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ABSTRACT

The Fourier Series and Fokker-Planck Methods, the available technigques
for solving vibration problems when the exciting force is a stochastic
process, are reviewed and several detailed examples are given. In par-
ticular a two-degree-of-freedom system is considered which is excited by a
non-stationary input and which possesses a general type of viscous damping.

Several typical engineering problems involving stochastic processes are
considered, In the case of fatigue it is shown that a criterion for fatigue
failure in multi-degree-of-freedom systems may be established using Miner's
cunulative damage hypothesis and the number of zero crossings per second.

In the earthquake problem it is shown that when certain inequalities
involving the natural frequencies of the building are valid, cross-=product
terms may be neglected in computing mean square displacements.

Two probléms involving beams are considered. In one case it is
demonstrated that a convergent expression for the mean square bending moment
may be obtained for a Bernoulli-Euler beam excited by white noise, provided
a finite cutoff frequency is used. In the other case involving random end
motion, a one-term approximation to the mean square bending moment may be
obtained, when the correlation time is not too small.

The isolation problem is considered and the concept of the "white
spectrum fragility curve" is established as a criterion for adequate
isolation.

Finally the motion of a single-degree-of-freedom system over a rough
surface is considered. It is shown that for an exponential type of auto-
correlation the mean square displacement is finite for unaccelerated motion

‘and diverges when the system is accelerated,
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PART I

INTRODUCTION AND SUMMARY

The analysis of mechanical systems subjected to random exciting
forces is quite naturally dependent upon the theory of probability.
Fortunately, for much of the work, only rudimentary concepts from this
field are necessary, and in many cases successful treatments of random
processes have been made on the basis of a purely intuitive approach.
In random processes, uﬁlike the problems where the exciting forces are
a definite function of time, we are forced to deal with statistical
parameters, that is, quantities which can be expressed as expectations
of certain random variables of interest. These parameters are, in
general, directly observable either through experiment or the analyses
of statistical data but they do not completely characterize the
probability distributions of the random variates. The various moments,
for example the mean and variance, convey a limited amount of information
such as the average value and spread of the distribution about the mean
but they do not uniquely define the distribution. The determination
of the probability distribution is the most general quantity we can
compute in a problem involving random processes, but unfortunately it
is only iﬁ special circumstances that it can be found. The variance
or mean square is usually computed since this is the quantity, which in
general, is most easily observed. In vibration problems, it is often a
straightforward calculation to f£ind the mean square values although the

details may become guite tedious.
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In the following sections a brief historical review of the
development of the mathematical theory of random processes and a

summary of the main body of the report are given.

1.0 Historical Background

In 1827 the English botanist, Robert Brown, noticed that small
parficles suspended in a fluid performed peculiarly erratic movements.
This was, perhaps, one of the first proﬁlems involving & random
phenomenon to be recognized as such. It soon became apparent that
this so-called BrownianvMotion was an outward manifestation of the
molecular motion postulated by the kinetic theory of matter. It was
not until 1905, however, that a satisfactory theory was advanced by
Einstein for the case of the free particle.

Binstein treated X(%), the X coordinate of the particle at
time Z as a chance variable and found that the probability distribu-
tion of {X/f)—XﬂwJ was Gaussian with mean mero and variance b/¢/ where
b is a positive constant which can be determined from the properties
- of the particles and fluid. This result was a consequence of his
showing that jDﬁﬁl&zj wvas the fundamental solution to a partial
differential eguation of the diffusion type, where jDﬁn/{t) is the
probability that at time ¢ the particle will be between X and X+ dX
if at time Z-0it was at X .

The theory was soon generalized by the Polish physicist,
Smoluchowski., A natural extension of Einstein's work arose when out-
side forces were considered, and it was Smoluchowski wh§ showed how
the Einstein equation is modified in this case. Contributions of

major importance were also made by Fokker, Planck, Burger, Furth,
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Ornstein, Uhlenbeck, Chandrasekhar, Xramers, and others resulting in
the general partial differential eguation satisfied by .ZCZg/xazj
known as the Fokker-Planck eguation. The purely mathematical aspects
of the theory were analyzed by Weiner, Xhintchine, Kolomgoroff, Feller
Lévy, Doob, and others. One conceptual difficulty of the theory lay
in the fact that it does not appear possible to derive the diffusion
equation in a rigorous fashion, unless one assumes that the change in
the particle position AX in time A? is independent of the fact
that at 7=0 the particle was at X, with velocity V. . For this
reason Smoluchowski suggested treating the problem as a discrete random
walk. The theories of both Einstein and Smoluchowski are valid only
for large 7 and in the case of an elastically-bound particle only for
the overdamped condition.

In 1919 Ornstein used a different approach in solving for the
probability distribution, which consisted of computing all mean values
for the random variable by integrating the eguation of motion. It
allvthe moments are known, the probability distribution is defined.

At best we can only approximate the distribution in general using this
procedure.

Another approach is the Fourier Series method in which the
random_variable is expanded in a Fourier Series in time. The coeffi-
cients are no longer constants but vary in a random fashion. Weiner
in 1930 and Khintchine in 1934 discovered the fundamental theorem of
this method which relates the power spectrum to the correlation
function by a Fourier Cosine Transform. Rice has systematically applied
this method to a large number of problems concerned with electronic

circuit elements.



With the advent of the guided missile and its associated
problems in random vibrations a great number of papers have been
written in which the responses of discrete and continuous systems to
random excitation are treated. The methods of analysis used generally
follow those mentioned.

To summarize then, there are three general techniques for
handling problems involving random processes. The first, in which
the Fokker-Planck eguation is used, is best suited to problems where
the power spectrum of fhe random force is constant. Otherwise a
partial differential equation with variable coefficients results
which is generally extremely difficult to solve. When the input
power spectrum is constant the output is always Gaussianly
distributed. No restrictions are placed on the probability
distribution of the input in this method.

In Ornstein's method the input need not have a flat power
spectrum; but unless its probability distribution is known to be
Gaussian, we can only approximate the output distribution function
by computing a large number of moments. When the input is Gaussian,
the output is Gaussian, and we need only calculate the first and
second moments to completely define the probability distribution.

The Fourier Series method, like Ornstein’s, need not restrict
the power spectrum of the input to a constant value; but unless the
input is Gaussianly distributed, we have no information about the
distribution function of the output.

For the Gaussian random process in which the input has a
Gaussian probability distribution and a flat power spectrum, the

Fokker-Planck and Fourier Series methods are generally used.



2,0 Summary of Thesis

The main body of the thesis is divided into four parts, Part II,

Part III, Part IV, and Appendix I. In Part II one aspect of linear, damped
multi~degree-of-freedom systems is considered, that being the existence of
normal modes. The most general form of damping for which Rayleigh normal
modes exist is given and then a more general type of damping is considered
for which only complex normal modes exist. In this latter case a method
developed by‘Km Foss for determining the coordinates which uncouple the
equations‘of motioh of damped, linear, dynamic systems is outlined in some

detail.

The next topic treated is that of systems subjected to random exciting
forces. A brief review of the general theory is presented which describes
the Fourier Series and Fokker-Planck methods of handling the Gaussian
random process. In addition the Fokker-Planck equatiorn and the Weiner-
Khintchine theorem are derived in detail. An extension of the Weiner-
Khintchine theorem to the case of non-stationary processes due to
D. G. Lampard is also reviewed. The method of computing mean square values
is then outlined.

Although a large portion of the work in Part II is a summary of the
known techniques for handling stochastic processes, several of the sections
are thought to present new material. In these sections several problems
are solved in detail. The well known result for the response of a simple
harmonic oscillator excited by white noise is given. This problem is
extended to finding the time dependent solution for the.mean sguare dis-
placement of the simple harmonic oscillator excited by a random forcing

function possessing an arbitrary power spectrum. This problem is also the

simplest type of non-stationary process since the output is non-stationary
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in the sense thét it is tramsient, building up'exponentially with time
to a steady state value,

A two=degree~of-freedonm system possessing general type damping and
excited by a simple non-stationary random force is then treated in detail
illustrating the method of Foss. Continuous systems, represented by a
vibréting beam, are also briefly considered.

Part III, Part IV, and Appendix I represent the major portion of the
original work. Part III treats several typical engineering problems
involving sfochastic processes. First of all the problem of fatigue
failure is considered. For a single-degree-of-freedom system the output
due to . a random input is a curve whose frequency is egual to that of the
system and whose amplitude is random in time. Using Miner’s cumulative
damage hypothesis, a criterion for fatigue failure can be obtained. This
work done by J. W. Miles, is briefly reviewed. When multi-degree-of-
freedom systems are considered, the situation is far more complex since
the output contains many frequencies., It is shown that by using Miner's
hypothesis and the number of zero crossings per second as a measure of
the number of stress reversals per unit time a criterion for fatigue failure
can be obtained.

Next the earthquake problem, considered as the response of a tall shear
structure to random ground motion, is discussed. For a building which
possesses Rayleigh normal modes it is shown that the cross-product terms
may be neglected wheﬁ computing mean square quantities provided the
damping is small and certain inequalities involving the natural frequencies
of the building are valid. The power spectrum of the éround motion is

assumed to be peaked which is typical of earthquakes.



Two problemsvinvolving Bernoulli-Euler beams are itreated next. The
first problem is that of a beam subjected to a random transverse loading.
A, C. Eringen has shown that if the random foree is considered to have a
white power spectrum over the entire frequency range, the mean square
bending moment is infinite although the mean square displacement is finite.
By using the more elaborate Timoshenko beam theory, the mean square bending
moment can be shown to converge. The white noise excitation considered is
not physically realizable since it implies infinite energy input. If the
power spectrum is cut off at some finite freguency, it is shown that a con-
vergent result for the mean square bending moment can be obtained even for
the relatively simple Bernoulli-Euler beam theory. . The problem of a beam
with random end motion is also considered. It is shown that for an expo-
nential type of autocorrelation for the end motion a one-term approximation
to the mean square bending moment can be obtained, provided the correlation
time is small compared to the lowest natural frequency of the beam.

In Part IV the problem of vibration isolation under random excitation
is considered. The major problem is the determination of a criterion which
can be used to ascertain whether isolation is adequate. Two different
situations may arise. One in which an item will fail if some maximum value
of acceleration, velocity, or displacement is exceeded and the other when
the item fails due to fatigue failure. When a maximum value of some
parameter is the critical quantity and the input is Gaussian, we may design
the isolation system to make the mean square value of the critical parameter
as small as practicable, since the probability of exceeding a given value is
directly related to the mean square or variance, When'fatigue failure is

important, the concept of the "white spectrum fragility curve” may be used.



8

In this method é system is tested by subjecting it to white noise whose
spectral demsity is varied until failure within a prescribed time interval
results. The power spectrum of this white noise excitation is called the
"white spectrum fragility curve.’” The isolation system is then designed
so that the power spectrum of the parameter of interest at the point where
the given element is mounted does not exceed the "white spectrum fragility
curve” at any fregquency. The expressions for mean sguare values of ac-
celeration and displacement9 and the response power spectra are determined
for two—éegfee-of-freedom systems possessing Rayleigh normal modes or
complex normal modes.

In Appendix I the motion of a single-degree-of-freedom system over a
rough surface is considered. The profile of the surface is represented by
a statiohary random process. 7The equations of motion are derived and the
expressions for the mean square values of displacement and velocity are
developed. It is shown that unless the acceleration of the system is zmero,
the input is non-stationary. The quantities appearing in the autocorre-
lation of the forces are then related to the known properties of the surface.

A simple surface shape is then considered and the integral expressions
for the mean square values are derived for the cases ﬁhere the system moves
with constant veloeity and constant acceleration.

Two particular mean square values are considered, those for the
absolute displacement of the mass when the system moves with constant
velocity and with comstant acceleration. It is not possible to integrate
the expressions directly and approximate methods must be used., When the
system velocity is constant, the input is stationary and we may find the
power spectrum of the exciting forces guite readily. For small damping,

the major contribution to the mean square displacement is for input
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frequencies near the natural frequency of the system. The power spectrum
is therefore evaluated at this frequency and then considered as a flat
power spectrum. The integration can then be carried out quite easily.

When the system acceleration is constant, the input is non-stationary,
and the previous method cannot be applied very readily. Instead we use
Laplace's method to reduce the double integral to a single integral. Small
damping is considered and an approximate solution is obtained.

A numerical example is then considered. It is shown that when the
system moves with constént velocity, the mean square displacement is
finite: but when the system is accelerated, the expression for the mean

sguare displacement diverges.
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PART I1I

LINEAR MULTI-DEGREE-OF-FREEDOM SYSTEMS

1.0 Uncoupling the Equations of Motion

In many engineering problems the forces which excite a mechanical
system are not always harmonic with fixed freguency and amplitude. Quite
often the input is random in nature and the output displays no orderly
pattern. In such cases as these, instantaneous values and phase of the
parameters of interest are meaningless and the problem must be treated
statistically. DBefore proceeding with the general problem of the response
of mechanical systems to random excitation, a brief review of the problem
of separating the equations of motion for linear, damped systems will be

given.

1.1 CLASSICAL NORMAL MODES

The theory of undamped, linear systems is well understood and it has
been known for some time that such systems possess normal modes. When
damping is introduced, however, this property does not exist in general
and the mofe comprehensive treatment of K. Foss is reguired. Lord Rayleigh
showed that classical normal modes exist in damped systems if the damping
matrix is a linear combination of the inertia and stiffness matrices. More
recently Dr. T. K. Caughey has shown that a necessary and sufficient

condition for the existence of classical normal modes in such systems is

that the damping matrix be diagonalized by the same transformation which
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uncouples the equations of motion of the undamped system. A sufficient

condition on the damping matrix is shown to be

M~
3¢

4
-2

LR ) pitand)”

If the terms 7=/ , £=0 , and €=/ are taken in eq. (1), Rayleigh's

criterion is obtained.

