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ABSTRACT

The simplectic approach to discretization, as introduced by
Regge, may be better suited to computer calculation than is the
usual "finite difference' approach. This thesis describes a general
simplectic formalism for coupled electromagnetic and metric fields
including detailed discussion of nets for closed and open space-
times. The rendering of this formalism into computer algorithms

is then described, and indicative numerical results are reported.
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NOTATION AND GLOSSARY
A

The metric, gu\)’ has signature =-+++.

The summation convention applies unless it obviously does not.

M. M o Mo _

RvaB PW.B * I‘w FUB (a H, &)
T\ TRVY = Mo VB .

R=g"g RMVU\) g 8 lﬂJ\)OlB

S -——JRdV

g
HV
J F]J\) F~° dv

=

S = -
e

&= o

The contraction of two tensors is variously denoted; some examples:

A*B, <A,B> , A(B), AijBij
1f'a,b,c are vectors, then
aAb = a®b - b®a

aAb Ac has six terms each with coefficient 1 , etc.

If E represents a (logical) condition then

1l if E 1is true

(E) =
0 1if not.
o]
Thus, for example, z means the same as Z (l1<n<w,
n=1 n

z = the net for space-time.

Zm= set of all m-simplexes of Z .
"vertices" and "legs" refer respectively to Zo‘ and Zl s while

if n = dimension(Z),, then "bones" and'cells" refer respec-

tively to zn—Z and Zn .
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[jkR]: an element of ZZ with‘vertices [31, [k), [&] .

o/ (@ and B are "incident") means for simplexes of «,8 that

0 is a subsimplex of B or vice-versa.

G (@) (the m-star of o) = {8 & [_: alg}

O(3kee+2) = ([j]1,[k]l,++-[2] are the vertices of some simplex in z )

thatch = gimplectic analogue of a field

n = dimension of space under consideration (usually 4)

Ti:::i = the affine components of a tensor T .



Chapter I
INTRODUCTION

In order to prepare a problem in continuum physics for machine
solution one almost always rewrites the basic partial differential
equations (field equations) in discrete form. In other words, one
samples the field quantities at finely spaced, selected points, and
replaces derivatives by differences. The simplectic approach to
"discretization" is altogether different from this 'partial difference"
scheme.

Rather than fill space-time with a grid of points oné divides
it into a net of simplicial cells. Instead of replacing derivatives
by differences one seeks the simplectic analogues of the fundamental
quantities and operations of the continuum theory. (The analogy is
even so close as to be a singular instance of the continuum case.)

The simplectic version of a field (I will call this a thatch for short)
may be associated to an& of the simplexes of the net, not necessarily
just to points, with the tensor character of the thatch expressed by
its mode of definition on the simplexes, rather than through many com-
ponents.

As far as numerical calculations go, the simplectic approach
can, when applicable, be expected to be more efficient both because it
is more genetically related to the continuum case, and because, for
that very reason, it makes sense even as a very crude approximation.

It also provides a coordinate free way to express the solution and in



-2-

general avoids the problems deriving from the need to work within a
particular coordinate or 'gauge'" condition. What is probably most
valuable, it is no harder to apply to complex topologies than to simple
ones (see, e.g., Ref. [3]).

Even without these ''practical' advantages simplectic methods
would be of some interest for the insight they furnish into the corres-
ponding continuum equations. And they might even offer a clue to
possible discontinuous replacements for field theory that some people
see as indicated by the 'renormalization" and '"quantum gravity"
problems.

This thesis will describe a general simplectic formalism for
coupled electromagnetic and (following Regge [1]) metric thatches,
including detailed discussion of nets for "closed" and "open" space-time.
The rendering of this formalism into computer algorithms is then des-

cribed, and indicative numerical results are repofted.



Chapter II

METRIC NETS

A. The Metric Thatch

One endows the net I with metrical character by assigning to

each leg [ij] of the net a "length'"--or rather, the square of a length--
2 7

lij . Consider, then, a particular cell 05:24 with vertices

0,1,2,3,4 (in other words, 0 = [01234]). Just as the three edges of

a triangle determine its internal geometry (it is '"rigid"), the 10 leg
lengths of 0 determine its internal geometry. Moré formally, embed

0 linearly in 34 . If under the embedding the vertex [i] corres-

ponds to the point X4 s then we seek a (constant) metric for

4 2 _
i3 T B FiT*y) ¥y

R" such that for all 4i,j , & —xj)v . Since there

are ten lij and ten independent components of g must be

w2 By
uniquely determined. An explicit formula for it appears in Section

IIIB.

It is not, however, enough that the Qij define a metric
guv(c) for the interior of o . 1In order that o can be a "piece"
of space-time the metric must have the signature - ++4+ . (This is the
analogue of the triangle inequality in the Euclidean plane.) 1In
numerical work one must check the signature at each stage.

Having defined a (flat) metric for the interior of each cell

we can now ''glue" these metrics together at the interface between any

+See the summary of notation for definitions of %, , [ij] , etc.

4



-

two cells, in the obvious way. To be more precise one can introduce a
coordinate system in terms of which guv is constant throughout the
two simplexes, 0,p and thus provide (the interior of) o, p with a
differentiable structure. Doing this for every pair of cells in 24
we define a flat (pseudo-)Riemannian strﬁcture for all of the net
except the boundaries of the interfaces between cells. At these latter
points, the points of UZZ (the set theoretic union of all 2-simplexes
or "bones'", which Regge calls the '"skeleton') it may be impossible to
find a coordinate system to cover smoothly all the cells which meet
there. It is on these bones that the curvature is concentrated.

A two-dimensional example may clarify this. Any two of the
four triangular faces of a tetrahedron join smoothly along their common
edge. In fact, after removing the other faces, one could flatten them
to lie in a plane without at all altering their intrinsic geometry.
However, there is no coordinate patch covering a vertex and in which
gij(x) is a smooth function of position. The tetrahedron's intrinsic
geometry is everywhere flat except at the four vertices (the "bones")

where all the curvature is concentrated. In general the bones are of

dimension 2 less than the manifold itself.

B. The "Defect" of a Bone

Consider the tetrahedron again. Near any particular vertex it
is metrically like a cone and the deviation from flatness at the vertex
can be characterized by the 'defect angle', were one to cut and flatten
the cone. (For a regular tetrahedron this angle is 2m-3(mw/3) = m).

It is easy to see that this characterization of the "defect" of a bone



accords with the usual definition in terms of the non-integrability of
parallel transport (see Figure 2.1).

In four dimensions the bones are 2-simplexes, but the notion
of defect still applies. Since a net with metric thatch is flat every-
where but the bones, parallel transport around a loop has no effect
unless the loop links some bone, and then the result depends only on
which bones are linked with what orientation and in what order. 1In
other words, it depends only on the homotopy class of the loop.

Think, now, of a single bone aﬁd a loop which circles it once.
The space "surrounding' the bone comprises a "ring' of 4-simplexes
(cells) whose mutual intersection is the bone itself. The loop begins
in one of these, encounters the others in cyclical order, and returns
finally to its point of departure. It is easy to see that a vector
parallel to the bone remains unchanged throughout the whole pfocess.
Since parallel transport around any loop produces a Lorentz transforma-
tion, the "circulator" of the bone wili be a Lorentz transformation
which fixes the points of a 2-dimensional subspace (that of the bone)T_
There are three cases depending on whether the bone is timelike, space-
like or null. For a timelike bone the most -general circulator is

rotation through an angle 6 (If t'=t and 2z'=z then the most

general Lorentz transformation is x' = x cos 6 - y sin 6 ,

y' =y cos 6 +x sin 0 (0 = 0 is not the same as 6 = 27 though!)).

TAppendix B develops an explicit formula, in terms of affine coordinates
(see below) for the circulator; it also confirms that b 1is invariant

under 'circulation'.



Figure 2.1 '"Unrolled" cone illustrating the relation of the
defect angle © to the non-integrability of parallel

transport around the bone (vertex).



For a space-like bone the most general circulator is a "boost" with
parameter 1 (If x'=x , y'=y then t'=t coshn- z sinh n ,

z' = z cosh - t sinh n). And for a null bone the most general circula-
tor is also characterized by a single parameter, which, however, is not

dimensionless and can be fixed in magnitude only relative to the speci-

fic bone (see Appendix A).

C. The Action

As described above, a metric thatch induces in a net the
structure of a (singular) Riemannian manifold. We sho& now that the
continuum expression for the action S = —-% J R dV makes sense for
this manifold, and evaluate it in terms of a sum o#er the bones.

Since the manifold is flat everywhere outside the bones the
only contribution to RNVGB and a fortiori to R is from the neighbor-
hood of a bone. But consider parallel transport around a loop linking
some bone, which is a measure of RuvaB there. Since the result is
the same no matter where along the bone. the loop links it, we see
that the bone is homogeneous, and its contribution to S will be pro-
portional to its area. Consider for example a timelike bone, infinitely
extended, and find the action per unit area.

Let the bone be the t-z plane = {(txyz) |x=y=0} and let it
have defect 8 . If 6 = 0 then, replacing the coordinates X,y by
r,¢ , one has for the metric tensor gtt= -1, 8., 1, 8.~ 1,
g¢¢ = r2 with all others vanishing. We introduce the defect by
deleting the '"wedge" 27~ 6 < ¢ < 27 from the space-time and "expand"

¢ to cover the remainder smoothly, with the result
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Zﬂ) r

grr

Bo

This metric has a "cusp" at r = 0 . In order to work with differen-
tiable functions we will "smooth" the cusp temporarily. Thus we
evaluate R for the metric

22 (x 2\ 2
Bpy™ 1 g¢¢= e () with € =71 for small r

and :
e2A= r2(l - g%-z for large r

The only non-vanishing Christoffel symbols are

r _ _ 2\ 0] o 3t v = dA
F¢¢— A e and I'¢r A (A _dr)

. U U A TR
Defining RVaB = Fva,B + Pva F_B (a <> B)

and R guv go"8 RpavB , one finds

¢ T 12
R ror - AE (A

R=20" + \")?)

_ - A
/g = /Lgtt Bzz &rr 844 /grr Bpp ~ ©

Thus

Rymg = 20" + O & = 2(eM)”

whence

o]

--% j J R/-g dr dp = =27 J (ex)" dr = —ZW(eA)'}
0 0

But near r = 0 , eA‘= r = (eA)' =1 , while near r = » |



Thus

——ffa/—_gdrd¢=—2n [1-«5%-1]:9

which is plainly independent of the degree of smoothing in the function
A(r) .

Extending the integration over the whole bone,

--;-”HR/-_gdrdq;dzdt=effdzdc= oA

For a spacelike bone, one finds by a similar analysis
1 4 -— " " ] .
-3 R/-g d'x = nA in which n , the "boost parameter" is defined to
be positive for a spacelike defect, which a little thought shows
(Figure 2.2) to be equivalent to a timelike "infect" or "excess'". For
a null bone one must work with a three-dimensional metric, but finds

without too much more trouble, that R and therefore S vanishes.

D. The Thatch Equations

We have just found that each bone contributes to the action in
an amount nA when 1n stands for the defect (called "n'' or "8"
above) and A 1is the area, considered as a positive number. Summing
over all the bones we can write

S, = 1 n(b) A(b) (2.1)
& beZ2

The "equations of motion'" of the metrical thatch require that
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S

6

(a) timelike bone S = OA (b) timelike bone S = -0A

(¢) spacelike bone S = nA (d) spacelike bone S =nA
1 C‘//
7” AN
4
x

(e)

Figure 2.2 Typical examples of the action for a bone of area A .

