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Abstract

Part I: Folds and Bifurcations in the Solutions of Semi-Explicit

Differential-Algebraic Equations

A general existence theory for the solutions of semi-explicit differential-
algebraic equations (DAEs) is given. Theorems on the form and number
of solutions in a neighborhood of an initial value are presented. A set of
bifurcation equations is derived, from which the tangents of these solutions
can be computed. The phenomena of folds and bifurcation are studied. It is
shown that solutions near fold points and pitchfork bifurcation points can be
represented smoothly if an appropriate parametrization is introduced. More-
over, it is shown that the complex analytic extension of a real DAE often
has complex solutions near a real initial value, and existence theorems on
these complex solutions are given. Examples from electrical engineering are
presented in support of the theory. Methods for adapting existing numerical
DAE solvers to handle fold and bifurcation points are introduced. These

methods are tested on a nonlinear electric circuit problem.



Part II: The Recursive Projection Method Applied to Differential-

Algebraic Equations and Incompressible Fluid Mechanics

The Recursive Projection Method (RPM) was originally invented by Schroff
and Keller for the stabilization of unstable fixed point iterations. A direct
application of RPM lies in the computation of unstable steady states of non-
linear ordinary differential equations (ODEs) via time integration. Here, the
method is generalized to handle algebraic constraints so that it can be ap-
plied to certain differential-algebraic equations (DAEs). This is accomplished
by reformulating the DAE as an ODE. In particular, this approach applies
to DAEs obtained by semi-discretization of the incompressible Navier-Stokes
equations by use of the method of lines. The method is applied to compute

unstable steady states of the flow between concentric rotating cylinders.
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Folds and Bifurcations in the
Solutions of Semi-Explicit

Differential-Algebraic

Equations



Chapter 1

Introduction

Consider the implicit differential equation

F(x,x',1) =0, (1.1)

where F : R"xIR"xIR—IR", and prime (') notation represents differentiation
with respect to t. A differential equation of the form (1.1) is usually called
a differential-algebraic equation (DAE) if the partial derivative Fp(x, p,t) is
singular for all values of its arguments. Because DAEs occur in many prac-
tical problems, much effort has recently been devoted to the development
of numerical methods to solve such systems. A good numerical treatment
requires some knowledge of the analytical background of DAEs, and in par-
ticular, an existence theory. However, the existence theory of DAEs is as yet
quite incomplete.

The classical approach in the analysis of DAEs is to differentiate (1.1) un-

til it is reduced, at least locally, to an explicit ordinary differential equation



(ODE). The usual assumption in this reduction process is that Fp(x, p,t)
has constant rank in some open neighborhood of F~1(0), and that all deriva-
tives of F generated in the reduction process satisfy a similar constant rank
condition (see [22] for details). If (1.1) can indeed be shown to be equivalent
to an ODE in this way, then the DAE is called “nonsingular.” The number of
times that a nonsingular DAE (1.1) must be differentiated in order to obtain
an explicit ODE is called the indez of the problem (see [2],[19],[23] for defi-
nitions of the index). Since nonsingular DAEs can be reduced to ODEs, the
existence and uniqueness of their solutions follows from the classical existence
and uniqueness theory for ODEs. In fact, Rabier and Rheinboldt have used
this idea to develop existence and uniqueness theories for certain subclasses
of DAEs, all of which satisfy a constant rank condition (see [22],[26],[27]).
If a DAE fails to satisfy the constant rank condition, we call it “singu-
lar.” Singular ODEs cannot be reduced to explicit ODEs, and therefore the
standard existence and uniqueness theorem for ODEs cannot be applied di-
rectly. It is known that solutions of singular DAEs may not be unique, that
is they may bifurcate. Furthermore, it is possible that after a finite time,
the finite solution of the DAE may have an infinite derivative. The solution
may or may not exist for times beyond such points. If the solution cannot
be continued into the future, such points are called “impasse points” in the
electrical engineering literature. Impasse points have been studied by Chua
and Deng in [4] and by Rabier and Rheinboldt in [24] and [25]. As we shall
see, they are closely related to what we shall call “simple fold points” in
Chapter 5. Although simple fold points are the most common and the most

simple type of singularity in a DAE, there are many others for which there



is yet no theory.

In the work presented here, we extend the existence theory for DAEs to
cases which do not satisfy any constant rank condition and beyond simple fold
points. The work can be viewed as a generalization of the bifurcation theory
for algebraic nonlinear equations. Algebraic nonlinear equations are a special
case of (1.1) where Fp(x, p,t) is identically zero. We therefore expect to find
all phenomena of algebraic nonlinear equations (including folds, bifurcations
and complex bifurcations) in DAEs. We confine our analysis to initial value

problems of the semi-explicit form

d

?i‘?l = f(u,v), (1.2a)

0 =g(u,v), (1.2b)
u=0andv=0att=0, (1.2¢)

where u € R*, v e R™, t € R, f: R"xR™=R" g: R"xIR™"—R™, and
g(0,0) = 0. Without loss of generality, we have written the equations in
autonomous form and with homogeneous initial data. If either f or g depend
on t, then the problem can be transformed to autonomous form by letting
i = (u,t)T and adding the equation ¢’ = 1.

We use throughout the notation x = (u,v,#)7. Also, in the remainder
of this paper, superscript “0” denotes that the superscripted quantity is
evaluated at x = 0.

If the partial derivative g9 is nonsingular, then (1.2) is nonsingular with
index 1 (by the generally accepted definition of the index). If g9 is singular
and of constant rank in a neighborhood about x = 0, then (1.2) may be

of index 2 or higher. If g9 is singular without constant rank, then (1.2) is



singular and the index is not defined. When (1.2) is a nonsingular DAE, the
local existence and uniqueness of a real solution of (1.2) is well covered in
the existing literature (see [22],[26],[27]). The theory presented here covers

not only these cases, but also the case when (1.2) is a singular DAE.
Definition 1.3 If g9 s nonsingular, then x = 0 is called a regular point.
Definition 1.4 If g% is singular, then x = 0 is called a critical point.

Definition 1.5 If dim{A(g%)} = 1, then x = 0 is called a simple critical

point.

We shall see that, if x = 0 is a critical point, bifurcations or folds may oc-
cur at x = 0. In addition, (1.2) may have complex solutions passing through
a critical point. The theory is analogous to the well known bifurcation theory
for algebraic nonlinear equations (as in [7], [13], [11], [15] and [18]). Our the-
ory is also consistent with Rabier’s analysis of singular implicit differential
equations in [21] and Rabier and Rheinboldt’s theory for impasse points of
quasilinear DAEs in [24]. In Chapter 7, we present some numerical methods
which are useful in computing solutions of singular DAEs.

Before we begin, we list some definitions and assumptions used through-

out this paper.

Definition 1.6 Ifxo € IR* and p €IR, let B,(x0) = {x €IR* :|| x—x, ||< p}

Assumption 1.7 3p, > 0, p, > 0 such that Yu € B, (u°) and v € B,,(v°),

f,g,8u, 8v,fu, fv exist and are continuous.



Assumption 1.8 Jp, > 0, p, > 0 such that Vu € B, (u°) and v € B, (v?),

f,g,8u, v, fu,fv, Guu, Buv, Gvv exist and are continuous.

Assumption 1.9 3p, > 0, p, > 0 such that Vu € B, (u°) and v € B, (v"),

Zuuu;, Suuvs uvv, Gvvy caist and are continuous.



Chapter 2

Regular Points

We first consider the case when x = 0 is a regular point, i.e., g is nonsin-
gular. Although this case is well covered in the existing literature, we include
1t here for completeness.

If g9 is nonsingular, then the Implicit Function Theorem (as stated in

[14]) can be applied to (1.2b) to obtain the following lemma:

Lemma 2.1 Jp; > 0,p; > 0 such that Yu € B, (0),3V(u) € B,,(0) such
that
(a) V(o) =
() glu,Viw) =
(¢) v=V(u) is the only solution of g(u,v) =0 in B,,(0) foru €
B,,(0); ,
(d) V(u) has the same modulus of continuily with respect to u as

g(u,v).



So, for ue B,, (0), we have that v=V(u)€ B,,(0), and (1.2) reduces to

the initial value problem:

du

—_— Vv 2.2
M pu, V() (222)
u=0att=0. (2.2Dh)

Since the right-hand side of (2.2a) is only a function of u, (2.2a) is simply an
ordinary differential equation (ODE). Lemma 2.3 below is a direct application

of the standard existence and uniqueness theory for autonomous ODEs.

Lemma 2.3 3t, <0 and t, > 0 such that Vt € (tq,1s), there exists a unique
function u(t) solving (2.2) such that

(a) u(t) is continuously differentiable;

(b) u(t) € B,,(0), and V(u(t)) € B,,(0).

From Lemma 2.1, we know that the only solution of (1.2b) in B,,(0)
is v = V(u) for u in B, (0). Using u(t) from Lemma 2.3 in v = V(u) we
obtain:

v(t) = V(u(t)) (2.4)

which, by the continuity of V(u) and u(¢), is continuous and has at least one
continuous derivative. Since both V(u) and u(¢) exist and and are unique
for all ¢ € (%4,13), v(t) exists and is unique in that interval. Thus, we arrive

at Theorem 2.5 below.

Theorem 2.5 Iff and g satisfy Assumption 1.7, and gg is nonsingular, then
3 constants t, < 0 and ty, > 0 such that Vt € (t,,1),3 unique real functions
u(t) and v(t) satisfying:



(¢) u(0)=0,v(0)=0,

(b) g(u(t),v(t)) =0,

(¢) Z(t) = f(u(t), v(1)),

(d) (1) and LL(t) exist and are continuous.

As we have stated earlier, Theorem 2.5 is a well known result. For exam-

ple, we could have obtained the same result by applying Rheinboldt’s theory

of semi-implicit DAEs in [27] to (1.2).
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Chapter 3

Real Solutions Near Critical

Points

We now turn to the case when the initial value x = 0 is a critical point. A
special case of critical points occurs when g9 has a one-dimensional nullspace,
so that x = 0 is a simple critical point. In that case, the theory developed
in this chapter simplifies considerably, and we shall consider it in subsequent
chapters.

Although a real DAE may have complex solutions which pass through a
real critical point, we only look for real solutions in this chapter. Then, in

Chapter 4, we shall study the phenomenon of complex bifurcation.
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3.1 The Nullspaces

Let r € {1,2,...,m} be the dimension of the nullspace of g%. Let ® =
[Py, Pay- - P,] € R and ¥ = [¢py,1,,...,7.] € R™*" be orthonormal

bases for the right and left nullspaces of g%. Thus,
g ® =0,

gy =0,
3Td = 97U = 7J,.

Let Z € R™*(™=") denote an orthonormal basis for the orthogonal com-
plement in IR™ of the right nullspace of g. Thus, the compound matrix

[® Z] eR™*™ is orthogonal. Now any v€IR™ can be uniquely written as

v =0y + Zz, (3.1)

where y = ®Tv €R" and z = ZTv €R™". The following relations then
hold:
9 (u,y + Zz) = gy@
ayg y Y = 8v¥,
2 (u,y + Zz) = gvZ
8zg y Y = gv4,
R(gvZ) = R(gy).

Let W € IR™*(™") denote an orthonormal basis for the orthogonal com-

plement in IR™ of the left nullspace of g. Thus, the compound matrix
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[ W] €eIR™*™ is orthogonal and we have two distinct direct sum decompo-
sitions of IR™:

R™ = R(®) & R(Z),
R™ = R(T) & R(W).

They will be used to reduce (1.2b) to a problem in IR". We have used the

first decomposition to yield (3.1).

3.2 The Lyapunov-Schmidt Reduction

Since [¥ W] is orthogonal, the equation g(u,v) =0 is the same as

WTg(u,v) =0 and ¥7g(u,v) = 0. Thus, (1.2b) is equivalent to the system

gi1(u,y,z) = IfVTg(u,v) =0, (3.2a)
g2(u,y,z) = ¥g(u,v) =0, (3.2b)

where v = @y + Zz. Immediately we can apply the Implicit Function The-

orem to (3.2a) to solve for z = z(u,y):

Lemma 3.3 Suppose x = 0 is a critical point and Assumption 1.8 is satis-
fied. Then 3 constants py > 0,p; > 0,p3 > 0 such that Yu € B, (0) and
y € B,,(0),3 unique z = z(u,y) € B,,(0) such that

(a¢) z(0,0) =0;

(b) gi(u,y,z(u,y)) =0;

(¢) z(u,y) is twice continuously differentiable.
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Proof: g1(0,0,0) = WZg(0,0) = 0, and the partial derivative

0
(%g’}-) = H/ngZ € H{(m“r)x(ﬁwr)
zZ

is nonsingular by the definition of W and Z. By Assumption 1.8, g is twice
continuously differentiable. Hence, by the Implicit Function Theorem, the

result follows. O
In view of Lemma 3.3, the solution set of g(u, v) = 01s, in a neighborhood

of x = 0, the same as the solution set of (3.2b) with z = z(u,y):

ga(u,y) = g2(u,y,2(u,y)) = Ug(u, &y + Zz(u,y)) = 0. (3.4)

The above reduction of (1.2b) to (3.4) is called the Lyapunov-Schmidt re-

duction.

3.3 Parametrization of Solutions

The solution trajectory of a system of the form (1.2) in which g% is singu-
lar cannot in general be represented by a unique smooth function of ¢. Just

consider the following example:

Example 3.5 Let n = m =1 and consider the DAE initial value problem

u:DZO att:O
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Here: ¢ = —2v| _, = 0, so the initial value is a critical point. Real solutions
(plotted in Figure 3.6) exist only fort > 0 and they are:

y =1,

v = i\/z.
In addition, there are two complezx solutions for t < 0:

u =1,

v = i/,
where 1 = /—1. There are two real solutions for t > 0 and no real solutions
fort < 0. If we include the complezx solutions, then there are two solutions

on either side of t = 0.

The solution of Example 3.5 is clearly not a single-valued function of
t. Further, the t-derivative of v becomes unbounded as |t| — 0. We note,
however, that the entire real solution set can be parametrized smoothly by

a single scalar parameter, s, as follows:

2
u::s,v:s,t::sg,

where s € (—o0,00). The complex solution set can also be represented as a
smooth function:

u=—s* v=1ist=—s°

We now return to the general DAE (1.2) with a critical point as its initial
value. As is suggested by Example 3.5, it is useful to introduce a new scalar
parameter, s, in order to represent the solutions of the DAE (1.2) smoothly

near a critical point. The parameter s is defined by a scalar constraint,

N(u,v,t,s)=0. (3.7)
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Figure 3.6: Solution set for Example 3.5. Both real and complex solutions

are shown.
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We do require that N(0,0,0,s%) = 0 for some s° € IR, that N(u,v,t,s) is at
least twice continuously differentiable with respect to all its arguments, and

that the partial derivative N, satisfies
N #0
for all values of its arguments. We further require that
NI® +# 0.

The significance of this requirement will become evident later.

We now seek differentiable solutions of the form

t(s))
(s))
t(s)

which satisfy (1.2) and (3.7), given u(t(s%)) = 0, v(¢(s®)) = 0, and #(s°) = 0.

x(s)=1| v(t

u
(

Thus, we reformulate the problem as follows:

‘;—‘: = f(u,v), (3.8a)

0 =g(u,v), (3.8b)

0= N(u,v,t,s), (3.8¢)

u(t(s)) = 0, v(t(s%)) = 0, #(s°) = 0. (3.8d)

We shall use a dot above any quantity to indicate that the quantity is differ-

entiated with respect to s. For example, U = du/ds = (du/dt)t.
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Example 3.9 If we let
N(u,v,t,8) = ()T (u —u®) + O (v = vO) + %%t — 1% + (s — %)

then s represents a “pseudo-arclength” parameter on a solution path x(s)
satisfying u(t(s%)) = u° v({(s?) = v #(s°) = t° and u(t(s®)) = u°,
V(t(s)) = VO, #(s°) = {°.

A question which naturally arises is precisely which trajectories can be
parametrized smoothly by a specific variable s, or alternatively, which solu-
tions of (1.2) we might miss by choosing a specific normalization (3.7). If a
solution trajectory has a tangent vector X° = (1% v°,4%) at x = 0, then that

tangent vector must satisfy

dN ° 0,0 0.0 040 4]
-d—s- = Nuu +NVV +Ntt +.NS = 0. (310)

In view of (3.10) and the requirement that N? # 0, we cannot parametrize

solution trajectories with tangents x° satisfying
(N, Ny, N7) %° = 0.

In other words, if a solution trajectory’s tangent vector lies in the nullspace
of the operator (N2, N2, N?), then that solution trajectory cannot be rep-
resented as a differentiable function of s. The nullspace of that operator is
an (n + m)-dimensional subspace of IR**"™*!. For instance, if we choose the
parametrization

N(u,v,t,s)=t—s, h (3.11)
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we cannot smoothly represent solution trajectories which have a tangent
perpendicular to the t-axis. Such trajectories would have to have a tangent
satisfying {© = 0, clearly violating (3.11), which dictates {® = 1. It is for
this reason that the solution set of Example 3.5 cannot be parametrized as
a smooth function of ¢. Note that the set of tangent vectors x° with {® =0
spans an (n -+ m)-dimensional subset of IR™F™+1,

The above leads to the conclusion that if we have k different normal-
izations (3.7), which are independent in the sense that their derivatives
(N2, N3, N?) are all linearly independent, then we can parametrize all so-
lution trajectories except ones with tangents in a subspace of IR**™*1 of
dimension n + m + 1 — k. Thus there are at most n + m + 1 independent
normalizations. If we have n+m+ 1 independent normalizations, then every
trajectory in IR®*™*1 can be parametrized by at least one of the n +m + 1
parameters defined by those normalizations. Furthermore, any distinct nor-
" malizations with the same nullspaces are equivalent in the sense that they
yield the same trajectories, only with different parametrizations.

In the following, we shall assume that a specific normalization has been

chosen.

3.4 Some Necessary Conditions

We now derive some necessary conditions for the existence of solutions
of (3.8). In particular, we shall derive the bifurcation equations. We also

introduce a “reduced” DAE which also represents a necessary condition. In



19

subsequent sections, we shall see that a sufficient condition for the existence

of real solutions of (3.8) is that the bifurcation equations have a real, isolated

root. The reduced DAE will aid in the proof of existence theorems.

A necessary condition for the existence of a differentiable solution path

x(s) is
oo dudt
dtds

ft.
Any twice differentiable solution path must also satisfy

i = fuuf + fyvi + fi = fi,f(£)? + £y vi + fi.
Additional necessary conditions include

%g(u(t(s)),v(t(s))) =0, £t=0,1,2,...

as well as

dk

S N(u(t(s)), v(t(s)),1(s),s) =0, k=0,1,2,...

ds*
Using (3.12) in the k=1 equation of (3.14), we obtain

guft' + gv\.’ =0

and the k=2 equation is

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

guft + gufuf(£)® + gufy Vi + guuff (£)* + 2gvufVE + gyv Vv + gv¥ = 0. (3.17)

Here we have used the continuity of second derivatives to set guyvf = gyufv.
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3.4.1 Fold Points versus Bifurcation Points

In particular, equations (3.14)-(3.17) must hold at the initial value, s°.

