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Abstract 

     While astrocytes play many diverse and important roles in the vertebrate 

CNS, little is known about the molecular diversity of these cells or the factors 

specifying such diversity.  We found that the secreted signaling molecules Reelin 

and Slit1 mark 3 positionally defined subsets of astrocytes in the ventral white 

matter of the spinal cord:  Reelin+/Slit1- astrocytes in the lateral white matter (L 

type), Reelin+/Slit1+ astrocytes in the ventral-lateral white matter (VL type), 

and Slit1+/Reelin- astrocytes in the ventral-medial white matter (VM type).  The 

homeodomain transcription factor Pax6 is specifically expressed in Reelin+ 

astrocytes (L and VL type).  We found that Pax6 plays a necessary and 

instructive role in specifying these populations via its actions of promoting 

Reelin and repressing Slit1 expression.  We additionally show that the 

homeodomain transcription factor Nkx6.1 specifically marks Slit1+ astrocytes 

(VM and VL type), and provide evidence that VL type astrocytes 

(Pax6+/Nkx6.1+) are derived from the p2 domain of the ventricular zone 

(Pax6+/Nkx6.1+).   These data are consistent with a model whereby these 

astrocyte populations are prespecified in the ventricular zone.  Importantly, we 

provide the first evidence that molecularly distinct subtypes of astrocytes are 

produced during development, each with a defined positional identity in the 

white matter.  While positional identity is an important property of many 

neuronal subtypes, it has not been previously described in glial cells and may be 

important for region specific functions of these astrocyte subpopulations.  
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           All multicellular organisms begin from a single cell which proliferates and 

gives rise to several distinct cell types organized in a complex three-dimensional 

architecture.  This cellular diversity and organization enables multicellular organisms 

to achieve a wide degree of functional capabilities.  A striking example is illustrated 

by the vertebrate central nervous system where a vast array of neuronal and glial 

subtypes, organized and interconnected together, provide the necessary substrate for 

fascinating higher order functions such as perception, behavior, cognition and 

emotion.   

          It is estimated that there are thousands of different kinds of neurons in the 

vertebrate central nervous system (Hall 1992).  These neurons can be distinguished 

by different morphologies as well as molecular criteria such as 

neurotransmitter/neuropeptide secretion and expression of different ion channels, 

receptors or molecular markers (Hall 1992).   Different neurons are also spatially 

organized so as to have a positional identity.  Positional identity is particularly 

important property of these neuronal subtypes because it establishes a spatial 

organization which allows for neurons to find and connect with their proper partners 

to form circuits.  This is evident in the cerebral cortex where different types of 

neurons are arranged in both layers and columns, as well in the spinal cord where 

subclasses of motor neurons are arranged in columns and pools in the ventral horn 

(Jessell, 2000).   

          In addition to neurons, the central nervous system is also comprised of two 

major classes of glial cells:  astrocytes and oligodendrocytes.  Glial cells outnumber 

neurons by a 10 to 1 margin and perform critical functions (Kettenmann 1995).  
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Oligodendrocytes have been primarily associated with one critical supportive role, 

that of wrapping axons with myelin sheaths to enable rapid saltatory conduction.  By 

contrast, astrocytes have been associated with several diverse functions including 

both passive supportive functions such as balacing pH and ion concentrations, 

recycling neurotransmitters, storing energy, controlling blood vessels and forming the 

blood-brain barrier, as well as actively modulating CNS function by communicating 

with neurons at synapses, providing trophic signals for adult neurogenesis and serving 

as a source of stem cells (Dani et al., 1992; Doetsch, 2003; Gee and Keller, 2005; 

Parpura and Haydon, 2000; Song et al., 2002).  Given this functional diversity an 

important question is whether there are molecularly distinct subsets of astrocytes and 

whether these astrocyte subtypes have different functional responsibilities.   

Furthermore, since spatial segregation and organization are important for the proper 

function of neuronal subtypes, an important question is whether different types of 

astrocytes are also spatially organized so as to have positional identity and whether 

postional identity is important for their functions.  

     In the introduction, I will discuss existing evidence for astrocyte diversity and 

highlight unresolved questions.  I will next examine the strategies and molecular 

mechanisms which underly the generation of neuronal and glial cell diversity, 

focusing primarily on the spinal cord where these concepts have been well 

characterized.  Finally, I will introduce our findings regarding the role of Pax6 in 

specifying the molecular and positional identity of astrocytes in the ventral spinal 

cord. 
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Astrocyte Diversity 

Diversity of Astrocyte functions 

          Astrocytes are the most abundant cell type in the central nervous system (CNS) 

and perform a wide variety of diverse roles.  Many of these functions are involved 

with passively providing a supportive environment for neurons.  These include 

balacing pH and ion concentrations, recycling neurotransmitters, storing energy, 

controlling blood vessels and forming the blood-brain barrier (Gee and Keller, 2005).  

However, there is also increasing evidence that, like neurons, astrocytes may play an 

active role in information processing in the CNS (Fields and Stevens-Graham, 2002).  

Hippocampal astrocytes respond to glutamatergic firing with actively propagating 

Ca2+ waves in organotypic slice cultures (Dani et al., 1992).  A higher resolution 

version of this experiment, where photo-release of glutamate onto single astrocytes 

resulted in calcium elevations in some of the neighboring astrocytes, suggests that 

astrocytes might have specific connectivity with one another (Sul, Orosz et al. 2004).  

The full functional significance of such astrocytic networks or circuits as well as their 

specificity and prevalance within various regions of the CNS remains to be 

elucidated. 

          Astrocytes can also impact neuronal function at the synapse.   Perisynaptic 

astrocytes modulate the activity of adjacent neurons by releasing glutamate (Parpura 

et al., 1994; Parpura and Haydon, 2000).  Astrocyte-derived glutamate is thought to 

promote neuronal synchrony, enhance neuronal excitability and to modulate synaptic 

transmission (Haydon and Carmignoto, 2006).  Astrocytes can also regulate synaptic 
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plasticity by releasing D-serine which acts on the glycine binding site of NMDA 

receptor, and contribute to heterosynaptic depression by their release of ATP which is 

extracellularly converted to the inhibitory molecule adenosine (Haydon and 

Carmignoto, 2006).   

          In addition to affecting synaptic function, astrocytes impact ongoing 

development and remodeling in the adult CNS.  It is well established that astrocytes 

proliferate in response to CNS injury leading to formation of scars and inhibiting 

proper axonal regeneration (Cafferty et al., 2007).  However, it has also been shown 

that astrocytes can provide a substrate for neurite outgrowth in organotypic cultures 

of rat ventral mesencephalon (Elisabet Berglöf, 2007).  Additionally, co-culture 

experiments demonstrate that astrocytes increase the proliferation and neuronal 

commitment of adult CNS stem cells.  Coupled with the close physical association of 

astrocytes with stem cells in the dentate gyrus of the hippocampus, this suggests 

astrocytes provide important trophic signals instructive for adult neurogenesis (Song 

et al., 2002).  Although very limited in scope, adult neurogenesis yields functional 

neurons which may be important in circuits involving learning and memory (Paton 

and Nottebohm, 1984; van Praag et al., 2002).  GFAP+ astrocytes have been 

implicated as the source of adult CNS stem cells in the subventricular zone and 

dentate gyrus of the hippocampus (Doetsch et al., 1999; Laywell et al., 2000; Seri et 

al., 2001).  Thus astrocytes play many diverse and important functional roles in the 

CNS ranging from providing support, to actively participating in information 

processing and guiding ongoing development and remodeling in the adult. 
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Molecular, Morphological and Positional Diversity 

          Several morphologically distinct subclasses of astrocytes have been described 

both in vitro (Miller and Szigeti, 1991) and in vivo (Mary S. Bailey, 1993).  

Additionally, the morphologically distinct type 1 (protoplasmic) and type 2 (fibrous) 

astrocytes observed in rat optic nerve and cortical cultures have been shown to have 

different antigenic profiles.  Type 1 astrocytes express lower levels of GFAP and are 

negative for A2B5 and tetanus toxin, while type 2 astrocytes express high levels of 

GFAP and bind both A2B5 and tetanus toxin (Miller and Raff, 1984). There is also 

evidence that type 1 and type 2 astrocytes may have different distribution between the 

white and grey matter:  cultures from developing gray matter generate only type 1 

astrocytes, while white matter derived cultures generate both type 1 and type 2 

astrocytes (Miller and Raff, 1984).  However because these types are characterized 

after in vitro culture, it is not clear whether they are truly differentially distributed in 

vivo.  Hippocampal astrocytes in the CA1 and CA3 layers have different 

electrophysiological properties, suggesting they may represent functionally distinct 

subtypes.  (D'Ambrosio et al., 1998).  Astrocytes within the CA1 layer display 

heterogeneous expression of glutamate transporter and AMPA receptor (Zhou and 

Kimelberg, 2001).  More recently, gene expression profiling experiments were 

conducted on various in vitro astrocyte cultures and astrocyte-rich CNS tissues in an 

effort to uncover information about the molecular diversity of astrocytes (Bachoo et 

al., 2004).     

          While there is evidence supporting the notion of morphological, molecular and 

regional heterogeneity among astrocytes, it is not clear whether astrocyte subtypes 
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with distinct molecular and positional identities are specified during development.  

An alternative explanation for the observed heterogeneity is that a single type of 

astrocyte is produced initially from a uniform population of progenitors but that 

astrocytes can subsequently alter their phenotypes (including gene expression, 

morphology, electrophysiological properties, etc.)  in response to local signals in the 

region in which they settle.  Genetic studies and lineage tracing experiments can 

distinguish between these possibilities.  If a gene can instructively promote a 

particular astrocyte identity this argues against a model of passive acquisition of 

heterogeneity due to regional cues and for a model of cell intrinsic identity 

specification.  Furthermore if cells derived from a particular domain of progenitors, as 

marked with a lineage marker, give rise to astrocytes with a distinct molecular and 

positional identity this also argues that these astrocytes are pre-specified.    