Cases (c) and (d) represent the same circulator for the

reason indicated in (e).
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ésg = 0 for all variations of the thatch--in other words, for any
variation of the squared leg lengths, lij . Carrying out the varia-

tion,

85, = 1 n() SA(Db) + ] n(b) A(b)
b b

But now, just as in the continuum theory, the second term vanishes
identically (Appendix C) and we are left with

8S_ =) n(b) SA(b)
g b

Let us express the variation with respect to a single element Qij of
the thatch. If [ijk] 822 is a bone of the net then we will show in

8§IIIC that its area is

L. 1 —
A(ijk) =7 v [[1,3,k11]
in which, if t =9.2 —22 -224 th
which, if we se X ij ? y = ik z = ki ° en

[[13k]] = x%+ y+ 2° - 2(xy + yz + 2x)
Thus
BA _dA _ 1 .2 2 .9
g2 ox | T6A iy = A~ 450
ij

where + 1is the sign of [[ijk]].T Calling this sign o(ijk) we get

finally
3s
G(13) = —5—= ] n@) 240 (2.2)
302,  bel 322
ij 2 ij

TThe unlikely possibility that A = 0 1is considered in detail in
Appendix A.
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oy L : oy OIK) .2 02,2
G(i3) = 7¢ kzez 6(15k) n(i5k) Teriey (i Yo Y0 (2
o
in which ©O(ijk) is 1 if i,j,k are the vertices of some 2-simplex (bone)
and zero otherwise. The "empty space' thatch equations result from

setting G(ij) = 0 for all legs [ij]e Zl .

E. Examples in Two and Three Dimensions

In two dimensions the elements of zn—z (the bones) are
O-dimensional and curvature is concentrated entirely on the vertices.
Since the "volume" of a point never changes, the variations (2.2)
vanish identically, which implies that Sg is independent of the
metric thatch lij ! In fact it is well known that for a two-
dimensional manifold (of signature ++) the integral of the curvature
depends only on the topology of the manifold. This is the Gauss-

Bonnet theorem which reads in simplectic terms

Y 6&)=2ﬂW-E+F)+
xE ZO

In three dimensions the bones coincide with the legs and (2.2)

becomes
G(ij) = n(ij)

Then the variational equations, G(ij) = 0 , require that all defects

n vanish~-the simplectic version of the well-known fact that Einstein'g

.I.

See [1] for a proof of this from Euler's theorem.
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equations have only trivial solutions in three dimensions.

F. The Thatch Equations with Source Term

I1f there are other terms in the action besides Sg then the

variational equations will read
G(ij) = T(ij) (2.4)

in which, of course, ~T(ij) results from varying these other terms
with respect to Qz(ij) . Since T(ij) must represent "matter' we
can say that, simplectically, '"energy-momentum is concentrated in the
legs of the net', even though curvature is diffused throughout I

2 -

G. "Coordinate Invariance'

As pointed out in the introduction, the simplectic approach
provides a coordinate-~free method to specify a space~time geometry.
Just for this reason, the well-known coordinate invariance of the
continuum formulation finds no analogue here. It is not true, for
example, that,'corresponding to a given solution of G(i,j) =0
there are an infinite number of others with the same boundary condi-
tionsT.

A soap film analogy may serve to clarify this. Aside(!) from

the difference in dimension and in signature the 'empty space' problem

is very similar to that of approximating a minimal surface (soap-film)

o

Except for the singular case of zero curvature.
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by a polyhedron. Once the number and connectivity of the faces have
been chosen, there will be a unique choice for the vertices which
minimizes the total surface area (Figure 2.3). Thus, despite the
coordinate ambiguity in an analytical solution, the thatch solution is
unique.

Calculationélly this is probably an advantage since it relieves
one from the need to choose any ''gauge condition" in order to define
the time evolution problem. On the other hand, it leaves one with less
freedom to adjust the net should the thatch begin to go singular during
the course of a calculation. What one can adjust is the topological
character of the net; in fact it is probably this freedom of topology+
rather than any numerical freedom of the leg lengths which corresponds
to the coordinate or '"gauge'" freedom in the continuum.

Unfortunately there is one geometry which does possess a full
gauge freedom: flat space. Here, as is also clear\from the soap-film
analogy, the simplectic approximation to the metric is exact (all the
defects vanish) and each vertex of I has a fourfold freedom to move
without affecting the geometry. This means that the time evolution
equations must become underdetermining in the flat space limit. 1In
other words, both the attempt to produce very accurate solutions with
fine nets and the treatment of asymptotically flat metrics can be ex-

pected to present extra (see Chapter IX) calculational difficulties.

"Topology" here refers to the number and interconnection of the cells
chosen to approximate a given manifold, not necessarily to the over-
all connectivity of the manifold itself.
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Figure 2.3 A good and a bad way to approximate a curve with 4 segments.
The one-dimensional representation falsifies the minimal

character but is much easier to draw!
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.Chapter III

AFFINE COORDINATES AND SIMPLECTIC EXTERIOR CALCULUS

In working with tensors defined relative to an n-simplex it is
convenient to use a system of coordinates which reflects the (n+l)-fold
character of the vertices. The formalism described in this section
simplifies many derivations--and it is essential to the expression of

the simplectic analogue of Maxwell's equationms.

A. Affine Coordinates

By considering a point P in the interior of an n-simplex as
the centroid of n+l masses tJ placed at the vertices VotV we

can express it as an ''affine sum"

n .
p = ) dv (3.1)

in which

n .
) ot =1 (3.2)

and with all the t3 > 0 . By relaxing this latter condition we can
express any point in the affine space, S , of the simplex in the form

(3.1), (3.2)T. We call VsVystetsV,  an affine point basis for § .

l’

+An "affine space'" is just a vector space in which no point is distin-

guished as the "origin'.
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A vector of an affine space is the "differencd' of two points
—
which we write as Q-P or PQ . Let V denote the space of all

vectors of S . If

=7 3 IR
P Z p Vj ’ Q z q Vj

|

then we take for coordinates of PQ the differences xJ = qj - pj .

Then (3.2) implies:
n
J x3= 0 (3.3)

Another way to explain these coordinates is as components of
-
PQ relative to the (redundant) 'barycentric basis' comprising the n+l

vectors

l .
& T Vi T T L % (3.4

A simple computation verifies this:

Lxley =[xty - ( ) Gy W0
i i i k
=J@- b, by (3.3)
i

) qivi - pivj.L

—
Q- P=EQ

Corresponding to the basis (ej) for V , we introduce for the dual

* ,
space V a basis (el) defined by



) m if J=k
3 =8izgd o Lo
<ev,e > (Sk..(sk ol . (3.5)
ey if i#tk
Notice that
Je =0 , Je=o0 (3.6)
k ” k ”
Je ®e° =1 (3.7)
&= =< b

Let us check the last relation, for example, by applying its
left hand side to the vector a = Z alei ¢ First, however, we intro-

duce the self-evident lemma:

(3.8) Lemma: If for any quantities Q,6 , j=0,-*-,n , Z Q =0

o 3 ; 3
th . = 6, .
en Q =8 .
Continuing with the check,
k k i
Z e, e +a-= Z e, (e °z ae,)
i <k ¥ < K <k~ § o~
= Z e, a"(ee,)
.~k ~
k,j
= ] ead 8
K, 3 J

J ~k
% a g Gj e

] &
3

Ej (by the lemma and (3.6))

= a o Q.E.D.
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If T is any sort of tensor relative to the vector space V ,

'i'J-.ok

we define its affine components % e om

by contracting it with the

relevant product of basis vectors ej, ek. Then (3.7) guarantees the

expansion:

~Jeosk )’
T=.z T%/ . g ®.o-®%k®% .--®Em (3.9)

gtk o (3.10)

for any index j , up or down. This last result is the distinguishing
feature of affine components and, together with (3.5) and the lemma, it
guarantees that contraction works asusual by summing on the contracted
indices.

Finally, we derive the affine components of two ''special ten-
sors'". The "Kronecker delta tensor" & has components formed as

follows (in a slightly cumbersome notation):

32 qMie VWV oredy 2 g VY ey 2 oa a7
5k 6\)(gk) <§ )U (Ek) (S )v k'€ 6k ’

which shows the consistency of our earlier definition (3.5).

The other "special" tensor we will need is the epsilon symbol,
which strictly speaking is not a tensor but a tensor density and thus
defined a priori only up to an overall factor. We fix this factor by

setting
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from which it is easy to evaluate the other components using the anti-

Ni‘ ..j

symmetry of € and the sum rule (3.10). Thus, for example,

~213+++n ~12+een _
€ = - € = -1
and
5023~--n'+ E123---n + g223---n + - ~n23*++n -0
8023 n .y L0+ -+ 0 = 0
5023000n -1

Let jojl---jn be any permutation of the indices O0l-++n . Then

+1 if the permutation jojl---jn is even
= (3.11)
-1 if the permutation NP PRSI 1s‘odd

~jl...jn
€

We note without proof that our definition is equivalent (for the

contravariant € ) to

e —— — )
=vyv vV v v
0’1 NVoV2 A A ovn

A final subtlety needs mention. Let n=3 for definiteness.

Then under the usual definitions

auv N TORVIRERN TRV
> eoas Sadﬁ 68 Gu

That the analogous formula apply to glik ana 2

ifm
is easily checked, that £123; =1._ 1 Accordingly, we define
> 123 4 n+l ° i

requires, as



-21~

the covariant € with components of magnitude (n+l)_l:

g ) 1 gjl-o-Jn
Jpee-dg n+l

With these definitions all the expected formulas obtain.

B. An Application

As a first application we calculate the metric tensor

the edge-lengths of the simplex, as promised in Section IIA.

Rij be the length squared of the edge joining v, to vj .
. I ‘-—-+
since, plainly, vivj = gj- e
2 — ——
= >
'Q'ij <g, ViVy ® ViV

<g, (857 &) @ (47 ¢y)>

> - < o
<g@j®§j 2<g@i®gf*-g@i®§f

Bi5 " 81y T Bus

A,
1j

k32

(3.12)

é.. from
Let

Then,

By forming the combination diaj AkR we can, in view of (3.8) and

~

(3.10) as applied to § , recover gij

k3002 L~
6i § ka =0 Zgij +0

~ 1,2 3k xR
Biy T T2 Saeq S5 Gj

(3.13)
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which says that §ij is just —‘% zij "rendered affine'" or 'projected

into the affine tensors'.

C. Bordered Determinants and Volumes

In this section we fix some normalizations and derive a useful
expression for the volume of a simplex.

Let the wedge product be defined in the usual way and normalized
so that, for instance, the wedge product a A b Ac of three vectors
consists of six terms each with coefficient *1 . Then we take the
product a A b to represent the parallelogram determined by a and b,
and iwaA b the triangle or 2-siﬁplex spanned by them. In general,

2

the normalized product
= 1 e (3.14)
w T3 A A a .

will represent the m-simplex spanned by vectors a;r-ra . With these
definitions the volume represented by any rank m totally antisym-

metric tensor w is

volume (w) =1)i59;%iL = | wl ' (3.15)

(The absolute value is needed because of the indefinite metric, i.e., the
volume is defined to be a real number. Thus, for example, the pone

[012] of some 4-simplex ¢ corresponds to the tensor

_l-——-—-")' ——
w --2—!_vole Vov2

1
21 (&7 ) A (ey=e)
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=1
=N T A T e Ae)

gij e e
(012) <i ~]

L
21

where EtélZ) is of course formed from the indices 0,1,2 in the
manner of (3.11). In general the m subsimplex with vertices

ko"'km corresponds via (3.14) to the tensor with affine components.

J)Jl...jm=—l-‘gjl...3m
m! “(k_+--k)
[o] m

(3.16)

According to (3.15) the volume, V, of this simplex is given by

(assume ‘m=2=n for ease.of notatién)

Gliy = o0k
2 _ <wyw> _ 2 BigByi
m! m!