Using (3.1) in (3.16), evaluated at s° one obtains:

g2 7% = —glf%°. (3.18)

The coefficient matrix of 2° is of order m x (m —r). If g2f° € R(g%), there
are infinitely many combinations of £ and 2° which satisfy (3.18). Since g2

has full rank, there exists a unique ¢ such that
gvZ¢ = —guf®.
All solutions of (3.18) are then given by:

30 = (i° (3.19)

If, on the other hand, gif° ¢ R(g%), there is only one way that (3.18) can
be satisfied: 1© = 0 and z° = 0. This implies 1°=0 by (3.12).

It 1s convenient at this point to divide critical points into two categories.
If g9f° € R(g%), we call the initial value a bifurcation point; otherwise, if

gl f® & R(g?), the initial value is called a fold point:

Definition 3.20 Ifx = 0 is a critical point, and gif° € R(g}), then x = 0

is called a bifurcation point.

Definition 3.21 Ifx = 0 is a critical point, and gof® & R(g?), then x =0

is called a fold point.
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Note that (3.19) holds for fold points, as well as for bifurcation points.
For fold points, (3.19) holds for any choice of {. We shall define (=0 for fold

points.

3.4.2 The Bifurcation Equations

If we evaluate (3.17) at s° and left multiply with U7, we obtain (using
UTgd = 0):

Ulg0£00 + TTgl£2f0(1%)2 + TTgl o300+
Tl £O£0(1%)2 + 20Tl £Ov 010 + Tl vOv0 = 0. (3.22)

By using equations (3.1) and (3.19) in (3.22), and adding the & = 1 equation

of (3.15) evaluated at s°, the bifurcation equations are derived:

s ha (5°, 19,2
h(y®, %, ") = =0 (3.23)
NOBYO + (NOFO + N9 4 NOZ()i0 + NO

where

hy(7%,1°,1%) = U7l 0% + 070 03 050 4+ A, 0y%° + Ag(i9)?  (3.24)

with

Al = \Pngfs + Q\I[ngufo + 2V g\vZC7
Ao = U0 + W00 7¢ + Tl 010 + 20 gwaZC + gl 7¢7¢.

The bifurcation equations represent a necessary condition for the existence

of solution paths. We shall show that a sufficient condition for the existence
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of a real solution path is that the bifucation equations have a real, isolated
root (¥°,2°,1°). In fact, we shall show that for each such root, there exists a

distinct real, differentiable solution path passing through the initial value.

3.4.3 A Reduced DAE

In view of Lemma 3.3 and equation (3.12), any differentiable solution of
(3.8) is (locally) also a solution of the following reduced DAE in the n+r+1
variables u, y, and ¢ (recall (3.4)):

u = f(u,dy + Zz(u,y))i; (3.25a)
gs(u,y) = 0; (3.25b)

N(u,®y + Zz(u,y),t,s) = 0; (3.25¢)
u=0,y=0andt=0at s = s (3.25d)

In order to demonstrate the existence of a solution of (3.8), we shall first
prove the existence of a solution of (3.25). Then we shall show that this

solution also satisfies (3.8) by using the following lemma:

Lemma 3.26 Suppose 3s, < 5%, 55 > s° such that on (s,,ss) there exists a
continuously differentiable solution u = U(s), y =y(s), t = t(s) of (3.25).
Furthermore, assume that this solution satisfies either

(a) {°#£0, or

(b) 1(s) is twice continuously differentiable on (s,,s), and ° # 0.
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Then
(¢)) U(s)
() | =1 ®v(s) + 22(U(s),y(s))
t(s) t(s)
is a solution of (3.8) and hence of (1.2) on some subinterval of (s,,ss) con-

taining s°.

Proof: From the Lyapunov-Schmidt reduction and Lemma 3.3, we know
that (3.25b) is locally equivalent to g(u,v) = 0, which is (3.8b). By (3.1),
(3.25¢) is the same as (3.8¢). The initial condition (3.8d) is satisfied because

in (3.25) we use z=z(u,y) from Lemma 3.3, which guarantees

z(u(t(s°)), v(1(s°))) = 2(0,0) = 0.

So we conclude that, at least locally, (3.8bcd) are satisfied. It remains to
show that x(s) satisfies (3.8a).
Consider first the case when {® # 0. Then ¢ = #(s) can be inverted,

locally, to get a unique continuously differentiable function s = S(t). Then

and

du dUdS

dt ~ ds dt

and (3.8a) is satisfied in some interval (s, s4) containing s°.

u
{

Now consider the case when i{° = 0, but {© # 0. Then the following

expansions are valid for s near s°:

(s —%)?

u(l(s)) = 1P

+0 ((s = 5
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(s — %)

5+ 0((s =),

i(s) = s =)+ 0 ((s - s9?) .

t(s) = 1°

Then,
du £0¢0
— t 0 - e I fO
so (3.8a) is satisfied at s = s°. From the expansion of i(s), we may conclude

that there exists an interval I C (sq,s3) containing s® such that #(s) # 0 for

all s € J =TI\ {s°}. Then for all s € J:

du a(i(s)) _ flu(t(e), vE))i(s) _ o
T == = ) = f(u(t(s)), v(t(s)))

and (3.8a) is satisfied for all s € I. O

3.5 Existence of Real Solutions Near Fold

Points

We are now ready to state some existence theorems. We first consider

the case when the initial value is a fold point. That is,
guf” & R(gv),

which can also be written
TTgdf0 £ 0.
We saw in Section 3.4.1 that all differentiable solutions passing through a

fold point satisfy
i° =0,



This simplifies the bifurcation equations to:

; . TTghfot® + U7l 2y 0y°
hraa(y°,1°) = h(3°%,0,1°) = =0. (3.27)
NI®y® + NP
Equation (3.27) is a set of r + 1 equations in r + 1 unknowns. The first r
equations are quadratic in the components of y°, and the last equation is
linear. One of the quadratic equations can be used to solve for t° in terms of
v?. Then we are left with r—1 quadratic equations and one linear equation in

v?. Such a system can have at most 27! isolated solutions, and the solutions

are real or complex conjugate pairs.

Theorem 3.28 Suppose x = 0 is a fold point and Assumption 1.8 is satis-
fied. Then corresponding to each real, isolated root (¥°,1°) of (8.27), there
exists a unique, real solution u = U(s), y = y(s), t = t(s) of (3.25) on some
interval (8q,8y) containing s° with:

(a) U(s) is twice continuously differentiable;

(b) y(s) is continuously differentiable;

(c) t(s) is twice continuously differentiable.

It has the form

c
=
I

(3 - 50)2 f°° + 0 ((3 - 50)3) ,
s — so> y'+0 ((s — 30)2> ,
(s -~ 30)2 +0 ((s — 50)3> .