 

Generation of Cellular diversity in the Spinal cord 

Spatial patterning and Neuronal subtype specification 

          In the ventral spinal cord, molecularly distinct subtypes of neurons are 

generated from spatially segregated domains of progenitor cells along the 

dorsoventral axis.  A schematic of how this strategy of spatial patterning is achieved 

is shown in Figure 1.  Dorsoventral patterning of progenitors is initially established 

by the action of the morphogen Sonic Hedgehog (Shh) which diffuses from its ventral 

point of origin in the floorplate and notochord (Briscoe et al., 2000).  Sonic Hedgehog 

induces the expression of Class II transcription factors such as Nkx2.2, Nkx6.1 and 

Olig2 and represses the expression of Class I transcription factors such as Pax6, Dbx2 
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and Irx3 (Briscoe et al., 2000; Jessell, 2000; Novitch et al., 2001).  Each of these 

transcription factors is differentially sensitive to Shh concentration, which leads to 

each gene having a unique and restricted expression pattern along the dorsoventral 

axis.  For example, a higher concentration of Shh is required to induce Nkx2.2 

compared to that required to induce Nkx6.1, thus Nkx6.1 expression extends more 

dorsally where Shh concentrations are lower.  This logic also holds true for Class I 

genes, for example higher concentrations of Shh are needed to repress Pax6 compared 

with those required to repress Dbx2, thus Pax6 expression extends more ventrally into 

regions with higher Shh concentration (Jessell, 2000).  In addition to the Shh gradient, 

dorsally derived Bone Morphogenic Proteins (BMPs) exert an opponent influence on 

these patterning factors (Jessell, 2000).   

          Pairs of Class I and Class II genes exert cross repressive interactions on one 

another which allows for the refinement of these extracellular signals into sharp 

boundaries.  For example Pax6 and Nkx2.2 cross repress each other, and Nkx6.1 and 

Dbx2 cross repress each other (Ericson et al., 1997; McMahon, 2000)  These 

boundaries partition the ventricular zone into domains each of which is defined by a 

combinatorial code of homeodomain and bHLH transcription factor expression and 

each of which generates a particular class of neurons (Jessell, 2000).  In the ventral 

spinal cord there are five discrete progenitor domains:  p0, p1, p2, pMN, and p3.  

These domains give rise to 4 distinct classes of interneurons (V0, V1, V2 and V3) as 

well as motor neurons.   Each of these neuronal subtypes are distinguished both by 

their expression of specific molecular markers and by their positional identity.    The 

molecular markers identifying each neuronal subclass as well as the combinatorial 
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code of patterning molecules expressed in each progenitor domain are illustrated in 

Figure 1.   

 

Figure 1 – Neural Patterning in the Ventral Spinal Cord 

Olig2 

Olig2  

 

                                                                 - modified from:  (McMahon, 2000)              

 

          In addition to the general classes of neurons specified by this spatial pattering, 

there is a more detailed hierarchical determination of neuronal subtype identity within 

the motor neuron lineage.  LIM homeodomain proteins act to further sub-specify 

motor neurons into distinct columns, divisions and pools, each of which is 

distinguished by a distinct cell body positioning within the motor column and by 

projections to distinct targets (Jessell, 2000).  This further subdivision of neuronal 

subtypes is also seen with V2 interneurons, where GATA 2 and GATA 3 mark a 

population designated V2b, which is distinct from the previously characterized 

Chx10+ V2a interneurons (Karunaratne et al., 2002).  These additional subdivisions 
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result in an even greater diversity of neurons generated just within the ventral spinal 

cord. 

 

Neuron-glia transition 

     In all vertebrates in all regions of the CNS, neurons are generated prior to glial 

cells.  In the spinal cord, this involves a temporal transition in ventricular zone 

precursors from producing neurons to producing glial cells.  This “Gliogenic” switch 

involves both the inhibition of neurogenesis and the induction of gliogenesis.  

Recently, the NFI family of transcription factors was found to be both necessary and 

sufficient for this transition (Deneen et al., 2006).  GLAST is a marker of radial-glia / 

astrocyte precursors which is not expressed in ventricular zone progenitors during 

neurogenesis but which turns on at the onset of the transition to gliogenesis (Shibata 

et al., 1997).  Like GLAST, NFI genes are also upregulated in ventricular zone at the 

onset of gliogenesis.  Moreover, NFIA/B gain of function drives precocious 

expression of GLAST, and conversely the normal temporal induction of GLAST fails 

to occur in the presence of NFIA siRNA  (Deneen et al., 2006).  Thus the pro-Glial 

aspect of this transition appears to be controlled by NFI genes. 

          The neuron-glial transition also requires the inhibition of neurogenesis.  Notch 

signaling is necessary for this to occur and the mechanism involves Notch effectors 

such as Hes genes which are able to block the expression of proneural genes (Louvi 

and Artavanis-Tsakonas, 2006).  Interestingly, NFI genes also play a role in inhibiting 

neurogenesis, as extended neurogenesis and loss of progenitors were observed in 
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NFIA siRNA experiments, and it was discovered that Notch signaling is dependant 

on NFI gene function during gliogenesis (Deneen et al., 2006).   

          Another important aspect of the transition from neurogenesis to gliogenesis is 

that it appears to be an irreversible transition, at least within ventricular zone 

progenitors from the pMN domain.  While isochronic transplantation of neurogenic 

stage (mouse E9.5) FACS isolated Olig2-GFP + progenitors into the neurogenic 

environment of the E2 chick embryonic spinal cord, these cells made neurons.  By 

contrast, heterochronic transplantation of gliogenic stage (mouse E13.5) Olig2-GFP+ 

progenitors into the neurogenic E2 chick spinal cord did not yield any detectable 

neurons (Mukouyama et al., 2006).  These in vivo experiments provide a more 

accurate assessment of the intrinsic potential of these cells than can be obtained by in 

vitro experiments.  In fact these results contradict the in vitro observation that E13.5 

glial stage Olig2-GFP+ cells can produce neurospheres which subsequently yield 

neurons (Mukouyama et al., 2006).   The in vitro neurogenic capacity of these cells is 

likely due to reprogramming in neurosphere culture which has been previously 

observed with regard to patterning information (Gabay et al., 2003). 

 

Spatial patterning and Gliogenesis 

          The strategy of spatial patterning which is essential in the generation of 

neuronal diversity is also to specify oligodendrocyte vs. astrocyte fate during the glial 

phase of development.  Oligodendrocytes are generated from the pMN domain of the 

ventral ventricular zone, which is specifically marked by the expression of the bHLH 

transcription factor Olig2 during bothe the neurogenic and gliogenic phases of 
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development (Lu et al., 2000; Zhou et al., 2000).  This domain generates motor 

neurons during neurogenesis and Olig2 is necessary and sufficient for both motor 

neuron and oligodendrocyte fate (Lu et al., 2002; Novitch et al., 2001; Zhou and 

Anderson, 2002; Zhou et al., 2001).  In Olig1,2 -/- embryos, the progenitors of the 

erstwhile pMN domain acquire the identity of the immediately dorsal p2 domain, as 

Irx3 expands ventrally during the phase of ventral patterning (Zhou and Anderson, 

2002).  This transformed ectopic p2 domain generates V2 interneurons and then 

subsequently astrocytes.  This fate transformation is illustrated in Figure 2.  Olig2 

controls the specification of a neuronal subtype and glial subtype from the same 

progenitor domain during different phases of development. 

 

Figure 2:  Cell Fate Transformation in the Olig1,2 -/-  mutant 

 

 

                                                                                      (Zhou and Anderson, 2002) 
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          Whether other factors involved in neuronal patterning are also important in 

glial subtype specification is less clear.  While Nkx2.2 represses Olig2 during 

neurogenesis, it is co-expressed with Olig2 in the oligodendrocyte lineage and 

collaborates with Olig2 in promoting oligodendrocyte fate (Zhou et al., 2001).  

Additionally, Nkx2.2 is required for oligodendrocyte differentiation (Qi et al., 2001).   

Pax6 is required for the normal onset and positioning of oligodendrocyte formation, 

which may be a result of dysregulated dorsal expansion of Nkx2.2 into pMN during 

normal patterning (Sun et al., 1998).  While Pax6 is expressed in progenitors dorsal to 

pMN which give rise to astrocytes, Pax6 mutant mice do not show deficits in GLAST 

expression indicating normal astrocyte precursor formation (Ogawa et al., 2005). 

     The fact that glial progenitors convert to astrocyte formation in the Olig mutant 

supports the notion that astrocytes are generated as the “default” glial fate.  Consistent 

with this it has been shown that the pro-glial NF1 genes are sufficient to promote 

astrocyte differentiation in the absence of Olig2 antagonism (Deneen et al., 2006).  

Also, astrocytes appear to be broadly generated from VZ progenitors outside of pMN, 

as assayed by the migration of NFIA+, GLAST+, and FGFR3+ cells (Deneen et al., 

2006; Pringle et al., 2003; Shibata et al., 1997).  Thus it appears that gliogenesis 

carries an intrinsic astrocytic bias upon which Olig2 acts (Deneen et al., 2006).  This 

is evident in the fact that Olig2+ oligodendrocyte precursors require the pro-glial 

function of NFI genes and are co-expressed in ventricular zone precursors.  Olig2 is 

able to block the pro-astrocytic effects of NFI genes once cells have exited the 

ventricular zone.  Olig2+ cells in the pMN domain express GLAST, yet once they 

migrate out of the ventricular zone they no longer express GLAST.  Furthermore 
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Olig2 antagonizes the ability of NFI genes to induce astrocyte differentiation and 

GFAP expression (Deneen et. al., 2006).  Thus the pro-glial program of NFI genes is 

coupled to their later pro-astrocytic functions, and while Olig2 is dependant on the 

early pro-glial function it is also sufficient to override the later pro-astrocytic 

functions. 

        The above results suggest that astrocyte specification can proceed under the 

control of NFI genes so long as Olig2 is repressed in astrocyte precursors.  Further 

evidence of this comes from the discovery that the bHLH transcription factor SCL is 

a p2 domain specific factor which promotes astrocyte fate and represses 

oligodendrocyte generation within this domain by repressing Olig2 expression 

(Muroyama et al., 2005).  These studies also show that Olig2 can repress SCL.  Such 

cross-repressive interactions can ensure the silencing of Olig2 expression in astrocyte 

precursors and allow for astrocye specification and differentiation. 

          Recently it has been shown that some dorsal progenitors can give rise to 

oligodendrocytes (Cai et al., 2005; Vallstedt et al., 2005) and conversely some pMN 

progenitors can give rise to astrocytes or ependymal cells (Masahira et al., 2006).  

Despite these alternative sites of origin, it still remains universally true that Olig2 

function is required for oligodendrocyte formation and conversely the absence of 

Olig2 expression is required for astrocytic differentiation.  These experiments suggest 

that there may be more plasticity in glial cell fate specification than is observed in the 

case of neurons.  This could possibly be due to the rapid exit from the cell cycle and 

terminal differentiation in newly generated neurons which restricts any opportunity 

for switching fates.  Interestingly, the dorsal site of origin of some oligodendrocytes 
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has led to speculation over whether there are distinct subtypes of oligodendrocytes 

(Richardson et al., 2006). 

 

Outline of the Thesis 

          This thesis aims to address the how astrocyte diversity is specified in the 

developing spinal cord.  Chapter 2 describes Microarray experiments comparing Olig 

-/- and Olig +/- populations during early gliogenesis which identified genes 

differentially expressed in early astrocyte vs. oligodendrocyte progenitor populations.  