1.2 COORDINATES WHICH UNCOUPLE THE EQUATIONS OF MOTION OF

LINEAR, DAMPED SYSTEMS

In & recent paper, ¥. A. Foss has shown how to obtain the coordinates
which will uncouple the eqﬁations of motion of linear damped systems with
general dampinge. The following material summarizes the results of
interest from that paper and includes a more detailed analysis éf the

continuous systeim.

1.21 Discrete Systems

The egquations of motion of a multi-degree-of-freedom system can

be written as

[’""/] {5'!;'} * ["u] {2}'} * ["q] {9,-} - {F.- (f)} ) (2)

where

[ ] denotes a square matrix,
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and

{ } denotes a column matrix.

We have seen that unless [:l“,_/] is proportional to [ ,] or [k,/]
or is a linear combination of the two, velocity coupling exists.

Eguation (2) may be rewritten in the form

[0{] {x}+[/<] {x} = {F(z‘)} , )

L)
(o} - L‘;g
w3
- B8

Subscripts have been omitted for simplicity.

1.211. HOMOGENEQUS SOLUTION. To obtain the homogeneous solution of
eg. (3) we assume that {)({f)} = edt {@} where « ié an eigenvalue

of eq. (3) and {@} is the corresponding eigenvector. In general, both
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o and {§ } will be complex. Substituting this value of {x(f)}

into the relation (3) yields
« [e]{z} + [«]{a} - {]

We may rewrite eq. (L) as

[v] {3} - {7} .

, ][]
el e 1B L0

where

/| 0-=---- o)
|
[I] = |° ’\\ : , the unit matrix,
I
| s
O—--~——- =~/
-]
[C] = [/?:] , & set of influence coefficients,

and
-/
[ ] denotes the inverse of a matrix.

For a system with N degrees of freedom eg. (5) will yield 2N

eigenvélues @, and eigenvectors {%h} = {d’n {;:} }..,

(k)

(5)
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For a stable system (I,, must be real and negative or complex
with a negative real part. The complex roots appear as complex

conjugate pairs with corresponding complex conjugate modal columns,

It [777.] 9 [/?] and I:f'J are symmetric, [@] and [K] are symmetric

and eg. (4) may be written as

- [€)6) + (<1 )

]

{0} > (6)

or

T T

o {TJ4] + {F} K]

"

O

where

T T )
[ J or { } denotes a transposed matrix. Premultiply
r

eq. (6) by {éf”} and postmultiply eq. (7) by {S‘E"‘} giving

« {F}[{#) - @i} - o, ®
o { TV {E} + (#)]1{&) - o

Subtracting eq. (9) from eg. (8) yields

(&, ~ ) {?f"’}v—[ﬁ] {F’} - 0. (10)

and

If Q # A, we have the orthogonality relations

{@’"}T[dﬂ {335"} =0 m #m, an
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and

EVEIE e e e

Eguations (11) and (12) are analogous to the orthogonality conditions
of undamped systems. The analog of no dynamic or static coupling here

would be for the off diagonal terms of [@] or [K] to be zero.

1.212 HNON-HOMOGENEQOUS SOLUTION. To obtain the non-homogeneous

solution of eg. (3) we expand {x(ﬁ} in a modal series, that is

N

()} = 2{F} a0, | )

n=!

where the functions E;(%) are to be solved for. Substituting

eq. (13) into eq. (3) yields

N N

nzl[c?] {Eﬁ"}é,, + 7’Z’[K] {¢'} &, - {F(z‘)} . (1)
Premultiplying by {fm}.r yields

Pl s - e - e} o

n=)
Applying the orthogonality relations (11) and (12) reduces eg. (15) to

Rn é'n - @, Rn§n = Falt) _ (16)



16
where

2, - WA} - en (Il (1)

and

F(t) = {%"}T{Ffﬁ} = {¢”}T{Nf)] (18)

We see that the coordinates ?;, lead to uncoupled equations of motion.
It is of interest to note the analogy between these results and those

for undamped systemns. Here ”1)77 is analogous to the generalized mass

(n*
M,- = Zm’ '4)' and Fp (z‘) is analogous to the generalized force
J=!
N
Gr = Z 6 AJ(r)v
J=1

It can be shown that the exciting forces of undamped systems may

be expanded in a series

N
(r) (r) (19)
E = Z 7C -miﬂ i .

re=i
Trying a similar procedure we assume that we may write
N
- n
| {F(z‘)} - Z (€] {@} : (20)
n=/

-
Premultiply eq. (20) by {§’"} to give

{@"‘}T{F(f)} = hZN, n {f"’}TE{’] {9?’} , | (21)
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Using the orthogonality relation eg. (11) reduces eg. (21) to

{fh}T{F(f)} = Ap {§n}T [0'2] {§n} = An ®n - (ZZ‘)
Since {fn}f{,‘(f)} = Fa(¢t) by eq. (18) we‘have
. Lo @

)n ﬂ” J

and hence

N
= - }5} . (2h)
{F(t‘)} nZ' o [0?]
From eq. (24) we see

AL
2 h

n=l

a, [’"]"H) {¢"} = {f(f)}, (25)

and

ﬁF;?(t} {¢n} - o (26)
nef 0P

We must now solve eg. (16) for &, . Using the impulse method

we see that for a unit impulse eq. (16) becomes

Wné,,f — dy d'-l)n gnf = 6(75') ‘ (27)

Hence

I ant (28)
gnp (¢) = ﬂ e’ p
n

or

! q, (f"t) (s
Eap(t-t) =€ o (29)
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and

£ () = /gﬁ (¢-2) Fa(T)d T, (30)
or [~

z
g ) = —l—[ %) Fltide. (31)
n
Finally
t

{x(t)} Z{@ }%’,,(z‘/ = N {@,,} 3{!— feq"(t'r)F,, () dt . (32)
h=l n 5

From the definitions of {X(i‘)} and {éﬁ'"} we see

{ } m’ {96}] @n (€70 F, (2)dz, (33)

and

N
9y a, (¢-
W - Sa g oo,

1,22 Continuous Systems

To derive the analogous relations for continuous systems we take
as a specific example the damped motion of simple beams, The eguation

of motion is

4

mly) X ly,2) *+ riy)ilys) */‘R[y,y)x()z,t) c/;z = Fflyt , (35)
Yo

where

,é(y,;l) is a stiffness influence function.



19

In generaly it is quite difficult to determine A’G’,Q) and it will be

shown later how the relations are modified if we use

%
(£ x" (y,t))" for / kly,7) x(q,t) dp ,
Yo
where
, o
( ) denotes g 0

If we substitute §(y,t) for )'((%-f) in eg. (35) we obtain

mly)x(y,¢) = mly)&(y,¢) = 0,
and (36)

9
mly)E(y.t) + rigily,z) */Ie(y,y)x(q,t) dy = F£ly,9.
Yo

J

1,221 HOMOGENEQUS SOLUTION. To obtain the homogemneous solution of

eg. (36) we assume a solution of the form

at
Xly,t) = dlyye

and Y (37)

BT .

§(y,2)

Substituting relations (37) into (36) we have

- am(y) ¢y) - my)BY) = O ,
and (38

5
amly) Bly) + arly) @) +//€(y»7z)¢f(/°"‘l =0
j’a

The solutions of egs., (38) yield an infinite number of eigenvalues

q, and eigenfunctions Bnly)= a, ¢ ) - For the nt" mode egs. (38)
”
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become

and y

(

aymy) 6y () + Ay, 04) *fk(y.?{) $al9)dy = 0. (40)
Yo

Multiplying eq. (39) by ﬂm(y) and eq. (40) by ¢m{9} , adding and

integrating over ¢ from Y, to Y, we have

4
oz,,f(m(y)sé,,(y)ﬁm(y) + ) $ly) ¢4 * mly}B»(y)¢m(y))¢/y
Yo
) 4
+f<f /i’(%w ¢n(7)¢m(5')d}( = MY)Br@) B (.9)> dg = 0. (b1)
Yo Yo

Interchanging indices in eg. (41) we get

4
U f (m 4) dn )80 () + TGy G) $n )+ M) EmG) By ) ) %

ya

b 4
+/(/k(m) P () &y () Iy m(ywm/y)ﬂ»(f/))dy = 0, (b2)

Yo %
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Subtracting eg. (42) from eg. (21) and noting that AL(yy) is a

symmetric kernal we have '

g
(a0 = m ) f (mfy)sﬁn(y}ﬂm/yl *ry)db) ¢mly m@)ﬁn@)sﬁm(y))dy = 0. 3)
-

The orthogonality relations are hence

7

f(m(y)%,(y)B,,,(y) + 1Y) @y ly)bmly) + my) By (y)¢mf?))a’y =0, m#7n, (4b)
Yo

and

4 4

f klyp) ¢n(z)¢m/y}0'7 - mly) 5,,(5/),5,,,@)) dy = 0, m#n. (45
% o

1.222 NON-HOMOGENEOUS SOLUTION

To obtain the non-homogeneous solutions of egs. (36) we
expand X(Zt) andEYgé) as a series of eigenfunctions, that is

© 3
Vgt =) B4n®,
n=;

and 46)

g—(ﬁxf) :Z Bnly)Tn(t)
n=i

Using egs. (46) in eqs. (36) we get



o
3%}

M ) ) — m) ) Bg)SaE) = O,
n=l n=/{

and

4

h=/
Yo

Multiplying eq. (%7) by 'ﬁ;:@j s eg. (L8) by ¢%/99 s, adding and

integrating over 4 from 4 to Y, results in

o Y
) %@ / (m/y) 5o P B + F) o () $m(9) + MW, ) ,g,,(y)) dy
n =t
Yo

4

o -4 Ko
m(y)Z Bn ()5, (2) + (9 Zsén/y/ (8 + / k(y,7) Z¢,, WSn(t)dy = fye)
n=i n=/

(47

(48

)

)

© 4, 4
*Zé’n(*)/(//2(9,71)¢n(7)¢m@/c/7 - Wjﬁnwﬁmw)dy - /I(y,f)qém(y)dy. ()

Yo Yo Yo

Using the orthogonality relations (44) and (45) and calling

“

A
/M,t) é,(9)dy = /f
Yo

/(Zm(y)¢,,(y)ﬁ,, (y) + r@)#(y))o’y = Mq,
y.

and
4 9

f(fk(smz) Gy )P D dy - mly)ﬁ:(w)dg <K,

Yo Yo
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eq. {bo) becomeé
Mn é'n + K,% = Fa . (50)

We see, therefore, that the coordinates gn uncouple the equations
of motion. Since M) s 1Y) s RYy7n)s Pry) s Bly) » and [Llyt) are
all known, M» N /(,, s and 4/ can be evaluated explicitly.

Since ﬁ,”/g) = a, ¢” (y) we may write

4

~&n M, = /sé,fy/ (‘Of;m@) . (y) — X, riy) @, -or,fm/y)yﬁ,,(y)) dy . (51)
Yo

We also see that a solution of the homogeneous form of eg. (35) is

ay t
Xy, t) = ¢,ly)e " . Substituting this into eq. (35) and dividing

by é’“"t we have
X
“nzm@/)a‘,,@) * Ay ly) Guly) + fk/y,y) & (p)dy =0,
Yo
or
Y
2 (52)
—dy M) $nly) = oAy r ) Fply) *jk (9.7) #» ()7 -
Ho

Using eq. (52) in eq. (51) we get

- 4 4
T My = /%@)(J"?(%'Z)%/'])drz ~ anmlyg, )| dy . (53)
. Yo e _
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From the definition of K, we see K| =‘—q;ﬂ17 and eq. (50) becomes

Mn §ﬂ - ann Zﬂ = FI7 (5h)
This is similar to eg. (16) and solving eq. (54) in the same manner
we have
e
/ ¢-2,
ald) = /fq"( "ot dT =2
. Mﬂ o
From eq. (46) we have
o t
&, 09) [ a, (-7
xlyt) = ——=e" £ (v) dt. (56)
n=/ Mﬂ
[+]
We could have written eg. (35) as
V4
mly) X (y,2) + rig)X(y,4 + [fX”(% ﬂ] = Hy9 , (57
wvhere
. 2
¢ ) denotes 5;' s
and

¢ 5 2
denotes T o
)

If each end of the simple beam iS free, simply supported, or built-=in,

then integrating by parts four times shows that
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4 Y
f [_-Efﬁ,f'(y)]”sém (y)dy = / EE bm (y)] é,(49) dy . (58)
Yo ‘ Yo

Hence proceeding as before we find that the orthogonality relations
become in this case

4

j(m(y) $nly) Bmly) + my) By, ) by (9) + r(yj¢,,(yj¢,,,(y)) dy = 0, m#En, (59)
Yo ,

and
Y

v
f(l—_f b)) bnt) — My Brle) ﬁ,,(y))dy - 0, m A, (6
Yo

where K,7 is modified to

Y

/ (\:E 9‘:/9)]”%(9) - mly) ﬁnz(y)) dg
Yo

]

Kn - (61)

The remaining eguations are the same.

2.0 Response to Random Exciting Forces

When the forces which excite a mechanical system are random in
nature, the methods for obtaining the response due to periodic exci-
tation are not directly applicable. The external forces are no

longer periodic and do not go to zero for large values of time so
©o

that J{

- 4

Jdt does not converge.

R




2,1 GENERAL THEORY

Roughly speaking, what is meant by a random excitation is one in
which the forcing function does not depend in a completely definite way
on the independent variable time as in a causal process., On the contrary
one gets in different observations different functions of time so that it
is only the probability distributions that are directly observable. The

following set of probability distributions will completely define a random

function
W, (y,¢) dH = probability of finding ¢ in
the range y to y+dy at
time # .
W, {yl,j; )yz fg)dﬁ a’jz = Jjoint probability of finding

4 in the range 4§ to ¥ +dy
at time ¢ and in the range
% to 4+dy at time 5 .