But (3.13) and (3.8) imply a remarkable simplification:

i Tjk

Or working out the general case, for w of rank m :

mal o omopg g2 . (3.17)

Tb find the volume of any m-simplex of the net we can work within the
m-dimensional affine space spanned by that simplex and (calling its
vertices O0-:--m) write

jl...j

J17 1 -~
W = — €
m!
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Then

Cnx dqterdi kyeeek
wWoll = (- HT @3 gl Tmxl m2 .2 (3.18)
2 Jlkl Jmk.m

To facilitate numerical evaluation of such expressions we intro-
duce the concept of a "bordered determinant" which has the form (with

A representing any mXm matrix)

1 1 .-¢1
B(A) = 1
. A
1
Then the expression
L PRERE k,.--k
gl Tml ALt AL
1% In*m

can be evaluated as -m! B(A), the proof being left to the interested

reader. Thus we get the expression for volume in terms of edges, as

+V01% = (- —%—)m @) 2| 1 22 (3.19)

a result which appears in [4].

. _ _ .2 _ 02 _ 2
For a triangle we find (setting m=2, x 201, y-—loz, z-—le)
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= -- D% @n™?

1+
>
1

O N <

N =
< X O M

= - %Z [x2+ y2+ 22 - 2(xy + yz + zx)]

as promised in Section IID.

D. Simplectic Exterior Calculus

Let Zo = set of all O-simplexes (vertices) of the net,
Zl = set of all oriented l-simplexes (legs) of the net,
22 = gset of all oriented 2-simplexes of the net,

etc.

and represent a typical oriented 2-simplex, e.g., as [xyz] where

X,¥,2 € Zo . Then we defineT
a O-form (scalar thatch) as a map ¢ : Zo -+ E ;
a l-form (co-vector thatch) as a map A: Zl - B "such that
A(xy) = -A(yx) ;
a 2-form as a map F: 22 > R such that F(xyz) =
-F(yxz) = F(yzx), etc;

etc.
To understand these definitions one could think of A(xy), e.g., as
y
the line integral f’Audxu of some field Au along the leg [xy]. If,

X
then, F = dA , then Stokes theorem becomes

-1.

k-forms are also called k-cochains in combinatorial topology.
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F(xyz) < J Fuvdauv = % Audxu
[xyz] [xy]+[yz]+[zx]

> A(xy) + A(yz) + A(zx)

Generalizing this relation to arbitrary dimension we define the operator

"d" from m~ to (mtl)-forms as follows:

dw(l ky -+ ok ) = j

I o~8

. DY iy Ry eek) (3.20)

where the "hat" indicates omission. It is easy to check that

ddw = 0 : ‘ ' (3.21)
: w1 . 3
ddw(k «-k_ ;) = jZO dw (ko-‘-kjo--km+l)(—l)
m+1l . m+l 2
= 7 DY T D" sgn(a-i)
j=0 2=0

~

X w(ko.. .ka. . .kb. . .km-i-l)

(where a =min(j,0) , b =max(j,q))

mtl "y N R
z (—l)J sgn(%-3j) m(ko-..ka...kb...k )
j ,/Q/=O

since sgn(2-j) alone in the penultimate expression is antisymmetric in

the exchange of j with & .
Q.LE.D.
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The main theorem of this section is in part a paftial converse to
(3.21).

Consider now a particular m—form w and a particular simplex
g€ 24 and ask whether w '"extends to the interior of o", i.e.,
whether there is defined in the space of 0 an m-form w(oc) which
agrees with w on all the m-subsimplexes of o0 . By definition w(o)

"agrees with" ® -on [xo-f-xm] iff
<w(0),[xo"'xm]> = w(XO"‘Xm) (3.22)

If w does extend to 0 then we can form a simple expression

(analogous to (3.13)) for the affine components of w(o) :
From Section IIIC we know that, calling o = [0l---n],

ey — ———
' o o0 = e o 0
m.[k0 km] kokl A kok2 A A kokm

= (gk—gk )A(Ek_gk)/\“'/\(%k" gk)
1 o) 2 o m fo}

In the expansion of the right hand side only terms lacking or linear in

e survive since AN 0 , and one obtains, in a hopefully clear
o o
notation:
m
' L) = ¢ o0 -— .0 . a0
w! [k kl=e¢ A-:nce ‘Z e ATTTAE Ae  (3.23)
1 m j=1 1 o m

(3)
Because of (3.6) we can isolate ep A - eACy by summing on ko :
n

ml ) [k ek ] = (nkl) e A ccepe
k=0 ° " 4 ~
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n
- ~—.m! e o0
sk AccA € T 1+n Z [kokl km] (3.24)
1 m k =0
o
Applying w(0) to both sides
~ m! u
' — _.— . o 0
m! w(o)kl_._k T ) <w(a), [k --k 1>
m k =0
o
~ l n
W@y L =T Z Wk ky*e k) (3.25)
1 m ko—O

In order to study this condition more closely we make the

definition (relative to the simplex o)

1

n .
= Z w(kokl...kn) (3.26)

k =0
o

sw(kl...km) =

so that (3.25) can be expressed in the droll form

&(G)k ceek T Sw(kl"°km) (3.27)
1 m

It is easy to see that Sw is an (m-1)-form (on 0) when w is an

m—-form, and that

2 - o (3.28)

We can also verify the important relation (relative to o as

always)
sd +ds =1 (3.29)
Proof:
m j ~
dSw(k -+ k) = Y (-1 Sw(ko~--kj---km) =

3=0
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= _1yd L e R e
= JZ (-1) 2 Wk e+ kg ok )
L) ]
= —— W(k eesleosek )
PPy g0 G T
Sdw(k_-+-k ) = 1%5.22 du (Sk - -k )
1 n
= -l_:n- QZO [w(koo.okm)
m i A
- jZo (-1) w(gko.“kj...km)]
| L) ]
=w(k -k ) - w(k sreleerk )
o] m 1+n 920 §=0 (J)

Comparing the two expressions completes the proof.

Returning to the question whether w egtends to O , we note
that the formula for w(o) given in (3.27) or (3.25) will define a
form in the space of 0 whether or not w extends to ¢ . If we call
this form o then the condition that p agree with w on o (which

is just that w extend to O ) becomes

<p, [k vk 1> = wlk -o ok )

But by (3.23)

[{}
A
ko)
A
>
>
o
1
=} lv-—*
e~—8
A
pe)
o
=
>

<p,[ko--°km]> cve A-- e

~k
o
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1 n
== 7 w(k, k) - w(zk- oeeek)
l+n 220 1 m z 220 : m
(J)
1 % 1 7
=1-+-5£Z w(Rky k) + T Z wlk k-8 k)
=0 j=1 2=0 )
1 n m
=T 2 z Wk e+Qeeek )

2=0 3=0 ° (3

Comparing this with the proof of (3.29) furnishes the condition for w

to extend to ¢ din the form

dS w=w (3.30)

We can now prove the following fundamental theorem which has

been the goal of this section:

(3.31) Theorem: Let w be any form defined on a net including the
‘ simplex o and set = Sw as defined in (3.26). Then the following

three conditions are equivalent:

dQ

() w

(2) dw =0

(3) w extends to O , the extension being furnished by (3.25).

gzggg: We just saw that we can replace (3) by the condition
| (3') dsw = w
we already know by (3.21)) that (1) = (2) ,and (3') = (1) is
obvious. To complete the circle of implication we need only

(2) > (3') which follows immediately from (3.29) applied to w .

Q.E.D.
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By the way, {! becomes unique through the condition SQ =0 ,

which follows from (3.28).
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Chapter IV

THE ELECTROMAGNETIC THATCH

(A1l components in this chapter are affine components--but

the tilde (7) will usually be omitted.)

A. The Source Free Thatch EFquations

In this section we assume a net X with fixed metric thatch
Qij and the associated metric tensors g(0) for each 0‘824 (see
Section IIIB).

The "vector potential" A is a 1-form on I , as defined in
Section IIID, and F = dA 1is the electromagnetic thatch. By the
theorem of the previous chapter F extends in each cell 05:24 to a
tensor Fij(c) given by (3.25). Calling V(o) the volume of o ,

we take for the action

wn
1
1
|-

L V(@) <F(0),F(0)>
0&:24

=

ij ,
(ZjV(c) F~ (o) Fij (o)

=

I V(@) @™ g@ o)y, Flo) (4.1)
g

The thatch equations equate to zero the variation of S with

respect to the thatch A :

9S .
SAGD 0 for all legs [1j] € 21 (4.2)

Well,
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__1 ij
8s, =-% (};rvw) F (o) 61?13,(0)

But because of (3.25)

]
Gl

F..(0) F(kij)

13 kgo

Y (A(i3) + A(3k) + A(ki))
k

w1

= A(4j) + -;- 12{ (AGGK) + A(ki)) (4.3)
or

6F,.(0) = A(i3) + 3 ] (SA(5K) + SACKL))
1] keo

Substituting this into the expression for SSe s
=_1 ij . 1 .
5se-——52 V(o) F~ (o) [6A(i3) + 3 b (8A(3k) +8A(ki))]
o keg '

Because of the sum on i and j respectively, the second and third

terms vanish, and there remains finally

85 =~ %g V(o) (o) sacig) T (6.4)

TThus GSe is the same function of GJA(ij) that it is of GFij . In

fact the reasoning leading to (4.4) reveals this general rule:
Whenever fij(o) occurs with both its indices contracted against
affine indices, it can be replaced by A(ij)! The same applies to

N 1.2
855(0) > = 5 4y
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There is thus one thatch equation for each leg of the net:
T (L,3]0) V@) F@ < o (4.5)
0]

where the symbol "(i,j|o)" specifies that i and j are vertices

of o .
We can also express F'J(0) , and thereby the thatch equations

directly in terms of A . From the footnote to (4;4)

rH) = g2 ) F = £ &%) Adab)

Fio) = 3 0132 (0) Acab) (4.6)
where

hijab = gia gjb _ gib gja

B. The Equations with a Source--Charge Conservation

If there is prescribed a source, J , then the action has an

additional term

s, = 1 AG3) I (4.7)
[i3]e I,

in which J(ij) should be considered, not as a l-form, but rather as

a "vector density" or "current". In place of (4.4) stands (half of)

- J V(o) F (o) sA(I) + J(4i) SA(iF)
g

so that the thatch equations become
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] v(o) (o) = 3(ij) (4.8)
a

The natural interpretation of J regards J(ij) as the charge
flowing "along" = leg [ij] of the net. It is as if Xl were an elec-
trical network, A the potential drop, and J the current. Then the

conservation of charge (like one of Kirchhoff's laws) reads
Yy J(ij) = O (4.9)
3 .

and follows from (4.8) because of the rule (3.10). To clarify notation

we write the proof pedantically:

Y e(i,3) J(i)
j eXo

T e ¥ Wilo) v Fo)

je Zo o] 824

]

7Y o) Glo) vio) F(o)
G 3

T (i]o) V@) T Glo) FH ()

o J

% V(o) ) Fij(o)
olt jeo

We can also cast the conservation law in an "integral' form as
opposed to its '"local" statement (4.9): Let Q C:Zo be all the ver-

tices in some region of the net and form the two expressions
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) J(ik) and Y J(ik)
ie Q ke Zo i,k €Q

The first vanishes by the equation of conservation (4.9) and the second

by the antisymmetry of J . Then

0= 7 ) J(ik)
ieQ keZo

Yo ) o+ )) J(ik)
ieQ ke kéQ

0+ 1} z J(ik)
ieQ kEQ

Y ) J(ik) = 0 . _ (4.10)
1eQ kéQ

In words: '"The total charge leaving the region  vanishes."