I will discuss how these microarray data were analyzed and how among the candidate 

genes with increased in the Olig -/- astrocytic population we identified Reelin, Slit1 

and Pax6, which we confirmed to be expressed in subsets of white matter astrocytes 

but not in oligodendrocytes.  In Chapter 3, I will discuss our finding that the partially 

overlapping pattern of Reelin and Slit1 expression defines 3 molecularly and 

positionally distinct subsets of astrocytes in the ventral white matter and that this 

positional identity is controlled by Pax6.  Additionally, I will discuss our discovery 

that while Pax6 specifically marks Reelin expressing astrocytes, Nkx6.1 specifically 

labels Slit1 expressing astrocytes.  I will present our evidence for the prespecification  

of astrocyte identity using these markers along with the Olig2-GFP in the Olig -/- 

mutant as marker of p2 derived astrocytes.  Importantly, the regulation of astrocyte 

positional identity in the spinal cord by Pax6 provides the first evidence that different 

types of astrocytes are produced during development. 

          Finally in the Appendix, I will discuss various other experiments involved with 

testing the function of genes identified in the microarray screen.  These include:   
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examining the role of Pax6 in pMN progenitors during motor neurogenesis, cloning 

and testing Tet inducible RCAN retroviral vectors for inducible misexpression of 

Pax6 in ovo, investigating the role of Shox2 in motor-neuron vs. V2 interneuron fate 

and oligodendrocyte precursor induction, and functional studies of HFH4 during 

gliogenesis.   
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Introduction 

      The bHLH transcription factor Olig2 is the first gene identified which 

regulates glial subtype specification.  Olig2 is necessary and sufficient for 

oligodendrocyte formation and in the absence of Olig2, cells marked by a knockin 

Olig2-GFP generate astrocytes (Zhou and Anderson, 2002; Zhou et al., 2001).  This 

fate conversion suggests that in addition to promoting oligodendrocyte fate, Olig2 

plays an important role in suppressing astrocyte fate (Lu et al., 2002; Zhou and 

Anderson, 2002).  Given evidence that Olig2 acts as a transcriptional repressor (Zhou 

et al., 2001), we postulated that important astrocyte regulatory genes might be targets 

of Olig2 repression and designed a screen to identify these target genes.  

          Our strategy was to use Olig2-GFP to FACS isolate glial progenitors from Olig 

+/- and Olig -/- embryos and to compare their gene expression profiles on Affymetrix 

cDNA microarrays.  We hoped to identify new pro-astrocytic or anti-

oligodendrocytic genes as genes upregulated in the Olig -/- population.  At the time 

we intitiated this screen, no instructive factors had been identified which could drive 

precocious astrocyte development or repress oligodendrocyte development.  Genes 

with both of these functions have since been identified (Deneen et al., 2006; 

Muroyama et al., 2005).  Fortunately, among the genes upregulated in the Olig -/- 

‘astrocytic’ population, we identified markers specific to positionally defined subsets 

of astrocytes, which enabled us to discover the first evidence of astrocyte subtype 

specification during development. 
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Results 

Isolation and Microarray comparison of E14.5 Olig +/- and Olig -/- glial 

progenitors 

     We performed our first microarray comparison with cells isolated from E14.5 

embryos.  The major reason for selecting this stage was to avoid contamination of our 

samples by neurons.  Olig2 is normally expressed in motor neuron precursors but is 

rapidly downregulated as precursors migrate out of the ventricular zone and 

differentiate into motor neurons.  Expression of Olig2 protein is not detectable in 

postmitotic motor neurons.  By contrast, due to the stability of the GFP protein, 

Olig2-GFP expression perdures into postmitotic motor neurons (+/-) or V2 

interneurons (-/-).  Some of this GFP protein perdurance in neurons is still detectable 

in the early stages of gliogenesis (E12-E13).  By E14.5, there is no detectable GFP 

expression in neurons and we were confident that all GFP+ cells isolated for 

comparison would be glial precursors.  

          We performed 2 independent experiments at E14.5 including dissection and 

dissociation of spinal cords, FACS isolation, aRNA amplification and hybridization 

to Affymetrix mouse A, B and C chips (see Experimental Procedures).  Sample 

FACS profiles for the Olig +/- and Olig -.- populations are illustrated in Figure 1.     

     The major caveat with the E14.5 screen is that in heterozygotes the majority of 

GFP+ oligodendrocyte precursors have migrated out of the ventricular zone while the 

majority of GFP+ ‘astrocyte precursors’ in homozygotes remain in the ventricular 

zone (Figure 1).  This fundamental difference in cellular position could result in 
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significant differences in gene expression between these two populations which are 

unrelated to the question of oligodendrocyte vs. astrocyte fate.   

 

A Second Microarray comparison of Olig +/- and Olig -/- progenitors:  E13.0 

Screen 

     To complement our analysis and address our concerns, we performed a second 

microarray comparison with cells isolated at E13.0.  At this stage we were able to 

obtain very comparable populations of ventricular zone cells for the comparison, by 

using PDGFRa staining as a negative selection marker to exclude the few migrating 

oligodendrocyte precursors in the Olig1,2 +/- heterozygote (see FACS plots, Figure 

1).  The possibility of neuronal contamination due to GFP perdurance, as discussed 

above, was the potential caveat at this earlier stage.  We performed independent 

replicates at this timepoint, as was done at E14.5. 

 

 MAS4 and Rosetta Resolver Analysis:   selection of candidate genes     

     The results of the E14.5 and E13.0 screens revealed several interesting candidates 

common to both screens.  For both screens we initially analyzed the data using 

Affymetrix Microarray Suite software (MAS4).  We set our threshold for differential 

expression at a minimum 3 fold change in expression between samples and a 

minimum average difference change between samples of 50 (with the target intensity 

normalized to 200).  In the E14.5 screen of the A, B, and C chips over 1300 

genes/ESTs were scored as differentially expressed, while in the E13.0 screen around 

400 genes/ESTs were differentially expressed.  Many cell adhesion molecules and 
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cell cycle factors were differentially expressed in the E14.5 screen, and this 

background (presumably due to fundamental differences in ventricular vs. migrating 

cells) was eliminated in the E13.0 screen.  Likewise, factors involved in neurogenesis 

such as Irx3, Chx10 and Islet1 were identified as differentially expressed in the E13.0 

screen but not the E14.5 screen.  Importantly, both screens found oligodendrocyte 

precursor markers (PDGFRa, sox10 and NG2) to be strongly downregulated in the 

Olig1,2 -/- mutant, while the astrocyte marker glutathione transferase Yb is strongly 

upregulated in the Olig 1,2 -/- mutant.  The consistency of these genechip results with 

our previous observations in the Olig1,2 -/- mutant is an important positive control 

and indicates that our screens can identify expected differences in gene expression 

between the cell types being compared. 

          In order to eliminate likely false positives and focus on genes whose 

differential expression is really due to the presence or absence of Olig expression, we 

decided to focus on genes differentially expressed in both screens.  For this we 

performed analysis with Rosetta Resolver, which enabled us to perform a 4 way cross 

comparison, using both replicates of both the E14.5 and E13.0 screens.  This analysis 

yielded around 350 genes across the A, B and C chips with at least a 3 fold change 

and a p value less than .01.  The log intensity plot for the A chip is shown in Figure 2.    

Genes with higher expression in the Olig -/- population are shown in blue, while 

genes with higher expression in the Olig +/- population are shown in green.  The lines 

represent the boundary for a 3 fold change.  Thus all genes outside these lines have a 

greater than 3 fold intensity difference between the 2 samples.  One of the genes 

increased in the Olig -/- mutant population is Pax6 which is highlighted in red.  A 
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total of 41 transcription factors were differentially expressed across the A, B and C 

chips in this analysis and these are shown in Table 1.  

 

Candidate gene validation 

     We next began using in situ hybridization to examine the expression of candidate 

genes through different stages of gliogenesis.  Priority for follow up analysis by in 

situ was given to transcription factors and genes with known functions in the nervous 

system with strong fold changes and average difference changes.  35 candidate genes 

were tested by in situ hybridization of Olig1,2 +/- heterozygous and Olig1,2 -/- 

homozygous embryos during early gliogenesis (E12.5), mid gliogenesis (E14.5) and 

late gliogenesis (E18.5).  Sample in situ panels are shown for 2 candidate 

transcription factors:  HFH4 (Figure 3) and Shox2 (Figure 4).  From these analyses 

we selected 5 genes whose expression patterns suggest they may be regulated by Olig 

and are expressed in glial cells or their precursors:  HFH4, Shox2, Pax6, Reelin and 

Slit1.  We performed further analysis and experiments with these genes.  Experiments 

with Pax6, Reelin and Slit1 are discussed in Chapter 3, while experiments involving 

HFH4 and Shox2 are discussed in the Appendix.  All of these genes were upregulated 

in the Olig1,2 -/- mutant, which is interesting given Olig2 appears to act as a 

transcriptional repressor.   

 

Discussion 

          Among the interesting candidate genes we identified in this screen were the 

secreted signaling molecules Reelin and Slit1 and the homeodomain transcription 
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factor Pax6, all of which were upregulated in the Olig -/- “astrocyte progenitor” 

population.  Our expression data confirmed that these genes are expressed in specific 

subsets of astrocytes in the ventral white matter and are not expressed in 

oligodendrocytes.  Studies with these genes led to our discovery of how astrocyte 

positional identity is regulated in the spinal cord (Chapter 3).   

          Functional experiments were also performed 2 other candidate genes 

upregulated in the Olig -/- population, both of which were expressed in a restricted 

subset of ventricular zone progenitors during early gliogenesis.  First, the 

homeodomain transcription factor Shox2, which upon closer examination was 

expressed in the pMN domain at the onset of oligodendrocyte formation, as well as in 

V2 interneurons and whose gain of function phenotypes include repression of MN 

fate, promotion of V2 interneuron fate, and promoting precocious oligodendrocytes 

together with Olig2.  Second, was the forkhead transcription factor HFH4, whose 

gain of function and knockout analysis had no phenotypes with respect to general 

oligodendrocyte and astrocyte specification markers.  These experiments are 

discussed in further detail in the Appendix.   