W( £ 2 ¢ _)0/5, d c/j/a = Jjoint probability of finding

39,5, 2%, B5ts Dz 4 in the range 4 to 4 #dy
at time Z>s in the range 4
to 4 +d/y, at time Z and in

tl'xe range ¢, to % +d 4 at
time #
3
and so on. The higher probability distributions W, , 7 = by 5 6 —==
are defined in a similar fashion. Each ]/\70' must satisfy the following

conditions

(1 W, 2 o,

(ii) W, is symmetric in Y4,% 5322 y == Y ks

(- W - '[n-k ~~~~~~ [m C/jl»éH T 0/-777 :

Condition (iii) is just the equation for determining a marginal

distribution.
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The fuﬁctioﬁ.hg' can be used as a means of classifying a random
function. The simplest case is that of a purely random function. This
means that the value of ¥ at some time é does not depend upon, or is
not correlated with the value of ¥ at any other time ¢ . The
probability distribution Vﬂ?@é}{? completely describes the function
in this case since higher distributions are found by the following
equation

W, (H,Z",, 9’2tz) T T, Ya t,) = m(ﬁ’/f/) W(yztz) - W{.‘/nf") . (62)

The next most complicated case is where the probability distri-
bution W, completely describes the function. This is the so-called
Maritoff Process. To define a Markoff Process more precisely we
introduce the idea of the conditional probability. We define
E(y lg,,t)dy,  to mean the probability that for a given ¥, we find
Y in the range ¥, to Y, +dy, at a time 7 later. We find P,

by the relation

Wy(yt,, y,t2) = Wilyt)P(yly,t) . (63)

Eguation (63) is analogous to the joint probability of two dependent

events. In this case, we would have

P(48) = PA)RB , (64)
where
P(AB) = probability of events 4 and B occurring,
P(4) = probability that event 4 occurs,
and

P, (B) = probability that event B occurs given that event 4
" has occurred.



Then
P (AB) is the analog of Wi

P (4) is the amalog of W,
B, (B) is the analog of P, .
The function P, must satisfy the conditions
(i> PZ (y/lyzt) = 0 J

(i) fdszz ($\y2t) = 1,
and
(111) W (4, ¢) = /W’ (y.t,) Pz (9, 1 92t ) dy,
We can now define the Markoff Process to mean that the conditional
probability that ¢ 1lies in the interval U, to y,’ + a’y,, at time z’-”
given that 4 is in the interval ¢, to ¥, +dY, at ¢, , ¢, to
yz.'. dyz at tZ g = = == e y”_/ to y’)-l +'dj”_l at t"_/ P depends
only upon the values of ¢ af z‘,7 and zf',,_, . That is for a Markoff

Process

Pn (9't. ) yztx,———).‘/n-l &) /ﬂntp) = -Pz(thfn-liynth) . (65)

It is now possible to derive W s Wp » etc. from W and eq. (63).

For example

W lo b, 2t Wel Yy, sts)
W/yzt‘z)

W (2, yat2, 45830 = Wilyd, y,4,)P: (4ot ] 95t5) (66)

It is clear that

M (9:1-':; 5’27-‘1} 93t3 ,‘941'4) = M(ylt ).92*2} y_;tj)Pz (5/31‘3 M Z.L4) ) (6?)
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and from egs. (66) and (63) we see that eg. (67) becomes

Wz’(y, 2, 9222 )Wolyatz, Ys¢;) Wy (4325, 9444 )
“4 (ylt‘) gltl} 932"3; 5/4t4) = JW (’:/zf) - ’ 214;2/32&3 : ° (68)
1 2 !/ 3

We may determine Iy M{' = = =T, in a similar fashion,
In addition to the previously-mentioned conditions on ]1 it

must also satisfy the condition

Py (4] t) =]dy3(y,lyt,)3(y{yzf~z‘,), O £t 2¢. (69)

Equation (69) is called the Smoluchowski Equation.

The next step would be to consider processes that are completely
described by Wiz s I¢; s We 9 etc. Physically there are few
examples studied which involve these higher order processes. Sometimes
when a process is not a Markoff Process we can find another variable Z
which combined with ¢ makes the process Markoffian. he variable Zz
may be j%z or another coordinate. In this case, the Smoluchowski

Equation (eq. (69)) becomes

P (y,21y,2,2) = f/dydzfi(y,z,!yzz‘,)l’z (492)4;2, t-2) . (70)

A further classification of the random process results when we
consider whether it is stationary or non-stationary. Although precise
mathema&ical definitions exist describing stationary and non-stationary
processes, it is not necessary for our purposes to consider them and we

will use a much simpler and perhaps intuitive concept. Assume for
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example that we have a large number of identical systems each one
acted upon by the same type of random process. If we record some
parameter of interest Y for such systems over the same interval of

time, we would have an ensemble of records as shown below.

Py Nl DN N BV . O
yz o 4 t

5} PN i Ve AP

ENSEMBLE OF RECORDS FOR PARAMETER Y

SKETCH 1

Assume that we compute the average value of y’7at times t

and Q « We will say that the process is stationary if

<yhtp = {y) (71)

and non-stationary if

) # k), (72)
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where
yrt) +yl(t,) + ---- + 4h(2)

Cy"(E) v i

I

~
~
2
St

Roughly speaking, the process is statiomnary if the ensemble of funcitions

9, 5, Y3, —————4, is invariant under translations in time.

bAnother important concept is the Ergodic Hypothesis. If we have

a random process in which the functions of the ensemble are similar in
nature, a kind of statistical homogeneity exists. This is desirable
since then the statistical properties of the process can be deduced by
considering any one function of the ensemble at various times or
considering the various functions at a single time. Esseuntially, what
we mean when we say a random process has the ergodic property is that
time averages are equivalent to ensemble averages. Determining
whether an ensemble of functions has the ergodic property or not is in
general a very difficult problem.

One problem in particular has received a great deal of attention,
that being the Gaussian Random Process. In this case we say that the
process is purely random, stationary and possesses the ergodic property.
In addition, the distribution function of the process is Gaussian. By
purely random we mean that the process is completely described if we
know W (y¢) . We assume that VW is a Gaussian distribution which
is a reasonable assumption. From the central limit theorem,; we Kknow
that if some process prodﬁces an effect Y with mean and variance
6% alarge number of samples will have (y) normally or Gaussianly
distributed. The stationary property insures that the ﬁnderlying

mechanism causing the fluctuations is not changing with time so that
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W, is independent of time and hemnce T (y#) becomes W, (y) . The
ergodic property, of course, insures the equivalence of time and

ensemble averages so that we may say

M
| Z Fo (#) o
ﬁiz—”’iﬁ—/,— = #nm T/F(f)dt

(o]

Hence, we neéd only one record to obtain the required statistical
information provided we average over intervals of length 7 where

7 is much longer than the greatest period appearing in the freguency
spectrum.

In general, there are two methods of dealing with the Gaussian
Random Process, these being the Fourier Series method and the Fokker-
Planck method. In the Fourier Series method we consider the actual
fluctuations in time of the parameter of interest. This parameter is
developed in a Fourier Series in time but now the coefficients of
the terms of the series are no longer constants but random variables.
An important theorem in this method is the Weiner-Khintchine relation
which connects the autocorrelation and power spectrum of a stationary
process by means of a Fourier Cosine Transform. In the Fokker-Planck
method we note that for an ensemble of systems we can consider the
variations which occur as similar to a diffusion process. T&e distri=
bution function of the random variables of the system is seen to

satisfy a partial differential eguation of the diffusion type.

74
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For more complicated processes it is possible to obtain mean
square values of the parameter of interest, (il.&., <y2(?L> ), by
using a modified form of ihe impulse wmethod but this gives no informa-
tion about the probability distributions which one obtains by using
the Fourier Series or Fokker-Planck methods. The following material
summarizes the Fourier Series and Fokker-Planck methods of treating

Gaussian Random Processes.

2.2 FOURIER SERIES METHOD

We will begin this section by demonstrating some results which

will be needed later, namely the relationship which exists between the

power spectrum and autocorrelation and the form of the multi-dimensional

Gaussian distribution.

2.21 Weiner-Khintchine Theorem

To begin with, assume we apply a periodic voltage &, to a
linear, time-invariant circuit which acts as a filter with a freguency
response function /{&uy o We may represent the input voltage ¢&;,
and the resulting outpﬁt voltage by Fourlier Series. If we place a
resistance A; across the output terminals, and assume the circult is

sharply selective, we can show that the average power dissipated is

(75)
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where d; are ﬁﬁe coefficients of the Fourier Series for &, e

In order to avoid concerning ourselves with factors of pro-
portionality, we generalize~our definition of power. We say that
for a real-valued function of time x(#) the instantaneous power

associated with x/p) is x7#) and that the total energy o is

¥, = fav(udt = / KAt (76)
and the average power isSs
T
¢, - Fm—| y2t)dt
= Tee o | X@) : (77)
-T

When the total emergy of X)) is infinite we still assume that

it has a finite average power which means that the limit of eg. (77)
exists. The integrated square of X(¢) , however, is infinite and we
caﬁnot define a Fourier Transform for xvt) since the integral for ‘?(au
will in general not converge. By using the‘truncated functions X}(f)

and defining the power spectral demsity of X(¢) as

il g@l* @]
2T A = 7 ? (73)
we are able to show that
o o T
() do = %M : (¢) dt
A - (79)
() ~“T
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It can also be seen that ]TYCQ) is real-valued, non-negative, an even
function of & , and invariant under a translation in time.

Now assume that X(z‘)‘ is a function such that ,Z_(a)) and TJT (@)
exist and that X(¢) represents a stationary process having the ergodic

property. By defining the autocorrelation function yV(fj as
T
. )
Yir) = Fim, P / ¥ () x(t+7)dt (80)
-7

and computing its Fourier transform we may show that

@
2
JT(a.)) = —77——/}/r(d cos @Td?, (81)
o
and
’/f(t') = /I(w) cos wT dew, (82)
(2]

Equations (81) and (82) are the Weiner-Xhintchine relations
connecting the autocorrelation and power spectrum by means of a
Fourier Cosine transform. An important case is that of so-=called
“"white noise™ where all frequencies are present in egual amounts and
the power spectrum is "flat" or constant. In this case egs. (381)and (32)

reduce to T
4
M = D s

a2m

vy 2p&(@ .
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For a noncStationary process D. G. Lampard has generalized the
relations (83). He considers a pair of non-stationary functions X (T)
and X, () defined in the range -oo £ 7 £ # and which are zmero for Z>7¢ -

The joint energy of the component of freguency # of X/ and X, in this

order is
t t
A (zf‘, £) = ’-\/7 (t,£) ?z*(t/ £ = '[/‘X/(f:)xz(tz)e‘z”’e(i"t')dt, dt, . (ak)
“o oo

The cross correlation function /e /zj z) of ,yl and ), in this order

is defined as
Y (2,7) = x@pe-7) (85)

where the brackets denote the average value of the product is to be

taken. In the non-stationary case, ensemble averages rather than time
averages must be taken. Taking an ensemble average of both sides of
eq. (84) and using eg. (85) yields

t ¢
(4P = f / Yol 1)@ g e, (86>

~00 ~Co

If wve define T = {,-¢ eq. (86) may be written as

t o o
alt, f) = f [ Ylta-1, ) Yt de + f f Y2 (t, -) & 4 de
— o -0 -0 A

T o
- | {W‘"?fﬂé""’” R P U PR
2



Since ¥ (£-1¢,-T) = % (z,7) s eg. (87) becomes

t e
Nz (L Fp = f f {Wt,, et 4 %,(z-,,r)e“"”}awzc

-eo O

Defining the cross power spectrum as

Matt,t) = e {Oneom) .

we f£ind
@
—. . ?’
T fF) = Zf{gﬁ,z(t, D) e Ly (1, 0)e?™ }Jz',
[¢]
For the case where X () = Jg(t) we have

JTe) = 4/}# (t t)cos 2nF T dT,

o

which is analogous to eq. (8l) of the stationary case.

To get the inverse of the relation given by eq. (91) multiply
IT, (¢ f) by s , I, L) ©y 6-42”’90, integrate over £ from o to

@© , and add the resulting expressions. This yields

(88)

(90)
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f {Ez () ™7+ T, (zs,c)e-"”'”’} df
[+

@ e

4[/\{%2(1‘, T cos anf(F-T) 4+ Y, (2, T) cos z7rf(7+’r)}dta/#. (92)

0 o

i

Integrating the right-hand side of eq. (92) we find

Vo le,p) = =[{Tatpe o T oetidr,

This is the inverse of eqg. (90). If X (Z)= X(¢) | eq. (93) becomes

Vit = j]T(t, F) cos amF T dE . (9h)
o]

Equation (94) is analogous to eqg. (82) for the stationary case.