C. Gauge Invariance

As usual F = dA determines A only up to an addition of the
form d6 , for arbitrary O-form © . Since A does not occur explic-
itly in S, we are free to require invariance under the ''gauge

transformation"

A-~> A+ d6 (4.11)

as long as the interaction term (4.7) is unaffected. But under (4.11)

Si acquires an additional term
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15 a0 I’
1,3

1
=51 [8(3) - 8] J(i))
=~ ) 6(i) ) J(i)
i 3
whence gauge invariance requires

Y J@3) = 0
j

since O is arbitrary. This is exactly the familiar connection be-
tween gauge invariance and charge conservation.

Since the gauge freedom of A introducés a free number for
each vertex of the net, one can remove this freedom by imposing one

condition at each vertex. One which suggests itself is
JA(13) =0  at all iel (4.12)
h|

This looks something like the '"Lorentz gauge'" but it isn't, since A

is a 1-form rather than a current.

D. Coupling to the Metric Thatch--The Energy-Momentum Tensor

Equation (4.5) already includes the effects of an arbitrary
background metric. To find the reciprocal influence of the electro-

magnetic thatch on the metric we must evaluate

The factor %-avoids double counting of legs in 4.7).
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T(ij) = - ; (4.13)

Writing (4.1) in the form

S, = g L(0)
(4.14)
S | U WV
L = - =
(0) = -3 V() g8 F (@) F ()
and varying the metric g(o) interior to O , one finds
= -1 - Ul g WV
28L = > SV <F,F> - V g &g Fquuv
(4.15)

_1 Y LV
7 OV<F,F>+ Vg Og, FF

If we express this in affine components, then &V assumes a

simple form which follows readily from the method of §IIIC:

R QN N Y™
§V=3Vg Ggij (4.16)
whence
vz ~ xif o=ij 1 o omab z ~di oo
28L v 85 ngj F-F 7 VF Fab g ngj
o oar qmidy s _ 1 zabn =i
=V dgjj {F 8y F 7 FOF e}
~ ik
in which

o S = _ 1 zab ~ <j .
T k(o) = F'7(0) Fka(o) 4 F7 (o) Fab(o) ) (4.18)



is the well-known formation in terms of f..,é
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footnote to equation (4.4) this becomes

L =

so that, finally

s =

Q1

1,2 . ik
72 VT

2 .
o g(a k|o) V(o)

2
24 T (k)
[3,klez, ¢ °©

T, (10=3] (ko) v©@) T
(o

ij’~7i]

3% (o)

7% (o)

In view of the

(4.19)

The thatch equations (2.4) for coupled electromagnetic and

metric thatches are thus given explicitly by (2.3) and (4.19).
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Chapter V

NETS FOR OPEN AND CLOSED SPACE-TIMES

A. A Simplectic Net for gﬁ_

The most natural path to arrive at a decomposition of 34 into
4-~simplexes is this: Cover or '"tile" 34 by rectangular regions of
which at most 5 intersect at any point; the nerve of this covering (see
[2]) will furnish the desired net (Figure 5.1). Haﬁing taken this path,
however, it appears that the answer can be gained directly, and most
clearly presented in affine coordinates, which moreover are perfectly
suited to the symmetries of the net.

We will describe the net by specifying ZO and Zl (that is,
the "network'" or "graph" formed by the legs). Then the following simple
rule (which just expresses that X 1is a nerve) defines Zk for
k=2,3,4:

Any k+1 vertices span a k-simplex of the net iff they are
mutually joined by legs.

Zo comprises all the points of the lattice generated by the 5
vectors (ej, j=0,+++,4) described in Section IIIA. More explicitly, it

consists of

(1) all vectors with integral components (recall that affine

vector components sum to zero)

(ii) vectors differing from those of (i) by one of the following
30 (=10 + 20) vectors:

*

(bmlmlml-1) , £ S(d 4ol-1-1) , =-v ,%=(-1-1-1-1 4),
5 5 )

*

wl- w»|E

(33-2-2-2) , %(3—2 3 -2-2), -, 1%(-2—2—23 3)



t

as the '"merve

B2

Figure 5.1 A familiar simplectic net for

of a tiling.
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Finally, any pair of vertices which differ by a vector of the
type (ii) (equivalently by a vector all of whose components are less
than 1 in absolute value) determine a leg of the net.

This completes the definition of the net. In the rest of this
section we verify that it is in fact a triangulation of 54 and we
expose some of its properties:

(5.1) All vertices of the net are equivalent. This follows from
the definition of X , which is invariant under translation
through any lattice vector.

(5.2) The "isotropic group" of all symmetries of I fixing the
origin, comprises the 5! permutations of the coordinates with
or without anoverall sign change. It has therefore 240 ele-
ments.

(5.3) The cells (4 simplexes) of the net fill 54 without gaps
and without any overlap. In other words, the net really
is a net. To prove this we note that if any flaw or over-
lap occurs, it must occur also in the neighborhood of some
vertex. Then by (5.1) it is enough to look near the
origin (00000). It is easy to see that the  only cells
that come near the origin are those related by one of the

symmetries (5.2) to the cell 00 with vertices

%(00000) , %(4—1—1—1—1) , %(33-2-2—2)

$(222-3-3) , F(1111-4)
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But this subset of the vectors of type (ii) (see above) is character-
ized by the ordering x° é,x;lz_xz z_x3 Z_x4 for its coordinates.
Furthermore any point interior to 9, is a convex sum (with positive
coefficients) of the vertices of 9, and thus enjoys the same order-

ing. On the other hand any point in the neighborhood of the origin has some
ordering of coordinates and will thus belong to that (or those if it is

on a boundary) cell(s) whose vertices are those of o, with coordinates
permuted to match ﬁhat ordering. Since there are exactly 5! possible
orderings and the same number of cells ("—Oo" is the same as 00), the
assertion is proved.

Finally we introduce some general definitions preparatory to

listing some "incidence numbers" for the net.

(5.4) Definition: o|f (o and B are incident) iff o 1is a subsimplex

of B or vice-versa.

(5.5) Definition: Gim(B) m-star of B = {aE:Zm: aIB}

(5.6) Definition: I(m,k) = card E%(B) = number of m~simplexes in the
m-star of a k-simplex B . (I(m,k) may have several
values if there is more than one type of k-simplex in

the net). Thus, for example,

1+k

m<k= Ik = (3,

), the binomial coefficient.

. T,
Here are some easily checked incidence numbers of Interest or relevance:

I (1,0) = 30 s I (2,1) = 8,14

T1In deriving such relations it is often convenient to characterize a
simplex by its barycenter, for example O, above by the vector

'%(2,1,0,—1,—2L which helps clarify the action of the symmetry group.



byl

I (4,0) = 120 , I (4,2) = 4,6

Notice that legs and bones both come in two inequivalent types.

On the other hand 0, 3, and 4-simplexes come in one type only.

B. A Simplectic Net for S3xR

The spherical character of the net to be described is based on
the 4—-dimensional analogue of the octahedron, a 'regular polyhedron"
with four pairs -of "antipodal' vertices (Figure 5.2). Each of these
eight vertices implies, for the net, an event which recurs periodically
(with period 4) at the same position in space and simultaneous to the
antipodal event. The 4 pairs are staggered in phase by 0,1,2,3 res-
pectively. A precise description follows.

Let the vertices be represented as [t] or [t*] in which t
is an integer. Then two vertices [tl] and [tz], or [t;] and [tg]
determine a leg in Zl iff ]tl—tzl < 4, while [tl] and [t;] deter-
mine a leg iff |tl-tzl <3 . (Of course, [t*] is the vertex "anti-
podal" to [t], and t is the "time'.) As before we complete the
description of I as the 'merve' determined by Zo and Zl , so that,
e.g., any 5 mutually connected vertices determine a cell of the net.

. Let us show that I is topologically a 4-dimensional manifold
without boundaries. I claim that this is equivalent to the following

conditions:

(1) Every simplex belongs to at least one 4-simplex

(2) Every 3-simplex belongs to exactly two 4-simplexes.

(1) says that every point of I has a 4~dimensional "environment",
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Figure 5.2 A regular '"polyhedron'" in 4 dimensions.
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while (2) rules out any boundaries or "bifurcations'. Detailed veri-
fication of (1) and (2) is an easy, if slightly tedious, matter.
Next we indicate why X is homeomorphic to S3X R . 1In the

first place we can embed it in 34 XR by the scheme
[t](resp.[t*]) » (x,t)(resp.(-x,t))

. . . 4
in which x is the vector in R :

(100 0) if t = 1 (mod 4)
(06 100) if t = 2 (mod 4)
(0010) if t = 3 (mod 4)
(0001) if t =4 (mod 4)

Then it is easy to see that L C §4><R is a "cylinder" of the form

BXR in which B is just the polyhedron pictured in Figure 5.2. Since

B is thereby homeomorphic to the sphere 83 s Z 1s homeomorphic to

S3><§ .

Here are some incidence numbers for this net:
I (1,0)

14 R I (2,1) = 6,8,10

il
]

I (4,0) 40 > I (4,2) = 4,6

Finally, we remark that this net for S,XR can only support a crude

3
approximation to any particular 4~geometry or electromagnetic field.
Unlike the net for R4 which has no intrinsic scale and can be cast as

finely as desired over any continuous space-time, this one cannot be

refined without producing a topologically distinct net.

In the next chapter we examine the time-evolution and initial-

value problems in terms of these nets.
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Chapter VI

THE TOPOLOGICAL STRUCTURE OF THE THATCH EQUATIONS

a) General considerations
With both the metric and electromagnetic thatches, the basic

data (Rz(ij) and A(ij)) for the action principle involve one number for
each leg of the net. Accordingly there is in each case a single varia-
tional equation associated to each leg. What other legs of the net are
involved by such an equation?

In the latter case the action (4.1) is a sum of terms pertaining
to a single cell of the net. The variational equation "of" a leg X
will therefore involve only legs of 654(A) , as can be verified from
equation (4.5).

In the former case on the other hand, a single term in the action
(2.1) pertains to all the cells of 654(b) . We would thus expect the
variational equation of the leg A to involve all the legs of
64062 o6’4(>\) +  But because of the identity discussed in Appendix C
the thatch equation (2.3) involves only GB;(X) . This is no doubt the
simplectic equivalent of Einstein's equations being only second-order
despite that the Lagrangian R 1is already second-order in the metric
tensor.

In both the cases just discussed then, the thatch equations have
an identical structure. For the coupled electromagnetic and metric
thatches everything is the same except both the number of variables and

the number of equations doubles.
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If two legs Al,Az belong to G;A(Ao) for some Ao then we
will say they are ''variationally related", or just '"related" when the

meaning is clear:

Definition: AU € Zl are variationally related iff
A€ 61064°61°G4(U)

b) The time evolution problem

In this section we assume that everything is known up to a
given "time'" and consider the problem of carrying the solution forward
a step. The next section will examine the problem of how to "begin"
a solution.

Take first the case of the spatially closed net described in
Section VB. (We discuss this in more detail because there are fewer
simplexes to deal with-—-a closed space has less '"space' than an open
one!) Suppose known all thatch quantities pertaining to legs pre-
vious to t = 3 (We will say for short that "all legs previous to
t =3 are known'.) and consider how to extend this knowledge to t < 4
by means of the thatch equations. In fact only legs lying wholly after
t=-3 are variationally related to the unknown legs so it is enough
to assume these known. We will call the subnet lying wholly between
t=13 an "initial couche".

