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Abstract

A theoretical study of the reaction ofwnonspherical particles is carried out in
the shrinking core regime to determine the effect of particle shape on total reaction
réte} particle temperature, and to characterize the evolution of shape with con-
sumption of particle. This problem involves the solution of the external diffusion
and heat conduction equations with the reaction entering as a boundary condition
over the particle surface. Firstly, the problem is treated isothermally by a domain
perturbation technique to give analytical results for a slightly nonspherical particle
and by the boundary integral technique for spheroids of arbitrary aspect ratio. Sec-
ondly, the nonisothermal problem is solved to give the pseudosteady and dynamic
behaviors of nonspherical particles taking char combustion as an example. For the
dynamic problem the diffusion and heat conduction in the gas phase are assumed to
be at pseudosteady state with respect to the evolving particle temperature and par-
ticle size and shape. Lastly, the effect of surface roughness on the gas-solid reaction
is similarly examined by representing the particle surface as a series in Legendre

polynomials superimposed on an underlying spherical surface.

For nonspherical particles of equal volume but varying shape reacting under
isothermal or nonisothermal conditions, the total reaction rate increases with the
aspect ratio and is approximately equal to that of the sphere of equal surface area,
and the local reaction rate increases with the distance from the particle center. The
pseudosteady particle temperature under nonisothermal conditions is essentially
the same for various spheroidal particles of equal volume. The particle temperature
approaches quickly and remains close to its pseudosteady trajectory with conversion.

During reaction a particle becomes more and more nonspherical. As for the effect of
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roughness, from the method of domain perturbation the nth mode decreases if the
Damkdhler number @ > Q¢ = 25>, and vice versa. For highly irregular particles,

too, this criterion applies overall, but they do not have sharp critical values of

showing mixed behavior in a certain range around Q..
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Chapter 1

Introduction

Reactions between a gas and a solid particle are of great industrial importance.
In such reactions frequently encountered in the process industry, a gas contacts a
solid to react with it, forming gas or solid products. Particles may shrink or remain
unchanged in size, depending on the formation and on the physical structure of
a solid product. Several examples of shrinking particle are the manufacture of
carbon disulfide from the elements, the formation of metal carbonyls, the water-gas
reaction and coal char combustion (Levenspiel, 1972; Szekely et al., 1976). Among
the examples where ash remains are the oxidation of sulfide ores to yield metal
oxides, the preparation of metals from their oxides by reduction, the nitrogenation of
calcium carbide to produce cyanamide, and the regeneration of deactivated catalysts
(Levenspiel, 1972). Knowledge of the conversion behavior of gas-solid reactions is
a prerequisite to the analy»sis of many existing processes and to the design of new
installations.

For gas-solid reactions, internal and external transport and reaction kinetics
have to be considered simultaneously. The rate of the overall process depends on
the relative magnitudes of the rate parameters for reaction and transport, both
internal and external. Furthermore, since the solid is involved in the reaction, the
conditions inside the particle such as the effective pore diffusion coeffeicients can
change as a result of changes in the internal pore structure.

Analytical or numerical descriptions of gas-solid reactions are generally based
on solutions of linearized or otherwise simplified representations of the general equa-

tions. In the shrinking core model, the core is assumed to be impervious to gaseous
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reactant, with reaction only occurring on the external surface of the shrinking core
(Field et al., 1967; Field, 1969). This analysis was later extended to include a
detailed account of external heat and mass transfer while retaining shrinking core
oxidation (Ubhayakar, 1976 ; Libby and Blake, 1979 ; Annamalai and Durbetaki,
1979). In the progressive conversion model, the reactant gas is allowed to penetrate
into the particle assuming a static internal solid structure, i.e., constant effective
diffusivity and constant reaction surface area (Wen, 1968; Ishida and Wen, 1971;
Froment and Bischoff, 1979). More sophisticated models dealing with pore branch-
ing and pore enlargement are presented by Simons (1979), Gavalas (1981), and
Sotirchos and Burganos (1986). Regardless of the treatment afforded to internal
and external diffusion, all previous investigations treated the reacting particles as

spherical, thus avoiding the mathematical and computational complications entailed

by nonspherical geometry.

If the initial particle shape is perfectly spherical and the spherical shape is also
stable, this assumption is obviously correct. Since in practice the solid particles
cannot be perfectly spherical, it is important to check if they react with sphere-like
shape even though the initial shape is not completely spherical. Even if the initial
particle shape is perfectly spherical, it may not be stable to small disturbances of
surface concentrations of reactants. Therefore, we need to find out whether it is
appropriate to assume a spherical shape in the shrinking core model of a gas-solid
reaction. Moreover, we would like to explore the effect of nonspherical shape on the

reaction rate, particle temperature and other reaction characteristics.

A few experimental results may be indirectly related to the analytical inves-
tigations contained in this thesis. Waters et al. (1988) obtained overall kinetic

parameters describing the combustion of an irregularly shaped carbon char based
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on optical measurements of the temperature, size and velocity of individual parti-
cles observed in an entrained-flow reactor. According to these authors, the kinetic
parameters are not much affected by the simplifying assumption of a spherical par-
ticle. Weisz and Goodwin (1963) presented a photograph showing the nearly spher-
ical core shape at 50% decrease of core radius, originated from an initially spherical
shape of carbon-deposited catalyst. A picture displayed by Wen and Wang (1970)

depicts a geometrical instability for a small core size.

In this thesis we are investigating how the shape of a nonspherical particle
evolves with reaction in the shrinking core regime using two different methods.
These methods are the method of domain perturbation (DP) and the boundary in-
tegral method (BI), both of which are frequently used to study various free boundary
problems in fluid mechanics (Brenner, 1964; Youngren and Acrivos; 1975). The DP
technique can only be applied to particles slightly different from spherical. The
BI technique can be used for smooth particle shapes and has the advantage that
the numerical computations are confined to the bounda.ries oniy (Liggett and Liu,
~ 1983). This method is particularly suitable for problems where the values of some
function or its derivatives are needed only at boundaries like the problem we will be
discussing hitherto. We will be restricted to rotationally symmetric particles such

as prolate and oblate spheroids of high aspect ratio.

_ In Chapter 2 the pseudosteady state analysis of the catalytic and noncatalytic
reactions on an isothermal particle surface will be carried out using the domain
perturbation technique and the boundary integral technique to yield the total re-
action rate, the surface averaged reaction rate and the rate of change of the aspect
ratio. The results from Chapter 2 are also applicable to steady state gas reactions

occurring on a nonspherical catalyst surface. The sublimation of prolate and oblate
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spheroids, albeit not directly related to the subject of this thesis, is also analyzed

to compare the effects from two different surface boundary conditions.

Chapter 2 treating the isothermal gas-solid reactions can give us some insight
on the shape change accompanying conversion. But since the reaction depends
exponentially on the temperature, the temperature effect should be included in a
more realistic analysis. The inclusion of temperature makes the problem highly
nonlinear; therefore, the problem could not be solved withouf certain additional
assumptions. These assumptions may be justified since we focus attention on the
shape change of the particle rather than on the issue of reaction rate, etc. Although
the rate of change of the aspect ratio for a noncatalytic gas-solid reaction may
provide an estimate of how fast the particle shrinks and deforms, it is desirable to
follow the particle with time in order to find various properties as functions of time.
Chapter 3 will treat the noncatalytic burnout of a nonspherical particle with time,

employing a real set of data on a bituminous char combustion.

Another phase of nonsphericity encountered by real particles is the roughness
of the particle surface. Chapter 4 is concernedwwith the evolution of a rough surface
using the isothermal linear problem formulation developed in Chapter 2. As in
Chapter 2, the analysis is based on the domain perturbation and the boundary

integral methods.

The problem of a shrinking particle (Case I) is divided further, according to
the diffusion model used, into a linear diffusion problem and a nonlinear diffusion
problem. As is well known the nonlinear diffusion equation reduces asymptotically
to its linear counterpart as the mole fraction of all the diffusing species becomes
very small or in the case of equimolar counterdiffusion. In the special case of

binary diffusion the nonlinear diffusion equation can be transformed by a change of



-5~
variables to the linear Laplace equation with a nonlinear boundary condition. The
latter problem can be treated by the DP technique under the diffusion control and
generally by the BI method. When the overall particle shape remains the same with
conversion (Case I}, we can only use the BI method provided diffusion through the
ash layer can be treated as linear. Since most aspects of Case II can be obtained by
straightforward modifications of the results of Case I, Case II will be treated briefly

in Appendix B.
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Chapter 2

Isothermal GGas-Solid Reaction
on Nonspherical Particles

ABSTRACT

Reaction or sublimation of a nonspherical nonporous particle is analyzed to
determine the effect of shape on total reaction rate and to characterize the change of
shape with conversion. Diffusion is formulated using the Stefan-Maxwell equations
at constant temperature and pressure while reaction or sublimation enters as a
boundary condition. The problem is treated by a domain perturbation technique
to obtain analytical results for slightly nonspherical particles and by the boundary
integral technique to obtain numerical solutions for spheroids of arbitrary aspect
ratio.

The total reaction rate increases with the aspect ratio at constant particle
volume, and is approximately equal to that of a spherical particle of equal surface
area. The local reaction rate increases with the distance from the particle center.
The resulting change of the aspect ratio is sensitive to the Damkéhler number
Q = %‘:ﬂ- and is positive regardless of () and the aspect ratio. Thus the deviation
from the nonspherical shape increases with time. For subliming particles the shape
change is negligible.
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INTRODUCTION

In the analysis of fluid-solid catalytic and noncatalytic reactions, it is custom-
ary to treat the reacting particles as spherical in order to simplify the solution of
the relevant reaction-transport equations. The analysis of the spherically symmetric
problem is generally assumed to provide the correct trends about the effect of var-
ious parameters, even when the reacting particles are nonspherical. In the present
paper we analyze reaction and external diffusion for nonspherical but axially sym-
metric particles to determine (i) the total rate of a catalytic or noncatalytic reaction
concentrated on the external surface of the particle and (ii) the change in the shape
of a particle due to consumption of the solid material. The shape change can be
pronounced over extended conversion even when the initial particle shape is only
slightly nonspherical.

We would like from the outset .to delimit the scope of the analysis. The reaction
is assumed to be concentrated on the external particle surface, and the external
mass transfer to be determined by diffusion, with no convective flow other than the
Stefan flow. Those restrictions eliminate consideration of most problems pertinent
to heterogeneous catalytic reactions where internal rather than external diffusion
is rate limiting. With respect to noncatalytic reactions, the assumption that the
reaction is concentrated on or very near the external surface is valid for nonporous

particles, or porous particles under conditions of high Thiele modulus.

The most important noncatalytic gas-solid reaction which often satisfies the
above restrictions is coal or char combustion. However, under conditions of high
Thiele modulus, i.e., shrinking core combustion, external heat transfer as well as

mass transfer needs to be considered. In the present paper we assume isother-
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mal conditions and consider the externallmass transfer problem only. However the
methodology presented is applicable, with suitable extensions, to simultaneous heat
and mass transfer. This latter problem will be treated in a subsequent paper focus-
ing on coal combustion. We have also treated and will briefly discuss the problem of
particle sublimation which differs only in the boundary conditions from the reaction
problem.
Two techniques are used to treat the problem of reacting nonspherical particles.
The first is domain perturbation (DP) (Brenner, 1964; Acrivos and Taylor, 1964),
the second is the boundary integral technique (BI) (Brebbia and Walker, 1980;
Liggett and Liu, 1972). DP is an analytical technique limited to slightly nonspher-
ical particles. The BI technique is numerical and is applicable to arbitrary particle
shapes. The main advantage of the BI technique over the more customary finite
elemeﬁt or difference techniques is the much smaller number of unknowns involved
in the problem setup. Both techniques can handle multicomponent diffusion with
the nonlinearities inherent in the Stefan-Maxwell equations. Both techniques have
been used to study more complicated fluid flow problems involving free boundaries

(Brenner, 1964; Acrivos and Talyor,1964; Youngren and Acrivos, 1975).

PROBLEM FORMULATION

The gas-solid reactions considered in this paper can be denoted by
b1 P(s) + A(g) — b2 B(9)

where P(s), A(g) and B(g) are the solid reactant, the gaseous reactant and the
gaseous product and b, and b, are stoichiometric coefficients. The analysis can be
easily extended to the formation of a solid product if the product layer does not

offer diffusional resistance.
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Linear Diffusion Fquation
In this section we consider the linear diffusion problem which provides the
simplest setup for investigating the effects of particle shape. The problem is ap-
proximately linear under the restrictions:
i) low mole fraction of A in the free stream, or equimolar counterdiffusion, such
that the Stefan flow term can be neglected
ii) low heat effect due to reaction, therefore nearly isothermal system
iii) first order reaction in A.
Under the above assumptions the concentration of A in the gas phase, c4,
satisﬁes Laplace’s equation

Vaca = 0. (1)

The boundary condition at infinity is
CA—Cap as |X| — oo. (2)
At the particle surface we shall consider the “reaction” boundary condition
—Dsp<7sca -1 = key (3)
or the “sublimation” (or “condensation”) boundary condition
A =Cas (4)

After Eq.(1) with boundary conditions (2) and (3) or (2) and (4) has been
solved, one can calculate the rate of change of the particle shape locally on the

particle surface according to the kinematic equation

1~6—F—vs-ﬁ=0 ()
| v: F| O




where

F=pj—R(,1). (6)

Here n is the unit normal vector pointing towards the particle and v - n is the
surface velocity. The tilde denotes dimensional quantities.

Equation (1) is based on the assumption that the diffusion problem is at quasi-
steady state with respect to the slowly changing particle shape. The quasi-steady
state assumption is not strictly valid for a semi-infinite medium, but has been shoWn
by Kirkaldy (1958) to be valid for problems of sublimation and crystal growth.
It was also found by Bischoff (1963) and Luss (1968) that the quasi-steady state
assumption is valid for gas-solid reactions with moving boundary.