          Interestingly, we did not succeed in our original goal to identify a pro-

astrocytic regulatory gene with this screen.  One possible reason for this lack of 

success is the finding by our lab that the pro-astrocytic NFI family of transcription 

factors are also pan-glial regulators during early specification (Deneen et al., 2006) 

and thus are not transcriptionally regulated by Olig2 or differentially expressed in our 

screen.  Rather Olig2 and NFI genes appear to antagonize each others function via 

biochemical interaction (Deneen et al., 2006).  The bHLH transcription factor SCL 
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was recently shown to play a role in both V2b interneuron and astrocyte generation 

from the p2 domain via cross-repressive interactions with Olig2 (Muroyama et al., 

2005).  Unfortunately, SCL was identified as upregulated in the Olig -/- mutant 

population in our screen (see Table I), but we chose not to pursue it due to published 

data at the time that it was only expressed in V2  interneurons and not in any other 

cells at stages of early gliogenesis (Emma Smith, 2002).  Despite our inability to find 

a pro-astrocytic regulator, we were able to take advantage of the identification of 

Pax6, Reelin and Slit1 expression in subsets of astrocytes to uncover the first 

evidence of astrocyte subtype specification during development. 

 

Experimental Procedures 

Spinal cord dissociation and FACS 

          We devised a method to rapidly genotype embryos using Xgal staining of the 

head.  This was done to speed up the process of dissection and sorting with minimal 

wait time, thus minimizing cell death.  Olig1,2 -/- homozygotes show very bright 

Xgal staining (due to the Olig1-lacZ knockin allele), Olig1,2 +/- heterozygotes show 

weak staining, and wild type embryos have no staining.  PCR was then done 

retrospectively to confirm the genotype.  We dissected out the spinal cords and used 

enzymatic dissociation with Papain and DNAse (Worthington) to generate a single 

cell suspension for FACS.  The E13.0 sample was stained with anti-PDGFRa 

antibody (eBioscience, 1:50) followed by PE conjugated anti-Rat secondary to 

exclude migrating oligodendrocyte precursors   
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RNA isolation, amplification and preparation 

          Immediately following FACS, RNA was isolated from the cells using the 

Stratagene microRNA isolation kit.  The RNA was then subjected to two rounds of 

amplification using the MessageAmp aRNA kit (Ambion).  The aRNA was biotin 

labeled during the second round and fragmented to an average size of 80-100 bp, as 

recommended by Affymetrix.  Using these procedures we could generate around 100 

ug of aRNA probe from a starting material of 3000-5000 FACS isolated cells.  

 

In situ hybridization 

          Non-radioactive in situ hybridization using DIG-labelled probes was performed 

on frozen sections of mouse spinal cord, as previously described (Zhou et al., 2000). 
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Abstract 

     While astrocytes play many diverse and important roles in the vertebrate 

CNS, little is known about the molecular diversity of these cells or the factors 

specifying such diversity.  We found that the secreted signaling molecules Reelin 

and Slit1 mark 3 positionally defined subsets of astrocytes in the ventral white 

matter of the spinal cord:  Reelin+/Slit1- astrocytes in the lateral white matter (L 

type), Reelin+/Slit1+ astrocytes in the ventral-lateral white matter (VL type), 

and Slit1+/Reelin- astrocytes in the ventral-medial white matter (VM type).  The 

homeodomain transcription factor Pax6 is specifically expressed in Reelin+ 

astrocytes (L and VL type).  We found that Pax6 plays a necessary and 

instructive role in specifying these populations via its actions of promoting 

Reelin and repressing Slit1 expression.  We additionally show that the 

homeodomain transcription factor Nkx6.1 specifically marks Slit1+ astrocytes 

(VM and VL type), and provide evidence that VL type astrocytes 

(Pax6+/Nkx6.1+) are derived from the p2 domain of the ventricular zone 

(Pax6+/Nkx6.1+).   These data are consistent with a model whereby these 

astrocyte populations are prespecified in the ventricular zone.  Importantly, we 

provide the first evidence that molecularly distinct subtypes of astrocytes are 

produced during development, each with a defined positional identity in the 

white matter.  While positional identity is an important property of many 

neuronal subtypes, it has not been previously described in glial cells and may be 

important for region specific functions of these astrocyte subpopulations.  
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Introduction 

     Astrocytes are the most abundant cell type in the central nervous system (CNS) 

and perform a wide variety of diverse roles.  Many of these functions are involved 

with passively providing a supportive environment for neurons, including balacing 

pH and ion concentrations, recycling neurotransmitters, storing energy, controlling 

blood vessels and forming the blood-brain barrier (Gee and Keller, 2005).  However, 

there is also evidence suggesting that, like neurons, astrocytes may play an active role 

in information processing in the CNS (Fields and Stevens-Graham, 2002).  

Hippocampal astrocytes respond to glutamatergic firing with actively propagating 

Ca2+ waves in organotypic slice cultures (Dani et al., 1992).  Perisynaptic astrocytes 

can also modulate the activity of adjacent neurons by releasing glutamate (Parpura et 

al., 1994; Parpura and Haydon, 2000).  Additionally, astrocytes provide trophic 

signals for adult neurogenesis (Song et al., 2002), and some astrocytes have been 

implicated as a source of CNS stem cells (Doetsch, 2003; Laywell et al., 2000). 

     Several morphologically distinct subclasses of astrocytes have been described both 

in vitro (Miller and Szigeti, 1991) and in vivo (Mary S. Bailey, 1993).  Additionally, 

the morphologically distinct type 1 (protoplasmic) and type 2 (fibrous) astrocytes 

observed in rat optic nerve and cortical cultures have been shown to have different 

antigenic profiles.  Type 1 astrocytes express lower levels of GFAP and are negative 

for A2B5 and tetanus toxin, while type 2 astrocytes express high levels of GFAP and 

bind both A2B5 and tetanus toxin (Miller and Raff, 1984).   There is also evidence 

that type 1 and type 2 astrocytes may have different distribution between the white 
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and grey matter:  cultures from developing gray matter generate only type 1 

astrocytes, while white matter derived cultures generate both type 1 and type 2 

astrocytes (Miller and Raff, 1984).  However because these types are characterized 

after in vitro culture, it is not clear whether they are truly differentially distributed in 

vivo.  Hippocampal astrocytes in the CA1 and CA3 layers have different 

electrophysiological properties, suggesting they may represent functionally distinct 

subtypes.  (D'Ambrosio et al., 1998).  Astrocytes within the CA1 layer display 

heterogeneous expression of glutamate transporter and AMPA receptor (Zhou and 

Kimelberg, 2001).  More recently, gene expression profiling experiments were 

conducted on various in vitro astrocyte cultures and astrocyte-rich CNS tissues in an 

effort to uncover information about the molecular diversity of astrocytes (Bachoo et 

al., 2004).    While there is evidence supporting the notion of morphological, 

molecular and regional heterogeneity among astrocytes, it is not clear whether this is 

indicative of distinct pre-specified astrocyte subtypes or merely passively acquired 

phenotypic differences due to regional cues acting on a single uniformly specified 

astrocyte population.   

     By contrast, the mechanisms generating neuronal diversity and for specifying 

oligodendrocyte and astrocyte fate have been better characterized.  In the ventral 

spinal cord, molecularly distinct subtypes of neurons are generated from spatially 

segregated domains of progenitor cells along the dorsoventral axis.  These spatially 

discrete progenitor domains are generated by a combinatorial code of homeodomain 

and bHLH transcription factors which interpret the graded morphogen signal of Shh 

and refine this signal by cross-repressive interactions (Briscoe et al., 2000; Jessell, 



 42

2000).  The neuronal subtypes generated from this spatial patterning are distinguished 

both by their expression of specific molecular markers and by their positional identity 

along the dorsoventral axis.  There is a hierarchical determination of neuronal subtype 

identity in the motor neuron lineage, where LIM homeodomain proteins act to further 

sub-specify motor neurons into distinct columns, divisions and pools, each of which 

is distinguished by a distinct cell body positioning within the motor column and by 

projections to distinct targets (Jessell, 2000).   

     Oligodendrocytes and astrocytes are generated from ventricular zone progenitors 

following a cell intrinsic temporal switch from neurogenesis to gliogenesis.  In the 

spinal cord, this switch involves the upregulation of the pro-glial NFI family of 

transcription factors as well as the inhibition of neurogenesis by Notch signalling 

(Deneen et al., 2006; Louvi and Artavanis-Tsakonas, 2006).  Oligodendrocytes are 

generated from the pMN domain of the ventral ventricular zone, which is marked by 

the expression of the bHLH transcription factor Olig2 (Lu et al., 2000; Zhou et al., 

2000).  This domain generates motor neurons during neurogenesis and Olig2 is 

necessary and sufficient for both motor neuron and oligodendrocyte fate (Lu et al., 

2002; Novitch et al., 2001; Zhou and Anderson, 2002; Zhou et al., 2001).  In the 

absence of Olig2, the progenitors acquire the identity of the immediately dorsal p2 

domain and they generate V2 interneurons and then astrocytes.  Thus, Olig2 controls 

the specification of a neuronal and glial subtype from the same progenitor domain 

during different phases of development.   

     The fact that glial progenitors convert to astrocyte formation in the Olig mutant 

supports the notion that astrocytes are generated as the “default” glial fate.  Consistent 
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with this it has been shown that the pro-glial NF1 genes are sufficient to promote 

astrocyte differentiation in the absence of Olig2 antagonism (Deneen et al., 2006).  

Also, astrocytes appear to be broadly generated from VZ progenitors outside of pMN, 

as assayed by the migration of NFIA+, GLAST+, and FGFR3+ cells (Deneen et al., 

2006; Pringle et al., 2003; Shibata et al., 1997).  Further evidence that repression of 

Olig2 is essential in astrocyte specification comes from the discovery that the bHLH 

transcription factor SCL is a p2 domain specific factor which promotes astrocyte fate 

and represses oligodendrocyte generation within this domain by repressing Olig2 

expression (Muroyama et al., 2005).   

          We sought to investigate the issue of astrocyte diversity and its developmental 

specification in the spinal cord.  As a first step in addressing this question it was 

necessary to identify molecular markers which label specific populations of 

astrocytes.  Here we describe 3 molecularly and positionally distinct subpopulations 

of astrocytes in the spinal cord using the secreted signaling molecules Reelin and 

Slit1 as molecular markers:  Reelin+/Slit1- in the lateral white matter, Reelin+/Slit1+ 

in the ventral-lateral white matter, and Slit1+/Reelin- in the ventral-medial white 

matter.   

      The homeodomain transcription factor Pax6 is specifically expressed in 

Reelin+ astrocytes.  Pax6 has been previously shown to play an essential role as fate 

determinant in the development of many organs including cortex, spinal cord, eye and 

pancreas (Ashery-Padan et al., 2000; Gotz et al., 1998; Marquardt et al., 2001; Muzio 

et al., 2002; St-Onge et al., 1997)   In the spinal cord, Pax6 is part of the 

combinatorial code specifying ventral neuronal subtypes, and it is required for V1 and 
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V2 interneuron generation (Ericson et al., 1997).    We found that Pax6 is necessary 

and sufficient to promote Reelin and repress Slit1 in astrocytes of the ventral white 

matter.  These results suggest that, like Olig2, Pax6 plays a dual role and in regulating 

both neuronal and glial subtype specification and provides additional evidence that 

the same factors can impact the specification of cell types from a particular pool of 

VZ progenitors in both the neurogenic and gliogenic phases. 