Consider for example the leg [04] . Since 651([4]) includes

six other legs lying prior to t=4 , the most we can really hope for
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is to find sevenT equations in terms of which to solve for these seven
"new" legs. Happily there are exactly 7 legs whose l-stars include
both new and couche legs. They are, as is easily checked, the 7 legs
extending forward in time from [0]. To express the situation in more

detail, we have seven new legs
[430], [4,'1]’ [4’1*]’ [4’2]’ [4’2*]’ [4’3]3 [4,3*]

and for them the equations of the seven legs
(0,1}, [0,1%], [0,2], [0,2%], [0,3], [0,3*], [0,4]

In other words, the seven ''retarded" legs in 651([4]) are de-
termined by the equations of the seven 'advanced" legs in 651([0]). By
symmetry the advanced legs of 651[0*] will similarly determine the
retarded legs of 651[4*], and together these include all the unknown
legs prior to t=¥4 . Having thus advanced from t=3 to t=4 , we
can continue indefinitely, and we see that each step requires the solu-
tion of two sets of seven equations in seven unknowns (or 14 equations

in 14 unknowns for coupled metric and electromagnetic thatches). yp-

fortunately the equations are nonlinear in the 2%.

1]

Notice, by the way, that in this scheme all equations are
utilized (as they must be since there is exactly one for each leg) so
that a solution which begins consistent will remain so.

Turn now to the time evolution problem for the net of Section

VA. We take the first affine coordinate as ''time

.i.

For definiteness we assume one thatch equation and one thatch quantity
per leg.

and assume known all
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legs prior to t = 3/5.

| In the previous case it could be considered a convenience that
the 14 new legs for t < 4 fell into two sets, each of which could be
solved for separately. In this case, however, it is crucial that the
equations fall into finite clusters in order to avoid solving for an
infinite number of unknown legs subject to boundary conditions at spa-
tial infinity, etc. etc. Fortunately the situation turns out to be
completely analogous to the previous one with, e.g., the advanced

legs of 651((00000)) providing exactly enough equations to determine
the retarded legs of 6516%(4—1—1-1—1)). The only difference is that
there are 15 legs in each cluster and an infinite number of clusters

rather than only two.
¢) The initial value problem

In contrast to the continuum case the initial value problem
involves thatch equations of exactly the same type as does the time
evolution problem. Where it differs is in its "topological" structure--
in the relation of what is to be found to what is specified.

We begin again with the case of S3 X§ . As pointed out in the
last section, the problem is to specify cpnsistently all the legs of
the "initial couche" contained between t=*3. Of the 66 couche legs
there are 18 whose 4-stars lie entirely within the couche and therefore

imply constraints on the initial value data. Specifically, they are,

as is readily checked,
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(=131 ([-22] [-31]

[-1%3%]  [-2%2%]  [-3%1%]

[-1 2] [-1 2%} [-21] [-2 1¥%]
[-1%2%]  [-1*2]  [-2*1*]  [-2*1]
[-1 1] [-1 1%]

[-1%1*]  [-1*1]

The scheme which suggests itself is this: to specify freely all
the couche legs except for the 18 listed above, and then to solve for
the latter by using the 18 constraints which they themselves provide.

As far as 83><§ is concerned then, beginning a solution
involves the one-time solution of 18 equations in 18 unknowns, while
continuing one begun involves the repeated solution of two sets
of seven equations in seven unknowns.

One last point. In the electromagnetic case, gauge invariance
introduces 2x7-1 = 13 extra degrees of freedom, which effectively
cancel all but five of the constraint equations. But since the thatch
equations are linear in A anyhow, this is not a momentous simplifica-
tion.

In many respects the initial value problem for the net of
Section VA (for §4) is similar to that just discussed. On the other
hand, the infinity of initial value data raises whole new problems which
may or may not be severe. Only further theoretical investigation or
experience with practical application will clarify some of these ques-

tions.
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At any rate, the initial couche for this net may be taken as
the subnet lying wholly between t= +3/5 . (Except for the conventional
factor of 1/5 this is just like the previous case.) Observing that
a constraint leg is one yhose equation involves only couche-legs (in
other words, whose 4-star is in the couche) one can count
without too much trouble, 72 couche legs for each vertex at t=0 of
which 17 imply constraints. We can therefore specify 55/72 of the
couche legs and solve for the remainder in terms of those specified
and of appropriate boundary conditions at "spatial infinity'".

And it is easy to see what the boundary conditions should be.
Assuming we pick the "constraint 1legs' as unspecified, and if we
specify all others in a region  of the couche, then some of the con-
straint legs near the boundary of  will remain undetermined--
namely those whose 4-star extends outside { . To specify
those in addition to the non-constraint legs in 2 1is to impose
boundary conditions at .

Unfortunately there will be, in any practical case, so many
initial value equations (almost 17 for each vertex at t =0) that a
direct solution is probably out of the question. Instead one would
probably rely on a relaxation method, which, hopefully would be appro-
priate since the initial value equations ought, iq some sense, to be
"elliptic'" in analogy with the continuum case. But this requires more
study.

Alternatively, one might hope to begin somewhere at the
"center" of the couche and proceed outward, specifying data until some

leg (which must be still free!) becomes determined by those already
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specified. Assuming such a procedure is possible, there is the further
requirement that it be stable in the sense of not leading to some sort
of untenable behavior at spatial infinity. Again, these questions need

further study.
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Chapter VII

ENTR'ACTE: THE WAVE EQUATION IN TWO DIMENSIONS

The scalar wave equation in flat two-dimensional space-time
offers a simple illustration of simplectic methods, especially as

applied to linear theories.

If ¢ is the basic scalar thatch then, in analogy with the

continuum theory, we choose for the action

S= )] L(O) V(o) (7.1)

gel
n

where

L(0) = 3 <d$(0),db(0)>
A L D | |
=5 g (0) d¢; (o) d¢>j (o) (7.2)

Here, of course, g(0) and d¢(0) are defined as in SectionsIIIB and

ITID, respectively. Thus

N 1 .
dg, (0) = 7 kezd do (ki)

- o Lo - 600

db; (@) = (1) - <>, (7.3)

where <¢>0 is the average value of ¢ in the simplex ¢ . Then,

since Z §ij =0
3

§© ah0 = T & e
JEO
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and
L) = ) 3&3© ¢@) @) (7.4)
i,jec
whence
s=2 7 wilo e sw s v T (7.5)
i,je Zo
Gezn

Varying ¢(1)

39S _ . . ~1j .
) jgc (i]0) (3]0) g7(0) () V(©
-7 dove ¥ o em (7.6)
o jeo

the vanishing of which constitutes the thatch equation for vertex i .
So far everything was general. We now specialize to various

two-dimensional nets with flat metric. To evaluate gij(o) the fol-

lowing formula, which can be proved by the methods of Section IIIC,

will prove very convenient:

<F(1),F(j)> $H = i) @yv? g 7.7

- _ &
(n-1)!

Here everything relates to a particular n-simplex; F(i) 1is the
oriented face opposite to the vertex i , V the volume of the simplex,
and

~iooa. ~ ~ ~Q .. ob
J .ee g

n! g = ¢ (7.8)

(1,2}
=
[}

oQ

e
o

of course.

*"(i,jlo)" is a "logical function" which = 1 when 1ilo and j|o

and = 0 otherwise.
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Work first with the net of Figure 7.1 (without the dotted
line), and consider the equation of vertex A . Because all the cells

have the same volume, V , equation (7.6) becomes

Taloy 3 #9@ o) = o
(o}

jeo
or in view of (7.7),
Y(|o) ] <F(1),F(§)> ¢() =0 (7.9)
g

jeo

There are two types of cell in the net, of which o and B

are exemplars. For o one finds from (7.7) (order: A B C)

~1 1 0
std@ =] 1 o -1 (7.10)
0 -1 1
and from this §1J(B) must be (order: A D C)
1 -1 0
~1
gd@ = | -1 o 1 (7.11)
0 1 -1

The equation of A 1is then

) + @) +52% () +822 ) + P4 @)+ (@) s

+ @B @ + B @) ¢8)

+ &% + %6 o+
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+o.'

+ @) + B @) s = o

or

(-L+1+0-1+1+0) ¢(a)
+ (1+1) ¢(B) + (0+0) ¢(C) + (-1 -1) ¢(D)
+ eee + (-1 -1) ¢(H) = O
9(B) - ¢() + ¢(F) - o) = 0

¢(B) .+ ¢(F)

1

¢(H) + ¢(D) (7.12)

which is exactly the equation used by the method of finite differences,
in place of E]2¢ =0 (in 2-dim.).

It is remarkable that ¢(A), ¢(C), ¢(G) drop out of the
equation completely. It 1is also odd that the vertices of the net fall
into two variationally unrelated subsets, but there seems to be no way
to set up a net which avoids this and still has basic equations of the
type (7.12). The net indicated in Figure 7.2, for example, relates

every point to every other, but through the typical equations

¢(a) +2¢(h) +¢(d) = ¢p(b) + ¢(c) + ¢(e) + ¢(£)
which could be thought of as the sum of the two equations

d(a) +¢(h) = ¢(f) +¢(d) and ¢(d) +d(h) = ¢(c) +¢(e)
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A D
H N
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& N
v X
g |
N\
AN
AN
6 F N
E

Figure 7.1 A rectangular net for a two-dimensional
flat space-time. The diagonal lines are
light-like.
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Figure 7.2 The analogue in two dimensions of the net of

Section VA.
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The most disconcerting phenomenon implied by (7.9) is that of
the totally unrelated vertex as illustrated by Figure 7.3. The subnet
pictured,which might be the refinement indicated by the dotted line in
Figure 7.1, consists of four cells (triangles). According to (7.5)
their contribution to the action is a sum of terms in ¢(x) ¢(x) ,

d(x) d(A), s $(A) ¢(F), -+ . From (7.10) and (7.11) the coefficient

of ¢(x)*dp(x) 1is

1 4 ~XX, . 1
5 1 ET) = g (~kHa-bHs) = 0

while that of ¢(x) ¢(A) , e.g., is

2
7 1 W=7 aen=o0
3=1

In other words ¢(x) drops out of the action completely! In fact the
expression for S 1is thé same for both nets: the dotted line makes no
difference.

Lest all these surprises give the impression that the simplectic
approach is especially productive of anomalies, we should add that for’
any other than the 1-~1 ratio of sides, the net of Figure 7.1 reproduces
exactly the equation of the usual finite difference approximation. And,
though we have stuck to flat space-time, the simplectic scheme comes
into its own only with a curved background metric--which it handles with
no extra trouble.

As a final example we take the two-dimensional potential equa-
tion. Using a "square" net with the topology pictured in Figure 7.1

one finds for vertex A , e.g., the equation
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Figure 7.3 A refinement of the net of Figure 7.1.

¢(x) makes no contribution to the action.
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46(A) = ¢(H) + ¢(D) + ¢(B) + ¢(F)

which just says that ¢(A) is the average of the neighboring ¢
values. And of course this is the well known characteristic feature

of a solution of V2¢ =0 .



-63-

Chapter VIII

ALGORITHMS FOR NUMERICAL WORK

This chapter describes three key algorithms needed for numeri-

cal study of a metrical thatch.

A. To Find the Signature of a Cell

As discussed in Chapter II, any assignment of lengths to the
edges of a simplex, 0 , determines an internal geometry for o . The
algorithm of this section allows one to check whether that geometry has
the correct signature of - +++.

To find the signature of any metric in an n-dimensional affine
space amounts to finding n mutually orthogonal directions. If
(vj for j=1 to n) are vectors in such directions, then the signature
is the number of signs of each type (+-0) among the n scalar products
<vj,vj> . One can thus find the overall signature by thé inductive
process of picking a direction, noting its sign and reducing everything
to a subspace perpendicular to the direction chosen.