Both the domain perturbation and the boundary integral techniques will be ap-
plied to axisymmetric particles when Eqs.(1)-(5) are conveniently written in spher-

ical coordinates as shown in Figure 1.

iéa_p: (ﬁ2 aCA ) -+ L g (Sin 0?&) =0 outside the particle, (76')

p? 0p 52 sin 0 06 o0
aCA ﬂ BcA ) _ ~ B
Dyg (Ol—a? - F 20/ = kca at p= R(6,1), (7b)
Cq — Cyp as ﬁ -— 00, (7C)
R _ bk . A
S St A h= R(6,1). (7d)
Here, 11 is defined as
fi = —ai; + B, (8a)
where
1 5%
o= — and f= R 96 — (8b)
Vi+ (338 Vit (%)
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Equations (7d) - (8b) are derived in Appendix A.
We can use dimensionless variables to simplify the appearance of the governing

equation and the boundary conditions. For this purpose we define

X a= A YA gy = B (9a)

X==——,Uy = — = )

R,(t)" " cas  yas R, (t)

and
kRs(t) . _ bl k2CAb

Q(R,(t)) = Dus , T = o Dg t, (9b)

where R, (t) is the radius of a sphere of equal volume as the particle. The resulting

dimensionless equation and boundary conditions are

Viug =0, (10a)

Ju OR Ou \/ 18R)?
2_.__‘4_————_-——‘4—2 2 — =
R 5, ~ 96 09 QR 1+(R89) us at p=R(0,7), (10b)
ug -1 as p— oo, (10c)
dQ(r) oR _\/ 1 0R)? ~
—(TR+Q(T)57T) = 1+(-}—2‘55-> us at p=R(4,7). (10d)

Nonlinear Diffusion Equations.

In this section we remove assumptions (i) and (iii) implied in the previous
subsection but retain assumption (ii) of isothermality. To introduce the essential
ideas we first consider the case of binary diffusion and then treat the more general

multicomponent diffusion.

1. Binary diffusion

The starting point is the species conservation equations

V'NA =0, - (lla‘)
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v -Np = 0. (11b)

At the particle surface we have the “reaction” boundary conditions
N4 -n=kr(ca,cg), (12a)

Np -n = —bykr(ca,cp), (12b)

or the “sublimation” boundary condition
€4 = Cas, (133‘)

Ng-n=0. (13b)

Equations (11a) and (11b) must be supplemented by the binary diffusion relations
Na =ya(Ny + Np) —cDap v ya, (14a)

Np =yp(N4 + Np) —cDy5 v yp. (14b)

- Equations (14a) and (14b) are linearly dependent; therefore, only Eq.(14a) need
be considered. The system (11)-(12), (14a) does not have a unique solution but
rather an infinite family of solutions, although a mathematical proof of this fact
is a nontrivial technical problem outside the scope of this paper. The physical
reason for the lack of uniqueness seems to be related to assuming constant pressure
rather than including the momentum equation along with Egs.(11)-(12), (14a). In
the spherically symmetric geometry, Eqs.(11)-(12), (14a) have a unique solution
despite the approximation of constant pressure. In that geometry Eqgs.(11)-(12)
yield the relations

Np = —b,N,, (15a)
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N4 = (constant/p?) i,. (15b)

For the nonspherical geometry of interest here we shall use Eq.(15a) as an
additional condition to generate a unique solution of Eqs.(11)-(12), (14a) or (11),
(13)-(14a). At this time there is no mathematical justification for a prior: intro-
ducing Eq.(15a). It is intuitively appealing, however, to single out the solution
which satisfies Eq.(15a) as the physically meaningful among the infinite family of

solutions. From Egs.(14a) and (14b) we obtain

cDap TV ya
- . 16
14 (b2 —1)ya (16)

Ny =
Thus the equation satisfied by y4 is nonlinear but can be transformed to Laplace’s
equation by the simple change of the dependent variable

¢_=_{1n(y,1+5{7), if by > 1 1

In( - —ya), ifby<1’
When b, = 1 no change of variables is needed. The equation and boundary condi-

tions for ¢ are

V2¢ =07 (18&)
. ,
_ .n = - ¥ o_ —
.Vlb n = Qb 1](6 Ibz—ll) at p=R, | (18b)
Y — Py as |x| — oo, (18¢)

where the dimensionless variables are defined as in subsection Linear Diffusion

Equation.

2. Multicomponent Diffusion
- The treatment of multicomponent diffusion starts from the Stefan-Maxwell
equations and utilizes an assumption analogous to Eq.(15a). The somewhat lengthy

manipulations involved are presented in an appendix (Appendix B).



Auziliary Relations

Before proceeding with the solution of systems (10) and (18) we would like
to list for later use certain constraints satisfied by R(6,7), as well as a general
relation for the rate of change of particle shape. The dimensionless variable R(6, )
describing the particle surface [Eq.(9a)] is subject to two constraints. The first is

volume conservation which gives
1
_/ R*(8,7)dn = 2, (19a)
-1

where

n = cos f. (19b)

The second constraint is that the center of mass of the particle remains at the origin,

which is expressed as

_/1 R*(0,7)ndn = 0. (20)

-1

Although the analysis below is applicable to any rotationally symmetric parti-
cle, we have chosen to restrict the actual calculations to particles whqse initial shape
is a prolate or oblate spheroid. A prolate spheroid is obtained from the revolution
of an ellipse around its major axis. Revolution around the minor axis yields an
oblate spheroid. Both shapes may be characterized either by their eccentricity, e,
or by their aspect ratio, Ap_. For both spheroids these two parameters are related by
A, = (1- ez)—llz . Both parameters will be used below, the eccentricity as more
basic in the definition of the shape, the aspect ratio as a more intuitive measure of
deviation from the spherical shape.

From the defining relationship

(21)
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the time derivative of the aspect ratio is obtained as

dr — R2(%)

] [C;f(O)R( R(O)%?(I)] .

Using the kinematic boundary condition Eq.(10d) in the form

OR 1 dQ(r), 1 \/ 19RY
o TTam a T am 1+<Rae)“‘4 .

and noting that & =0 at § = 0, Z, we can rewrite Eq.(22) as

dhy _ 1 %) _ a5y
7 = BmEer oM () - G >4

This last equation may be divided by R(0) — R(%) to give

dln(4, — 1) Apua(F) —ua(0)
— R(Z 5)Q(7) = T (25)
For a prolate spheroid, R(Z) = _1/3 and
da, AL?
o (44 () —ua(0)] . (26)

In the sections following below the rate of change of the aspect ratio will be cal-
culated from Eq.(25) or Eq.(26) once the surface concentrations are found using
either the domain perturbation or boundary integral technique. For easy reference
the right hand side of Eq.(25) is denoted by W in the following sections:

APUA(-;L) - UA(O)

w 4, — 1

(27)

]

Certain simple conclusions may be immediately drawn about the asymptotic be-
havior of W or %&. As the Damkohler number () approaches 0, the dimensionless

concentration u4 approaches 1 over the entire surface of the particle so that W



- 17 -
also approaches 1. Conversely, since us becomes very small uniformly on the entire
surface as @ becomes very large, within the range of the validity of the quasi-steady

state assumption, W also becomes very small.

DOMAIN PERTURBATION FOR THE
LINEAR DIFFUSION PROBLEM

This section is pertinent to the limiting case of a particle which is only slightly

different from spherical. R(#,7) and u4(p,8,7) can then be expanded in the series
R(0,7) = Ro(6,7) + eR1(0,7) + € Ry (0,7) + - - - (28a)

Uy (pa GaT) = UO(paoaT) + ey (p’ 93 T) + €2u2(p, 07 T) +--, (28b)

where € << 1 is a small dimensionless parameter and R;’s are of O(1) with respect
to the parameter ¢. The parameter € is introduced as usual to indicate the order
of approximation of the results finally obtained. We first derive conditions on the

coefficients R; by introducing the expansion (28a) into Eq.(19a). These are
1
| Ran=2, (290)
-1
1
/ R3Rydn =0, (29b)
-1

/1 (R3R> + RoR})dn = 0. (29¢)

-1

Similarly, introducing Eq.(28a) into Eq.(20) yields

1
| Bindn=o, (30a)
-1
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1
/ R3Ryndn =0, (30b)
-1

1
/ (4R3R; + 6RoR:) ndn = 0. (30c)
-1

By definition € = 0 corresponds to a spherical particle; therefore, Ry is a

constant, which by Eq.(29a) is
Ry(0,7) = 1. (31)

Equations (29b)-(30c) are now reduced to

1
/ Rydy =0, (32a)
-1
.
/ (R; + R})dn =0, (32b)
-1
1
/ Ryndn =0, (32¢)
-1 .
1
/ (4R, + 6R3) pdn = 0. (32d)
-1

We next expand the term R; (0, 7) in the series
Ry =3 Ba(7)Pa(cos 6), (33)
n=0

where P, is the nth Legendre polynomial. Introducing Eq.(33) into Egs.(32a) and

(32c), we obtain

Bo(t) = Bi(7) =0, (34)
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while the higher coefficients remain unspecified. The term R;(6,0) should now be

chosen to satisfy

fden— 23

o] (35a)

/ Ryndn = —-—/ R3ndy. (35b)
It is not easy to find R, satlsfylng Eqgs.(35a) and (35b) to all orders in €, but a solu-
tion valid to O(¢), involving O(€?)-error in the particle volume, can be obtained. To
obtain the solution up to O(€"), we have to satisfy the volume condition, Eq.(19a),
of the initial shape up to O(e™).
To calculate the concentrations, u;, we change the boundary conditions from
p = R to p = 1 by expanding Eqs.(10b) and (10d) around p = 1, and grouping
terms of equal order in €. The resulting problems for the terms u; are derived in

Appendix C. They are listed below.

O(1)-problem

The first term, ug, in the expansion (28b) satisfies the equations

Viue =0, (36a)
6"0 =Quy at p=1, | (36b)
ug — 1 as p — 00, (36‘3)‘
—iid—?— =uy at p=1. (36d)
These equations have spherical symmetry and can be easily solved to obtain
4o =1 -'[-Q—-i—l % (37a)
Q(r) =-14+V(1+Qo)* -2r, (37b)

where @)y is the initial value of Q.



O(e)-problem

The first order problem derived in Appendix C is

Viuy =0, (38a)

up =0 as p— oo, (38b)

2 Qu = QLQ@fli)Rl at p=1, (38¢)

_ (id?'& + Qa—;}) - %%‘131 at p=1. (384)

Using spherical harmonics and taking into account Eq.(38b), the function u; is

expanded in the series

u; = Z an(T)P—(nH) P, (n), (39)

where P, (7) is the nth Legendre function. The function R; is expressed in a similar

series

Ry = Z ﬂn(T)Pn(T’)' (40)

Introducing the series (39) and (40) into (38) and equating coeflicients of the Leg-

endre polynomials we obtain

ap(r) =0, (41a)
a;(t) =0, (41b)
_ QQ+2)
| an(T)--_(Q+1)(Q+n+l)ﬂn(T) for n > 2. (41¢)
Simila.rlsr we obtain from Eq.(38d)
dﬂ" =7n (T)ﬂn, n= 07 1, 2, (423‘)

dr
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where
(n=2)Q—(n+1)

(7)) = — ) 42b
™ T @ et D 2
Therefore, the coefficients 3, are given by
Bn(T) = B,(0) exp[l, (7], (43a)
where
T.(7) = / Y (5)ds. | (43b)
0
For a smooth and convex surface we have
Ba(7) > B (7). (44)
Therefore,
and
Q(Q +2) -3
~ — P . 45b
uy (Q+1)(Q+3)ﬂ2(T) 2(n)p (45b)
Discussion
We have seen that for a convex and smooth particle
R(8,7) =1+ eB:(7) P2(n) + O(€?). (46)

Since @ > 0, and B,(7) is monotonically increasing with time, the shape of the
particle becomes increasingly nonspherical.
We are interested in the variation of u 4 over the surface and the total reaction

rate. From the solution derived above the surface value of u, is given by

“lhen = g7 703 e AP +0(), (47)



which can be written as

v

0
orners ¢

I _
Ua lp:H Ua 'sphere

Rmaz - Rmin (6)’ (4b)

2
3

where u4 | :phere is the surface concentration for a spherical particle of equal volume.
Since u; and R; are expressed in terms of Legendre polynomials, the surface integral

of u; vanishes due to the orthogonality relationship

| PumPi(mydn =0, for n #1. (49)

-1
Thus the surface average of u, is to zero order in € equal to the concentration on
the surface of a sphere of equal volume. From Eq.(47) we also see that the local
concentration on the surface increases with the radius R.

We next consider the change in the particle shape for a reaction that consumes

the solid. We note that the absolute rate of shrinking, %?-, increases with the radius

R, but the relative rate of shrinking, —Jﬁ%, which characterizes the change of the

particle shape and is given by

3
Q+3

ﬁ2P2> +0(€),

decreases with the radius.

The shape change can be characterized by the change of the aspect ratio. Using
Egs.(21), (46) and (27),(47) the aspect ratio and the quantity W may be expresséd
as

A, =1+ geﬂz(r) +0(e) (51a)

3
W= oo T 0 (51b)
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The asymptotes of W for the two limiting values of ) agree with the general results
discussed in the section “Problem Formulation.” Substitution of Eq.{(51b) in Eq.(25)

gives the initial rate of shape change

Ty = ;
2 QQ+@+3)

din(A4, - 1)

dr R<

Equations (48) and (52) are shown as solid lines in Figures 7 and 8.

The method of domain perturbation can also be used to analyze the behavior
of a particle under the “sublimation” boundary condition. The solution of the
“sublimation” problem proceeds along similar lines, but the rate of change of the
aspect ratio is O(€?). The shape change of a subliming particle is, therefore, much

less than that of a reacting particle.

Particles lacking rotational symmetry

For particles that do not have rotational symmetry, the terms related to the
azimuthal ¢-variation and which have been neglected so far must be retained. It
turns out that to first order in ¢, all the differential equations and boundary condi-
~ tions remain the same as in the axisymmetric case. If the reduced particle radius
R is expressed in terms of spherical harmonics,

R=1+ 62 Bmn Ynm (0, ¢)’ (53)

m,n

then by following the same procedure as in the axisymmetric case, we obtain

dBnn _ (n+1)—(n=2)Q

&r QRFD@Fnt™ (54)

Since the coefficient of ., at the right side does not contain m, the initial shape

variations in the azimuthal direction are preserved as reaction progresses.
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DOMAIN PERTURBATION FOR THE
NONLINEAR DIFFUSION PROBLEM

Following the method used in the previous section we expand R{f,7) and

Y(p,8,7) as
R(0,7) =1+ €eR(6,7)+ 6232(0,7) 4+ ..