 

Results 

 

Reelin and Slit1 mark subpopulations of astrocytes in ventral white matter 

     During gliogenesis, the bHLH transcription factor Olig2 controls the 

oligodendrocyte vs. astrocyte fate decision, with progenitors in the Olig2 mutant 

mouse generating astrocytes instead of oligodendrocytes (Zhou and Anderson, 2002).  

We used Affymetrix cDNA microarrays to compare the gene expression profiles of 

FACS isolated Olig2-GFP expressing glial progenitors from the Olig1,2 -/- and 

Olig1,2 +/- spinal cord.  Reelin and Slit1 were among the candidate genes with higher 

expression in the Olig1,2 -/- ‘converted astrocyte progenitor’ population.  As our 

initial analysis, we performed in situ hybridization on spinal cord sections and found 

Reelin and Slit1 were expressed in the white matter at E18.5, indicating these genes 

were likely expressed in glial cells (Figure 1 A, F).   We then examined the 

expression of these genes more closely in double labeling studies using Reelin 

antibody and a Slit1-GFP reporter from mice previously described (Plump et al., 

2002).  As expected, both Reelin and Slit1 were found to be expressed in GFAP+ and 
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NFIA+ astrocytes (Figure 1) and were not expressed in Olig2+ oligodendrocytes 

(data not shown).  Both Reelin and Slit1 were also expressed in many neurons in the 

grey matter, but in the white matter their expression was astrocyte specific.  

Morphologically, both Reelin+ and Slit1+ astrocytes are characterized by their cell 

bodies localized at the subpial surface (as identified by NF1A+ nuclei) with radially 

oriented GFAP+ processes projecting inward.  This morphology has been previously 

characterized as the most common for astrocytes in the white matter (Liuzzi and 

Miller, 1987).   

     Interestingly, we found that Reelin and Slit1 did not label all astrocytes, but each 

was spatially restricted to a subset of astrocytes in the ventral white matter.  Reelin 

was expressed in astrocytes of the lateral and ventral-lateral white matter, but not in 

astrocytes close to the ventral midline (Figure 1).  Slit1 on the other hand is expressed 

in astrocytes in the ventral-medial and ventral-lateral white matter but not in 

astrocytes of the lateral white matter.  Double labelling of Reelin and Slit1 shows that 

their expresion overlaps in the ventral-lateral white matter (Figure 1 K).  

Quantification of this overlap shows that around 50% of Reelin+ astrocytes are also 

Slit1+, and around 50% of Slit1+ astrocytes are also Reelin+.  Thus astrocytes in the 

ventral white matter can be divided into 3 positionally and molecularly defined 

subpopulations which are approximately equal in abundance:  Slit1+ only astrocytes 

in the ventral-medial, Slit1+/Reelin + co-expressing astrocytes in the ventral-lateral, 

and Reelin + only astrocytes in the lateral white matter (see Figure 1 L).  For 

simplicity, we will designate these molecularly and positionally distinct populations 
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as L type (lateral white matter – Reelin+), VL type (ventral-lateral white matter  – 

Reelin+, Slit1+), and VM type (ventral-medial white matter – Slit1+).   

 

Reelin expressing astrocytes co-express Pax6 

 Pax6 was also upregulated in the Olig1,2 -/- population in our microarray screen.  

We found that Pax6 marked a subpopulation of astrocytes in the ventral-lateral white 

matter very similar in distribution to that of Reelin.  The Pax6+ fraction represents 

approximately 40% of GFAP+ and NF1A+ white matter astrocytes (Figure 2 A-D, I).  

Double labeling confirmed that Pax6 and Reelin are colocalized and mark L and VL 

type astrocytes (Figure 2 E,F,I).  We confirmed that, like Reelin, Pax6 was co-

expressed with Slit1 in the VL type astrocyte population (Figure 2 G,H, I).  Since 

Pax6 has been shown to be a cell fate determinant in many systems, including during 

neurogenesis in the ventral spinal cord, we next sought to examine whether Pax6 

played any role in regulating the identity of these astrocyte subpopulations.  

 

Pax6 is required for Reelin expression in astrocytes 

     Pax6 knockout mice have been previously generated with LacZ knocked into the 

Pax6 locus (St-Onge et al., 1997).  We examined E18.5 spinal cord sections from 

Pax6 -/- and +/+ mice and found that there were a normal number of NF1A and 

GFAP+ astrocytes in the Pax6 -/- spinal cord (Figure 3).  Thus Pax6 does not appear 

to be required for generic migration and differentiation of astrocytes.   

     We examined Reelin expression in the Pax6 mutant.  While astrocyte development 

per se was not affected, we found a significant loss of Reelin expression in astrocytes 
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in the Pax6 mutant. This loss of astrocytic Reelin was evident both by in situ 

hybridization (Figure 3 A,B,E,F) and immunostaining (Figure 3 C,D,G,H).  We found 

that the total number of Reelin+/GFAP+ and Reelin+/NFIA+ cells was significantly 

reduced, as were the percentages of GFAP+ and NFIA+ cells which are Reelin+ 

(Figure 3 I, J).  One possible explanation for the loss of Reelin+ astrocytes is that the 

loss of Pax6 leads to the selective cell death of this subpopulation or to a failure to 

migrate or differentiate normally, coupled with a non cell-autonomous compensation 

for the number of GFAP+ and NFIA+ astrocytes.  This is not the case because there 

were a normal number of Bgal+ astrocytes in the white matter of the Pax6 -/- mutant.  

The percentage of Bgal+ cells expressing Reelin in the Pax6 -/- mutant was severely 

reduced compared to the percentage of Pax6+ cells which normally express Reelin in 

the wild-type (Figure 3J).  Thus Pax6 is required for the expression of Reelin in L and 

VL type astrocytes, but not for their formation and localization. 

 

Astrocyte subtype conversion in the absence of Pax6 

     Since L type astrocytes express Pax6 and Reelin but not Slit1, we sought to 

examine whether Pax6 might also play a role in preventing Slit1 expression in these 

cells.   To this end, we crossed the Pax6-lacZ mice with Slit1-GFP mice and analyzed 

the expression of Slit1-GFP in Pax6 mutants.  We found that in addition to the loss of 

Reelin, GFAP+ and NFIA+ astrocytes in the lateral white matter of the Pax6 mutant 

upregulate Slit1 expression.  While around 50% of Pax6+ cells normally co-express 

Slit1 (VL type), nearly all of the Bgal+ cells in the Pax6 -/- co-express Slit1, 

indicating upregulation of Slit1 in L type astrocytes (Figure 4).   Therefore, Pax6 is 
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required for the normal repression of Slit1 in L type astrocytes.  The expansion of 

Slit1 expression together with the loss of Reelin expression in astrocytes of the Pax6 -

/- mutant results in the molecular conversion of the L and VL type astrocytes (marked 

by Bgal expression) to the VM identity (Figure 4 H).  Taken together these data 

demonstrate that Pax6 is required for the generation of L and VL type astrocytes in 

the white matter of the ventral spinal cord via its regulation of Reelin and Slit1 

expression.   

 

Pax6 is sufficient to promote Reelin and repress Slit1 expression in astrocytes 

          The loss of function data suggest that Pax6 has pro-Reelin and anti-Slit1 

functions.  In order to determine whether Pax6 plays an instructive role in regulating 

the expression of these genes and therefore astrocyte identity, we performed in vivo 

gain of function experiments in the embryonic chick neural tube.   We examined 

Reelin and Slit1 expression in the embryonic chick spinal cord to confirm that these 

genes labeled subsets of white matter astrocytes and found Reelin+/NFIA+ astrocytes 

in the lateral white matter and Slit1+/NFIA+ astrocytes in the ventral white matter of 

the E12 chick spinal cord (data not shown).  We sought to examine the effect of Pax6 

misexpression on these populations.  The spinal cord of E2 chick embryos was 

electroporated with replication competent RCAS B retroviruses carrying either the 

chick Pax6 or GFP genes.  Electroporated embryos were harvested and analyzed at 

E12, following 10 days of development in ovo.  We found that Pax6 misexpression 

significantly increased the percentage of Reelin+ /NFIA+ cells in the white matter 

compared with control GFP misexpressing embryos (56% vs. 20%) (Figure 5).  At 
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least some of this increase can be attributed to positionally ectopic Reelin expression 

in ventral astrocytes (Figure 5 C).  The total number of NFIA+ astrocytes was not 

affected by Pax6 electroporation (data not shown).  Thus Pax6 is sufficient to 

promote Reelin expression in astrocytes while not affecting general astrocyte fate.   

          Interestingly, we only detected a mild increase in astrocytic Reelin when 

comparing the electroporated (56% Reelin+/NFIA+) vs. control sides (42% 

Reelin+/NFIA+) of Pax6 electroporated embryos despite a visibly much higher level 

of Pax6 expression on the electroporated side.  One possible explanation for this 

finding is that low levels of Pax6 misexpression on the control side, due to secondary 

infection by the replication competent virus, are sufficient to promote an increase in 

Reelin expression.   

          We also examined the effects of Pax6 misexpression on Slit1.  We found a 

significant reduction in the percentage of Slit1+/NFIA+ astrocytes with Pax6 

misexpression compared with the GFP control (Figure 5).  Thus Pax6 is also 

sufficient to repress Slit1 expression in astrocytes.  Interestingly, the reduction of 

Slit1 expression was only seen on the electroporated side of Pax6 electroporated 

embryos.  This suggests that the low levels of Pax6 misexpression on the control side, 

due to viral spread, are not sufficient to repress Slit1.  Taken together these results 

show that Pax6 is sufficient to promote Reelin expression and repress Slit1 expression 

in astrocytes.  Through these functions Pax6 plays an instructive role in regulating 

astrocyte identity.      