Applying this to an n-simplex, ¢ , let Rij represent the

metric thatch restricted to ¢ . In other words,
22, = <[13],[431>
ij ’

It is natural to choose as the direction to "factor out" that of one of the
edges [1ij] 6651(0) . For numerical stability it will be best (see below)

to pick the "largest'" such edge, i.e., one with the greatest Iﬁij|
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Suppose it is Rgl . Then Rgl contributes its sign to the total
signature and the "inductive step" consists in reducing the remaining
signature to that of an (n-l1)-simplex, p , as follows.

The midpoint, P;, of [01] will be the oth vertex of p , and
the other n-1 vertices will be the remaining vertices, [2],--- [n],
of O projected on the n-1 dimensional hyperplane passing through
Pl and perpendicular to [01]. The n-1 points Pl'--Pn define p as
their convex hull.

The formula for the '"reduced" Qij in terms of the original

Zij is remarkably simple. If [01] is the factored leg, and

- o2 2

Aj = loj - ﬁlj
then

~ (A,- A

22, =92, - 21", i1,5=1,---,n (8.1)

ij ij 422

01

Notice the division by 231 ; had we not picked lgl as the largest
Qij then (8.1) might be unstable against small changes (e.g., from
roundoff error) in the Qij . As defined, however, the algorithm is

insensitive to such changes.

2
01

furnish a measure of how nearly singular o is. The greater the ratio

The ll at successive stages of the reduction process

between the first and last of them, the more "squashed" is o . Thus

2
0

being "filtered" through roundoff error, and the sign of relatively

zeroes in the signature will usually appear as tiny IQ ll's after

very small le's is not reliable.
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Finally, the product of the 231 turns out to be proportional

to ]lollz, the square of the volume of o .

B. To Find the Defect of a Non-Null Bone

Let b = [012] be a bone of the net and let the remaining

vertices of 654(b) be numbered cyclically from 3 to k+2 . Then the

cells,
Gl = [012 3 4]
02 = [012 4 5]
O = [0 1 2 k+2 3]

of 554(b) comprise a ring whose mutual intersection is b itself.

If we embed b in flat space-time and then sqccessively 0y
through Oy » ranged about b just as they are in 554(b), then the ring
will not in general "close'; the initial face of 0, and the final
face of Oy will not coincide (see Figure 8.1). As indicated in the
figure we name the faces between successive cells in the ring as fol-
lows:

F,=[012 3]

F4 = [0124]

oy
[}

[0 1 2 kt2]

e
|

= [0 1 2 k+3]

and F

Here [3] and [k+3] correspond to the same vertex--and F3 3

to the same 3-simplex--of E&ﬁb)
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Figure 8.1 The numbering scheme for 654(b)
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The defect N of b measures the deviation of F3 from Fk+3
(see Sections IIB,C). If b is timelike (<b,b> < 0) then n is just
the missing solid angle © . If b is spacelike (<b,b> > 0) then n
is just the "boost" parameter relating the two faces and is positive
when either F3 (and hence F3+k) is spacelike and there is a gap, or
F3 is timelike and there is an overlap. (For brevity we ignore the
possibility that F3 is null.)

To calculate n it is convenient to work in the image space,
pictured in Figure 8.1, in which b becomes a point. More formally,
if B is the antisymmetric tensor representing the embedded bone (see
Section IIIC) and (fj for j=3 to k+3) the exterior tensors represent-
ing the tetrahedrons Fj then the image space M 1is a twb—dimensional
vector space with metric ++ or -+ according as B 1is timelike or
spacelike respectively. In either case the image of b 1is the origin,

and that of Fj a vector Ej in M , where the configuration of the

Ej is defined by the equalities
<gj,gk> = <fj,fk> (k=j or k=j+l1) (8.2)

We will not give a formal proof that this image method furnishes
the defect correctly, but one can understand why by thinking of M as

the subspace orthogonal to B and gj as defined by the relation

. =B AE.
fJ gJ

Now we know <fj,f > and < f from the internal

S
3 fj+1’ j+1
geometry of Fj and Fj+l and <fj+l’fj> from that of Oj—Z ,» 50 by
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(8.2) we can image the serial embedding process described above once we
solve the following problem: given a, <g,0> , <;,z> for vectors
0, 1in two-space, to find T . The solution is easily attained and

depends on the type of bone:

Timelike bone (++ image space):

Let p = <0,0> , r2 = <L,Do<0,0> - <C,0> 2 ,
then
p -r
1
g = [ ] LG
<~ <0, 0> r p ~

Spacelike bone (-+ image space):

Let p = <a,z> (= %% o'th , ¥ = <g,05% - <gr><a,00

then

In each case 7 lies counterclockwise from o .
Finally, if we call 53 and gk+3 respectively gi and gf s
then for a timelike bone, N (called "8" in Section IIB) is defined by

the relations

<E B> sinn = —(E AED = gl e2 + €l €]

il

(with -2m added for each extra circling of the bone), while for a
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spacelike bone there must be just 1 circling and then
<E,,£,> sinh n = - (£,AE)"
i’ i >t

(Note that <£i,€i> = <£f,£f> since both refer to the same tetrahedron,

Fy , of 64(b).)

C. To Solve a Nonlinear Algebraic System with Ill-Conditioned

Jacobian

Almost every numerical algorithm for solving a nonlinear sys-
tem of n equations in n unknowns is some variation of that scheme
(called "Newton's method" in one dimension) in which one iteratively
guesses the root of the function f on the basis of the current

values of f and f' . 1In formulas:

f'(x) * Ax = £(x) (8.3)
X > x - Ax (8.4)

Unfortunately, when n > 1 this scheme is subject to instabil-
ity. Suppose, for example, that n =2 and the solution set is a
curve . ("degenerate'" solution) as shown in Figure 8.2. Then at a point
such as Xy the Jacobian f'(xl) must be singular since motion along
the solution curve leaves £f(x) = 0 . For a point such as X s which
is very near to X1 f'(xo) will be almost singular (ill-conditioned)
since f'(xo) « Ax will be very small for Ax as depicted in the
figure. The condition (8.3) will therefore not inhibit very decisively

such a Ax and it may be that, rather than jumping to a point like Xy
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Figure 8.2 A possible instability
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as one would wish, the iteration could jump clear away from the solu-

tion.

Let D be the determinant

2
Bfl 9 fl
06 ondb
5 (8.5)
sz 0 f2
36 onodbd

9_ 1is the normal
on

derivative. Then it turns out that, in the generic case D # 0 , there

where 60 parameterizes the curve f =0 and

is no problem as long as X, is close enough to X - But if D =0
then the root X; can be absolutely unstable in the sense that no
matter how close X, is to it, the depicted behavior will occur.

Another difficulty with the undamped scheme is that it works
well only when the initial guess is sufficiently near a root. Far
from any root it has a tendency to jump about without ever "homing in"
on a root. In this case the usual remedy is to proceed slowly in
the direction of steepest dgscent of llfllz » since any root is
surely at a minimum of this function.

Because any flat-space solution of the thatch equations is
degenerate (see Section IIG), any sufficiently fine net will involve
thatch equations with an ill-conditioned Jacobian. And because we
have no good way to guess the solution of these equations, a procedure
such as that of Section VIB can expect to encounter one or both of the

problems just described.
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The solution (sée [6]) is to replace the system (8.3),(8.4),
which can be described as minimizing Hfl,z on the basis of the best

linear approximation to f , by the minimization on the same basis of
I£]® + € ||ox]| 2 (8.6)

Plainly this will discourage wild jumps like that shown in Figure 8.2.
Moreover, when € 1is large the direction of Ax will approach that
of steepest descent, as solving (8.6) reveals (setting y=£f(x) ,

J=f'(x)):

§|ly - 3 -ox||%+ €26 ||6x]|? = 0
- 2 <J8Ax, y=JAx>+ 2€2<6Ax, Ax> =0
(J*J + eZ)Ax = J*y (since &8Ax is arbitrary) (8.7)

Thus, when ¢ 1is large, Ax will be in the steepest descent direc-
tion, J¥%y .
To understand better the damping (8.6) requires the concept of

singular value. Namely, every linear operator can assume the form

n
J= ] |kb>o0, <ka| ,
k=1

o, 20 (8.8)

where (]|ka>) and (|kb>) are orthonormal bases and the Oy » which

are unitary invariants of J , are its singular values. J 1is called

"ill-conditioned" when its singular values are very disparate.
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Now consider the instability pictured in Figure 8.2. J might

be something like

J=|1><1| + |2> 6§ <2| with § << 1
Then J—l = ll> <1| + |2> 6_1 <2| , whence

bx = 3 ys = [y + 2> 670y, (8.9)

which will be bad unless Yy £ ylﬁ . A crude method to suppress the

instability would be to replace 6_1 by 0 in (8.9). The prescrip-

tion (8.6) replaces it instead by —7§-§-, which has the same effect
§“+e¢

when € >> § but allows a gradual transition to the undamped case.

From equation (8.8),

J* =} |ka> 0, <kb|

k

Substituting this into (8.7) and applying <ja| on the left,

! <ja|ka> o, <kb|2b> o <fa|Ax> + e?<jaltx> = T <ja|ka> 0, <kb|y>
k

b

or by orthonormality

‘(o§ + 82) <ja|Ax> oy <jb|y>

n |ka> o <kb |
Ax = 2 3 2 Iy> (8.10)
k=l o}

+ €

Thus, as we just described € > 0 functions to damp the action of

each singular value by the factor 02/(02+ 82)-
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In practice one begins with a large value of € , and lowers
it past one singular value after another as long as f behaves suffi-
ciently linearly at each step. When linearity fails, one initiates a
binary search for the smallest acceptable € . This procedure has
proved successful in many cases where the undamped scheme was hopeless.
The algorithm actually used differs in these ways (among others) from
that charted in Figure 8.3:

(1) it has a provision for overriding the damping periodically
uﬁder certain circumstances to avoid bogging down;

(2) it uses an inaccurate but convenient replacement for the
singular values;

(3) for very small € it reverts to (8.3) to reduce roundoff
error;

(4) if x - Ax would fall outside the domain of definition of £ ,
it increases € in order to decrease Ax ;

(5) it can keep Ax to within a specified size;

(6) it can stop.
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Evaluate fo), T= £

Comf;ow'e, ay with Pred(c‘i’e& valve

Bimr)/ search?

Yes \/ Nno

2
(°<—u7;

\ "
Solve

(T¥T +E%) ax = T*f(x)

|

Predict
Ay = -J.aX

X & X=X

Figure 8.3 Highly simplified flow chart for the algorithm
of Section VIIIC. The damping parameter, € ,
decreases after a successful step, increases

otherwise.
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Chapter IX

INDICATIVE NUMERICAL RESULTS

Using the algorithms described in the last chapter I have
investigated the scheme outlined in Chapter VI. Unfortunately the
indications are that the combination of an IBM 370/55 with the
language PL/1 is too slow to be practical. It is possible, however,
that a faster machine and a more efficient compiler (FORTRAN on a
CDC 7600) could provide sufficient economy to work out interesting

applications.

A. Testing the Code

At first I set up the 15 equations in 15 unknowns germane to
the time evolution problem of the purely metric mesh, as outlined in
Chapter VI ("15-problem'). As one sees from (2.3) this involves only
quantities pertaining to GSA(XO) for some vertex X - On the othgr

hand, since, according to (2.2) G(xox) is really

39S
-8 (9.1)

2
o8 (xox)
one has the symmetry relation

BG(xox) BG(XOY)

5 5 (9.2)
oL (xoy) 9L (xox)

It is remarkable that G(XOX) can be considered (9.1) as the
derivative of Sg even though Sg itself is not even defined by the
legs involved in evaluating G(XOX) according to (2.3). The explana-

tion is the identity (Cl) used in deriving (2.3). Thus a verification
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of (9.2) serves at the same time to check the computer coding for
errors and to confirm the correctness of the formalism in general.
Double precision computations in which the derivatives in
(9.2) were evaluated directly as differences displayed the symmetry
to an accuracy of 8 decimal places. Since reversing the relative
sign of the defect for spacelike vs; timelike bones leaves no trace
of symﬁetry, this also verifies the sign conventions described in

Section IIe or Section Ca.