'¢’(P,9,T) = d’O(va) + e (P, 0’ T) + 62¢2(pa 0, T) +oee

(55a)

(55b)

The solution will be worked out for 8, > 1, but it turns out also to apply to the

case 0 < by < 1.

O(1)-problem
The O(1) equation and boundary conditions

V2¢’0 = 07

dibo — (VJO 1 ) —
P =Qb—-1) e ) at p=1,

o =ty as p— oo,

Q 1
- = - t p=1
admit the solution
c
Yo =t — —,
p

where the constant ¢, is defined implicitly by

¢ =In[l + (b — 1)yas] — In(1 + %)

When diffusion controls (i.e., @ >> 1), ¢; is approximately

In[l 4 (b2 — 1)yas] + -;— (ln[l +§bi—Ql)yAb]

c ~

T+Q

) + o).

(58)



At p =1 we have
Yo = —~ ¢y (60)

which when substituted in Eq.(56d) gives

In[1 + (b2 — 1)yas]

kav4+¢u+%f—z

61
(b2 — 1)yas (61)
O(¢€)-problem
The first order equation and boundary conditions are as follows:
V2¢’1 = Oa (62&)
Y1 =0  as p— oo, (62b)
I, ¥ 1 4
—— = Q(by — 1) [ 2R, (¥ - ) +e” (¢ + 1 Ry) at p=1, (62c)
8p b2 -1
1 OR
(6% - 62—1) Cl‘yAbQ'Z)‘;l"-':@% (Y1 +eaky) at p=1 (62d)

The solution of Eq.(62a) satisfying boundary condition (62b) is easily derived as a
series in spherical harmonics:

(o]

Y1 =2 an(r)p~ "V Pu(n) (63)

0

where P,(n) is the nth Legendre function. By expanding R, also in Legendre series,
By =3 Bu(7)Pa(n), G
0
and applying Eqs. (32a) and (32c) we obtain

Bo(7) = Bi(7) = 0. (65)
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Application of boundary condition (62¢) provides the additional relationships
ao(T) =0, (66a)
a(r) =10 (66b)

and
2e¥o — L) 4 crevo

n+ 1+ Qb — L)evo

Introducing the foregoing expressions for ¢; and R; in Eq.(62d) we obtain

a, (1) = —Q(by — 1) B, forn > 2. (66¢)

B,
dﬂT = ¥ (7)0h, (67a)
where
Yu(T) = — 2l [(n - 2)(Q +In[l + (b — Dyas]) — (n+ 1)

QUL+ Q) (3+Q+ 1% In[L + (b — L)y.as]) (67b)
+0(Q*) + 0(e).

When the surface is smooth and convex,

Ba(T) > Ba(T) (68)
so that
Rl (9, 7’) ~ ,Bg(T)Pz(f]) \ (69&)
2(evo — 1 Yo
b Qb = DB 5 ) ) (69b)
Discussion

From the expression for the transformed concentration variable

1
b, — 1

— o¥le=r __
y4|p=n =€

Y ol
= exp('([)olp:l) [1 + € (¢1{p=1 + #h:lRl) + 0(62)] - b — 1’
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we obtain the following expression for the surface concentration

wa! _ In[1 + (b — Dyas] 1 y
4lp=R (by — 1)y as 1+ @

Q
(H—e Q + 57 In[l + (b2 = 1)yae]

T O -3 -3 52_
3+Q+£—51n[1+(62—1)y,ﬂ,]ﬂ2( )PQ) TO@7)+0(«Q™) + O(c)

(71)
Using the orthogonality of Py and P, we find that the surface average of uy is to
zero order in € equal to that of a spherical particle of equal volume.

Retaining the terms
R(6,7) > 1 + €B2(7) P2(n) (72)

and noting that [;(7) is monotonically increasing with respect to time we find
that the particle shape becomes increasingly nonspherical with time. We also find
that the longer the radius of a point on the surface, the higher the concentration;
therefore, the absolute rate of shrinking also increases with radius. The shape

change is determined by the relative rate of shrinking, —%%?—, which is given by

__1.._6_1_%_1 Yal,=r
iz T lr=0 x R
ln[l + (bz - l)yAb] 3

e +Q L Q3T Ll T (b Dyl

+0(Q77) + 0(Q™?) + O(€").
(73)

The relative rate of shrinking then also increases with the radius.
The shape of a particle is characterized by its aspect ratio which can be ex-

pressed with the help of Eqs.(21) and (72) as

A, =1+ %eﬂg(r) +0(&). (74)
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Using Eqs.(27) and (71) to calculate W,

31n[1+(b2'1)ym>]
W= Bl — +0(Q™%)+0(e)  (75)
(14 Q) (34 Q+ 25 [l + (b — )y ])

the rate of change of the aspect ratio is obtained as

In[14 (b2 ~1)yas]
dAp — Ap —1 3 {b2 -1}y as

- +0(eQ™*) + O(&).
dr R(%) Q(1+Q)(3+Q+‘1_J?Q‘ln[1+(b2 —1)'!/,41;}) ( e

(76)
Equation (75) possesses the asymptotic behavior iﬁdicated at the end of section
“Problem Formulation.” The foregoing results concerning the change in the particle
shape are illustrated in Figure 9 in terms of W vs. @ for several values of the
parameter (b, — 1)yas. When the reactant mole fraction in the free stream, ya;, is
very small, the nonlinear binary diffusion equation reduces to the linear equation.
Reduction to linear diffusion also obtains in the case of equimolar counterdiffusion,

i.e., when the stoichiometric coefficient b, is equal to one.
BOUNDARY INTEGRAL SOLUTION

The boundary integral method is applicable to Laplace’s equation in a region

with a smooth boundary for which Green’s second identity yields

%) 0
—27("U.A,' =A (’U,Ag;%— —a—u?;A—)dS, (77)

where g, Green’s function for Laplace’s equation, is given by (Stakgold, 1972):

1

9= T’i—:-_f—l (78)

The subscript i and the position vector ¢ denote the position of the singularity and
() is the boundary of the region. In the present problem ) consists of two pieces,

the surface of the particle and the surface at infinity (|x| — o0).



Linear diffusion equation

With the use of the boundary condition
usg — 1  as |x| — oo,

Eq.(77) reduces to

dg Ouy

A g
n I on ld (79)

47!'—27!'1.1,4, ——/ uA

as shown in Appendix D. Here ; is the smooth surface of the particle. For axisym-
metric particles it is convenient to use cylindrical coordinates and rewrite Eq.(79)
as

At — 2mug; —/ /% uAgrg; —ga—ui] d¢>a’l (80)
where r is the radius of a surface elernent from the axis of symmetry and dl is a

line element at fixed ¢. Applying the reaction boundary condition on the particle

surface
M _ oy (81)
871 - A
we finally obtain
oG
4 — 2T u 44 =/;1 uA(—0—7—z-+QG)rdl, (82)
where
27 ‘
G = gdo. (83)

0

Nonlinear diffusion equation
This has already been reduced to Laplace’s equation with nonlinear boundary
conditions. The boundary integral method can be applied in the same fashion to

obtain

dmepy, — 2meh; = /9 (ng% + gQ[(b; —1)e¥ — 1]) ds (84)
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where ; is the smooth surface of the particle. This nonlinear integral equation can
be solved by an iteration scheme akin to Newton’s method. This is implemented

by linearizing Eq.(84) by

el > e¥ 4 eV (¥ — o), (85)
to obtain
dg v
iy = (o) =2 = | Gl5E +9Q( = Dew]ds, (362)
where
Z (o) =/ gQ[(by — 1) e¥e (1 —1po) — 1] dS. (86b)
1931

The solution is then obtained by iteration on the linear equation (84).

Sublimation boundary condition

Using the boundary condition at infinity, Eq.(77) reduces to
Ju
—2muy; -/ (uA BZ —gE—nﬁ) ds. (87)

Using the condition at the particle surface, uy = 1, and the general identity

39

3n ==dS = 2m, (88)
Eq.(87) is further reduced to
ir = / g-%‘-ds (89)

In the axisymmetric geometry that we consider here this integral equation takes the

form

Ou
4x = /r G (90)
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where ['; is the boundary of the two dimensional domain after ¢-integration and

where G has been already defined in Eq.(83).

Method of solution
We first evaluate G and %—f— by integration of Green’s function and its normal
derivative in the azimuthal direction. This integration results in complete elliptic

integrals as follows:

0G _ on, B ] n(r+7)+n.(z— z)
Bn T et i L) = Byl = 4TSS B () O1a)
G= mtTl/;Ellz(m)a (91b)

where F}’s are elliptic integrals, m is defined as

(r=ri)’ +(z~2z)°
(r+m)?+ (2 —2z)?

(92)

m =

r is the distance of a point on the surface from axis of symmetry, and the E}’s, a

and b, are defined by

/2 k
Bo=[ [1-(1—m)sin? 6] *dg, (93a)
0
a=r+r? 4 (z - z)?, (93b)
b= 27‘7‘". (93(:)

The integral equations (82), (84) and (90) were solved by approximating the
particle boundary by a piecewise linear surface. The three elliptic integrals were
evaluated by approximating polynomials (Liggett and Liu, 1983; Abromowitz and
Stegun, 1972) and the integral in the #-direction was evaluated by 8-point Gaussian
quadrature. This numerical procedure gave 0.05% maximum error in the test case

of a spherical particle with linear diffusion for which we have a closed form solution.
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DISCUSSION

Chemical reaction

Figures 2-4, 7, and 8 show results for linear diffusion and Figures 5, 6, and
9 for binary nonlinear diffusion. Figures 2, 3, 5, and 7-10 show results for several
prolate spheroids, and Figures 4, 6, and 11 show similar results for oblate spheroids.
The calculations in all these figures were made by the BI technique. Figure 2 shows
dimensionless concentrations for ¢} = 1 and three values of eccentricity. In each
case the dimensionless surface concentration increases with the radial distance from
the origin. Furthermore, the deviation of the concentration from that of a spherical

particle increases with the eccentricity.

Figures 3 and 4 show the surface areas and total reaction rates relative to
a sphere of equal volume for the linear diffusion problem. The relative reaction
rate increases with the aspect ratio and decreases with the Damkohler number Q.
For small values of @), the rate raﬁo is equal to the surface area ratio but as @
increases, the rate ratio lags behind the surface area ratio. In the range of aspect
ratios examined the rate for a prolate spheroid was no more than 20% higher than
for a sphere of equal volume. The surface averaged concentration relative to that of
a sphere of equal volume decreases with the aspect ratio, and the decrease becomes
more pronounced as () increases. Figure 4 for oblate spheroids looks like Figure
3, but shows more pronounced differences. For both prolate and oblate spheroids,
the total reaction rate is nearly equal to that of a sphere of equal surface area.
From the standpoint of total reaction rate, therefore, a nonspherical particle can be

accurately represented by a spherical particle of equal surface area.

Similar calculations were performed for the nonlinear binary diffusion problem
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with the results shown in Figures 5 and 6. The total reaction rate and the surface
averaged concentration were normalized by the counterparts of a sphere of equal
volume. The difference between the total rate of an ablate spheroid and that of a
sphere of equal surface area is somewhat larger than in the linear diffusion problem

but still very small.

Figure 7 shows the surface concentrations normalized as suggested by Eq.(48).
The two solid lines were calculated with the method of domain perturbation using
the initial shape R(6,0) = 1 + (0.01)P,(n). The upper line shows the maximum
concentration, at # = 0, and the lower line shows the minimum concentration, at

0 = For very large and very small values of ) the concentration approaches

NIE]

the value corresponding to a sphere of equal volume, as expected from the fact that
concentration tends to zero or to one repectively at these two limits. The maximum

deviation between the two concentrations is attained a little above @ = 1.

Figure 8 shows the dimensionless rate of change of the aspect ratio as a function
of the Damkdhler number (), with the solid line describing results dbtained by
- domain perturbation and the markers specifying the numerical results obtained
by the boundary integral method. The numerical results essentially fall on the
analytical curve, showing that the quantity W[Eq.(27)] is not a function of A,.
Going back to Eq.(25) we conclude that the rate of change of the aspect ratio

increases with increasing aspect ratio for all values of Q.

Further insight about the shape change of a reacting particle can be obtained
from the following expressions for W obtained by domain perturbation. For linear

diffusion W is given by

3
V=G (94)
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and for nonlinear binary diffusion by

3m[1+(62—'1)yab]
LV ~ (52—1)yAb (94b)
(1+@Q) (3+Q + 125 In[1 + (b — L)yas])

the latter being restricted to large values of the Damkohler number ). These two
expressions are represented by the solid line segments in Figure 9. Equation (84) was
solved with all combinations of b, = 1, y,4, = 0.1,0.21,0.5, and e=0.6, 0.8, 0.9, 0.95
to calculate the surface concentration distributions which were subsequently used
to find W. The results are very close to those obtained with the DP technique. To
make Figure 9 legible we show only the BI results for the prolate spheroids of e=0.9
for b,=2 and y4,=0.5. As was seen in the linear diffusion problem, W is nearly
independent of the degree of particle nonsphericity. In most cases (b, — 1)y4s is
between 0.5 and -0.5 when the rate of shape change does not differ much between
linear and nonlinear diffusion.

