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ABSTRACT

In this thesis I consider the problem of assigning a fixed and
heterogeneous set of goods or services to a fixed set of individuals. I analyze this
allocation problem with and without the use of monetary transfers to allocate

good.

There are many applications in the literature associated with this
problem. The usual approach to this problem has been to discuss the properties
of individual mechanisms (variously called procedures, algorithms, or rules) to
solve the problem, often ignoring the incentive properties. In this thesis I take a
different approach, that is, to look at a large class of mechanisms and to
determine the conditions necessary to induce mechanisms with desired
optimality and incentive properties. This analytic technique is augmented by an
experimental examination of some of the mechanisms that have been proposed
to solve this problem. Mechanisms that use transfers and consider incentive
properties exist in the literature, but mechanisms that do not use transfers do not.
None of these mechanisms has been tested or compared. The thesis is divided
into two chapters; in chapter I, I examine the class of nontransfer dominant and
Nash strategy mechanisms, and in chapter II, I discuss the experimental tests of
the known transfer mechanisms and of the nontransfer mechanisms discussed in

chapter L.
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In the first chapter of this thesis, I characterize the conditions necessary
for a nontransfer mechanism to be implementable in dominant and Nash
strategies. This characterization is an extension of the Gibbard-Satterthwaite
theorem. One of the conditions, ordinality, explains a distinction that is
observed in the mechanisms described in the literature, that is, the use of
cardinal information when transfers are used, and the use of ordinal information
when transfers are not used. In addition, I apply a little-known concept for
strategic behavior, nonbossiness, which is a necessary condition for

implementability.

In the second chapter of this thesis, I use experimental methods to
explore some procedures that could be used to assign individuals to slots. Ilook
at four mechanisms, two transfer mechanisms, a sealed-bid auction and a
progressive auction, and two nontransfer mechanisms, a choice mechanism and
a chit mechanism (which are also studied in part I of this thesis). The
mechanisms were compared to their theoretical predictions and to each other.
For the chit mechanism a genetic algorithm was used to 'compute the predicted
outcome; since this is a new use for the technique, I discuss the methodology

that I used.

The experimental results for the transfer auctions are similar to the
results found for single and multiple unit auctions; that is, progressive auctions
tend to be more efficient and extract higher revenue from the bidders. While the
transfer mechanisms studied had the properties that they are efficient and extract
surplus (in terms of revenue) from the bidders, nontransfer mechanisms retain
most of the surplus for bidders but tend to be less efficient. The difference
between the two classes of mechanisms was most apparent in a high-contention

environment where the use of nontransfer mechanisms resulted in a much larger
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surplus to the individual bidders, and the transfer mechanisms resulted in
slightly higher efficiencies (the differences in efficiencies were small in
comparison to the differences in consumer surplus). In a low-contention
environment the use of either a transfer or a nontransfer mechanism had little

effect on either the efficiencies or the consumer surplus.

The results of this study are a first step to understanding the assignment
problem and to understanding more difficult allocation problems with
heterogeneous goods. Two simple results are evident from our results. In the
low-contention environment the planner can choose among the mechanisms
discussed and not be concerned about their relative merits, since there is little
difference in the outcomes of these mechanisms; in the high-contention
environment the planner must determine whether efficiency or consumer
surplus is more important; if efficiency or revenue is most important then, the
progressive auction is cleariy superior, if consumer welfare is most important

then the chit mechanism is superior.
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Chapter I: Dominant and Nash Strategy Mechanisms for
the Assignment Problem
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1. Imtroduction

Many allocation problems involve the assignment or matching of a set of
individuals to a set of objects. This allocation problem appears in a variety of
settings. A school administrator assigns office space to faculty members. A
university computer group administers computer resources. A space agency
schedules antenna time to spacecraft. Other allocation problems involve
matching members of one group to members of another group. A marriage
broker matches men with women. A community sports league matches players
with teams. All these allocation problems have two properties in common: the
task of matching one group to another and the institutional feature that money

is not used.!

In the examples listed above there are two distinct categories of problems.
One category, and the most studied, is the two-sided matching or marriage
problem made famous by Gale and Shapley (1962); the other category is the
one-sided matching problem. In two-sided matching problems, members of one
group are to form partnerships with a member of another group and members of
each group have preferences for members of the opposite group. A common
example is the matching of sports teams and players. In one-sided matching
problems, only one of the groups have preferences for members of the other
group. An example of one-sided matching is the matching of office space and
faculty members. Most of the research on matching problems has concentrated
on the two-sided matching problem (Roth and Sotomayor (1989) provide an
extensive review). The research on the one-sided matching problem has tended

1 The marriage broker is not an outdated example; one only needs to look at the number of video
matching services, which populate today’s urban environment. The marriage broker also illustrates the

distinction between paying money for matching services and paying money for the person or object being

matched.
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to propose rules and procedures and is generally found in the operations research

literature.

In this paper, we examine the problem of assigning a fixed set of goods or
services, which we will generically call slots, to a fixed set of agents. We consider
the problem from the point of view of a planner who wishes to design a set of
rules or procedures (usually called a mechanism), the outcomes of which satisfy
certain criteria. We extend the literature that was begun by Gibbard (1973) and
Satterthwaite (1975). Gibbard and Satterthwaite independently proved that a
mechanism is manipulable if it is nondictatorial. A planner is interested in non-
manipulable rules since many rules require knowledge of individual preferences or
information. These preferences are privately known and it may not be in the
best interest of individuals to truﬁhfully reveal their private information (or
preferences) to the planner. That is, agents may be able to manipulate the
outcome by misrepresenting their preferences. Manipulation may result in
unsatisfactory outcomes; so the planner would like to know what mechanisms

are manipulable and to what extent.

The Gibbard-Satterthwaite theorem (hereafter G-S) establishes that a
voting scheme (mechanism) must be either manipulable or dictatorial when all
possible transitive orderings over the set of alternatives are allowed, and the set
of alternatives is finite. Results by Barbera and Peleg (1990), Moreno and
Walker (1990), Satterthwaite and Sonnenschein (1981), and Zhou (1990b)
establish the Gibbard-Satterthwaite result when the domain of preferences is
restricted. Barbera and Peleg show that a G-S result holds when preferences are
required to be continuous, and the set of alternatives is a metric space (not

necessarily a subset of ®"). Moreno and Walker add the restriction that some
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dimensions of the social decision do not affect all the participants. Zhou
establishes a G-S-type result in economies with public goods when the set of
admissible preferences are continuous and convex. For domain restrictions that
typically satisfy economic models Satterthwaite and Sonnenschein (1981)
(hereafter SS) provide a result similar to the G-S result. The SS environment
requires a condition called nonbossy for a serial dictatorship to hold. The results
of these papers indicate that there may not exist “satisfactory” mechanisms
without the use of monetary transfers or other incentive tax schemes. Common
incentive schemes tha£ do not use money are waiting in line, inspection, and

punishment.

Our environment differs from the previous environments in two ways: 1)
by the restriction on the allocation space, and 2) by the restriction on the
domain of preferences. In the problem I pose, allocations that a planner may
make are constrained by two requirements: a feasibility constraint (at most one
slot is assigned to each agent), and the institutional requirement (incentive taxes
such as “money” or waiting in line cannot be used to allocate slots, and lotteries
over the alternatives are not allowed). This problem will be referred to as the

one-sided matching problem (also known as the assignment problem).?

The domain of preferences is restricted by the assumption that individuals
are selfish and that their utility does not depend on the slots allocated to others.
This restricted domain of preferences does not satisfy the conditions for the proof
of the G-S result. For instance, Barbera and Peleg’s proof of the Gibbard-
Satterthwaite theorem requires that preferences having a single best alternative
are not excluded from the domain; in our environment there are no preferences

2 For a more detailed discussion of the assignment problem, see Chapter 8 of Roth and Sotomayor
(1989), or Shapley and Shubik (1972).
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that have a single best alternative and individuals are indifferent over large sets
of outcomes.  The matching environment differs from the environment
constructed by Moreno and Walker, since allocations to one individual can affect
another individual (e.g., if person 1 is assigned slot A, then 2 cannot be assigned

this slot).

In the environment discussed in this paper, there are two ways an agent
can behave “strategically.” The first is by manipulating the outcome of a social
choice function and the second is by corrupting the outcome of a social choice
function. A social choice function is manipulable if an agent can improve the
outcome for himself by misrepresenting his true preferences, while a social choice
function is corruptible if an agent can change the outcome to another agent
without changing the outcome for himself. The ability of an agent to manipulate
an outcome has been widely discussed and is the main condition that restricts
the outcomes of the social choice functions of the papers cited above, while the
ability of an agent to corrupt an outcome has received scant attention.
Noncorruptible SCCs have been discussed by Ritz (1985) and Satterthwaite and

Sonnenschein (1981), who call a noncorruptible mechanism nonbossy.?

The rules that have been proposed in the literature to match agents to
goods can be classified by the message space and the mechanism (procedure,
allocation rule, or algorithm) used to make the match. There are two basic
types of message spaces: ordinal ranking and cardinal ranking. In a mechanism
that uses an ordinal ranking message space, individuals are asked to submit a
preference ranking over slots (e.g., I like 1 better than 2, and 2 better than 3).
In a mechanism that uses a cardinal ranking message space, individuals are

3 Ritz’s definition of corruptible is more general than the SS definition of bossy; Ritz defines
corruptible for choice correspondences; SS define bossy for direct mechanisms.
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requested to choose from a subset C C iR'f,_ (e.g., 100 points must be divided

among the different slots).

I classify the procedures found in the literature into three categories based

4 Positional

on their operational characteristics—positional, chit, and choice.
mechanisms are mechanisms wherein the message space is an agent’s ordinal
ranking over slots. Chit mechanisms have a cardinal message space. Choice

mechanisms allow the individuals to choose from an available set of slots.

Positional mechanisms are discussed first. In a positional mechanism
each agent submits a ranking over slots. The planner (or central coordinator)
places a numerical value on each ranking and then determines the outcome by
maximizing (or minimizing) an objective function defined on the numerical
values. Various objective functions are possible. For instance, agents submit
rankings® r' = (r;3,...,7;), the most preferred good getting the highest number
and so on, whereas the r’s are chosen from a set of k specific weights
W = {wy,..,w}. ¥ W ={1,..,k}, then this is similar to a Borda count. Given
a submission of ranks, the assignment is determined by the allocation that
maximizes the sum of weights. Gardenfors (1973) shows that assignments
generated in this fashion satisfy conditions of neutrality, symmetry, unanimity,
monotonicity, and Pareto optimality (see Gardenfors for definitions). In section
9 we show that for this class of mechanisms agents have incentives to

misrepresent their ordinal rankings over slots.

4 This is not an exhaustive classification of all possible mechanisms, only of those commonly found

in the literature.

5 For some situations, when the number of slots is large, asking agents to submit rankings over all
slots is impractical. Wilkonson (1972) suggests a solution where unranked slots are given a ranking one lower
than the lowest ranked slot.
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A second type of assignment is determined by the allocation that
minimizes the worst case (e.g., an assignment is made to make the agent with
the lowest ranked slot as high as possible). This procedure was described by
Proll (1972) and Wilson (1977). Hylland and Zeckhauser (1979) report on a
similar procedure used by Harvard administrators in 1977 to assign students to
housing. The administrators first assigned students to their first choice if
possible; they then assigned the remaining students to their second choice, and
so on (this is called a bottleneck procedure). Hylland and Zeckhauser (1979)
report that the Harvard administrators believed they observed students acting
strategically. If students believed their first choice was first among many others,

they might list their less popular second choice as first.®

A second class of mechanisms includes chit mechanisms. A chit mech-
anism is one wherein the message space allows each person to allocate a certain
number of points (or chits) to any of the items which he wishes. The only
difference between chit and positional mechanisms is the message space. Opera-
tionally, chit mechanisms use “funny money” (sometimes called chits) instead of
money (exchangeable currency) as the medium of exchange. A chit is a medium
of exchange whose value is determined solely in the context of the given
assignment problem (environment), and has no value for goods or services
outside the assignment problem. An example of a chit mechanism is the implicit

market mechanism of Hylland and Zeckhauser (1979).

A third class of mechanisms includes choice mechanisms. They are
similar to positional mechanisms, since they only require an individual’s rankings

over slots. I consider them separately because they can be implemented by

6 See Hylland and Zeckhauser (1979), page 255, note 6.
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procedures that require individuals to choose slots from an available set, so the
entire ranking does not need to be obtained. Examples of choice mechanisms are
the deferred-acceptance procedure and serial-dictatorship mechanisms. The
deferred-acceptance mechanism is based on the Gale-Shapley algorithm used to
solve the marriage problem.” For the serial dictatorship an ordering of agents is
chosen, the first agent chooses her slot, the second agent chooses her slot of those
remaining, and so on. These mechanisms will be discussed in more detail in a
later section.

Except for the choice mechanisms, none of the literature on matching

8 The only result in the

mechanisms explicitly considers incentive problems.
matching environment is by Zhou (1990a) who proved that when the number of
agents is greater than 3, there exists no mechanism that satisfies symmetry, ez
ante Pareto optimality, and strategy-proofness. The results presented in this
paper characterize the class of social choice rules that can be implemented when

nonstrategic behavior (behavior that is both nonmanipulable and noncorruptible)

is a condition; the properties of these rules are then discussed.

In this paper we present four basic results: 1) nonstrategic rules must be
ordinal; that is, an individual’s assignment from the social choice function does
not change when his ordinal preferences do not change; 2) nonstrategic social
choice functions must be choice mechanisms; 3) the allocation space is rich (in
the sense of Dasgupta, Hammond, and Maskin (1979), hereafter DHM), and
hence a social choice function is implementable in dominant strategies if and

only if it is implementable in Nash strategies; 4) a subclass of nonstrategic social

7 See Roth and Sotomayor (1989) and the classic reference Gale and Shapley (1962).

8 Hylland and Zeckhauser made the assumption that when there are many agents, each agent’s

contribution is small and hence there is no incentive to be dishonest.
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choice functions called serial dictators are Pareto optimal.

For the classes of mechanisms that we described above, the results imply
that the only mechanisms that are implementable in dominant and Nash
strategies are choice mechanisms that rely only on ordinal rankings. The class of
mechanisms we call chits are not implementable since they rely on cardinal

information.

This paper is divided into sections. In Section 2, we describe the formal
model. In Section 3, strategic behavior is described. In Section 4, we show the
equivalence of various notions of implementability for our environment. In
Section 5, mnecessary conditions for dominant-strategy implementation are
presented. In Section 6, the serial dictator is described and shown to
characterize the class of nonstrategic rules. In Section 7, Nash implementation is
presented. In Section 8, the optimality of implementable rules is presented. In
Section 9, we discuss some of the results in the context of the categories of rules
presented in the introduction. Finally, in Section 10, we make some concluding

remarks.
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2. Formal description of the model

The environment

The environment consists of n agents and k goods or services to be
allocated, which we call slots. Let N = {1,...,n} index the set of agents, and let
K ={1,..,k} index the set of slots. It is assumed that both N and K are
finite and nonempty. Let A be the set of feasible, deterministic allocations of

K to N, including the zero allocation where no agent receives a slot.

The set A consists of allocations wherein agents either receive or do not
receive a slot. An allocation in A can be denoted by a feasible allocation
matrix of zeros and ones. That is, a € A is an nxk matrix consisting of at
most a single 1 in each row and column, where an element a,; =1 if agent ¢ is

assigned slot j, and a;; =0, if he is not. We also define a' = (a,,...,ay,).

The elements of A must be feasible (i.e., at most, one slot may be

assigned to each agent). We provide the following definition:

DEFINITION 2.0. An allocation z € A is weakly feasible (WF) if Yz <1
VieN, Y z;;<1VjeK, . < min(k,n), and z;;>0. If z€ A, then
r;;€{0,1}. If n=k,  this definition reduces to the requirement that

EJ.’L"JS]., VZEN, Z‘.x,‘jS]., V]'EI{, and CL',JZO

Efficiency and monotonicity of preferences will imply that either all slots

are allocated or every agent is allocated a slot. The following definition is used:
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DEFINITION 2.1. An allocation z€A is strictly feasible (SF) if
ij,-jE{O,l} VieN, Y z,;€{0,1} Vj€K, ¥.¥ z;=min(kn), and
2;;20. Ifx€ A, then z,;€{0,1}. If n=k, this definition reduces to the

requirement that 3. z;;=1, Vie N, Y z,;=1V; €K, and z;; >0.

The preferences of each agent depend upon the slot allocated and the
agent’s type. An agent’s type parameterizes the value he places on the goods
being allocated. Let ©'C R* be a set of possible types for agent i, Vie N.
Let OV = g(N@i. A 6€ OV will be called a profile. The number of agents and
slots is fixed, so the feasible set is independent of the profile. Each agent i, of
type 6, evaluates each outcome € A through a valuation function
U(z,6') = Zj:vij(:?;. The quantity U(z,§') represents the willingness to pay of
agent i of type 6 for outcome z.

Agents may be indifferent between distinct outcomes since they are
selfish; that is, they care only about the slots allocated to them. When the
outcome space is A, and agents are selfish, there is no loss of generality in the
linear description of utility since there are a finite number of slots. That is,
when agents are selfish and the outcome space is A, then for any utility function

A~

U(z), there is a #* such that U(z,§') = U(z).

Some of our results require that agents not be indifferent between slots.

The following definition is used:
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DEFINITION 22. A preference domain (U,0V) satisfies strict individual
preferences (SIP) if Vie N, V8 € O U(m,8') #U(,6') Vm #1€ K; where
U(5,6') = the utility to type 8' of slot j. That is, each agent has strict
preferences over slots. Given the definition of U(-), SIP holds if and only if
0i £ 6, VYm,le K,m#1, Vi N.

The planner

For every possible profile, the planner wishes to choose a single allocation
from the set of feasible allocations; in addition, the planner requires these
assignments to satisfy some criteria. That is, she wishes to implement a social
choice function® (SCF), f:ONi— A, that selects an outcome in A for every
profile in ©V. Alternatively, we can describe a social choice correspondence
(S5CC), f:0N+—P(A), which selects a nonempty subset of A for every profile in

OV, where P(A) denotes the power set of A. A SCF is a single-valued SCC.

Given a SCF, the planner must then choose a procedure or device to
obtain these allocations. For example, she may ask agents to place numerical
values between 0 and 1 on each slot and then make the assignment that maxi-
mizes the sum of the valuations.!® These procedures contain two parts, a mes-
sage space and an outcome rule. The combination of message space and outcome
rule is a game form, also called a mechanism. The planner chooses a mechanism

to “implement” her choice of social choice rule. A SCF is implementable if there

9 The literature often interchanges and confuses the terms social choice function, voting scheme, and
mechanism. In this paper the term social choice function is used to describe the type of outcome or allocation
that the planner may wish to obtain; a mechanism or voting scheme is a procedure or device to obtain alloca-

tions.

10 This is the well-known assignment problem. We will discuss its incentive problems in a later

section.
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exists a game form (message space and outcome rule) such that the equilibria
(under some appropriate solution concept) of this game corresponds to the

outcomes of the social choice function.

We make two assumptions, as described by Palfrey (1990), about the
planner’s ability to implement a social choice rule with a mechanism: 1) the
commitment assumption: The planner may commit to any feasible outcome
rule, and he is committed to his choice; 2) the control assumption: The planner
may choose any message space and the agents must communicate exactly one
message from this message space and may not communicate with each other.
We remark that if two different mechanisms can fully implement a SCC, each

agent and the planner are indifferent between them.

Solution Concepts

There are a number of solution concepts that can be applied; in this
paper we will be concerned with two solution concepts: dominant-strategy
implementation and Nash implementation (Dasgupta, Hammond and Maskin
(1979), and Maskin (1986) discuss these solution concepts in detail). The
resulting mechanisms can be significantly different under the two solution
concepts (e.g., the divide-the-cake problem). Other solution concepts are virtual
implementation (Abreu and Sen (1987)), and Bayesian implementation (Palfrey

(1990)).

Dominant-strategy and Bayesian implementation are solution concepts
that are consistent with the assumption of incomplete information, while Nash
and virtual implementation require complete information (for the agents but not

the planner). Dominant-strategy implementation is more robust than Bayesian
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implementation since it is prior-independent. Bayesian implementation requires
the stronger condition that the information structure is common knowledge, the
designér knows the common prior, and Bayesian rationality among all players is
common knowledge. Dominant-strategy implementation tends to be more stable
than Nash implementation since there are fewer equilibria, but there are fewer
instances where dominant-strategy implementation is possible. All the solution
concepts have multiplicity problems under certain conditions, but the problem is
least difficult under dominant-strategy implementation (See Mookerhjee and

Reichelstein (1989), and Ledyard (1986)).