B
~~~
V>3
g
Il
PO AN DO
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Proof: We need only consider s = s° + ¢, where |¢|] <« 1. We make the

following rescaling:

62

y=e£andt=—2—-7'.
Now define, recalling (3.4):

2
~ga(uet)

1 B
G(&,7,¢,u) ZN(H’ Ocf + Z2(u, ¢§), 57,5 + ¢)

il

thZd(éaT)v e = 0.

When € # 0, the solutions of G(€,7,¢,u) = 0 are precisely the solutions of
(3.25bc). Using Assumption 1.8 and L'Hépital’s rule, it is easily verified that
G(&,7,¢,u) is a continuous function. Since we assumed that (y°,#°) is an

isolated real root of (3.27), one solution of G(€, 7,¢,u) = 0 is

£=73"
—
e =10,
u=20

The Jacobian Ge,(¥°,1°,0,0) is nonsingular at any isolated root (y°,°);
that is what we mean by an isolated root. Thus we can apply the Implicit
Function Theorem to obtain, corresponding to each isolated root (y°,1°), the
existence of unique, continuous functions §(u, €) and 7(u, ¢) satisfying

(a) G(§,7,6,u)=0,

(b) £(0,0) =y° and
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(c) 7(0,0) = {°
The existence and uniqueness of these functions is guaranteed in some suffi-
ciently small neighborhood of u = 0 and € = 0. Closer examination reveals
that &(u, €) and 7(u, €) are actually twice continuously differentiable, except
possibly when € = 0; this is because G(, 7,¢,u) has two continuous deriva-

tives for € # 0. Now, (3.25) is equivalent to

du f(u, Zz(u, e€) + Def) (6T+922—Tu%+5;-75) , €% 0;

ds 0 e=0;

?

u=0ats=s"
where £ = §(u,¢) and 7 = 7(u,¢). This is an ODE initial value problem of
the form:

du

:1;’ = F(U,S),
0

u=0ats=s",
where F(u, s) is at least once continuously differentiable for || u || and ¢ =
s — 80 sufficiently small. Standard existence and uniqueness theory for non-
autonomous ODEs then guarantees the existence of a unique function u =
U(s) satisfying (3.25) for s sufficiently close to s°. That function has at least

two continuous derivatives. Then y and ¢ are uniquely given by:

2
(s) = =7 (U(s),s = 5%) .
A Taylor expansion of (3.13) and the above two equations in s about s = s°

reveals the form of the solution given in the theorem. O
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Theorem 3.29 Suppose x = 0 s a fold point and Assumption 1.8 is sat-
isfied. Then corresponding to each real, isolated root (y°,1°) of (3.27) with
0 £ 0, there exists a unique, real solution x(s) on some interval s.,sq con-
taining s°, satisfying (3.8) and hence (1.2), such that:

(a) u(t(s)) is twice continuously differentiable;

(b) v(t(s)) is continuously differentiable;

(¢) t(s) is twice continuously differentiable.

It has the form

o
o~
o~
~~
723
N’
—
I

(s - 30)2f0i0 + 0 ((s - 30)3) )
s — 30) oy’ + 0 ((3 — so)2> ,
(s - 30)2 P +0 ((s - 30)3) .

<
—
L
—
w
~—
~—
i

Proof: From Theorem 3.28 we know that for each isolated root of the
bifurcation equations, (3.25) has a unique solution u = U(s), y = y(s), t =
t(s) for all s in some interval (s,, s3) containing s°. Since we assume ° # 0,
Lemma 3.26 guarantees that it corresponds to a unique solution satisfying
(3.8) and hence (1.2) in some subinterval of (s,, s;) containing s°.

The form of u(¢(s)) and t(s) follows from Theorem 3.28. To get the form
of v(t(s)), recall (3.1) and consider that z° must be zero because of (3.18)
and {® = 0. The form of v(#(s)) then follows from a Taylor expansion in s
about s =s% O

Each solution branch x(s) with £ > 0 represents, locally, two solutions
for ¢ > 0 and no solutions for ¢ < 0. Similarly, solution branches with

1 < 0 locally have two solutions for ¢ < 0, and none for ¢ > 0. If all

solution branches have i® > 0, then locally real solutions exist only for ¢ > 0.
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Likewise, if all solution branches have the ° < 0, then locally solutions exits
only for t < 0. However, if some solution branches have ° < 0, and others

1% > 0, then real solutions extend in both directions in ¢.

Example 3.30 The problem in Ezample 3.5 on page 13 provides an example
of a fold. In that ezample, u = v =t = 0 is a stmple critical point. It qualifies
as a fold point because g2 f° =1 and ¢° =0, s0 g0f° & R(g°%). If we let

N(u,v,t,s) =v—s,
then the bifurcation equations for this example are
- 2(5°) =0,

7°—1=0.

The bifurcation equations for this case have only one root, and it is §° = 1,
% = 2. Since 1° # 0, Theorem 8.29 applies. The solution corresponding to
the only root of the bifurcation equations is u(t(s)) = t(s) = s%, v(i(s)) = s.
Two real solutions exist for t > 0, and no real solutions exist fort < 0. Note
that there are also two complex solutions fort < 0. Complex solutions will

be discussed in Chapler 4.

Example 3.31 When r > 1, there may be up to 2" real solution branches

on one side of t =0. Let n =1, m = 2, and consider the DAFE

du
E? - f(u)vlav'l) = 17
u—}—vz
0= g(u,v1,v2) = e

u—}—vg
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u=uv; =vy=0att=0.
Then g% = 0, so r = dim{N(g?)} = 2. There are four real solutions, all of
which exist only for t < 0 (see Figure 3.32):
(1) u=1t, v =+/—t, va = /—1;
(2) u=1t, vy =11, va = —/—1;
(3) u=1t, vy = —/—t, v, =/—1;
(4) u =1, vy = —/—t, va = —/~1.
If we set
N(u,vy,vq,t,8) = v1 — 8,
then the bifurcation equations are
04 2(09) =0,
4+ 2(09) = 0,
o) —1=0.

There are two isolated roots: ©) = 1, 0] = +1, £ = —2. Thus, by Theo-
rem 3.29, there are two solution paths. They are

u(t(s)) = H(s) = —s*,

v1(t(s)) = s,

va(t(s)) = Es.
Notice that for both solution branches, t(s) <0 for all s € (—00,00), s0 real
solutions exist only for t < 0. Note that if we allow complex solutions, there
are also four solutions fort > 0: (1) u=1t, vy =iVt v = i1,

(2) u=1t, v, =iVi, vg = —iVi;

(3) u=t, vy = —iVi, vg = i/1;
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(Q)U:t, U1:~—i t, Uzzi\/t—,'
(4)u:t,’01:—i t, 'Ug::——’l\/i
Here v = /—1. If we let

S§= “‘Z.’Ul,

we can write these four solutions as:

u(t($)) = t(é) = &,

vy
va(t(8)) = £18,
where § € (—00,00). So if we include the complex solutions, there are four
solutions for all t, and there are four differentiable solution paths passing

through x = 0. This phenomenon will be discussed in Chapter 4.

Example 3.33 If the bifurcation equations have no real roots, then no real

solutions of the DAFE exist. Let n = 1, m = 2, and consider the DAE

du
pr = f(u,v1,v2) = 1,
u — vl
0= g(uvvlav2) = ’
u + v3

u=1v, =vy=0 at t = 0.

As in Ezample 8.31, g% = 0, and r = dim{N(g%)} = 2. But unlike Ezam-
ple 3.31, this DAE has no real solutions for either t > 0 ort < 0. Again we
set

N(u,v1,v2,t,8) = vy — s,
and the bifurcation equations for this example are

i —2(09)* = 0,
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Figure 3.32: Solution set for Example 3.31. Both real and complex solutions

are shown.
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4+ 2(09)* = 0,
o) —1=0.
The complex roots are 09 = 1, 09 = +i, {° = 2, where i = /=1. The
bifurcation equations have no real roots and the DAE has no real solutions.
However, this DAFE does have the four complex solutions
u=t v =+t v, =%/t

Note that there are four complez solutions fort < 0 and four fort > 0. If we
let 3 € IR, then the solution set can be written as four differentiable functions
of &:

(1) u =235, vy =3§, vy =18

(2) u = §2, (O -§, Vg = —Zg,
(3) Uu = —--§2, v = ’L§, Vg == §,’
({) u=—8§, vy =18, vy = —§.

It is no coincidence that the number of solutions for t < 0 equals the number

of solutions for t > 0. The theory for this will be discussed in Chapter 4.

3.6 Existence of Real Solutions Near Bifur-

cation Points

We now consider the case when x = 0 is a bifurcation point; that is,
guf’ € R(g);

or equivalently,

TTgof0 = 0.
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In this case, the first term of (3.24) vanishes and the bifurcation equations
no longer contain the quantity i°. The bifurcation equations become
' UTgl 0y Py° + A Py%i® + Ag(40)?
hyis (¥°,4°) = =0. (3.34)
NOyO 4 (N + N?2 + N8Z¢)t0 + N?

As in the fold case, we have r + 1 equations in 7 + 1 unknowns; r of the
equations are quadratic and one is linear, so there can be at most 27 iso-
lated roots. Since all coeflicients are real, the roots must be real or complex

conjugate pairs.

Theorem 3.35 Suppose x = 0 is a bifurcation point and Assumption 1.8 is
satisfied. Then corresponding to each real, isolated solution (y°,°) of (3.84),
there exists a unique, real, continuously differentiable solution u = U(s),

y =y(s), t = t(s) satisfying (3.25) on some interval (s,,s;) containing s°.
It has the form

U(s) = (s - 30> %%+ 0 <(s - 30)2) ,
yis) = (s=5)3°+0((s =),
t(s) = (3 - so) i°+0 ((s - 30)2) .

Proof: The proof is similar to that of Theorem 3.28. As in the fold case,

we only consider s = s% + ¢, where |¢| < 1, and we make the rescaling:

y = €€ and t = €.



35

Define

2
S ga(u,c€)

1 e # 0;
—6—N(u, Qel + Zz(u,€€),er, s + ¢)

G(é? T’ 63 u)

hbif(€77-)7 €=0.

When ¢ # 0, the solutions of G(&,7,¢,u) = 0 are exactly the solutions of
(3.25bc). Using Assumption 1.8 and L'Hépital’s rule, it is easily verified that
G(¢&,7,¢,u) is a continuous function. Since we assumed that (¥°,1°) is an

isolated real root of (3.27), one solution of G(&,7,¢,u) =0 is

£=y°
_—
e=1,

u=20

Since this is an isolated root of (3.34), the Jacobian G¢ ,(y°, % 0,0) is non-
singular. Thus we can apply the Implicit Function Theorem to obtain, cor-
responding to each isolated root (¥°,1°), the existence of unique, continuous
functions &(u, €) and 7(u, ¢) satisfying

(a) G(§ 7 6u)=0,

(b) £(0,0) =y° and

(c) 7(0,0) = {°
The existence and uniqueness of these functions is guaranteed in some suffi-

ciently small neighborhood of u =0 and ¢ = 0. As in the fold case, £(u,¢)
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and 7(u,€) are actually twice continuously differentiable, except possibly
when € = 0; this is because G(&,7,¢,u) has two continuous derivatives for

e # 0. Now, (3.25) is reduced to

du f(u, Zz(u, e€) + Dek) (T—I—eTu%-{-CTe) , €#0;
| fu, Z2(u,0)) (7). e=0;

u=0ats=s"

where & = &(u,¢) and 7 = 7(u,¢). This is an ODE initial value problem of

the form

g’l_l_
ds
0

u=0ats=3s,

= F(u,s),

and it can be shown that F(u,s) is Lipschitz continuous in a neighborhood
of x =0 and ¢ = s — s° = 0. Standard existence and uniqueness theory for
non-autonomous ODEs then guarantees the existence of a unique function
u = U(s) satisfying (3.25) for s sufficiently close to s°. That function has at

least one continuous derivative. Then y and ¢ are uniquely given by:

t(s)=(s =37 (U(s),s - 30) .
The form of the solution given in the theorem is obtained by a Taylor expan-

sion of the above two equations and (3.12) in s about s = s°. O

Theorem 3.36 Suppose x = 0 is a bifurcation point and Assumption 1.8 is

satisfied. Then corresponding to each real, isolated solution (y°,1%) of (3.34)
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with 10 # 0, there exists a unique, real, continuously differentiable solution
x(s) satisfying (3.8) and hence (1.2) on some interval (s., sq) containing s°.

It has the form

u(t(s)) = (s—s°) P +0 (s - %),
v(t(s)) = (3 — 30> (@5/0 + ZCiO> + 0 ((s — 50)2) ,
t(s) = (s - so> 40 ((s — 50)2> .

Proof: From Theorem 3.35 we know that for each isolated root of the
bifurcation equations, (3.25) has a unique solution x(s) for all s in some in-
terval (s,,ss) containing s°. Since we assume ¢° # 0, Lemma 3.26 guarantees
that it corresponds to a unique solution satisfying (3.8) and hence (1.2) on
(8¢, 84) for some s, < s® and s4 > s°. The form of the solution is obtained
from Theorem 3.35 and from a Taylor expansion of v(t(s)) in s about s = s°,

making use of (3.18). O
Example 3.37 Let n = m = 1 and consider the DAFE

— = f(u,v) =1,

0 = g(u,v) = u* —v?,

u=v=0att=0.
Here: g0 = —2v|,_, = 0, so the initial value is a critical point. Also: g0 =
2ul,_, = 0, so ¢2f° € R(¢2) and the initial value is a bifurcation point.

There are two solutions, both valid for all t, and they are given by u =t and

v = *t (see Figure 3.38).  If we let
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Figure 3.38:

Solution set for Example 3.37
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N(u,v,t,s) =v— s,

then the bifurcation equations are

The bifurcation equations have two isolated solutions, ©° = 1 and {® = £1.
Theorem 3.36 applies to each root, since both satisfy 1© # 0. Therefore, there
are two solution paths. One is given by u(t(s) = v(t(s)) = t(s) = s and the
other by u(t(s)) = t(s) = s, v(t(s)) = —s.

Example 3.39 When r > 1, there may be up to 2" solution branches. Let
n =1, m =2, and consider the DAE

du
Et_ - f(u,'t)l,’l)g) = 17
'U,2 had 2'01'1)2
0= g(u>v1702) = )

9'U,2 - 4(01 + U2)2

u=uvy =vy =0 att =0.

Then g% = 0, so r = dim{N(g9)} = 2. Since g% = 0, the initial value is
a bifurcation point. There are four solutions, all of which are valid for all t
(see Figure 3.40):

(1)u=t, vy =1t vy=1/2;

(2)u=t,v=—t,vp=—t/2;

(8) u=t, v =12, v, =1;
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Figure 3.40: Solution set for Example 3.39
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(4) u=1t, vy =—t]2, v, = —t.
If we set
N(u,v1,v9,t,8) = vy — s,
then the bifurcation equations are
2(1%)? — 40993 = 0,
18(19) — 8(0) + v9)* = 0,
o) —1=0.
There are four isolated real roots:
(1)1°=2, 30 =1, 09 =2;
(2)1° = -2, 09 =1, 09 = 2;
(8)1°=1,9Y =1, 99 =1/2;
(4)1°=—1,0% =1, 09 =1/2;
none of these roots have t° = 0, so Theorem 3.36 applies to each of them,
and there are four solution paths, given by:
(1) u(t(s)
(2) u(t(s
(3) u(t(s
(4) u(t(s

Example 3.41 The proof of Theorem 8.36 relies on the assumption that the

)
) =1t(s
)
)

bifurcation equations have a real, isolated root. If the root is not isolated
there may not be any real solution path passing through x = 0. Consider the
following DAE withn =m = 1:

du
- = flu,v) =1,
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0 = g(u,v) = v* + u,
u=v=0att=0.

The initial value is a bifurcation point, but the only solutions of this DAE
are u = t, v = %it?, where 1 = \/—1. Neither of the two solution paths is

real except at t = 0. If we let
N(u,v,t,8)=v+1t—s,

then the bifurcation equations are

2(0°)? = 0,
°+1%~1=0.
There is one double root and it is v° = 0, {° = 1. Since the root is not

isolated, Theorem 3.36 does not apply, and in fact there are no real solutions

of the DAE.

3.7 Pitchfork Bifurcation

A special case of bifurcation arises when several solution paths cross and
one or more of those paths lies entirely on one side of ¢ = 0. We call this
a pitchfork bifurcation. One sign of a pitchfork bifurcation is that {© = 0
is a root of the bifurcation equations (3.34). That case is not covered in
Theorem 3.36. In order to establish the existence and uniqueness of a solu-

tion branch corresponding to a root with t° = 0, we make some additional
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assumptions which guarantee t° # 0. Then we can simply apply Theorem

3.35 and Lemma 3.26 to obtain an existence and uniqueness theorem.

Definition 3.42 Let

30Tl Oy P
AgY=| T T
N

30Tl dy°1° + 3W7g0, 8y°Z¢
( NO® + N2+ NOZ¢ )
45" = ( g0, 250500 ) |
— N, = 2NJ,0y° — NQ, 9y °0y°

Theorem 3.43 Suppose x = 0 is a bifurcation point and Assumptions 1.8
and 1.9 are satisfied. Then corresponding to each isolated, real root (y°,1°)
of (3.34) with

(a) t°=0, and

(1) A7) ¢ R(AGY),
there ezists a unique, real solution x(s) satisfying (3.8) and hence(1.2) in
some interval (s,, sy) containing s° such that

(a) x(s) is twice continuously differentiable;

(b) °#0.
It has the form

(5 - 30>2f0i0 + O ((3 ___,30)3) ,
s — 30> dy° + 0 ((5 - 30)2> ,
(3 - SO)ZiD + 0 ((5 — 30)3> .

<
—~
o~
—~
)
A —
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fl
[N e T A
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Proof: From Theorem 3.35, we know that for each isolated root of the
bifurcation equations, (3.25) has a unique solution x(s) for all s in some
interval (sq,$p) containing s9. Since we have assumed the additional differ-
entiability Assumption 1.9, that solution is twice continuously differentiable.
We shall show that, under the assumptions of a pitchfork bifurcation point,
this solution has i® # 0. The existence and uniqueness result then follows
from a straightforward application of Lemma 3.26.

We shall first prove that under the assumptions of Theorem 3.43, £° # 0.
Firstly, if £ = 0, it follows immediately from (3.34) that

TTgl oy°0y° = 0. (3.44)

Secondly, by using £ = 0 in (3.19), (3.12) and (3.13), we have

2% = ¢i° =0, (3.45a)
W =% =0, (3.45b)
i = £°7°. (3.45¢)

Due to (3.44) and (3.45), the k=2 equation of (3.14), evaluated at s°, sim-
plifies to:

gz’ + ghf’i® = 0. (3.46)
Equation (3.46) is similar to (3.18). The solutions are related by:

70 = (0. (3.47)

In order to get an expression for the unknown quantities ¥° and ¢°, we con-

sider the system of equations made up of
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(a) the k=3 equation of (3.14), left multiplied with U7 and evaluated at
s%, and
(b) the k=2 equation of (3.15), evaluated at s°.

Using (3.45) and (3.47), this is simply the linear system:

A+ B = d(3?), (3.48)

where A(y°), B(y"), and d(y°) are as in Definition 3.42 above. Since we

assumed d(¥°) € R(A(3%)), (3.48) cannot have a solution with £° = 0.
Since {° # 0, lemma 3.26 applies, and the existence and uniqueness re-

sult of the theorem follows immediately. The form of the solution is simply

obtained by a Taylor expansion in s about s = s°. O

Example 3.49 A simple ezample of a pitchfork bifurcation occurs if we let
n=m =1 and consider the DAE

du

:l? == (u,v) = 1,

0 = g(u,v) = v(u —v?),
u=v=0att=0.

Then ¢° = 0 and ¢g@ = 0 so the initial value is a bifurcation point. The
solutions, plotted in Figure 3.50, are
(1) u=1,v=0;
(2)u=t,v=1/t
(3) u=1t,v=—1.
If we set
N(u,v,t,8) =v—v>+1t—s,
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then the bifurcation equations are
20°1° = 0,

(1—-20)0°+1°~1=0.

The roots are (v° = 0,1° = 1) and (v° = 1,i° = 0). The first root corre-
sponds to the solution v = 0 and the existence of that solution is given by

Theorem 8.36. The second root has i° = 0 and theorem 3.43 applies because

.0 0
A7) = A(l) = ( . ), and

so d(v°) & R(A(vY)). The two solutions corresponding to the two roots of
the bifurcation equations are

(1) u(t(s)) = s, v(t(s)) =0, t(s) = s;

(2) u(t(s)) = s%, v(i(s)) = s, t(s) = s
Notice that this DAE has one real solution for t < 0 and three real solutions
fort > 0. However, if we allow complex solutions, this DAE has two more
solutions for t < 0, namely u = t and v = +i/—t. If we let § € IR, then
the two complex solutions for t < 0 can be written as a single differentiable
solution path u(t(8)) = t(8) = —8?%, v(¢(3)) = ¢8. So if we include complex
solutions, the DAE actually has three solutions fort <.0 and three fort > 0.

The theory for this phenomenon will be presented in &Chapter 4.
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Figure 3.50: Solution set for Example 3.49. Both real and complex solutions

are shown.
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Chapter 4

Complex Solutions Near

Critical Points

In the previous chapter, we sought real solution trajectories of the DAE
(1.2). In this chapter, we shall define a complex extension of (1.2) and
show that this extension may have complex solution trajectories near x = 0.
The complex solutions will correspond to complex roots of the bifurcation
equations.

The theory of this chapter is an extension of the work of Henderson and
Keller in [11] and [12]. Henderson and Keller examined complex bifurcation
in algebraic nonlinear equations. Here we extend their theory to cover DAEs

of the form (1.2).
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4.1 The Complex Extension of a Real DAE

Assuming that Assumption 1.7 holds, the real functions f and g are con-
tinuously differentiable in a neighborhood, call it 2, of x = 0. Then there
are unique analytic mappings f,, : €" xC™ — C" and g, : C" x C" — C”

which coincide with f and g in Q. The complex extension of (1.2) is then

d co
;lt - fco(ucoa vco)7 (41&)
0 = geo(Ueo, Veo)s (4.1b)
U, =0and v, =0at t =0, (4.1c)

where U, = Uye + Ui € €, Voo = Vye + Vi € €™ and we retain ¢t €IR.
The real vectors u,. and u;, stand for the real and imaginary parts of u,,,
respectively. Similarly, v,. and v, are the real and imaginary parts of v,.
We shall use the notation x., = (uco,vco,t)T. We can also split f., and g,
into their respective real and imaginary parts by defining f.., fi., g and

Zim, all of which map IR® x R™ x IR™ x R™ — IR", such that
fco(ure + iuimy Vre + Z.Vim) = fre(ure7 Wim, Vre, vim) +
2.'f1'm(]-11'e33 Uim, Vre, vim)y
gco(ure + Z.uim, Ve + Z.Vim) - gre(ure’ Uim, Vre, Vz'm) +
igim(urey Um Zvrev Vim)-

Since the complexified problem must locally reduce to the real one, we

have, for all u and v in Q:

foo(u +10,v 4 :0) = f(u,v), (4.2a)



geo(u +10,v +i0) = g(u, v).
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(4.2b)

Because we chose f, and g., to be analytic everywhere, the Cauchy-Riemann

equations hold for both functions and for all u,, €C” and v, €C™:

afre . afzm
aure B 8uim7
afre i afzm
avfre B avim’
of.  of;
8uim B 8ure,
afre _ afim
Vim0V
agre _ 8gim
aure B auim’
agre - agzm
avre B avim’
ﬁgre __agim
auim B 8ure ’
agre . _8gim
avim B avre '

(4.3a)

(4.3b)

(4.3¢)

(4.3)

(4.3¢)

(4.3f)

(4.3g)

(4.3h)

There are two ways to study the solutions of the complexified DAE. One is

to perform the entire analysis in the complex space. The Lyapunov-Schmidt

reduction, the Implicit Function Theorem, and the existence theory for ODEs

can all be applied in the complex case, just as we did for the real case in

Chapter 3. The other way is to rewrite the complexified DAE (4.1) as a real

problem of size 2n + 2m:

du,.
dt

- f're(urev Uimy Vre, vim)7

(4.4a)
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d im
”"—:Z‘t’_ - fim(urea uimavrmvim)) (44b)
0= gre(ure> uimav'reav‘[m)y (446)
0= gim(ureyuimyvrmvim); (44(1)