For both linear and nonlinear diffusion W has the asymptotic behavior

3 InfL + (b — yas]
Q? (b — 1)yas

W~lasQ—0 (95b)

W as ) — oo (95a)

which can be introduced in Eq.(25) to obtain the following asymptotic relations for

the rate of change of the aspect ratio:

dA, 3 A, —11In[l + (by — D)yas)

T TTRE GoDie 207 1%6)
dA, 1A, -1
2~ 5 Q — 0. - (96b)

The rate of change of the aspect ratio becomes very large under conditions of reac-

tion control and nearly negligible under diffusion control.
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Sublimation
The DP technique applied to the sublimation problem with initial shape R =
1 + €6, P, yields
Ouy

G = B+ 0(@) (o7)

where u4 = c4/c4, and the normal n is based on the dimensionless variable x =
%/R,(t). The normal derivative %“f— on the particle surface was also computed by
the BI technique for various prolate and oblate spheroids. The value of %f— at
0 =0 and 6 = % coincides with the values of R at these points. Figures 10 and 11
show the particle surface area, the total sublimation rate and the surface averaged
sublimation rate, relative to a sphere of equal volume and the total sublimation rate
relative to a sphere of equal surface area, for prolate and oblate spheroids of several
eccentricities. The total sublimation rate obtained by integration of the normal
derivative, %"nd-, given in Eq.(97) yields to zero order in € the value obtained with
the sphere of equal volume. Both the surface area ratio and the total sublimation
rate ratio increase with the aspect ratio. As in the reaction problem, the sublimation
ratio lags the surface area ratio. In the range of aspect ratios examined, the total
sublimation rate was no m<;re than 13% higher than that of a sphere of equal volume.
On the other hand the surface averaged sublimé,tion rate decreases slightly with the
aspect ratio. It is also seen that the total sublimation rate is very close to that of

a sphere of equal surface area.

Starting from the kinematic equation (5) and following the procedure explained

in Appendix A, one obtains for the sublimation problem

OR _ R dR, Mou,
ar R, dr’ a On

(98a)



where
R2(0)
M = }?3 (98b)
D
= pZABCAs (98¢)
ps R2(0)
Substitution of Eq.(98a) in Eq.(22) yields
R? (%) dA, Ous (7 7\ Ouy
—r o = RO e (5) - R(g) 35, (0)- (99)

Equation (97) and numerical calculations show that %;1- at § =0 and 6 = % are
nearly equal to the respective values of the surface radius, R. Therefore, the rate
of change of the aspect ratio given by Eq.(99) is very small.

In its pseudo-steady state formulation, the sublimation problem considered
here is identical to the problem of conduction or diffusion around a nonspherical
particle‘. Brenner (1963) treated the more general problem of convective heat and
mass transfer in the limit of low Reynolds and Prandtl numbers. Using matched

asymptotic expansions he obtained the series solution

Nu 1
m—l-i-'S-NuoPe-F"', (100)

where Nug is the average Nusselt number for the nonspherical particle in the absence
of forced convection. The number Nug is the same within a proportionality constant

as the total sublimation rate shown in Figures 10 and 11, yielding the relationship

Nuo_ S<?51";L>
2 (S

(101)

)sphere .
The results of Figures 10 and 11 for Nu, can be combined with Eq.(100) to provide

the total sublimation rate of various spheroids in the limit of low convection.

CONCLUSIONS
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1. DP has been used to obtain analytical results for the surface concentration and
the initial shape change of a nonspherical axisymmetric particle undergoing
reaction with the surrounding fluid in a shrinking core mode. Both linear and
nonlinear diffusion were treated. The BI method was used to obtain numerical
solutions for particles of highly nonspherical but axisymmetric shape under the
same reaction conditions.
2. The local concentration and flux at the particle surface increase with the dis-
tance from the particle center. The total reaction rate is almost equal to that of
a sphere of equal surface area. From the standpoint of the total reaction rate,
therefore, a nonspherical particle is well approximated by a spherical particle of
equal surface area. The total reaction rate relative to a sphere of equal volume
increases with the aspect ratio and decreases with the Damkéhle.r number, Q).
By contrast the surface averaged concentration decreases, albeit only slightly,
both with the aspect ratio and with the Damkéhler number, Q).

3. The rate of change of the aspect ratio is given by

d4, 1 A, -1
= w. e
dr  Q(r) " R(%)

where W is defined by

Apug (2) —un(0)
A, -1 '

The quantity W is a function of the Damkéhler number, (), approximately

W =

independent of the aspect ratio. This function is

3
Ve TTo6 0

for linear diffusion and
1, if@Q<<1
~ 31nl4+(br =)y 4p]
W ~ -y ifQ>>1

(1+Q)(3+Q+ 1% In[1+(b2 ~1)yas])
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for nonlinear binary diffusion.
. In the sublimation problem the normal derivatives -38%-3-(0) and %“f— (Z) are
equal to R(0) and R (%), respectively. Consequently, the shape change in that
problem ié negligible. The total sublimation rate relative to a sphere of equal
volume increases with the aspect ratio while the surface averaged sublimation
rate shows the opposite behavior. The total rate is again very close to that of

a sphere of equal area.
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NOTATION

gaseous reactant

aspect ratio

gaseous product

stoichiometric coelflicients

total concentration of gas phase

concentration of A in gas

integration constant

binary diffusion coefficient

elliptic integrals

eccentricity

function defining particle shape

Green’s function integrated in azimuthal angle [Eq.(83)]
Green'’s function for 3-dimensional Laplace’s equation
reaction constant

surface line of axisymmetric particle

defined by Eq.(98b)

outward normal unit vector from domain

solid reactant

nth Legendre polynomial

Damkodhler number [Eq.(9b)]

dimensionless radial distance from particle center, 1;0(’7))
s\ T

magnitude of 1st mode of surface initially specified

dimensional radius of a surface point
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R, (r)  dimensional radius of the fictitious sphere of equal volume

T cylindrical radius of a surface point
Ta reaction or sublimation rate of A
S surface area of particle
t time
(N dimensionless concentration of A (= 74- or £4-)
Un nth order perturbation of w4
vs - surface velocity
i 4 defined by Eq.(27)
X dimensionless position vector (= R,i(r) )
X dimensiénal position vector
y." spherical harmonics
Ya mole fraction of A
Greek letters
Qan coeflicients used in expanding u4
Bn coefficients used in expanding R(0, 7)
| defined by Eq.(43b)
ry line boundary of axisymmetric domain
Y  defined by Eq.(42b)
€ small perturbation parameter
é azimuthal angle
] cos @
6 spherical angle



¥

—4] -
position vector of singular point
radial variable
molar density of solid
dimensionless time variable defined by Eq.(9b)
dimensionless time variable defined by Eq.(98¢)

transformed dependent variable defined by Eq.(17)

2, Qy, Q, surface boundaries of domain

Subscripts

Superscripts

gaseous reactant A
bulk position at oo
singular point
initial value

total rate all over particle surface

sphere of equal volume

sphere of equal surface area
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APPENDIX A: DERIVATION OF EQS.(7d)-(8b)

In this appendix we derive Eqs.(7d)-(8b). The particle shape is defined by the

equation

F=p—-R(6,1) =0,

which is differentiated with respect to time to give

- 1 0R
V;;;F =1, — 13 —:'-(-3—0-
and noting that
24 _ =
| Vz F| ’
we can derive the unit normal outward vector
n = —ai; + Piy,
where
1 1R
a = m_z and ﬂ = .._..'-R=io_.___2
Vi+ (3% Wi+ 8
Substitution of Eq.(A.4) in Eq.(A.2) gives
) .
~ -a—l-:'- —vg -1 =0 on the particle surface .
| vz F| Ot

Finally, introducing the mass balance,

psVe - 1S = bykcadS

(A1)

(A4)

(8b)

(A.5)
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we obtain )
aR blk ~ 'y lrd
—5r = psacA at p= R(0,1). (7d)

APPENDIX B: MULTICOMPONENT DIFFUSION

Diffusion in an n-component gas under isothermal and isobaric condition is
described by the Stefan-Maxwell equations. For an n-component system there are

n-1 independent equations (Bird et al., 1960):

n

1 .
V¥i = Z D (yiNj'-yjNi), 1=1,---,n-1. (Bl)
=1 K
Jj#i

We wish to decouple these equations by a matrix transformation. This problem
has been considered previously for special cases. Toor (1960) and Stewart and
Prober (1964) linearized the Stefan-Maxwell equations to solve certain flow prob-
lems. Krishna and Standart (1976) used the Stefan-Maxwell equations for steady
one dimensional multicomponent diffusion. We here extend Krishna and Standart’s
approach to the three dimensional steady state problem with arbitrary boundary

shape. The n independent species balance equations
v -Ni=0,c=1,---)n (B.2)

and the relation

ity t+ctyn =1 , (B.3)

along with Eqs.(B.1) constitute a system in the 2n unknowns gy, -+, yn, Ny, -+, N,.
We shall consider a “reaction” boundary condition along with the boundary condi-
tion at infinity

Yi — Yip as |x| — oo. (B.4)
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As in the case of nonlinear binary diffusion, the system (B.1)-(B.4) has an

infinite family of solutions. We shall again single out the solution satisfying the

relationships

N;
v

Using Eq.(B.5) we can eliminate N,, -+, N, and obtain

N

cvy

where

yT = (y17y2a"'ayn)7

and K is the matrix

[ Eu -
—521 ](22

with K;; given by

If K is diagonalized by a matrix T,
A =T KT
with Af'j = §;; Ai, then Eq.(B.6) can be decoupled,
vz = %Az,

where

z=T1y.

= independent of :.

(B.5)

(B.6)

(B.7)

(B.9)

(B.10)

(B.11)

(B.12)
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The basic species conservation 7 - Ny = 0 now yields
72 Ilnz =0 (all i) (B.13)

with boundary condition at infinity

zi=1zp =(T7'yy), as |x] — oo. (B.14)
Ve set
w; = lnz; (B.15)
and consider the reaction rate a function of wy, -, w, by virtue of Eq.(B.12):
r=f(w, ,w,). ' (B.16)

Introducing Eq.(B.15) into Eq.(B.11) we obtain

Vw;=E-':-/\;,i=1,---,n. (B17)

Vi

The boundary conditions at the particle surface are
Ni-n=—vyf(w, -, w,) (B.18)
which upon introduction of Eq.(B.17) becomes
Ai
n-Vw,-z—--z-f(wl,---,w,,). (B.19)
The problem has been finally transformed to the form
V2w =0,i=1,---,n (B.20)

with boundary conditions given by Eqgs.(B.14) and (B.19), the latter weakly coupling
the unknowns w,,- - -,w,. Using the boundary integral method, Egs.(B.20), (B.14)

and (B.19) can be converted to a single nonlinear integral equation.
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APPENDIX C: DOMAIN PERTURBATION DETAILS

Here we present the derivation of various relationships in the application of
domain perturbation for the linear diffusion problem. The derivations are very
similar for the problem of nonlinear binary diffusion. Using domain perturbation,

Egs. (10b) and (10d) are expressed as

BUO Bul 82uo
2 2 PR
[1+e(2Ry) + (2R, + RI) +-- ] % + €( 5 T o Ry)
duy  0%u 0?u 1 0%u
2 2 0 1 0 p2
Gt et b s B+ ]
OR, ,0R,
legg vy )
BUO 8U1 6 Uo 8u2 8 Up 02u1 1 8 Up 2
[80+( aao Ri) + ( apaaR +ap60R1+‘75230R)+ -]
1,0R
= QUL+ e(2R) + €(2B, + R + 5 aal) ) 4+
dug 8u1 Ouo 10? Uo 2
[u0+€(u1+-5—R1)+€(U2+apR+apR +252R)+ ] (C.1)
and
d d OR d OR 3}
——Q'—e QR1+Q 1) € QR2+Q—2) =g+ e(ug + 22 Ry)
dr dr dr op
Ouy Oug 1 8%up 1,0Ry\2
2 —— — ——— 2 — ——— * o
+€ [uy + Ep Ry + apR +23p2 Rl+2( (90) ugl +---. (C.2)
The boundary conditions at p = 1 for the O(1)-problem are
d
g;,a = Quo, (C.3)
_99Q . (C.4)

dr
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and similar boundary conditions apply to the O(e)-problem

Ou 014 8 Ug 8R1 auo ou
——9(231 - e = - 20 38 = Qlu + —8—:-31 +uo(2R,)], (C.5)
OR 0
~(Fr Q5 —u+ R ()

The O(1)-problem can be solved with Eqs.(C.3) and (C.4) to obtain
[ 1

Yolo=1 = 011’ (C.7)
%"—{m = @_%—1 (C.8)
Tl =g (©9)
%}‘gzgm = 5%2—1- (C.10)
%‘;" = 0. (C.11)
With the use of

2 _Zz_}?—l’ (C.12)

“Egs. (C.5) and (C.6), B.C.’s for the O(e)-problem, reduce to
% _ Qu - 2922, c1
QQEL+8+1R1+M—0 (C.14)

APPENDIX D: DERIVATION OF BOUNDARY INTEGRAL EQUATIONS

When the singular point £ lies on the boundary and if the boundary is smooth
at the point £, the exterior problem of Laplace’s equation is equivalent to (Liggett

and Liu, 1972)
a‘uA
on

—27FUA, —/ (uA—‘r-;—- )dS (Dl)
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We now apply Eq.(D.1) to the problem of a reacting particle. The boundary con-
dition at infinity can be treated by considering a fictitious large sphere surrounding
the particle and let the radius of that sphere go to infinity. As shown in Figure 12
the boundary (2 is separated into two pieces, Q; and Q,. Q; is the boundary of the
particle and 2, is the boundary of the fictitious surrounding sphere centered at the

singular point, £. Therefore,
Z Ou 4 / . /
Up=— — g—=—)dS = 1 : y
/Q(UA on on )ds o +R°°1£n»oo 2 (D-2)
With the use of the boundary condition at infinity
ug — 1 as |x| — oo,

Eq.(D.2) changes to

Rololr—r}oo Q, ilr_r}oo -/92 [uA(——Rooz)— Ry On lds
(D.3)

= —47 — lim L us s
Roo—-»oo 92 ROO an )

Any harmonic function which goes to 1 at infinity can be written for sufficiently

large p in the form

142 Y bunp " L Y™(8,6). (D.4)
n=0 m=-n
Therefore,
1
ualre =1+ 0(5—) (D.5)
and
BuA 1
Taking the limit
. 1 Ouy .
i/ B on (01
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we finally obtain
dm — 271Uy, =/ (U4
15

which was used as Eq.(79).

8g_ 871,4
on g%

]ds,
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L nonporous

solid

Figure 1. Geometry and notation for a nonspherical particle.