More formally: let (g,5) denote a mechanism (or game form), where
g:S— A, §=(5..,5") and S’ is the strategy space (or message space) for

agent 1€ N. Let E: OV — S be an equilibrium correspondence.

A dominant-strateqy equilibrium for profile § € OV of a mechanism (g,5)
is an n-tuple of strategies 3= (&',...,3")€S such that (Vie N)(VseS)
(U(g(8,57),8%) > (g(s),6")). Let DE (f) C S be the dominant-strategy equilibria
for profile 6 of mechanism (g,S). A Nash equilibrium for profile § € OV of a
mechanism (g,5) is an n-tuple of strategies 3= (3,..,3")€ S such that
(Vi e N)(Vs' € §)U(g(3),6) > (9(s',57),6°). Let NE,(6)CS be the Nash

equilibria for profile 8 of mechanism (g,5).

There are a number of different notions of implementation. The strongest
is full implementation, which is applied to general game forms. A weaker
concept is truthful implementation, which is defined for direct mechanisms. A
direct mechanism is a mechanism in which the strategy space S° for each agent
i € N is the set of possible types ©@'. In direct mechanisms, agents report their

types (not necessarily their true types) to the planner, and then the planner
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makes an assignment based on these reported types.

Implementation in dominant strategies and implementation in Nash

strategies are now defined.

DEFINITION 2.3. A SCF f:9M—A is implementable in Nash strategies if
(V6 € ON)(Ya € f(6))3 (g, S)[g(NE,(6)) C f(6) and a € g(NE,(8))]

DEFINITION 24. A SCF f:0N i A is fully implementable in dominant
strategies if there is a mechanism (g, 5) such that (V8 € ©V) [g(DE(6)) = f(6)].

DEFINITION 2.5. A SCF f:0N — A is truthfully implementable in dominant
strategies if there is a direct mechanism ¢:OV — A such that (V4 € OY)

(Vi € N)(¥E* € 0)( U(g(8),6%) > U(9(8',67),6") ) and () € F(9)]

The simplest and most direct means of implementing a SCF is to ask
agents to report their type, then calculate from this information the assignment
using the SCF. This is a particular type of direct mechanism, where the
outcome rule is the SCF to be implemented. This notion of implementation was

used in the G-S theorem and the other results mentioned in the introduction.
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3. Strategic behavior

In this section we simplify the notion of implementation and use the
concept of strategy-proof SCFs. A strategy-proof SCF truthfully implements
itself in dominant strategies. In the next section I show that this is not a
restriction in this environment if we are interested in full implementation. A
SCF f:0N s A is strategy-proof if

(V6 € ON)(Vi e N)(Véi € 0Y) [U(f(9),6") > U(f(@‘,ﬁ"),Gi)].
A SCF f:0N > A is manipulable if for some i € N, (36 € OV)(36' € ©°) such that
U(f(@i, 67%),6°) > U(£(6),6"). In this case we say ¢ manipulates f at 8 with g. Ifa
SCF is strategy-proof, then an agent is not able to improve his allocation (be
assigned a more preferred slot) by lying about his type to the planner. This
restriction reduces the strategic options to the agent and hence the possible
allocations. This form of strategic behavior has been studied quite extensively

(Muller and Satterthwaite (1986) provide a good review).

A second form of strategic behavior, which has received very little atten-
tionl!) is the ability of an agent to change another agent’s allocation without
changing his own. Mechanisms with this property are labeled bossy, by
Satterthwaite and Sonnenschein (1981), and labeled corruptible by Ritz (1985).
A rule is bossy (or corruptible) if an agent can maintain her allocation at the
same time she causes changes in the allocations that other agents receive.
Satterthwaite and Sonnenschein do not consider whether “nonbossiness is a
reasonable or desirable condition to require of a mechanism”. Although we also
require a mechanism to be nonbossy, in our environment it is a reasonable
requirement.

n I have found only two references in the literature to this concept, Satterthwaite and Sonnenschein
(1981) and Ritz (1985).
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In the context of this paper we refer to SCCs as being corruptible and to

mechanisms as being bossy. We define these concepts formally:12

DEFINITION 3.1. The SCC f:0N+ A is noncorruptible (NC) if (V6 € OV)
(Vi jeN) (V87 € ©%)  [fI(0) = fI(677,67)= fi(8) = fi(679,8%)]. The SCC
F:ON > A is corruptible if (38 € ON)(3i,je N)(38 € O9)[f(6) = Fi(77,69)
= fi(6) # f(679,6%)]

DEFINITION 3.2. The mechanism (¢,5) ¢:S— A is bossy if (Fs€.9)
(35,5€N  and a 3 € S%)gi(s) = ¢g%(s77,8) = ¢'(s7%,3%) # ¢'(s79,8)]. The
mechanism (g,S) ¢:S+— A is nonbossy if it is not bossy. An agent ¢ € IV is said

to be bossy if she can change the outcome for some agent j € N.

We combine the two notions of strategic behavior and say that a SCF is
nonstrategic if it is both noncorruptible and strategy-proof. As an example to see
the existence of noncorruptible, strategy-proof mechanisms, observe the following

example:

EXAMPLE 3.3. Let n=%k=3, and let © = {A,B,C,D,E,F} Vi€ N. Define
the allocation rule:

FYC,6%, 6% =1, f3C,6%,6% =2, f3C,6% 6% = 3;

YD, 6% =1, f4D,6%6% =3, f3(D,8%6% =2, V8% 6°

where f() = j denotes that agent i receives slot j. Agent 1 is bossy, since by

12 The definitions of noncorruptible and nonbossy vary slightly from SS and Ritz but are consistent

with their usage in the matching environment.
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changing his type from C to D, he changes the allocation to agents 2 and 3 but
not to himself. The mechanism is strategy-proof for agent 1 since he always
receives slot 1 (we make the assumption that when an agent is indifferent
between being truthful and misrepresenting his type, he will be truthful), and for
agents 2 and 3, since they cannot affect the outcome of the mechanism. Observe
that the conditions of noncorruptibility and strategy-proofness are true for

whatever meaning we give to the types §° as long as the individuals are selfish.

When a mechanism is strategy-proof and nonbossy, then an agent cannot
improve his position directly by manipulating the outcome. But when a mech-
anism is strategy-proof and bossy, an agent may be able to improve his position
indirectly by taking a “bribe” from the other agents. In the example above,
agent 1 may be able to induce either agent 2 or 3 to pay him to choose in their

favor.

If a SCF is corruptible, the planner’s problem of predicting outcomes
becomes more difficult. The planner must model (try to predict) the behavior of
agents who may be able to bribe or coerce another agent. If a SCF is
noncorruptible, then the task of predicting behavior, and hence the the outcome

of a mechanism, is simpler.
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4. I'mplementation

It is well known that if a SCC is implementable, then it is truthfully
implementable; that is, there exists a direct mechanism such that truth-telling
is an equilibrium. The converse is not always true. However, in this section, we
will show that in the one-sided matching environment, if a SCC is truthfully
implementable and noncorruptible, then it is fully implementable in dominant
strategies. This equivalence allows us to restrict the planner’s matching problem
to direct mechanisms. An additional result is that a nonstrategic, fully
implementable SCC must be single-valued, so we can restrict our attention to
SCFs. We also show that full implementation is equivalent to strategy-
proofness, when SCF's are noncorruptible, which allows us to restrict the problem

even further to self-implementable SCCs.

LEMMA 4.1. If preferences satisfy SIP, then if a SCC is noncorruptible and
fully implementable in dominant strategies, it is single-valued.

Proof. Suppose f:ON— A is not single-valued; then for § € OV, let a,b € f(6),
a#b. Let (g,5) fully implement f in dominant strategies, 33,s € 5(f), such
that ¢g(3) =b, and g(s) =a. & and s' are both dominant strategies for 8, so
U(g(3',s1),8%) = U(g(s*,s!),6'). SIP implies that ¢'(3',s7!) = g'(s!,s!) =al;
noncorruptibility implies that g¢'(3!,s!) = g'(sl,s!)=d', VieN; hence
g3, s =g(s',sY) =a. Similarly, ¢(3,3%s"?) =g(3,s')=a. Continuing
iteratively, ¢(3) = a, which is a contradiction, so f is single-valued.

a.
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PROPOSITION 4.2. If preferences satisfy SIP, then if a SCF is noncorruptible
and truthfully implementable in dominant strategies, it is fully implementable in
dominant strategies.
Proof. Let f:©V+— A be truthfully implemented in dominant strategies by
g0V A Define f:ON—A so that V6O, f*(6)=g*(E(6)), where
Eg*(G) is the set of dominant-strategy equilibria for preference profile § in game
form ¢*. Now by construction, ¢* fully implements f*. Therefore, f*(#) must
be a singleton V6 € @OV, But g*(8) € f(); therefore, f*(8)C f(6),V8 € ON.
Since f is single-valued, f*(8) = f(8),V0 € OV, so g~ fully implements f.
a.

We apply two well-known results. 1) If a SCF is strategy-proof, then it
truthfully implements itself in dominant strategies. 2) If a SCF is fully imple-
mentable in dominant strategies, then it is truthfully implementable in dominant

strategies.

PROPOSITION 4.3. If preferences satisfy SIP, and if a SCF is noncorruptible
and strategy-proof then, it is fully implementable in dominant strategies.

Proof. Let f:0ON — A be strategy-proof and noncorruptible. Since f is strategy-
proof, it truthfully implements itself in dominant strategies. Since f is also
noncorruptible, then by the previous lemma it is fully implementable in

dominant strategies.

a.
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PROPOSITION 4.4. If preferences satisfy SIP, and if a SCF is truthfully
implementable in dominant strategies and noncorruptible, then it is strategy-
proof.
Proof. Let f:@Y s A be truthfully implementable in dominant strategies and
noncorruptible.  Since f is truthfully implementable, 3¢:0" — A such that
V6 € OF, Vie N, V& € 0%, U(g(h),8") > U(g(6',67%),6), ¢(8) € F(8).

Since f is truthfully implementable and noncorruptible, it is fully
implementable and hence it is single-valued, so g(6) = f(8), V8 € ON. Therefore,
U(f(6),8") > U(f(@‘, 67%),6%), so f is strategy-proof. 0.

THEOREM 4.5. If preferences satisfy SIP, and if a SCF is noncorruptible, then
strategy-proofness, truthful implementation, and full implementation in
dominant strategies are all equivalent.

Proof: Apply the previous propositions. 0.

In this section we have shown that there is no loss of generality by
focussing on SCF's rather than on SCCs and on strategy-proofness rather than on
full implementation in dominant strategies. The ability to reduce the class of
feasible mechanisms (or implementable SCCs) represents a significant reduction
in the complexity of the problem. This reduction has been achieved by making
two assumptions. The first assumption is a restriction on the domain of
preferences; we assume that individuals have strict preferences over slots. The
second assumption is a restriction on the strategic behavior that is allowed; we

enforce the requirement that SCF's are noncorruptible.
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5. Dominant-strategy implementation (ordinality)

In this section we describe a necessary condition for implementation in
dominant strategies. We first investigate a necessary condition in our environ-
ment for a SCF to be truthfully implementable in dominant strategies. From
DHM we know that a SCF is truthfully implementable in dominant strategies if
and only if it is satisfies independent person-by-person monotonicity (IPM)
(Maskin (1986), and DHM (1979)). Some preliminary definitions are first

provided.

DEFINITION®® 5.1. A SCF f:0V — A satisfies independent person-by-person
monotonicity (IPM) if V0 € OV, Vie N, V6 € ©', and V{a,b} C A such that
a € f(), and U(a,8) > U(b,8"), it must be that b¢ f(67%,8°).

DEFINITION 5.2. A rank function is a function r(8) = (r,(8),...,ri(6")),
r:© — [1{ry,rg.. .14}, such that r,(6°) > ry(6") if and only if U(j,6°) > U(l,6);
where U(j,6') = the utility to type é' of slot j, and [J{A} is the set of all

permutations of the set A.

DEFINITION 5.3. A SCF is ordinal if V8 €OV, Vie N, V8§ € O, such that
H(6) = r(F), then f(6) = F(6",)

DEFINITION 5.4. A SCF is individually ordinal if V8 € ON, Vie N, V6 € ©',
such that r(8') = r(#), then f(8) = fi(87%,6"), where f' is the allocation to
agent 1.

13 This is not the definition of IPM that appears in DHM (1979), but it is the definition given in
Laffont and Maskin (1982), and Maskin (1986).



A SCF is individually ordinal if an agent’s assignment does not change
when his ordinal preferences do not change. An SCF is ordinal if the group
assignment does not change when an agent’s ordinal preferences do not change.
If a SCF is ordinal, then it is individually ordinal, but if a SCF is individually
ordinal, it is not necessarily ordinal. If a SCF is individually ordinal but not
ordinal, then an individual agent can affect the allocation of another agent
without changing his own, so an ordinal SCF is noncorruptible. We now show

this observation formally:

LEMMA 5.5. If a SCF is noncorruptible and individually ordinal, then it is
ordinal.

Proof. Let f satisfy the hypothesis. Let i€ N, 8 € OV, § € ©, and r(6") = r(8°).
Since f is individually ordinal, fi(#) = fi(7,6"). Since f is noncorruptible,
FI(6) = fi(67%,6°) Vje N, j#i. Therefore, f(§) = f(67,8°) and f is ordinal.

a.

To prove our result we show that if a SCF satisfies IPM, then it is

individually ordinal. Our first result relies on the following lemma.

LEMMA 5.6. If preferences satisfy SIP, and if a SCF f:0" — A satisfies IPM,
a € f(6), c € f(6',679), and a' # ¢ then U(a,6) <U(c,8") and
U(c,8) < U(a,8").

(remark: if a'=c', then equality holds).

Proof. Suppose our hypothesis holds; then

1) If a€ f(9) and U(a,6) > U(c,6"), then IPM implies c ¢ f(6,67).
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2) If ce f(6',67) and U(c,6") > U(a,8'), then IPM implies a ¢ F(6,67%).
So 1) and 2) cannot both hold. This implies:
U(a,8') <U(c,8') and U(c,8') < U(a,6"). (5.1)
But by individual strict preferences and ¢ # d’, it must be that U(a,6') < U(c, )
and U(c,6") < U(a,6).
a.

In the previous lemma if preferences do not satisfy SIP then

U(a,8") <U(c,8') and U(c,8') < U(a,8").

The next two propositions establish that an ordinal condition is necessary

for implementation in dominant strategies when the allocation space is A.

PROPOSITION 5.7. If preferences satisfy SIP, A is the allocation space, and if
a SCF satisfies IPM, then it is individually ordinal.

Proof. Let f:0" — A be a SCF. Suppose that the hypothesis holds but that f
is not individually ordinal. Then for some i € N, §',8' € ©', where r(§*) = r(6"),
there exists a,b € A such that a € f(f), and b€ f(6',67%). If a'#b', then by
lemma 5.6, U(a,8) < U(b,6") and U(b,8') < U(a,#'). But this is a contradiction
since #°, ' have the same ordinal preferences over slots and a,b allocate a single
slot to agent 7. It must be that either a is preferred to b for both ', 8, or b is
preferred to a for both #', 6.

a.
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THEOREM 5.8. If preferences satisfy SIP, if A is the allocation space, and if a
SCF can be truthfully implemented in dominant strategies, then the SCF is
individually ordinal. In addition, if the SCF is noncorruptible then it is ordinal.
Proof. By DHM (theorem. 4.3.1), a SCF can be truthfully implemented in
dominant strategies if and only if it is IPM. By applying the previous

proposition, the first result follows.

For the second result, since the SCF is noncorruptible and individually

ordinal, lemma 5.1 implies that it is ordinal.

a.

We have shown that an ordinal condition is necessary for IPM when
preferences satisfy SIP, and when the allocation space is A, but is it sufficient?
The answer is no. We give an example of a SCF that is ordinal but cannot be

truthfully implemented in dominant strategies.

EXAMPLE 5.9. Let n=k=3, and r©' —[[{r, 7,73}, be the rank function,
where r; = 1.0, r, =0.5, and r3=0. Let f(8) =argmaxy ;¥ r,(6") ;5 ties
are resolved by giving the lower indexed agent hisz ;;}aferred slot, and =z 1is
strictly feasible. Let U(z,6") = T 2,8} , and ' = (6},63, 63) € R*.

Since f depends on 6 only through the rank function r, f is ordinal.

We will show that truth is not a dominant strategy for some 4.

For our example we will define 2 types: type A, §(A) =(1.0,0.5,0) and type B
6(B) = (0,1.0,.5).

Two allocations of the SCF f are f(A,A,B)=(1,3,2), and f(A,B,B) =(1,2,3),

where f(i,7,k) is the allocation if agent 1 is type 7, agent 2 is type j, and
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agent 3 is type k, f(-)=(I,m,n) is the allocation of [ to agent 1, m to
agent 2, and n to agent 3.
When 6% =(1,3), areport of type A, by agent 2, gives him slot 3. A report of
type B gives agent 2 slot 2. So when agent 2 is a type A, he is better off
reporting a type B, which gives him his 2" ranked slot 2, instead of his 3™
ranked slot 3.
a.

In summary, we have proven that if a SCF is truthfully implementable in
dominant strategies, then it is individually ordinal, and if in addition, it is non-

corruptible, then it is ordinal.
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6. Serial dictator

In the previous sections we showed that if a social choice function is
implementable in dominant strategies then it is ordinal and that there is no loss
of generality in requiring strategy-proofness. Hence, we will restrict ourselves to

finding strategy-proof ordinal mechanisms.

Satterthwaite and Sonnenschein (1981) established a Gibbard-
Satterthwaite-type theorem in a classical economic environment (alternatives are
a compact and convex subset of ®'). Their result relies on a differentiable alloca-
tion mechanism and a number of other technical conditions. The environment
constructed for the assignment problem (without lotteries) lacks convexity, and
we do not require a mechanism to be differentiable. Hence, the results of this
paper do not fall into the class of environments established by Satterthwaite and

Sonnenschein, although we obtain a similar result.

Satterthwaite and Sonnenschein (1981, p. 588) describe a serial
dictatorshipl? as follows:

Serial dictatorship means that the mechanism consists of one or more
hierarchies of agents where the highest ranking agent in each
hierarchy selects his allocation from a feasible set that is exogenously
given, the second highest ranking agent selects his allocation from a
feasible set that depends on the first agent’s choice, the third highest
ranking agent selects his allocation from a feasible set that depends
on the first and second agents’ choices, etc. Consequently, an agent
who is high on a hierarchy is a dictator to those agents lower on that
hierarchy in the sense that he can affect what is available to them to
choose among and they can not affect him reciprocally. He is not,
however, necessarily a dictator in the stronger senses of being able to
choose any technologically feasible outcome for himself and being
able to impose particular outcomes on the other agents.

14 An early reference to a serial dictatorship is found in Luce and Raiffa (1957, p. 344), who observe
that a serial dictatorship “is consistent with all of Arrow’s conditions except nondictatorship”.
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The serial dictator is a member of the class of sequential-choice
mechanisms. A sequential choice mechanism is a mechanism where there is an
ordering (or hierarchy) of agents, which may depend on the profile. Given this
ordering, each agent in turn is allowed to choose their slot from an option set,
which is a nonempty set of slots presented to them. These option sets have the
feature that each agent’s decision affects only the option sets of those agents that
are lower on the hierarchy. Associated with each serial dictator mechanism is an
ordering I(0) = {zy,...,1,} € P(N), which may vary with 6, and where P(N) is
the set of permutations of agents. This ordering indicates that the option set to
agent ¢, is K, the option set to 7, is a subset of K, and so on. That is, each
agent has her turn to choose slots from a set of slots, whose elements are affected

by those agents who are placed before her in the ordering.

The following definitions are used formally to define a sequential choice

mechanism and the serial dictator:!®

DEFINITION 6.1. For a given direct mechanism z:0%V+— A, agent : affects
agent j at 8 € OV if (36 € ©F) 3 27(9) # 27(6, 67'). We write this as 1 A4(4);.

DEFINITION 6.2. o(i,6) ={a € A|38 3a= f(6,6) }.
Given 67'€ON 0(i,8) is the set of agent i’s options at profile 8 that
she can receive by deviating her messages. Note: o(7,6) does not depend on § (so

o(3,8) = 0(:,67")) and clearly (V8 € ON)[f(0) € o(s,8)].

