increases gradually up
to the characteristic place and then decays rapidly. One argument
against a traveling-wave theory of hearing perception is that it must
depend on the action of the stapes (Wever, 1949). Fig. 16 shows the
basilar membrane displacement if the rigid walls of the cochlea were
vibrating instead of the stapes, the shape of the traveling wave
on the basilar membrane remains nearly the same for the Towest frequency.
For higher frequencies the motion is still predominately a wave traveling
toward the helicotrema. As the frequency is increased, the traveling
wave acquires progressively more severe dips in amplitude on the stapes
side of the characteristic place. Beyond the place, the basilar membrane
motion is that of rigid walls with constant amplitude and phase. The
steep negative slope in the magnitude of the displacement is retained
at all frequencies.

The peak of the magnitude curves produced by our model is not
sharp encugh to explain frequency discrimination by localized motion

of the basilar membrane. The steep back-slope, however, Teaves room
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for a place theory of frequency discrimination based on a "law of contrast."
For a tone of a given frequency and loudness, there would be a sharply
defined transition between places on the basilar membrane where the

sensory cells were excited and places where they were not.

There is also a possible means for encoding the loudness of a tone
in the basilar membrane motion. In Fig. 13a, the slope of the magnitude
curves toward the stapes is consistently about 9.5 db/octave. (An
octave is measured as 0.69 cm because the characteristic place will
change by this distance when the frequency changes by one octave.) For
a tone of a given loudness and frequency there will be a certain distance
along the basilar membrane in which the sensory cells will be excited.
This distance will have a linear relationship to the loudness of the
tone in decibels. Further support for this mechanism of encoding
loudness is given by psychoacoustic observations. According to van
Bergeijk et al. (1960), an increase in the loudness level of a tone of
about 9 db will double the subjective Toudness. In other words, a tone
which is 9 db Touder sounds twice as loud. Thus, it seems that the
sensation of "twice as loud" could be related to the sensation of

"twice the frequency."
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9.  SUMMARY AND CONCLUSIONS

A two-dimensional mathematical model is developed in this thesis
based on classical assumptions. The basilar membrane is represented
by an acoustic admittance function with longitudinal coupling only
through the cochlear fluid. The fluid is assumed to be inviscid and
incompressible and all motion in the cochlea is assumed to be linear.
With these assumptions, various means are investigated for obtain-
ing a solution to the basilar membrane motion in response to vibration
of the stapes. The integral equations of Allen (1977) and Siebert (1974)
are presented for the infinite cochlea and shown to be related by a Fourier
transform. A two-dimensional finite difference scheme based directly
on the two-dimensional model equations is presented. This direct
method is as accurate as Allen's published solutions and is one-hundred
times faster in computation speed. Apparently, the integral equations
do not simplify matters when it comes to finding numerical solutions.
Numerical solutions are obtained by the direct method for parameters
chosen primarily to fit the cochlear map. The effect of using different
parameters was considered. Reducing the height of the cochlea caused
the magnitude of the displacement to spread out somewhat and allowed the
phase to drop further. If the stapes were assumed to be motionless and
the rigid walls vibrating instead, traveling waves on the basilar membrane
still moved toward the helicotrema. This is significant for a traveling-

wave theory of hearing because hearing is possible through bone conduction
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even when the stapes does not vibrate.

A new one-dimensional model of the cochlea is proposed which assumes
the properties of the basilar membrane to vary slowly along the length
of the cochlea. The numerical solutions to the one-dimensional model
are nearly the same as the two-dimensional model for low frequencies.
At higher frequencies the one-dimensional model lacks the increasing
slope of the magnitude near the characteristic place. The transcendental
equation associated with the one-dimensional model gives a relationship
between the local wavelength of the basilar membrane displacement ahd the
physical parameters of the cochlea.

Our numerical solutions are ndt a close fit to the experimental
data obtained by Rhode. There is, however, aﬁreement in many of the
qualitative features of both the magnitude and phase curves. We should
point our that although the agreement of our model with experimental
data is not exact, it is considerably better than other investigators
who model the basilar membrane as a beam or piate with longitudinal
stiffness (Steele, 1974 and Inselberg and Chadwick, 1976). Evidently, the
assumption that the basilar membrane has significant longitudinal
coupling is inconsistent wjth experimental observation.