Figure 2. Variation of surface concentration for @=1.
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Figure 3. Surface area S/S”(A), total reaction rate ra,/r%,(Q), surface averaged
reaction rate < r4 > /r% (00) normalized by those of a sphere of equal volume and
total reaction rate < r4 > /r%(+) normalized by that of a sphere of equal surface

area vs. the aspect ratio of a reacting prolate spheroid in the linear diffusion regime.



_ 55 _

1.3

Q=.1
:E wé 1.27 1
|
Al 10
<5 1.1
e |
V Q=.1
o w 1.07 Q=.1
S 1,10
Nl 0.91
n 10
0.8 LI 1 T
0 1 2 3 4
A

Figure 4. Surface area 5/S¥(A), total reaction rate ry, /r4, (), surface averaged
reaction rate < r4 > /r% () normalized by those of a sphere of equal volume and
total reaction rate < r4 > /r’%(+) normalized by that of a sphere of equal surface

area vs. the aspect ratio of a reacting oblate spheroid in the linear diffusion regime.
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Figure 5. Surface area S/S5¥(A), total reaction rate r,, /r4,((), surface averaged
reaction rate < r4 > /r%([J) normalized by those of a sphere of equal volume and
total reaction rate < r4 > /7’ (+) normalized by that of a sphere of equal surface

area vs. the aspect ratio of a reacting prolate spheroid in the nonlinear diffusion

regime.
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Figure 6. Surface area 5/5Y(A), total reaction rate ry, /75, (), surface averaged
reaction rate < ry > /r%([J) normalized by those of a sphere of equal volume and
total reaction rate < r4 > /r%(+4) normalized by that of a sphere of equal surface

area vs.. the aspect ratio of a reacting oblate spheroid in the nonlinear diffusion

regime.



— 58 -

v
sphere

uaf,=r —ual|

-10
.01

T |

1 10 100
Q

1000

Figure 7. Variation of maximum and minimum surface concentrations with Q.

DP : solid line

Bl ; +(e=0.01), O(e=0.6), &(e=0.9), O(e=0.95)
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Figure 8. Rate of change of aspect ratio of a reacting particle vs. @ for linear
diffusion.
DP ; solid line
- BI; +(e=0.01), O(e=0.8), A(e=0.9), O(e=0.95)
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Figure 9. Rate of change of aspect ratio of a reacting particle vs. @ for nonlinear
diffusion.

DP ; solid line
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Figure 10. Surface area S/SY(A), total sublimation rate 74, /7%, (), surface av-
eraged sublimation rate < r4 > /r% () normalized by those of a sphere of equal
volume and total reaction rate < ry > /r%(+4) normalized by that of a sphere of

equal surface area vs. the aspect ratio of a subliming prolate spheroid.
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Figure 11. Surface area S/SY(A), total sublimation rate r4, /7%, (), surface av-
eraged sublimation rate < r4 > /r%(O) normalized by those of a sphere of equal
volume and total reaction rate < r4 > /rj(+) normalized by that of a sphere of

equal surface area vs. the aspect ratio of a subliming oblate spheroid.
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Figure 12. Geometry used in deriving the boundary integral equation.
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Chapter 3

A Theoretical Study of Combustion
of Nonspherical Particles
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Submitted tO Comb. Sci. and Tech.

Abstract

A theoretical study is carried out of the combustion of nonspherical carbona-
ceous particles in the regime of shrinking core reaction. The first problem addressed
is the calculation of the pseudosteady temperature and oxidation rate for a particle
of given shape. This problem involves the solution of the external diffusion and
heat conduction equations with the reaction entering as a boundary condition over
the particle surface. Using the boundary integral method, the problem is reformu-
~lated as a system of two coupled integral equations which are solved numerically by
suitable discretization. The complete transient problem addressing the evolution
of particle shape and particle temperature during burnout is similarly formulated
by the boundary integral method and solved numerically. Over a broad range of
parameters, the pseudosteady particle temperature and rate of oxidation are very
nearly equal to those of spherical particles of equal volume and surface area re-
spectively. The transient solutions obtained for parameters typical of pulverized
combustion show that during burnout the particle becomes increasingly nonspher-
ical. As expected, nonspherical particles burn faster than spherical particles of the
same initial volume, but the difference in burnout times is less than 20% for initial
aspect ratios between one and three.
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NOMENCLATURE
A, aspect ratio
by stoichiometric coeflicient
c total concentration of gas phase
C1 concentration of oxygen
D diffusion coefficient of oxygen
g Green’s function for 3-dimensional Laplace’s equation
k' reaction constant

|AH|  heat of reaction

n outward normal unit vector
P, nth ,Legendrevpolynomial
Q defined by Eq.(13)

qr heat flux by radiation
ROT) 35

R, ()  radius of the fictitious sphere of equal volume
r reaction rate of oxygen

S surface area of particle

T temperature

t time

X dimensional position vector

Y mole fraction of oxygen



~ 66 —

Greek letters

3, coeflicients used in expanding R(4, 1)

€ emissivity of particle

A thermal conductivity of gas phase

p radial variable

Pp particle density

T dimensionless time variable

Q surface boundary of domain

Subscripts

00 quantity evaluated using the bulk temperature

v sphere of equal volume

s sphere of equal surface area
INTRODUCTION

The analysis of particle (coal char, coke, etc.) combustion has undergone signif-
icant refinement over the years. Early analyses exemplified by the reports of Field
et al. (1967) and Field (1969) employed simple heat and mass transfer coefficients
and assumed shrinking core reaction. The analysis was later extended to include a
detailed account of external heat and mass transfer while retaining shrinking core
oxidation (Ubhayakar, 1976; Libby and Blake, 1979; Annamalai and Durbetaki,
1979). Further extensions invoked considerations of intraparticle diffusion, reaction

and pore growth. A comprehensive review of work up to 1984 has been published by
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Sotirchos et al. (1984). Regardless of the treatment afforded to internal and exter-
nal diffusion, all previous investigations treated the reacting particles as spherical
thus avoiding the mathematical and computational complications entailed by non-
spherical geometry. In the present paper we explore the effect of nonspherical shape

on the reaction rate, particle temperature and other combustion characteristics.

Grinding coal, coke, etc. produces particles of widely varying size and shape.
Upon heating and devolatilization, bituminous coal particles tend to become
smoother and more spherical, while particles of other coals retain their original
shape. The nonuniformity of shape and size arising from grinding and devolitiliza-
tion can cause a spread in the time for complete burnout, the maximum particle
temperature, and the size distribution of flyash, all important properties for coal
combustion practice. In this paper we explore the effect of the initial shape on the
combustion history of a particle. We consider the instantaneous temperature and
oxidation rate for a given particle shape, and the evcﬂution of the particle shape as
reaction progresses. We also examine the degree to which the combustion of non-
spherical particles can be approximated by that of spherical particles of appropriate

size.

As we relax the assumption of spherical shape we are forced to make other
simplifications or restrictions in order to contain the mathematical-computaional
effort. The analysis is thus restricted to shrinking core combustion, spatially uniform
transport coefficients and negligible Stefan flow. Furthermore, we only consider
particle shapes which are rotationally symmetric and choose the initial shape to be
a prolate or oblate spheroid. With these simplifications and restrictions the problem
becomes one of external diffusion and heat conduction with the reaction entering as a

boundary condition on the particle surface. We treat this problem numerically using
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the boundary integral method which converts the spatial differential equations to
integral equations over the particle surface and thereby reduces the computational
effort. Although not explicitly considered, the case of negligible pore diffusion
resistance, such that the particle size and shape remain constant during burnout,

is also subsumed in the analysis developed here.
THE PSEUDOSTEADY PROBLEM

In this section we formulate the pseudosteady problem, i.e., for a given par-
ticle shape and free stream conditions, calculate the particle temperature and the
reaction rate. In a strict sense, these pseudosteady properties are not exactly re-
alized, because the particle shape evolves with oxidation. However, except for a
brief initial transient, the thermal inertia is negligible and the particle temperature
approaches and remains close to the pseudosteady temperature corresponding to
the instantaneous particle shape. Having established that pseudosteady relation, in
the next section we examine the evolution of particle shape due to the reaction.

Figure 1 shows a rotationally symmetric particle with O being the particle
center and Oz the axis of symmetry. Although not essential, we shall also assume
that the particle has a plane of symmetry perpendicular to Oz. The particle surface

) is then defined by some equation
p=F(81t), 0<b<nr (1)

where p is the distance from the center O and, because of the plane of symmetry,
F(r —6,t) = F(6,1).
Physical parameters such as the thermal conductivity and the diffusivity are

functions of temperature with an approximate power dependence (Hirschfelder et
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al., 1954),
Ax T°%, Do T3,

Thus the thermal conductivity A and the product ¢D are represented as

T 0.5 0.5
/\:/\03 (E) 5 CD:cooDoo (-%)

with the subscript oo denoting free stream properties.

In a further approximation, the product ¢D;; of total céncentration and ahy
diffusion coeflicient will be taken as spatially uniform, equal to its value at the par-
ticle surface 2. Moreover, the flux of oxygen will be described by the approximate
expression —Dc 7 y, where y is the oxygen mole fraction and D is the binary diffu-
sion coefficient for the O, — N, pair. This simple flux expression neglects the minor
convective contribution due to the relative velocity between particle and free stream,
the “Stefan flow” terms induced by multicomponent diffusion, and the direct con-
tributions of pressure and temperature gradients included in the Stefan-Maxwell
equations.

The approximation of spatially uniform ¢D was evaluated for a spherical par-
ticle where the exact and approximate problems could be solved in closed form(see
Appendix). Even when surface and free stream temperatures differed by 640°C,
the error in the reaction rate was less than 8%. The error committed by neglecting
the Stefan flow depends mainly on the magnitude of the surface reaction rate. The
analytical solution available for a spherical particle suggests that this error is less
than 10% for the range of parameters used in the numerical calculations. In view
of the modest magnitude of these errors we believe that the two approximations
are reasonable for evaluating differences in the combustion rate, burnout time, etc.,

between a spherical and a nonspherical particle.



70 -
With the above approximations, the oxygen mole fraction y and the tempera-
ture T satisfy the equations
Viy=0 (2)
V- (AvT)=0 (3)
with boundary conditions at the free stream

pP—=00 I Y= Yso ; I — T (4)

The boundary conditions on the particle surface will be based on two additional
assumptions : uniform particle temperature and shrinking core reaction(high Thiele
modulus). The relevance of the latter assumption depends on several factors among
which particle temperature, particle size, and porous structure. A particle initially
burning in the shrinking core mode(decreasing size, constant density) after a certain
reduction in size will switch to a mode of decreasing size and density.

On the basis of the last two assumptions, the boundary condition for the oxygen

mole fraction becomes

0
pEN : cD-gg-——-r(pl,T) ‘ (5)

where p; = yP is the partial pressure of oxygen on the surface. There are two

boundary conditions for the temperature
peN  T=T, (6)
where T, is the unknown particle temperature, and

/Q [/\%%- —qr + r|AH|] dS =0 (7)

where gp is the net radiative flux, r is the rate of oxygen consumption per unit

external area of the particle. This latter condition is simply a thermal energy
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balance for the whole particle between heat generated by the reaction and heat lost
by radiation and conduction. It must be noted that whereas T, is uniform over the

surface, p; = y P and %% are variable. The radiative flux ¢gr will be taken as
qr =oe(T} = T2) (8)

where the temperature of the surrounding surfaces is taken equal to that of the free
stream, and a common emisivity is used for all radiating surfaces.
7

For a spherical particle of radius a, Eqs. (2)-(7) can be reduced easily to the

solution of two equations in the unknowns, y,, 7T,

o =) = (P T )
M= To) | (7t~ T3) = |AH, r(Py,. T)). (10)

a

If the reaction is first order with Arrhenius temperature dependence,
r=4k'p, = Aexp(~E/R,T,)Py,, (11)

Eqgs. (9) and (10) can be combined in a single equation for 7} :

AT, -~ Tw) 4 _ Aexp(—E/R,T;)Pyc
= 4 oe(T - TL) = |AH,| 00T (12)
where
K (T,)R,T, R, T,
L) = (DZng) == AD(T,)a P(~E/ R T.). 13)

Equation (12) exhibits the well-known multiplicity and ignition phenomena.
BOUNDARY INTEGRAL METHOD

For nonspherical particles the problem defined by Eqs.(2)-(7) can be reformu-

lated using single layer and double layer potentials (Stakgold,1972) into two integral
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dT . Once the two integral equations are

equat@ns for the surface values of y and =
solved numerically, the particle temperature, the total reaction rate, and the values
of T and y outside of the particle can be computed, if desired. This approach, which
is known as the “boundary integral method”, involves a much smaller number of
unknowns than the finite difference method and is, accordingly, much more compu-
tationally economical. The boundary integral method has been used extensively in
low Reynolds number hydrodynamics.

The integral form of Eq.(2) with boundary conditions (4) and (5) can be derived

by standard potential theory, using a double layer potential. For any x, € Q we

have
1 [ dg  r(Py(),T,)
= —_— —_— J— — —_— d

y(xs) 2yoo o o y(g)an + g (CD)S Sﬁ (14)

where é% is the outward normal derivative and

1

= . 15
g Ixs - él ( )

For axially symmetric particles, integration over the azimuthal angle converts the

double integral in Eq.(14) to a single integral over the angular variable 6 :

Y(%,) = Yo — — / [ 0')—— + G—(——(y—c%))—s’—Ti)— o(p)sin0'dd  (16)
where
p=F(8,1)
and
v(p) = p* [1 + ;12-(%)2] " (17)
G = " gd¢ (18)

0
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oG a 89

an S, onm 1. (19)

Equation (16) is an integral equation in the unknown function y(#), with T, ap-
pearing as an unknown parameter to be determined in conjunction with the energy
equation.

An integral equation equivalent to (3), (4) and (6) can be derived using a single
layer potential after introducing a new variable defined by

(T/Too )1+a -1

VST 20
It is
——/ 95, dS’g = 4r. (21)
Integration over the azimuthal angle now yields
/ G )sin §'dd’ = 4r. (22)

This is an integral equation in the unknown function g—’f(@) with the unknown T
appearing as a parameter. For any given T,, Eq.(16) can be solved for y(#), and
Eq.(21) for 2% 2£(6), or $£(6). The unknown T, can then be determined from Eq.(7).