15 These definitions follow Satterthwaite and Sonnenschein (1981).



DEFINITION 6.3. For a given direct mechanism z:0N i A, A(8) is acyclic at
0 € OV Sf V(iy gy i) € P(N) 1 A(8)ig, i3A(8)is, . i1 A(8)i, =iy A()i,.

DEFINITION 6.4. A direct mechanism 2:0Y+— A is a sequential choice

mechanism if V6 € OV, A(9) is acyclic.

DEFINITION 6.5. A direct mechanism z:0Y+— A is a serial dictator if
V8 € OV, A(6) is acyclic and 0(iy,, ) C 0(in-1,8) C 0(ty-3,8) C -+ 0(3y,0) C K.

This definition of a serial dictator is broader than the description in the
introduction. That description describes a simple serial dictator wherein an
ordering I = {i;,%,..,%,} of agents is fixed and does not depend on the profile.
Given this fixed ordering, agents choose their slots in turn: ¢, goes first, then i,
chooses her slot from those remaining, and so on. The definition provided here
(and also in SS) allows the ordering of agents to vary with 8 € OV; we denote

the ordering as I(6).

We provide some further definitions:®

DEFINITION 6.6. For # € ', z € A, a §' € O is a reshuffling of ¢ around = if
(Vy € A)U(z,6) > U(y,8) = U(z,8) > U(y,8")]. r(6,z) denotes the set of all

reshufflings of #' around z, and a §* € r(6,z) is a reshuffle of §* around z.

16 A number of concepts from Barbera (1983) are used; Barbera proved the Gibbard-Satterthwaite
theogem by a pivotal—voter technique. A similar technique is used in this paper. A mechanism is pivotal at ¢
if 39 5 1:(9'1,9') # 2(8). Clearly, if i affects j at 6, then i is pivotal at §.
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A reshuffling of 6 around z is another preference ordering such that «
preserves the same ordinal rankings relative to all other alternatives. Observe: if
SIP holds, z,y € A, and & € r(¢',z); then [U(y,6") = U(z,6") & U(y,8) = U(z, 8")).
Some special preference relations will be used. Let ®4° be the preferences
obtained from #' when z is ranked first, all other ordinal preferences remaining
the same; and let ' be the preferences obtained from #* when x is ranked last,
all other ordinal preferences remaining the same. Let *©' be the set of

preferences that rank z first.

For a direct mechanism f:0V— A, define A;=range of f. If Y C 4,

then Y is the set of slots Y C K that are obtained by 7in Y.

DEFINITION 6.7. For Y C 4,6 € O, let
C6.Y)= {a€Y |U(a,8)>U(b8)VbeY}
be the choice of agent 6 in the set ¥ of allocations, and let
Ci8,Y)={d' €Y' |U(a,6') > U(b,6')Vb € Y}
be the set of the best slots obtained by 2 in the set of allocations Y. If SIP holds,

then C*(8',Y) is a singleton.

The main theorem is stated below:

THEOREM 1. If preferences satisfy SIP, f:@N— A is strategy-proof and

noncorruptible; then for all 8§ € OV, A(f) is acyclic.

The result of Theorem 1. is that for each § € O, A(f) is acyclic; this

permits the hierarchies of serial dictators to vary as # € OV, This is a similar
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result to SS. Before I prove the theorem I prove some lemmas that will be used

in the proof.

LEMMA 0. For f:ON— A, if f is noncorruptible and (V8 € OV)(Vie€ N)
(V6" € ©)[f(6) # F(67,6") = £i(8) # Fi(67,6%)].

Proof. Suppose f:©Vi— A satisfies the hypothesis of the lemma. Then
£(8) # F(67%,6%) implies either a) fi(8) # fi(67,8°) or b) fi(8) # fi(67,8%) or both.
If a) is true then the conclusion is true. If b) is true then noncorruptibility
implies fi(8) # F¥(67*,8) and the conclusion is true.

0.

LEMMA 1la. If preferences satisfy SIP and f:ON+— A is strategy-proof and
noncorruptible, then (V8 € OV)(Vi € N)[f(8) = C(o(3,6),6")].

Proof. Suppose not. Let z = f(8) and = € C(0(3,6),8°),  # 2. By definition of
of+), 36" f(#,6%) =z and z= f(6) € 0(3,0), so f(8,67)# f(6). Since f is
noncorruptible, by lemma 0, it must be that z':# 2'. Since z,z € o(:,6) and
z € C(0(3,0),6%), SIP=U(z,0')> U(z,8')=U(f(67,6),6°) > U(£(9),8). Hence f
is manipulable at by ¢, a contradiction.

a.

The above lemma says that for every profile, the outcome must be the
best option at that profile for each one of the agents. Without the noncorrupt-
ible condition the result of the lemma is f(8) € C(o(3,6),6"), and if in addition

SIP holds, then fi(6) = C¥(o(i,8),6"). -
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LEMMA 1b. If preferences satisfy SIP, f:ON— A 1is strategy-proof and
noncorruptible, then (V8 € ON)(Vi € N[ € r(#', f(8))= F(67,6°) = F(6)].
Proof. Suppose not. Then for some #€ON, ieN, #He r(8', £(9)),
F(F7,6) #£ f(). Since f is noncorruptible, by lemma 0., it must be that
Fi(67,6) # fi(§). By SIP, either

a) U(f(67,6'),6%) > U(f(6),6"), or

b) U(£(8),6") > U(f(67%,6),6").
By definition of r() 8 € r(6%, £(8)) = [U(£(8),8°) > U(y,8) = U(f(8),6°) > U(y,§"),
Vy e A, y' # f(9)]
If a) is true, then a*) U(f(67,8),8°) > U(£(6),6").
If b) is true, then b*) U(F(),8) > U(f(67%,6),6°).
But a) and b*) contradict strategy-proofness, hence fes, 9‘) = f(6).

a.

The above lemma states that no agent can change the outcome at a
profile by changing his preferences to a reshuffle around this outcome. If f is

corruptible then the conclusion of the above lemma is fi(87,6%) = fi(6).

LEMMA 1lc. If preferences satisfy SIP, f:0Vi— A is strategy-proof and
noncorruptible; then (V € ON)(Vi,j € N)[8' € r(#, £(8)) = o(4,8) = o(7,(67,6%))].
Proof. Let 6= (87" 60. We will show that o(j,8) C o(j,8). We can show that
o(j,0) C 0(5,0) by a similar argument, since f(8) = f(8) by lemma (1b), and
6 € r(6*, f(8)) by the definition of ().

Suppose o(j,@) Z o(7,6) and let y € o(y, 9), y ¢ o(7,8), and let z = f(9).
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By lemma (1b), f(8) = f(8) = .
z = f(#) € 0(j,0) by definition of o( - ), so z # y.
By lemma (1a), f(8) = C(0(3,8),67), and 27 = fI(8) = C?(o(j,8),8?).
Let Y6’ denote the preferences obtained from 67 by lifting y to first place, all
other rankings remaining the same. Since y ¢ o(j,8), 2’ = fI(8) = C’(o(j,6),96?).
By lemma (1a), f7(877,v8%) = C¥(o(j,677,967),967). |
Also  C%(0(3,6),%6%) = C¥(o(5,677,967),46%), since o(j, -) does not depend on 6.
So fi(f) = fi(§77,96)) ==z,  But yeo(j8)=y= f(46%) = C(o(j,0),Y6") by
lemma (la), and y is best for v47. Expanding the arguments of
F()=>y = f(677,967,6") and = = f(677,¥47,6"). Since 6 and # maintain the same
relative ordinal preference between z and y, i can either manipulate (677,947, @')
or (79,949 6"), which is a contradiction to the strategy-proofness of f.

a.

This lemma states that an agent cannot change the option set of any

other agent by a reshuffling of his preferences.

Ezample with simple serial dictator:

Let n =k =5 and the agent ordering is {1,2,3,4,5} for each profile. Let
the profile be such that the best slot for agent 1 is slot 1, the best slot for agent 2
is slot 2, and the ordinal preferences for agent 3 are (1,2,3,4,5). The ordering
assigns slot 1 to agent 1, slot 2 to agent 2, and slot 3 to agent 3; the option set
for agent 4 is {4,5}. Suppose agent 3’s preferences are reshuffled around the
outcome (2,1,3,5,4), then every agent’s assignment remains the same. Let agent

3’s preferences be changed to (2,4,3,1,5), which is not a reshuffle around the
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outcome, then agent 3 is assigned slot 4 and the option set for agent 4 is {3,5}.

In the following lemmas if E is a relation, then ~ E denotes not Ej; the

cardinality of set A, is denoted by | A].

LEMMA 1d (Asymmetry). If preferences satisfy SIP and f: OVN— A s
strategy-proof and noncorruptible then (V6 € ©N)(Vi, j € N) 1A()j => either:

1. o(i,8) = 0(4,0) and |o(j,0)| =2, or

2. ~ jA(O).
Proof. Suppose the hypothesis of the lemma holds, then i4(6)j requires that
36> fi(07%,8°) # £4(B). Suppose that jA(8)i then 3873 fi(679,67) # fi(8). Let
y = f(87, @‘), z= f(87, 9’) and z = f(#). We will look at 2 mutually exclusive

and exhaustive cases.

Case 1: W&,095 f(67,8) £ £3(6) and f(§73,8%) # £(6), F(6°,8°) = (63,09)
The definition of o( - ) implies that {z,y} = 0(¢,6) and {z,z} = 0(j,8). But
rt=2z, so {z,y} =0(:,0) and {z,y} =o0(j,0). Therefore o(:,8) =o(j,f) and

|o(7,0)] =2.

Case 2: 38,675 fi(67,6°) # f1(8) and fi(677,8%) # £1(8), f(67,8") # F(67,8).

The construction of y,z, and z implies that y # 2z, y? # 2/ and 2* # 2'.
By lemma (la), z,y€o0(;,8) and =z,z€0(j,0). z*#z'=>z¢ f(f) and if
U(z,6°) > U(z,6") then z ¢ o(z,67).

Let 6= 6 if U(z,6') > U(z,6") : put z last

z
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¢ = 6" if U(z,8°) > U(z,8') : put z first
Let 6/ =67 if U(z,67) > U(y,8%) : put y last
63 =v67 if U(y,89) > U(z,67) : put y first
For k #1,j, 6% = 6% s0 6= (67,6 6%).
6' and §’ are reshuffles of ' and 67 about z.
Let &i=v§ if U(z,6) > U(z,8") : put y first, z last
' = *(¥6%) if U(z,6°) > U(z,8") : put z first, y second
Let 67 =:67 if U(z,87) > U(y,6”) : z first, y last
7 = v(*67) if U(y,6”) > U(z,6%) : y first, z second

Note that SIP and y? # 27, z' # 2 eliminate the equality in the above definitions.

We now show that y = C(0(3,),8") and y = F67 6.

Since # is a reshuffle of #/ around z = f(6), then by lemma (lc),
0(i,8) = 0(:,8) and y € o(s, §). By construction &' ranks y first or second. If §*
ranks y first then y = C(0(5,0),6%). If & ranks y second, & ranks z first, but
z¢0(i,0), so z¢o(3,0); and hence, y =C(0(;,8),8"). By lemma (la),
y=f678).

By a similar argument, we can show z = C(o(y, 9),9’), and z = f(é'j, 69).

By construction, 87 €r(y,8%), and &'¢ r(z,8"), so by lemma (1b),
y = f(6Y, 67, é"), and z = f(6'ij,éi, éj), which is a contradiction since y # z and f
is single-valued.

a.
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In the previous lemma we showed that an agent ¢ affects another agent j
then agent j cannot affect agent ¢ except in one instance. In that instance agent
i and agent j both have the same option set (of size 2) and can affect each others
outcome. This case describes the nature of the ordering that is induced by a
sequential choice mechanism. When both agents can affect each other at a
profile the relative ordering of agent : and j does not affect the outcome at that

profile.

LEMMA 1le (Transitivity). If preferences satisfy SIP, f:ON— A is strategy-
proof and noncorruptible; then (V8 € OV)(Vi,j € N)A(8); & jA(6)k= ~ kA(9)].
Proof. Suppose 34,5,k € N>:.18)j, jA(@)k , and kA(f)i. Without loss of
generality let i=1, j=2 and k=3. 1A(6)2=36'> f¥67,8") # FX9),
2A(0)3 =362 3 £3(62,6%) # f3(8), and 3A(9)1=38% > f1(673,8°) £ F1(9).

Let y=f(671,8Y), z=f(62,6%), w=f(636), and z=f(6); then
y? £ 2%, 2% # 23, and w' # z!'. Noncorruptibility implies y' # z',2? # 2% w® # 23.
Asymmetry implies 33 # 23, 2! # 2!, and w? # 22

By definition of o(3, ) z,y€o0(l,8), =z,z€(2,6), and w,z € o(3,9).
zFr=>z ¢ f(6),y#r=>y g f(6), wFz=>w g f(0).

Define ®¥#! to by the preferences defined by “(¥6') if U(x,6') > U(y,6"),
and by ¥(“8) if U(y,6") > U(x,6"). Define 8" to by the preferences defined by
(,0") if U(z,6") > U(y,6") and by ,(,6') if U(y,6") > U(z,8").

Let 6'= . 60" if U(z,6') > U(w,8") : put (w:z) last
g = (0" if U(w,8") > U(z,6') : put w first, z last
Let 6%=

T yw

% if U(z,6%) > U(y,6%) : put (y:w) last
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92 = ,(v6%) if U(y,6%) > U(z,6%) : put y first, w last

Let 6=, 6% if U(z,6%) > U(2,6%) :put (z:y) last

y
6% = ,(*6%) if U(2,6% > U(z,6%) : put z first, y last
For k #1,2,3 gk = 6%, so 6= (67123, 91,6’2,93). 6',6% and 6° are reshuffles
of 6',6% 6° about = = f(0).

Let 6'=v8' if U(x,8") > U(w,8) : put y first, (w:z) last

B = (“(*6Y)) if U(w,6")> U(x,8') : put w first, y second, = last
Let 62=*0? if U(z,6%) > U(y,6%) : z first, (y:w) last

82 = ,(Y(36%)) if U(y,6%) > U(z,8?) : y first, z second, w last
Let 8% =v6® if U(z,6%) > U(2,6%) : put w first, (z:y) last

8> = ,(*(*6%) if U(z,6%) > U(x,6%) : put z first, w second, y last

Since 8% are reshuffles for k =1,2,3 by lemma (lc), 0(1,@):0(1,9),
0(2,8) =0(2,6) and 0o(3,8) =0(3,6). Since o(1,8) =o(1,8), C(o(1,8),6")=
C(o(1,6),8). By construction, y € o(1,6), and ' ranks y first or second. If !
ranks y first then y = C(o(1,6),6'). If §* ranks y second, then U(w,6') > Uz, 6Y),
and z € f(), implies that w ¢ f(d), and w ¢ o(1,6). Hence, y = C(o(L,8),6").
Similarly w = C(o(3,8),8%) and = = C(o(2,8), 6?).

By lemma (la), y= f(#71,8"), z=f(§26% and w= f(6368%). But
P er(w,b), er(z0), HFer(wd) eryf?), and BerP)
8 er(y,8%); hence, by lemma (1b), y = f(87123,6" 62 83), = = £(613,§1,62,6°)

and w = f(é’123, g1 62, 6%), which is a contradiction, since y, z,and w are distinct.

If the y,z,and w are not distinct, then the conditions of lemma (1d) are

observed and the lemma still follows.

0.
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Given the previous lemmas, the proof of the theorem is straightforward.

Proof of Theorem 1. Without loss of generality, suppose that 1A(6)2,
2A(6)3,...,n —1A(f)n. By the transitivity of A(-), 1A(f)n. By asymmetry,
1A(0)n= ~ nA(f)1. Hence, ~ nA(d)1, and A(f) is acyclic.

O.

In our environment we can give more structure to the acyclic relation of
A(8). Let I() be an ordering induced by A(f); that is, if ¢; A(8)i,, 2,A(8)13, ...,
in_1A(8)i, =1, A(0)i,, then I(6) = {i1,15,...,3,} € P(N). We first prove a simple

lemma:

LEMMA 6.14. If preferences satisfy SIP, f:0V+—» A is strategy-proof and
noncorruptible, and if 1A(8)4, | = C¥(0(3,6),6"), then I ¢ o(j,0).
Proof. By lemma (1a) and | = C%(0(3,6),6"), 1= f'(9). 1A(6)j = ~ jA(f)
= [ = f¥(677,69) V83; hence I ¢ o(j,0).
O.

The result of the previous lemma is that if ¢ affects j at 6§, then there is no
option open to j to obtain the slot that is the best of i’s options at §. We use

this result in the following lemma.

LEMMA 6.15. If preferences satisfy SIP, f:@N+ A is strategy-proof and
noncorruptible, and if A(d) is acyclic and induces the ordering

I(6) = {11,151, }, and if 0(¢},8) = K, then o(3,,6) C 0(i,-y,8) C -+ C o(2y,6).
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Proof. Without loss of generality let I(4) = {1,2,...,n}, and k; = C¥(o(s,8),6°);
then o(1,8) = K and k; = CY(0(1,6),8"). 1A(6)2=36' 5 f2(8,67") # f3(8) = k,.
The previous lemma and k; = f1(8) =k, ¢ 0o(2,6). Continuing iteratively:
ki ky & 0(3,0), kyky ks & 0(4,8), ..., ky,kp..ukpq ¢ 0(n,8). This implies that
k, € o(n,8) is a singleton, and only k,, and k, are possible elements of
o(n—1,6). By the definition A(-), n—1A(f)n implies that 3™ such that
Fm(6) # f7(8~1, 01", The definition of k, implies that 36™' such that
[k, # f@~1,6¢ ). But  o(n, 87,6 is  a  singleton, so
[k, ¢ o(n—1,6"1¢ ). k., and k, are the only possible elements of
o(n—1,0), this implies that k,=f"1(6"%,6 (") and k,€o(n-1,0).
Working backwards we have o(7,60) Co(j—1,6),Vje K.
0.

The result of the previous lemma is that for a profile § and an ordering
I(8) induced by a strategy-proof and noncorruptible mechanism, the options
available to an agent is a subset of the options available to the agents ordered
before her by I(#). When the first agent is allowed to choose from the entire set
of slots K this is exactly the serial dictatorship described in the introduction to

this section.
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7. Nash Implementation

We now investigate to see whether the use of Nash equilibria can expand
the class of implementable SCFs. We do this by applying the result by DHM
which states that if the environment is rich, then a SCF implementable in Nash
strategies is truthfully implementable in dominant strategies. We show that our
domain of preferences is rich!” when preferences are not SIP. If preferences are

SIP, then the domain is rich when the allocation space is A.

DEFINITION 7.1. A class (U,0") of utility functions is rich if V pairs
{6',6°} C ©, and V{a,b} C A, such that

i) Ula,6) >U(b,6) = U(a,8) > U(b,8), and

i) U(a,6') > U(b,6) = U(a, ') > U(b,6);

there exists a ' € @', such that V c€ A,

a) U(a,8)>Ulc,6) = U(a,8) > U(c,§), and

b) U(b,8) > U(c,8) = U(b,8) > Ulc,8).

Substituting 3 a,J %, for U(a,#"), lines i, ii, a, and b can be written:

i) T,a;=0;)0;>20= % ,(a; )6 >0, and

i) ¥,(a;—5;)8;>0= % (a; b,)8; > 0;

there exists a 8 € ©, such that Vc € A4,

a) Zj(aj —-c;)6;>0= Zj(aj - cj)gj >0, and

b) T (b;—¢;)8,>20= X ,(b;—c;)8;>0.

For convenience we have dropped the superscript : from 6, 8, and 6, and the

subscript ¢ from a, and b.

17 Rich is also known as monotonically closed. DHM (1979) and Laffont and Maskin (1982) provide

discussions of this concept.
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PROPOSITION 7.2. If agents may be indifferent between slots and allocations
are strictly feasible, then (U, ©") is rich.
Proof. Since agents are allowed to be indifferent over slots define 5‘: =eV)eK.
Then Y ,(b;—c;)8; =3 ;bj—c;)e=0, since > b;=1, and > ,c;=1. So
the right-hand side of a) and similarly b) holds V a,b,c € A. So the definition
holds for all #, ' € ©' and a,b € A.
0.