Ure = 0,05, =0, v,e =0, vy, =0 at t = 0. (4.4e)
Now define
N fre(urea uimavreyvim)
f(a,v) =
fim(ure’ Uim, Vrye, Vim)
and
gre(urea Wim, Vre, Vim)
g(a,v) =

gim(urm Uim, Vre, Vim)
with @ = (Ure, Uim)T and ¥ = (Vye, Vim)T. Then (4.4) can be written in the

form (1.2):

= = f(a,v), (4.5a)
0 =g(a,v), (4.5b)
G=0and v =0att=0. (4.5¢)

The system (4.5) is a real DAE, exactly in the form specified in (1.2). All
the results of Chapter 3 can be applied to find real solutions of (4.5). Real
solutions of (4.4) with nonzero u;,, or v;,, correspond to complex solutions of
(4.1). Note that since the initial value is real, the Jacobian of § with respect

to ¥ evaluated at the initial value is

) =) (o)
(=) (z2)') o

IVre

o
<O
i
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Here we have made use of (4.2) and the Cauchy-Riemann equations (4.3).

Clearly, g3 is nonsingular if and only if gJ is nonsingular. So regular points
of the complexified DAE correspond to regular points of the original real
DAE. Also note that if g% has a nullspace of dimension r, then the nullspace
of g9 has dimension 2r. If ® and ¥ are bases for the right and left nullspaces

of g2, then

. d 0 . v 0
b = and ¥ =
0 9 0 v

are bases for the right and left nullspaces of g3.
We can now apply the theory of Chapter 3 to (4.4). In accordance with

that theory, we define

T
Yre O v,

<
il
il
>
~
<>
il

?

Yim ®Tvy,
where y,. € IR” and yin, € IR". We introduce a real scalar constraint,

~

N(a,%,t,8) =0, (4.7)

which defines a real parameter § to be used to parametrize solution trajecto-
ries of (4.4). We choose the constraint (4.7) to satisfy N(0,0,0,3%) = 0 for

some §° € IR, and

NS = (NQ,N9), (4.8a)
N = (N9, N9), (4.8b)
NO = N?, (4.8¢)

NY = N?, (4.8d)
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N = ND,, (4.8¢)
Nss = (‘N\?w “Nes) 3 (4'8f)
~ X1
]\/\‘?\7 = (N\?vxh —-N\(,)VXZ), (4'8g)
X2

for all x1,x2 € IR™. By assuming (4.8), we equate scales in the two con-

straints (3.7) and (4.7), which helps ease the notation below.

4.2 Complex Solutions Near Fold Points

We first look for solutions of the complexified system near a fold point of

the original DAE. So we assume
UTg0f0 £ 0.

By making use of (4.2), (4.3) and (4.8), the bifurcation equations (3.27) for

(4.4) at a fold point can be written

PG00 + WTgd, (290,837, — 890, 832,) = 0, (4.9)
U780, 852,852, = O, (4.9)
NOB(52, +§%,) + N2 = 0. (4.9¢)

Now suppose that (y°,%°) is an isolated root of (3.27) with i® # 0 and
{® € IR. Then it corresponds to two real, isolated roots (¥°.,¥9 ,1°) of (4.9):
one with y?, = Re y° and y?. = Im y°, and the other with y°, = Im y°,
v? = Re y° and the sign of {° reversed. Each of these roots in turn yields

a unique, real solution trajectory of (4.4) and a complex solution trajectory
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satisfying the complexified DAE (4.1). The existence of those solutions is
given by Theorem 3.29.

So we see that solutions near a fold point occur in pairs. Each member
of a pair lies on only one side of ¢ = 0, and the other member lies on the
opposite side. In particular, a real isolated root of (3.27) leads not only to
the real solution found in Theorem 3.29, but also to a complex solution which
has a purely imaginary tangent, on the opposite side of ¢t = 0. The following

theorem states this result in precise form:

Theorem 4.10 Suppose x = 0 is a fold point and Assumption 1.8 is satis-
fied. Then corresponding to each isolated root (y°,%°) of (3.27) with 1° # 0
and 1° € IR, there exist exactly two complex solutions X,(8) on some interval
(84, 8) containing §°, satisfying the complexified DAE (4.1), such that:

(a) u.(t(8)) is twice continuously differentiable;

(b) veo(t(3)) is continuously differentiable;

(c) t(8) is twice continuously differentiable.
FEach of the solutions locally exists on only one side of t = 0, and the two

solutions lie on opposite sides of t = 0.

The proof of Theorem 4.10 is a straightforward application of Theo-
rem 3.29 to the DAE (4.4). For examples of complex solutions near fold
points, we refer the reader to Example 3.5 on page 13 (discussed also in
Example 3.30 on page 29), Example 3.31 on page 29, and Example 3.33 on
page 31.



%)

4.3 Complex Solutions Near Bifurcation

Points

In Chapter 3 we showed that near bifurcation points, there exists a real
solution trajectory of (1.2) corresponding to each real, isolated root of the
bifurcation equations (3.34). But we also mentioned that (3.34) may have
complex, isolated roots which would have to occur as complex conjugate
pairs. Clearly, these roots will not lead to real solutions of (1.2), but each
of the isolated complex roots corresponds to a complex solution of the com-
plexified DAE (4.1).

The bifurcation equations for the extended system at a bifurcation point

are:
Vg0 (OV7. @Y7, — BV0. 0¥ D) + A10Y%% + Ao(i°) =0,  (411a)
2078 By V0, + A0y, 10 =0, (4.11D)
No®(7e + Fim) + (NOf° + NP + NYZO)E° + NJ = 0. (4.11¢)

Here we have made use of (4.2), (4.3) and (4.8). Now suppose that (y°,{°) is
an isolated complex root of the bifurcation equations (3.34) of the original,
real DAE. Also assume that the root satisfies ° € IR, since we want to
look for solutions with ¢ real. Note that since the last equation of (3.34) is

satisfied, and all coefficients in that equation are real, the root must satsify

NI®(Im y°) = 0. (4.12)
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Since (y°,1°) is an isolated root of (3.34), (¥2,,v2,,1°) with y2, = Re y° and
v = Imy° is a real isolated root of (4.11). It is also evident from (4.11)

that the complex conjugate of (¥°,%°) must also be a root of (3.34).

Theorem 4.13 Suppose x = 0 is a bifurcation point and Assumption 1.8 is
satisfied. Then corresponding to each (real or complex) isolated root (y°,1°)
of (3.84) with i{® # 0, there exists a unique, continuously differentiable so-
lution x.,(8) satisfying the complexified DAE (4.1) on some interval (&,, 3)

containing 8°.

The proof is a simple application of Theorem 3.36 to the extended system

(4.4).

Example 4.14 Let n = m =1 and consider the DAE

du
o= (u,v1,v2) = 1,
0= g(u,v) = u’ + 27,
u=v=0att=0.

Then gy =0, sor = dim{MN(g%)} = 1. Since g% = 0, the initial value is a bi-
furcation point. This DAE has two complex solutions (shown in Figure 4.15),
given by u =t and v = *it. If we set

N(u,v,t,8) =t —s,
then the bifurcation equations are

2(¢°)? 4 2(¢°)% = 0,
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i —1=0.
There are two isolated compler roots, 1° = 1 and 0° = +i. Theorem 4.13

applies to both roots, and there is a complex solution path corresponding to

each of them.

We must devote special attention to pitchfork bifurcation points. Suppose
the bifurcation equations (3.34) have a real, isolated root (y°,4°) with {® = 0.

Suppose also that this root satisfies

d(y°) & R(AGF")),

and that the solution of (3.48) satisfies {° € IR. Then the bifurcation equations

(4.11) for the extended system have at least two real, isolated roots:
¥2.,v2.,1% = (Re ¥°,0,0) and (4.16a)

(¥7e> Yim»1") = (0, Re ¥°,0). (4.16b)
In order to establish the existence of solutions corresponding to these two
roots, we apply the theory of Section 3.7. Thus we apply Definition 3.42
to obtain A(¥%,5%.), B(¥%,v%,) and d(¥°,,5°.), the equivalents of A(3°),
B(y°) and d(y°) for the extended system (4.4):

Definition 4.17 Let

¥ gvv@y?e@ -3V gvvq)ys)mq)
AY7e Vo) = | 3072,059,0  30%g0,83%.0 |,
NO® NG
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Figure 4.15: Solution set for Example 4.14. Both solutions are complex

except at ¢ = 0.
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3\DTg8V®S’SefO + 3\Ing(\)7V(I)ySGZC
B(¥7e: Vi) = | 3070, 8592 + 3072, 892 . 2¢ |,
NOf® + N2 + N3Z¢

_\I}ngvv(q)ygeq)y;)eq)yge - 3®yge®ygm®yg)m)
d(¥7.,5%,) = — 070, (30y0, 870 &30, — By Y2 B0,
~NO, — NOa(y°, — ¥2.) — NO,®(¥%,83°, — 32,059,

The equivalent of (3.48) for the extended system is then

A3 ¥5m) yo + By = A, 7). (418)
Yim

For simplicity, assume that we choose (as we always can) a constraint (3.7)
which satisfies N2, = 0. Now if we use the first root (4.16a) in (4.18), then
the only solution (¥2,,¥7.,1°) of (4.18) is (§°,0,%°), the solution of (3.48).
If we use the second root (4.16b) instead, then the solution of (4.18) will be
(—=¥°,0,—1°). Thus we see that in addition to each solution branch given by
Theorem 3.43, the complexified DAE (4.1) has a complex solution branch
on the opposite side of ¢t = 0. The complex branch has a purely imaginary

tangent at ¢ = 0. The following theorem summarizes this result:

Theorem 4.19 Suppose x = 0 is a bifurcation point and Assumptions 1.8
and 1.9 are satisfied. Then corresponding to each isolated, real root (y°,%°)
of (3.84) with

(a) =0, and

(b) d(¥°) ¢ R(AF)),
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there erist exactly two solutions x.(8) satisfying (4.1) in some interval
(84, 8) containing 8° such that

(a) X.(8) is twice continuously differentiable;

(6) i°£0.
One of these solutions is real and lies entirely on one side of t = 0. The
other has a purely imaginary tangent at t = 0 and it lies on the opposite side

oft =0.

Theorem 4.19 is proved by applying Theorem 3.29 to the extended DAE
(4.4). An example of this phenomenon is provided by Example 3.49 on

page 45.
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Chapter 5

Simple Critical Points

A special case of critical points arises when the dimension of the nullspace
of g5 is one. In this case, the bifurcation equations (3.23) are only two
equations, one of which is quadratic and the other of which is linear. Due to
the simplified nature of the problem, we can make much stronger statements
about the existence of solutions near simple critical points than we can about

solutions near general critical points.

5.1 The Nullspaces

At simple critical points, gJ has a one-dimensional nullspace. Therefore,
there is only one choice for the bases ® and . If ¢ and v are the normalized

right and left nullvectors of g9, then:

¢ =9,
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T = 1.

We shall use the small letters ¢ and 1) instead of ® and ¥ to emphasize that,
for simple critical points, these quantities are vectors, not matrices. Also, for
simple critical points, the vector y has only one component, which we shall

call 7.

5.2 Simple Fold Points

Definition 5.1 If x = 0 is a simple critical point, and g3f° & R(g%), then

x = 0 is called a simple fold point.
For simple fold points, the bifurcation equations (3.27) reduce to
TP + ¢l pp (1) = (5.2a)

Nygn® 4+ N? = 0. (5.2b)

The only solution of (5.2) is:

NO
- NN (4780, b )
tb:‘(N&qb) ( a0 ) (5:30)

Recall that we assumed N9¢ # 0 when we defined N, and that the range
condition for a fold point can be expressed 7gdf% # 0. Therefore, the

right-hand sides of (5.3) are well defined.
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Theorem 5.4 Suppose x = 0 is a simple fold point, Assumption 1.8 is sat-
isfied, and p7g0 @ # 0. Then there exists a unique solution x(s) of (3.8)
and hence of (1.2) on some interval (s,,sy) containing s° such that:

(a) u(t(s)) is twice continuously differentiable;

(b) v(t(s)) is continuously differentiable;

(c) t(s) is twice continuously differentiable.

It has the form

(s - 30)2 91 + O ((s - 30)3> ,
s—s°) ¢i° + 0 ((s = 5°?),

(s - 30)2 P +0 ((s - 30)3) .

<
~
o~
TN
n
S’
s’
I
PO = TN B

Proof: The unique real solution of (3.27) is given in (5.3) and the assump-
tions of Theorem 3.29 are satisfied. A direct application of Theorem 3.29
yields the desired result. O

If (1/)ng.vq’>¢)/(¢Tg8fo) < 0, then, locally, there are two solutions for
t > 0 and no solutions for ¢ < 0. Similarly, if (vp7g%,#¢)/(x7g2f°) > 0,
then locally there are two real solutions for t < 0 and no real solutions for
t > 0. Note that this result corresponds to that for “impasse points” in [24].

Now consider the complexified DAE (4.1) at a simple fold point. Accord-
ing to the theory of Chapter 4, particularly Theorem 4.10, the complexified
problem has another solution branch. It lies on the opposite side of t = 0

from the real one, and its tangent is purely imaginary.

Theorem 5.5 Suppose x = 0 is a simple fold point, Assumption 1.8 is sat-

isfied, and 1% g% dp # 0. Then there exist exactly two solutions Xco(8) of the
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complezified DAE (4.1) on some interval (&,,8) containing §° such that:
(a) u(t(8)) is twice continuously differentiable;
(b) v(t(3)) is continuously differentiable;
(c) t(3) is twice continuously differentiable.

If the teal root of the bifurcation equations is denoted (7°,1°), then one solu-

tion is given in Theorem 5.4, and the other has the form

u(t(3)) = —% (s - 30)2 £ + 0 ((5 - 5°?)
v(t(3) = i(s=8)¢i°+0 (357,
1©) = ~5 (=) Proc-57).

where © = +/—1. In a neighborhood of x = 0, each solution lies entirely on
one side of t = 0 and the two solutions lie on opposite sides of t = 0. One

solution is real and the other has a purely imaginary tangent at x = 0.

The proof is a simple application of Theorem 4.10. We see that near a
simple fold point, the complexified problem has two solutions for t < 0 and
two solutions for ¢ > 0.

Example 3.5 on page 13 provides an example of a simple fold. A discussion

of this example is found in Example 3.30 on page 29.

5.3 Simple Bifurcation Points

Definition 5.6 Ifx = 0 is a simple critical point, and g2f® € R(g%), then

x = 0 s called a sumple bifurcation point.
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For simple bifurcation points, the bifurcation equations (3.34) reduce to

a2(7°)" + a1’ + ao(i)” = 0 (5.72)
biij® + byl + b3 = 0 (5.7b)
where
=1 gvv¢¢7

a1 = gl + 2970 % + 24765, Z ¢ 9,
= o gufuf® + gty Z¢ + ¥ gl 010 + 2970 0 2¢ + 9780, Z¢ Z¢,

bl = N\?qba
= N+ NOZ¢ + NP,
b3 = NS

In order to describe the solution set of (5.7), it is useful to define the dis-
criminant

A= af — 4apas.

The two roots of (5.7) are given by

o —bR
- 2(12[)2 + blR’
0 — ——2()3(12
2a2b2 + 61R7
with
R= —daq =+ \/Z

Clearly, the normalization N can be chosen so that the denominator 2asb, +

b1 R is nonzero. The sign of A determines the character of thr roots. If A > 0,



66

then there are two distinct, isolated, real roots. If A < 0, then neither root
is real and the two roots are a complex conjugate pair. If A =0, then there
is one real double root. If A > 0 and a, = 0, then a; # 0 and one of the two
(real, isolated) roots has {® = 0, leading us to expect a pitchfork bifurcation.

The theory of Chapters 3 and 4 applies when A # 0 because the roots are
isolated in this case. Thus we shall see that if A > 0, two real solutions pass
through the initial value x = 0. If A < 0, two complex solutions pass through
x = 0, and x = 0 is an isolated solution of the original real problem. When
A = 0, the DAE may or may not have real solutions which pass through
x = 0. Any (real or complex) differentiable solution trajectories must have
a real tangent at such a point, but one cannot conclude that the solution
trajectories are real in a neighborhood of x = 0. This is demonstrated by

Example 3.41.

5.3.1 Simple Transcritical Bifurcation

Definition 5.8 Suppose x = 0 is a simple bifurcation point and a; # 0.
Then if A > 0, x = 0 is called a simple transcritical bifurcation point. If

A <0, then x = 0 s called a simple complex bifurcation point.

Theorem 5.9 Suppose x = 0 is a simple transcritical bifurcation point and
Assumption 1.8 is satisfied. Then there exist exactly two continuously dif-
ferentiable solutions x(s) satisfying (3.8) and hence (1.2) for all s in some

interval (sq,sp) containing s°. Fach has the form

u(t(s)) = (s— )% +0 (s - s%?),
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v(t(s)) = (s=s°) (@3°+ 2¢i°) + O ((s — %)),
t(s) = (s—s°) 40 ((s %),

where (17°,1°) is one of the two real roots of the bifurcation equations.

Proof: Since A > 0 and a, # 0, there are two isolated real solutions of the
bifurcation equation, and neither has {® = 0. Theorem 3.36 guarantees that,
corresponding to each of the two solutions, there exists a unique differentiable
solution path satsifying (3.8) and hence (1.2) in some neighborhood of s°. O

A simple transcritical bifurcation point is a point at which two solution
paths cross. Near such a point, there are two solutions for ¢ > 0 and two
solutions for ¢t < 0. For an example of simple transcritical bifurcation, see

Example 3.37 on page 37.

Theorem 5.10 Suppose x =0 is a simple complex bifurcation point and
Assumption 1.8 is satisfied. Then there exist exactly two continuously dif-
ferentiable solutions X.o(8) satisfying (3.8) and hence (1.2) for all 5 in some

interval (&,,3;) containing §°. Each has the form

where (11°,1°) is one of the two complex roots of the bifurcation equations.

Proof: At simple complex bifurcation points, A < 0. This means that

the bifurcation equations have two complex conjugate roots. We can apply
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Theorem 4.13 to each of them to prove the existence of a solution trajectory
corresponding to each root. O
We see that as long as A # 0, the complexified DAE has two solutions

for t < 0 and two solutions for t > 0.

5.3.2 Simple Pitchfork Bifurcation

Definition 5.11 Suppose x = 0 is a simple bifurcation point, and Assump-
tions 1.8 and 1.9 are satisfied. If

(a) a; =0, and

(b) a; #0, and

(¢) YTglvddd # 0, and

(d) Nogpao— (NI + NOZ¢+ N?)ay #0,

then x = 0 is called a simple pitchfork bifurcation point.

Lemma 5.12 Suppose x = 0 is a simple pitchfork bifurcation point and As-
sumptions 1.8 and 1.9 are satisfied. Then the bifurcation equations have two
isolated roots, one of which satisfies t° # 0 and the other of which satisfles
(a) {°=0, and
() d(i°) € RIAGD)),
where d(7°) and A(5°) are as in definition 3.4/2 on page 43.

Proof: For simple pitchfork bifurcation points, the bifurcation equations

are B
(a17° + af®) ©° = 0, (5.13a)

NO$i° + (NS + NYZ¢ + NP) i+ NO = 0. (5.13b)
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The system (5.13) has two roots,

i° = Nyax and 7° = ——ggto,
N@¢ao — (N + N2Z¢ + NP) ay ay
: N?
o __ 0 __ S
t"=0and 5" = Nog'

The first of these roots satisfies {° # 0 because we assumed a; # 0. The

second root satisfies £ = 0 and d(5°) € R(A(5°)), since, by definition 3.42,

.0 3a2ﬁ° O
Nyg Nye

0 ~ T8 @D (i)’
d(n ): 70 0 4.0 0 N2 |
—Ngo = Ns@1” — N, o (n°)
Because 7° # 0 when #° = 0, and because we assumed pTgd  dbo £ 0, it
follows that d(7°) € R(A(n°)). O

Theorem 5.14 Suppose x = 0 is a simple pitchfork bifurcation point, and
Assumptions 1.8 and 1.9 are satisfied. Then there exist exactly two twice
continuously differentiable solutions x(s) satisfying (3.8) and hence (1.2) for
all s in some interval (sq,s) containing s°. One corresponds to a root (1°,{°)

with 1° = 0 and it has the form

(3 - 30)2 f91° + O <(3 - 50)3> ,
s — 30) o’ + 0 ((3 — 30).2> ,

(s - 30>2 40 ((3 - 30)3> .

< jor
o~ o~
T [
—~ o~
V) n
~— —
~— ~—
il Il
DO = N 0] —
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The other corresponds to a root (1°,1°) with {° # 0 and it has the form

u(t(s)) = (8 — SO> 90+ O ((s — 50)2) ,
v(t(s) = (s—s°) (2i°+ 2¢%) + 0 ((s = s°?),
ts) = (s—s) 40 ((s— ).

Proof: By Lemma 5.12, the bifurcation equations for a simple pitchfork
bifurcation point have two isolated roots, exactly one of which has ® = 0.
Theorem 3.43 guarantees the existence and uniqueness of a solution x(s)
in a neighborhood of s° corresponding to the root with ¢ = 0. Similarly,
Theorem 3.36 guarantees the existence and uniqueness of a solution x(s) in
a neighborhood of s° corresponding to the root with {9 s£ 0. O

Note that we can solve for the second derivative £ belonging to the real
solution with {° = 0. From (3.48), one obtains

P UEG00R
(39780, @f° + 31780 @ ZC)(N2)”

If this quantity is positive, then (1.2) has three real solutions for ¢ > 0 and

one real solution for ¢ < 0. If it is negative, (1.2) has one real solution for
t > 0 and three real solutions for t < 0.

Now consider the complexified DAE (4.1) near a simple pitchfork bifurca-
tion point. By applying the theory of Chapter 4, we find that the bifurcation
equations corresponding to the complexified problem actually have three iso-
lated roots. Two of them are the same as for the real DAE, and the third is

complex. The complex root satisfies {° = 0. Each root will lead to a solution

of the complexified DAE:
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Theorem 5.15 Suppose x = 0 is a simple pitchfork bifurcation point, and
Assumptions 1.8 and 1.9 are satisfied. Then there exist exactly three twice
continuously differentiable solutions X..(8) satisfying (3.8) and hence (1.2)

for all § in some interval (§,,8) containing 8°.

The proof is a simple application of Theorem 4.19. The new complex
root leads to a solution which lies on the opposite side of ¢ = 0 from the real
root with #© = 0. Thus the complexified DAE has three solutions for ¢ < 0
and three solutions for ¢ > 0.

Example 3.49 on page 45 is an example of simple pitchfork bifurcation.
In that example, {° = 2 for the branch with {® = 0, so there are three
real solutions for ¢ > 0 and one real solution for ¢ < 0. As predicted by

Theorem 5.15, there are three complex solutions for all ¢ # 0.
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Chapter 6

Applications and Physical

Examples

DAEs occur naturally in many practical applications, and many contain

fold or bifurcation points. Here, we present a few simple examples.

6.1 A Hydrodynamic Semiconductor Model

In [1], Ascher et al. study transonic solutions of the steady-state one-
dimensional unipolar hydrodynamic model for semiconductors in the isoen-

tropic phase. The model used is the following DAE:
Fo=nE—aJ, (6.1a)

Ep=n-—1, A (6.1b)
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2

F=—+n. (6.1¢)

n
Here, n is the electron density and E the electric field; J and « are assumed to