THE TRANSIENT PROBLEM

The transient problem is a conceptually simple extension of the pseudo-steady
problem. It is still assumed that the oxygen mole fraction y and temperature
T satisfy the pseudosteady equations (2) and (3) and boundary conditions (4)-
(6). However, boundary condition (7) does not apply any more since the particle

temperature is variable ; it is replaced by

dT, oT
prCoV 2 = / DS~ gn +rlaH] ds (23)
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where p,,C, and V, are the density. specific heat, and volume of the particle. An
additional equation is needed governing the changing particle shape on account of

carbon consumption. This is

0F(0,t b
S = = Lo (6,0 | 21
t=0: F = Fy(6) (25)

where the shape function F' was introduced by Eq.(1). Fy is the initial value of F,
b, is the stoichiometric coefficient between grams of carbon and moles of oxygen
(by = 24 if CO is the only product), p, is the particle density and r is the reaction
rate in moles of oxygen per unit surface area per unit time. The factor o(0,¢)
converts a displacement of the surface perpendicular to itself due to the reaction to
a displacement along OP (see Figure 1). One can easily derive
1 aF) 2] 12

o(8,t) = [1 +(=—

F 00 (26)

As before, Eqs.(2)-(6) are equivalent to the two integral equations (16) and
(21), therefore the transient problem is governed by Egs. (16), (22) supplemented
by (23)-(25).

NUMERICAL RESULTS FOR THE PSEUDO-STEADY PROBLEM

As a preliminary to the solution of Egs. (16) and (22) it is necessary to evaluate
the functions G and %% defined as integrals of the Green’s function g and its normal
derivative gﬂ-(Eqs. (18),(19)). Carrying out these integrations yields G and 4 in
terms of three complete elliptic integrals which were evaluated by the approximating

polynomials given in Abramowitz and Stegun (1972). Next, equations (16) and (22)
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were discretized using the values of the unknowns y, and %’:li at 2N+1 discrete points
over 0 < # < 7 and evaluating the integrals by an 8-point Gaussian quadrature.
By this discretization, Eq.(22) was converted to a system of 2N+1 linear equations
for the values of %—f— at the discrete points in 0 < § < 7. This linear system was
decoupled from the rest of the equations and had to be solved only once.

The other integral equation, Eq.(16), was discretized into a system of 2N+1
nonlinear equations(or linear equations for a first order reaction) in the 2N+1 un-
known values of y. This system contained the unknown surface temperature T as
a parameter and was solved in conjunction with Eq.(7) by successive substitutions.

To this end, Eq.(7) was rewritten as

/ (qg —A—g—g) dSz_/rIAH]dS

But on the surface

so that
(27)

<Ts>1'5_ J (gr =)L) dS
T/ cooDoo J ZL|AH|dS
Starting from an initial guess of T, Eq.(16) was solved for g—% and Eq.(22) gave <.
The values of g—f’; and g—% were introduced into the right side of Eq.(27) to yield an
| improved value for T,, and the procedure was repeated until successive values of T}
differed by less than one degree. Convergence took 5 to 10 iterations depending on
the shape of the particle.

Table I gives the values used in the calculations. With the exception of the

oxygen concentration in the free stream, these values were taken from a paper by

Sahu et al. (1988). These authors had estimated the oxidation rate for shrinking
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core combustion of a bituminous coal char as
R, = 107.1exp(~17,000/RT) gem™*s™'atm™!,

which yields the value of k., listed in Table 1.

Numerical results for the pseudosteady problem are presented in Figures 2-4.
Figure 2 shows the particle temperature vs. (Jo,. At each value of @), , various pro-
late and oblate spheroids of equal volume but different aspect ratios are considered.
The temperature varies significantly with ¢, but is insensitive to the shape, with
the curves for both prolate and oblate spheroids of different aspect ratios essentially
coinciding. This insensitivity on particle shape seems to be due to the approximate
cancellation of two opposite effects. Increasing the aspect ratio decreases the local
mass transfer coefficient on the particle surface, thereby decreasing the heat release.
The same increase of the aspect ratio decreases the local heat transfer coefficient as
well, thereby decreasing the heat loss. The sensitivity of the particle temperature
to the particle shape may be higher in other operating regions, e.g., at higher gas
temperatures or oxygen contents where the effect of radiative heat transfer would
be more pronounced. It should be further noted that for the set of parameters
used here(Table I}, all particle temperatures shown in Figure 2 correspond to the
upper(ignited) branch of the usual ignition diagram.

Figure 2 also shows the normalized reaction rate vs. Qo for particles of different
shapes. For any given particle shape, the normalized rate initially decreases with
increasing Qo , then levels off and remains constant as @), increases beyond 1. At
low values of ., the normalized rate is equal to the ratio of the surface area of the
particle to that of a sphere of equal volume. As @), increases, the rate ratio falls

below the surface area ratio, and eventually reaches a limiting value as the reaction
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becomes mass transfer limited. For fixed ()., the rate ratio increases significantly
with the aspect ratio, with the oblate spheroids yielding higher reaction rates than
the corresponding prolate spheroids. For aspect ratios between 1 and 3.2 the rate
for the prolate and oblate spheroids was no more than 20% and 28% higher than
that of a sphere of equal volume.

Figure 3 shows the surface area normalized with respect to that of a sphere of
equal volume as a function of aspect ratio for prolate and oblate spheroids. Oblate
spheroids have a somewhat higher surface area than prolate spheroids of the same
aspect ratio. At the highest aspect ratio of 3.2 used in most calculations the prolate
and oblate spheroids have surface area 20 and 29% higher than a sphere of the same
volume. Figure 4 shows the total rate normalized by the total rate of a sphere of
equal surface area vs. A, for different values of (). For the whole range of Qo
and A, examined, the rate is within 3% of the rate of a sphere of equal surface
area. From the standpoint of the instantaneous total reaction rate, therefore, a
nonspherical particle can be closely represented by a spherical particle of equal
surface area. The curves for a few of the prolate spheroids show oscillatory behavior,
which seems to be due to numerical errors, but in these curves the normalized total

rate is very close to unity.
NUMERICAL RESULTS FOR THE TRANSIENT PROBLEM

The transient problem consists of Eqs. (23) and (24) with the respective initial
conditions. Eq.(24) was written at M discrete points of 8,6, = 0,---,0y = /2
which were more densely distributed at the points of higher curvature, i.e., near
8 = 0 for prolate spheroids. M was chosen in the range 25 - 50. Each evaluation of

the right side of these equations required solving the pseudosteady equations (16),
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(22) for y and %%—(giving “;—Z—) Equations (23) and (21) become increasingly stiffer
with -lecreasing Damkohler number @, because small )., implies rapid change of

shape in terms of the dimensionless time, 7 defined by

o= bl(kcgo)?yoo
pOOCOO'DOO .

.
o

In view of the lack of explicit expressions for the right sides of the differential
equations, we could not conveniently use a stiff equation solver. Instead we used
the explicit fourth order Runge-Kutta method with step size control, decreasing
the step size as integration progressed to compensate for the gradually increasing
aspect ratio. In the calculations reported below, the time increment A7 varied from
0.1 to 0.01.

Figure 5 shows the fractional conversion vs. dimensionless time for particles of
the same initial volume but different initial aspect ratios. The conversion curves for
different aspect ratios are quite close to each other. For example, the dimensionless
time to 0.95 conversion changes from 3.1 for 4,(0) = 1 to 2.7 for A,(0) = 3.2.
Figure 6 shows the aspect ratio as a function of dimensionless time for particles of
different initial aspect ratios. The aspect ratio increases with time for all particles
and this increase accelerates with increasing A,. Thus, a particle with initially
nearly spherical shape will change little during burnout(curve for A4,(0)=1.667)
while a particle with initial A,(0)=3.2 will become much more elongated(4, ~ 4.3)
when the dimensionless time reaches 2.5, i.e., at 0.95 conversion. Figure 7 shows
the evolution of particle temperature during burnout. The temperature transients
of particles of different initial aspect ratios, but equal volume, nearly coincide.
Although not portrayed in Figure 7, the calculations also show that for any given

initial particle shape, the transient temperature rapidly approaches and remains
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close to the pseudosteady temperature corresponding to the instantaneous particle

volume.

CONCLUSIONS

An analysis of nonspherical particle combustion was carried out using the
boundary integral method. For particles of equal volume, the pseudosteady tem-
perature is nearly independent of shape, but the combustion rate increases with in-
creasing aspect ratio. The local combustion rate varies moderately over the particle
surface increasing with the distance from the particle center. The total combus-
tion rate depends on the particle surface area alone, i.e., particles of equal surface
area but different volumes and shapes have the same rate. This dependence on the
surface area is less than linear, becoming linear only in the limit of low Damkohler
numbers.

The effect of initial particle shape on the burnout transient was explored for a
set of parameters typical of a bituminous coal char burning in the shrinking core
regime. The calculations show the particle shape to become increasingly nonspher-
ical with the progress of combustion and this change to be more pronounced for
particles with larger initial aspect ratios. For particles of equal initial volume, the
burnout time decreases slightly with the initial aspect ratio. For example a particle
of initial aspect ratio 3.2 requires 12 % less time to reach 80 % burnout compared

to a spherical particle of the same initial volume.
APPENDIX

The purpose of this appendix is to estimate the error made by treating the

quantity c¢D as temperature independent in the derivation of Eq.(2) from the equa-



tion

V- (cDTy) =0. (A1)
This evaluation is carried out by comparing the approximate solution with the exact
solution for a spherical particle. In the case of a spherical particle, Eq.(3) can be
easily integrated to obtain

(/T )it 2 1)

2 (A2)

s

T
Equations (A1),(4),(5) can now be solved along with Eq.(A2) to obtain the dimen-

sionless surface concentration as

Yoo
Ys = T, /T 15 —(T. JTog )05 (AB)
14 Q(1.5) Tellel =L /1)

The approximate dimensionless surface concentration obtained from Egs. (2), (4)
and (5) is

Yoo
Ys,approx = m (A4)

Eqgs.(A3) and (A4) are the exact and approximate solutions to Eqs. (Al) and (3)

for a sphere. The relative error between exact and approximate solutions is

Q { (Ts/Too )1.5 _ (Ts/Tco )0.5 _

1! : (A5)

{ys - ys,approx l - (15)
v 1 1+Q] (T, /T ™5 — 1 |
The quantity
| 1.5 _ T )05 i
P T = |15 T (D) ) (46)
| )

(Ts/Too)l's —1

is an increasing function of 7, /T, starting from zero at 7, = T, and remaining
small. For example at T, /T, = 1.4, F(T,/T.) = 0.08 and the error is less than

8%, in as much as the factor@Q/(Q + 1)is less than one.
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‘Table I. The parameter values used in the calculations.

Physical Parameters

Values Used

bulk temperature, T,

initial radius of equivalent sphere, R, (0)
bulk mole fraction of oxvgen, y.,

heat of reaction,—AH,

solid density, p,

solid emisivity, €

diffusion coefficient of oxygen at T, Dy
thermal conductivity of gas at T, Ao
activation energy, F

heat capacity of gas, C,

total molar concentration at T, ¢y

Ist order reaction constant at T, , kL
dimensionless time, 7

1600 K

25 pum

0.1

2.32 x 108 J/kgmol O,
800 kg/m?®

1

2.80 x 104 m? /s

5.38 x 1072? J/m-s-K
17,000 cal

2.5 x 10* J/kgmol-K
7.62 x 1072 kgmol/m?®
0.2119 kgmol O3 /m? — atm
63.135sec™ ¢
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axially symmetric particle

Figure 1. Geometry and notation for a nonspherical particle.
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Figure 2. Pseudosteady particle temperature normalized by free stream temperature
ra,nd reaﬁtion rate normalized by that of a sphere of equal volume vs. Damkohler
number (sx: A, =1, 0: A, = 1.25, A: A, = 1.667, o: A, = 2.294, O: A, = 3.2026
; solid lines : prolate spheroids, dashed lines : oblate spheroids). The parameters |
other than the particle volume are fixed at the values given in Table I. A higher

value of @, signifies a larger particle volume.
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Figure 3. Surface area normalized by that of a sphere of equal volume vs. aspect

ratio(solid lines : prolate spheroids, dashed lines : oblate spheroids).



1.0 1.5 2.0 2.5 3.0
aspect ratio

Figure 4. Total reaction rate normalized by that of a sphere of equal surface area
vs. aspect ratio(;4:Qo = 0.1,0: Qo = 0.5,8:Q0 = 1,0:Q0 = 2.483, O:Qx =5

solid lines : prolate spheroids, dashed lines : oblate spheroids).
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T, dimensionless
Figure 5. Conversion vs. dimensionless time for prolate and oblate

spheroids(a:A4,(0) = 1,A:4,(0) = 1.667,0:4,(0) = 2.294, O:4,(0) = 3.2026 ;

solid lines : prolate spheroids, dashed lines : oblate spheroids).
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aspect ratio

0.0 0.5 1.0 1.5 2.0 2.5 3.0
T, dimensionless

Figure 6. Aspect ratio vs.  dimensionless time for prolate and oblate
spheroids(o<:4,(0) = 1,A:4,(0) = 1.667, ©:A,(0) = 2.294, (O:4,(0) = 3.2026 ;

solid lines : prolate spheroids, dashed lines : oblate spheroids).
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Figure 7. Transient particle temperature vs. dimensionless time for prolate and
oblate spheroids(>a:4,(0) = 1,A:4,(0) = 1.667, 0:4,(0) = 2.294, O:4,(0) = 3.2026

; solid lines : prolate spheroids, dashed lines : oblate spheroids).
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Chapter 4

Shape Change of Rough Particles

ABSTRACT

The problem of a rough particle undergoing surface reaction is analyzed to
calculate the total reaction rate and to characterize the surface behavior with time.
The problem is formulated as one of the external diffusion with the the surface
reaction entering as a boundary condition. A slightly rough particle can be treated
by domain perturbation in terms of an infinite number of modes. The nth mode

decreases if the Damkohler number is larger than 2+ and vice versa. This criterion

n—2
also applies, approximately, for particles of more pronounced roughness treated by
the boundary integral method. If the Damkohler number is well above or below
the criterion, the surface mode increases or decreases, but nearby the criterion the

particle shows a mixed behavior.
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INTRODUCTION

For the shrinking core model of gas-solid reaction, the solid is assumed to be
a sphere as an ad hoc assumption since the spherical shape is most convenient
in the mathematical formulation. In practice particles are neither spherical nor
smooth, but their surfaces could be irregular and the shape might be nonspherical.
In Chapter 2 an isothermal nonspherical particle was examined to give the locai
concentration, the total reaction rate and the rate of change of shape, and a similar
but nonisothermal analysis was carried out in Chapter 3. The particles treated
in the former chapters were spheroidal and smooth. In this chapter particles that
are overall spherical, but have a rough surface are examined. First, the method of
domain perturbation (DP) will be used for a sphere with a slight roughness and
then the boundary integral method (BI) will be applied to particles with larger

roughness.