PROPOSITION 7.3. If preferences satisfy SIP then the domain of preferences is
rich.

Proof. Without loss of generality let 6, >80, > --- > 6,.

i) ¥ ,(a;=0;,)0;,20= % ;(a; )9 >0, and

i) ¥(a;-5;)8;>0= % ;(a;— bj)Hj > 0.

i) and ii) are true for a; and b, suchthat /< m and §,>86,,

Choose 6 such that 8;>6,, and 6, >8;, forj#!or m.

Then for preferences to be rich, any ¢, €A, where ¢, assigns the p* slot,
must satisfy:

a) af;—c,b,>0=> a0 — cpgp >0, and

b) bl — B, >0=b,8,, —c,8,>0.

Both the right-hand side and left-hand side of a) are true for ! < p, and both
the right-hand side and left-hand side of b) are true for m < p. Therefore, a)
and b) hold for any c€ A, so A is rich.

0.
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When our domain of preferences is rich, we can apply the following result
from DHM (theorem 7.2.3). If the domain of preferences (U,0¢) isrich Vi€ N,
then if a SCF is implementable in Nash equilibrium, it is truthfully imple-
mentable in dominant strategies. This result follows since for rich domains and
single-valued choice functions, monotonicity implies independent, weak mono-
tonicity (IWM), which implies independent person-by-person monotonicity
(IPM). If we also add the requirement that the SCF is noncorruptible, then it is
fully implementable in dominant strategies. In addition, by applying DHM
(theorem 7.1.1), if a SCF is truthfully implemented in dominant strategies, then
it is truthfully implemented in Nash strategies. It is not necessarily true that a
SCF that is fully implemented in dominant strategies is fully implemented in

Nash strategies.

Therefore, the Nash solution concept does not allow us to implement more
SCFs than the dominant-strategy solution concept. Furthermore, even if we use
the Nash solution concept, we can fully implement only those SCFs that are
ordinal. This does not imply that if we use a cardinal SCF, there are no Nash
strategies, but that there are additional equilibria that do not result in the

implementation of the SCF.
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8. Optimality of Implementable Rules

In this section we discuss the optimality properties of implementable
rules. A minimal requirement for optimality of a SCC is Pareto optimally (PO).
If an allocation is not PO, then either there is an agent who can be made strictly
better off by taking the surplus, or there are at least two agents who can be
made strictly better off by trading. We will explore two notions of Pareto

optimality.

DEFINITION 8.1. A SCC f:0N¥+— A is Weak Pareto Optimal (WPO) if
V6 € OV, and all a€ f(8), there does not exist a b€ A, such that Vie N,
U(b,6") > U(a,8).

DEFINITION 82. A SCC f:0Y— A is Strong Pareto Optimal (SPO) if
V8 € OV, and all a € f(§), there does not exist a b€ A, such that Vi€ N,

U(b,6°) > U(a,8") and for some j € N, U(b,6) > U(a,6?).

Remark: SPO = WPO.

The serial dictator can be readily seen to be strong Pareto optimal, since

every agent is matched with her most preferred slot in the available set.

PROPOSITION 8.3. When preferences satisfy SIP, if a SCF is SPO, then it is

strictly feasible.
Proof. If the allocation is not SF, then there exists a slot that is not allocated to

an available agent. That agent can be made better off by being assigned that
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slot, since SIP implies that slots have strictly positive value. Hence the alloca-
tion is not SPO. Therefore, the proposition is satisfied.

0.

The above proposition allows us to restrict attention to the set of strictly
feasible (SF) allocations if we want to restrict ourselves to PO allocations. A
strictly feasible allocation may not be PO, but if it is not strictly feasible, then it
is not PO.

In previous sections we restricted agents’ preferences over slots to be
strict. This is different from the restriction of strict preferences used in DHM
and in much of the dominant-strategy literature. In most implementation papers
preferences are strict over outcomes. In our case, agents are selfish and are
indifferent between allocations that give them the same slot but give other
agents different slots. Because of this indifference, many of the results of DHM

and others are not applicable.

DHM show that when the preference domain is rich and consists of strict
preferences, if a SCF satisfies citizen sovereignty (CS) and IPM, then the SCF is
weak Pareto optimal and we obtain similar results, but for our environment we

also require that the SCF be noncorruptible.

To prove our results we introduce three terms: IWM?*, S-IWM*, and
consumer sovereignty. IWM* and S-IWM™* are concepts that are similar to the

DHM concept of independent weak monotonicity, which we define for reference.
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DEFINITION® 84. A SCF f:0N— A  satisfies independent weak
monotonicity (IWM) if V€@V, YCCN, Vé°¢ H',GC@‘, and V{a,b} C A
such that a € f(8), and (Vi € C)[U(a,6") > U(b,6") = U(a,8") > U(b,8")]; it must
be that b ¢ f(6C,6°).

Our definitions of IWM?* and S-IWM* do not involve coalitions and are

used only to obtain intermediate results.

DEFINITION 8.5. A SCC f:0V i A satisfies IWM* if V {6,6} C ®V, and
V{a,b} C A such that:

1) a€ f(6), and 2) (Vi€ N)[U(a,6) > U(b,8) = U(a,8) > U(b,6));

then b ¢ f(8).

DEFINITION 8.6. A SCC f:0V i A satisfies S-IWM* if V {6,68} c OV, and
V{a,b} C A such that:

1) a€ f(8), and  2) (Vi€ N)U(a,8) > U(b,6')=U(a,8) > U(b,8)];

then b ¢ f(6).

DEFINITION 8.7. A SCC f:0N — A satisfies citizen sovereignty (CS) if

Ya € A*, 36 € OV, such that a € f(6), where A* = {a € A | a is strictly feasible}.

That is, the mapping f is onto the set of strictly feasible allocations.

We first provide a lemma that is a similar to lemma 5.6.

18 This is the definition of IWM that appears in DHM. Neither Laffont and Maskin (1982) or
Maskin (1986) have definitions of IWM.
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LEMMA 8.8. If preferences satisfy SIP, and if a SCF f:@" — A satisfies IPM,
and is noncorruptible, a € f(6), ce f(8,67, and a#e, then
U(a,8) < U(c,8) and U(c,8') < U(a,6).
Proof. Suppose our hypothesis holds; then noncorruptibility and a # ¢ imply

that @' # ¢'; lemma 5.6 is then applied to obtain the result.
0.

As in lemma 5.6 if preferences do not satisfy SIP in the previous lemma
then U(a,8') < U(c, ) and U(c,6') < U(a,8'). The difference between lemma 5.6
and the previous lemma is that in lemma 5.6, a' # ¢' and noncorruptibility is not

a condition. In the previous lemma a # ¢, and noncorruptibility implies a* # ¢'.
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Weak Pareto optimality

LEMMA 8.9. If a SCF is noncorruptible and IPM, it is IWM™*.

Proof. Suppose f:ONi— A satisfies the hypothesis of the lemma; then for
0,6c@O, acA, such that, a€f(§), and (VieN)(Vbe A b+#a)
[U(a,6%) > U(b,6) = U(a,6) > U(b,8)], but be f(8); we will show that this is a

contradiction.

Suppose ¢ € f(8',61) some c€ A. If c#a, then by noncorruptibility,
SIP, IPM and lemma 8.6, U(a,8')<U(c,8') and U(c,6') <U(a,6'). But
[U(a,8") > Ul(c,0")=>U(a,8") > U(c,8Y)]), so it must be that c=a, and
a € f(84,67).

Similarly, a € f(8',6%67"2), continuing iteratively, a € f(8). But f is a
SCF, so it is single-valued; hence b ¢ f(8).
0.

LEMMA 8.10. If a SCF satisfies noncorruptible, IPM; and CS, it weak Pareto
optimal (WPO).

Proof. Suppose that f:©%— A satisfies the hypothesis but that f is not WPO.
Then there exist a €OV and a pair {a,b} C A, such that VieN,
U(a,8") > U(b,8'), but be f(d). By CS, there exists a §€ OV such that
a€ f(f). By the previous lemma f satisfies IWM*.  Since (Vi€ N)
[U(a,6') >U(b,6')=U(a,8') >U(b,6")] and ae€ f(§), IWM* implies that
b¢ f(d), a contradiction.

0.
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Strong Pareto optimality

The next propositions show that the assumption of strict individual

preferences yields a stronger notion of optimality.

LEMMA 8.11. If preferences satisfy SIP, then if a SCF is noncorruptible and
satisfies IPM, it is S-IWM™.

Proof. Suppose that f:©Y — A satisfies the hypothesis of the lemma; then for
0,0cO, a€A, such that a€f(#), and (VieN)VbE A b#a)
[U(a,6') > U(b,6') = U(a,8') > U(b,67)], but b€ f(8); we will show that this is a

contradiction.

Suppose that c€ f(él,H‘l), for some c€ A. If ¢#a, then by
noncorruptibility, SIP, IPM and lemma 8.6, U(a,8Y) < U(c,8Y) and
Ulc,6') < U(a,8"). But [U(a,6") >U(c,0")=U(a,8') > U(c,8")], so it must be

that ¢ = a, and a € f(6',670).

Similarly, a € f(8',82,6™"?), continuing iteratively, a € f(6). But fisa
SCF, so it is single-valued; hence b ¢ f(@)
a.

PROPOSITION 8.12. If preferences satisfy SIP, then if a SCF is noncorruptible,
satisfies IPM, and CS, it is strong Pareto optimal (SPO).

Proof. Suppose that f:0ON— A satisfies the hypothesis but that f is not SPO.
Then there exist a 6 € ©" and a pair {a,b} C A, such that Vi€N,
U(a,8") >U(b,8'), and b€ f(d). By SIP, either a=b or there exists a j such
that U(a,6”) > U(b,6%). By CS, there exists a 8 € O such that a € f(§). By
the previous lemma, f satisfies S-IWM*. Since (Vi€ N)[U(a,8) >U(b,6")=



1-49
U(a,6") >U(b,6°)] and a€ f(§), S-IWM* implies that b¢ f(8), a
contradiction.

0.

The following is an example wherein a mechanism satisfies SP and

noncorruptibility but not CS.

EXAMPLE 8.13. Let N ={1,2,3}, K ={1,2,3}. Let f be the SCF that is
implemented by the following mechanism:

Let O'(-) = {2,3} : the option set available to agent 1.

Let O%(-) = {2,3} : the option set available to agent 2.

Let O%(-) = {1} : the option set available to agent 3.

and I(0) = {1,2,3} V0, the order that agents choose slots.
That is, agent 1 selects first from the set {2,3}, agent 2 selects second from the
remainder of set {2,3}, and agent 3 receives slot 1. This mechanism satisfies SP,
since I doesn’t depend on 6, and is noncorruptible (it is also nonconstant), but it
does not satisfy CS.
Let ' =1>2>3, 6°=1>2>3, and 6 =3>2>1; then a= f(d). But if
b=(1,2,3), then U(b,8')>U(a,8) Vi. So f is not Pareto optimal (strong or

weak).

The results of this section indicate that if a SCF is strategy-proof and
noncorruptible and satisfies citizen sovereignty, then it is Pareto optimal. If
preferences satisfy SIP, then a nonstrategic SCF is strong Pareto optimal, and if

preferences do not satisfy SIP, then a nonstrategic SCF is weak Pareto optimal.
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9. Positional Mechanisms

In the introduction we described three categories of mechanisms that have
been proposed in the literature to “solve” the one-sided matching problem.
These were positional, chit, and choice mechanisms. In the previous sections we
have proven some results that allow us to draw some conclusions about the

ability to predict behavior in these mechanisms.

We can readily apply the results of the previous sections to determine the
implementability in dominant and Nash-strategy equilibrium of chit and choice
mechanisms.  Since the outcome of chit mechanisms, as described in the
introduction, can bé affected by changing cardinal information, we cannot make
dominant-strategy-equilibrium  predictions, or  Nash-strategy-equilibrium
predictions.  Since a necessary condition for implementation in dominant
strategies is that the outcome can only be affected by a change in ordinal
information, chit mechanisms are not dominant strategy mechanisms. Choice
mechanisms have been shown to be implementable in dominant strategies and if
the mechanism is a serial dictator, it is also Pareto optimal. We now discuss the

last class of mechanisms—positional mechanisms.

positional mechanisms

We begin by formally describing a positional mechanism: a mechanism
z:S+— A is positional if there are strictly monotonic weighting functions
wh S {wy,..,w,}, w;€ER, VieN, and x(s) maximizes the function

:j%i;w'(s"), where ties are broken arbitrarily. If a SCF is implemented by
positional mechanism, the SCF can be easily seen to be symmetric, and Pareto

optimal, but it cannot be implemented in dominant strategies as the following
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proposition shows.

PROPOSITION 9.1. If a SCF can be implemented by a positional mechanism,
then it is not implementable in dominant strategies.

Proof. Without loss of generality let N = K. Suppose that the SCF f:0V — 4
is implementable and let #€©V, such that 6 =6%VijEN, and
6i > 65 >-.->8%; 6is an allowable profile in the matching environment. Since
f is positional, any strictly feasible allocation @a€ A  will maximize
z(a,0) = =, ;a;;w(8%), as long as w(-) is strictly monotonic. Without loss of

generality let a = f(0) = {1,...,n}; that is, agent ¢ is assigned slot 7, a*=1i. So

U(a,8') = 63, U(a,8?) = 63, and so on.

Let 63 be such that 82> 63, VI #2. Then z(a,(6%67?%)) is maximized by
a® =2, and a? = 3; this implies that 24(6)3.

Let 6% be such that 62> 62, VI#3. Then z(a,(8%67?)) is maximized by
a®? =2, and a® = 3; this implies that 3A4(6)2.

But since f is implementable, there is an affects relation A(f) induced by
f, and the asymmetry property of the affects relation A(6) implies that 2A(6)3
and ~ 3A(6)2, so f cannot be implementable.
0.

The only class of procedures with a dominant strategy prediction is the
class of choice mechanisms. An example of one of these mechanisms is the serial
dictator, which is Pareto optimal but not symmetric, unless there is a random

selection of order.
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Conclusion

There have been a number of procedures proposed in the literature to
“solve” the one-sided matching problem. Almost all of these procedures assume
an agent’s behavior is nonstrategic. If we assume that an agent’s behavior
reflects his own best interest, strategic behavior is likely. The importance of
understanding an agent’s strategic behavior reflects the importance of the
planner’s ability to determine the outcome of an allocation mechanism. The
more that can be said about an agent’s strategic behavior, the more precise can

be the planner’s prediction of the outcome of an allocation mechanism.

Determining an agent’s strategic behavior can be quite complex, but in
the one-sided matching problem there does exist a class of SCCs whose outcomes
are easily predicted. This is the class of noncorruptible and strategy-proof SCFs.
In this paper we were able to show that the class of strategy-proof and non-
corruptible SCFs does not exclude any SCCs that can be implemented in
dominant strategies. But most importantly, we were able to characterize the
class of implementable SCFs, that is, those SCFs that are strategy-proof and non-
corruptible. We ‘found that SCFs must rely only on ordinal information to be
implementable and. the Nash solution concept does not enlarge the class of
implementable SCFs. We also found that the only implementable SCFs were
sequential choice mechanisms, and that a particular member of this class, the

serial dictator, was also Pareto optimal.
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Chapter Il: An Experimental Examination
of the Assignment Problem
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1.0 Introduction

We consider the problem of allocating a fixed set of goods or services,
which we will generically call slots, to a fixed set of individuals or agents. We
look at the problem from the point of view of a planner or institution designer,
who wishes to design a mechaniém that implements a social welfare maximum
constrained by the feasibility constraint: at most one slot is assigned to each
agent. Our formulation supposes that the planner himself attaches no value to
any assignment. We consider this allocation problem with and without the use

of monetary transfers to allocate slots.

This problem appears in a variety of settings; computer scheduling, the
administration of office space, the assignment of students to dormitory rooms or
courses, and the disbursement of social services. The problem encountered by
the Jet Propulsion Laboratory in allocating antenna time on NASA’s Deep Space
Network (DSN) to spacecraft outside the earth’s orbit motivated this project.
The DSN problem is an example of the allocation of a set of services in fixed
supply within a given time period to a group of agents, a scheduling problem. In
its most abstract and generic form the scheduling problem can be modeled as an

assignment or one-sided matching problem.

In the assignment or matching problem if the planner knows the values
agents place on slots then he can optimally assign agents by solving an integer
programming problem. However, true values are known only to the agents so
that any mechanism, which the planner uses, must work with revealed rather
than true valuations. Several allocation schemes (auctions) have been proposed
to solve the coordination and incentive problems posed by the assignment

problem when the planner is allowed to use transfers (money). There is little



I1-3
theoretical or experimental evidence to guide the planner in his choice of

mechanisms when the planner is not allowed to use transfers .

In the assignment or matching eﬁvironment, although the planner is
interested in social welfare, agents wish to maximize their own surplus or utility.
In many cases the agents may be able to influence the choice of mechanism by
appealing to authority above the planner. In these instances the planner may be
willing to reduce social welfare to increase consumer surplus. Options that are
often put forth are the use of committee decision making, or some form of “funny
money” market, or a procedure based on ordinal rankings. These procedures
form a class of mechanisms we shall call nontransfer mechanisms. In this paper
we explore the use of some specific transfer and nontransfer mechanisms and
their effect on social welfare and agent surplus in several assignment
environments. QOur results provide evidence that in some environments the
absence of transfers does not significantly reduce social welfare but does increase
significantly the agents’ surplus or welfare. This observation helps explain the

existence and persistence of inefficient nontransfer institutions.

We complete this section with some historical notes. In Section 2 we
describe the problem formally. In Section 3 some mechanisms to solve the
assignment problem are described. In Section 4 the experimental design is
described. In Section 5 we describe the mechanisms tested and the specifics of
their implementation in the experimental environment. In Section 6 we describe
the predictions of the mechanisms in the experimental environment and the
behavioral assumptions that were made. In Section 7 the results we observed in
our experiments are presented. Section 8 contains a summary and some

concluding remarks.
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1.1 Historical Notes

The problem of assigning or matching demanders to items that are hetero-
geneous but related has a long and developed literature. The interest of
economists in the assignment problem dates back to at least 1891 in Bohm-
Bawerk’s horse market! (see Shapley and Shubik (1972) for a discussion). The
assignment market game was introduced by Shapley in 1955, who showed that a
class of market games could be solved as an assignment problem. It later
received a full treatment by Shapley and Shubik in 1972. They characterized the
core of the assignment game and showed that the core has two distinguished

points, the maximum buyer surplus and the maximum seller surplus.

Another type of matching problem is the marriage problem (see Gale and
Shapley (1962), Halmos and Vaughn (1950), Roth and Sotomayor (1989)). The
marriage problem involves finding stable pairings of two sets of players when
they have differing ordinal preferences over players in the other set. Algorithms
have been developed that map ordinal information into stable matchings.? These
mechanisms have the property that no monetary transfers are made across

agents or to the planner.

The assignment problem, which matches a group of buyers to a group of
heterogeneous objects under the constraint of one buyer to an object, is an
example of a general class of problems. This class includes single-unit auction

models, where one good is matched to one of a set of potential buyers, and

1 Shapley and Shubik (1972) note that Cournot and Edgeworth also made observations on two-sided

markets, and that John von Neumann and Oskar Morgenstern briefly treated some simple market games.

2 Roth (1984) notes that the algorithm described by Gale and Shapley had been in place since 1951
to match medical interns to hospitals.



I1-5
multiple-unit auction models, where many homogeneous goods are matched to a
set of potential buyers. This class also includes models that are more general

and allow complementarities among goods (see, e. g., Rassenti, Smith and Bulfin

(1982) and Banks, Ledyard and Porter (1989), hereafter RSB and BLP).

To date, there is very little empirical (experimental) evidence germane to
the ability of such auctions to solve the assignment problem. Much evidence
exists for single-unit and multiple-unit versions of the Vickrey and English
Auctions for homogeneous goods (see Cox et al. (1982), McCabe et al. (1990) and
Coppinger et al. (1980)). However, when the goods to be allocated are
heterogeneous, the only evidence available is that of Rassenti et al. (1982), who
present a combinatorial version of a “Vickrey” auction to allocate goods with
severe complementarities (e.g. airline landing slots) and Banks et al. (1989), who
use an English auction for multi-dimensional bundles of services (e.g. weight and
volume in the Space Shuttle).> One purpose of this paper is to fill that gap for
the standard assignment problem by providing some experimental evidence on

the performance of a sealed-bid auction and a variant of the English auction.