be known positive constants. The DAE is subject to the boundary conditions

n(0) = n(8) =7, (6.2)

where 3 and 7 are also known positive constants. In ananlyzing this problem,

Ascher et al. first study the initial value problem with the initial condition

n(0) = no, (6.3a)
E(0) = Eo. (6.3b)

To make the initial value consistent, we must have
F(0) = J*/ng + no.

Critical points clearly occur when ng = J. Ascher et al. recognize that at
such points the solution trajectory of the initial value problem is not unique.
By a phase plane analysis, they find that if £y = «, there are two distinct
solutions which cross the initial value. One solution represents a transition
from the subsonic to the supersonic region, and the other from the supersonic
to the subsonic region. If Ey # o, Ascher et al. find that |n,| is infinite. If
Ey < «, they find that two solution trajectories “end”.at the initial value,
so that (real) solutions exist only for ¢ < 0. If Ey > a, then two trajectories
begin at the initial value, so (real) solutions exist onlnyor t>0.

The initial value problem (6.1) with (6.3) clearly is of the form (1.2). We
can thus apply our theory to find fold and bifurcation points. We find that
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the initial value is a simple bifurcation point if ng = J and Ey = . It is a
simple fold point if ng = J and Fy # «. All other points are regular points.

Clearly, Ascher et al.’s results follow from our theory in Chapter 5.

6.2 Nonlinear Circuit Problems

One of the most common applications of DAEs is the modeling of elec-
trical circuits. If an electrical circuit has any nonlinear elements (such as a
nonlinear resistor), then the nonlinear DAE which models it may have solu-
tions which pass through critical points. Often the solution of a nonlinear
circuit problem cannot be continued beyond some finite time. In the elctrical
engineering language, points at which solutions cannot be continued into the
future are called forward impasse points. Sometimes solutions can be con-
tinued into the future but not the past, and such points are called backward
impasse points. Clearly, impasse points are closely related to fold points, as
defined in Definition 3.21. In fact, Rabier and Rheinboldt’s definition of a
standard impasse point in [25] is equivalent to that of our simple fold point.

Impasse points are of great importance because they occur naturally in
models of circuits which exhibit a so-called jump phenomenon (see [3]). In
these cases, the model is considered defective, as its solution does not ap-
proximate the behavior of the physical circuit. Fortunately, it is possible
to augment the circuit with a small “parasitic” series inductor so that the
resulting circuit agrees well with the physical observations (see [4] for more

details). In order to obtain a meaningful solution of a circuit exhibiting the
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jump phenomenon, it is important to locate the impasse points in the model
so that they can be treated appropriately.

As an example, consider a simple circuit with a nonlinear resistor, linear
capacitor, and linear inductor in parallel. The characteristic of the resistor is
given by u = vy +¢%, where 7 and u denote the corresponding branch current
and voltage drop, respectively, and 7 is a constant. This example has been

considered in several articles, including [25]. It is modeled by the DAE

Ty = T4, (6.4a)
Ty = 2, (6.4h)
0 =1y + 22 + z3, (6.4¢)
0=u2z4—7v—z3, (6.4d)

where z; = ¢;,7 = 1,2,3 are the currents in the three branches and z4 = u
is the voltage drop. The differentiation is with respect to the time ¢t. For
simplicity, the capacitance and inductance were normalized to one.

Critical points of the DAE (6.4) occur when z; = 0. Points with z; =
z2 = 0 are simple bifurcation points; critical points with z, # 0 are simple
fold points. All other points are regular points. Rabier and Rheinboldt find in
[25] that points with z; = 0,z; # 0 are standard impasse points, equivalent
to our simple fold points. When z; = z, = 0, Rabier and Rheinboldt call the
point a “higher singularity” with different character deﬁending on the value
of 7. They separate the qualitative behavior into the four cases (i) v > 1/8,
(1) 0 <y <1/8, (i1i) vy = 0, (iv) v < 0. Neither the theory nor the numerical

method they use was designed to handle the point z; = x5 = 0, as it is not
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what they call a “standard impasse point.” However, Rabier and Rheinboldt
speculate that there are no C! solutions passing through z; = 2, = 23 = 0,
T4 = v = —1 and that the ¢t-derivative of all solutions is infinite at that point.

Our theory is capable of handling the point z; = z, = 0, as it is a simple
bifurcation point. We need simply apply the theory for simple bifurcation

points in Chapter 5. The bifurcation equation is, in this case:

—2(ah)? —af 7 = 0, (6.5)

where the differentiation is with respect to ¢t. Equation (6.5) has the roots

o) = _%(1 + VA), (6.6)

where A =1 — 8y is the discriminant. The derivative 2 is then given by
Ty = —Tp — 7.

In case (i), where v > 1/8, the discriminant is negative, so that there are no
real solutions to the DAE. When v < 1/8, there are exactly two solutions in
both directions in time. This is in contradiction to Rabier and Rheinboldt’s
conjecture that there are no C? solutions through z; = z; = 25 = 0,24 = —1.
We predict two C'* solutions with finite derivatives corresponding to the two
roots (6.6).

We implemented a numerical procedure to compute solution trajectories
of the DAE (6.4). In order to pass through folds in the»sblutions, we employed
a pseudo-arclength parametrization. Given an initial value (x§°),:c§0),x§0),m§°))

which satisfies (6.4cd) and represents the state of the system at ¢ = ¢ = 0,
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the algorithm computes a sequence

(:C:(lk)’ mgk)7 x:gk)?xl(lk)') t(k))’ k = 17 2, 33 e

such that " (b-1)
xgk) _ xék—l) _ Ty 2y (t(k) _ t(k—l)) ’ (6.72)

b 2 (k-

k) (k-1) o) 2l (k) 4(k=1) -
o) g 2 2B T o), (6.7h)
2
0= :cgk) + a:gk) + :cgk), (6.7¢)
0=z —y— (22, (6.7d)
4
0=>). [:’cgk'l)(:cgk) - :cgk"l))] Al (L R P (6.7e)
J=1

Equation (6.7e) is a standard pseudo-arclength constraint which allows us to

pass through folds. The scalar As is a given pseudo-arclenth step size, and
(k-1)

the derivatives & ] are taken to be

(k=1) _ (k=2)

e x .
g1 = 22 o i = 12,34

The first step, & = 1, is handled as a special case. Euler-Newton continuation
is applied to obtain the solution trajectory. Note that the discretization (6.7)
of (6.4) is accurate to O((As)?).

We applied this method to compute solutions for various initial condi-
tions. Figure 6.9 shows a representative set of computed solutions of (6.4)
with 4 = —1. The points A-I are critical points, as are all points with z; = 0.
All these points are fold points, except point E, which is a bifurcation point.

This graph should be compared to Figure 3 in [25]. We note that there is

a discrepancy in the direction of the arrows in [25] and the direction of our
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Solution trajectory I Solution trajectory II
As numerical 7 | error from —1 || numerical z} | error from %
0.1 -0.99958339 -4.166e-04 0.49981488 1.851e-04
0.01 -0.99999583 -4.167e-06 0.49999815 1.852e-06
0.001 -0.99999996 -4.167e-08 0.49999998 1.852e-08
0.0001 -1.00000000 -4.167e-10 0.50000000 1.852¢-10
0.00001 || -1.00000000 -3.986e-12 0.50000000 1.852e-12

Table 6.8: Convergence of z at the bifurcation point z; = 2z, = 0
as As — 0 with ¥ = —1. The theoretical values are —1 for solution

trajectory I and % for solution trajectory II.

arrows in Figure 6.9. A linear stability analysis of the two stationary points
x1 = %1, z; = 0 shows that the point with z; = —1 is unstable, whereas the
point with z; =1 is stable. This confirms that the direction of the arrows in
our graph is in the direction of increasing t¢.

In Figure 6.10 we plot solutions passing through the two fold points B
and H of Figure 6.9. Figure 6.11 shows the two solutions at point E of
Figure 6.9. the bifurcation point z; = 22 = 23 =0, z4 = v = —1. Note that,
as predicted, there are two continuously differentiable solution trajectories
passing through that point. Moreover, as As — 0, the derivatives z} at t =0
for the two trajectories converge to —1 and £, exactly the roots (6.6). We
used the centered difference

thl) i xg—-l)

t(1) — ¢(-1)
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Figure 6.9: Solutions of the nonlinear circuit problem with v = —1. The

points A-I are critical points, as are all points with z; = 0. All these points
are fold points, except point E, which is a bifurcation point. The trajectories
I and II, both of which pass through the bifurcation point E, are shown in

detail in Figure 6.11.
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B and H correspond to the points B and H in Figure 6.9.
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Figure 6.11: Solution trajectories I and II passing through the bifurcation

point 7 = z2 = 0 with v = —1.
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to estimate the derivative z] at x&O) = mgo) = 0 with v = —1. Table 6.8 shows

the convergence of the derivative zj as As — 0. This table also confirms the

O((As)?) accuracy of the discretization.

6.3 Folds and Bifurcations in Ordinary Dif-

ferential Equations

Our DAE theory can be useful in the analysis of ODEs of the form

% = F(u) (6.12)
when the function F(u) is just continuous or even discontinuous. The stan-
dard existence and uniqueness theory for ODEs, which requires Lipschitz
continuity, does not apply in these cases. The Peano existence theory gives
the existence but not uniqueness of a solution when F(u) is continuous. But
that theory fails at discontinuities of F(u) and it can never give the number
of solutions even if F(u) is continuous. When it is possible to rewrite the
ODE (6.12) as a DAE of the form (1.2) with smooth functions f and g, our
theory can be applied to find the solutions. This includes many cases not
covered by the standard theories.

As an example, consider the ODE initial value problem

du :
7l Vu, : (6.13a)
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u=0att=0, (6.13b)
where u is a real scalar. The initial value problem (6.13) has infintely many
solution trajectories. There is a trivial solution, u(¢) = 0 for all ¢. The other
solutions are given by
u=0,t<T (6.14a)
u==(t-T)%t>T (6.14b)
forall T > 0.

Now consider the related DAE intial value problem

d
?iit{ =, (6.15a)
0=0v?—u, (6.15b)
u=v=0att=0. (6.15¢)

Here, u and v are real scalars. The solution set of the ODE problem (6.13)
1s a subset of the solution set of the DAE (6.15): the solutions of (6.15) with
v > 0 are the solutions of (6.13). So one way to find the solutions of (6.13) is
to find the solutions of the DAE (6.15) and then discard any solutions with
v < 0.

We find that the point v = v = 0 is a simple bifurcation point of the DAE
(6.15). The theory of Chapter 5 thus predicts two C?! solutions. Because of
(6.15a), these correspond to C? solutions of (6.13). Using

N(u,v,t,8) =t —s,

we obtain the tangents v° = 0 and ©° = 3. The first tangent corresponds

to the trivial solution u = 0 for all . The second tangent corresponds to a
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solution with 4% = 0 and 4° = ©° = £. This second solution thus has the
form
v = i-t? + O, (6.162)
p = %t +0(2) (6.16b)

for t — 0. We see that v < 0 for t < 0 so that only the ¢t > 0 half-trajectory
is a solution of the ODE (6.13). For t > 0, the form (6.16) of the solution
matches the nontrivial solution (6.14) of the ODE with T" = 0.

So our theory gives us only the two C? solutions (which correspond to
C? solutions of the DAE), but not the rest which have discontinuous deriva-
tives. These other solutions occur because every point on the trivial (u = 0)
solution trajectory is a bifurcation point. Unfortunately, our theory cannot
predict this, and this phenomenon would be an interesting subject of future
investigation.

As a second example, take the initial value problem

du 1

L 1

il (6.17a)
u=0att=0. (6.17b)

Again, u is a scalar. If we multiply both sides of (6.17a) with u and intro-

duce a new variable v = u?, then we obtain the following DAE initial value

problem:
% =2, (6.18a)
0=u—u, (6.18b)
u=v=0att¢t=0. (6.18¢)

The solution set of the DAE (6.18) is the same as that of the original ODE



85

(6.17). Using the theory of Chapter 5, we find that u = v = 0 is a simple
fold point of the DAE (6.18). We introduce the normalization

N(u,v,t,8) =u— s, (6.19)

and obtain the bifurcation equations
2 —2(a)" =, (6.20a)

u® —1=0. (6.20b)

The only root of (6.20) is u° = t° = 1. Since i° > 0, the theory predicts two
real solutions for ¢ > 0 and none for ¢t < 0. We also predict two complex

solutions for t < 0. The form of the solutions for s — 0 is

u= s+ 0(s?),

1
{ = —2'82 + 0(33),

so near the intial value we expect solutions of the form
u = £2t + O(t**).

In fact, it is easily seen that the exact solutions of (6.18) are given by v = 2¢
and u = £+/2t. Note that, as predicted by the theory of Chapter 4, there

are also two complex solutions for ¢ < 0, namely

u = Fo/ 2t
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Chapter 7

Numerical Implementation

The theory developed in the previous chapters can be used to compute
solutions of DAEs which pass through critical points. There are many good
methods for solving DAEs of the form (1.2) as long as the solution contains
only regular points ([2] is a good reference). However, these methods gen-
erally fail when the solution encounters a critical point. In this chapter,
we shall show how a numerical method for (1.2) can be modified to handle

critical points.

7.1 Detection of Critical Points

As long as g, remains nonsingular on the solution trajectory, we can use
any of the known methods for solving the DAE without modification. When
we approach a critical point, we can modify the method so that it will not

fail when the critical point is reached.
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There are many ways to detect the approach of a critical point. If we
assume that g is at least once continuously differentiable, so that the entries
of g, are continuous functions of u and v, then the eigenvalues of g, must
also be continuous functions of u and v. At a critical point, at least one of the
eigenvalues of g, is zero, and so as we pass a critical point, we expect at least
one eigenvalue to change in sign. Note that the number of zero eigenvalues
at a critical point need not be equal to the dimension of the nullspace, .

Since it is expensive to monitor the eigenvalues of g,, particularly if m
is large, it is not practical to compute the eigenvalues of g, at every step
in order to detect critical points. A related and more practical check is to
monitor the determinant of g,. That determinant must be zero at a critical
point, and it is also a continuous function of the matrix entries of g,. All

methods to solve (1.2) must solve a system of the form

gvé=Db (7.1)

in order to determine v at the next time step. If LU-decomposition is used
to solve (7.1), then the determinant is trivially computed. So we can detect
critical points by watching for a change of sign in the determinant.

Finally, for large problems an iterative solver such as Newton’s method
is often employed to solve for v at the new time step. As we approach a
critical point and g, becomes close to singular, the con\:ergence rate of such
methods deteriorates drastically. This is perhaps the most robust test for a

critical point when m is large.
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7.2 Classifying Critical Points

Suppose now that, during the computation of a solution trajectory, we
detect a critical point by one of the means discussed in Section 7.1. In order
to treat the point appropriately, we must determine what type of critical
point it is.

One important feature of fold points is that the tangent of the solution
trajectory is normal to the t-axis. This means that, as we approach a fold
point, the (always non-negative) ratio

l t'n-{»—l — n l

0= — 0 (7.2)

[t —xm ||

Here, t™ and x" represent the computed values of ¢t and the solution (u,v,#)?
at the n'* time step, respectively. By itself, (7.2) does not imply that the
critical point in question is a fold because the same phenomenon occurs at
pitchfork bifurcation points. If (7.2) does not hold as we approach a critical

point, we know that the point must be a bifurcation point.

7.3 Computing Past Fold Points

If we find that (7.2) holds as we approach a critical point, we know that
we are on a solution trajectory whose t-derivative becomes infinite as we
approach the critical point. If the critical point is atfold point, the DAE
may have no solution for values of ¢ beyond the fold. Conventional solution

methods will fail as a result.
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We point out that Rabier and Rheinboldt [25] have developed a method
which handles simple fold points. We wish to present a more general approach
which can adapt almost any DAE solution method to handle folds as well as
bifurcations.

Whether the critical point in question is a fold point or pitchfork bifurca-
tion point, we know that all solution trajectories can be represented smoothly
near the critical point if we introduce a proper parametrization. Thus, in-
stead of solving (1.2) directly, we propose introducing a new parametrization
(3.7), such as a pseudo-arclength constraint. This is done whenever the ratio

g falls below a certain cut-off value, §.. Then we solve the augmented DAE

d
== fu,v)r, (7.3a)
ds it
o= (7.3b)
0 =g(u,v), (7.3¢)
0= N(u,v,t,s). (7.3d)

The DAE (7.3) is equivalent to the reduced DAE (3.25) via the Lyapunov-
Schmidt reduction (3.4). The scalar 7 has been introduced to obtain a DAE
of the form (1.2). If we differentiate (7.3cd) once with respect to s and sub-
stitute (7.3ab), we obtain the following linear system relating the derivative
v and the scalar 7:

8v guf v 0

Ny Nuf + Ny T — Ny

As we saw in Section 3.4.1, at fold points we must have

t=7=0.
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So as we pass through a fold, we expect the value of 7 to change sign.

If the value of § increases back to above 8., the solution can once again be
represented as a smooth function of ¢ and we can “turn off” the augmentation
and return to solving the original DAE.

We note that for simple fold points, the DAE (7.3) has a unique, smooth
solution (see Chapter 5). So any method we use to solve (7.3) should have
no trouble passing through a simple fold. If a fold is non-simple or we are
at a pitchfork bifurcation point, then the critical point in question is also a

critical point of the augmented system so that the corresponding Jacobian

gv guf
Ny Nyf + N,
which is nonsingular at simple folds, will be singular at the critical point.

For non-simple folds, one must locate the fold by finding the zero of 7.
Then the bifurcation equations (3.27) can be solved to find the tangents of
all solution trajectories which pass through the fold point. We will discuss
how this is done in Section 7.5. Knowing all tangents, we can follow each
individual trajectory separately. The existence of those trajectories is ensured
by Theorem 3.29.

Of course the value of 7 also passes through zero at pitchfork bifurcation
points along branches with ¢ = 0. In order to differentiate between pitchfork
bifurcations and folds, we must determine whether or not the vector guf is
in the range of g,. The classification of the critical point is then given by
Definitions 3.20 and 3.21: if guf € R(g,), we are at )a pitchfork bifurcation

point, otherwise we are at a fold point. At pitchfork bifurcation points, we
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must solve the bifurcation equations (3.34) in order to find the tangents of all
solution trajectories (see Section 7.5). Then each trajectory can be followed

individually.

7.4 Computing Past Bifurcation Points

If the determinant of g, has a zero on a solution trajectory, but the
value of 7 does not pass through zero, then the trajectory must contain
a bifurcation point. In order to find all trajectories through a bifurcation
point, one should solve the bifurcation equations (3.34) for the tangents of
all trajectories (see Section 7.5 below). Each trajectory can then be computed
individually. In the case of pitchfork bifurcation, a suitable pseudo-arclength
or other parametrization must be used, just as in the case of folds. The

existence of solution trajectories is given by Theorems 3.36 and 3.43.

7.5 Solving the Bifurcation Equations

The bifurcation equations are a set of quadratic and linear equations.
Given the coefficients of all terms, there is no difficulty in solving them.
However, the coeflicients involve orthonormal bases for the left and right
nullspaces of g, at the critical point. We shall now describe how these bases
can be computed so that the coefficients of the bifurcation equations can be

evaluated.
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7.5.1 Determining the Dimension of the Nullspace

The first step in computing bases for the nullspaces of g, will be to find
the dimension of those spaces. We mentioned that any DAE solver of (1.2)
must be able to solve systems of the form (7.1). This is typically done by
LU-decomposition. If a complete pivoting strategy is used and there is no
round-off, then the LU-decompsition procedure will reveal the rank of g,
and hence the dimension r of the nullspace of g,. (We will later take into
account round-oft error and almost singular g,.) After m — r steps of the
LU-decomposition have been completed, the algorithm terminates with a

factorization of the form

Ly 0\ [ Uy U