2022 Multi-Dimensional Gaussian Distributions

It 4, » Y5 - - - Y, are random variables with means
zero, we say that they are normally distributed in 7) dimensions if

their distribution function P(y, 5 Y, 5 = = = Y, ) is of the form

I -
P(y,, Yo, " "uYn) = W exp{-;—‘}/% '2/'} 3 (95)
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where
o s z
E}j} is the matrix of the second moments 7"/' 5
2 .o
i = <£/‘: _’7",) 9 (/s = 1y 2, 3y ee=e- s 73
E}ﬂ]-' is the inverse of the matrix Eﬁ] s
|.& |  is the determinant of the matriz [F)
{}/'} is a column matrix with elements ¢, Yz 3 === Y
and o
{2/ } is the transpose of the column matrix {N} .
Hence
n n
T g -1 _ 27:'./'
Ig//fyz/l - Z ARG (96)
i=! =/
with /‘“j“,/. the cofactor of 0:./". in the matrix [fﬂ . The marginal

distributions £ ( Y 3 Y% s = = -4 )s where r<€7n , are found in the
following way

© @ @®

P(9/) Y2, === 4) = j\—'/p(yu Y2, _"‘/Vn)df/m/ ‘_‘C{,‘)’h . (97

If the y; are independent

0 = Syeyr = <wp gy = 9 (98)

Hence Efl] is a diagonal matrix and

P <5’/, 91, T yn) = P(S’,)P(yz)——-P(%) J (99)

with each P(%.) being a one-dimensional Gaussian distribution with

®

X . z
mean Zero and variance [7:.“.
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For the special case of two dimensions

o 2 2
9 _ T g ,
. Ts 0
Y 2 2 7]

/ 0.22 —072
& 1= ° 2 2 )
gl B V/d -0 7z

gt

_ 2 2 2

Yl = G, Gza - Tz 0z B

and hence

T o~/ _ / 2 2 2 2.2
!3/‘9 7/’ = “_Iﬁ! (O‘sz 20, XY +0,7Y). (100)
If we define
2
07/ - G}Z J
2 _ 2
T2a = 0:7 J

and

then eg. (95) becomes

.P(X,Y)‘ = ‘ i exp{ u (Xz _2eXY + YL)} . (101)

2l -7 o5 @ 20(1-8%) \og  ox@ OF

It X andY are independent then z s the correlation coefficient,

is zero and we have

PXY) = P(X)PY)

X2 Y*

Y / 267

[———— [ — y
(zzra;e )(szr@ € ) . (102)

]
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In general we may say that if yl s Y, = = =,4Yn are n
independent, normally distributed random variables with means zero and
variances a‘rz and Z 9 Z, == -, Zm are m linear combinations of

the _'/‘ s then the 2." have an /77 dimensional Gaussian distribution

given by

I
- ey {——l z4” z” (103)
P(z, =z, -———z,) (z1)™% \[1A] 2 5

where

(21 - Col COCTTHY
[é;] = [%U Vy] s

©

5 O s i#)
y o= . ?
/ J Z =J
2
0; = second moments R

and

L]

]

[-95;] a non-singular matrix of rank wm<np
whose elements (.; are constants.

For the special case of two dimensions, pn=-m =2 , and

PX) ———

and

P(Y) ¢ 27 .

n
n

"
B
)
0

Let Z = [ and /2, =V where

Q

i
©
>
*
>
~

(10hk)

<
©
M
*
|~<’
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We may solve egs. (104) for X and Y getting

X = b,/ U + b,av- 9
and (105)
Y = DZ/U + béz—\—f— °
XY X ) .
Now P(UV) = —"-UI—/— PD{Y) where | U is the Jacobian of the
transformation. We see that
XY _y
J(qu— = | g i s (106)
and
-1 b _
G- [5 %] -2 9]
bZ/ bzz lgl ~Yas 9//
Hence
— / ! 2 2 (108)
P(ov) = '27,_"" "'0_""' - ?XP{'—(i(.z + Yz"‘)} .
|9lay "Lz \a? o
Since
2 2. .2 — 2 =2
X% = b,U" + 2b,b, UV + b,V |
and (109)
>
Y? = bEU o+ 20,5, UV + bV,
eg. (108) beccmes )
- l / b/f bzz/ 2
U = —— e [ 2
P( V) Zﬂ.lg'o} 03 C’XP{ 2 [(sz 0'52

by, by, bZ/ b2\ _ ( b/i b:z ) =
— i —— 4 [— e —— .
+ z( xz s UV xz 7|V (110)
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How

-0 5]

BT GTETETLY - [ &7 o[t o] es

é 2

and

<

Z = . (113)

N

Hence

2

2 2 2
- / T ). l / {(b,, 62') 2 (b// bIZ bz bzz —_ (blz bzz o 2
—lz'd = -—{ (=L v+ = U F 2+ 5= + | e 114
zl z w0 % 0 )W o q;‘)V (11

In addition
2 2
a] = 191 |21 = |9 & @

so that

el - FIK A (116)

Using eqs. (113) and (115) in eg. (110) reduces it to the standard form

— ! Iy .
P(vv) = W&p{-;iz A"zl} « (117)

This does not prove relation (103) but does verify it for the two-

dimensional case.
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2.23 Relation Between Power Spectrum and Mean Sqguare of

Fourier Coefficients

Before presenting the treatment of the Gaussian, random
process, one more relation is needed. Let X(#£) be a stationary,
Gaussian, random process. ILn some interval O <£#<7 we may represent

X(#¢) by its Fourier Series

©
Xt = Z (d, cos not +d, sinnwt), (118)

n=i

where o}, and o': are determined in the usual way. If we define the

functions C-’: (t) and QZ, t) as

2
_ 2 cos nait 0 £t 4T, g
C,,(f) + CoS Nt (119)
0 J otherwise
and
7 Lsinnwt, 0 £HET
? 0 ) otherwise (120)
then we have
T N
d, = | &(T-7) xttrde
and EA > (121)
dy = / —n(T'?)X(Z‘)a'T
7] J
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The coefficients ¢}, and ca' are assumed to be normally distributed

and it can be shown that for large 7~

- 2 . 27
<dkz> = {dz) = ‘.,.—]T(ké)) . (122)

2.2L Solution for Gaussian Random Process

With these rather lengthy preliminaries completed, we may now
proceed with the Fourier Series method of treating the Gaussian Random
Process. |

Consider ¢r¢) to be a random, stationary function repeated
periodically with period 7~ , where 7 is large. We can develop

Y(t) in a Fourier Series

[« <]
ye) = Z(dkcos amfyt + dp sin zw/;t) 5 (123)
k=l
where
PRLE
kT
We assume <ynﬂ> = ¢ , hence we have no constant term., In addition,

we assume that d, and 5F are random variables, Gaussianly distributed

» R

with average value zero, and that they are independent of each other.

—

The distribution funection for the ¢, and ck then becomes, using

%
eqs. (99) and (102),

o o ( (d2 +di)
P(du dz,___,dr s dz,—'_) = T[ m% /i Za'kz ) (122&)
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where
2 =2
V’; = <dk> = <dk> .
We may now derive from eg. (123) the quantities <yz(ﬁ> . <92“)> 5

and yB§E) | e see that

<y2(t‘)> = ZZ {<dkdf> cos 2miyt cos 2wt + <c7;?¢7£> smzm‘:kt Sén emfet
R=l Lt

*@ko_’t) cos 2mhyt Sevznfpt  + <d£c7;> cos 2mh 1 sin 2mdy z‘}‘ . (128)

Since the 4. and q,é are independent having means zero eg. (125)

%

becomes

(2]
By = Z { ddi ) cotamft + 2D st'nzzvfkt} . (126)
>

Using egs. (122) we have

. e0
Gy ==y Tl = j T (R . (127
Tk:l 4
Since
ylt) = Z{—szkdksa, 2wt + 2mfy d), Cos zrrfkt} 5 (128)
k={

proceeding as before we find

\ 4772 & 2 o r 2
Goy = == ) Tl = 4’*]’ Tt df (129)
o kel 0
and o
(ytt)ge)y = ; 2 2 .
y > - 2mfy Snszki‘ Cos szkt _<dk> + <dk } =0 . (130)



by

If Y¢#) is considered as the output of a linear system with a
Gaussian, random input, then it is known that y(t) is Gaussian also.
Hence when (y(t)) = 0 all that need be computed is <y2{t)) for this

completely defines the probability distribution in this case,

2.3 FOEHER-PLANCK METHOD

In this method we solve directly for the output probability
distribution since it is seen to satisfy a partial differential

equation of the diffusion type.

2.31 (General Theory

Let us begin with the Smoluchowski Equation (eq. (69)) written
in the form

Pxly, t+4t) = /o'zP(xlz,z.‘)P(zly,Az‘) . (131)

Equation (131) tacitly assumes that the random process is a Markoff
Process. In addition, the moments of the change in the space coordi-

nate in a small time A# are given by
n
o (z, 4¢) = fdg (q-z)"P (zly,at) (132)

It is assumed that as Af -0 only the first two moments become

proportional to A+ so that

_ , o (z, AL
Alz) = Xim, ——-——Ai‘ L (133)

and

a(z, 44

Bz) = jm, YRR (134)



both exist. Auv oc"(Z,At) , where N23 , become proportional to
(8 f)m where M22 . In the case of a linear, single-degree-of-
freedom oscillator, the values of A(z) and B(Z) can be computed from
the equation bf motion which is referred to as the Langevin Equation.

Consider now the following integral

P xiy,t
J =fdy €W 5 o (135)

and let £(y) go to zero as Y—-tco sufficiently fast so that the
integral exists. With the use of eq. (131) and the Taylor Series

expansion of £(y) about Z it is possible to show that

P a(AP) 1 (8P .
/dy&“(y) {a—t Y 7 } =0 . (136)

Since eg. (136) holds for any f[ﬁp we have

P _ _o(p, 1 2D asn
ot Yy 2 3y
In A dimensions eq. (137) becomes
oP &9 (2D L 52 (ByeP)
PP | Ny 8 Lae _Zz —2 ke (138)
ot oy 35". 2k=/ =7 ka IYe

Bguations (137) and (138) are the one-dimensional and A/ -~dimensional

Fokker-Planck equations. We must compute the Z and 54, ) and solve
¢
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the equations for the probability distribution function P

o

2.32 Solution for Linear, Damped, Single-Degree-of-Freedom System
The equation of motion in this case is
dﬁﬂ dy 2
+ g+ = F(t) (139)
dt Pge T < g
where
B- = 2/000

We will assume that #Av7) is purely random and Gaussian so that

<F(z‘)> = o0

(1ko)
<F(t,)l-‘(fz)> = 2D &(¢ -2,) .,
Equation (139) may be rewritten as
g 1
ot P
? (1k1)
dp g 2 (¢
L (Bpray - R,

It is clear from egs. (132), (133), (134), and (140) that



8y
B,

B,

and hence eg. (138)

aP
=14

Equation (143) is to be solved for P

Equation (144) is merely the statement that at =0

certain that ¥+=4,

and

where

50

_ dim RGN -
- bt—+=o0 At P F)
. AP} —

o < i,f = -(Bp +ey)
— Lpl.'l'n <(Ay)2> = 0 3 (llME)
- At=0 At )
= — Lim Sé'i{_A_?_ =
= Eﬁ/ - 4t-=0 Y )
- oum S8

AL>0 g >
becomes

P , 2 2 oP (143)
Pog * 5o {{3,, +a)¢_y)P} Fys

with the initial condition

Plyip,0) = &(y-4)8lp-r) (114)

we know for

and P=y =g . By defining

z, = p+fy
z, = p+8Yy ,
p i,
o =L,
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and

it can be shown that eq. (143) reduces to

oP

S ° gT(zP) + f—(zzP) + D<—+‘52—;>P (145)

Now consider the solution of

N N
cPaun 15 5e 22

l'l L:[ jgl

with the initial condition

Pl Yor=-3%,0) = 8(y,-Y.) 8(yz-Y2) =7~ ~S(Yn ~Yno) - (157>

This partial differential equation can be solved by the Fourier

Transform method and we find

B e+ 25 5 10

j :

This can be shown to be the Fourier Transform of an A -dimensional

Gaussian distribution with means

Agf
¥:) = Yo € (149)

and variances

, (150)

Cl -9 -90> = =557
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where
g o= <y ) -
Now eq. (145) is a special case of eg. (146), hence the solution of

eq. (145) is a two-dimensional Gaussian distribution in the variables

Z, and Z, where

<Z/> = Z,oe_ft B
(z2) = 2z, )
= )2 D .
C@-2r) = S0-eF, : sy
<(Zz—fz)z> = 7’(/ _e"zft ,
and
D
((2,-2)(z,-7,)y, = -;:?(/-e-(f*é’f)_

<

Z, and Z, ~are the initial values of Z, and Z, corresponding to

the initial values of y and p , that is

Zo

P + 1Yo,
and (152)

Pot$Yo -

)

220

Hence, -the solution of eg. (143) with the initial condition eg. (1b7)

is, in terms of the variables Z, and Zz s gliven by

Z = 2
/ / Z, 27 Z2 .
Pz,z) = 2mall-T* oo &F{- -7 ( 2 2,22 * ¢1)}’ (153)



where
(T/Z = <(Z/ "7/ )2> J
2 = 2
o, = <(ZZ "’Zz) > >
and
GET = {(z-2)(2,-Z) -

Using egs. (151), (152), and the relations

z, = Pty
Z, = P“e'?y ’
£ = -%+[LJI ,

and

. ¢ =

equation (153) can be written in terms of ¥ , P , B s &, and @,

We must, however, compute (P) , {y) s {(p-ﬁ)z), <(y_§)z) and

<(P"Is){.‘!~$7)> o After some tedious algebra we find,

- — 2 E
)Do _—A;t B C()o -=
_ Lo -3 _=2 i 2% o,
<P> = ©, é {(Jl CoSa,t 2 Sen Q,t a)lz Yo € Sin@, t

8 8 z
Po -5t Yo 7 8
<y) =j:e2 Sin @, +_“7/—ez (O,casw,i""—zﬂna),t)

s D Bt , , A
{(p- p) D= —{, - (a), + Z—sg-nzo,t - ,gco,&‘n W, cos _co,t)}

J

(154)

(155)

(156)
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. D "* 5
<a),,(y-g)2) = —ﬁ;{, - E (a),z + 75"”Zﬁlt + P, sin &t cos a),t)} 5 (157)
and
D4, 5
(& (p-pll-3))y = —3 &* sin® )t : (158)

With the results of eqs. (154) through (158) we have the solution for
the joint prqbability distribution of the variables Y and j =P
for a single-degree-of-freedom, linear oscillator by the Fokker-Planck
method,

We now have itwo methods for solving random vibration problems,
namely the Fourier Series method and the Fokker-Planck method. The
limitations of each method should be noted, however. In the Fourier
Series method we are unable to solve for the probability distribution,
unless we postulate that the input is Gaussianly distributed; for then
the output is also Gaussian. The power spectrum on the other hand may
be any appropriate function. In the Fokker-Planck method the input has
a flat power spectrum but not necessarily a Gaussian distribution
function. We saw that for this case the output will always be Gaussianly
distributed regardless of the input probability distribution.