3 Nalbantian and Schotter (1990) examine three two-sided matching mechanisms: private
negotiations, English auctions, and a sealed bid with negotiating. The experiments were designed to study
efficiency in the free-agent market for matching baseball players with teams, and all the mechanisms use

monetary transfers.
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2. Description of the Problem

In this section we describe the classic assignment problem as a planner’s
problem. We assume throughout that the planner’s goal is to maximize the total
welfare of the system. He is to accomplish his goal by assigning a set of slots to
a group of agents. Each agent attempts to maximize her own utility (acquire the
slot that is most valuable to him). Since some agents may place their highest
value on the same slots, the planner needs to know the relative value of the slots
to each agent. However, depending on the mechanism used, it may be in the

agent’s best interest to overstate or understate her relative preference for slots.

To overcome‘ the problem of misrepresentation, mechanisms have been
proposed that use monetary transfers to give incentives to agents to report their
valuations honestly. In this paper we test two such mechanisms from the
literature on the assignment problem. The transfer mechanisms we will inves-
tigate yield efficient allocations, but they transfer surplus from the agents to the
planner. We also describe and test mechanisms that do not rely on transfers.
One such mechanism elicits an agent’s ordinal rankings over slots, and another

requires the use of “funny money” or “chits.”

Formal description of model

Our environment consists of n agents and k goods or services to be allo-
cated, which we will call slots. Let N ={1,...,n} index the set of agents, and let
K ={1,...,k} index the set of slots. It is assumed that both N and K are
finite and nonempty. Let A be the set of feasible deterministic, allocations of
K to N, including the zero allocation, wherein no agent receives a slot. An

element in A is an n Xk matrix consisting of at most a single 1 in each row
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and column, where an element a;; =1, if agent ¢ is assigned slot j, and

a;; =0, if he is not. We also define a* = (a;3,.. ., a;).

The preferences of each agent depend upon the slot allocated, any
monetary payment, and the agent’s type. An agent’s type parameterizes the
value he places on the goods being allocated. Let ©' C R* be a set of possible
types for agent i, Vi€ N. Let OV = g(N@‘. A €OV will be called a profile.
The number of agents and slots is fixed, so the feasible set is independent of the
profile. Each agent i, of type #, evaluates each outcome z € A (or assignment)
through a valuation function v(z,8')= ¥ jx,-]ﬂ;. The quantity v(z,6') represents
the willingness to pay of agent i of type ' for outcome x. The utility of agent ¢
is quasi-linear and is given by U(z,t,6°) = v(z,8") + ¢, where ' is any monetary

transfer to (or from) agent i.

We note that in the above definition agents may be indifferent between
distinct outcomes since they are selfish; that is, they care only about the slots
allocated to them. When the outcome space is A, and agents are selfish, there is
no loss of generality in the linear description of utility, since there are a finite
number of slots. That is, when agents are selfish and the outcome space is A,
then for any utility function U(z), there is a 6 such that
Uz,8) = 3 ;.05 = U(z).

JUuty T
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The planner’s objective is to assign the agents in N to the slots in K such

that total system welfare is maximized. We can describe this problem as follows:

Given a profile § € OV, Max W = 3 > iz, ;
ved €N EK

such that  Al) > z,;<1, Vie N;

jEK

tE

A3) z;;€{0,1}, VieN, Vje K.

Koopmans and Beckmann (1957) were the first to consider this problem
in an economic context. One of their results is that the problem (A), con-
strained by Al, A2 and z;; € [0,1], must always have a solution of the form
z;; €{0,1}, Vi€ N, Vj € K. They also noted that there always exists a solution
to the problem but that it is not necessarily unique. In addition, they found that
there always exists a competitive equilibrium* set of prices {p; > 0} j € K, which
may not be unique. A further observation concerned the additive invariance of
the parameter #'. That is, if a positive constant is added to every element in
the vector #°, then the solution remains the same. If an allocation solves (A),
then we say that it is outcome efficient, and we call W the total (or social)

welfare of the system.

4 A competitive equilibrium price vector is simply a vector of prices, indexed by a slot number, such
that there is no excess demand for any slot and each slot is allocated to an agent at these prices. That is, if
we announce these prices, every individual will be satisfied buying the slot to which he has been optimally

assigned.
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8. Allocation Mechanisms

In the literature, two classes of mechanisms have been proposed to solve
assignment and matching problems when each bidder is interested in acquiring
at most one item. One class involves auction mechanisms and the second class
involves direct revelation of ordinal preferences (or rankings). We discuss these
mechanisms and introduce a third class that does not involve monetary transfers
but does rely on a richer message space than rankings over slots. Formal descrip-

tions of the mechanisms are given in the Appendix C.

3.1 Transfer mechanisms

Given the environment described above, several mechanisms are available
to implement the outcome-efficient allocation in weakly dominant strategies.
However, these mechanisms require that payment be made in transferable utility
(monetary transfers with quasi-linear utility). These mechanisms are multi-
object generalizations of the “second-price” auction first described by Vickrey
(1961). In these mechanisms the allocation is outcome-efficient and the prices
paid by each agent are the minimum market clearing prices. We shall call these

the Vickrey prices.

The extension of Vickrey’s model to the case of several buyers and sellers
and heterogeneous goods was first proposed by Barr and Shaftel (1976), hereafter
BS, who proposed a variation of a Dutch clock auction to obtain the optimal
allocation and Vickrey prices.> For a single object, a Dutch clock auction is

conducted by first setting an arbitrarily high asking price for the object and

5 Thompson (1979) recognized that the Barr-Shaftel model is an assignment market game being
solved for a special core point, the buyer surplus point. Thompson also extended the model to transportation

market games and discussed their core points.
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allowing the price to fall steadily by a fixed amount until an agent stops the
clock. This act is an offer to buy the object at the current price, so the object is

then sold to the agent who stopped the clock at the current price.

In the BS variation, a second-price Dutch clock is used. In the single-
object version of the second-price Dutch clock auction, the price starts at an
arbitrarily high value. As it is lowered, bidders submit bids (a bid is an offer to
buy at the announced price). The price continues to fall until there are two bids
on the object. No bidder knows if another bid has been placed. The object is
sold to the bidder who entered a bid at the highest price, and he pays a price
equal to the price at which the second bidder entered. The multiple-object

generalization is described in Appendix C.

Leonard (1983) proposed a sealed-bid auction to obtain the optimal allo-
cation and Vickrey prices, which we shall call the Vickrey-Leonard mechanism.
The Vickrey-Leonard auction requires each bidder to submit a sealed bid listing
his valuation of each of the items. The planner then determines the assignment
by solving the assignment problem (A) using each bidder’s submitted bids in
place of her valuations. There are two ways to find the prices that the agents
must pay. One way is to compute the impact of a second slot of similar type.

6

This entails the solution of k& additional assignment problems.® A computa-

tionally simpler solution is to find the minimum dual prices.” Given a profile

6 = (6',...,6"), prices are determined by solving the dual program:

6 Prices can be computed directly by setting p;= (WK +'j - Wﬁ), where WIKV = largest sum of
bids on slots K = {1,...,k} assigned to agents in N, and Wy, * 7 = maximum of the sum of bids on slots
K U {j} to agents in N; that is, add another slot j and solve the assignment program and obtain W% +3,
This is how the price calculation was described to the subjects--see Appendix B for instructions.

7 A similar approach was used by Rassenti, Smith, and Bulfin (1982).
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Pj ek

such that
w; + p; > 605 VjeK,Vie N
2Pty wi=W

JEK 1EN

wi,pj?_(), V]EI{,VZEN,

where w; are slack variables.

For this sealed-bid auction, Leonard (1983) and Demange and Gale (1985)
have shown that it is a dominant strategy for agents to reveal their true valua-
tions; that is, they have shown there is no other strategy that provides a strictly
higher payoff to agents. However, in some environments truthful revelation is
not necessarily a strong dominant strategy, in the sense that there may be many
bids which generate the same outcome for an agent, a fact that we make precise

in the following theorem.

Theorem : When n <k, in the Vickrey-Leonard mechanism, it is a weakly
dominant strategy to reveal, and all weakly dominant strategies differ by a
constant on all slots; 1i.e., b;- = 93- +c, ceR.

proof. Recall that the optimal solution to the assignment problem does not
change when a constant is added to any row of the valuation matrix (see, e.g.,
Koopmans and Beckman (1957)). That is, suppose for some fixed * € N,
@f:@f—{—c, Vj€ K; then Z,-Zj@gm,-j= Y.X 0z +c. The (z;;) that
maximizes ;> j@}x,-j also maximizes (Y ;3 j6§m£j+c). So two vectors of

bids that differ by a constant will assign an agent to the same slot, and since the
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price an agent pays is independent of his reported valuations, the price he pays is
the same price when his bids differ by a constant. Since the allocation and the
price of the slot are the same when an agent’s bids differ by only a constant, he
is indifferent between submitting the two bids.
a.

Demange, Gale and Sotomayor (1986), hereafter DGS, proposed two

8 For a single-

variations of an English auction to obtain the Vickrey prices.
object auction an English clock auction is conducted by first setting an
arbitrarily low asking price for the object; each bidder then announces that he
wants to buy the object at the announced price. If only one bidder demands the
object, he is awarded it at the announced price and the auction ends. If more
than one bidder demands the object, the price is increased by a fixed amount.

The auction continues by increasing the price until only one bidder demands the

object.

DGS proposed an “exact” and an “approximate” auction (both auctions
are multiobject variations of the English clock auction), where bids are requests
to buy an object at the announced price. The two variations differ in the pro-
cedure used to determine which objects will have their prices increased in the
next step. The exact auction requires computation by a centralized algorithm at
each step and produces the exact Vickrey prices. The approximate auction does
not use a centralized algorithm and produces an outcome that is “close” to the

Vickrey prices.

Both the exact and the approximate auctions begin with the planner’s

announcing a set of prices, one for each slot. Each agent submits a bid for each

8 Leonard (1983) and, Demange, Gale and Sotomayor (1986) seem to be unaware of the work done
by Barr and Shaftel (1976).
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slot, which is a request to purchase the item at the announced price; selecting
more than one slot implies that the agent is indifferent among the slots selected
for assignment. After bids are submitted, the exact auction requires the prices
to be increased in the largest, pure-overdemanded set.® A set of items is
overdemanded if the number of bidders demanding only items in this set is
greater than the number of items in the set. The largest pure-overdemanded set
contains all overdemanded sets.  The auction ends when there are no
overdemanded sets. In the approximate auction a bidder is allowed to bid on
only a single item, and is allowed to bid only if he does not have an outstanding
bid on an item. If a bidder bids on an item, he cannot remove his bid; he is
committed. A bidder can become uncommitted only if another bidder places a
bid on that item, at which time the price of that item is increased. Both the

exact and the approximate auctions are described in more detail in Appendix C.

Both DGS and BS rely on the implicit assumption that agents will act
honestly,!° that is, bid on all those items and only on those items that maximize
his utility, given a set of prices. If this assumption is met, then the outcome-
efficient allocation and Vickrey prices will be obtained in the BS Dutch auction

and the DGS “exact” auction.

However, for the DGS “exact” auction process, honesty is not necessarily
a dominant strategy. The following example shows that in the DGS exact

auction honesty is not necessarily a dominant strategy.

9 This variation is due to Mo (1988).

10 5 bid BC K is honest if Vl€ B, vl—-pl=_maJI(((vj—pj); if ViEK (vj-—pj)<0, then B=0
and the agent does not submit a bid, where p; is the “price of item 7, and v; is the value of slot j to the
bidder.



I1-14

Ezample:
1 0 0
Let the profile be: 4 2 0 |, where rows indicate agents, columns
3 4 0

indicate slots, and the element v;; is the value of slot j to agent z. At the first

ij

iteration, prices and bids are:

t prices: net valuation: honest bids: overdemanded
~ _ ~ _ slots:
1 0 O 1 0
0 »° =(0,0,0) 4 2 0 1 0 0 1
3 0 0
0 0 0 | 1 1 1]
1 ' =(1,0,0) 3 2 0 1 0 O none.
2 4 0 0 1 0

At t =1 the allocation (3,1,2) can be made with the resulting net valuations
(0,3,4).

Suppose that at t =0 and ¢t =1, agents 1 and 2 do not bid honestly but
instead submit bids either strategically or in error (indicated by the superscript
e), and that in the following iterations they submit bids honestly, and agent 3

submits bids honestly at all iterations:
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t prices: net valuation: bids: overdemanded
-~ _ ~ _ slots:
1 0 0 0° 0
0 p° = (0,0,0) 4 2 0 0° 1¢ 0 2
3 4 0 0 1
(1 1 o0 | [0 1¢ 0 |
1 p' =(0,1,0) 4 1 0 0° 1° 0 2
3 3 1 1 0
1 2 0 | 1 0 o0 |
2 p?=(0,2,0) 4 0 O 1 0 0O 1
3 2 1 0 0O
(0 2 0 | 1 0 1]
3 p®=(1,2,0) 3 0 O 1 0 0 none.
2 2 1 1 0

The final allocation is (3,1,2) with net valuations: (0,3,2). The bidding behavior
in the above example by agents 1 and 2 did not make them better off but made

agent 3 worse off. This type of behavior is described as bossy or corruptible and

is discussed in Olson (1991).

Now suppose that agent 3 responds dishonestly (indicated by the

superscript d) to agents 1 and 2’s errors at ¢t = 0:

t prices: net valuation: bids:
1 0 0 0°

0 p° =(0,0,0) 4 2 0 0° 1°
3 4 0 14 of
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An immediate allocation can be made. The final allocation is ( —,2,1) with net
valuations: (0,2,3). Hence, agent 3 is made better off by bidding on slot 1 when

slot 2 has a higher net value, given the prices (0,0,0).

If honesty were a dominant strategy, it would provide the best (or no
worse) outcome for an agent independent of the bids the other agents submit

before or after his bid.

We have presented a circumstance where it is not to an agent’s advantage
to bid honestly. It required that the agent take advantage of another agent’s
errors or strategic bids. We make this clear in the following theorem, where we

show that honesty is a Nash equilibrium.

Theorem : In the DGS “exact” auction, it is a Nash equilibrium for each agent
to select the slot(s) that maximize utility at each price announcement (truthful
revelation); i. e., given (p!,...,p}), agent ¢ selects the set of slots [ € K, such

that (8} — p}) = qu{9§ — p%}, and (6i — p}) > 0.
j

Before we prove the theorem, we provide some notation and describe
behavior that is implied by honest bidding. At each iteration ¢, an agent places
a bid b* C K, which is a selection of slots. At iteration t+1, bi*t! C b*is the set
of slots that the agent bids for at iteration ¢ and that also had a price increase at
iteration ¢+ 1. At iteration t+1, b.*! C b is the set of slots that the agent bid
for at iteration t and that did not have a price increase at iteration ¢+ 1. The

following implications are implied by honest bidding:
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1.If b =0 at ¢, then b'+t! =0 at t +1. If an agent does not bid for a slot

at iteration ¢, she will not bid for a slot at iteration ¢+ 1.

2. fB*C K at t and bit! =0 then either b**'=0'Ub, or b**' =4,
where b C K\b* U{. If an agent bids for a set of slots at iteration ¢ and each slot
has a price increase at iteration ¢+ 1, then either the agent will bid on the same

slots and possibly an additional slot, or she will not bid on any slot.

3. If b C K at t and b,*! C b' (a proper subset), then b**' =bl*+1. If the
price increases on some of the slots that the agent has bid for at iteration ¢, then
he will drop his bids on those slots and keep his bids on the slots that did not

have an increase in price.

We now provide the proof:

proof: In the DGS auction, if all agents are honest, then the vector of prices p°
that results from the auction is the vector of minimum core prices (or
competitive equilibrium; see DGS). By definition of the core, an agent cannot
increase his net value in any slot other than the slot assigned to him. So once
the equilibrium prices are reached, there is no advantage for an agent to be
dishonest. If p* > p°® and all agents are honest, the auction stops; if an agent is
not honest, the auction will stop and he will be no better off at another slot. If
the auction does not stop, then there will be a price increase on some slot, and

the agent cannot be made better off, since p® gives him his highest net value.

Also, by definition of the core, if p% < p$ at some iteration ¢ and some slot
j there will be overdemanded slots. If all agents are honest, prices will increase
at t+1. So an auction will end with p% < p$ only if an agent is dishonest. But

that would imply removing a bid from slot j or adding a bid to another slot. In
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either case the agent is worse off if the auction stops (since bidding on his highest
net-valued slot is the honest bid).

a.

An agent cannot directly make himself better off by being dishonest; only
if other agents bid dishonestly in the following iterations is it possible to be made
better off by a dishonest bid. We note that honesty is not a weakly dominant
strategy in our environment, and that there may be many Nash equilibria that
do not correspond to the social optimum, though our experimental results
indicate that 100% honesty is not necessary to obtain an outcome-efficient

allocation.

Theoretically, all of these mechanisms (Leonard, BS, DGS) yield the same
outcome (outcome-efficient assignment and Vickrey prices), assuming that
bidders act honestly. In the experimental literature there has been much success
with the use of progressive (English) auctions in obtaining efficient allocations
(examples of this literature are Banks et al. (1989) and McCabe et al. (1990)) .
This is not so true of their sealed-bid counterparts. The ability of the English
auction to provide feedback to participants concerning where they stand and how
to improve their current standing appears helpful. To test the viability of this
assumption, we will investigate to determine whether a sealed-bid and a
progressive auction (the “exact” auction of DGS) yield the same outcomes

experimentally.

While the auction mechanisms have the advantage that the outcome is

efficient, the amount of surplus that is extracted from the buyer can be large.
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For example, let the profile be:
slot 1 2
Buyer1 10 0
Buyer 2 9 0.
The Vickrey prices are pr=9, p,=0, consumers’ surplus =1, and
welfare = 10. We observe that ex ante, the random allocation mechanism yields

a consumers’ surplus = 93, and a welfare = 9%.

The situation is different if the profile is:
slot 1 2
Buyer1 10 0
Buyer 2 0 9.
The Vickrey prices are P = Q, p, =0, consumers’ surplus =19, and
welfare = 19. We observe that ex ante, the random allocation mechanism yields
consumers’ surplus = 93, and a welfare =91. In general the less diverse!! the
profile, the more likely it is that the random mechanism will yield higher ex ante

utility to the agents.

There are a number of possible ways one might provide individual agents
with an increase in consumer welfare above the Vickrey allocation without
drastically reducing social welfare. One possible mechanism is to assign the slots
to individuals in some fashion (perhaps randomly) and then allow agents to trade
among themselves. This type of aftermarket has been studied by Grether, Isaac
and Plott (1981), and Rassenti, Smith and Bulfin (1982) in the context of
allocating airline landing slots. These results indicate that the use of after-
markets increased efficiency above the initial allocation. The advantage of

1 A profile is diverse if it is possible to assign each agent her most preferred slot. A profile is less

diverse than another profile if fewer agents can be assigned their most preferred slot.
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allowing agents to trade among themselves is that all the surplus goes to the

agents.

The disadvantage of a bilateral trade aftermarket is that it may be
difficult for agents to coordinate. One possible solution to the coordination
problem is to add a rebate rule to the VL auction that returns the money paid to
the agents. With a rebate rule that returns the entire amount collected to the
agents, the VL mechanism loses its dominant strategy property, since the net
transfer to an agent depends upon his own bids. It is an open problem whether

the ability to coordinate offsets the lack of honest revelation.

We will investigate a different approach, which is often used in practice
(e.g. Chicago Business School assignment of students to interview slots, and
computer scheduling), but which has received little attention in the theoretical
literature and no attention in the experimental literature: the use of nontransfer

mechanisms. We will discuss this approach in the next two sections.

3.2. Nontransfer Ordinal Mechanisms

The second class of mechanisms is a one-sided variation of the Gale-
Shapley matching algorithm!? used to solve the marriage problem. In the one-
sided matching environment, this mechanism is equivalent to the serial dictator

(SD) (see Luce and Raiffa (1957); Satterthwaite and Sonnenschein (1981),

discussions of the serial dictator).