PROBLEM FORMULATION AND DISCUSSION

Since the Stefan flow and the temperature were shown to have small effect
quantitatively, especially on the shape change of particle, the analysis will be based
on the linear diffusion model. The governing equation and boundary conditions will
be those formulated in Chapter 2. We need to represent the surface roughness by
some mathematical formula. Since the Legendre polynomials are complete, they
can be used to represent any surface shape. As before, the concentration of A in

the gas phase, ca, satisfies Laplace’s equation

VE.CA =O (1)



- 93 -

The boundary conditions are

ca — cap as |X| — o0 (2a)

and

—~Dy 3z cq -0t = kcy on particle surface. (2b)

After Eqgs.(1)-(2) have been solved, the recession rate of each point on the surface

can be calculated from the expression

1 aF

I—;ﬁ—l—a—t- Vs~n=0 (3&,)

where

F=p-R(4,t). (3b)

Introducing the dimensionless variables and parameters defined by

X ca _ R(6,1) .

“ERO T e YT R )
and i

Q(Rs(t)) _ kflf;:t),T _ by k2cap t, (4b)

Ps DA
where R,(t) is the radius of the sphere having the same volume as the particle,

yields the following dimensionless governing equation and boundary conditions:

ViU‘A = 0. (5&)

uqg —1 as p— oo (5¢)

_(d—C?iLTQR—f-Q(T)-g—f-) =\/1+(%%—§)2w at p=R(O,7). (5d)
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Q 1 2\/ (1@3)2 ]
E;-——g/_lﬁ 1+ R0 uadn (oe)

A slightly deformed sphere

For a slightly deformed sphere, the method of domain perturbation can be used
to obtain an analytical solution and thus gain a qualitative understanding about the
change of the surface shape. The solution developed in Chapter 2 can be applied
to an arbitrary shape by decomposing this shape into an infinite number of modes.

We just recall a few important results from Chapter 2,

Q=-1+V[1+Qo -27 +O(), (6a)
R=1 +6§ B, P, (cos 0) + O(e?), (6b)

R QQ+2) 2 ,
S GETr Tl @@ D (s 0l (6)

n=2

The zeroth and the first modes in R vanish by virtue of the condition of volume
conservation. The nth mode 3, is governed by the differential equation,

df,  (n+1)+(2-n)Q

dr ~ Q(Q+1)(Q+n+l)ﬁ"' (7)

Integration of Eq.(7) using Eq.(6a) yields

5= .02 (

Qt n n—-1
) _j__t_l._) (8)

Qo+n+1
Since the sign of id@} is determined by the values of n and @ in Eq.(7), the second
mode should increase monotonically while the third and higher modes can increase

or decrease depending on the Damkohler number, Q. The third or higher mode has
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a critical @ below and above which the mode increases or decreases. The critical
value of the nth mode is given by

n+1
ch—n_z’ (9)

which is equal to 4 for the mode n=3 and 2.5 for the mode n=4.

We take an example of the evolution of a rough surface using the results from
the DP technique. Suppose the particle starts with a large initial value of ¢ and
the initial second mode is zero. Then all the modes decay to zero until () decreases
to the largest critical value, and the particle may become a perfect sphere. As the
Damkohler number, (), becomes smaller and smaller, more modes begin to grow.
Even if the particle is perfectly spherical, it will be unstable to small disturbances

once the Damkohler number, (), becomes less than a certain critical value.

Particles with larger irregularities

In the previous subsection the DP technique was applied to treat a slightly
deformed sphere. Now by using the BI technique we shall treat the same problem for
a surface with larger irregularities which is beyond the scope of domain perturbation.
There could be various ways to express the surface roughness mathematically but
Legendre polynomials are most convenient because of their completeness property.
Using Legendre polynomials will also enable comparison with the results obtained in
the previous subsection by the DP technique. We consider two modes of roughness

represented by
R= as + b3P3(7]) and R = ay + b4P4(77)

These shapes must satisfy volume conservation,

/ R®sin 0df = 2, (10)
0
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which should be met with the appropriate a}s and b!s. For sphere-like particle

shapes a}s and b!s should be chosen to make the ratio, Z—i’ small.

After uy is obtained using the BI technique, % over the particle surface can

be calculated from Egs.(5d) and (5e). The curves of 22 are shown in Figure 1 for
R = 0994 + (0.2)P; and Q = 0.1,5,10. The critical value obtained by the DP
technique is Q¢ = 4 for n = 3. The graph for Q = 0.1 in Figure 1 depicts that %’}-
is positive for R larger than unity and vice versa. Thus the particle becomes more
and more nonspherical. For Q = 10 in the same figure g—’f is negative for R larger
than unity and vice versa. Then the shapes reduce to spherical, as was predicted by
the DP technique. The curve for Q@ = 5 shows that the particle surface goes neither
away from nor toward spherical with time, giving a mixed behavior, converse to a
slightly nonspherical particle which goes towards spherical. Although the analysis
using the domain perturbation does not show oscillation of shape for a deformed
sphere, it happens to highly irregular shapes. The graphs for R = 0.977 + (0.4) P;
shown in Figure 2 lead to the same discussions as done for R = 0.994 + (0.2)Ps.
Figures 3 and 4 displaying the curves of ‘Z—f— obtained for R = 0.997 + (0.2) P,
and R = 0.983 + (0.4) P4, respectively, lead to the discussions similar to those done
above except the graphs of % for R = a4 + by P, are symmetric just as R. The
graphs for @ = 0.1 in Figures 3 and 4 show that %@ is positive for R larger than
unity and vice versa, and consequently imply the particle shapes become more and
more nonspherical. Oppositely it is shown that for Q = 10 the particle shapes
go toward spherical. At @ = 5, which is close to Q.. = 2.5 obtained by the DP

technique, the behavior seems transient (i.e., the shape shows a mixed behavior).

Figures 5 and 6 show the total reaction rates normalized by a sphere of equal

volume (i.e., solid lines) and by that of a sphere of equal surface area (i.e., dashed
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lines) versus @ for the shapes, R = a3 + b3 P; and R = a; + by Py, respectively.
For any given particle shape, the total rate normalized by a sphere of equal volume
decreases with increasing (), then levels off and remains constant as @ increases
beyond 5. At low values of @), it is equal to the ratio of the surface area of the
particle to that of a sphere of equal volume. As @ increases, the rate ratio falls
below the surface area ratio, and eventually reaches a limiting value as the reaction
becomes mass transfer limited. The dashed lines denoting the total rate normalized
by a sphere of equal surface area are within 3% deviation from unity. The total rate
of a rough particle represented by Ps or Py, therefore, can be closely approximated
by a sphere of equal surface area.

Figure 7 depicts an example of shape change with conversion. The initial
particle shape is R = 0.990+(0.3) P; and the initial Damkohler number, Q(0) = 0.1.
The curves represent the particle shapes at three consecutive conversions, X = 0,
0.582, 0.892. Since the particle is symmetric rotationally and with respect to y-axis,
quarters of the particle are drawn. All the surface points are shown to shrink by
equal amount. waever, since the whole volume reduces, the surface roughness
increases relatively. At 58.2% conversion the overall particle shape is very close to
the initial shape, but quite different from the initial shape at 89.2% conversion.

Since the Legendre functions are complete, any particle shape can
be represented by their infinite series. Although only the effects of P
and P, modes were treated in the present chapter, one could attack any
shape of particle in a similar way. A very irregular surface, having
many modes, is expected to show an irregular surface evolution with time.

Particles lacking rotational symmetry

For particles that do not have rotational symmetry, the terms related to the
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azimuthal ¢-variation and which have been neglected so far must be retained. It
turns out that to first order in ¢, all the differential equations and boundary condi-
tions remain the same as in the axisymmetric case. If the reduced particle radius
R is expressed in terms of spherical harmonics,

R=1+4€) Bun ¥ (6,9), (11)

m,n

then by following the same procedure as in the axisymmetric case, we obtain

dﬂmn _ (n+ 1) — (n —2)Q

dr Q(Q+1)(Q+n+1)’6m"' (12)

Since the coefficient of 8,,, at the right side does not contain m, the initial shape

variations in the azimuthal direction are preserved as reaction progresses.
CONCLUSIONS

1. From the method of domain perturbation the mode of n = 2 increases with
time but the higher modes increase or decrease depending on (). The nth mode
decreases if Q > Q. = %%— and vice versa.

2. The boundary integral method applied to the particle shapes as + b3 Pz and
as + by Py with small ratios of b;/a; shows that the particle becomes more
and more nonspherical for ¢ = 0.1 and that the particle shape goes toward
spherical for ) = 10. The particle shows the transient behavior for @ = 5.

Highly irregular particles do not have sharp critical values of () but show mixed

behaviors in a certain range around @), .

NOTATION

Notation is the same as in Chapter 2.
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Figure 1. Surface distance from the origin (dashed line), R = 0.994 + (0.2)P3, and

moving rate of surface (solid lines), %T&, for @ = 0.1,5,10 vs. angle over surface.
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Figure 2. Surface distance from the origin (dashed line), R = 0.977 + (0.4)Ps, and

moving rate of surface (solid lines), %f—, for Q@ = 0.1,5,10 vs. angle over surface.
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Figure 3. Surface distance from the origin (dashed line), R = 0.997 + (0.2)P,, and

moving rate of surface (solid lines), %, for @ =10.1,5,10 vs. angle over surface.
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Figure 4. Surface distance from the origin (dashed line), R = 0.983 + (0.4) P,, and

moving rate of surface (solid lines), %, for @ = 0.1,5,10 vs. angle over surface.
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Figure 5. Total reaction rates normalized by that of a sphere of equal volume (solid

lines) and by that of a sphere of equal surface area (dashed lines) vs. @ for various

shapes, R = a3 + b3 P5(bs = 0.1 — 0.5)(z :by = 0.1, O: b = 0.2, A: b3 = 0.3, o
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Figure 6. Total reaction rates normalized by that of a sphere of equal volume (solid
lines) and by that of a sphere of equal surface area (dashed lines) vs. @ for various
shapes, R = a4 + by Py(by = 0.1 — 0.5)(z :by = 0.1, 0: by = 0.2, A: by = 0.3, o
by = 0.4, O: by =0.5).
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Figure 7. A typical example showing how the surface moves with conversion starting

with Q(0) = 0.1 and R = 0.990 + (0.3)P;.
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Conclusions

The method of domain perturbation and the boundary integral method are
employed to see the effect of nonspherical shape of particle on the reaction or the
sublimation for the isothermal linear or nonlinear problem. The domain perturba-
tion gave analytical results for the local surface concentration and the initial rate of
shape change of a nonspherical axisymmetric particle undergoing surface reaction
with the surrounding fluid in a shrinking core mode. Both linear and nonlinear
diffusion models were treated. The boundary integral method was used to obtain
numerical solutions for particles of highly nonspherical but axisymmetric shape un-
der the same reaction conditions. The local concentration and flux at the particle
surface increase with the distance from the particle center. The total reaction rate
is almost equal to that of a sphere of equal surface area. From the standpoint of
the total reaction rate, therefore, a nonspherical particle is well approxirna,ted by a
sphere of equal surface area. The total reaction rate relative to a sphere of equal
volume increases with the aspect ratio and decreases with the Damkohler number,
. By contrast the surface averaged concentration decreases, albeit only slightly,
both with the aspect ratio and with the Damkohler number, ¢). The rate of change

of the aspect ratio is given by

where W is defined by :
_ ApuA (%) - UA(O)
- Ap —1 '

The quantity W is a function of the Damkohler number, ¢}, approximately inde-

w

pendent of the aspect ratio. This function is
3
W ~
(1+Q)(3+Q)
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for linear diffusion and

1, fQ<<1
W A alnli+lep —1ugp] '
(2 —vay fQ>>1

(1+Q)(3+Q+ iz Infi+ (b2~ 1yp))
for nonlinear binary diffusion.

Since in the sublimation problem the normal derivatives ‘%“;}(O) and a—;;l& (Z)
are equal to £(0) and R (12'-) , respectively, the shape change 1s negligible. The total
sublimation rate relative to a sphere of equal volume increases with the aspect ratio
while the surface averaged sublimatioﬁ rate shows the opposite behavior. The total
rate is again very close to that of a sphere of equal area.

In order to examine the dynamic behavior of nonisothermal nonspherical parti-
cles, a nonspherical bituminous char combustion was analyzed using the boundary
integral method. Spheroidal particles of equal volume gave nearly coinciding pseu-
dosteady temperature independent of shape, but the total combustion rate increases
with increasing aspect ratio. The total combustion rate depends on the particle sur-
face area alone, i.e., particles of equal surface area but different volumes and shapes
have the same rate. The local combustion rate on the particle surface increases
with the distance from the particle center.

The effect of initial particle shape on the burnout transient was explored for a
set of parameters typical of a bituminous coal char. The aspect ratio of spheroids
increases with the progress of combustion and this change is more pronounced for
particles with larger initial aspect ratios. For particles of equal initial volume, the
burnout time decreases slightly with the initial aspect ratio. For example, a particle
of initial aspect ratio 3.2 requires 12% less time to reach 80% burnout compared to
a spherical particle of the same initial volume.