PgQ=LU=| " SR (7.4)
Lo I, 0 0

Here L is lower triangular has 1 for each diagonal entry, U is upper triangular,
Ly and Uyy are (m — r)-by-(m — r), Ly and UL, are r-by-(m — r), and P

and @) are m-by-m permutation matrices.

7.5.2 Computing the Right Nullspace

We can use the LU-decomposition (7.4) to obtain bases for the left and
right nullspaces of g,. Let us first concentrate on the right nullspace, ®. In
order to find a single nullvector ¢ of g, we must find a solution of gy@ = 0.
Since P and () are nonsingular permutation matrices, we can equivalently

solve

Pg,¢ = Pg,Q(Q7'¢) = LU = 0. (7.5)
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Here we have introduced the m-dimensional vector
- é1
=1 _" |,
@2
where ¢; € IR™" and ¢o € IR7. It is related to ¢ via
Q¢ = qs?

s0 @ is just a permuted version of the nullvector ¢. In fact, since L is

nonsingular, (7.5) can be further simplified to

Ud = Uy + Ulzqu _o. (7.6)
0

To obtain a scrambled nullvector ¢, we pick some value for ¢+ and solve for
¢, using (7.6). This requires only half of a backsolve, i.e., the solution of an
upper triangular linear system. By picking r linearly independent vectors 552,
such as the r unit vectors in IR", we obtain r linearly independent scrambled
nullvectors ¢, which can be unscrambled to obtain a basis & for the right

nullspace of g, .
We can obtain an orthonormal basis $ by computing a QR factorization
of ®. Several algorithms exist for this purpose. The QR factorization can

be computed directly by the Gram-Schmidt process. A more stable but also

more expensive procedure is to use Householder orthogonalization.

7.5.3 Computing the Left Nullspace’

The left nullspace of g, can be obtained in a similar manner as the right
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nullspace with minimal additional effort. If the LU-decomposition of g, is
given by (7.4), then

Qng’PT — UTLT.
We now wish to find a single left nullvector 1 of g, which is a right nullvector

of gI. So we want to solve
Q ey P (PT) ') = UTLTPy = U4 = 0.

The above follows from the fact that the transpose of a permutation matrix
is equal to its inverse. We have introduced the vector ¢» € IR™, which is
related to ¥ via

LT Py = 1. (7.7)

From the form of U, we deduce that the first m — r components of ¥ are
zero and the last r are arbitrary. In order to obtain r linearly independent
nullvectors, we pick r linearly independent vectors for the last r components
of 9. For each, we solve the upper triangular linear system (7.7) for the
scrambled nullvector P+. The nullvector can be obtained by unscrambling
the entries. Just as for the right nullspace, we obtain an orthonormal basis,
U, for the left nullspace by computing the QR factorization of the r linearly

independent nullvectors.

7.5.4 Almost Singular Jacobian

In practice we never have the exact values of u and v at the critical

point, and there will be round-off error in evaluating the Jacobian g,. Even
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if we have g, exactly, round-off error will be introduced during the LU-
decomposition procedure. So g, is most likely not singular, but almost sin-
gular and the LU-decomposition procedure will rarely encounter a zero pivot.
Thus, the above method appears to fail to yield the desired nullspace bases
® and U.

We remedy this problem by declaring g, singular not only if a pivot is
zero, but if a pivot is “small” compared to the diagonal entries of U;;. We
then proceed as outlined above, setting the lower right r-by-r submatrix of
U to zero. In this way, we obtain approximations of the nullspaces at the
(nearby) critical point. They are also approximations to the least dominant
r-dimensional left and right invariant subspaces of g,. The quality of these
invariant subspaces can be improved by inverse iteration. This involves only
tools which we have already used: solving linear systems of the form (7.1)

and QR factorization.

7.6 Numerical Examples

The computations of Section 6.2 provide an example of the numerical
method described above. In that computation, the time derivatives were
discretized using a centered Euler approximation. Without the pseudo-
arclength parametrization defined by (6.7¢), the method fails at fold points.
But by introducing the pseudo-arclength parametrization, we can easily com-
pute past fold points. We used pseudo-arclength continuation when 8 fell

below the cut-off value d, = 0.1. Near the bifurcation point z; = 2, = 0, the
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convergence of Newton’s method slowed drastically. By computing the roots
of the bifurcation equations, we were able to continue past the bifurcation
point.

As a second example, we once again compute the solutions of the circuit
problem of Section 6.2. This time we discretize the time derivatives using
the second order BDF (backward differencing) formula. BDF is a popular
method for solving initial value problems in DAEs. For instance, Petzold’s
code DASSL [20] is based on BDF methods. BDF is an implicit linear mul-
tistep method; in the k-step, BDF method, time derivatives are replaced by
one sided approximations of the derivatives which involve the solution at the
new time and at k previous time steps. Thus the k-step BDF method is of
accuracy order k. In the second order constant stepsize BDF method, the

approximation

du®™  3ul® — 4u-1) 4oyne2)
dt QAL

is used. Here, At is the stepsize, and u(® is the computed solution at the
nt* time step.

Using, the second order BDF method, we obtained the same qualitative
results as with the centered Euler approximation. Just as the centered Euler
method, BDF achieved second order accuracy. The accuracy was slightly
better for the centered Euler method. We monitored the value of the deter-
minant of g, during computations and it proved an excellent tool in locating
critical points. Figure 7.8 shows the value of the determinant as solutions
pass through a fold point (top graph) and a bifurcation point (bottom graph).

The critical points occur at the zeroes of the determinant of the unaugmented
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system, when z; = 0. The determinant of the augmented system changes

sign at the bifurcation point, but not at the simple fold point.
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Figure 7.8: Determinants of the Jacobians of the unaugmented and aug-
mented DAEs as solutions of the nonlinear circuit problem (y = —1) pass

through a simple fold point and a bifurcation point.
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Chapter 8

Conclusions and Future

Directions

We have introduced a new bifurcation theory for the solutions of semi-
explicit DAEs. This theory covers the phenomena of folds, bifurcation, and
complex bifurcation. In addition, we have presented a numerical method
which can be used to compute solutions near critical points. Using this
method, we were able to solve a nonlinear circuit problem which was not
solvable using previously known methods.

Although our theory has proven useful in many problems, not all DAEs
can be written in the semi-explicit form (1.2). As an extension of this work,
we hope to obtain analogous theories for more general forms of DAEs. These

include the semi-implicit form

Fi(x,x,t) =0, (8.1a)
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Fa(x,t) =0, (8.1b)
and the fully implicit form (1.1).

Another extension of great interest lies in the area of higher index DAEs.
Often DAEs (1.2) have the property that g9 is always singular with some
maximum rank less than m. The index of the DAE is then said to be higher
than one. In these degenerate cases, a unique solution may exist even if g

is singular. For example, the so-called index-2 semi-explicit Hessenberg form

du
= f(u,v), (8.2a)
0 = g(u). (8.2b)

It is well known that, as long as the m-by-m matrix gufy remains nonsingular,
such DAEs have a unique solution. This is consistent with our theory. We
would consider every point a critical point, and the corresponding bifurcation

equations (using the parametrization t = s) would be
gufv¥” + guuf 't + gofaf® = 0.

This is a set of m linear equations. Therefore, if g9f? is nonsingular, the
bifurcation equations have only one root, corresponding to a unique solution
trajectory. Bifurcations and folds presumably occur when the matrix gQf?
becomes singular. A treatment of this special degenerate case would be a
useful extension of our theory.

Finally, our theory has important applications in the analysis of ordinary
differential equations. We have only scratched the sﬁrface of this area in

Section 6.3. A subject of future investigation will be to create a bifurcation

theory for ODEs by using the approach of Section 6.3.
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Chapter 9

Introduction

In the study of incompressible fluid mechanics, we are often interested in
numerically computing branches of steady state solutions which depend on
one or more parameters. Here, we present a method for thiswpurpose.

Incompressible, viscous fluid flows are governed by the Navier-Stokes
equations. We assume that the method of lines (MOL) has been applied
to these equations. That is, the equations have been discretized in all spatial
dimensions by finite differences, finite elements, spectral methods, some other
technique, or a combination of methods. We are thus left with a differential-

algebraic equation (DAE) of the form

du
—d—t- = (u, p; /\), . (9.1&)

0 = g(u). N (9.1b)

Here, u € IR"™ contains a discretization of the velocity of the fluid, and p €

IR™ a discretization of the pressure. The scalar A is a parameter which may,
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for example, represent a Reynolds number or some geometric feature of the
problem. The operators f: R*"xIR™—IR", g: IR"—IR™ are smooth. Note
that boundary conditions and other constraints may be incorporated into
(9.1b). Also, the vector p may contain, in addition to a representation of
the pressure, Lagrange multipliers used to satisfy those additional boundary
conditions and constraints.

The DAE (9.1) is an approximation to the Navier-Stokes equations, and
the accuracy of that approximation is determined by the discretization that
was used to obtain (9.1). In this work, we address only the issue of solving the
approximate equations (9.1). Thus when we speak of a “solution,” we mean
a solution of the approximate equations (9.1), not of the original problem.

If we are interested in steady state solutions, we want to solve the n +
m nonlinear parameter-dependent algebraic equations obtained by setting
the time derivative in (9.1) to zero. An excellent method for solving such
parameter-dependent equations is Keller’s continuation algorithm [14]. This
is a predictor-corrector scheme. Knowing a solution at some parameter value
Ao, one changes the value of the parameter slightly. The predictor is then
used to estimate the solution at the new parameter value, and the corrector is
typically an iterative method which is used to converge to the new solution.
For example, in Euler-Newton continuation, the predictor estimates the new
solution by using the tangent (or an approximation of the tangent) of the
old solution; then Newton’s method is used as the corrector.

Euler-Newton continuation is a robust method, but Newton’s method
requires the solution of linear systems at each step. If the number of equations

is large, the solution of these linear systems may be quite expensive. This
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may limit the size of the problem we can solve in reasonable time, and hence
the accuracy of the approximation (9.1) we can achieve.

The Recursive Projection Method (RPM) [16] provides an alternative to
Newton’s method as the corrector. We assume that the reader is familiar with
RPM as presented in [16]. For convenience, the results of [16] relevant to our
work are summarized in Appendix A. RPM is a stabilization method for
fixed point iterations. When a fixed point iteration is not contracting, RPM
provides a way to obtain a modified hybrid iteration which is contracting.
One application of this is “RPM continuation” (see [16] and Appendix A). In
this case, the fixed point iteration may represent a numerical time integration
over some small time interval of a parameter-dependent ordinary differential

equation (ODE)
dv

— =F(v, ). (9.2)

Such a time integration may or may not converge to a steady state
F(v,A\) =0.

The time integration may diverge for a variety of reasons, but most commonly
because the steady state is unstable or because the time step size is too large.
RPM can be used to restore convergence, and also to accelerate convergence
when the original time integration converges. The resulting hybrid iteration
1s used as the continuation corrector instead of Newton’s method.

For many problems, RPM continuation performs better than the Euler-
Newton method. However, the continuation method as presented in [16] is

restricted to dynamical systems in the ODE form (9.2). In order to use RPM
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to solve (9.1), we reformulate the DAE (9.1) as an ODE (9.2), to which RPM
can be applied.

The resulting method applies to all DAEs of the form (9.1), but we
will give special consideration to MOL-discretizations of the incompressible
Navier-Stokes equations. In that special case, the algebraic constraint (9.1b)
is linear, and the vector p enters into (9.1a) only linearly. We shall take
advantage of this property to specialize the method for MOL-discretizations
of the Navier-Stokes equations.

Finally, we employ our new method to compute steady state and solu-
tions of the incompressible flow between two concentric, rotating cylinders.
Our implementation is also capable of computing branches of travelling wave
solutions. We compare our results to past investigations and show that RPM

is an efficient procedure for computing solutions of such problems.
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Chapter 10

Applying RPM to DAEs

In order to apply RPM to solve a DAE (9.1), we would like to reformulate

the problem as an ODE.

10.1 Nonsingularity of DAEs

Not all DAEs (9.1) can be reformulated as ODEs (9.2). To ensure that
this reformulation is possible, we assume that the DAE (9.1) is “nonsingu-
lar.” That is, we assume that the m-by-m matrix gy(u®)f,(u? p% ) is
nonsingular for any “consistent” initial value (u® p% \°). We say that an

initial condition (u® p°% A%) is consistent if
g(u") =0, ~ (10.1a)

gof’ =o0. (10.1b)

Here, superscript “0” represents evaluation at the initial value. The first
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condition (10.1a) just states that u® is a solution of the algebraic equations
(9.1b). The second condition (10.1b) is required to ensure the existence of a
differentiable solution trajectory (u(t), p(t)) near the parameter value A = A%
through the initial condition, since any such trajectory must satisfy, for all

L
du(t)

dg(u(t}))
[ dt

dt

0= = gu(u(t))

S

= gu(WO)I(u(®),p(); N, (10.2)

Now consider the initial value problem composed of (9.1) and a consistent
imitial condition

u=u’and p=p®att=1i° (10.3)

with A = A% fixed. It is a well known result that, if the DAE (9.1) is non-

singular according to the above assumption, a unique differentiable solution

trajectory (u(t), p(t)) exists for the initial value problem (9.1),(10.3) [19].
From here on, we assume that the DAE (9.1) we intend to solve is non-

singular.

10.2 From DAEs to ODEs

Fach point on a solution trajectory of a nonsingular DAE (9.1) must
be a consistent initial value, and therefore satisfy the conditions (10.1). So
we need not look for solutions which are arbitrary vectors (u, p)? € IR™™,

Rather, only vectors satisfying

g{u) =0, (10.4a)
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gu(u)f(u,p;A) = 0, (10.4b)
are potential solutions. The system (10.4) is a set of 2m independent equa-

tions, in the sense that the Jacobian

gu 0

J(u,p; A) =
guuf + gufu gufp
always has full rank by the assumption that the DAE is nonsingular. Thus
we expect that solution vectors (u,p)T must lie in a subspace of IR**™ of
dimension n +m — 2m = n — m.

Suppose we are given a consistent initial value (10.3). We can apply the
implicit function theorem to solve (10.4b) for p = P(u; A) in a neighborhood
of that initial value. An interpretation of this is that the vector p acts purely
as a Langrange multiplier. While u changes according to the differential
equation (9.1a), p takes on whatever value it must in order to keep the
constraint (9.1h) satisfied.

With p = P(u; A), the constraint (9.1b) will always be satisfied, and an
equivalent formulation of (9.1) is the following ODE in n variables:

du
— = f(u, P(u; \); A). (10.5)

However, we note that a further reduction is possible. The constraint
(9.1b) defines, locally, an (n —m)-dimensional subspace of IR™. All vectors u
in that (n — m)-dimensional subspace can be parametrized by n —m param-
eters, a € IR*™™. Having introduced n —m new variables, we may introduce

n —m new equations which serve to define the new vector a:

N(u,a) = 0. (10.6)
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We assume that (10.6) is chosen such that the following assumptions are

satisfied:
e N(u® a®) =0 for some a® € IR*™;

o N? ¢ R(r-m)x(n=m) is nonsingular;

0
o
ou P .

o € IR™*" is nonsingular.

NY
Now consider the system of n equations composed of (9.1b) and (10.6). By
the implicit function theorem, there exists a unique function u = U(a) such
that u® = U(a®) and both (9.1b) and (10.6) are satisfied. This representation
is valid in a neighborhood of the initial value.

Since p = P(u; A) = P(U(a); A), all solutions of the DAFE initial value
problem (9.1),(10.3) can be parametrized by the n — m parameters «, in
a neighborhood of the initial value. The vector « satisfies the differential
equation obtained by differentiating (10.6) with respect to ¢:

d
Nu‘E+N dox

By substituting (10.5) and u = U(«), we obtain an ordinary differential
equation for o

Na 2%~ _Nuf(U(a), P(U(a); A): 1), (10.8)

which is equivalent to

% = ~NG'Nuf(U(a), P(U(a); A); A) = F(a, )) (10.9)
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as long as N remains nonsingular.
Now, in a neighborhood of an initial value, a(t) is a solution of (10.9) if
and only if u = U(a(?)),p = P(U(a(t))) is a solution of (9.1). In particular,

steady state solutions of (10.9) correspond to steady state solutions of (9.1).

10.3 Applying RPM Continuation

We are now in a position to use RPM to find the steady state solutions
of (9.1) we seek. We simply apply the method to find steady states of the
ODE (10.9). Thus our continuation corrector will be a time integration of

(10.9), accelerated by RPM.

10.3.1 Choosing a Time Integration Method

In order to make the method most efficient, an explicit time integration
method, such as Runge-Kutta, should be used. Implicit methods require the
solution of large linear systems, which is precisely what we want to avoid. The
best choice of time integration method depends, of course, on the application.

A major disadvantage of explicit time integration methods is that, if the
ODE (10.9) is stiff, a small step size may be necessary to avoid numerical
instability. For example, when the DAE (9.1) represents a discretization of
a partial differential equation, the step size may be limited by a Courant
condition. However, RPM can remedy this problem. If we take time steps

which are too large and violate a numerical stability condition, then one or a
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few of the most negative eigenvalues of Fo will cause the time iteration to be
unstable. RPM will treat this numerical instability just as if it were a “real”
one caused by the underlying problem, and stabilize it. Of course, if the
number of offending eigenvalues is too large, then the method will no longer
be efficient. But it ¢s possible to take time steps bigger than allowed by the
Courant condition and still converge to the steady state, because RPM can

treat numerical instabilities as well as real ones.

10.3.2 Choosing a Parametrization

There are many allowable choices for the parameters a and the constraint
(10.6) which we introduce. This choice should be made to make the evalua-
tion of the right hand side F(a, \) as inexpensive as possible.

One possible choice is to relate u to a basis for the nullspace of gJ.
Suppose we have a matrix @ € IR"*(*~™) whose columns span the nullspace

of g. Then an allowable constraint (10.6) is

N(u,a)=a - QTu=0. (10.10)

In the special case that the nullspace of gy is constant and if Q is orthogonal,

we obtain

u="U(a)=Qa+k,

where k € IR™ is the projection of u® onto IR"™\A(g9) and is given by
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Another approach is to choose for the parameters a a subset of the com-
ponents of u. If we know n — m independent components of u, we can
determine the rest from (9.1b). In this case, we use a constraint (10.6) of the

form

N(u,a)=a — ([h_m,0,) Pu=0, (10.11)

where P € IR™™™ 1s a permutation matrix. Clearly, P can be chosen so that
(10.11) satisfies the required assumptions.

We emphasize that the validity of any specific parametrization defined
by (10.6) is only local, to the extent of the validity of the implicit function
theorem. If, during the course of time integration or continuation, we leave
the domain of validity of the parametrization, we may need to update the

definition of our parameters.

10.4 Application to Incompressible Fluid Me-

chanics

We are especially concerned with DAEs (9.1) which are discrete (MOL)
approximations of the incompressible Navier-Stokes equations. Such DAEs

have the special form

du

= = f(u,p; A) = h{u; X)) — Gp, (10.12a)

0 =g(u) = Du, (10.12Db)