In the SD mechanism the planner chooses an ordering of the agents. Each
agent in turn (according to the order chosen by the planner) selects her slot from

the slots not chosen by the predecessors. The process continues until all slots

12 Also known as the deferred acceptance algorithm.
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have been allocated or all agents have been assigned slots. This mechanism can
also be implemented by asking agents to submit their rankings over slots before
the planner randomly chooses an ordering, allowing the planner to allocate the
slots using the agents’ submitted rankings and the realized ordering. This
random variation has the property that it is symmetric. In both variations of
the SD mechanism it is a dominant strategy for an agent to reveal her rankings
over slots. Under honest revelation the outcome is ex post Pareto efficient
although it is not outcome efficient as the following example shows:
slot 1 2
Buyer L 8 4
Buyer2 10 5.
If the ordering is {1,2}, then the SD allocates slot 1 to agent 1 and slot 2 to
agent 2 for a total welfare of 13, but the outcome-efficient allocation is slot 2 to

agent 1 and slot 1 to agent 2 with a total welfare of 14.

When there is indifference of slots, an agent may have a number of strict
rankings that he can truthfully report. The indeterminacy could have been
avoided by using the following variation of the serial-dictator mechanism.!3
Allow agents to report indifference. When the next agent to be assigned a slot
has several most preferred slots, slots will be assigned to those agents succeeding
him until there is only one of his most preferred slots left, which is assigned to

him.

However, unlike the transfer mechanisms discussed previously, the SD
does have the property that none of the surplus goes to the planner. Thus, while

the SD is less efficient than these transfer mechanisms, it can yield greater

13 This variation was described by Zhou (1990a).



consumer surplus to the agents.

In both the transfer and nontransfer mechanisms described, honest
revelation is a dominant strategy in the respective message spaces. A major
difference between the two mechanisms is the ordinal message space of the non-
transfer mechanism and the cardinal message space of the transfer mechanism.
We now ask the question: Can we use a richer message space and get a more
efficient nontransfer mechanism if we drop the requirement of dominant strategy

implementation?

8.8. A chit mechanism

A chit is defined as a medium of exchange whose value is determined
solely in the context of the given assignment problem (environment), and which
has no value for goods or services outside the assignment problem. A chit mech-
anism has a message space that allows each person to allocate a certain number
of points (or chits) to any of the items he wishes, from a predetermined chit
budget; the amount of chits he retains does not affect his utility.!* Any transfer
mechanism can be employed by using chits instead of money as the medium of
exchange. Instead of agents being allowed to pay for the slots they obtain with

cash, they must use chits.

Little is known about the properties of this class of mechanisms. We will
study it in the context of the sealed-bid VL mechanism. We use the VL mech-
anism for its known properties with cash transfers: efficiency and the existence
of a competitive equilibrium. Whilé the VL mechanism using chits does not

have a dominant strategy equilibrium it does have Bayesian equilibria, which

14 An example of a chits mechanism is the implicit market mechanism of Hylland and Zeckhauser

(1979).
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depend on the distribution of types (or an agent’s belief about the distribution).
In general these equilibria do not elicit more information about an agent’s
relative valuations than just ordinal rankings. For some distributions of types it
is a best response for an agent to place all her chits on her preferred slot or on
her second preferred slot independent of her relative slot values.!® In other cases,
an agents optimal placement of chits is spread over more than one slot and
depends her slot values. While it appears that there is little information
conveyed in the bids, the dependence of the bids on the distribution of types and
individual slot values may provide sufficient information to yield a more efficient

assignment than a mechanism that uses rankings of slot values.

4. Ezperimental Design

The experimental design consists of two fixed factors: type of mechanism
(sealed-bid (Vickrey-Leonard) auction, sealed-bid chit, progressive (DGS)
auction, and serial dictator), and parameter set (high and low contention). We
begin by discussing the parameters of the environment and then describe the
payment conditions. @ We end this section with a summary list of the

experiments we have conducted.

4.1. Parameters of the Environment

The environment under consideration consists of 6 slots, K = {1,2,...,6},
which must be allocated to a set of agents. We consider an environment where

there are 6 agents and an environment where there are 8 agents.

For our experiments we consider two distinct sets of parameters defining

15 Appendix F contains a detailed discussion of the equilibria of the chit mechanism.
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preferences.  Preferences are induced using monetary payoffs for each slot
provided to each agent (see Smith (1976)). Each participant could be assigned
one of 10 possible payoff sheets that defined her type. An abbreviated list of
payoffs is provided below in Table 1 (the complete listing of the payoffs used in
our experiment can be found in Appendix A). For example, given the payoff list
in Table 1, if an agent were provided with sheet 2 and assigned item 3, he would
obtain a value of 800. At the beginning of each period each subject is assigned a
payoff sheet that is drawn uniformly from the set with replacement, i.e., the fact

that priors over types are uniform was given as common knowledge to the

subjects.
Table 1:
An Example of a Payoff List
Payoff Sheet Item Number
Number 1 2 3 4 5 6
1 800 | 600 | 400 | 200 | 400 | 600
2 400 | 600 | 800 | 600 | 400 | 200
10 300 | 300 | 300 | 300 { 300 | 900

Given the payoff tables, priors, and number of agents, we can solve for
the optimal assignments and the set of competitive equilibrium prices (the core).
Let p; denote the minimal dual prices in the core determined from (1), which we
call the Vickrey prices. If v} is the value of slot ; from the optimal assignment

determined in (A), then the closer p; is to v}, the higher is the level of
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competition for the slot (more of the buyers’ surplus is transferred to the
planner). Competition for a slot is a function of both the profile and the number
of agents wanting a slot allocation. In our experiments we created two
alternative competitive environments based on the following ratio we call the
contention indez (C):
c=E
where j indexes the slot, p; is its Vickrey price, W* is the outcome-efficient
welfare for a profile of payoff sheets from the payoff list, and E; is the
expectation operator defined over the possible profiles from a given payoff list.®
Notice that C €[0,1]. A realization of ¢ =1 implies that all the surplus in the
system is paid out at the “competitive” equilibrium prices, and a realization
¢ = 0 implies that the profiles are diverse and all the surplus is retained by the
agents. For an example of C =1, let the profile list be such that:
slot 1 2
Buyer1 10 0
Buyer2 10 0.
In this example the welfare = 10, and the Vickrey prices = (10,0); hence, C = 1.
For an example of C =0, let the profile list be such that:
slot 1 2
Buyer1 10 0
Buyer 2 0 10 .

In this example the welfare = 20, and the Vickrey prices = (0,0); hence, C = 0.
Varying C in the experiments provides us with a check on the robustness
16 We could define this index for each slot by dividing the Vickrey price of the item by the value of

the item determined in outcome-efficient allocation; we could also define contention as the mean of the
contention of each slot. We chose the definition above for its relative simplicity.
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of potential allocation mechanisms, so that we may explore the hypothesis that
the surplus and efficiency of the tested mechanisms are sensitive to the expected
contention in a particular environment. For our experiments two environments
are considered: one with a “low-contention index” and one with “high-contention
index.” The low-contention environment utilizes six people and six items, with
values such that, on average, there was contention for one or two of the items.
In the high-contention environment, there are six items and eight agents and the
values were such that almost all items would have a high-contention index.
Figure 1 supplies a graph of the actual realization of contention levels used for
the low-contention and high-contention treatments. Appendix A supplies the
individual draws and associated core prices for each slot for the experiments we

conducted.

Table 2 shows our 2x2 design. The number of experiments for each cell is
listed. A summary list of each experiment we conducted is listed in Table 3. All
of our experiments were conducted at the California Institute of Technology
using graduate and undergraduate subjects. Each experimental session lasted for
20 periods where at the beginning of each period, each subject would be given a
payoff sheet. All communication was done through computer terminals, and a
history of prices and personal selections was provided by the software so that
subjects could review past periods. Each experimental session consisted of only
one allocation mechanism and one set of payoff parameters (high-contention or
low-contention parameters). A partial set of subject instructions can be found in

Appendix B.
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Table 2

2x2 Design Factors
(number of experiments per cell)

Mechanism Environment Parameters

Low contention!’ High Contention

Serial Dictator 1 2
Vickrey-Leonard 3 2
Demange-Progressive 2 2
Chit-VL 1 2

Given the environment defined above, the planner’s objective is to design
allocation mechanisms to assign slots to agents, which result in the maximum

social welfare. We consider this design question next.

17 In the low-contention environment we ran only 1 experiment in the serial-dictator and chit
treatment. In these instances we had strong prior beliefs about subject behavior and the outcome of the
experiment; after the observation was made, the deviation from this prior belief was not strong enough to
persuade us that another experiment would provide additional information. This is a nontechnical use of
sequential experimental design. While the author realizes the need for more development and rigorous design

procedures their development here would distract from the emphasis of this study.
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5. Implementation of Allocation Mechanisms Tested

There were four mechanisms tested: the Vickrey-Leonard sealed-bid
auction, the DGS progressive auction, the serial dictator, and a chit imple-

mentation of the VL sealed-bid auction.

Sealed-bid auction

The implementation of the VL mechanism in our experimental environ-
ment was straightforward. At the beginning of a period each subject was given a
payoff sheet (on her computer terminal) listing the value of each slot. Subjects
submitted a sealed bid for each of the six items to be allocated (if no bid was
entered for an item, it was assumed to be 0). Each subject’s bid consisted of a
vector of monetary bids (bi,...,b;) over the slots with the restriction that
b;€[0,9999], Vj€ K. The allocation is determined by solving the integer
program described in (A), replacing 6% with b% (using bidder’s submitted bids in
place of their valuations).!’® The prices were determined by solving the dual
program. Once the allocation and prices were determineﬂ, they were transmitted
to the subjects, profits were then calculated and histories updated, after which a

new period was started.

Progressive auction

The implementation of the DGS auction was more involved. The process
proceeded as follows: First, at the beginning of a period (iteration ¢ = 0) initial
prices were set at zero for each slot. Given these prices individuals selected the

slots they would like at those prices. Given the selections, an algorithm was used

18 If there were ties in the bids to determine allocations, they were broken randomly. If a slot was

not demanded in the auction, it was assigned randomly to those who were not previously assigned a slot.
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to determine whether the process was to stop or which slots were overdemanded.

The algorithm is a variation of the Ford-Fulkerson procedure (see, e.g., Franklin

(1980) and Gale (1960)).

At each iteration the algorithm returned either an assignment or a
collection of overdemanded slots. For each overdemanded slot the price at the
next iteration was increased by 50 francs. In a pilot we tried increments of 10
and 25 francs but found that each period took too long. The process stopped
when there were no overdemanded slots; an assignment was then made. Those
assigned to the slots paid the current price, except in an instance that is

described below.

The implementation of the DGS auction process provided a number of
difficulties. The first difficulty was the possibility of subjects using dishonest
bids to manipulate the outcome. In order to contain this possibility, we imposed
a commitment rule. If an agent selected a slot at iteration and the slot was not
overdemanded, then he was committed to select that slot at the next iteration
(i.e., agents could not renege on selections if the price of those selections did not

increase).

The second difficulty involved the inability of the mechanism to elicit
bids when a subject’s maximum net value was zero, or when there were more
agents than slots and a price increase caused the number of bidders to drop to

zero. This can be observed in the following examples.
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Let the profile be:
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v;; 1s the value of slot j to agent i. The
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outcome-efficient assignment and the VL prices are either ( —,2,1) or (2, —,1)

and p =(10,10). Consider the outcome when subjects do not bid on zero net

valued slots:
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0 p°=(0,0)
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Suppose subjects do bid on zero net valued slots:

t prices: net valuation: bids: overdemanded
~ _ ~ _ slots:
10 10 1 1
0 p°=(0,0) 5 10 0 1 1,2
23 11 1 0
0 0] (11 ]
10 p*=(10,10) 6 0 0 1 1,2
i 13 1 i 1 0 |
C a1 ] 0 0 ]
11 p' = (11,11) 6 -1 0 0 none.
2 0 10
The outcome assigns ( —, —,1) and p = (11,11).

The second problem can be alleviated by adding an extra slot, so that

k =n, and as as long as subjects bid when their maximum net value is zero:

none

10 p*=(10,10,0)

=
o O
= O© =
O -
(=T )

ks Lo

The outcome assigns (3,2,1) and p =(10,10,0). But if subjects do not bid on
‘indifferent slots, then the problem remains. To alleviate this problem we used a
back-up rule: if at the end of a period a slot is unassigned, then the object is
randomly allocated between the last unassigned bidders who placed a bid on the

slot at a previous iteration.
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Chit process

The chit mechanism was implemented by applying the VL auction with
chits used in place of monetary transfers. Each subject was given a budget of
1000 “chits” from which to make bids on the slots; chits that were not used had
no value to the participants. The same algorithm used in the VL-money
treatment was used in the VL-chit. Also, as in the VL-money, the procedures
were computerized and subjects were provided information on the past history of
their decisions, and market prices of all items were supplied as public

information to participants.

Serial dictator mechanism

We also conducted a set of experiments using the random serial dictator.
The process was implemented by asking subjects to submit a strict rank order
(1 through 6) over slots. A randomly drawn ordering of subjects was chosen
after they submitted their rankings, and a SD algorithm determined the
outcome. Given the planner’s ordering and the rankings by the agents, the
algorithm selected the first person in the planner’s ordering and allocated to him
his highest ranked slot. The algorithm proceeded down the planner’s ordering
and allocated a slot to the next agent in the list according to his ranking so that
his highest ranked unit, not already chosen by his predecessors, was allocated to
him.

In the experiment, subjects were told that the ordering for each period
would be random and would be rev‘ealed only after the period ended. At the

beginning of each period, subjects would get individual payoff sheets displayed on
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their computer screen. Each subject, through his computer terminal, would
submit a unique sealed bid of his preference ordering of the six slots. The
algorithm would then determine the allocation and send payoff information to

each participant.

Table 3 lists the experiments we have conducted along with pertinent

information about each session.
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Table 3. Experiment History

name | # content frc-conv  payoff time date

leol 1 high 400 $7.848 1.6 8/29/90
leo2 3  low 800 $15.2 1.2hr 10/3/90
leo3 4  high 400 $9.2+5.0 1.5hr  10/4/90
leod 8 low 800 $15.00 1.1hr 10/17/90
sd2 9 low 900 $13.25 45min  11/13/90
sdl 10 high 900 $10.45 45min  11/30/90
sd3 11  high 900 $10.00 35min  2/6/91
chitl 12 high 600 $16.38 1hr 11/14/90
chit2 13 low 900 $13.83 lhr 11/14/90
dem6l| 14 low 800 . $18.67 lhr 2/7/91
dem62| 15 low 800 $18.00 50min  2/20/91
dem81| 16 high 300 $9.38+6 1.5hr  2/13/91
dem82| 17 high 150 $16.00 1.5hr  2/18/91
chit3 18 high 600 $15.75 65min  3/15/91
leob 19 low 800 $15.17 55min  1/15/91

Notes:

All experiments had 6 slots and 20 periods. High-contention experiments had 8
subjects; low-contention experiments had 6 subjects. The name describes the type of
experiment: leo = Leonard-Vickrey sealed-bid, chitb = sealed-bid chit, sd = serial dictator,

dem = Demange et al., progressive auction.

We also ran 2 pilot VL sealed-bid auctions (1 low-contention and 1 high-contention),
one pilot English auction (low-contention), one pilot DGS auction (high-contention), and 4 chit
experiments where chit budgets were not renewed after every period (2 low-contention and 2

high-contention).
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6. Ezperimental Predictions

Both the VL and serial-dictator mechanisms have weakly dominant-
strategy outcomes. We will assume that individuals play one of their weak-
dominant strategies, or their strong dominant strategy if one exists. For the VL
this poses no problem since any of the weakly dominant strategies will produce
the same outcome. In our implementation of the serial dictator, a subject’s
indifference over slots and the requirement that submitted rankings be strict can

distort the outcome as the following example shows.

Ezample:

Let values for agent 1 be (10,5),and for agent 2 be (5,5). We order the
agents (2,1), and agent 1 truthfully reveals his preference ranking of the slots
(1,2) (1 being the best). If agent 2 ranks the slots (1,2), then the outcome is
(2,1) (agent 1 gets slot 2 and agent 2 gets slot 1) and the total welfare is 10. If
agent 2 ranks the slots (2,1), then the outcome is (1,2) and the total welfare is
15. The predictions reported below are the expectation over all possible reported

orderings of indifferent slots.

In our implementation of the serial dictator, there is no incentive for
agents to misrepresent their ordinal rankings, when we allow any ranking to
represent an agent’s indifference truthfully. But an agent can manipulate the
outcome; that is, he can affect the utility of another agent without affecting his
own utility. This concept of manipulation is discussed in Olson (1991) and will

be investigated in the section on individual behavior.

As a baseline measure we compare the efficiencies of our experiment with

expected efficiencies for a random allocation, and the expected efficiencies for the
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random serial dictator. The random allocation was calculated as the average
over all possible assignments. The SD was calculated by permuting over all
possible subject orderings (tie-breaking rules) and assuming that all subjects

revealed their rankings truthfully.

For the DGS progressive auction, we make the assumption that all agents
are honest, which is a Nash equilibrium, and hence the outcome and prices are

equivalent to the VL outcome, which yield the same predictions.

For the chit mechanism we computed a Bayesian Nash equilibrium. The
computation of the equilibrium strategies was accomplished via a genetic
algorithm (see Appehdix F for the construction). For this initial prediction we
restricted the set of strategies that a subject could use. The restricted strategies
comprised distributing the chits over a set of slots. For example, if there were 3
slots, an agent could place all of his chits on one slot, divide them between any
two, or three of the slots. Noninteger division of chits was truncated. We then
computed the outcome, given these strategies. Since the outcome is not unique,
given a submission of bids, the predictions are based on the expected outcome,

given a submission of bids. The following example clarifies the point.

Ezample:

Let the values for agent 1 be (10,0), for agent 2 be (5,0), and the number
of chits is 100. The best response for both agents is to bid 100 chits on slot 1. If
the ties are broken so that the outcome is (1,2), then the total welfare is 10. If

the outcome is (2,1), the total welfare is 15, and the expected outcome is 12.5.

The predicted efficiencies and consumer surplus are presented in Table 4

below. The table presents the predicted values for the VL and DGS auctions
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(theoretically they should have the same outcome), the expected serial dictator
(expectation taken over all possible orderings of agents), the expected chit
outcome (expectation taken over all possible allocations when the equilibrium
bids of agents are the same), the random mechanism (over all possible strictly
feasible allocations), and the realized serial dictator (expectation over all possible
orderings of an agent’s indifferent slots). The mean and standard deviation (o)

measures reported are the mean values of all means and standard deviations for

the periods reported.
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Table 4: Predictions

Efficiency Low-contention High contention
Periods Periods
All First10 Last10 All First10 Last10

VL-DGS 1.00 1.00 1.00 1.00 1.00 1.00
Expected-SD | 0.902 0.901 0.903 0.839 0.856 0.862

o (0.059) (0.060) (0.058) (0.075) (0.076) (0.074)
Chit 0.926 0.922 0.930 0.898 0.902 0.895

o (0.035) (0.032) (0.029) (0.047) (0.044) (0.049)
Random 0.754 0.748 0.759 0.615 0.612 0.618

o (0.095) (0.10) (0.092) (0.082) (0.083) (0.082)
Realized-SD | 0.912 0.924 0.901 0.831 0.806 0.856

o (0.046) (0.040) (0.051) (0.025) (0.039) (0.013)
Consumer

Surplus

All First10 Last10 All First10 Last10

VL-DGS?? 0.871 0.854 0.887 0.227 0.231 0.224
Expected-SD | 1.05 1.07 1.03 4.28 4.19 4.37

o (0.07) (0.07) (0.07) (0.36) . (0.36) (0.36)
Chit 1.07 1.09 1.06 4.44 4.39 4.49

o (0.04) (0.04) (0.03) (0.23) (0.21) (0.26)
Random O.88b 0.889 0.872 3.09 3.03 3.15

c (0.012) (0.012) (0.013) (0.58) (0.56) (0.60)
Realized-SD 1.06 1.09 1.03 4.15 3.94 4.37

c (0.05) (0.05) (0.05) (0.13) (0.18) (0.06)
Revenue
VL-DGS 490 550 430 3253 3270 3235

o (335) (314) (362) (289) (281) (311)

19 The entries in the first row of the consumer surplus table are the percent of total welfare that

goes to the agents in the outcome-efficient allocation and the Vickrey prices.
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The models predict:

1. The random allocation yields uniformly lower efficiencies for both
contention parameters. When contention is low the random allocation yields
lower consumer surplus than the VL outcome, but when contention is high, the
random allocation yields higher consumer surplus than the VL outcome. So
when contention is high, agents may prefer a random allocation (ex ante) than
an efficient pricing mechanism because of the amount of surplus transferred to

the planner (via the prices paid to the planner).