 

Slit1 expressing astrocytes co-express Nkx6.1 
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          Given our results with Pax6, we hypothesized that another regulatory gene may 

specifically mark Slit1+ astrocytes.  Such a gene would also partially overlap with 

Pax6 and Reelin in type VL astrocytes, and represent the functional antagonist of 

Pax6 in regulating the identity of these populations.  Nkx6.1 is a homeodomain 

transcription factor expressed in the ventral ventricular zone which normally partially 

overlaps with Pax6 in the pMN and p2 domains.  The ventral p3 domain only 

expresses Nkx6.1 but not Pax6, while the more dorsal p0 and p1 domains express 

Pax6 but not Nkx6.1 (Jessell, 2000).  This partially overlapping pattern of Pax6 and 

Nkx6.1 expression in the ventricular zone bears an intriguing resemblance to the 

partially overlapping pattern of Reelin and Slit1 expressing astrocytes in the white 

matter.  We examined Nkx6.1 expression in E18.5 spinal cord and found that Nkx6.1 

specifically marks Slit1 expressing astrocytes (Figure 6 A-C).  Double labeling with 

Pax6 and Nkx6.1 revealed that these genes partially overlap in astrocytes of the 

ventral-lateral white matter, recapitulating the pattern of Reelin and Slit1 expression 

(Figure 6 D-F).  Thus Pax6 partially overlaps with Nkx6.1 both in the ventricular 

zone and in ventral white matter astrocytes, such that these factors mark 3 populations 

of glial progenitors in the ventricular zone and 3 positionally defined types of 

astrocytes along the subpial surface of the ventral white matter. 

 

Pax6+/Nkx6.1+ astrocytes are derived from the p2 domain 

          The correlation between the pattern of Nkx6.1 and Pax6 expression in 

ventricular zone and the white matter suggests a simple combinatorial model for the 

generation of these astrocyte subpopulations (Figure 6 K).  Nkx6.1+ astrocytes of the 
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ventral-medial white matter (VM type) could be derived from Nkx6.1+ progenitors 

from the p3 domain, Nkx6.1+, Pax6+ astrocytes of the ventral-lateral white matter 

(VL type)  could be derived from the Nkx6.1+, Pax6+ progenitors of the p2 domain, 

and Pax6+ astrocytes of the lateral white matter (L type) could be derived from the 

Pax6+ progenitors of the p0 and p1 domains.  Although Pax6 and Nkx6.1 also 

overlap in the pMN domain in the ventricular zone, the pMN domain is unlikely to 

contribute significantly to these astrocyte subtypes since pMN progenitors give rise 

almost exclusively to oligodendrocytes, under the direction of Olig2 (Zhou and 

Anderson, 2002).         

     In order to test our hypothesis that these astrocyte subpopulations may be 

prespecified from particular ventricular zone domains, we took advantage of the fact 

that Olig2-GFP expressing cells in the Olig1,2 -/- mutant are respecified to p2 domain 

identity and generate p2 derived astrocytes (Zhou and Anderson, 2002).  We sought 

to test our prediction that the Nkx6.1+, Pax6+  VL type astrocyte population was 

derived from the p2 domain, using Olig2-GFP in the Olig1,2 -/- mutant as a p2 

lineage marker.  We performed triple-labeling with Nkx6.1, Pax6 and Olig2-GFP on 

E18.5 Olig1,2 -/- mutant spinal cord.  In this assay we found that the p2 derived 

Olig2-GFP+ astrocytes are Nkx6.1+ and Pax6+ (Figure 6 G-J).  Not all of the 

Nkx6.1+, Pax6+ cells are Olig2-GFP+ since Olig2-GFP only marks the super-

numerary copy of p2 replacing pMN.   

      These data suggest that the p2 domain gives rise to the Pax6+/Nkx6.1+ VL 

type astrocyte population of the ventral-lateral white matter.  The patterning of 

astrocytic progenitors in the ventricular zone could specify the molecular and 
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positional identity of astrocytes in the ventral white matter.  Further lineage tracing 

experiments are necessary to formally determine whether the Pax6+, Reelin+ 

astrocytes of the lateral white matter are derived from p0-p1 progenitors and whether 

the Nkx6.1+, Slit1+ astrocytes of the ventral medial white matter are derived from the 

p3 domain.   

 

Discussion 

          While astroycte diversity has been described in various contexts of the adult 

CNS, the generation of this diversity has not been examined in vivo during 

development.  We identified 3 molecularly and positionally defined astrocyte 

subpopulations in the ventral white matter of the E18.5 mouse spinal cord.  We found 

that the homeodomain transcription factor Pax6 is an essential factor and plays an 

instructive role in specifying the positional identity of these populations.  We 

additionally provide evidence that at least one of these populations is prespecified in 

the ventricular zone, and propose a general model of how these subtypes are 

generated based on the correlation between the partially overlapping patterns of 

expression of Pax6 and Nkx6.1 in both the ventricular zone and the white matter.  

 

Molecular and Positional Identity of Astrocytes in the ventral white matter of the 

spinal cord 

          It has been shown that progenitors of the ventral ventricular zone give rise to at 

least 5 general classes of neurons, each arising from distinct domain of VZ 

progenitors (Briscoe et al., 2000; Jessell, 2000).  During gliogenesis, cells from the 
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pMN domain generate oligodendrocytes (Zhou and Anderson, 2002; Zhou et al., 

2000), while progenitors from other ventral domains make astrocytes (Deneen et al., 

2006; Pringle et al., 2003; Shibata et al., 1997).  Prior to this study, it was not clear 

whether a single type of astrocyte was generated from all of the domains outside of 

pMN or whether molecularly distinct subtypes of  astrocytes are produced.  

Microarray analysis of Olig mutant mice led us to identify Reelin and Slit1 as new 

markers which are specific for astrocytes and not oligodendrocytes.  Importantly, 

Reelin and Slit1 were expressed in subsets of astrocytes.  We found that astrocytes of 

the ventral white matter of the spinal cord are divided into 3 positionally and 

molecularly defined subpopulations which are approximately equal in abundance:  

VM type (Slit1+, Nkx6.1+, ventral-medial white matter), VL type (Slit1+,Reelin +, 

Pax6+, Nkx6.1+, ventral-lateral white matter), and L type (Reelin +, Pax6+, lateral 

white matter).   

           Importantly these astrocyte populations are restricted to defined positional 

identities along the subpial surface of the ventral white matter.  This is particularly 

interesting since although neuronal subtypes in the spinal cord are specified to 

discrete positional identities, positional identity has not previously been identified in 

the generation of spinal cord glia.  While oligodendrocytes are primarily generated 

from a defined subset of progenitors in the pMN domain, they become widely 

distributed throughout the gray and white matter of the spinal cord (Zhou et al., 

2000).   Previous studies of astrocyte development in the spinal cord with markers 

such as GLAST, FGFR3 and NFI genes similarly revealed a broad migration and 

distribution of astrocytes (Deneen et al., 2006; Pringle et al., 2003; Shibata et al., 
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1997).  Likewise, markers of differentiated astrocytes such as GFAP and S100B are 

expressed broadly throughout the white matter.  Using the molecular markers Reelin 

and Slit1, along with Pax6 and Nkx6.1, we were able to identify the L, VL and VM 

type astrocyte populations distributed along the arc of ventral white matter.   The 

positional identity of these astrocytes may be important for region specific functions 

and represents a new level of both molecular diversity and organizational complexity 

of spinal cord glia. 

 

Pax6 is necessary for the positional identity of spinal cord white matter astrocytes 

          Analysis of Pax6 -/- mutant embryo spinal cord revealed that Pax6 plays 2 roles 

which allow for the specification of astrocyte positional identity.  First, Pax6 is 

required for Reelin expression in both VL and L type astrocytes.  Second, Pax6 is 

required for the repression of Slit1 expression in L type astrocytes.  These functions 

may or may not be mechanistically related.  Since VL type astrocytes are 

Reelin+/Slit1+, the functions of Pax6 in repression of Slit1 and the promotion of 

Reelin need not be coupled in a fate switching mechanism.  On the contrary, the fact 

that Pax6 fails to repress Slit1 in VL type astrocytes, yet still serves to promote Reelin 

in this population suggests that these 2 functions can be uncoupled.   

      There are a few possible explanations that could explain why Pax6 apparently 

represses Slit1 expression in L type astrocytes but not in VL type astrocytes.  One 

possibility is that there is a gene or factor present in the VL type astrocytes but not in 

the L type population which interferes with the ability of Pax6 to repress Slit1.  

Another possibility is the converse, that is that there is a cofactor required for Pax6 to 
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be able to repress Slit1 which is only present in L type but not VL type astrocytes.    

Finally, a dose dependant mechanism is possible where repression of Slit1 is highly 

sensitive to Pax6 concentration and where hypothetically, higher levels of Pax6 

expression in L type astrocytes compared with VL type astrocytes could lead to Slit1 

repression in only the L type population.  While there is no evidence of such a 

difference in Pax6 levels of expression by immunostaining, such a model has 

precedent since it has been shown that Pax6 concentration can be critical in other 

developmental systems with a high degree of haploinsufficiency being observed in 

Pax6 +/- mice with respect to eye development (Davis-Silberman et al., 2005).  

However this possibility is unlikely as we did not detect any happloinsufficiency in 

Pax6 +/- spinal cord with regard to either loss of Reelin or upregulation of Slit1 (data 

not shown).    

  

Pax6 is sufficient to promote Reelin and repress Slit1 expression in white matter 

astrocytes 

          In order to gain a better understanding of the role of Pax6 in Reelin promotion 

and Slit1 repression, we misexpressed Pax6 in embryonic chick neural tube and 

assayed for the effects on Reelin and Slit1 expression on NFIA+ astrocytes.  We 

found that Pax6 was sufficient to promote an increase in the percentage of NFIA+ 

cells that are Reelin+, as well as to reduce the percentage of NFIA+ cells that are 

Slit1+ within the white matter.  Importantly these results demonstrate that Pax6 does 

indeed play instructive roles with respect to both its function to promote Reelin and 

repress Slit1.  The fact that Pax6 alone is sufficient to repress Slit1 expression in this 
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experiment argues against a model where Pax6 requires a cofactor to repress Slit1, 

which is normally present in L type but not VL type astrocytes.       

          The most likely explanation for why Pax6 normally represses Slit1 in lateral 

but not ventral-lateral white matter astrocytes is the presence of a factor in VL but not 

L type astrocytes which interferes with the ability of Pax6 to repress Slit1.  This 

interference could be overridden in a gain of function experiment due to the high 

levels of Pax6 misexpression.  Nkx6.1 is a candidate factor for this role, as it is 

expressed in VL but not L type astrocytes.  Additionally, while Nkx6.1 and Pax6 do 

not transcriptionally repress each other during patterning, there is precedent for their 

functional antagonism in the determination of α and β cell fates in the pancreas (Hill 

et al., 1999; Schisler et al., 2005).  A competition experiment in which Nkx6.1 is 

misexpressed together with Pax6 would reveal if indeed Nkx6.1 can block the ability 

of Pax6 to repress Slit1 expression. 