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where G € IR™™ and D € IR™*" are related to discrete versions of the
gradient and divergence operators, respectively.
We assume that both D and G have full rank. That is, any redundant

equations and variables have been eliminated. In practice, this means that:

o The indeterminacy of the pressure has been eliminated. That is, for
example, an equation has been added to fix the pressure at one point,

or the average of the pressure.

¢ One equation of the discretization of the continuity equation has been
eliminated. Discretizations of the divergence operator generally have
a one-dimesional left nullspace, so that one of the rows of the matrix
is a linear combination of the others. The corresponding equation is

redundant and can be eliminated.
For the special form (10.12), the condition (10.4b) reads

D [h(u; X)) — Gp] = 0. (10.13)

We thus have the linear equation

DGp = Dh(u; ) (10.14)

which determines p = P(u). The matrix DG € IR™ ™ is nonsingular by
the assumption that the DAE is nonsingular. Equation (10.14) is a discrete
version of the familiar Poisson equation for the pressure. The advantage of
the special form (10.12) is that the validity of the representations u = U(a)

and p = P(u) is global.
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Chapter 11

Application to Taylor-Couette
Flow

The incompressible flow of a viscous fluid between two concentric rotating
cylinders has been the subject of investigation since as early as 1890, when
Couette [6] used such a setup to measure the viscosities of fluids. The exis-
tence of two flow regimes, laminar and tubulent, was known to Couette and
he noted that viscosity measurements could only be performed in the laminar
flow regime. Since then, many theoretical, experimental and computational
studies have been conducted. For an excellent description of the history of
these investigations, we refer the reader to [17]. ’

Our primary goal in this investigation is to use the Taylor-Couette prob-
lem as a testing ground and example of the method in Chapter 10. A sec-
ondary goal is to develop a computer code based on our new method, which

will later be used to obtain new understanding of the physical flow.
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11.1 Problem Formulation

The flow configuration is described by the following physical quantities:

Rinncr
]%ouier

y.
Winner

Wouter
h

14

radius of inner cylinder;

radius of outer cylinder;

angular velocity of inner cylinder;
angular velocity of outer cylinder;
height of the cylinders;

kinematic viscosity of the fluid.

In this study, we restrict ourselves to the infintely long cylinder case. That

is, we assume that the ratio h/(Router — Rinner) 18 so large that end effects

are negligible. So we assume the flow to be periodic in the axial direction

with a wavelength L.

The flow is governed by the Navier-Stokes equations. In nondimension-

alized form and cylindrical coordinates, they read:

—

%?- - _‘([[; Re) — Vp, (11.1a)
O:V-E:ur+%+%€+wz, (11.1b)

where f(@; Re) = (f(@; Re), g(T; Re), h(iT; Re))T with .




Here, V? represents the Lapacian operator

0 19 109* §*

vio L 2o 2 T
07‘2+r8r+r2(")92 0z%’

V is the gradient operator
o_(210 a\"
C\dr’'rdd’ dz)

—

i = (u,v,w)T stands for the (scaled) velocity field, and

u(r,0,z) = velocity in the radial direction, r,
v(r,0,z) = velocity in the azimuthal direction, 0,
w(r,0,z) = velocity in the axial direction, z,
p(r,0,z) = pressure.

The domain of these equations is

where the integer ¢ limits the wavelength in the #-direction. Here we have

introduced the Reynolds number

Re = Rinnerwinner(Router - Rinner) )

?

14
the aspect ratio of period to gap width

L

=
>
Router - Rinner
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and the radius ratio
n = Rinner
Router

We have scaled distances so that By — Ry = 1. Velocities are scaled by the

tangential velocity of the inner cylinder. So the scaled angular velocity of

the mner cylinder is

1 1—-n
Wy = — = .
TR n
The scaled anlgular velocity of the outer cylinder is
w
wyp = — = w(l — 7},
T R, (1=n)

where we have defined the ratio of tangential velocities of the two cylinders

wou.terRouter . WQRZ

W= :LUQRQ.

Winner Rinner  w1Ry
The problem is thus completely specified by the four parameters Re, 5, T,
and w.

There has been excellent agreement between experimental and theoretical
work, so that the Navier-Stokes equations appear to provide a good model
for the physical behavior of the fluid.

For low Reynolds numbers Re, one observes a laminar solution, called
Couette flow, which depends only on the radius. When Re is increased
beyond a critical value Re., axisymmetric Taylor vortices appear. If Re
1s increased further, wavy Taylor vortices are observed. This wavy Taylor
vortex solution is periodic in time and has the form of a travelling wave
with one specific azimuthal frequency. At even higher Reynolds numbers,
so-called modulated Taylor vortices, which have moré than one characteris-

tic {frequency, occur. An important observation by Coles [5] was that wavy
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Taylor vortex solutions are not unique: several “states” (characterized by
the azimuthal and axial wavelengths) are possible for the same Reynolds
numbers. Coles found that if one slowly increases or decreases the Reynolds
number, transitions from one state to another take place abrubtly, discontin-
uously, and irreversibly. Futhermore, the transitions take place at repeatable
Reynolds numbers.

Many numerical investigations of this problem have been conducted to
determine the critical Reynolds numbers at which the first two transitions (to
and from axisymmetric Taylor vortices) take place. However, the bifurcation
to modulated wavy Taylor vortices has never been found computationally.
It is our hope that RPM, used as described in Chapter 10, will help us find

such a bifurcation.

11.2 Rotating Coordinate System

Wavy Taylor vortices are not steady flows and so they are not steady state
solutions of (11.1). Rather, they are periodic solutions. However, it has been
experimentally shown and computationally verified that these solutions have
the form of travelling waves in the azimuthal direction. That is, the solution
depends on ¢ and ¢ only in the combination ¢ = 6 — Q¢t. Wavy Taylor
vortices are thus steady flows in a moving coordinate system which rotates
in the ¢ direction with angular velocity Q.

In order to represent wavy Taylor vortices as steady flows, we will thus

introduce such a rotating coordinate system with angular velocity Q(¢). The
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angular velocity of the coordinate system depends on the time ¢t because we
use a time integration procedure to compute the steady state. At a steady
state in the rotating system (or a travelling wave in the nonrotating system),
we have Q(t) = Qo = constant.

The azimuthal coordinate in the rotating frame of reference is

pza—./tQT dr

so that 9/dp = J/00. In the new coordinate system, the equations of motion

(11.1) become
on - 8u

0=V-a. (11.2b)

For nonrotating flows which are steady state solutions in the original station-
ary frame of reference, we can use the formulation (11.2) with Q(¢) =

Since we have introduced an unknown rotation speed Q(t), solutions of
(11.2) are indeterminate in the sense that the azimuthal phase of such solu-
tions is unknown. We can impose a scalar constraint to remove the indeter-
minacy and fix the phase of solutions. We use a constraint due to Doedel [9]
which minimizes the change in phase as the solution changes with the time

t. That 1s, we want to minimize with respect to  the function

" Jud Ju
H(a,p,Q) = <~a~i—,—é-t->,

where we use the notation

2 /q .
< 1(7‘7072)7'@) T 9 Z / / / 1,)2 rdrdfdz.

Tt
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Using a simple variational argument, one obtains that the minimum occurs
when

O iy, ds) + (f — Vp, i) = 0. (11.3)

The rotation velocity € is therefore given by the formula

0= _ <f - V]J, ﬁ@) (114)

as long as U has some variation with #. If @ has no dependence on 8, then the
flow is axisymmetric and the frame of reference is irrelevant, as all choices
for @ yield the same representation of the solution. In this case, both the
numerator and the denominator in (11.4) are zero, and the rotation velocity

) is arbitrary.

11.3 Boundary Conditions

In order to complete the specification of the problem, the following bound-
ary conditions are used. In the axial and azimuthal directions, we impose
periodicity, consistent with the geometry of the cylinders and the infintely

long cylinder assumption. Thus, we have for all (r, 6, z) in the domain:

27
u (r, - ,z> = (r,0,z), (11.5a)

2n
P (r, 7,2) =p(r,0,z), (11.5b)
0

@(r,0,0) = a(r,0,0), (11.5¢)
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p(r,8,T)=p(r,6,0). (11.5d)

On the cylinder surfaces, we impose no-slip conditions. Following [28], we
also use Neumann conditions on the pressure. The conditions on the inner

cylinder, r = Ry, 0 € [0,27/q] and z € [0,T], then are

u(Ry,0,2) = w(Ry,0,2) =0, (11.6a)
v(Ry,0,2) =1, (11.6h)
1 1 1—-1n 1
T 0,z) = — s Upp — B Ury. .
pr(f, 0, 2) T R TR (11.6¢)

On the outer cylinder, » = Ry, 0 € [0,27/¢] and z € [0,T], we have

u(Ry,0,2) = w(Ry,0,z) =0, (11.7a)
v(R2,0,2) = wa Ry = w, (11.7b)
1 1
pr(R2,0,2) =wiRy + U = Wil =)+ -R—e-urr. (11.7¢)

In the pressure conditions, we have used that, on the cylinder surfaces, u, = 0

due to the continuity equation (11.1h).

11.4 Discretization

We apply the method of lines to Equation (11.2) and the boundary con-
ditions (11.5),(11.6) and (11.7) to obtain a DAE of the form (10.12). In order
to accomplish this, we approximate all spatial derivatives by finite differences

on a uniform grid with grid spacings

Ar = —, (11.8a)
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Ag =1 (11.8b)
qng

Az= (11.8¢)
n’z

for some positive integers n,,ng,n,. The grid points are located at the points
r;=Ry+JAr, (7=0,1,...,n,);

0p = kA0, (k=0,1,...,n5 — 1);
z=1Az, (I=0,1,...,n,—1).

We shall use subscript notation to indicate evaluation at one of these grid
points. For example, we denote the velocity field at the grid point (r;, 0k, z/)
by @in = (wpt, v, wik)T and the pressure by pir. We call the grid points
with 7 € {0,n,} interior grid points and the rest boundary grid points. There
are n; = (n, — 1)ngn, interior grid points and ny = 2ngn, boundary grid
points.

All derivatives are approximated by differences of second order accuracy.

In the interior, that is when j # 0 and j # n,, we use centered differences.

(au) o UGk — U o1k
. ~ ) ’
Or ikl 2Ar

(8%) L Uitk = 2Ugk U
.2 ~ N2 :
Ir? ) (Ar)

So, for example,

At the cylinder surfaces, j € {0,n,}, one-sided differences are used. Thus, for
example, for the pressure Neumann condition (11.6¢) at the inner cylinder,

we use

&_7_]3 _ —3pok + 4p1 ki — P2
o ) o 2AT ’
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(azu  2uok — Su g+ dug g — Uz
or 0,k (Ar)? -

In order to eliminate the indeterminacy in the pressure, we add the con-
dition that, at r = ro = Ry, the average over the § and z variables of the
pressure is zero:

ng—1mn,~1

Z Z poit = 0. (11.9)

k=0 I=0
Together with the Neumann conditions on the pressure (11.6¢) and (11.7¢),

we now have n, independent boundary conditions for the pressure.

The full MOL-discretized system of equations is thus composed of

o a discretized version of (11.2) at each interior grid point. This accounts

for 4n; independent equations.
e Equation (11.9) to fix the indeterminacy of the pressure.
o Equation (11.3) to fix the §-phase of solutions.

e the boundary conditions (11.6) at each grid point with 5 = 0. This

accounts for 4n, equations.

¢ the boundary conditions (11.7) at each grid point with 7 = n,. This

accounts for 4n; equations.

The periodic boundary conditions (11.5) are not included here because they
have been incorporated into the discretization of (11.2). We thus have a
total of 4(n; 4+ 2n3) + 2 equations. Only 4(n; + an)} 1 of these equations
are independent because the 4n, + 1 equations (11.9), (11.6¢), and (11.7¢)

constitute only 4ny independent boundary conditions.
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The unknowns are the values of @, and p; at each of the n; + ny grid
points, and the rotation speed ). We thus have a total of 4(n; + 2n;) + 1
unknowns, the same as the number of independent equations.

In order to obtain a DAE of the form (10.12), we eliminate the rotation
velocity Q using (11.4) and the boundary values of @ and p using (11.9) and
the boundary conditions (11.6) and (11.7). The resulting system has 4n;
equations and unknowns, which are the values of @ and p at the interior grid
points. It is a DAE of the form (10.12) with n = 3n; and m = n;. The
vector u contains the interior components ;5 and the vector p contains the

interior components pj. Specifically, u = (u1?, us?, uz?)T with
— T
Ul = (11100> U101s -+« s U100, 15 U110+ + + s UL mg—1,m,—15 U200y « « « » unr—l,ng—lmz—l)

— T
Uz = (bwo, cee avnr~1,n9—1,nz——1)

. T
uz = (u’lOO; ceey wnr~1,ne—-1,nz—l)

and

— T
p= (]31007 ) 7])nr-1,716—1,nz—1) .

11.5 ODE Formulation

In order to apply RPM to solve our discrete equations, we must introduce
a new parametrization and a constraint (10.6). The number of equations in
the new constraint, and the number of new parameters, must be n—m = 2n;.
We use a constraint of the form (10.11). To be specific, we use as the pa-

rameters e the 2n; components of uz and us. The corresponding constraint



(10.6) is
N(u, ) = o — (025 50n; 5 L2n; ) u = 0. (11.10)

This constraint satisfies all the requirements in Section 10.2 for any consis-
tent initial condition (u®, p% Re) and when n, is odd. As we shall see, the
centered difference discretization we use has properties which differ signifi-
cantly depending on the parity of n,. When n, is even, the parameters o
must be chosen differently, but the overall method can still be applied.
With the aid of (11.10), we obtain an ODE formulation (10.9) (with
A = Re) of the DAE (10.12) corresponding to our discretization. Thus we

are left with a dynamical system of the form

do

11.6 Time Integration

We wish to find steady state solutions of the ODE (10.9). These steady
state solutions will correspond to second order approximations of steady state
solutions of (11.2), which may be travelling wave solutions of (11.1). In
accordance with the RPM continuation method described in [16], we wish
to integrate the ODE (10.9) for large times ¢, using RPM to accelerate and
stabilize the convergence.

In order to avoid solving large linear systems, we use an explicit time
stepping method. Specifically, we use the fourth 01‘dé1‘ Runge-Kutta method

with automatic step size control.
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11.6.1 Switching Between DAE and ODE Variables

In evaluating the right hand side of (10.9), we must evaluate the functions
U(a) and P(U(«)). The evaluation of U(a) is straighforward due to the
simple form of the constraint (11.10).

We split the matrix 12 in (10.12b) into two parts so that
D = (D1, D)

with Dy € IR™™ ™ and Dy € IR™* 7. Similarly, we split the function U(«)

into two components:

U (o)
Uz (a)

Ula) =

where Up(a) € IR™ and Usz(a) € IR?™. Now we have from the constraint
(11.10) that

(]

-

= Us(a) = a. (11.11)
ug

Using this result in (10.12b), one obtains the linear system

Diug = D1Uy(a) = —DUs(a) = - Dy« (11.12)

for the components of Uj(a). In conjunction with the boundary conditions
(11.6a) and (11.7a), we can solve (11.12) for those components.

The importance of the parity of n, is now evident. The matrix D; is es-
sentially a centered difference approximation of (8/8r). This approximation

has the property that Dy is nonsingular if n, is odd and singular when n, is
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even. (This can be shown using induction.) Therefore, when n, is even, a
different constraint (10.6) must be used.

This phenomenon does not cause instability in our computations when
n, 1s odd. That is, we do not detect any high frequency oscillations in the

r-direction. However,
det Dy — 0 as n, — o0, n, odd,

so that Dy becomes more and more ill-conditioned as n, increases. Thus,
our choice of parameters a is not expected to yield good numerical results
for very fine grids. A better choice of the constraint (10.6) is needed for
fine grids. Besides changing the choice of parameters, we can also avoid this
problem by changing the discretization of the continuity equation (11.2h).
For example, a first order finite dilference approximation can be used for the
r-derivatives of u. Then we solve (11.12) using only one of the boundary
conditions (11.6a) at » = Ry or (11.7a) at » = R,. The other condition
will still be enforced when we solve for p = P(u) as in (10.14). One might
consider a method in which one boundary condition is enforced at odd time
steps, and the other at even time steps.

The structure of the matrix Dy is block diagonal, each (n, —1)-by-(n, —1)
block along the diagonal is tridiagonal, and all blocks are the same. There-
fore, the evaluation of U(«) requires the solution of ngn. tridiagonal linear

systems, ecach with the same matrix of order n, — 1.
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11.6.2 Computing the Pressure

The function P(u) is the projection of a vector u onto the subspace of IR®
defined by Du = 0. In order to determine P(u), we solve the linear system
(10.14). This system is a discretization of the familiar Poisson equation for
the pressure. An efficient way to solve it is to employ the discrete Fourier
transform (DFT) in the two periodic directions, @ and z. Given a vectory €
IR™ whose components y;;; represent the values of a function y(r, 0, z) at our
interior grid points, its (complex) DIFT is denoted § and its components are
given by

1 retnel Orilk Irill
exp exp Ykl 11.13
i == 3 2 e (T e (28, (1ay

where 7 = /—1. In compact form. we write

y=1ry

o0

€™ s the nonsingular matrix of the coefficients in (11.13).

where [ €
Instead of solving (10.14) directly, we solve it in the transform space.

Thus we solve, instead of (10.14), the equivalent transformed system

FDGF'Fp = FDh(u; \). (11.14)

In practice, this means that we perform the following steps to obtain the
solution p:

o Compute b= FDh, the DI'T of Dh, using the Fast Fourier Transform

('F'T) algorithm.
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o Solve FDGF~'p = h for p, the DFT of p. This is an efficient procedure
because the matrix FDGF=! is block diagonal, with blocks of size
(n, — 1)-by-(n, — 1) which are banded with bandwidth 5, so that only

two superdiagonals and two subdiagonals are nonzero.

o Solve ['p = P for the desived vector p. This is done using an inverse

FFT.

If the norm of the residual. ||[DGp — Dh(u; A)|),, is too large (larger than
some tolerance), then we use standard iterative improvement to obtain a
better solution p. In practice, we have found that one iterative improvement
step is sufficient to make the residual negligible. Note that in order to be
able to use the simplest version of the FFT algorithm, we require that both

ng and n, are integral powers of two.

11.7 Continuation Procedures

In order to obtain branches (parametrized by the Reynolds number Re)
of steady state solutions of the ODE (10.9), we use the pseudo-arclength
RPM continuation algorithm described in Section 7 of [16]. A summary of
the algorithm is contained in Appendix A. In this Section, we do not discuss
the details of that algorithm, since we use it with only minimal modifica-
tion. However, the algorithm in [16] contains several adjustable parameters.
Here, we discuss only our modifications and parameter adjustments of the

algorithm presented in [16].
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11.7.1 Increasing the Basis Size

We have slightly modified the method for increasing the size of the invari-
ant subspace basis of the fixed point iteration. As suggested in Section 4.1 of
[16], we use a window of four difference vectors. Schroff and Keller only used
two, but suggested that using more would increase the accuracy of the basis.
In addition, we substituted the Householder QR method for the modified
Gram-Schmidt (MGS) method used in [16] to compute the QR factorization
of those difference vectors. The rcason for this change is that the House-
holder method, though more expensive, is more stable, especially when the
vectors to be othonormalized are not very independent. For a comparison of

QR factorization methods, we refer to reader to Chapter 5 of [10].

11.7.2 Parameter Settings

Several parameters in pseudo-arclength RPM continuation are adjustable.
In this section, we discuss the settings we use.

The iteration in [16] corresponds to a “black-hox” time integration over
a small time interval Af. We use At = 0.5 in all of our computations. In the
automatic step size control in the fourth order Runge-Kutta method uses an
error tolerance of 107°%,

For increasing the size of the basis, the QR factorization of a few (in
our case, four) dillerence vectors is computed. This is done if the iteration
fails to converge after n,,, iterations. We use n,,., = 50. The size of the

basis is decreased if some cigenvalues corresponding to the invariant subspace
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spanned by the basis are less than some cut-off value §, and we use § = 0.5.
We point out that decreasing the basis size was never an issue because we
never accumulated a basis which was too large to be efficient.

For the continuation algorithm, we used a pseudo-arclength stepsize of
As = 1 in most cases. The condition for convergence is that the 2-norm of

the residual F'(a, A) (sce (10.9)) is less than the tolerance tol = 108,

11.8 Numerical Experiments and Results

We performed numerical experiments with the laminar Couette flow so-