2. The two nontransfer mechanisms, chit and SD, both yield lower effi-
ciencies and higher consumer surplus with both contention parameters. When
contention is high the difference is larger. The chit mechanism has slightly
higher efficiencies and lower consumer surplus than the SD mechanism. The dif-
ference is small and for any realization of the mechanisms, the order may be
reversed. In Appendix D a timeseries graph shows these values for each period

and contention type.

7. Ezperimental Results

For each mechanism and environment, we measure two aspects of mech-
anism performance: efficiency and consumer surplus. The efficiency of the
mechanism measures its overall performance relative to the optimal allocation
(as defined in (A)); that is, it measures the ability of the mechanism to
maximize total welfare. Consumer surplus measures the distribution of system
surplus to the agents. These measurements are normalized by the outcome-
efficient allocation and the Vickrey prices. For the transfer mechanisms (sealed-

bid and English auction), the revenue to the planner is also measured; revenue
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measures the distribution of surplus to the planner (or seller). We measure how
close the observed values are to the predicted values and how the observed
values relate to each other. Also, to measure the viability of our behavioral

assumptions, we investigate individual behavior.

7.1 Efficiency

Efficiency is measured as the total welfare observed in the experiment
divided by the total welfare that would have been realized if the optimal
allocation had been implemented. That is, for each period,

E=(X,; @)/ (T, 2505
where (z};) is the optimal allocation, and z;; is the allocation that was actually
realized. We divide by the total welfare in order to normalize the data of each

trial so that we can compare relative efficiencies across trials.

In Table 5 we display the average efficiencies achieved with the Vickrey-
Leonard auction, the serial-dictator mechanism, the English auction, and the chit
mechanism for low and high contention. Efficiencies are averaged using three
different restrictions on an experiment session: (all periods, the first ten periods,
and the last ten periods of a session) to see if “learning has occurred.”?® A
probability level is presented to test the hypothesis that there is no difference
between the first ten and the last ten periods. The ¢-test and the Lord-test are

both performed.

20 \We will discuss the issue of learning in the section on individual behavior.
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Table 5a: Efficiencies

(observed relative to predicted VL outcome)

Periods
All First10 Last10 t-test Lord-test?!

Mechanism

Low Contention

Vickrey-Leonard 0.97 0.97 0.97 0.97 0.005
Serial Dictator 0.92 0.94 0.90 0.51 0.2
Sealed-bid-chit 0.92 0.88 0.96 0.21 0.47
DGS Auction 0.95 0.92 0.98 0.34 0.34

High Contention

Vickrey-Leonard 0.95 0.94 0.97 0.48 0.18
Serial Dictator 0.80 0.76 0.84 0.43 0.42
Sealed-bid-chit 0.89 0.89 0.90 0.92 0.03
DGS Auction 0.99 0.99 0.99 0.91 0.02 -

The numbers for the t-test are tail probabilities, so a larger number is
evidence of no difference between the first and last ten periods. For the Lord
test smaller numbers are evidence of a lack of difference between first and last

periods.

21 The Lord test uses the range of variation in place of the estimated variance; it is slightly more
robust than the t-test and more likely to reject the null hypothesis. We note that if the t-test fails to reject
the null hypothesis, then many of the most common nonparametric tests will also fail to reject the null
hypothesis; similarly, if a nonparametric test rejects the null hypothesis, then the t-test will also reject the
null hypothesis. So in these two cases, one test includes the other.
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Table 5b: Efficiencies
(observed vs. predicted)

Experiments 1 2 3 Predicted

Mechanism

Low Contention

Vickrey-Leonard 0.97 0.97 0.97 1.00
o 0.034 0.035 0.044

Serial Dictator 0.92 0.912 +£0.046
o 0.038

Chit 0.92 0.926 +0.035
o 0.082

DGS Auction 0.92 0.98 1.00
o 0.15 0.046

High Contention

Vickrey-Leonard 0.95 0.96 1.00
c 0.075 0.058

Serial Dictator 0.81 0.79 0.831 £0.025
o 0.088 0.13

Chit 0.90 0.88 0.898 £ 0.047
o 0.079 0.063

DGS Auction 0.99 0.99 1.00
o 0.032  0.036

From Table 5 we can make a number of observations:

1. In all trials there is no significant difference between the first 10 and
the last 10 periods, suggesting that if learning did take place among subjects, it

did not significantly affect efficiency.
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2. Except for the high-contention SD and low-contention DGS, all the
observations appear to be very close to predicted efficiencies. In the high-
contention SD there were individuals whose behavior differed from predicted
behavior, these observations will be discussed in the section on individual
behavior. In the low contention DGS some of the subject were confused in the
first five periods, we call this the Chris effect; Chris is an undergraduate who

helped run this particular experiment.

3. For both contention treatments the chit and SD mechanisms resulted
in lower efficiencies than the use of transfers, but there is a smaller difference in

the low-contention treatment.

4. The use of chits yielded a significantly higher efficiency than the serial-
dictator mechanism for the high-contention treatment but no difference for the

low-contention treatment.

To determine if the difference in efficiencies is significant we estimate the

following model:
yep = IBIme + 62 f(p) + /63cmep + eep’

where:
p = period number € {1,...,20}.
e = experiment index.

m, = mechanism used in experiment e, {VL, SD, chit, DGS}

€

Yep = efficiency of experiment e and period p.

f(p) = a monotonic function of the period.
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Cm_p = contention of mechanism m,
€

2

€eps = error term, Efe,, ] =0, E[e ] =02

ep?

Bi1m = intercept, which varies over mechanism and captures the
€

difference in behavior over mechanisms.

B4, B, = coefficients of period variate and contention, respectively.

This is estimated as a fixed effects model since the mechanisms are not
chosen randomly (it would be a random effects model if we were modeling
individual behavior and wished to make imputations to the general population
from which the individuals were randomly chosen). The model we are
estimating is variously called time-series cross-section model, panel data model,
or an analysis of covariance (see, e.g., Judge et al. (1985), and Hsiao (1986)).

In the following estimation we used: |
f(p)=1/p.

The group variables referenced below are the mechanisms tested:
Vickrey-Leonard = 1, serial dictator = 2, Chit =3, DGS =4.

Contention was the C index computed separately for each period.



I1-45

Table 5c: Efficiencies
(fixed effects model)

Dependent variable: Efficiency
Observations : 300

Number of Groups : 4
Degrees of freedom : 294

Residual SS : 1.184

Std error of est : 0.063

Total SS (corrected) : 1.335

F = 18.807 with 2, 294 degrees of freedom

P-value = 0.000

Variable Coef. Std. Coef. Std. Error t-Stat P-Value
1/PERIOD -0.093783  -0.306241 0.016830 -5.572492 0.000
CONTENT -0.031547 -0.152608  0.011361 -2.776928 0.006

Group Number Group Variable Standard Error

1 0.993985 0.008353
2 0.873379 0.010862
3 0.936658 0.010862
4 0.998409 0.009325

F-statistic for equality of group variables :
F(3, 294) = 57.1668 P-value: 0.0000

The estimation indicates:

1. The period is significant with the first period averaging 9% lower than

the last period.
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2. Contention is significant with high contention averaging 3% higher than

low-contention efficiencies for the same mechanism.

3. The model specification is significant though it accounts for only 10%

of the variation.

4. The mechanisms are a significant effect and are ranked by efficiency

generation:

DGS > VL > Chit > SD

5) The model was also estimated under various groupings, specifications of
f(p), and measurements of efficiency; and the results indicate that the

specification is robust.

We conclude that the use of the SD and chit mechanisms resulted in
lower efficiencies than the use of cash transfers. The Vickrey-Leonard and DGS
auctions seem to result in efficiencies close to the theoretical prediction, and the
loss of information from using a nontransfer mechanism did result in lower
efficiencies. We can also conclude that in the low-contention treatment, the
efficiencies from the chit experiment did not differ from the efficiencies of the SD
mechanism, but with high contention, the chit mechanism did significantly

better (in terms of efficiencies) than the SD mechanism.
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7.2 Consumers’ Surplus, Prices and Revenue

We measure relative consumers’ surplus as the sum of the surplus realized
by all agents divided by the sum of the surplus that would have been realized if
the optimal allocation and the Vickrey prices had been implemented.?? That is:

S = (2 Tivi;— X ;p) (X, 70— X 05,
where (z};) is the optimal allocation and pj are the Vickrey prices, and z;; is the
allocation and p; are the prices that are actually realized. These are listed in

Tables 6a and 6b below.

Table 6a: Consumers’ Surplus

(observed relative to predicted VL outcome)

Periods
All Firstl0 Lastl0 t-test Lord-test

Mechanism

Low Contention

Vickrey-Leonard 1.00 1.00 1.00 0.95 0.0015
Serial Dictator 1.1 1.1 1.0 0.59 0.022
Sealed-bid-chit 1.1 1.0 1.1 0.60 0.018
DGS Auction 0.88 0.83 0.92 0.39 0.026

High Contention

Vickrey-Leonard 1.5 1.5 1.4 0.88 0.037
Serial Dictator 4.0 3.8 4.3 0.78 0.15

Sealed-bid-chit 4.4 4.3 4.5 0.92 0.048
DGS Auction 1.0 0.89 1.2 0.66 0.081

2 Prediction intervals are + one standard deviation from the mean.
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Table 6b: Consumers’ Surplus
(observed vs. predicted)

Experiments 1 2 3 Predicted?®  test

Mechanism

Low Contention

Vickrey-Leonard 1.03 1.00 0.99 1.00
o 0.12 0.07 0.11

Serial Dictator 1.07 1.03 £0.05
o 0.14

Chit 1.06 1.06 +0.03
o 0.12

DGS Auction 0.87 0.89 1.00
o 0.19 0.13

High Contention

Vickrey-Leonard 1.33 1.59 1.00
o 1.09 0.83

Serial Dictator 4.04 4.00 4.15+0.13
o 1.73 1.83

Chit 4.45 4.40 4.61+0.17
o 1.62 1.72

DGS Auction 1.1 0.97 1.00
o ’ 0.62 0.62

From Tables 6a and 6b we can observe that:

1. As with efficiencies there is no significant difference between the first

10 and the last 10 periods.

23 For the nontransfer mechanisms the prices are zero for all slots.
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2. With low-contention, the relative consumers’ surplus in the chit
treatments differs little from the relative consumers’ surplus in the SD

mechanism, but it is slightly higher in the SD and chit treatments than in the
VL and DGS treatment.

3. With high contention, the relative consumers’ surplus from the chit
mechanism is much larger than the relative consumers’ surplus from the VL and

DGS, and slightly higher than the SD mechanism.

4. In both the high-contention and low-contention treatment, the VL
gives higher relative consumers’ surplus than the DGS. The only way that
relative consumers’ surplus can be over 1 in the cash treatment is for

participants to under-reveal.

To determine if the difference in consumers’ surplus is significant, we
estimate the following model:
yep = ﬁlme + ﬂZ f(p) + :BSCmep + eep,
This is the same as the model estimated for efficiencies except that:

Yep = relative consumers’ surplus of experiment e and period p.
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Table 6¢c: Consumers’ Surplus
(fixed effects model)

Dependent variable: Consumers’ Surplus

Observations : 300
Number of Groups : 4
Degrees of freedom : 294
Residual SS : 347.914
Std error of est : 1.088

Total SS (corrected} 526.790

F = 75.579 with 2,294 degrees of freedom

P-value = 0.000

Variable Coef. Std. Coef. Std. Error t-Stat P-Value
PERIOD -0.546571 -0.089847  0.288549 -1.894207 0.059
CONTENT 2.349955  0.572253  0.194780 12.064689 0.000

Group Number = GROUP Variable

1 0.379240
2 1.820880
3 2.091392
4 -0.005672

Standard Error
0.143208
0.186236
0.186236
0.159883

F-statistic for equality of GROUP variables :

F(3, 294) = 61.9926

The estimation indicates:

P-value: 0.0000

1. The period is significant with the first periods significantly lower than

the last periods.

2. Contention is significant with low-contention consumers’ surplus being

higher than the high-contention consumer surplus for the same mechanism.
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3. The model specification is significant though it accounts for only 30%

of the variation.

4. The mechanisms have a significant effect and are ranked for surplus

generation as follows:

Chit > SD > VL > DGS

5. The model was also estimated under various groupings, specifications of
f(p), and measurements of efficiency; and the results indicate that the

specification is robust.

We conclude that the use of the serial-dictator and chit mechanisms
resulted in higher surplus than the use of cash transfers when contention was
high, but that when contention was low there was almost no difference. This
shows that there is a strong difference in the relative behavior of mechanisms in
these two environments. When contention is low and there is little disagreement
over the assignment of slots, any of the mechanisms tested (except random) will
give the agents the same level of cbnsumer surplus. But when contention is high
and there is much disagreement over the assignment of slots, the nontransfer
mechanisms will give the agents more consumer surplus. This is evidence that

may help explain the existence of inefficient nontransfer institutions.
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7.4 Revenue

In Table 7 we present the revenue generated by the two transfer
mechanisms: the Vickrey-Leonard sealed-bid auction and the DGS progressive
auction. Even though revenue (or producer surplus) is total welfare less
consumer surplus, we present this information for two reasons. One, the
efficiency and consumer surplus measures may be confounding and the effect on
revenue generation may not be apparent; that is, if one mechanism has both
lower efficiency and lower consumer surplus than another mechanism, then the
revenue from one mechanism could be either higher or lower than the revenue
from the other mechanism. Two, in most auction studies, revenue generation is
one of the central measures that is used and have generally observed that
progressive auctions tend to generate more revenue than sealed-bid auctions (see,

e.g., Banks et. al (1989)).

Table 7: Revenue
(observed vs. predicted)

Mechanism\Experiments 1 2 3 Predicted
Low Contention
Vickrey-Leonard 314 375 437 490
o (277) (236) (269) (335)
DGS Auction 613 768 490
o (367) (602)

High Contention

Vickrey-Leonard 2821 2658 3253
o (780) (693) (289)
DGS Auction 3098 3225 3253

o (731)  (727)
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From Table 7 we observe that in both the high-contention and low-
contention environments, the DGS auction generated higher levels of revenue. In
the low-contention environment the DGS auction generated higher than
predicted levels of revenue and a very high variance in the second experiment.
The high variance in the second DGS auction appears to be from the first 5
periods, where it appears that there was some confusion (or inexperience) on the
part of one of the subjects. The results we find here are consistent with the the
results found in other studies with multiple object allocation problems (see, e.g.,

Banks et. al (1989)).

7.4 Individual Behavior

In the sections 7.1, 7.2, and 7.3, we observed instances where observed
values differed from the predicted values. In this section, we look at individual
behavior to see if the mechanisms are robust to individual deviations from

predicted behavior and if the behavior assumptions we applied were appropriate.

We do not formally model an individual’s “learning” nor formally model
the events that determine an agent’s behavior, but only inquire if we can
measure the directic;n of the difference in our treatment effects. This means that
if we can measure a difference in subjects’ bids between the first and last periods
of an experiment, then we cannot announce that we have found learning, but

only that there is a difference in bidding.

Awuction Behavior

Smith (1978) and Coppinger, Smith, and Titus (1980) report the results of

experiments in which the second-price auction was compared to a first-price
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auction. It was found that many subjects “learned” their dominant strategy
fairly rapidly, but that violations of single-period, dominant strategy behavior
were common, especially in the “early” trials of an experiment session. Miller
and Plott (1985) study a market in which buyers may purchase multiple units
and pay the highest rejected bid for each unit. For their parameters (many units
on the margin), the one-price auction is demand-revealing, and they find that
after replication, bidders report their true valuation. They report high
efficiencies but their solution relies on the restriction of no over-revelation, and
the fact that bidders kept the same payoff sheets every period. Do subjects in
multiobject auctions “learn” their dominant strategy as well as in single-object,

single-unit auctions?

We do not restrict our subjects to bids below their values as do most
other auction experiments. The ratiéna.le given by some experimentalists for this
restriction is that if a subject makes substantial overbids, his profits may fall
substantially below zero. The conjecture is that this subject may “sabotage” the
experiment since there will then be only a small chance that he may obtain
positive profits. Not being able to extract payment from the subjects allows
them to be indifferent between a payoff of zero and any negative amount. We
had very low priors on this happening so we chose to allowed bidding to be in
[0,9999]. We did not observe “sabotaging” to happen in any of our experimental

trials.
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Vickrey-Leonard sealed-bid auction:

In the VL auction we hypothesized that subjects would play a weakly
dominant strategy, and when it existed, their strong dominant strategy.
Subjects in the low-contention environment have a set of weakly dominant
bidding strategies; each bid differs from the subject’s slot valuations by the
addition of a constant. In the high-contention environment, subjects have a
unique, strong dominant strategy to bid their slot valuations. The lack of a
larger set of weak strategies in the high-contention environment is the result of
eight subjects and only six slots; this creates two implied slots that have zero
value for all the subjects. For weakly dominant strategies to exist, the subjects
must be able to place bids on all the slots, but in the high-contention case, they
are permitted to place bids on only six of the slots. Because of this dichotomy
we are not able to distinguish effects that arise because of the difference in

contention and the difference in the class of available strategies.

In Appendix G.1 we display bidding behavior for each subject and each
VL sealed-bid experiment. Each graph shows three series, which are based on
the difference between a subject’s bid and his slot values. The three series are:
1) mjax{bidj —val;},
2) me;an{bidj —val;}, and
3) mjin{bidj —val,},

where bid; = bid slot j, and val; = value of slot j.
So high values on the graph indicate overbidding and low values indicate
underbidding. The plotted variables were truncated so that all plots were in the
range [-1000,1000]; since this makes comparisons between subjects easier. The

low-contention experiments were also adjusted by a constant for each period,
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depending on the valuations and bids, since in the low-contention environment
subjects had many weakly dominant strategies that varied only by a constant.
The adjustment was accomplished as follows:
Let bid*; = bid; — rnjin{bidj}, and let val*; = val; — mjin{valj}. Then the three
series are: 1) mjax{bid*]- —val*;},
2) me;an{bid*j —val*;}, and

3) mjin{bid*j —val*;}.

From these displays we can observe that:

1. The high-contention environment has a higher variance of (bid — value)
and more consistent overbidding. Often the overbidding occurs in the earlier

periods and disappears in latter periods.

2. The low-contention environment has more consistent underbidding, and

rarely is overbidding observed.
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Table 8a: Vickrey-Leonard Sealed-bid

(bid-value summary statistics)?

High Contention z g min max z
Min (val-bid) -167.1 660.3 -900.0 9099 -200
Mean (val-bid) 88.5 820.3 -416.6 9649 -50.0
Max (val-bid) 652.5 1983.8 -300.0 9999 1.0

Low Contention z g min max z
Min (val-bid) -160.9 174.7 -600.0 0 -100
Mean (val-bid) -51.0 93.7 -299.8 241.7 -16.7-
Max (val-bid) 57.9 142.4 0 800 0.0

High Contention (truncated) =z o4 min max z
Min (val-bid) -208.5 266.7 -900.0 1000 -
Mean (val-bid) 2.3 300.0 -416.6 1000 -
Max (val-bid) 190.0 382.3 -300.0 1000 -

Table 8 shows that for high-contention environments the means and
standard deviation of the bid value difference are much larger than for low-
contention environments. The last part of the table contains the summary
statistics for the high-contention environment when the bid — value observations
are truncated above at 1000. This was done because a few very high differences
above 1000 (there were 4 truncations in the minimum observations, 16 for the
mean observations, and 51 for the maximum observations) skew the summary
statistics except for the median. Summary statistics by experiment are

presented in Appendix G.2.

24 T is the mean value, U is the standard deviation, and Z is the median.
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The second measure of subjects’ behavior is found by substituting an
individual’s bid with his valuations to determine if there is a gain, and hence if a
subject’s deviations were costing him. If deviations from truthful reporting do
not cost the subject, then we cannot argue that it is in his best interest to play
the dominant strategy. The descriptive statistics below indicate that on average

the gain for truthful revelation was largest in the high-contention environment.