The magnitude curves have a 9 db/octave slope on the stapes side
of the characteristic place. This slope increases as the characteristic
place is approached. The magnitude falls very rapidly just beyond the
place for a short distance. The magnitude then falls more gradually
with a slope that is a function of the height bf the cochlear canal.
The initial 9 db/octave slope is, perhaps, associated with a cochlear

encoding of the Toudness of a tone. The steep negative back-siope
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could provide a mechanism for frequency discrimination.

There 1is much more that could be done with this two-dimensional
model. If the dimension of time were retained one could observe impulse
responses with a non-Tinear admittance function. If the fluid were
allowed to be viscous and the motion non-linear one should be able to
find the "Békésy's eddies" in the fluid.

A full three-dimensional solution should be feasible using finite
element techniques (Huebner, 1975). It would be valuable to know what
are the effects of the circular canal and spiraling cochlea on the

motion of the basilar membrane.
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APPENDIX A.  DESCRIPTION OF THE NUMERICAL
PROCEDURE FOR THE TWO-DIMENSIONAL
FINITE DIFFERENCE SCHEME

A numerical procedure will be described for obtaining solutions
to the model equations developed in chapter 3. A standard, two-dimen-
sional finite difference scheme is used to solve for Pd(x,y) everywhere
in the fluid (Isaacson and Keller, 1966).

Consider a two-dimensional rectangular array of points superimposed
on our cochlear model. There are M points in the y-direction and
N points in the x-direction. We want to solve for the pressure at these

MN points. We will define

P(I,d)

1l

: Pd(de, I dx)

where dx = L/N

I=1,2, ..., M

(o]
1]

=1, 2, ..., N.

From a finite difference approximation of the model equations we have
MN simultaneous algebraic equations for these unknown pressure values.
The boundary conditions are incorporated into the finite-difference
equations.
Let p be an MN-dimensional vector containing all the unknown pressure

values. Let q be an MN-vector of initial conditions. Our finite
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difference equations can be written as a matrix equation
AE = q.

The matrix A is a very sparse (MN) x (MN) matrix. In fact it is
block-tri-diagonal, with the off-diagonal blocks being multiples of the

identity matrix. We will illustrate this for the case M = N = 5.

Ay -21 0 0 0 ) ( pl ql )
-1 A, -1 0 0 n2 0
0 -1 Aj -1 0 p3 = 0
0 0 -1 Ay -1 p* 0
. 0 0 0 -1 As | L p° | L 0 |
where
.
ay -2 0 0 0
-1 4 -1 0 0
AK = 0 -1 4 -1 0
0 0 -1 4 -1
. 0 0 0 -2 4
ay = ( 4+2 (2iwpY (K dx) )
(1 0 0 0 0
0 1 0 0 0
I = 0 0 1 0 0
0 0 0 1 0
. 0 0 0 0 1
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[ P(1,K) ) (- 2P§dx )
P(2,K) - 2Pg dx
o = | p(3.K0) = | -2psdx
P(4,K) - 2P dx
L P(5,K) | -2Pgdx |
P5 = 2w2p

On the following pages is the Fortran code for the computer program
used to obtain solutions to our two-dimensional model. Program DM3 is
the main program, but most of the computation is performed in the sub-
routines. DM3 implements solution of the matrix equation by a Gaussian
procedure for block-elimination, taking advantage of the fact that the
matrix A is block tri-diagonal. The subroutines MXINT, MXINV, MXADD,
and MXELM perform initializing, inverting, adding, and eliminating
operations on the sub-matrices. The subroutine YBM computes the
admittance of the basilar membrane at a given point, for a given fre-
quency. DM3 is set up to solve the matrix equation with M = 8 and
N = 245 for ten different frequencies and write the computed results

onto the disk.
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PGM:DM3

MAIN

LOQP

PROGRAM FOR 2-D COCHLEAR MODEL

COMPLEX A(8,8,246),P(8,246),Y(246),D(246)
COMPLEX POP,YBM,S

REAL KO,MO

COMMON/DATA/ XL, YH,KO,R0O,MO,N
COMMON/STAPES/POP ,W,RHO, DX

DATA XL/3.5/,YH/.1/,RHO/1./

DATA M/8/,N/245/,K0/1.E9/,R0/200./,M0/.15/
DX=XL/FLOAT(N)