When we deal with more general problems the probability distributions
are very difficult to determine. If we concern ourselves only with mean
square averages,‘we may compute them duite readily by the impulse method

discussed previously. The next section deals with this matter.
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2.4 CALCULATION OF MEAN SQUARE VALUES BY THE IMPULSE METHOD

When the input to a system does not have a Gaussian distribution
function or a flat power spectrum it is in general extremely difficult,
if not impossibley; to find the probability distribution for the output.
If we limit ourselves then to finding average values for the variables
of interest we may compute these quantities by using the much more
elementary concepts discussed in Sect. 1.21. We will begin by computing
the mean square displacément for a single-degree-of-freedom, linear,
damped oscillator when the exciting force has a “white" or “flat' power

spectrum and when it has a more general power spectrum.

2.41 Single-Degree-of-Freedom System

It is well known that the response of the simple harmonic

oscillator is
+

Xt = jh(f—r)R(r)dr, (159)

[+

where h({-7) is the response to a unit impulse., We write x3(4) in the

form
4

4
x° =f ht-t)h(t -cHR(DIR(T*)dTd zt . (160)
0 ¢
Taking the average of both sides of eq. (160) leads to

£t
<Yy = ][h(t~’c}h(f-t+)(R(T)Q(t*)) drdet . (161)
6o o0
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Equation (161) is the expression for the mean square displacement of a

single-degree-of-freedom oscillator.

2,411 WHITE NOISE EXCITATION. Now < E(r)R(t*)) is just the autocor-
relation of the exciting force and for the case of "white' noise we

see from eg. (83) that

RIT)R(T*)y = 2D 8(T"-7) . (162)

Using eq. (162) in eq. (161) we find

t

Q) = zo/{h(f-*c)} dz. (163)

[4]

Using the expression for A(¢-T) in eqg. (163) yields
t

' 2D
(x2(t))y = o2 /[”U"G’w send),(t-p dT (164)
7

(-]

Performing the integration, rearranging terms, and recalling the

definitions of A and «), we find that

0 e—[ft BZ
<G>oz)(z(t)> = —;{/ - 4)2 (&)]2‘ + —;S[nz‘o’t + Ea),sin CJIt COS(JIt) } N (165)
()

Equation (165) is, of course, the same as eg. (157) found by the more
elaborate Fokker-Planck method. We may use the same procedure as was
used to determine the result of eq. (165) to compute other averages

such as <{X@)X(¢))  or <S<’(z)> .
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2,812 CENERAL POWER SPECTRUM, Let us now consider the case where
the execiting force no longer has a f£lat power spectrum but where it has
some general shape, say J[(Ww) . We begin as before and write the

mean square displacement as

tt
KAy = /]h(f—?)h(%—’c*)<R(r)l?(f*}) dedt? . (161)
o o

We now use eg. (32) which relates the autocorrelation to the power

spectrum and find

@
(RIQR(TY)y = Pplz-v7) = fﬂ'(w) cos w(z-¢") do . (166)
4]

Substituting eq. (166) into eg. (161) results in

o t

t
xEt)y = /H(w)dwjfb/f-?)h(t—t*) cosw(t-t*)dr d” . (167)
[] o

(2]

Using the expression for h(4-7T) , eq. (167) becomes

oo

x*)y =f

If we use the exponential expression for-{hhaz(¥-T)ﬁha%&-fvcoﬂJ(?Qﬁq

+ t
T & (t-1) —pallt”
ca(z dwj f@’oq’{f t)e/‘%“t)&‘nw, (t-1) sin@, (¢ -t*) cosw(r-t*) dTv de?. (168)
0 o .

and perform the integration we find



r TT (w)

&= 4 8
x3E)y = IZ(‘O)|Z da)\:/-w {I +Z',‘.Sina),tCaja7,f-(acosa),t-'f-;)-'smw,t)casddt

20 B- 4%+ 4u?

- 3 Y + n e+ . e
2 Sin &)t sinei 47 Sin “a, }:l (169)

Of course, when Jl{(@W)=

:31 we have the case of the flat spectrum and
eq. (169) reduces to eq..(165) as expected.

The impulse method allows the average values to be computed in a
straight-forward manner even though the integrations may be quite
tedious. The method, however, has the disadvantage in that it yields
no information about the probabilitybdistributions of the variables.

In the next section we shall consider multi-degree-of-freedon

systems, excited by a very simple type of non-stationary exciting force.

2,42 Multi-Degree-of-Freedom System

We will consider a multi-degree-of-freedom system with a
general type of damping so that real normal modes do not exist and

use must be made of Foss' method described in Sect. 1l.2.

2.421 DISCRETE SYSTEMS - NON-STATIONARY EXCITING FORCE. From

eqg. (33) we see that we can write for the response of the 2*6 nass

N t

- I n('t'?
{%} = ; 5?:{55?}/5“ ’F (04 . (33)
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The transpose of eq. (33) is

N t
T ! m|T m (¢-T7, +
(o) = 5 2{af e rnerae .
mer Rm ;
o
We write g; in the form
T N N | t t
) ={a}{e} =20 7a {¢TH¢?}/ / EEPem e (0 F, () dedet 7
n=f mz AW
4 0 o
Using eg. (18) we see
. N
Falt) = {¢"} {f(t)} = Z¢7ﬂ<f) ) (172)
iz
and
- N
Fo(z") :{¢"’} {f(?")) = Z 93.'"75.(’(*) : (173)
J=1

Using egs. (172) and (173) in eqg. (171) and taking the average of both

sides yields

tt N N

N
! m]" [ n 2T, -t
) = Z@m@n {¢C} {¢£}fffarn(t ) stm (-2 [Zzﬂﬁ‘ff?n(’{'“)’f"mg‘dmi (174

o o (=1 4=

Note that { (v} is the force acting on the (¥ mass at time T .
e (T)

We see that

(fi(T)f(x?)y is the cross-correlation of the forces

for [#.J7
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and

{E(DFi(T?)y  is the autocorrelation of the forces.

Let us consider a very simple type of nom-stationary forcing

function defined by the following relations

<E@E () 0, iE (175)
and

)

(A @AY = zD(,_e””)é(l-e‘”?%(’c-z*), i=j . (176)

Eguations (175) and (17€) mean that there is no correlation between
the forces acting upon different masses and that the autocorrelations
of the forces represent random processes that at time FA=0 begin to
build up exponentially to random stationary processes. They may thus
be thought of as transient non-stationary processes, Using egs. (176)

and (175) in eg. (174) yields

9. = i i @::;m {?5:" }T{¢? } { ¢m}r{ ¢"} 6(“"“"")12(“"*“”}?(/—(2"7)0(?, (177)

where we have written

(¢} {#} == i¢”’¢

Integrating eq. (177) we have

N N
2 2db [ m)" { n} { - T{ @t ani@tn 1+ petmramit )
<9¢> ZZ O?n @m {¢4} ¢4 ¢ } ¢} (qh"'”fm)z +/7(’fn"'0$m) . (178)

n=tm=
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Using the definition of {éé} rom eg. (34) and following the same

procedure we find

N N
20 2Dyt [ m)" n} oV [ 1| @nt )€1y + 2@ ) |
<4/ ,,Z,,,Z: RnRm { "} {¢" {¢ } {¢ } (An+dm)® + An+aip) |’ (179
and
L ii 2D din mU [ 7T ( n oty ) (€71) + 7 (5% e ) (180
@4 n=,m;, RnBrm, {¢‘} ¢‘} {¢ } {¢} (dp+am) + Alotn+am) |°

To clarify this method, let us consider the two-degree-of-freedom

system shown in Sketch 2.

\ X Xz
N .
\—""'\/\N\/\r"—' Ca —"VWV\N"—"'—"/
‘\: My rl_E ma ;é
N—iE (E %
\Q < Cj ///

TWO-DEGREE-QF -FREEDOM SYSTEM

| SKETCH 2
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The system parame'“ters have the following numerical values

lb-sec*
rn, = ZOW— )

- 2 |b-sec?
a7 o

)
}?4 = 400’;[27— )
Ib
ft ?

kz = 300

/b -Sec

b -Sec
S 7

and
/b-sec
Csy = 5 ff

The kinetic energy 7T  is

- _ .2 .2

T - 2 lel -+ mZX1_ )
the potential energy Vv is

14 = —ZI‘(I?,X,Z + k’zxf) ,

and the dissipation function ) is

Y

/ . 2 . L 22 .2
_-2-.<C‘lxl + CZ(X'-Xz) +63x2) :

(181)

(1¢

(1

5

(]

2

2)

3)



Using the expreésions for T 9 \4 s and D in Lagrange's Eguations
yields
m,x, + (¢, +c)x, — C.% + Rx = 0 ,
(184)

mz:Y.z - Cz).(; + (g + Cj)).(z + kzxz = 0

In matrix notation, eq. (184) becomes

(] {7}~ [F1{s}+ =16} = 2 (185
B
(-1 - :“:Zf A
IR N
(- {E)
(s} - {4} ,
() - {2}
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Detining [®], [:K] , and {y} es
- _ |Le] [m]
%] -1 -]

<] - -1 [l

,
,
e
U=y )
X

edq. (185) becomes

OIS ROIS R

. ;
Letting {5’} = " {f} eq. (186) becomes

[+ [0 - o -

Equation (187) mey be written as

Ll - 4{d)
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where

A T - (6 6
L] - LIl - L fe i)

and

g -! 'S
[c] = [l?] = A (190)
0 Rz
Hence, we find that
_m 0
- = R,
[c] [m] ’ me | (191)
Rz

and

¢ +C; Cz

N ¢
—[C] [’J ) Z Gela| (192)

Ra k2

From eq. (188) we see that if non-trivial solutions for {;0;} are to

exist then the following condition must hold

[U] —d'—[I] = 0 . (193)
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Using egs. (189), (191), and (192) in eq. (193) yields

/
po 0 / o

!
0 - 0 [

= 08

R, k, (26 R,
0 —— —_— —_ - —_—

k2 R. R2 x

Expanding this matrix in cofactors of the fourth row yields
m

+9 R “2 +
Rz

Substituting the numerical values for the parameters yields

m ag ¢ + C; «
R

)

i

2
LSy ’) L
kz tl?lkz

(/Oacz + 2a + zoo)(30a2+3a< +900) -—4.5052 = 0

2

or

4 1.4 3

90.115 2 22
a +T¢z +

oa° + —a + 200 = 0
3 3

Using the Test-function Method for determining the roots of an

algebraic equation we find that the four roots of eg. (196) are

0.

(194)

(195)

(196)



and

These are the eigenvalues of eg. (186).
we make use of the fact that they are proportional to the cofactors of

any row of the matrix of eguation (l@h).

row

a =

Ca
Ap K,

! G +C

e
an Ik

.

¢ C»

q:k?

2
bai dn K

I c,+C: W,
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—-0.0973

-0.0973

-0.1372

-0.1372

+ 4.421%L

"—4'421: )

+ 3.24¢ ,

- 3.24¢

S

n
Hence we see that the form of {§} is

To find the eigenvectors

We thus have for the fourth

<,

Y
an By

C, *"z mi
2

dn R dnk,
<,

J:QI

G +Cp m
2

ay R, Ink,

(197

(198>
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as was indicated in Sect. 1.2.

The four eigenvectors {@"} are found by using the values of
A, from eqsS. (197) in eg. (198). Substituting the numerical values

into egq. (198) we have

: 4 383 x jo4 - .69 x )05

~0.J0 + 4.42¢)

{ -3.00 x 10°¢ - 2,62 x Jo-¥
§I

= 5 P o (ZOO>
3.83 x 10-4% — |69 x )o~F;

¢

-3.00 x j0-¢ - 2.42 x 107%

!
{252} is the complex conjugate of {Q} 5

q

7.l0 x 04 6.20 X 1075,

(~0.14 + 3.24)

- -3 -2,
' 3 2.1 x 10 /.38 X J1O"%¢ (201)
§ = ¢ “ 4
W J

7.0 x 104 - 6.20 x )07

=24 x 10°3 - 1,38 x jo-2;

and

{54} is the complex conjugate of {§3} .
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We may now éompu’ce the values of &?n R From eg. (17) we see that

SR IR R

where
{¢n} is defined by comparing egs. (198) and (199).
Hence
, 3
_ G
2
_ ' %n R
4" =
= > ; (202)
! C/ +Cz m,
- 2
O‘n An k[ anl
9 J

Substituting numerical values into eg. (17) we find the four values of

&, to be

(i79 + 829:) x (08 ,

o)
1

X, (179 - 829:) x 1078 5 ,
(203)

Ks

(—/) 120, 000 - 3,580,0006) x /078,
and

]

&4

(-1, /2o, 000 + 3,580, 000.) X 1078
%

Consider the external exciting forces to be described by

eqs. (175) and (176). Then for coordinate ), we have

N

N
2y = 2D mTf wl [ (”‘n+°/m)(€_At‘ 1) + 2 (% om)E_ 1)
{xz > Z Z @hd\) {¢2} {¢z} {¢ } {¢ }[ (et "‘afm)z + Ale, + ) ’ (204

h=/ m=l m
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where

¢n _ _ , _ (; 1"02 _ h'l,
= 3 2
2 %n %, ki An R,

For the case where A=3 wusing eqs. (200), (201), (202), and (203) in
eqg. (204) we can solve for (X;) o The algebra involved is tedious

but the final result may be written as

j - 3 i}
— (X2 = 977 + 44 - 50250~ 43 02H

+2.31 & %% 55 (8841 + 5.20) + 2568 27T 5;n(698E + 3.45)

~0235C

14.08 & sin(7.664+4.27) + 921 € %23 51182 + 0.48).