lution branch as well as a Tavlor vortex flow branch. The results of these
experiments will serve to show that RPM, in conjunction with the theory
of Chapter 10, s an effective method for computing solution branches of
incompressible fluid flows such as the Taylor-Couette problem.

In order to compare our results with past investigations, particularly [28],
we performed all experiments with the parameter values n = 0.875, I' = 2.54,
and w = 0. Thus, our experiments correspond to a configuration in which
only the inner cylinder spins and the outer cylinder is at rest. Also, for
the integer hmiting the azimuthal wavelength, we used ¢ = 4 in all our

calculations.

11.8.1 Couette Flow

The Navier-Stokes cquations (11.2) with the boundary conditions (11.5-
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11.7) have the exact steady state solution

u=w=0=0, (11.15a)
n R, r )
) = = 11.151
l 1— 772 < 7,2 RQ ’ ( 5))
Py = = (11.15¢)
”

for all Reynolds numbers Re. This is the laminar Couette flow, which is
linearly stable for only small values of Re, less than the critical value Re..
Our discretized system, for fine enough grids, displays similar behavior. An
approximation to the Couette flow (11.15) is a solution for all Reynolds
numbers, but the solution is linearly stable only for values of Re < Re. ~ Re,.

Our continuation corrector is a time integration, and so we expect it to
converge (for sufficiently small time step sizes) to the laminar flow as long
as the Reynolds number remains in the stable regime, Re < Re.. In the
stable regime, all the eigenvalues of F (evaluated at the laminar solution)
have negative real part. At Re = Re.. one eigenvalue passes through zero.
This eigenvalue has positive real part {for Re > Re. and causes the linear
instability of the laminar flow. A time integration is expected to diverge
from the laminar flow for Re greater than about Re., regardless of how small
the time step size is chosen.

RPM can be used to generate a hybrid iteration which will converge to
the unstable laminar Couctte flow at high Reynolds numbers. In addition,
RPM can give us information on the unstable eigenvalue(s) and accelerate
the convergence in the stable regime. If the fixed point iteration is of the
form

o) = G(a™, Re) (11.16)
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then RPM will compute a basis Z for an invariant subspace of the Jacobian
Ga. The eigenvalues of the small matrix ZTGq Z are a subset of the eigen-
values of G (see [16]). 1l all the (complex) eigenvalues u of Gg lie within
the unit disk {] g |< 1}, then the iteration is contracting. Eigenvalues with
magnitude greater than one (outside the unit disk) cause instability.

We used RPM to compute the laminar solution branch for the range
100 < Re < 170 with a resolution of (n,,ng,n.) = (31,16,32). We started
at He = 130 with the known Couette flow solution, to which we added the

perturbation

u(r,0.z) = ——64(7. (w}?fl——)(;%;)ﬁsz) cos <'7r (l - E)) , (11.17a)

ol )Y € . 7?(7" — Rl)(r._ Rg) ) (.,.( 22))
w(r,0,z) = "R sin (2 o = T sim{7|1— =)

(11.17b)

with € = 0.001. This is the same perturbation used by Schréder and Keller
in [28]. The Couette flow solution is linearly unstable at Re = 130. This was
confirmed by our time integration method, which diverged without the use
of RPM.

But after 100 iterations, RPM isolated a single eigenvector of the itera-
tion. This was enough to cause the iteration to converge, but the convergence
was still slow. After 50 more iterations, another invariant subspace was iso-
lated, this time of dimension three. After just one more iteration, the residual
was well below the convergence criterion, and even below roundoff precision.
Figure 11.18 shows the norm of the residual F(c, Re) plotted as a func-
tion of iteration number. Because the Couette flow solution is unstable at

Re = 130, the residual actually increased before RPM isolated an invariant
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subspace. This is a fine example of how RPM can stabilize unstable fixed
point iterations.

We continued the solution branch in both directions of the Reynolds
number. Before each continuation step, we added to the solution the same
perturbation (11.17). Already having obtained a basis for a four-dimensional
invariant subspace of the iteration, the convergence was much accelerated
in both directions. In addition, the basis allowed us to compute, inexpen-
sively, the four dominant eigenvalues of the iteration. Figure 11.19 shows the
magnitudes of the three most dominant eigenvalues computed by RPM.

In the direction of decreasing Re, we found that eight or less iterations
were suflicient to satisfy the convergence criterion at each continuation step.
By monitoring the dominant cigenvalues of the iteration (see Figure 11.19),
we were able to estimate the critical Reynolds numbers Re, and Re, at which
Taylor vortices bifurcate from Couette flow. Initially, one eigenvalue has a
magnitude greater than one, indicating instability. But as Re decreases, so
does that cigenvalue. When the eigenvalue crosses the unit circle into the
unit disk, the iteration becomes stable. This change of stability indicates
that we have encountered a bifurcation. The location of the stability change
is an estimate of Re. and Re.. For a resolution of (n,,ng,n,;) = (31,16, 32),
we estimate Re, /= 120. The bifurcation of the continuous problem occurs at
Re. = 118.2 according to [§]. By increasing the resolution to (1,,n,n.) =
(63,16, 64) near the bifurcation point, we obtain Re. ~ 118.

Of course, the computed eigenvalues are only estimates, and their accu-
racy depends on the quality of the invariant subspace basis Z. If Z is indeed

a basis of an invariant subspace of G, then the computed eigenvalues are
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Figure 11.18: Norm of the residual F(a, Re) as RPM converges to the lami-
nar Couette flow solution at Re = 130. The residual actually increases before

RPM isolates an invariant subspace because the solution is unstable.
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exactly a subset of the eigenvalues of Gq. In reality, we only have a basis
for an approximation to an invariant subspace, so the computed eigenvalues
are only approximations to eigenvalues of G. So the eigenvalues computed
by RPM should not be used to locate bifurcation points exactly, unless Z
is a basis for a very good approximation to an invariant subspace (see Ap-
pendix A for how to test the quality of the invariant subspace). Nevertheless,
we note that we obtain a very good estimate of the bifurcation point from
the eigenvalues computed by RPM.

In the direction of increasing Re, we also found that convergence was
significantly accelerated, so that eight to ten iterations were enough to sat-
isfy the convergence criterion at each continuation step. At Re ~ 140, a
second eigenvalue crossed the unit circle, turning unstable. This is shown
in Figure 11.19 and indicates another bifurcation. We were able to continue
through the bifurcation without problems.

Our Couette flow computations were a controlled experiment. They
showed that RPM is an eflective method for computing unstable steady
states of a three-dimensional fluid dynamics problem. RPM also gave us
information on the eigenvalues of the iteration Jacobian Gg, which allowed

us to locate bifurcation points accurately.

11.8.2 Taylor Vortex Flow

Our Couette flow experiment was a somewhat artificial setting for using
RPM. Couette flow does not vary with Re and so we added a perturbation

at each continuation step. In realistic continuation problems, we do not, of
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course, introduce an artificial perturbation. Rather, the error to be corrected
at each step is caused by the variation of the solution as the parameter value
is changed.

In order to test RPM in such a more realistic setting, we used RPM to
compute a Taylor vortex solution branch which bifurcates from Couette flow.
To obtain a first Taylor vortex solution at Re = 125, we time evolved (with-
out RPM) an initial condition obtained by adding a perturbation (11.17)
to Couette flow with ¢ = 0.1. Because the Couette solution is unstable at
Re = 125, the time iteration converged to a stable Taylor vortex solution.
We used a resolution of (n,,n4,n;) = (31,16, 32).

When we were close to the Taylor vortex solution we turned on RPM
to accelerate the convergence. Note that we could not use RPM from the
start because RPM would have caught the instability and converged to the
unstable Couette flow. After we turned on RPM, it took 100 iterations to
isolate a three-dimensional invariant subspace, and the residual immediately
dropped to well below the roundoff level. For subsequent continuation steps
using the obtained basis, the convergence criterion was met after 97-114
iterations.

Figure 11.20 shows the streamlines of the axial and radial velocity com-
ponents of our computed Taylor vortex solution at Re = 125. Starting with
this solution, we used RPM continuation to obtain the Taylor vortex solu-
tion branch for Re. < Re < 150. In Figure 11.21, we plot u* = u(r*, 0%, z*)
along the computed branch at »* = Ry + $(R; — Ry), 6" =0, and z* = I'/2.
This should be compared to the upper branch (I) in Figure 7 of [28], and we

see excellent agreement. Near the bifurcation point with Couette flow, we
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reduced the continuation step size to 0.25. Interestingly, the solution merged
into the Couette flow branch at the bifurcation point Re = Re,, instead of
continuing into the other Taylor vortex branch (branch II in Figure 7 of [28]).
In [28], Keller and Schréder attributed this to the phenomenon of perturbed
bifurcation. We did not compute the other Taylor vortex branch because it

is not relevant to this study of RPM.
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Figure 11.20: Streamlines of the radial and axial velocity components for a
computed Taylor vortex solution at Re = 125, I' = 2.54, n = 0.875, and
w = 0. The (r,z)-plane shown is the cross-section with § = §; = 0. The flow
1s axisymmetric so that the solution is the same at all values of §. The flow

is counter-clockwise in the upper vortex and clockwise in the lower vortex.
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Figure 11.21: Radial velocity component u* as a function of Reynolds num-

ber. This shows good agreement with branch I in Figure 7 of [28].



Chapter 12

Conclusions

We have demonstrated how the Recursive Projection Method of [16] can
be applied to differential-algebraic systems by reducing them to ordinary
differential equations. In particular, we showed that this approach yields a
new method for computing steady state and travelling wave solution branches
of the Navier-Stokes equations. As an example and test of this new method,
we computed solution branches of the viscous flow between two concentric
rotating cylinders. The method proved effective in this setting.

We emphasize that this method can be used in a great variety of settings
other than fluid mechanics, in which differential-algebraic equations occur.
Examples include constrained mechanical systems and electric circuit models.

A natural extension of this work is to use our new method in search
of bifurcations from wavy Taylor vortex flows. The problem formulation
in Chapter 11 includes a rotating frame of reference, which allows for the

computation of travelling wave solutions. Thus, the method could be used
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without modification to compute a wavy Taylor vortex solution branch. By
monitoring the eigenvalues computed by RPM, we may be able to find a bi-
furcation from that branch. This could take us a step closer to understanding
the state transitions observed by Taylor (see [17]).

A limitation of our method is that it can compute only steady state
solutions or travelling wave solutions which are steady states in a moving
frame of reference. However, in the study of fluid mechanics, one often wants
to compute branches of periodic solutions. It would therefore be of great

interest to develop a continuation method for this purpose.
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Appendix A

The Recursive Projection

Method

The Recursive Projection Method (RPM) was designed by Schroff and
Keller [16] to recover convergence of fixed point iterations. Suppose we wish

to compute equilibrium solution branches

w(A) = G(u*(\), \) (A1)

of a nonlinear parameter-dependent fixed point iteration of the form

ul ) = G, ), (A.2)

where G :IR"xIR—IR" is smooth.
The local convergence (as ¥ — oo) rate near a solution depends on the

spectral radius of the Jacobian G} = Gyu(u*(A),A). The iteration (A.2)
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converges locally as long as the eigenvalues u of G lie within the unit disk
{lu] < 1}. This may the case for some interval of parameter values A but
not for parameter values outside this interval. RPM generates a modified
hybrid iteration which restores convergence when one or more eigenvalues
leave the unit disk. This is done by exploiting the fact that the divergence
is due to only one or a few eigenvalues outside the unit disk. Even when
all the eigenvalues are within the unit disk and the iteration converges, the
convergence may be slow because some eigenvalues are close to the unit circle.
RPM can also be used to accelerate convergence in such cases.

The purpose of this appendix is to provide a brief summary of RPM and
the main results of [16]. For a more rigorous and detailed description of

RPM, we refer the reader to [16].

A.1 The Hybrid Iteration

Suppose that the eigenvalues of Gy, are y;, j = 1,...,n and satisfy

il 2 el 2 0 2 pal.

Let P € IR™*" be a projector from IR™ to the maximal invariant subspace
of GJ, corresponding to the m largest eigenvalues p1, pto, ..., . Then Q =
I — P projects onto the orthogonal complement of that invariant subspace.

We thus have, for each u € IR™, the unique decomposition

u=p+q,p = Pu,q = Qu. (A.3)
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A Lyapunov-Schmidt decomposition is used to split the original problem
into two parts:

P = Gi1(p,q,A) = PG(p + q, ), (Ada)
q=Gz(p,q,A) =QG(p+q, ). (A.4b)
It is shown in [16] that the eigenvalues of
(G2)y = QGLQ
are flym41s flm+2s - -« fn. Lherefore, the iteration

q**V = Ga(p,q™.\) (A.5)

converges if |ftm41| is less than one.

Now consider the hybrid iteration obtained by using
e the original fixed point iteration for q on (A.4b), i.e. (A.5), and

e Newton’s method for p on (A.4a).

The new iteration is thus governed by:

(] _ (Gl)g/)> (") — p®)) = G1(p™), g, ) — p®), (A.6a)
q(u+1) = Ga(p, q(u)’ A). (A.6D)
Here, u®) = p® + g (different from u) in (A.2)) is.used to define
d

(G} = %Gl(P("),q("),)\) = PGy(u, )P (A7)

A convergence analysis in [16] shows that the Jacobian of the hybrid iteration

(A.6) has a spectral radius of |itmq1].
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A.2 RPM Continuation

The hybrid iteration can be used as the corrector in a predictor-corrector
continuation algorithm which computes the desired solution branch u*(}).
This algorithm is called RPM continuation.

For example, suppose we are interested in finding solution branches u*(A)

of a nonlinear parameter-dependent system

F(u™,)\) =0, (A.8)

where F [ JR"xIR—IR™ These solution branches are steady states of the

dynamical system

du

—(—l? = F(u,/\). (Ag)

One way to compute these steady states is to integrate the dynamical system
(A.9) for large times t. The time integration procedure can be viewed as a
fixed point procedure (A.2). If the time integration converges, then it can
be used as the corrector in the continuation method. However, the time
integration will fail to converge if the eigenvalues of the F}, lie outside the
stability region of the time integration method. RPM can be used to recover
convergence in such cases, and to accelerate the convergence rate even when
the time integration converges. Of course, many other kinds of fixed point
iterations, such as quasi-Newton methods, can be used in place of the time
integration.

Note that the iteration (A.G) is well defined as long as the matrix (1 —

(Gg)gl)) remains nonsingular. Singularity of that matrix along a solution
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branch indicates a critical point at which folds and bifurcations may occur
[14]. If we encounter a critical point during coninuation in A, we introduce a

pseudo-arclength parameter s and a constraint

]\‘T(pv q, 3) = 0.

This allows us to proceed beyond the most common type of critical point, a
simple fold [14]. Schroff and Keller show in [16] that it is sufficient to perform
the pseudo-arclength continuation in the small m-dimensional subspace and

N can be chosen to be independent of q.

A.3 Recursive Estimation of the Projectors

P and @)

The hybrid iteration (A.G) requires the projectors P and @. These are
obtained by finding an orthonormal basis Z € IR™*™ for the space R(P).

The projectors I? and @ are then given by
P=2z77 (A.10a)
Q=1-227. (A.10b)

RPM includes methods for increasing and decreasing the basis size m, as well

as for maintaining the accuracy of the basis.

A.3.1 Increasing the Basis Size

The basis Z can be estimated directly from the iterates gt*) of the algo-
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rithm. If we define Aq” = q) — q*~V, and if u = p® + g is near u*

(ie., || u® —u” ||2< €), then

Aq® = (G2);A9" 7 + 0(¢) ~ ((G2);) Aq®. (A1)

Thus, the vectors {q()} are, to a second order approximation in ¢, a power
iteration with the matrix (Gz2)3. So as ¥ — oo, these vectors lie in the
dominant invariant subspace of (Gz2)y, as long as Aq© has a component in
this direction.

If the iteration does not converged after say, n,., iterations, then we

accumulate a window of r difference vectors
D = |Aqt T, AqT, L AW,

which approximately span the dominant invariant subspace of dimension
r. To get an orthonormal basis for the span of D, we compute the QR
factorization of D to obtain D € IR™ with orthonormal columns and upper

triangular T' € IR™™" satisfying
D= DT.

The decay of the diagonal elements T;; of T shows how well separated the
dominant invariant subspaces are. For example, if |T11| > |T»s|, then a one-
dimensional invariant subspace has been well isolated. The first column of
D is thus added to the basis Z while the basis size m is incremented by one.
Similarly, the remaining ratios |13/ Tit1,i41] are examined. If |Ti;/Tiq 1] >
1, then an invariant subspace of dimansion 7 has been isolated, and the

corresponding columns of D can be added to Z.
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In [16], a window of r = 2 difference vectors was used, and the QR
factorization was computed using the “modified Gram-Schmidt” procedure
[10]. However, Schroff and Keller point out in [16] that a larger window could
be used. Also, the modified Gram-Schmidt method can be replaced with the
QR method, which is slightly more expensive but also more stable, especially

when the vectors in D are not very independent (see [10]).

A.3.2 Maintaining the Accuracy of the Basis

During the continuation process, the dominant invariant subspace of G
will change and the accuracy of our basis estimate Z will deteriorate. It is
therefore necessary to update the basis Z using a power iteration. This can

be done very inexpensively after each continuation step, via
Z «— orth(G} 2).

Here, “orth(GjZ)” represents an orthonormal basis for the range of GJ,
which is done using QR factorization. Because an approximation of G35 Z is
required for executing the hybrid iteration, this does not require any addi-
tional function evaluations.

The accuracy of the basis Z can be monitored by evaluating the matrix
&= QG P,

which vanishes if Z spans an invariant subspace. If € becomes too large, one
can perform additional power iteration steps. This, however, does require
additional function evaluations. In practice, the one “free” power iteration

has been found to be sufficient to keep the basis reasonably accurate.
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A.3.3 Decreasing the Basis Size

As continuation progresses, eigenvalues which were once dominant may
decrease in magnitude. The invariant subspace corresponding to such eigen-
values may have been included in the basis Z but should be deleted from the
basis when the eigenvalue is no longer dominant.

This is important for two reasons. Firstly, the size of the basis m should
be kept small, so that the method will operate efficiently. If m grows too
large, the solution of linear systems in Newton’s method may become too
expensive. Secondly, the invariant subspace corresponding to non-dominant
eigenvalues cannot be maintained well using power iterations. The accuracy
of the basis Z will then deteriorate and this may cause poor convergence
behavior.

In practice, we would like the basis Z to span an invariant subspace
corresponding only to eigenvalues with magnitude greater than 1 — §. The
cutoff value § is chosen so that eigenvalues within the disk of radius 1 — § do
not cause slow convergence; this depends on the cost of function evaluations

in the particular application. The eigenvalues of the m-by-m matrix
H=7TG.z

are the subset of the eigenvalues of G represented in Z. The eigenvalues
and eigenvectors of the small matrix H are computed inexpensively after
each continuation step. If only 72 < m eigenvalues of H have magnitude less

than 1 — 6, then we compute a real basis V € IR™*™ for the corresponding
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invariant subspace of H. Then we make the replacement
Z « orth(ZV)

so that Z will be a good approximation to the si-dimensional dominant

invariant subspace of Gj).
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