FOR TEN FREQUENCIES

DO 999 IF=1,10

FREQ=400.*1,414**(IF-1)

W=6.2832*FREQ

S=CMPLX(0.,W)

POP=2. *W*W*RHO

INITIALIZE PRESSURE VECTOR AND MATRIX

CALL MXINT(A,P,M,N)

SOLVE BLOCK MATRIX EQUATION ... WORK DOWN FROM TOP

WORK

CALL MXINV(A,P,1,M)
DO 10 K=2,N

CALL MXADD(A,P,K,M)
CALL MXINV(A,P,K,M)
CONTINUE

UP FROM BOTTOM

DO 20 K=N-1,1,-1
CALL MXELM(A,P,K,M)
CONTINUE

COMPUTE BM DISPLACEMENT

DO 30 I=1,N
Y(I)=YBM(I,W)
D(1)=Y(I)*P(1,1I)/S
CONTINUE

C WRITE DATA ON DISK

999

WRITE(22) (P(1,1),Y(I),D(I),I=1,N)
CONTINUE
END
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SUBROUTINE MXINT(A,P,M,N)
COMPLEX A(8,8,246),P(8,246),POP,YBM,S
COMMON/STAPES/POP ,W,RH0O, DX
INITIALIZE FIRST SUB-MATRIX AND PRESSURE VECTOR,
OTHERS WILL BE TAKEN CARE OF LATER.
THESE INITIAL VALUES ARE DIVIDED BY TWO SO THAT
THE FIRST INVERSE SUB-MATRIX WILL BE TIMES TWO.
DO 10 I=1,M
P(I,1)=-DX*POP
DO 10 J=1,M
A(I,J,1)=0.
S=CMPLX(0. ,W)
A(1,1, 1;—2 .+(2.*S*RHO*YBM( 1,W) ) *DX

31—'
'_.l

1
DO 20 I
-1

l'\.) l

I ll I

2
1
1
1
1
1

N et et Neis? N\
no l
.
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SUBROUTINE MXINV(A,P,K,M)
COMPLEX AT,A(8,8,246),P(8,246),B(8,8)
C INVERT THE KTH SUB-MATRIX OF A(I,J,K)
C AND SOLVE FOR THE PRESSURE.
C WORK DOWN FROM TOP:
DO 40 J=1,M
IF(CABS(A ( ,J,K)).LT.1.E~10)STOP
AT=1./A(J,J,K)
DO 10 J1=1,M
10 A(J,d1,K)=A(J,d1,K)*AT
P(J,K)=P(J,K)*AT
A(J,Jd,K)=AT
IF(J.EQ.M)GO TO 40

20 A(I,d1,
P(I,K)=P
30 CONTINUE
40 CONTINUE
C WORK UP FROM BOTTOM:
DO 50 I=1,M
DO 50 J=1,I
50 B(I,J) A(I
DO 60 I=1,M-1
DO 60 J=I+1,M
60 B(I,J)
0
0
0

I,J1,K)+A(J,d1,K)*AT
)+P(J K)*AT

J,K)

DO 8
DO 8
DO 7
70 B(I,J)
80 P(I,K)
C MULTIPLY IN
DO 90
DO 90
90 A(I,J,
RETURN
END

I

J

I=M-1
JI=I+
J=
v
I
J
K

—_
-

0.
B -A(I,JI,K)*B(JI,J)
p A(I,Jd1,K)*P(J1,d)
E -1

)
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SUBROUTINE MXADD(A,P,K,M)
COMPLEX A(8,8,246),P(8,246),GAM,POP,YBM,S
COMMON/STAPES/POP ,W,RHO,DX
C INITIALIZE THE KTH SUB-MATRIX AND
C ADD THE PREVIOUSLY INVERTED (K-1)TH SUB-MATRIX.
C LET A(K)=A(K)+A(K-1)
C LET P(K)=P(K)+P(K-1)
C

KM=K-1
DO 10
P(I,K)
DO 10

10 A(1,d,
S=CMPL
A(1,1,
A(]-’z’
DO 20
A(I,I-
A(1,1 ,

20 A(I,1+1,
A(M,M-1,
A(MM
RETURN
END

M
KM)

J,KM)

I o

il e~~~

Ol =~
I I IS ) s

SKM)+4.+2 *(2.*S*RHO*YBM(K,W) ) *DX
,KM)-2.