It can be seen that <Xf) approaches the value 977D« kfé as
t > o0, The buildup to this value is exponential with sinusoidal
fluctuations superimposed upon it. These fluctuations are damped out
after approximately 15 seconds. Hence, as the random exciting forces
build up to their peak values the response of the system builds up to
a steady state value and the initial transient fluctuations are
eventually damped out. A curve showing (xf} as a function of time

is shown in Fig. 1l.

2,422 CONTINUOUS SYSTEMS. As a specific example, we take the case

of the simple beam. We see from eg. (5€) that the response is

t

@

2 )

Xtgt) = > ﬂ,__f!_j'ear,.(f U (1 de |
e Mo A

(z05)

(206)

(56)
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where A, and [,  are defined in Sect. 1.222 and 95”(5/) and
&, are eigenfunctions and eigenvalues respectively. We write

X*(4¢) in the form

t ¢t

<o =]

$.09) 8, &) .

xiyt) = Z “———;4 M’" // oM (£-2) gotn - T)F(T) F(t*)ydede”. (z07)
' n=/ msl ntlm

o o

Using the definitions of F;7 and taking the average of both sides of

eq. (207) we have

4 byl
@y Z nfwgff RO jf 8O IHYYPG D dy d| dT e (208)

I m=| Yo Yo

We must consider two types of correlations for the forces; cross
correlations for & # 7 , and autocorrelations for y=y+ « Other

mean square averages may be found by noting from eq. (56) that

n ¢n Y

- :
X(yt) = 2 Tfé’“"(é'?)ﬁ,(f)dt. (209)
z J |

We then have

<X%y.t))
t ¢ 94

& @ »

A, Fm B, () &, (4) .

= ZZ nth il '//e%(f'f)edm(f TD /f¢ @)ﬁ,,,(!ﬁ (f(y',()f(ytt'f)) dydy"' dtdt+ (210)
h=1 m=; Mn M’" " ’

oo 9 Yo
and
xly,t) X (t)
(211)
A 0980 D [ [
Z,mzl pRvA f f ¥t (6% f¢ 98, 81 Ll ) duel| ded o

_% Yo
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If we have the necessary correlation functions for the forces,
we then need only the values for the o, and ¢n (y) to evaluate the
averages given by edas. (203), (210), and (211). In order to determine
these quantities we substitute X(y,¢) =¢{y}e"(f into the homogeneous

xt

form of eg. (57). After dividing by e and letting £ =Uly) we have

the following fourth order, ordinary differential equation

re

Uly ¢"ty) + 2U'g" ) + Uy d"(w + Pmiy) + ary) glty) = o (212)

where
d
¢ =g o
2
¢ =9
dy?
N
R
and v ) ({4
« ™ -
dy
To be specific, let N
Uly = U, + Uy 4-U.?5/z 5
m(y) = m, + My 5 ) (213)
and
rly) = b +ny +rzyz
J
Assuming a series solution of the form
-5
?5(9) = ySZEnﬁh J (21h)
n=0

and substituting it into eq. (212) we have, after collecting terms in

like powers of Y , the following expression
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{ s(s-1)(s- z)(s-a)B} {(g(su)(s)(s- 1)(s-2)B, + U,(s)(s-:)z(s-z)B'a} ys
+ {Uo(s+ 2)(s+1)(s)(s-1)B, +U (s+1)(5(s~1) B, + U, () (s~ 1B }

4-{ (5+3)(s#2)(s+ )()B, +1U,(542)(5+1) () B, + U} (s01) (5) 5} y
""{ T (5+9)(s+3)(542)(51)B, +U(543) (522) " (5+1)B,+.U, (s+2 (50" B, +(om, +atg) B, }y

+ U,,(s+s)(5+4)($+3)(s+2)§5.+U,(s+4)(5+3f(5+z)€+U;(s+5)2(5+z)253 + (my +atr; )B + («%,m:;)@} y'm

w
+Z { Y(s+n) (sen-1)(s+n-2) (5+n-3)B, + U, (s4n-1)( sen-2) (S+n-3)-3—,,_, +U, (5¢n-2) (541 -3 By,
n=6

+(a(2m°+o(r°)§_4 +(o<zm, +o(r,)1-3‘;_s'+ arzgn_e}y‘smﬂq =0 . (215)

Since the coefficient of each power of U must be zero we see that

(i) s = 0,1,2 or3 s

(ii) Ea is arbitrary .
and

(111) B, », B,s B » B; , and B_ may be

written in terms of Bo .

The recursion relation, given by the summation term, can then
be used to express all other 5; in terms of Bo o For each value
of § we get an infinite series and the general solution for ¢(y)
will be a linear combination of these different series. ~ Hence, from

eq. (214) letting S= o 4 2, ~and 3 respectively we have
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n=0

' 22l i 2o <0
fo = ) By + ) By DB )RS (216)
h=0 h=0 n=o

In each series all coefficients can be written in terms of one

arbitrary constant so that we may write eq. (216) as
@ty = BEWy + By + BV, (9 + By y) . (217)

From egs. (213) we see that

U, 2 2 2
Fly = 1+ 2y - (*m.+a5) 4 | meten)  m, +air) S (218)
I A 24U, 120U 2oy, |7 )
KP‘ _ (“zmo +r;) Iy 2y ("‘Zmo"' ol ) (O(zmr +«r,) ¢ .
2 = —y 3 - §e + --ey (219)
120 U, 360 U, 3éov,

U, NI AA L[yl U
7, (y) -yz-—y’+—-{ - }y"*—{ ‘—'-}55

30, slul U, jol U2 Ul
N U,4 ) 307U, R U:) _ (#’'my +ar) | 4
s\Uf  uZ2 T Ul 6oy, [¢ (220)
BE U, 4uy,  sul; , 20, tar)  (m +an)]
a\v  Uf vl §401,> gdou2 |97 7

and
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. '(l];4 3ZI,ZU; +£J_zz _ (O‘Zmo_‘_q";) . (221)
rASTANEE /N VA g40U, |7

N _.?_( A +4U,3U1 _3U,U:) +2U,(o<zm°+m;) _ (&mi ratr) 8 +
28\ uy® vl Uy 1680 U2 1680

By applying the boundary conditions at Y= 0 we eliminate two
of the functions ﬂ'(y) . For example, if at Y =0 the beam is
simply supported, we know ;5(0) = ¢"(o) =0 Using ¢(o) = (0 Wwe see
that for =0 only < (0)# 0 hence its coefficient J must be

) [
- ) "
Zer0, Usin =0 Wwe see that onl hence its coef-
g B Vo Fl0)#o

ficient B, must be zero. Thus, we are left with

G

By = BY(y) +B,F ) . (222)

Now assume that at J=0L the beam is also simply supported then we

"
have ¢/£) = ¢ (t) = 0 and using eq. (222) we get two eguations

\
O

i

B, ¥, (L) + Ep];(L) ;

| (223)

i

o .

B¥, (W + BT

-

In order for egs. (223) to be compatible, the determinant of the

matrix of coefficients of B; and B; must be zero so that

1"
S

F(L) y‘f;(L) - _ (224)
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Depending upon the number of terms used in the series expressions for
%/y) and llz(y s eq. (224) will yield an equation in o of order
1 o This then gives approximations to the first | eigenvalues

o - Using each of, in eg. (222) yields approximations to the first

n
h eigenfunctions ¢n ly)

If at y=o0 the beam is built in, (o) =glto) =0 and

¢l = BH(4) + By 09). (225)

If at Y-o the beam is free, @'lo)= ¢g"p)=0  and

¢w) = By + BHY) - (226)

This method is very tedious and if more than the first few
eigenvalues and eigenfunctions are desired, it becomes impractical to
use this procedure. An initial condition is required to determine the

-

arbitrary constants B B: 5 33 , and B; .
/
To solve the problem of forced vibrations we make use of
eq. (208) and the definition of /V/” given in Sect. 1.222. The accuracy

of the forced vibration soclution of course depends upon the number of

eigenvalues and eigenfunctions that have been determined from eq. (224).

205 MNON-STATIONARY, GAUSSIAN, EXCITING FORCE

We will conclude Part II by showing that if the input to a linear
system is non-stationary but has a Gaussian distribution function then
the output will also be Gaussianly distributed. For thi-s case the
problem is completely solved if we are able to determine the mean square

values of the parameters of interest.



We first consider some properties of a Gaussian freguency
function. If a quantity X has a Gaussian distribution with mean

zero, we may write

XZ
(. = =
£1x) o s © , (227)
where
o = <Xz> s
A = (X)) =0 ,
and

F(x) = probability that X lies between X
and X +dX .

We define the 21" moment of the distribution by <)(2") where

[2-] [+~

XZ
' S ————
x?"y = fxz”f(x)dx = /x”’—*—ez"lo'x. (228)

a2n o
-0 -

X
Letting /J?q~=§. we reduce eg. (228) to

o
n _2n
2T 2
any = en & 29¢
X = e, (229)
- @
The integral of eg. (229) is in standard form and hence we have
Py = 1038 mml2na)@®) = (35— @n-1) ()" . (230)

This is .a characteristic result for a Gaussian distribution. It is
clear that all odd moments, that is <)(2"*’> ", are zero since the

integral appearing in eq. (229) would then have an odd integrand which
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makes the integrél zero. We conclude that if the even moments of a
distribﬁtion ére related as in eg. (230) and if all odd moments are
zero, then the distribution is Gaussian.

Let us now consider the simple one-degree-of-freedom system governed

by the differential equation
" . 2
g + 2p04 + wy = Fl£) . (231)

Assume that F(4) is purely random and stationary so that

)

(Fy = o0 ,
and ! (232)

(FIL)F(t,)) = 208 (4 -¢,) .

o

In addition, assume that F(¢) is Gaussian and denote this by writing
3

<F(t)F(i}) === F(tznn)) = 0 J

and (233)

i

D GlgFy CFAOEt)- -
ALL PAIRS

SFIL)F(E,) === Flz,,))

o

To show that this defines a Gaussian distribution we consider how many
different pairs we can form from 20N items. This first pair can be

chosen in 2n(2n-1) ways but since the order is irrelevant, that is
the pair (; is considered to be the same as the pair Ji s we divide

by the number of ways we may order 2 items which is Just 2l or 2.
(zn-2)(2n-3)

The next pair can be chosen in >/ ways and S0 on. The
. . ; . ; (2n)(zn-1)
total number of ways of forming R pairs is then Jjust ——-Z—/——

,ﬁ”"z_é(_lz__”;é)_‘_-__,‘(_ﬂz_f_;_)_ . The order of these /) pairs, however, is

irrelevant, since a set of pairs ¢, 3 R is considered the same
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as k¢ 3 4'./‘ s hence we must divide the above expression by the number
of ways we can order 7 objects which is just 7N !, Hence, the total

number of different ways that 4 pairs may be formed from 25 objects

e (2n)lzn-i  (2n-2) (en-3) ___ (2)0) _ 1 . ) femag Y o 200,
is just z”z)!;’?’ . Ln z!” - —ZL,— = 7 () en-) (n-1) (zn-3) (1)0)
We note that (p)(n-1)(n-2). ——=- (1)=n! so that

;5;,0 = (Zﬂ-l)(Zﬂ's)(ZN'ﬁ')""-" (3)(/) = /] 3-5. 7 ————— (z/—,_/)) (232‘;)

where ,Z is the number of different ways that 4 pairs may be
o .
formed from 2n objects. For example if 2n:=-4 we may form the

following different pairs

{iz) {3¢)

{13) (z24)
and

{14y {z23)

We say V‘that such a pair as {34} <2/) is the same as (2/) 43>
1z <34) , etc. From eq. (234) we see that with 2/7:4 we should
be able to form three pairs, which agrees with the above result.
Now for the equation of motion, egq. (231), we have for the 2/%

moment

t t
Gy = /————fb(t-z)/v/f—?;)-——/)(z‘-g,,)(ﬁ/Z}F/?;)"‘F(?E»)>c/7,“'0/?277' (235

e ——
2h

From eq. (235) we see that

FQFE() —-~~- F(t,)y = Z (F(r,-)ng» \GUALEABIEEE (236)

ALL PaIRS



and as was shown above, there are o B85 === (2n-!) such sets. Hence;

the 2n integrals become

t e ¢t
WY =135 ——lzn-) | | hETIDETIE AT ITdT | Al T Jh(E-T,)<F( V(D)) dz d 7. (237)
y ¢ J '{) ) 9 b (4 ' 4
o o o o

Now each of the double integrals above is just {5/?-) and there are 7
of them. We can arrange the integrals in this fashion since all ?:
and g are dummy variables so that

hit-z.) = h(t-zJ-.),

(I-‘(Z"-)F(?j'.)) 2 {F(G)HTy) , etc.

Hence
(yPry = 1 3.8 —-=(zn-)KyH (238)
Therefore the output & is Gaussianly distributed since it has the
Gaussian property given by eg. (230).
We may now assume that [f(#) is random, Gaussian, and non-
stationary so that
\
Fe)y = 0 5
FEIRE) = Vit 4-2)
| (239)
F)E(,)---~Flty,,)) = ¢ [
and
SRR ~=F )y = ) CFE)FUE) (Rt Flig)y -,
ALL PRS

Proceeding as before, we write for the 2n* moment of the output



z
<y2ﬂ> = /. 3.5=-== (2/7‘-/)] h(f-?;)h(f—?j')?’#(f) [I -ZL.) dZ". C/T:;
]
+ T
'ff”(f‘fk)h(f'fe)i”(f,Zf-’rk)dz,? dt, - —--— . (2k0)
6 o

Again each integral is just (gf) and since there are hH of them we
have the resulf given by eq. (224).