B. Conclusions from Calculations

Beginning with very crude approximations to kﬁown exact solu-
tidns, the routine LINEARG (8VIIIC) was able to produce one solution
to the "15-problem'" and two to the analogous, but easier "7-problem"
based on the net of Section VB. In no case could the undamped
Newton's method converge and even the damped scheme failed in a
majority of cases. When it did converge it required between 36 and
200 iterations or about 40 to 600 seconds of computation.

The solutions found are notable, in the first place, for their
lack of gauge-invariance; in agreement with the considerations of
Section IIG they are unique (or at least discrete).

On the other hand, at none of fhe solutions was the Jacobian
well-conditioned, the ratio of the greatest to the least singular
value being about 25 in the best, and about 1000 in the worst case.
This means first that the solution is hard to find, and second that
it is unstable to small changes in the parameters. For let the

equation be
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F(x,z) = O (9.3)

where x 1is sought, for parameters z . Then the Jacobian

F
I(x,2) = & (9.4)
and, under a variation of =z
_ ep o OF 3F
0 = §F = x Sx + ~z Sz
-1 OJF
ox = 1712 52 (9.5)

If J is nearly singular, then J © in (9.5) will in general cause
large changes in x even for relatively small {z .

It is possible that a more realistic choice for the parameter
legs (for instance as part of a complete solution to the initial value
problem) could remedy the conditioning problem. But it will require
further theoretical or numerical work to assess this possibility, and
to learn more in general about the solutions to the equations for the

+

metric thatch .

TPresumably, there can be no unusual problems with the equations for
the electromagnetic thatch in a fixed background since these are

linear.
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Chapter X

FOR FURTHER INVESTIGATION

The next step in the development of simplectic methods would
be to try to reproduce a known analytic solution. Of these the most
suitable is probably the Taub space-time [7] which represents a closed
empty universe and could be approximated on the net of Section VB.

Should such a trial succeed, the next step could be the
Schwarzschild metric, for which the initial value problem is less
straightforward, and the behavior of the thatch in the '"throat" may or
may not cause difficulty. Assuming any such troubles overcome,
however, a situation such as the collision of two initially stationary
black holes should present no further essential difficulties. One
could take the black holes as the mouths of a single "wormhole'" and
realize that topology by deleting from the net of Section VA two space-
time "cylinders'" and identifying corresponding boundary simplexes.

The key to all such applications is the solution of the set of
7 or 15 equations which govern the time evolution problem (8VIB). One
might study these in more detail in the hope of effecting an analf%ic
simplification. Even an approximate simplification could be very
useful in finding a good initial guess to the solution. Also, one
might try to improve the equation-solving routine of Section VI{IC.

In particular, it should be able to follow the boundary of the valid
domain for the independent variables, rather than having to reduce the

step size, possibly to nothing. (It is usually the signature condition
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which delimits the domain of valid leg lengths.)

More theoretical in character is the question of the hyperboli-
city or "causality" of the thatch equations. Has this any simple
meaning for a simplectic net? The question of the stability of the
time evolution problem relates closely to this, as does that of
clarifying the character of the continuum limit.

Similarly, are the initial value equations in some sense ellip-
tical? If so will some relaxation method apply? In these areas
especially it may be that the recent work of certain engineers will
prove helpful; for they have been developing, under the title "finite
element methods'", an approach remarkably similar in many respects to
that described in this thesis [5].

A number of questions not even touched on in previous chapters
relate to the refinement, or other alterations, of the net. Is there
a systematic way to refine the net in regions of special interest or
rapid variation of the fields? Should one make any special alteration
in the neighborhood of a singularity? Can one estimate discretization
error or judge stability by refining a single cell and checking how
well the new thatch agrees with the old one?

Another theoretical question concerns the identity proved in

Appendix C. One may suspect that it is really the familiar relation
[AY =
J g 6Ru\) dV =0

in disguise. To make sense of such an assertion, however, one would

have to extend the definition of the action (2.1) to cases where the
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connection (B.3) is not necessarily compatible with the metric thatch.
Perhaps the method of Section IIC would apply.

Finally, there is the possibility of extending simplectic
methods to forms of matter other than the electromagnetic field. An
extension to matter with rest mass could have important astrophysical
applications while, more speculatively, one to spinor thatches might

be useful in theoretical investigations of quantum electrodynamics.
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Appendix A: The Circulator of a Null Bone, and How It Enters into
the Thatch Equations
Because a null bone is unlikely to arise in the course of an
actual calculation we have relegated its discussion to an appendix.
We discuss it here,.not only for logical completeness, but also for
the illumination shed by a "singular case" on a more familiar situa-

tion.

a) Parameterization of null rotations
As we have seen in Section IIB as well as in Appendix B, the

most general circulator of a bone is a Lorentz transformation fixing
some 2-dimensional subspace of space-time. When the bone ié time
(resp. space)-like such a transformation is a rotation (resp. boost)
characterized by an invariant parameter called the angle (resp.
rapidity). Similarly, the possible circulators of a null bone also
comprise a one-parameter set. But, unlike the angle and the rapidity
this parameter is not a Lorentz invariant (it is not 'dimensionless").
Nonetheless, there is an invariant implied by the relation of the
circulator to its specific bone, as we now show.

Let M be a 4-dimensional vector space, with a basis e ---e

~1 24

in terms of which the scalar product

<g,m> = et + £2n% - gt - ety (A.1)

Thus ey is null and, together with e, » spans a null 2-subspace, 8,

of M . What is the most general Lorentz transformation fixing e,

and e, (and hence 8 )?
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It is
+1 0 0 A
. 0 1 0 0
AT(A) = 9 (A.2)
A 0 1 A7/2
0 0 0 1

Since a circulator preserves orientation, we can ignore the minus signs

and write simply A(X) . Then

A °AQA™) = AT + A"

so that A plays the role of an angle. Nevertheless, it is not an

invariant because, for example, the Lorentz transformation

o (A.3)

changes A by a factor of o .
B

. . \Y)
To examine this circumstance let B be any "surface tensor"

in the fixed subspace B and set

- Jo op
Vuv = V"8 €008 B (A.4)

In particular, we can imagine that e, and e, span a bone b , that

-1
B=3or 8" (A.5)

and that A()) is the circulator of b . Then we calculate succes-

sively
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_ 23 _ ;32 _1 o B
/‘E - l ’ B - B 2 ’ V14 V4l 1 ]
O 0 0 1
o 0 o0 o
vy = ,
Vv 1 0 0 0
0O 0 0 o
or comparing with (A.2),
v=%S 00 (A.6)
dA :

A=0

In other words, V(=V5) is the infinitesimal generator for A , whence

A()) = e}\V . Noting that

V3 =vVeVevV= 0 (A.7)

we can express finally A in the form:

AV

AQ) = eV =1+ 0w+ % A2v? (A.8)

Looking back over the previous paragraph shows that, relative
to B and A, A is invariantly defined by the relations (A.4) and

(A.8). Furthermore (A.4) in the form

of

v = g% /g ¢ B (A.9)

ovaB

shows that V has "dimensions" of L2 , from which, with (A.8), A

must have "dimensions" of L_2. The case of a non-null bone is pre-

cisely analogous except for one thing: one can normalize V through

the requirement



and define 6 oy n relative to this dimensionless tensor. In the
present case, however, VeV = -4B*B = 0 and one is thrown back on

(A.9) with its linear dependence on B.

b) An expression for the defect of a spacelike bone

Consider a pure boost A and some surface tensor 8"V 1in

the plane fixed by A . As before define
T VY aB
A v=8 g EUvGB B (A.10)
A= | (A.11)
Calculating as in the previous section one finds
n =\ v2 <B,B> (A.12)

where n is the defect of Section IIC if A is the circulator corres-
ponding to circulation in the sense indicated by VUV .+

The significance of reexpressing 1N in terms of B , V , and
the parameter A is this: all these quantities will be continuous
functions of the metric thatch. In fact (referring everything to some
4-simplex in Ggé(b)) gij is constant while Xij is defined continu-

ously in terms of the affine tensors éij(O) (see‘Appendix B) which

in turn are continuous in the metric thatch Qij . Similarly for

.i.

~

eAf "indicates'" the sense e +> f .
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Vlj . Therefore by (A.11) )X 1is continuous in the Qij , and as b

becomes null goes over into the null parameter A of §Aa.

c) Contribution of a null bone to G(ij)

If b= [ijk] € 22 , then from (2.3) its contribution to
G(ij) is
ad) n) 2 _ 2 _ 2
16 A(b) (Zij Qik Rjk) (A.13)
If b 4dis null then A and (see Section IIC) N wvanish, leading to
0/0. We can, however, evaluate (A.13) as a limit.
As before we refer everything to some cell in 654(b) and

work with b spacelike. Then, in the first place, 0(b) = -1 and

A(b) = V/% <B,B>
Combining these with (A.12) furnishes for (A.13)

2 _ 2

L,,,2
- Mg - 2 - A (A.14)

with A defined by (A.4) and (A.8). This is b's contribution to

G(1i3).
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Appendix B: The Connection in Affine Coordinates

Tﬁis appendix develops. an expression in terms of the metric
tensors g(0), g(p) of adjoining cells 0,0 for the affine mapping
Y(o,p) implementing "parallei transport" from p into o . More pre-
cisely, if Vj(p) are the affine components of a vector in the space of
P , then ;;(O,D) Gi(p) can be considered as the components of the
same vector relative to 0O .

Let o = [01234] and p = [51234] , so that, e.g.,

onp = [1234] . Then if

5 .
P= 7 ti(p)[i] (B.1)
j=1
is a point (not a vector!) in p , we seek its affine coordinates

Sk(o) relative to 0o :

¥k
P= ) S7()[k] (B.2)
k=0

It is easy to see, by expressing [5] as an affine sum of

k

[0]---[4], that S is related to tj by a relation of the form

=Y. B.3
ST =7yt (8.3)
in which, because of (3.2),
TyE =1 (B.4)
kg 4
In fact, if
4 k k :
[5] = ) x[k] (Cx =1) (B.5)
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then Y is the matrix

5 1 3
o] x° 0
1] x* 1 o o o
y(o,p)kj = 2 x¥* 0o 1 0 0 (B.6)
31 x> o 0o 1 o
s x* o o o 1

and that [0] and [5] lie on opposite sides of [1234] means x° is
negative:

x° <0 (B.7)

Now Y(G,p)k;j represents an affine point transformation but can
function equally well as a vector maﬂ' since a vector is just the dif-
ference of 2 points (see Section IITA). From the characteristic that
parallel transport preserves the metric, one deduces the crucial con-

dition for vy :
~ 2' 'Q' T}
0 = v{@0)v; .0 g () (8.8)

which we express in terms of the inverse metric tensor only because
this will produce the xj with less effort.