   

Prespecification of the ventral-lateral astrocyte subpopulation 

          An important issue regarding the generation of these astrocyte subtypes is 

whether each of the positionally defined populations is prespecified from a particular 

domain of progenitors in the ventricular zone.  To address this issue we used the 

Olig2-GFP in Olig1,2 -/- mice as a lineage marker of p2 derived astrocytes and used 

triple-labeling together with Pax6 and Nkx6.1 to determine whether any of the 3 

astrocyte subpopulations are derived from p2.  We found that the Olig2-GFP + 

astrocytes of Olig1,2 -/- mice had the Pax6+ and Nkx6.1+ phenotype of VL type 

astrocytes, suggesting that this population is derived from the p2 domain.  Not all of 
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the Pax6+/Nkx6.1+ astrocytes in this experiment were Olig2-GFP+, however, since 

the Olig2-GFP only marks the pMN  p2 converted domain and not the endogenous 

p2 domain. 

  

Spatial patterning during gliogenesis 

            Interestingly, the expression of Pax6 and Nkx6.1 overlaps in the p2 and pMN 

domains of the ventricular zone.   While the pMN domain is specialized to form 

oligodendrocytes, the astrogenic progenitors of the ventral ventricular zone are 

characterized by the p0-p1 domains expressing Pax6 but not Nkx6.1, the p2 domain 

expressing both Pax6 and Nkx6.1, and the p3 domain expressing Nkx6.1 but not 

Pax6.  Given the evidence that the VL type astrocytes (Pax6+/Nkx6.1+) are derived 

from p2, a simple model can be proposed based on further correlating the expression 

of Pax6 and Nkx6.1 in the ventricular zone with their expression in white matter 

astrocytes.  In such a model, in addition to the Pax6+/Nkx6.1+ progenitors of the p2 

domain giving rise to the Pax6+/Nkx6.1+ astrocytes of the ventral-lateral white 

matter (for which we have short term lineage tracing evidence), the Pax6+/Nkx6.1- 

progenitors of the p0 and p1 domains would give rise to the Pax6+/Nkx6.1- L type 

astrocytes of the lateral white matter and the Nkx6.1 only expressing progenitors of 

the p3 domain would give rise to the Nkx6.1 only expressing astrocytes of the 

ventral-medial white matter.  Futher lineage tracing and functional experiments are 

necessary to prove the specific origins of the ventral-medial and lateral populations.  

Nevertheless our findings illustrate that astrocytes of the ventral spinal cord are 

specified into at least 3 molecularly and positionally distinct subtypes and that Pax6 is 
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a critical regulator of this process.  The full extent and functional significance of this 

new aspect of glial diversity remains to be explored, yet given the genetic investment 

in specifying these distinct astrocyte subtypes it is likely that they have some region 

specific functions.   

 

Experimental Procedures 

Mouse mutants 

          Olig1,2 -/- mice (Zhou and Anderson, 2002), Pax6-LacZ mice (St-Onge, Sosa-

Pineda et al., 1997) and Slit1-GFP mice (Plump, Erskine et al. 2002) were genotyped 

by PCR using lacZ and GFP primers.  Pax6-LacZ mice were crossed into the Slit1-

GFP background to generate Pax6 -/-, Slit1-GFP +/-  and Pax6 +/-, Slit1-GFP +/- 

embryos for analysis. 

 

In situ hybridization / Immunohistochemistry 

          In situ hybridization was performed on frozen sections as previously described 

(Zhou, Wang et al 2000).  Antibodies were used against Pax6 (rabbit polyclonal, 

Covance and IgG1 monoclonal, DHSB), Reelin (G10 IgG1 monoclonal, Novus and 

142 IgG1 monoclonal, Novus), GFP (chick polyclonal, Abcam), GFAP (rabbit 

polyclonal, DAKO and IgG1 monoclonal, Chemicon), NFIA (rabbit polyclonal, 

Active Motif), S100B (IgG1 monoclonal, Sigma), Olig2 (rabbit polyclonal, a kind 

gift of Tom Jessell), Nkx6.1 (IgG1 monoclonal, DHSB) 

Chick embryo electroporation 
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     Chick embryos were electroporated at E2 with either RCAS B Pax6 or RCAS B 

GFP replication competent avian retroviruses, using established methods (Zhou, Choi 

et al. 2001).  Embryos were incubated in ovo in a humidified 37 C incubator until 

E12. 
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Figure Legends 

 

Figure 1.  Reelin and Slit1 mark subsets of astrocytes 

 (A, F)  In situ hybridization with probes for mouse Reelin and Slit1 showing their 

expression in ventral white matter.  (B-E)  Double labeling with Reelin and astrocyte 

markers GFAP and NFIA by immunohistochemistry.  Arrowheads show astrocytes 

expressing Reelin in the lateral white matter.  Arrows point out astrocytes in the 

ventral white matter which do not express Reelin. (G-J)  Double labeling with Slit1 

and either GFAP or NFIA.  Arrowheads indicate Slit1+ astrocytes in the ventral white 

matter, while arrows denote Slit1 – astrocytes in the lateral white matter.  (K)  Double 

labeling with Reelin and Slit1 in the ventral white matter reveals 3 populations:  L – 

lateral white matter, Reelin+ only, VL – ventral-lateral white matter Reelin+/Slit1+, 

and VM – ventral-medial.  (L)  Quantification of the percentage of these 3 

populations out of the total white matter astrocytes demonstrates they are nearly equal  

in relative abundance (n = 3 embryos). 

 

Figure 2.  Pax6 is coexpressed with Reelin in astrocytes 

 (A-D) Pax6 double-labeling with GFAP and NFIA reveals its expression in 

astrocytes in the lateral white matter.  (E-H)  Pax6 double-labeling with Reelin and 

Slit1-GFP reveals that Pax6 is co-expressed with nearly all Reelin+ astrocytes but 

only partially overlaps with Slit1+ astrocytes.  Positionally, Pax6 expression like that 
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of Reelin marks both the L and VL astrocytes but not the VM population.  (I) 

Quantification of the percentage of various astrocytes expressing Pax6.  Pax6 is 

expressed in around 40% of total white matter astrocytes as marked by GFAP or 

NFIA expression.  Around 97% of Reelin+ astrocytes express Pax6, while around 

50% of Slit1+ astrocytes express Pax6.  The Slit1+/Pax6+ astrocytes are the VL 

population (n = 5 embryos).  

 

Figure 3.  Loss of Reelin+ astrocytes in Pax6 -/- mice 

 Analysis of Pax6 -/- embryonic spinal cord in comparison to wild-type littermates.  

(A, B)  In situ hybridization shows Reelin expression in ventral lateral white matter of 

wild-type E18.5 spinal cord.  (E, F) By contrast, in situ of Pax6 -/- littermates shows a 

loss of Reelin expression in the white matter at this stage.  (C, G)  Double-labeling of 

Reelin and GFAP shows Reelin expressing astrocytes in lateral white matter in the 

wild-type.  In the Pax6 -/- spinal cord, GFAP+ astrocytes are present in the lateral 

white matter but they are not co-expressing Reelin.  (D, H)  Double-labeling of Reelin 

and NFIA reveals that NFIA+ astrocytes are present in both the wild-type and Pax6 -

/- white matter, but Reelin expression is lost in these cells in the Pax6 -/-.   (I, J)  

Quantification of white matter astrocytes in the Pax6 -/-.  Wild-type counts are 

represented as blue bars, Pax6 -/- counts are represented by red bars, Pax6 +/- 

heterozygote is represented with a purple bar.  5 Wild type and 6 mutant embryos 

from 3 independent litters were counted.  (J)  The total number of astrocytes in the 

white matter as assessed by GFAP or NFIA is not changed in the Pax6 -/- spinal cord, 

assessed as the number of positive cells per section.  However, there are significant 
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reductions in the total number of Reelin+, GFAP+ and Reelin+, NFIA+ cells in the 

Pax6 -/-, compared to wildtype (p values = 0.000007, and .00000008, respectively).  

Importantly there is no difference between the number of Bgal+, GFAP+ astrocytes in 

the Pax6 -/- and the number of Pax6+, GFAP+ astrocytes in the wild-type.  (I)  The 

percentage of GFAP+ or NFIA+ astrocytes expressing Reelin is significantly reduced 

in the Pax6 -/- mutant.  Nearly 100% of the Bgal+ cells in the Pax6 -/- and the Pax6+ 

cells in the wildtype are GFAP+ and NFIA+.  By contrast, there is a significant loss 

of Reelin expression among Bgal expressing cells in the Pax6 -/- compared to the 

normal amount of Reelin expression in Pax6+ cells.  Nearly all Bgal+ cells in Pax6 

+/- are also Pax6+, confirming Bgal is a faithful approximation of Pax6 expressing 

cells in this assay. 

   

Figure 4.  Astrocyte subtype conversion in Pax6 -/- mice 

 (A,D)  Double labeling with Slit1-GFP and GFAP in Pax6 +/+ and Pax6 -/- 

embryos which are also heterozygous for Slit1-GFP.  Slit1-GFP is normally not 

expressed in L astrocytes in wildtype, but is expressed in these GFAP+ cells in the 

Pax6 -/-.  (B, E)  Double labeling with Slit1-GFP and NFIA shows upregulation of 

Slit1 in L astrocytes in Pax6 -/-.  (C, F)  Double labeling with Bgal and Slit1-GFP in 

the Pax6 -/- shows that Slit1 expression is upregulated in the cells which have lost 

Pax6 expression, and where it is normally not expressed as evidenced by Pax6 and 

Slit1-GFP double labeling in the wild-type. 

(G)  Quantification of Slit1-GFP expression among astrocyte populations.  Slit1 

expression is significantly increased among total astrocytes marked by NFIA and 
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GFAP in the Pax6 -/-.  Additionally nearly all Bgal+ astrocytes in the Pax6 -/- are 

Slit1+, while only around 50% of Pax6+ astrocytes are Slit1+ in the wildtype.  (n = 3 

embryos each, ++ and --, from 2 independent litters).  (H)  Model of astrocyte 

phenotype in the Wildtype and Pax6 -/- spinal cord.  Due to the loss of Reelin and 

upregulation of Slit1, all of the astrocytes in the ventral white matter are Slit1+ and 

are thus phenotypically converted to the VM type, while the L type and VL type are 

lost.  

 

Figure 5.  Pax6 promotes Reelin and represses Slit1 in astrocytes 

 (A) Pax6 immunostaining reveals misexpression of Pax6, primarily on the right side 

(electroporated side) of the E12 spinal cord section.  (F) GFP misexpression, was also 

confirmed by immunostaining.  (B, C, G, H) Reelin in situ hybridization followed by 

NFIA immunostaining.  An increase in the percentage of Reelin+/NFIA+ cells was 

detected with Pax6 overexpression relative to the GFP control.  The arrow denotes an 

ectopically a Reelin+/NFIA+ cell which appears ectopically ventral.  (D, E, I, J)  Slit1 

in situ hybridization followed by NFIA immunostaining.  The percentage of 

Slit1+/NFIA+ cells is reduced with Pax6 misexpression compared to GFP control.  