There is, however, a very important difference between the
stationary and non-stationary cases. From eg. (240) we see that when
the input is stationary, the mean sqguare of the output approaches
a constant value, independent of the time ¢ , as the upper limits of
the integrals approach infinity. In the non-stationary case, the
autocorrelation of the forces is a function of time and so the mean
square of the output will always depend upon ¢ regardless of how

large T Dbecomes.
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PART IIL

EXAMPLES OF MECHANICAL SYSTEMS EXCITED BY RANDOM INPUTS

Having developed the necessary relations for treating systems

excited by random forces, some typical problems will now be considered.

1.0 Fatigue Under Random Loading

The problem of determining the stresses due to random loading is
considered here as well as the prediction of fatigue failure. The
first section deals with an analysis made by John W. Eiles on a single-
degree-of-freedom system. The last section deals with multi-degree-of-

freedom systems,

1.1 LIGHITLY DAMPED, SINGLE-DEGREE-OF-FREEDOM OSCILLATOR

There does not exist at present a comprehensive theory to describe
fatigue, Little analysis has been done, the méjority of the work being
of an experimental nature. Since it does not seem possible to predict
fatigue life any closer than within a factor of two at present, the
relatively simple concept of cumulative fatigue proposed by M. A, Miner
appears to be adequate for determining fatigue life.

The cumulative damage hypothesis is briefly described in the
following. We make use of an <2/—29 plot where N is the number of
cycles of complete stress reversal of fixed amplitude gf‘ which is

required to cause failure., A typical curve is shown in Sketch 3.
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It can be seen that the functional relationship existing between 7

and z/ is of the form

) = (.j_)ﬂ) (2h1)

where ge is the stress at which eq. (241) predicts failure will
occur in one cycle. In some cases an endurance limit exists such
that below some particular stress, an infinite number of stress
reversals is required for failure. We will not consider this case
in the following work,

We must now establish some criterion to determine the amount of
damage done by a number of stress reversals less than that which
causes failure, Miner's Rule assumes that the damage accumulates
1inearly? hence if the systeﬁ undergoes ZQ stress reversals at a

stress level 24 the partial demage is given by

5 = ne
¢ 7Z¢ J

(2k2)
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where 7‘ = ?{/;) is the number of stress reversals at stress level
dz which will cause failure.

The cumulative damage is given by

AN
F =
i

n; '
F, o= Z .i— . (2h3)

I} =1

Substituting eq. (241) in eq. (243) we have

7 = Z 2 (%.),z . (2hh)

=1

Fatigue failure occurs when Z-, . From eq. (244) we may define an
equivalent stress which produces the same fatigue damage as 7,
cycles at stress gf: s M, cycles at stress Ji 'y €tc. Calling this

equivalent stress ,/; we have
N _ N =
z y
Je = Z”LJL /Z’h‘ . (245)
e (=l

‘In order to account for uncertainties in the data and the hypotheses

we may rewrite eq. (245) as
N N {_-’-’_-
z 2
e = {Zmlf/zvzg} p (2k6)
=1 =/

where ¢ is a constant with a conservative upper limit of about 2.

In order to compute Js we note that for small values of
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damping the sinvgle-degreeuof-freedom oscillator acts like a narrow

band filter and passes only those frequencies in the neighborhood of
its natural frequency «, Hence, it passes freguencies in the
range o, % 49, o From the phenomencn of beats we see that the system
oscillates at the mean fregquency «, and that the amplitude envelope
exhibits a random fluctuation whose frequency is of the order of 24, |
The probability distribution of the amplitude can be shown to be a

Rayleigh distribution whose analytic form is

2

e.ZV’/")a/ﬁ, , 247)

Pc/y = ‘311-(0)
where Pa’y is the probability that the amplitude ¢z) lies between ¢
and y.;-dy - and ;0-(0) is the mean square value of ¢(#) » |

In order to obtain the probable number of cycles of loading
having an amplitude in the range J to J +a’,f s Wwe merely multiply
the total number of cycles at frequency %3 /27,, by the probability
distribution PdJ given by eg. (247). We then find that the eguiva-

lent stress given by eq. (246) becomes

i
A fA[;PdJ/def . (248)

Substituting eq. (247) in eg. (2L8) we have

(22

° Jz o JZ
Je = fJfﬂwe‘e;m)dJ jjez;&(a) dd . , (249)
) ° '
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The Gamma Function [(z+/) is defined by

© 2

r(ze) = z"[ et gy (250)

o

Hence, using ege. (250)>in eq. (249) we have
I

P {I‘(—?w)}f"{zwo)}_ . (251)

It is clear that ¥ =(J° the mean square stress. For large values

of Z the Gamma Function may be approximated by Sterling's formula as

L(z+) = Alem etz"2 z>>1 . (252)

We thus find that eq. (251) becomes

I

‘ !
=RV | Lk ONE

z (253)
e ) /L>> I.
We know Ylo) =‘/2n;m@»dk> in general and for a lightly damped
system ow,@» ]T @) Zh®| where TENQQ is the power spectrum

of the forcing function and Z(av is the impedance of the vibrating

system. Using these relations we find

yoeo<sh - (DS, (250)

[



where

lﬂ is the stress that would be produced by the
root mean sguare of the force F, ,

and
[

e
£ = C, B 2«/km

From eqs. (253) and (254) we find

'
JG _ {‘f Tz ‘J,T[,,.,.(W) }T

Jo ’ dep /;z (255)
Hence, we may compute 44 from eg. (255) and using this value
for the stress we find from the (gfu”) curve the number of siress
reversals wﬁich cause failure. Since the system will vibrate at
approximately w"/zn— cycles per second, the fatigue life 7,; is
given by
2 (e)
e ————— (256)
@),

1.2 LIGHTLY DAMPED, MULTI-DEGREE-OF-FREEDOM SYSTEMS

When we deal with multi-degree-of-freedom systems the problem
is more complicated since the output is composed of many frequencies.
We no longer have the relatively simple case of @& single harmonic
with an amplitude which varies randomly with time. In Sketches L
and 5 a comparison between the outputs of single and multi-degree-~

of-freedom systemsis shown.
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OUTPUT OF SINGLE-DEGREE-OF-FREEDOM SYSTEM

SKETCE 4

AMPLITUDE

4

3
AN /A,m,f,t)

OUTPUT OF MULTI-DEGREE-OF-FREEDOM SYSTEM

SKETCH 5

Since fatigue appears to depend upon the level of stress and
the number of stress reversals, it is necessary to determine some
measure of the number of stress reversals per unit time and the
equivalent stress level. It is clear that by using the lowest freguency
of the system as a measure of the number of stress reversals per unit
time we underestimate this parameter. Similarly, we overestimate it by
using the highest frequency of the sysiem, in fact, in continuous

systems this frequency would be infinite and, hence, this method would
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predict instantaneous failure. Referring to Sketch 5, denoting the
output of a multi-degree-of-freedom system, it seems reasonable to
assume that a stress reversal of the type (1-2) will not contribute
as much to fatigue failure as will a stress reversal of type (3-4).
It is the higher frequencies which cause the motion of type (1-2),
hence, the high frequency components of the motion do not appear to
be as important as the low frequency components. By using the number
of zero crossings per second as a measure of the number of stress
reversals we are weightiﬁg the lower freguencies more heavily than the
higher ones and to some extent do account for the reversals of type
(1-2). It has been shown by 8. 0. Rice that the expected number of

zeros per second can be computed from the relation

2 2 +
/ d‘y/dT),. )2
% = — -_____( / Jzee , (257)
/s ylo)
where
2% is the expected number of zeros per second,
and

y%z) is the autocorrelation of the random function.
The frequency will be set equal to jg/i and so we use as the freguency
of vibration

1
o = {_f‘f_‘%iﬂz-_e}z , (258)
(] - (0)

(
7

Using the expected number of zeros as a measure of the number of
stress reversals we must now find some means of obtaining an eguivalent

stress level. Rice has also developed a relation for the distribution
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of the maxima of a random function which is given as

- dT —’—9—42 57_12 __4.2. r's —2'
PdI = W[ze‘g * (—2-) Ae * {/ +erf(?) ﬂ_}} 5

where
. . - 7
yto
;k/Z') is the autocorrelation of the random function,
and

PdI = probab}ligy that the amplitude lies between T
and I+dl o

A sketch of this relation is shown in Sketch 6.

i

0

APPROXIMATE PLOT OF EQ. (259)

SKETCH 6

The negative tail of this curve is due to maxima like point {5)
in Sketch 5, which will not contribute much to fatigue failure.
is the maxima like poinﬁ&(é) in Sketeh 5 that are the more important

ones for fatigue caleculations. At high stress levels, that is at

(259)
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large -4 , the probability distribution approaches the Rayleigh

distribution given by eq. (247), that is

_ . JTA A
PdT = ?We ar J A 1large

Hence, by assuming it is the stress reversals at high stress
levels that are important, we méy approximate the probability distri-
bution giveﬁ by eg. (259) by the Rayleigh distribution of eq. (260).
We may then proceed according to the method of Miles using one half
of the expected number of zeros per second as the fregquency of the
random function and the Rayleigh distribution as the probability
distribution of maxima of the function.

In order to compute the expected number of zeros per second,
from eq. (257), we must first determine the autocorrelation ¢4A2j o
Let us assume that we are interested in the relative motion between
the Lth and jth masses of an AN -degree-of-freedom system. The

autocorrelation of interest would then be
Y(dr) = <{Xz (7) _)S.(r)}{x‘.(z'*) - xj(’(“)}>.

Equation (261) represents the average value of the product of

h

the relative displacements of the Z‘ and jt‘ masses as a function

of the time difference 47T .
We can express the coordinates X, and {f in terms of the

-~ ) " .
generalized coordinates ¢, and the normal mode shapes 4[ . Hence,

(260)

(261)
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we may write
N
- (r)
Xl'{z‘) - ZAL 9/' (‘() 5 (262)
r=i
and

N

M

{X‘- (7) -%(1)}{,‘,‘. (r% "Y_,' (T*)} - {A‘{r)_ Agrl} {A!) (s)}q (?')Qs (") . (263)

r:

“

=l

We may write 9, in integral form as

t
! oo (-
- f k(1) D i 0, t-7)dT . (264)

ry
)

q.(6) =

Hence, substituting eq. (264) into eq. (263) and using eq. {261)

we find
N N tt
r) (r (s)
YaT) = Z{ () ”}{A’ (5 f @, [t-T) A0l ™0 s (1) 503, (t‘t.")(P/?>d€a/L (263
f=1 8= é),-,
oo

3
where ,eé is the generalizmed force for the «¢ /'mode., We may rewrite

the autocorrelation <Ri'?j> as

© ()

<'?é‘?j> ZZ <u R AMAV : (266)

U=1 V=1
q

where £, is the force on the 2" mass and /M, is the generalized

mass of the zﬂ’mode.
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2 z
By means of eg. (265) we may compute 7?/0) and E/yf/d(dz)]az'o

and, hence, find the expected number of zeros psr second from

eq. (257).

2.0 Barthqguake Problem

A tall building subjected to ground motion represents a special
type of multi-degree-of-freedom system since the power spectra of the
exciting forces acting oﬁ _each of the masses is the same except
possibly for a numerical constant.

Consider the system shown in Sketch 7.

11—
; dN Ut
7 =
N
C
; clv-l, N k"/ ‘:V-z,/v N
; M-y
A1 da Xnet bt 7 77
! c
j Sz pes Rws Cw.3n-1 3, N-/
g | S
/| d” 2 XN-Z ______
: c”"i -z A’,v.z Cg N-2 3 W2
/
/1 B /1/
/|
7
/|
; C23 l 'éJ' Ci;"txlj : Con
g 1l o
dz X,
/ 2 -
7 % ke G o
v,
/ 3] ”,
1 9 %
/ £

ST T
—————a-_y(z‘)

MULTI-DEGREE-OF-FREEDOM SYSTEM

SKETCH 7
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Assume that some random support motion ¢(#) exists so that an inertial
force of - Wz.iff) acts upon each mass. It will be assumed that the
power spectrum of the support acceleration _;Yt) is known and that it

is of the form

T, (w) = £a2eP” | (267)

‘where £ and /£ are congtants. This is a typical form for the power
spectra of earthquakes. It is clear that the power spectrum given by
eq. (267) peaks at a}:%;?:

Dynamic measurements which have been made indicate that the typical
building has a constant damping ratio for each normal mode. Since phase
measurements are usually not made, however, it is questionable whether
it is classical normal modes which are being measured or the more
general complex modes described in Foss' method. If absolute damping
and relative damping between adjacent floors is considered, it does
not appear possible to get a constant damping ratio for each normal
mode., If relative damping between all floors is considered, however,
it is possible to get a constant damping ratio for each mode.

Let us consider this latter case., The eguations of motion can
then be represented as.a set of A/ ordinary, linear differential

eguations of the form



26

Mg + G4t Ky T Y (268)
where
N
o = ) FAY
r={
and

F;- 'm,—y(f) °

Equation (268) may be rewritten as

g, *20.p4 t ey T YR, (269)
where
4o = a3 ’
M;
c
b e
and

N i
I A9 i,
}?_', = m, A, Mj = constant.