Another aspect of particle nonsphericity, the rough surface, was also examined
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expressing the particle surface in terms of Legendre polynomials. From the method

of domain perturbation the second mode increases with time but the higher modes

increase or decrease depending on Q. The nth mode decreasesif @ > Q., = ZEL and

n—-2

vice versa. Highly irregular particles, however, do not have sharp critical values of
@ but show mixed behaviors in a certain range around Q... The boundary integral
method applied to the particle shapes a3 + b3P; and a4 + by Py depicts that the
particle becomes more and more nonspherical for @ = 0.1 and that the particle

goes back to a sphere for Q = 10. The particle shows a mixed behavior for ) = 5.
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Appendix A : Linear Isothermal Transient Problem

The important results derived in the present isothermal transient analysis using
the linear diffusion analytically by the DP technique for a slightly nonspherical
particle, and numerically by the BI technique for spheroids of arbitrary aspect ratio
are useful to obtain insight on the evolution of particle with time. The governing

equation and boundary conditions are

72uy = 0 outside the particle (Ala)

8uA .
5 = Qu,4 on particle surface (Alb)
ug — 1 as |x|] = oo (Alc)
1~—af——v5-ﬁ=0 (Ald)

| vz F| Ot
where

F=j—R0,1).  (Ale)

Slightly deformed sphere

The solution for a slightly deformed sphere is particularly simple and instructive
since one can easily obtain intuition about the transient behavior of the particle.
Brief explanation is, therefore, presented with no detailed derivation which can be
looked up in Chapter 2. The important results about the dynamic behavior of

particle are

Q= -1+ V1 + Qo2 —2r +0(c*), (A2a)

R=1+¢ ZOE Ba P (cos 8) + O(e?), (A2b)

n=2
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Q0<Q+n+l>n_1‘

371(7-):371(0)—@— (20+n+1

For the spheroid-like particles with 3, # 0 and $,2, = 0, in which one Is most

(A2¢)

interested, the relationship between the aspect ratio A, and the second mode 3, is
represented as
3 ‘
/‘1.!) = l+—)—6/32(7')+0(62) (%3)
From Eq.(A2c) the nonsphericity of a spheroid-like particle is expressed as functions

of the Damkohler number, @, by

3
i) = 5a00) (72228 (Ada)
A, —1 = (Ap — 1) {3 3220 %ﬁ] : (A4b)

Equation (A2a) is equal to the solution for a sphere to the error of O(€?). As shown
in Eq.(A3), however, the leading value of the aspect ratio is 1 + O(e), which implies
that the nonsphericity of particle has much effect on the aspect ratio of particle.
This means A, grows faster as the shape becomes more nonspherical. Thus it
is expected that the rate of shrinking of particle depends on the nonsphericity of
particle less than the aspect ratio does. Equation (A4b) suggests that the aspect
ratio will grow very rapidly with small Q). Although both of these two expreésions
derived by the DP technique can be employed, strictly speaking, for a slightly
nonspherical particle, they will give us some insight or intuition on the behavior of

highly nonspherical particles.

Spheroids with big eccentricities.
Highly nonspherical particles can be treated for the surface concentration of

A(g) by the BI technique well developed in Chapter 2. Tofollow the shape change of
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particle with time, one has to integrate the kinematic condition, (Ald), numerically
using u, calculated by the BI téchnique. The explicit fourth order Runge-Kutta
method was used to yield numerical solutions to Eq.(Ald) for various prolate and
oblate spheroids. Figure Al describes the conversion and the aspect ratio with
respect to dimensionless time, 7, for various prolate and oblate spheroids. The
solid lines are for prolate spheroids while the dashed lines are for oblate spheroids.
Since the surface area of an oblate spheroid is somewhat larger than the counterpart
of the prolate spheroid of equal aspect ratio, the aspect ratio and the conversion for

oblate spheroids increase with time a little faster than for prolate spheroids.
CONCLUSIONS

For a slightly nonspherical particle the particle size (i.e., the Damkohler number
Q) derived by the DP technique is the same as that of the sphere of equal volume to
O(e). The Damkéhler numbers obtained using the BI technique for several prolate
spheroids also show slightly faster decreases than for the sphere of equal volume.
But the decrease speed of Q) becomes higher and higher as the particle shrinks. The
aspect ratio is 1 +O(e) by the DP technique, and grows véry slowly for large @) and

very fast for small Q.

NOTATION

Notation is the same as in Chapter 2.
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Appendix B : Nonspherical Particles Leaving Ashes
INTRODUCTION

In many gas-solid reactions encountered in chemical and metallurgical pro-
cesses, solid products are generated. The overall volume of particle could change
with the reaction if the density of product is different from that of reactant, but
it remains unchanged in most reactions. Such reactions may be described by the

general reaction equation
b1 P(s) + A(g)—b2 B(g) + bs D(s).

The representative eka,mples of such a system are the kinetic processes of combus-
tions, with oxygen, of carbonaceous matter contained within the pores of granules
of a porous solid. In the practice of catalysis, we encounter this circumstance in
catalyst regeneration, i.e., in the process of removal by combustion of carbonaceous
deposits (coke) accumulated during catalytic operation with hydrocarbon or other
organic reactants. Sometimes porous adsorbents are similarly regenerated. Besides
the same analysis may be applicable to the reduction of some metal oxides and the
roasting of sulfide ores.

Though theoretical researches of gas-solid reactions have been carried out with
various models, the shrinking core model is the simplest to work with. Duong D.
Do (1982) justified the validity of the shrinking core model and found that to apply
this useful model in a proper way the reaction rate should be much faster than
the diffusion rate; i.e., the Thiele modulus is high enough. There are two cases
where we can apply the unreacted core shrinking model. One is when the effective

diffusivity in the core is much smaller than that in the ash layer and the other is
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when the whole process i1s controlled by the diffusion through the ash layer. The
former might be too ideal to be true in reality. One can easily realize the latter
case, which prevails for sufficiently high temperature or sufficiently large particle
size. Then the reaction occurs only on the core surface.

When one wants to analyze the shrinking core model, it is most convenient
to use the spherical core as was done by Yagi and Kunii (1955) and explained in
detail by Levenspiel (1972). So far the assumption of spherical core has been taken
for granted with no justifications. One needs to check whether the core maintains
the spherical shape or the particle shape becomes nonspherical during reaction. We
considered this problem already in the previous chapters with a shrinking particle.
As was the case for gas-solid reactions leaving no ashes, the core may become
more nonsphefical unless the overall shape is not perfectly spherical. Or, even if
the overall shape of particle is perfectly spherical, the spherical core surface could
be unstable to a certain small disturbance. Thus we would like to examine the
behavior of the core surface in case the initial surface is not spherical. Since the
domain is finite, we can only use the boundary integral method (hereafter BI) and

can investigate the shape change assuming a form of core shape is given.
PROBLEM FORMULATION
Governing equation and boundary conditions
By introducing the effective diffusion coefficient defined by
N4y =-D., Jca, ’ (B1)

the diffusion through the ash layer can be formulated under the assumptions :
1. The concentration of A on the particle surface is uniformly equal to that in the

bulk gas phase.
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SV}

The whole system is isothermal.
3. Reaction occurs only on the core surface.
4. Reaction is first order and is proportional to the concentration of species A.

All the transport coefficients and physical properties are constant.

Ut

6. Since the core shrinks very slowly, the concentration profile of species A is in

quasi-steady state.

to obtain the governing equation and boundary conditions,

Vica =0  in the ash , (B2a)
—D.Jzca 0= key on the core surface (B2b)
Cq—Cap on the particle surface (B2c¢)
! . -?f— —vVvg+-n =0 on the core surface (B2d)

| v F| ot
F=pj-— 7(8,1). (B2e)

The unit normal vector on the core surface, n, is outward from the ash outside the
core, and vy is the core surface velocity. The tildes signify dimensional properties.
The use of the dimensionless properties,

7(0,1) kR, byk2cys
== — s = _—, e,t = —_—=, = y = ——?——t, B3
* R, ! CAb 7'( ) R, Q D. i ps R, ( )

where fx’, is the radius of the fictitious sphere which has the same volume as the
particle and @) is the Thiele modulus for the unreacted core shrinking model, yields

Eqgs.(B2) in the dimensionless form

V2u=0 in the ash (B4a)

Ou '
3= —Qu at p=r(0,7) (B4b)
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wu=1 at p=R(#) (Bdc)
or 1dr. s
“‘a—;:\/l+(75§) u at p:?‘(g,T). (B4d)

Aspect ratio and its dertvative
~Though there are various types of nonsphericity, we want to examine the effect
of the spheroidal shape which is the most common nonsphericity encountered in

practice. To represent the nonsphericity of spheroid, the eccentricity (e) and the

aspect ratio (A,) are used and their relationship for a spheroid is A, = (1 —¢?)7%/2,
The aspect ratio of the core and its time derivative are defined by
~r(0,7)
A, = ——— B5
| " (3,7 (B5)
dA, 1 [Or T or = ]
raTe =(0)r(5) =r(0)5-(35)] - (B6)
The substitution of §§. =0at § =0,% and Eq.(B4d) in Eq.(B6) gives
dA, 1 T T
44, _ ™y _(F B7
: &r (D) [rOu(3) (G, (BT)
which are divided by r(0) —r (32'—) to yield
din(A4, - 1) 7= Apu(f) —u(0)
Wl =D,3) = 22D < w) . (B9)

The quantity W’ shows the same asymptotic behaviors that were discussed in Chap-

ter 2 for small and large Q.

Boundary integral method

The integral form of Laplace’s equation derived in Chapter 2 reduces, with

boundary conditions at the particle and core surfaces, {1, 3, to

o dg dg Ou
oy = /m u(zL +Qg) dA+/92 %dA—/QZ g5dA. (B9)
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Giving the singular point £ to £; yields

dg
ZdA = —
N G (B10)
while with the singular point ¢ on 2,
0
/ J ZrdA = ~0r (B11)

by the Gauss divergence theorem. Then the integral equations to solve are

dr — 27w, =/ (an +Qg)dA — / g——-dA with € on (B12)

o:/ ( %+ Qg)dA — /gaudAwithfoan. (B13)

For a spherical particle, v and —Z—% are uniform all over the surfaces. The analytical
solution for a sphere is derived by using constant u and g% in the above integral

equations.

DISCUSSION

Before going into any calculations, we have to define the shapes of the whole
particle and the unreacted core. In fact the core shape should be determined tem-
porally by the kinematic boundary condition starting from the shape of the whole
particle. Instead of going into such details, we just want to find the stability of the
nonspherical core surface. It is, therefore, sufficient for the present to restrict the
core shape to the same as that of the whole particle. The size of whole particle is
normalized by the radius of the sphere of equal volume whereas the size of core is
used as a parameter. The sizes of whole particle and core are represented as the

radii of the spheres of equal volumes.
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We calculated the core surface concentrations using the BI technique for the
shapes €=0.6,0.8,0.9 and with r,=0.3,0.5,0.7. Figure. B1 describes the BI results of
W' for the shape, e=0.6(A,=1.25) and r;=0.5, vielding essentially the same results
as in Case [. The curves for e=0.8 and 0.9 are negligibly higher and the curve for
rs=0.7 is just a little higher than that for r;=0.5. Roughly speaking, the quantity,
W', is a function of () only regardless of r; and A,. Figure Bl displays asymptotes
of W/,

W'—1 for small Q, (Bl4a)

9
W’——»-gj for large @, (B14b)

and so the rate of change of aspect ratio gives the asymptotic behaviors,

— ! for small @ (Bl5a)

dAy 24— 1)
dr Qr(%,7)

for large Q. (B15b)

For the sphere of equal volume the shrinking rate of core is easily derived as

dr, 1
dr T —r2Q+r,Q 41 (B16)

Integration of Eqs. (B15a) and (B15b) with the help of Eq.(B16) yields the inequal-

ities,
1 Q 9
A, —1> (A, —1) (;—-) exp —2—(1 —71,)*| for small @ (Bl7a)
ly2/Q 2
A, = 1> (Ap — 1)(:—) exp[(1 —r,)?] for large Q. (B17b)

Equation (B17a) predicts the aspect ratio of the core becomes larger than 2 after

90% decrease of the core radius starting with an initial aspect ratio of 1.1.
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Weisz and Goodwin (1963) performed an experiment on catalyst reactivation
at various temperatures. The picture for high temperature shows a very sharp
and spherical interface at high temperature. From their result the core shape can
be considered to remain spherical at high temperature (i.e., diffusion control) till
50% decrease of raditis starting from a spherical shape. This is consistent with the
present theoretical result that the core shape remains unchanged essentially under
the diffusion control. The present result predicts the rate of change of the core
shape to be quite rapid with the small core size. Thus the core shape will be very
nonspherical when the size of the core is very small. Weisz and Goodwin, however,
show a picture only in which the core size is still big from the standpoint of the

| present analysis. A picture displayed by Wen and Wang (1970) shows a geometrical
instability for a small core size, which is consistent with the result from the present

analysis.
CONCLUSIONS

1. The boundary integral method is applied to the gas-solid reaction leaving ashes
to find the concentration on the core surface. The quantity W' is a function of
@ only regardless of r, and A,, and its behavior is almost the same as was seen
in the shrinking particle except that W' is proportional to @~! rather than
@~?% under the diffusion control.

2. Under the diffusion control the core shape changes a little bit, but negligibly,
so it remains almost spherical as long as the core size is not very small. The

rate of change of aspect ratio is large under the reaction control.
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NOTATION

Notation is the same as in Chapter 2 except the following list.

D, effective pore diffusion coefficient
Q@ Damkohler number [Eq.(B3)]
Ts dimensionless radius of spherical core

r(6,t)  dimensionless radial distance of core from particle center [Eq.(B3)]

w’ defined by Eq.(BS8)
Greek letters

T dimensionless time variable defined by Eq.(B3)

21,0, surface boundaries of domain
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Figure Al Aspect ratio and conversion vs. dimensionless time for prolate and
oblate spheroids(0:4,(0) = 1.667,A:4,(0) = 2.294, O:AP(O) = 3.2026 ; solid lines

: prolafe spheroids, dashed lines : oblate spheroids).
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