This reduction is apparent between the electroporated and control sides (D).  (K)  

Quantification of Pax6 and GFP gain of function.  The percentage of Reelin+/NFIA+ 

was measured by counting all NFIA+ cells in the white matter and then the Reelin+, 

NFIA+ double positive cells.  The percentage of Reelin+/NFIA+ cells is significantly 

increased between the electroporated side of Pax6 vs. the electroporated side of GFP 

(p = .00000013), however there was only slightly significant increase in the Pax6 
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electroporated vs. contralateral sides (p=.02).  Similarly, the percentage of 

Slit1+/NFIA+ cells was quantified and it was found that there was a significant 

reduction in Slit1+ astrocytes on the electroporated side with Pax6 relative to the 

either the contralateral side (p = .002) or GFP control electroporated side (p = .009). 

 

Figure 6.  Model of ventral astrocyte specification 

(A-C)  Double-labeling reveals Nkx6.1 expression marks Slit1-GFP+ astrocytes in 

the white matter (arrow).  Thus Nkx6.1 marks VM and VL type astrocytes in the 

white matter.  (D-E)  Pax6 and Nkx6.1 double labeling shows partial overlap in the 

both the ventricular zone (arrowhead) and white matter (arrow).  (G-J)  Olig2 -/- 

astrocytes (derived from supernumery copy of p2) are marked by Olig2-GFP.  These 

astrocytes are both Nkx6.1+ and Pax6+, indicating a VL type phenotype.  (K)  The 

correlation between the partial overlapping pattern of Nkx6.1 and Pax6 in the 

ventricular zone and white matter, along with the evidence that the double positive 

population is derived from p2, suggest a model whereby each subtype of astrocyte is 

derived from ventricular zone domains with corresponding Pax6 and Nkx6.1 

expression. 

 

 
 
 
 
 
 
 
 
 
 



 70

 
 
 

 

 
 

   Figure 1.  Reelin and Slit1 mark subsets of astrocytes 
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  Figure 2.  Pax6 is coexpressed with Reelin in astrocytes 
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   Figure 3.  Loss of Reelin+ astrocytes in Pax6 -/- mice 
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  Figure 4.  Astrocyte subtype conversion in Pax6 -/- mice 
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   Figure 6.  Model of ventral astrocyte specification 
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I. The role of Pax6 in pMN progenitors 

Christian Hochstim, Melanie Lee and David Anderson 

            We generated, tested and identified a functional RCAS-U6-shRNA for chick 

Pax6 as previously described (Deneen et al., 2006).  We were intending to study the 

effects of Pax6 knockdown during early gliogenesis by electroporating this construct 

in E2 chick neural tube.  However, we noticed a dramatic loss of progenitors in the 

pMN domain which was evident prior to gliogenesis at E4.  In figure I-1, Pax6 is 

knocked down in the pMN region on the electroporated side which is identified by 

AMV staining.  Olig2 expression is lost in the presence of Pax6 siRNA and there is a 

corresponding loss of the progenitor marker PCNA in this region.  By contrast both 

the differentiated motor neuron marker HB9 and the postmitotic neuron marker NeuN 

are ectopically expressed in the ventricular zone.  Importantly, these effects were not 

observed when electroporated with and RCAS carrying a mutated Pax6 shRNA 

sequence.  

          The loss of pMN progenitors was quantified with double labeling of Olig2 and 

Hb9.  The expression of these 2 genes was counted as a function of spatial bins of 

distance from the ventricle.  In the presence of the pax6 siRNA there was a medial 

displacement of HB9 and a loss of Olig2.   Two possible explanations could explain 

this loss of progenitors and their spatial replacement with differentiated neurons.  

First, the progenitor cells could precociously differentiate into neurons in situ, 

depleting the progenitor pool.  Alternatively, the progenitor cells could die and 

neurons move into the ventricular zone to fill the space left by the loss of progenitors.  

We observed  increased cell death with Pax6 siRNA electroporations relative to both 
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the mutant siRNA or GFP controls by staining for activated Caspase 3 (data not 

shown).  This cell death was not adequately rescued by co-electroporation with p35 

anti-apoptotic protein (data not shown).  Thus it is difficult to tell whether these data 

suggest that Pax6 is required for the survival of progenitors, or for keeping them in 

the undifferentiated state, or both.  It has been reported that the Pax6 target, Fabp7 

plays an essential role in blocking precocious progenitor differentiation in the cortex 

(Arai et al., 2005).  However, we did not see this loss of progenitor cell phenotype in 

the pMN domain of Pax6-LacZ -/- mouse spinal cord.  Given this negative result in 

the mouse, and the confounds with cell death, it is difficult to conclude whether 

anything can be concluded from these results about Pax6 function in these 

progenitors.   

 

II. Tet-inducible Avian retroviruses 

Christian Hochstim, Janet Chow and David Anderson 

       One of the confounds of performing electroporation experiments in chick 

neural tube with respect to studying phenotypes during gliogenesis is that the optimal 

time for injection and electroporation is at E2, prior to neurogenesis.  Thus it is 

difficult to determine whether a gene function yielding a glial phenotype is due to its 

function in glial cells or secondary to an earlier role in patterning or neurogenesis.  To 

circumvent this problem reagents for conditional misexpression are needed.  Tet 

inducible RCAN retroviral vectors have been developed as a two virus system:  one 

constitutively expressing rtTA, and the other virus with the gene of interest 

downstream of TREtight promoter.  This system has been shown to be effective along 
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with in ovo administration of Dox (Sato et al., 2002).  We developed these vectors for 

the misexpression of Pax6 and GFP (Figure II-1).  We tested the responsiveness and 

tightness of the system by coelectroporating the rtTA and TRET-GFP viruses along 

with a dsRED reporter (to demonstrate successful electroporation) added Dox to 

some of the embryos.  In this initial test it is clear that the system is both robust and is 

not leaky in the absence of Dox (Figure II – 2).  However in subsequent testing with 

Dox administration at E4-E6, we stuggled to efficient induction of gene expression 

 

III. The role of Shox2 in V2/MN Identity and oligodendrocyte 

precursor specification 

Christian Hochstim, Qiao Zhou and David Anderson 

          Shox2 was upregulated in the Olig2 -/- mutant population in our Microarray 

experiments.  It was found to be expressed in a subset of ventral ventricular zone 

progenitors specifically during glial stages (see Chapter 2, figure 3).  However it was 

also persistently expressed on a population of neurons, likely V2 interneurons based 

on their position and distribution.  Double in situ hybridization of E13 spinal cord 

revealed that the ventricular zone expression of shox2 colocalizes with Olig2 in the 

pMN domain (Figure III – 1).  This is suprising since we expected based on its 

upregulation in the Olig mutant array sample, that it might be repressed by Olig2.  It 

is most likely that we identified shox2 as a false positive due to its expression on V2 

interneurons in which Olig2-GFP expression can perdure, as discussed in Chapter 2.  

Nevertheless, we were intrigued by this glial specific pMN expression.  
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         We performed gain of function experiments with RCAS-Shox2 electroporation 

at E2 and analyzed at E5.  We found that Shox2 overexpression strongly repressed 

motor neurogenesis as evidenced by strong reductions in MNR2/HB9, Lim3 and 

Isl1,2 expression (Figure III-2).  Shox2 did not reduce motor neurogenesis by 

depleting pMN progenitors.  There were a normal number of Olig2+ cells and Sox9 

staining was normal throughout the ventricular zone. Shox2 promoted an increase in 

Chx10+ V2a interneurons, including ectopic V2 interneurons within the motor 

column (Figure III-2, arrow).  No increase was detected in GATA3+ V2b 

interneurons.  Quantification of the relative levels of HB9 and Chx10 revealed a 64% 

decrease in Hb9+ motor neurons coupled with a 54.5% increase in Chx10+ V2a 

interneurons.  Because motor neurons are nearly 8 fold more numerous than V2a 

interneurons, the effect to repress motor neurogenesis is numerically much more 

significant.  These experiments show that Shox2 can repress motor neurogenesis in 

the presence of normal Olig2 expression.  This is intriguing because since Shox2 

turns on in the pMN domain at the time of the neuron-glia transition, it suggests that 

Shox2 might play a role in downregulating motor neurogenesis within Olig2+ cells 

and play a role in their transition to making oligodendrocytes.   

      Shox2 misexpression alone was not sufficient to promote precocious 

oligodendrocyte formation, however co-electroporation of RCAS-Shox2 together 

with RCAS-Olig2 was sufficient to promote ectopic and precocious oligodendrocytes 

(Figure III -3).  An attractive hypothesis from all of these data is that the function of 

Shox2 in repressing motor neurogenesis is important both in pMN progenitors as they 

transition to making oligodendrogyes and in newly born V2a interneurons by 
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repressing the alternative motor neuron fate.  Loss of function experiments are 

required to test these ideas.  Shox2 knockout mice have been generated (Yu et al., 

2005) and we hope to receive embryos for analysis.  If our hypothesis is correct, we 

would predict 2 phenotypes:  a delay in the onset of oligodendrocyte precursor 

specification, coupled with extended motor neurogenesis in the pMN domain, and 

loss of V2a interneurons and their conversion to ectopic motor neurons. 

 

IV. HFH4 is not essential for gliogenesis 

Christian Hochstim, Qiao Zhou and David Anderson 

          HFH4 had the most specific expression pattern of any gene we tested from our 

microarray candidates.  It was upregulated in the Olig -/- mutant population.  It was 

only expressed during gliogenesis in a specific subset of ventricular zone progenitors 

in the ventral spinal cord (see Chapter 2, Figure 4).  This was intriguing because it 

appeared specific for glial progenitors, but unlike most glial markers, it was not 

expressed on any migrating or differentiating cells but remained completely 

ventricular zone specific even at E18.5.  We verified that there is increased overlap 

between HFH4 and Olig2-GFP in the Olig mutant (Figure IV – 1). 

          We examined whether misexpresion of RCAS-HFH4 would affect early 

oligodendrocyte or astrocyte precursor specification and saw no effects (data not 

shown).  Additionally we obtained and analyzed HFH4 -/- knockout embryos (You et 

al., 2004) to see if there were any defects in early glial development but we didn’t see 

any difference in the expression of FGFR3 of GLAST in the ventricular zone or 

migrating precursors  (Figure IV – 3).  Thus it appears that HFH4 is not involved in 
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oligodendrocyte or astrocyte specification.  Its restricted expression to only a subset 

of ventral progenitors, suggests that it has a highly specialized role, perhaps in 

ependymal cells or some late-generated ventricular zone population. 
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