We may write for the response of the th mass
A
_ (r)
X, = Z AT e, (270)
r=i

and hence

' N N
(
xfy = Z A,-F)Afg (9-99 - (271)

r=il 5=l
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Calling Z,(&) the impedance of the ;™ mode and using the

definitions of RJ and the power spectrum we have

oo
R: T, (@)
<ary = o |Z“iw)|z dw (272)
and
R, Rs Tl‘s (@) (273)
= dw .
<9rQS> 2 z, Z:

Equation (272) may be evaluated easily by using the approximation of
Sect. 3.1 in Appendix I. Evaluating the power spectrum at &= 2 and

assuming it to be a flat spectrum with that spectral density we have

Z <
er (4 0:‘) e-"“)fo) f d‘*)

2 -
= 274
e
Recalling the definition of |Zr (w)lz we see that eg. (274) becomes
2
2) = w (275)
< qr 8 U’O'pr ¢
In eg. (271) we see that terms involving <9, 9;} and {¢s g,.} appear
and so we have
( ) () 7
m{< 54 & } _ AATRR T w) | Tfs.(w)}d
qrds 942 = 2 Z )z Z @)z (w)
J .
4‘%“’ R-Rs {Zs ) 2% () + 2, () Z ()} T ()
= — - dw.  (276)
|Zste)|
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If the valué of the integrand in eq. (276) is plotted as a function
of «wW it will be seen that the resulting curve has two peaks, one near
&, and the other near a&o » FPor small values of damping these
peaks will be very narrow and the major contributions to the integral
of eq. (276) will be near &), and &, . If we consider these peaks
to bé well separated and take the case where &, £ &), then fhe contri-

bution at cqm will be much greater than at a%o » We may then

evaluate the power spectrum of the ground acceleration at @W= &}, and
' P2

consider it to be a white spectrum of spectral density zﬁ a4i e re o

The resulting integral can then be evaluated by means of contour inte-
gration in the complex plane. It is seen that the result is of order g
so that the cross=product terms are negligible compared to those of the
square terms defined by eq. (275). The conditions under which these

approximations may be made are

-P(Q2- wf)
e 21 ) @277)
w4
/5/2(0:) « ) (278)
and
Y P (02— @)
/6/2.{750_ 6 @o 0 <« / , (279)
where
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If the condition of eq. (277) is satisfied the resonance peak at &/,
is negligible compared to that at . o Equations {(278) and (279)
are the conditions under which the cross-product terms are negligible
compared to the square terms.

Eguations (277) through (279) are usually satisfied if the funda-
mental period of the structure is less than 1.5 seconds. When this
is not the case, both resonance peaks are important and a different
approximation is mneeded. The integrand is evaluated at each resonance
peak and the result multiplied by the band width 2g¢) . The sum of
the areas of the resulting rectangles is then approximately equal to the
value of the integral in eqg. (276). The condition under which the cross-

product terms may be neglected is then

2
8¢ %)
o (73; &/ o  Wso - (230)

If either of the above mentioned conditions hold the cross-product

terms of eq. (276) may be neglected and we have

N
<,<z> = 4(’)2 ( 2) (231)
J 2 gr .
r=y
Using eq. (275) the mean square displacement may then be written as

2

¥ 2 -0360,_0 .
(xf) = E 4R te ‘ (282)
54, p

.
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If the ground acceleration has a Gaussian probability distri-
bution, the displacements will also be Gaussianly distributed and the

result of eq. (282) is sufficient to completely solve the problem.

3.0 Response of Beams to Random Loads

Since the beam represents a fundamental structural member, it is
natural to consider the effect of a known transverse force distribution,
random in time, upon such a member. The first known work on the subject

: h)
was done by.Houdijk and Ornsteinxin 1927. They treated the problems of
the Brownian motion of strings and cantilever beams. In 1931 Van Lear
and Uhlenbeck discussed the same problems. More recently Eringen and
Samuels have considered the response of beams and plates to random loads.
They found that a knowledge of the cross-correlation functions of the
loads enabled them to compute the cross-correlation functions of the dis-

placements and stresses, hence the corresponding mean sguare values. In

the following sections several typical problems are considered.

3.1 BEAM SUBJECTED TO RANDOM LOADING

Perhaps the most elementary mathematical formulation of the vibrating
beam is that given by the Bernoulli-Euler theory which considers only
lateral inertia and bending deflections. The equation of motion for

such a beanm is given as

- 2
£ aY L om Y
dx4 dt?

]

F//\;ZL) i ‘ (28
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This equation tacifly assumes that plane sections remain plane in bending,
bending slopes are small, the line of centroids is a straight line, the
principal axes of the cross sections form two principal planes, and the
leoading is applied in one of these planes.

If one of the components of F(X, ¢ ) has a frequency which is very
close to one of the natural frequencies of the beam, the response of the
beam in that mode will be very large and in the limit will diverge. Since
any physically realizable beam contains some damping, it is necessary to
introduce into eq. (283).3 term which will simulate this mechanism., One
of the simplest ways to accomplish this is to add to the left-hand side

of eq., (283) a term of the form Zf.éﬁL,, The resulting equation yields

oT
useful results when the first few modes of vibration are the important
ones, but it suffers from the disadvantage that the fraction of critical
damping in each mode decreases with mode order so that the higher modes
of vibration are almost undamped, a fact not in agreement with experi-
mental evidence.

When the forcing function is considered as being random in time, a
broad band of freguencies is involved; hence unless some damping
mechanism is considered, the expressions for mean sguare displacements
and stresses will surely diverge. It seems natural, therefore, to
consider first the problem of a Bernoulli-Euler beam with viscous
external damping subjected to random loading. Eringen counsidered this
problem and chose as the forcing function a stochastic load distributed

along the beam with infinite correlation at X = f « The problem may be

stated mathemafically as
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E2Y 3% ,m3Y - Fixt) (28b)
o x4 Y o¢ ?
where
CFOG F(EE) ) = D &(X-3) S(¢-t%) (285)

Using a Fourier integral expression for the transverse displace-
ment ¥ , and expanding the transformed variable in a series of appropri-
ate eigenfunctions, Eriﬁgen showed that the series for the mean sguare
displacement converged but that the series for the mean square bending
moment diverged. Admittedly a forcing function of the type given by
eq. (285) is a severe test of the convergence of series type solutions.
It appears that the infinite mean square bending stresses are caused
by the severeness of the assumptions of the Bernoulli-Euler beam theory
and the fact that eq. (285) implies an infinite energy input. Eringen
and Samuels have recently shown that by using the Timoshenko beam
equation, which includes the effect of shear and rotary inertia, and
using a linear, viscous damping term, the mean square displacements and
bending stresses remain finite when the beam is subjected to a forcing
function of the type given by eq. (285).

Since the forcing function that has been considered represents an
infinite energy input, it appears reasonable to employ a more realistic
function which possesses a clipped white spectrum whose cutoff frequency
is 600 . In this case all normal modes of the beam with frequencies of
vibration much greater than <kk will not contribute ahy appreciable
amount to the mean square displacements or bending stresses and a con=

vergent series results for both quantities.
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Let us co:ﬁsider the egquation of motion of the Bernoulli-Euler beam

with viscous external damping to be given by

4
E22 wmg3  mY _ Fxe) (236)
x* ot ¢ ’
where F (X,T ) is random, stationary and Gaussian with its time de-
pendent part having a power spectrum of the form
4D )
T(w) = 1= O£t w ¢,
P J
q (287)
JT(w) = (@] 3 w>i wc .
J
We assume a solution of the form
@
Y = E fn(f) ¢,,(X) J (2883)
n=|
where the functions‘i7(i‘) are to be solved for and the functions
¢% (X ) satisfy the differential equation
(289)

%
Ed)(4 _mwis =0,

along with the appropriate boundary conditions for the beam. If the

ends of the beam are free, fixed, or simply supported, the functions

defined by eq. (289) are orthogonal and may be normalized so that

L

/ ¢”(X) ¢_”7(X) dX = (ghm 5 (290)

o]
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where é}ﬂn is Kronecker's delta., If we substitute eq. (288) into

eg. (28€) and make use of eg. (289), we have

O

Z(mﬁ;i + mBo,%, + MR ¢,,5',,> = F(x1). (291)

N=

Multiplying both sides of eg. (291) by ¢n79 integrating over X from

O to L , and using the orthogonality relation of eg. (290) results in

5. v B3, w05, =ft) (292)
where
L
F(t)= 7n;/ﬁ'()gz‘) . dx . (293)
(o]

The solution of eq. (292) may be written as

o
- //7,,(1‘-'()[,,(?) Jz | (29%)

where the function A%( £-7) is the response to a unit impulse. The

mean square displacement for the beam is given as

<y*) = i i %8 <55 (295)
h=/

m=/
where

t
S S = ///),,/f—t) b (=D (Do, @) dTI T (296)

and

~

297)

L ¢ _
<A DA () =-;,,sz/$1§,(§) B FEQART)) df I7 -
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Let us takevthe form of the correlation function for A (Xx, 7))

to be

CFGE) FICET)y = SIX-x) Y (t-£7) (298)

where ¥ ( t- %) is as yet not defined, Substituting eg. (298) into

eq. (297) results in

<£1(T) frn(zd» = -,/,72 V{T— ’C"') é-'m—n . (299)

Using eq. (299) in eg. (296) we have

t t
<55 = i% / / b (7)o (kTP (T dede* (300)

Since the relation between the power spectrum and autocorrelation is

2]

Vir-tt)= [[TO(w) cos o(r-t)dw (301)

we can show that eg. (300) may be written as

[+2]
TT(w) dw
% a2y 1

o

:Bt( g ..
/+ € / +Zg_ Srn “o)ot cose) t
n

- B o 2w . :
- (2005 agﬁz‘ +Z;_ 5/Naghf)cosa)t — swaght SNt

o on

8% -4 + 4t

2
4e7%,

-2
+ Sin “%mt) » (302)
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Substituting eg. (302) into egq. (295) would yield the general
time dependent solution for the mean sguare displacement of the beam.
- S8ince transient efféects in statistical computations do not have a
great deal of wvalue in engineering systems we will consider the steady
state solution only. Hence for large values of time eqg. (302) reduces

to

<35, = /a/ mw)dwz : (303)
]

Using eq. (287) in eg. (303) we have

“

2 2D dw
= . I
) vmz[ Z,.(‘f)),Z (08

This integral can be transformed into a tabulated integral, the result

of the integration being

/
Qi 2 + 20,0, (1-41)*

3,y = L fog
2? W 2 4
2T m n Dn Q)OZ_'_wnz_Za%a)n(/_ﬁZ)a

!
-~ p2)2 2w, W
+ (i /a") arctan __<"/n n/h

0
P s : (305)
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If pP,<¢¢/ then W, = &,, and /~A* =/. VWhen &), where

a,)N is the /vth natural frequency of the beam, eqg. (305) becomes

. 2 2
<§N‘°‘ =.__D__3_4.)? fof v L oarcten 248 L 2 o (306)

Wy //Jv Wy

Hence we may neglect terms in the series of eq. (295) for T > N
where A is such that &, (¢ &, so that eq. (306) is approximately
correct. Since @, =. 77260/ we find that for the case of small

damping the mean square displacement becomes

N
D / @, + W, | 2w ), 2
F) = oo Ll oy DD Loy 2294 L g% Gon
2rne n o, - 0, 2, “)”Z—Ucz n
h=l

Since this is a finite series, the displacements are finite. The

bending moment is given by

@

= %y J°%,

% £ > x? = £ Zf,, drs ) (308)
7=y

so that the mean square bending moment is

</92> = é’zi <§':)(::ﬁ)z . (309)
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2 2.2
d¢h_-7777' ¢77

For the simply supported beam = and
dr? L
eq. (309) becomes
N
_ 2,3
i)y =_D0& 7" __/_2 {’ofﬁf‘)__” + - arctan 2L ¢Z (310)
znfaf’44 7 W, -4, /; P @, ® 7
N=y

Again this is a convergent expression because of the finite number of
terms.

Hence by assuming that the forcing function acting on a Bernoulli-
Buler beam with viscous external damping possesses a clipped white
power spectrum, it is shown that the series expressions for the mean
square displacements and stresses are finite. Useful results can be
obtained, therefore, without using the more complicated Timoshenko

beam eguations.

3.2 BEAM WITH RANDOM END MOTION

Consider a Bernoulli-Euler beam with viscous external damping
and simply supported ends and let one end of the beam, say X = L ,
be given some time dependent motion £ (¢ ) where £ (£) is random,

stationary, and Gaussian. The equation of motion is

o _ 2
5’+m5ﬁ +7na‘9

Ix4 ot 942

= 0 J (311)
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and the boundary conditions are

*4(g2)
y(ot) = S - o )
grLe) = f£(2) > (312)

and
2
Y(4,t) o
d x4
>,

The inhomogeneous boundary condition can be eliminated by letting
Y = Y +Y where Y, = A(x)F(t) and A (X) satisfies the

homogeneous beam equation

4
£ dix—‘;— - 0 (313)

and the boundary conditions

_ Jum
“W gy T
ui) = / o (318
and
2 .
A
dx*
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Using the above transformation in eg. (311) and making use of

eq. (313) we have

4 _ 2 2
£ o4 4_7}1,5& +mf_§L = _777321_61[__7772(_67[ (315)
o x4 2 ot? ot ot

where 9, satisfies the homogeneous boundary conditions for a

simply supported beam.

We assume a solution of the form

‘ a
g, = z B, 5,0t , (316)
7=y

where the functions {n (t) are to be solved for and ¢77 satisfies

eqgs. (289) and (290) and the boundary conditions for a simply

supported beam. Substituting eg. (316) into eg. (315) we find

.S;h + B— §n +C&>nz S-n = ‘(-Ln-'&'(t) + ﬂh.ﬁ(f) (317)

N
where
L

ﬂn=-_°/u¢hdx ,

, (318)
L, = —5:/Z£ g dy |

-

In order to compute mean square quantities we must determine

and

{5, 3’,,,) . Proceeding as in Sect. 3.1 we find

t ¢
BT = / //,,,/t-z)/,m (t-zy<{anf(r)+ﬂn{t<r)}{ﬂmf(t*)+J'Lm,'£<z+)}> dzdtt . (a19)
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—

gL » hence eg. (31%9)

n

From eq. (318) we see that N0<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>