(B.8) resolves into four typical equations:

%°0) = P58 0 = & FPe (B:9-1)
o = D20 + 2 #20) + 5 0) (B.9-2)

TIt is not, however, the affine components of a bitensor, as is

-~

?? = Y: Gj s the preferred form of the linear transformation asso-

clated to vy .
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~01 51
g (

o) = x%xL §2°(0) + x° (o) (B.9-3)

~ ~ ~ 2~ ~12
§12(0) = 222 §22(0) + L 322(0) + x2BT(0) + 512 (p) (B.9-4)

Assuming §55 # 0 (which= g°° # 0) it is easy to solve

(8.9-1), (B.9-3) and (B.7) for x :

~00
FCR -
~55
g" (p)
~ok ~5k
=80 - £
xk = _0 , =1.44 (B.10)
~55
g~ (p)
~55_ . . .
If g 7= 0 then other,equally easily derived formulas obtain.

Now envision a ring of cells comprising the star, G%(b), of a

bone b , and numbered from 1 to k . Then the composition

A(1) = v(1,k) o Y(k,k=1) o + - * 2Y(3,2) o ¥(2,1) (B.11)

is an affine transformation representing the circulator of b in the
sense 1+2-+3 ...+>1 , and referred to cell #1. Because of (B.8) the
matrix g(l) of cell #i is invariant under A . And obviously (see
(B.6)) A 1leaves b, and therefore any vector parallel to b , un-
changed. Considered as a linear transformation the circulator is thus
a Lorentz transformation which leaves unaltered the vectors of some

two-dimensional subspace.
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Appendix C: Proof that )AGSn =0

In deriving the metrical thatch equations (Section IID) we used

the identity

g A(b) &n(b) =0 (C.1)

where the sum is over all the bones of the net. Regge [1] has proved
this for a positive definite metric; this appendix extends his proof to

the signature -+ + +.

a) Space-time "trigonometry"
The algorithm described in Section VIIIB produces the defect
n by "imaging" the faces F, in a two-dimensional space of appropriate

i

signature. But why not just add up the "angles' between the F, and
subtract the sum from 27 (not that this would be more efficient!)?
For a timelike bone this prescription is easy to carry out, but for a
spacelike bone (- +image space) the definition of "angle" involves some
subtlety, it being evident, for example, that € cannot increase con-
tinuously from 0 to 27w during a complete circuit of the bone.

The basic property of angle is additivity on segments of the

plane so that 6(x,y) in Fig. C.1 is independent of where =z inter-

venes. But this additivity is tied up with the relation

X'
cos B(x,y) = T———Z—_

(c.2)
x|yl

which might, therefore, be able to define 0 in general. However,

whenever x or y 1is timelike there will be an ambiguity in the sign



Figure C.1
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8(x,y) = 6(x,z) + 6(z,y)
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of the right hand side, not to mention that cos 6 itself determines

® (which is in general a complex number) only up to a sign. There are
two consistent ways (complex conjugates of each other) to resolve these
ambiguities and the following defines one of them.

If x,y are vectors , then define

[xl = V<IX,x>
|xAy|=J%<xAy,xAy> (C.3)

in which the root is by definition positive imaginary or positive real
for negative or positive argument respectively. Then we determine @

from the formulae

) <x,v>
cos 0 = —=2¥7

EIN
(C.4)
sin 8 = J_)S_—A—LL—
x| [yl
and complete the definition by stipulating
O0OL<Re O X (C.5)

Let us check, for example, the cosine of the additivity condi-
tion illustrated in Figure C.l. To insure that 2z is 'between" x
and y we can conveniently put (since the magnitude of 2z is ir-

relevant)

z=tx+ (1-t)y ’ t>0 (C.6)

Then
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cos O(x,y) = cos(8(x,z) + 6(z,y)) ?
cos 0(x,y) = cos O(x,z)cos 6(z,y)
- sin 06(x,2)sin 6(z,y) ?
<x,y> _ <x,z> <z,y> _ |xnzllzay] ,
2 2 )
x| Iyl x| l2]® [yl x| [2]7 |yl
|z|2 <X,y> = <x,z> <z,y> - |xAz| |zAy| ?

The equality is readily verified using (C.3) and (C.6).
From (C.4) it is easy to work out the path of 6 in the com-
Plex plane during a complete circuit of a spacelike bone (Figure C.2).
Taking differenées shows that an angle within region I or III is
positive pure imaginary, while one in II or IV is negative imaginary.
Finally, what is the formula for the action, S , in terms of
defect angles as defined above? Let ©O be the defect, B a tensor

representing the bone, and

|B] = %<B,B> (C.7)

with the same convention that |[B| v +i or +1 . 1In fact, if A is

the (real) area of the bone as used in Section IID,(then

Bl = &

and a detailed check of the sign conventions as indicated, e.g., by

Figure 2.2, reveals a simple formula for S wvalid in all cases:
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Figure C.2 The dotted lines are "at the point at infinity"

in the complex 6-plane.
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iA(b) n(b) = |B| 6(b) (C.8)

is = ) |B| 6(b) (€.9)
b

b) Derivation of the identity

If o ¢ 24 is a cell of the net then let F(j) represent
the face opposite vertex j , B(jk) the bone opposite [jk] (geometri-
cally the intersection of Fj and Fk), and 6(jk) the contained

angle. We will prove the

(C.10) Lemma: Y IB(ik)| 86(jk) = ©
k,jEQ

if § denotes a variation in the length 2§k of the legs of o
Then the desired identity (C.1) will result from summing over all the
cells of the net:

7 |Bb)| s6() = -0 ,
b

or by (C.8)

i} A(b) én(b) =0
b

In order to prove the lemma, it is most convenient to express
everything in terms of §ij(0) . To that end we note that (C.4) de-
fines the angle between two vectors whereas 0(jk) 1is in the first
place an angle between two hyperplanes. If X,y are co-vectors cor-—
responding to these hyperplanes, then it turns out that (C.4) applies
to the complex conjugate 0% , rather than to 0 . But we can take
for x,y the (co)basis vectors ei,ej with a relative minus sign

~ ~

for proper orientation. Then
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<e1,—eJ>
cos 0(i,j)* = —_—
le™| e’
let A &
sin 6(di,j)* = ’
ey Ie,l
or, since
<ei,eJ> = gij
and
e'aed|® = <ehiet> <el,edy - eteds
~ii ~j53 ~13.2 _ ~ijij
- §33 - gl3y2 - {133

N
sin 0% = ———— (€.11)

49

cos 0% =

Writing &6% = -§(cos 6)*/sin 6% , evaluating, and simplifying:

C oAy i ~ij 1,8 sgdd ~1j
80(1,1) = —=gy {08 - 3G + 55 &) (C.12)
h g g
. . ~ab
which expresses 00 in terms of 4g~ .

It is somewhat easier to express |B(ij)l in these termst

B = 3 &9 (see (3.16))

where
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|B| = (C.13)

Combining the last two results,

~ii 6~jj
. . i —~= ~13 ~1j,8 + &
BC13)| 80(13) = 3 /5 {68™) - 3 & YL !
8 g

the sum of which for all i,j vanishes in virtue of the rule (3.10).

This proves the lemma.
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Appendix D: The Character of the Continuum Limit
a) General considerations

All the thatch equations discussed above share this feature:
the thatch represents a true field but one of a very simple (possibly
singular) type. Thus A(jk) corresponds to a plecewise linear elec-
tromagnetic potential, while Zz(jk) defines a piecewise flat manifold.
In terms of these fields one defines the aétibn in the usual way; then
the thatch equationé just assert the stationarity of the action—-but
only for variations which maintain the correspondence of the field to
some thatch. By using ever finer nets one allows for ever more delicate
variations of the field so that, in the limit of an infinitely fine net,
one expects the solution thatch to correspond exactly to the true
field+.

On the other hand, as we will see below in particular examples,
it is in general false that the limit of a particular thatch equation
is the correct field equation at that point. In other words, the dis-
cretization of an exact continuum solution will not produce a solution
of the thatch equations, even in the continuum limit!

To understand this better remember that A(jk), for example,
corresponds to a piecewise linear field. At any given point this can

agree with Ap(x) only to terms of the first order in dx (precisely

TUnfortunately the action is not positive definite (hyperbolic equa-
tion); so there will also be some requirement for overall stability.

That is not discussed at all in this appendix.
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those involved in the definition of the action!); it can reflect the
second derivatives of Ap only on the average over a small region.

Thus one can expect A}J and even F but not auFuv to become

uv -’

exact in the continuum limit. The field equations F v - 0 can

3U M
become exact only after averaging.

We can arrive at this conclusion again by a somewhat different
argument. Let  be a region of spacetime and consider for simplicity
the scalar thatch ¢(j) . In the continuum limit &S must vanish for
any smooth variation 0¢(x) of the field ¢(x) . In particular, it must

vanish for the variation &¢ = constant within  , 69 = 0 outside. But

for such a variation &S is just the sum

S
8 ) =
Lo TOQ)
(The boundary terms are negligible if the net is sufficiently fine.)
We conclude that even though the thatch equations, 5%%57 , may fail

individually, their sum

aS
=25 -9
Ly B

over any finite region ) will be valid.
For the thatches A , 12 the same argument applies except that,
in place of {¢ = const. one must put a variation of the Qz(ij)

[respectively SA(ij)] which corresponds to = const. [resp.

Ggpv
S8A = const.]. There will be 10 [resp. 6] linearly independent such

variations.
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b) Illustration

The simplest example of these considerations is the flat
scalar wave equation in two dimensions. We will examine the thatch
equation (7.6) for various nets and show that while the continuum limit
of (7.6) is always a homogeneous second order differential equation, it
is sometimes the wrong one. As expected, however, an appropriate sum
of these equations (over a '"unit cell" of the lattice) always reduces
to the correct equation in the continuum‘limit.

Let us write (7.6) for the vertex [O]e:Z0 in the form

% u(k) ¢(k) =0 (p.1)

where

uk) =} (0,keo) éOk(o) V(o) (D.2)
o

and k ranges over 650(651([0]). If we expand ¢(x) about [0]
(assuming flat space-time recall) then
. ' e 1 .4 ~ P
¢(3) = ¢(0) + ¢'(0) * 03 + 5 ¢"(0) + 0] @O + --- (D.3)
and (D.l) becomes

¢w>£wm+¢%m-£mmdﬁ+§ww»zum)£®ﬁ+-u=o
k

(D.4)
Since one can prove in general (flat space) that

k) =0 Y u(k) [k] =0 (D.5)
k k .

—
(D.4) becomes, to second order in Ok
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%wmwguwnu®nd=o (0.6)

(The notation of the second equation of (D.5) makes sense because of
the first, just as that of (D.6) in turn makes sense because of (D.5).)

In the continuum limit this has the form

ny -
™" 3,3,4(0) = 0 (D.7)

HY 4 g“v in general.

Unfortunately a
Consider for example the star shown in Figure D.la. The corres-

ponding equation (D.7) works out as

2 2
3
—%u+q)i%-%u+%—%= 0 (D.8)
9x 4 oy
in which
- ol - a)
178@ -8

(For convenience we deal with a positive definite metric.) This differs
from the correct V2¢ =0 wunless q=1, i.e., unless (a,B)’ lies on
one of the diagonals of the square.

On the other hand, for a vertex such as B in Fig. D.1b, (D.7)

becomes, with the same normalization,

2 2
—%(B—q)g%—%@-%)-a—%= 0 (D.9)
X ay

Since on the average there are equal numbers of vertices of types A and

B, the average thatch equation is the average of (D.8) and (D.9):
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CX)) (1,N

(Kaﬂ)

(1,0

(050)

(a) A star in flat two-dimensional space-time. The vertices

are labelled by their rectangular coordinates.

(b) A complete net made up of repetitions of this star.

Figure D.1
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which is the correct continuum equation.

Notice that, in forming the average thatch equation it was
enough to consider one equation for each type of net vertex. 1In a net
where all vertices were equivalent, each individual equation would already
be completely typical. This explains why the nets of Chapter VII pro-

duced the correct continuum limit without any averaging process.
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