- Il S~ ner || O
7<7<7<7"\'7<l\):l:[, il
P
N =

FR KR X RC I b
Nt Nt N e e® \B

~1,KM)-1.
LKM)+4.,
+1,KM)-1.
-1,KM)-2.
LKM)+4.

v v v v

=2

FTNITN NN TN [V I " |
= =
=

b

-------------------------------------------------------------------------

SUBROUTINE MXELM(A,P,K,M)
COMPLEX A(8,8,246),P(8,246),AP
C ELIMINATE THE UPPER-DIAGONAL SUB-MATRICES

C LET P(K)=P(K)-A(K)*P(K+1)
C
DO 20 I=1,M
AP=0.
DO 10 J=1,M
10 AP=AP+A(1,J,K)*P(J,K+1)
P(I,K)=P(I,K)-AP
20 CONTINUE
RETURN

END
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COMPLEX FUNCTION YBM(I,W)

REAL K,M,KO,MO

COMPLEX S

COMMON/DATA/XL,YH,KO,RO,MO,NPTS
C COMPUTE BASILAR MEMBRANE ADMITTANCE

S=CMPLX(0. ,W)

X=XL*FLOAT(I-1)/FLOAT(NPTS)

AX=X

K=KO*EXP(-2.*AX)

R=R0O

M=MO

YBM=1./(K/S+R+M*S)

RETURN

END



APPENDIX B. SOLVING THE TRANSCENDENTAL
EQUATION BY ITERATION
An algorithm is needed to solve the equation
x =y tanh(y)

for y, given x and an initial guess for y. Both x and y are complex
numbers, The equation is solved by Newton iteration (Isaacson and

Keller, 1966). Consider the function f(y) defined by
f(y) = x - y tanh(y).

The problem is to find y such that f(y) = 0. Given an initial guess Yo >
the iteration scheme makes successive improvements in the initial

guess, Y., by the rule

Yie1 Y5 7

With some manipulation this becomes

y12+ xcosh(yi)

Y =
i+l yi* sinh(yi) cosh(yi)

Iteration is terminated when

fly) < e |x]

where ¢ is some small number.



- 77 -
A Fortran subroutine named ATNH implements the above algorithm
and is given on the following page. The subroutine will make its own
initial guess for extreme values of x. This subroutine is used by
our "slowly varying" model. The initial guess supplied to the subroutine

is always the previously returned value.
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SUBROUTINE ATNH(X,Y)
C SOLVES EQUATION X=Y*TANH(Y)
C FOR Y, GIVEN X AND AN INITIAL GUESS FOR Y.
COMPLEX X,Y,T,EX,S,C
PID2=1.570796327
EPS=1.E-4
C CHECK IF ABS(X) IS SMALL
XM=CABS(X)
IF(XM.LT..1)Y=-CSQRT(X)
IF(XM.LT..01)RETURN
C CHECK IF REAL{X) IS LARGE
XR=REAL(X)
IF(XR.GT.2.)Y=X
IF(XR.GT.30.)RETURN
C CHECK FOR REAL(X) NEGATIVE
IF(XR.LT.0.)Y=CMPLX(0.03,-1.5)
C START NEWTON ITERATION FOR Y
DO 10 I=1,100
YI=AIMAG(Y)
IF(YI.GT.0.)Y=-Y ; .
IF(YI.LT.-PID2.AND.XR.LT.0.)Y=CMPLX{0.03,-1.5)
EX=CEXP(Y)
S=(EX-1./EX)/2.
C=(EX+1./EX)/2.
Y=(Y*Y+X*C*C)/(Y+S*C)
T=Y*S/C
IF(CABS(1.-T/X).LT.EPS)RETURN
10 CONTINUE
C ITERATION FAILED TO CONVERGE
TYPE 20,X,Y,T
20 FORMAT(' %ATNH:X='1P2E9.2' Y='1P2E9.2' T='1P2E9.2)
RETURN
END
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