Table 8b: Vickrey-Leonard Sealed-bid

(net gain statistics)?®

Experiment contention z z g
1 high 82.4 61.6 288.9
3 low 30.6 26.0 63.9
4 high 53.3 37.6 188.4
8 low 29.2 30.0 80.9
19 low 16.7 22.3 84.9

In addition, an analysis of covariance was performed, wherein subjects
were considered to be random effects, and type (payoff values) were considered
to be a fixed effect, and time over periods was measured as (1/period). The
following period-effect results are presented (the results for the entire analysis are

presented in Appendix G):

25 0 is the mean of the standard deviations for the subjects.
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Table 8c: Vickrey-Leonard Sealed-bid
(period effect)

Experiment type

Variable Low contention High Contention High Truncated
vbmin -65.2 (0.08) 286 (0.09) -14.4 (0.002)
vbmean -32.0 (0.09) 786 (0.00) 131.0 (0.028)
vbmax 80.0 (0.004) 2010.0 (0.00) 213.0 (0.003)

A Hausman (1978) x2-test specification test was performed, and the null
hypothesis of correct specification could not be rejected with probability p = 0.99

on all the models except vbmin for high truncation.

From the above model we observe:

1. The period effect is found to be significant in all cases, especially for

vbmax.

2. In the high-contention treatment, each of the (bid — value) measure-
ments is higher than average in the earlier periods (as observed from the positive

coefficient).

3. In the low-contention treatment, vbmin and vbmax are lower than
average in the earlier periods. This would indicate that subjects underbid more

on their least favorable slots in the earlier periods.

Appendix G also presents variable statistics by periods 1-5, 6-10, 11-15,
and 16-20. It is readily observed that in the low-contention treatment there is a
small difference in the mean and variance of (bid — value) between the first and

last periods, but in the high-contention treatment there is large difference
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between the first and last periods. Estimation is also performed to determine if
the bidding measurements differed by individual payoff sheets. This initial test
indicates that only the mean in the low-contention environment was affected by

individual payoff sheets.

DGS Progressive Auction

To study individual behavior in the DGS progressive auction experiments
we construct four measures of bidding behavior. In the description of the DGS
experiments, a bid refers to a vector of zeros and ones, where each element
corresponds to a slot, and an entry of one indicates a request for that slot; and
net value is the subject’s value for that slot minus the price for that slot. We

say that a subject bids on a slot if there is a bid of one for that slot.

1. Strict honesty: A subject bids only on the slots (and all of the slots)
that maximize his net value; he does not bid on any other slot. If the maximum
net value is zero (the subject is indifferent between receiving the maximizing slot
and not receiving a slot), then a bid of either zero or one is considered strictly

honest.

2. Nonstrict honesty: At least one of the bids is on a slot that maximizes
net value, and there are no bids on slots that have negative net value. A bid
may be placed on a nonmaximizing slot, and there may be maximizing slots that

do not receive a bid (if there is more than one maximizing slot).

3. Marginal honesty: There are no bids on slots that maximize net value
and there are no bids on slots that have negative net value. If there are slots

that have positive net value, there is at least one bid.
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4. Dishonesty: There are bids on slots that have negative net value, or

there are no bids when there is a slot with positive net value.

Measures 2, 3, and 4 are mutually exclusive and exhaustive; that is, a
bid falls in one and only one of the three categories. Measure 1 is a subset of
measure 2. The following table presents summary statistics of these four
measures for the four DGS auction experiments. We also present a 5th measure

of the average number of iterations per period.
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Table 9a: DGS

(low-contention summary statistics)

Group EXP_1: DGS experiment 14
Group EXP_2: DGS experiment 15

Variable Group N Mean Std Dev Minimum Maximum
dem0l  EXP_1 20  0.7049  0.1361  0.3670  1.0000
EXP_2 20 0.7112 0.1325 0.3330 0.9500
dem02 EXP_1 20 0.9090 0.0833 0.6670 1.0000
EXP_2 20 0.9505 0.0649 0.7500 1.0000
dem03 EXP_1 20 0.0586 0.0558 0.0000 0.2330
EXP_2 20 0.0308 0.0450 0.0000 0.1330
dem04 EXP_1 20 0.0324 0.0602 0.0000 0.1940
EXP_2 20 0.0188 0.0577 0.0000 0.2500
dem05 EXP_1 20 7.5000 4.3347 1.0000 18.0000
EXP_2 20 7.5000 4.6848 1.0000 16.0000
DIFFERENCE OF MEANS TESTS
Test of Variances
Variable Group Variances t df P>t F? df p>F
dem01  EXP_1 Equal  -0.15  38.0 0.884 1.06 19 0.907
dem02 EXP_1 Equal -1.76 38.0 0.087 1.65 19 0.285
dem03 EXP_1 Equal 1.74 38.0 0.091 1.54 19 0.356
dem04 EXP_1 Equal 0.73 38.0 0.470 1.09 19 0.833
dem05 EXP_1 Equal 0.00 38.0 1.000 1.17 19 0.738

The critical t-value for a 5% overall significance level is 3.10; this value
takes into account that there is more than one test being performed. From
Table 9a, we cannot reject the hypothesis that the observations are from the

same distribution.
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Table 9b: DGS

(high-contention summary statistics)

Group EXP_1: DGS experiment 16
Group EXP_2: DGS experiment 17

Variable Group N Mean Std Dev Minimum Maximum
dem01  EXP1 20  0.5963  0.0961  0.4090  0.7330
EXP_2 20 0.5033 0.0946 0.2500 0.6450
dem02 EXP_1 20 0.8495 0.0609 0.7320 0.9510
EXP_2 20 0.8714 0.0980 0.5000 0.9860
dem03 EXP_1 20 0.1045 0.0566 0.0000 0.2270
EXP_2 20 0.1030 0.0556 0.0130 0.2500
dem04 EXP_1 20 0.0460 0.0417 0.0000 0.1880
EXP_2 20 0.0259 0.0548 0.0000 0.2500
dem05 EXP_1 20 22.3500 6.2767 2.0000 33.0000
EXP_2 20 19.0500 3.8997 4.0000 25.0000
DIFFERENCE OF MEANS TESTS
Test of Variances
Variable Group Variances t df P> t] F’ df p>F’
dem01  EXP_1 Equal  3.00  38.0 0.004 1.03 19 0.943
dem02 EXP_1 Equal -0.85 38.0 0.401 2.59 19 0.044
dem03 EXP_1 ‘Equal 0.09 38.0 0.931 1.04 19 0.939
dem04 EXP_1 Equal 1.31 38.0 0.199 1.72 19 0.244
dem05 EXP_1 Equal 2.00 38.0 0.033 2.59 19 0.044

The critical t-value for a 5% overall significance level is 3.10; this value
takes into account that there is more than one test being performed. From
Table 9a, we cannot reject the hypothesis that the observations are from the

same distribution (dem01 is borderline).
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Since there is no significant difference between experiments of the same
type of contention, we can pool these observations to test the hypothesis that
there 1s no difference between contention types. We present these results in

Table 9c below.

Table 9¢c: DGS

(test between contention types)

Variable Group N Mean Std Dev Minimum Maximum
dem0l  LOV 40 0.7080  0.1326  0.3330  1.0000
HIGH 40 0.5498 0.1053 0.2500 0.7330
dem02 L0V 40 0.9297 0.0766 0.6670 1.0000
HIGH 40 0.8604 0.0813 0.5000 0.9860
dem03 LOW 40 0.0447 0.0519 0.0000 0.2330
HIGH 40 0.1037 0.0553 0.0000 0.2500
dem04 LOW 40 0.0256 0.0586 0.0000 0.2500
HIGH 40 0.0359 0.0492 0.0000 0.2500
dem05 LOW 40 7.5000 4.4549 1.0000 18.0000
HIGH 40 20.7000 5.4217 2.0000 33.0000

DIFFERENCE OF MEANS TESTS
Variable Group Variances t df p>|t] F’ df pF

The t-test rejects the null hypothesis that four of the measures are the

same for the two treatments.
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In Appendix H.1 we present graphs by period for the first four measures.
There is a noticeable spike at period 15 in the high-contention treatment for the
dishonest bidding measure, which occurs in both of the high-contention
experiments.  These spikes can be explained by observing the individual
behavior. After period 10 in the high-contention experiments subjects began to
sit out of the early iterations of a period. In most of the periods there was
considerable contention for slots, and a lot of bidding in the early iterations, so
that waiting did not affect the outcome. In period 15 there is less contention,
and when two subjects sat out, there was an immediate (after 2 iterations)
allocation omitting the subjects who sat out. In subsequent periods the subjects

no longer sat out the early iterations.
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Serial Dictator

For the serial-dictator experiments we count the number of completely
truthful rankings, that is, the number of bids that are honestly ranked for each
slot; we also count the number of bids that honestly rank the top 1 or 2 slots,
the top 3 or 4 slots, and the top slot is not honestly ranked. We also measure
the gain that would have been realized if had agents submitted truthful rankings,

given that the other rankings remained the same.
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Table 10: Serial Dictator
(truthful bids)

truthful bids net gain
Experiment All none lor2 dor4 All
SD1 (high)
subject
1 15 2 3 0 0
2 20 0 0 0 0
3 3 4 10 3 550
4 20 0 0 0 0
5 20 0 0 0 0
6 20 0 0 0 0
7 17 1 2 0 0
8 4 16 0 0 1400
SD2 (low)
subject
1 20 0 0 0 0
2 20 0 0 0 0
3 20 0 0 0 0
4 19 0 0 1 0
5 18 0 1 1 0
6 17 2 1 0 400
SD3 (high)
subject
1 20 0 0 0 0
2 20 0 0 0 0
3 0 6 14 0 1000
4 20 0 0 0 0
5 18 0 2 0 0
6 20 0 0 0 0
7 20 0 0 0 0
8 16 2 1 1 1100
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In table 10a: above, 19 of 22 subjects appear to have reported honestly (12
reported truthfully in all periods, and 7 reported honestly in 15 or more periods).
Two subjects appear to have ranked only their top slots. Subject 8 of
experiment SD1 appears to have misreported in every period, and we have no
explanation for this behavior. We checked the data to see if the subject was
confused and submitted the rankings in inverse order, but this was not the case
(i.e., the inverse ordering appears just as unpredictable). It should be observed
that even with such strong deviation from hypothesized behavior, the actual loss
was not large. In the high-contention treatment it is less likely that a subject
has an effect on the outcome than in the low-contention treatment. In the high-
contention treatment when a subject is ordered 7Tth or 8th, he receives no slot;
and when he is 6th he receives what is left from the previous 5 choices of the
group. In these cases the submitted rankings of the 6th, 7th or 8th subjects have

no effect on the outcome.

Chit mechanism

For the chit mechanism one obvious class of dominant strategies is to bid
all of the chits. Bidding less can only decrease your chances of receiving a
preferred slot. The first table gives the number of bids per experiment where

subjects bid less than 1000 chits (their allotted budget).
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Table 11: Chits
(<1000 bids)

Experiment #<1000  #indiff  #bids #viable  %<1000
Chit1 (high) 4 0 160 160 2.5
Chit2 (low) 21 27 120 99 21
Chit3 (high) 3 0 160 160 1.8

In Table 11, #<1000 is the number of bids that totaled less than 1000
chits and did not correspond to sheet types that were completely indifferent over
slots, and this occurs only in the low-contention environment. The number of
indifferent sheet types are listed in the column labeled #indiff. The total
number of possible bids in an experiment is #bids; #viable = #bids — #indiff;
and %<1000 = #<1000/#Dbids.

From Table 11 we can observe that in the low-contention environment
21% of the viable bids totaled less than a 1000. For the high-contention
treatment, the number is approximately 2%. Eighteen of the 21 <1000 low-
contention bids belonged to two of the subjects. We conjecture that since
subjects do not lose large amounts because of errors (recall that in the low-
contention environment a subject was guaranteed a slot) they did not spend the

time to make sure there bidding was optimal.
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8. Concluding Remarks

In this paper I considered the allocation problem of assigning (or
matching) a set of slots to a set of agents. I experimentally tested four different
mechanisms (sealed-bid auction, progressive auction, sealed-bid auction with
chits, and serial dictator) in two different environments (low and high
contention). I compared the observed outcomes of the four mechanisms against

their predicted outcomes, among themselves, and looked at individual behavior.

Two of the mechanisms involved cash transfers (sealed-bid and
progressive auction). As in single-object auctions, the progressive auction
generated higher revenues and higher efficiencies than the sealed-bid auction,
even though the predicted outcomes were identical. An examination of the
individual subject data in the sealed-bid auction revealed that subjects tended to
overbid in the high-contention environment, especially in the early periods, but
that in theb low-contention environment, underbidding was more prevalent. In
the progressive auction subjects tended to bid “honestly,” and deviations from

honest behavior had little effect on the outcome.?®

As predicted, the nontransfer mechanisms (chit and serial dictator) were
less efficient than the transfer mechanisms but resulted in higher consumer
surplus. The differences in efficiencies and consumer surplus between the
transfer and nontransfer were small in the low-contention environment and larger
in the high-contention environment. In particular, the difference between
consumer surplus in the high-contention environment was dramatic (300% more
surplus frofn the nontransfer mechanisms), while the difference between

efficiencies in the high-contention environment was less dramatic (89% vs. 99%

26 Except in one instance and in that case the effected individuals quickly reverted to “honest”
bidding.
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efficiency).

In general, subjects tended to behave differently in the two different
environments. There was more variance in behavior in the earlier periods and
less variance in the later periods particularly in the high-contention environment.
We conjectured that this behavioral difference was due to the amount of
competition in the high-contention environment and the higher likelihood that a

bad strategy would be punished with more severity.

Overall, the experiments provide some evidence that in certain environ-
ments the absence of transfers does not significantly reduce social welfare but
does increase the agents’ surplus. This helps explain the existence and
persistence of inefficient nontransfer institutions. In addition the testing of the
mechanisms in different environments underscores the effect of the environment
on the outcome of a mecha.nism;‘ and reinforces the need to perform experiments

in different environments.
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LOW-CONTENTION PAYOFF LIST

Unit Number

Set of

Values 1 2 3 4 5 6
1 800 600 400 200 400 600
2 400 600 800 600 400 200
3 400 200 400 600 800 600
4 850 350 350 850 350 350
5 750 400 400 750 400 400
6 900 300 300 300 300 300
7 300 300 900 300 300 300
8 500 500 500 500 500 500
9 550 550 550 550 550 550
10 300 300 300 300 300 900

HIGH-CONTENTION PAYOFF LIST

Unit Number

Set of

Values 1 2 3 4 5 6
1 900 450 400 350 300 250
2 400 600 800 600 400 200
3 800 600 400 200 400 600
4 100 100 900 400 300 200
5 400 800 400 200 0 200
6 900 600 300 200 100 0
7 300 300 300 300 300 900
8 750 250 250 750 400 400
9 400 200 400 600 800 600
10 850 350 350 650 150 150



period 1

400 600 800 600 400 200
800 600 400 200 400 600
400 200 400 600 800 600
400 600 800 600 400 200
550 550 550 550 550 550
400 600 800 600 400 200

period 2

900 300 300 300 300 300
900 300 300 300 300 300
400 600 800 600 400 200
800 600 400 200 400 600
300 300 900 300 300 300
800 600 400 200 400 600

period 3

500 500 500 500 500 500
800 600 400 200 400 600
300 300 300 300 300 900
300 300 300 300 300 900
300 300 300 300 300 900
750 400 400 750 400 400

period 4

750 400 400 750 400 400
400 200 400 600 800 600
900 300 300 300 300 300
500 500 500 500 500 500
550 550 550 550 550 550
750 400 400 750 400 400

period 5

400 200 400 600 800 600
900 300 300 300 300 300
750 400 400 750 400 400
750 400 400 750 400 400
800 600 400 200 400 600
850 350 350 850 350 350
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Low-Contention Payoff

Lists

period 6

500 500 500 500 500 500
500 500 500 500 500 500
750 400 400 750 400 400
850 350 350 850 350 350
850 350 350 850 350 350
750 400 400 750 400 400

period 7

Q00 300 300 300 300 300
550 550 550 550 550 550
400 600 800 600 400 200
750 400 400 750 400 400
900 300 300 300 300 300
900 300 300 300 300 300

period 8

500 500 500 500 500 500
800 600 400 200 400 600
850 350 350 850 350 350
800 600 400 200 400 600
750 400 400 750 400 400
800 600 400 200 400 400

period 9

300 300 900 300 300 300
550 550 550 550 550 550
400 200 400 600 800 600
850 350 350 850 350 350
900 300 300 300 300 300
500 500 500 500 500 500

period 10

850 350 350 850 350 350
800 600 400 200 400 600
400 600 800 600 400 200
550 550 550 550 550 550
800 600 400 200 400 600
900 300 300 300 300 300

period 11

850 350 350 850 350 350
750 400 400 750 400 400
850 350 350 850 350 350
750 400 400 750 400 400
500 500 500 500 500 500
550 550 550 550 550 550

period 12

550 550 550 550 550 550
400 600 800 600 400 200
750 400 400 750 400 400
500 500 500 500 500 500
500 500 500 500 500 500
800 600 400 200 400 600

period 13

500 500 500 500 500 500
550 550 550 550 550 550
850 350 350 850 350 350
900 300 300 300 300 300
400 200 400 600 800 600
900 300 300 300 300 300

period 14

@00 300 300 300 300 300
400 600 800 600 400 200
800 600 400 200 400 600
300 300 900 300 300 300
800 600 400 200 400 600
400 200 400 600 800 600

period 15

550 550 550 550 550 550
400 600 800 600 400 200
750 400 400 750 400 400
800 600 400 200 400 600
850 350 350 850 350 350
900 300 300 300 300 300



Low-Contention cont.

period 16

800 600 400 200 400 600
500 500 500 500 500 500
850 350 350 850 350 350
800 600 400 200 400 600
750 400 400 750 400 400
800 600 400 200 400 600

period 17

850 350 350 850 350 350
300 300 900 300 300 300
550 550 550 550 550 550
400 200 400 600 800 600
900 300 300 300 300 300
500 500 500 500 500 500

period 18

900 300 300 300 300 300
850 350 350 850 350 350
800 600 400 200 400 600
400 600 800 600 400 200
550 550 550 550 550 550
800 600 400 200 400 600

period 19

750 400 400 750 400 400
850 350 350 850 350 350
750 400 400 750 400 400
850 350 350 850 350 350
750 400 400 750 400 400
550 550 550 550 550 550

period 20

400 600 800 600 400 200
550 550 550 550 550 550
750 400 400 750 400 400
500 500 500 500 500 500
500 500 500 500 500 500
800 400 400 200 400 600



period 1

400 600 800 600 400 200
800 400 400 200 400 600
400 200 400 600 800 600
400 600 800 600 400 200
400 800400200 0200
400 600 800 600 400 200
100 100 900 400 300 200
900 600 300200 1000

period 2

900 450 400 350 300 250
900 450 400 350 300 250
400 600 800 600 400 200
800 600 400 200 400 600
100 100 900 400 300 200
800 600 400 200 400 400
400 800 400 200 0 200
400 800 400 200 0 200

period 3

900 600 300 200 1000
800 600 400 200 400 600
300 300 300 300 300 900
300 300 300 300 300 900
300 300 300 300 300 900
750 250 250 750 400 400
900 600 300200 1000
100 100 900 400 300 200

period 4

750 250 250 750 400 400
400 200 400 600 800 600
Q00 450 400 350 300 250
900 600300200 1000
400 800 400 200 0 200
750 250 250 750 400 400
900 450 400 350 300 250
750 250 250 750 400 400

period §

400 200 400 600 800 600
900 450 400 350 300 250
750 250 250 750 400 400
750 250 250 750 400 400
800 600 400 200 400 600
850 350 350 650 150 180
850 350 350 650 150 150
400 200 400 600 800 4600
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High-Contention Payoff

Lists

period 6

900 600 300 200 1000
900 600 300 200 1000
750 250 250 750 400 400
850 350 350 650 150 150
850 350 350 650 150 150
750 250 250 750 400 400
400 600 800 600 400 200
800 600 400 200 400 600

period 7

900 450 400 350 300 250
400 800400 200 0 200
400 600 800 600 400 200
750 250 250 750 400 400
900 450 400 350 300 250
900 450 400 350 300 250
800 600 400 200 400 600

850 350 350 650 150 150

period 8

900 600300200 1000
800 600 400 200 400 600
850 350 350 650 150 150
800 600 400 200 400 600
750 250 250 750 400 400
800 600 400 200 400 600
Q00 450 400 350 300 250
400 600 800 600 400 200

period 9

100 100 900 400 300 200
400 800 400 200 0 200
400 200 400 600 800 600
850 350 350 650 150 150
900 450 400 350 300 250
900 600300200 1000
750 250 250 750 400 400
Q00 600300200 1000

period 10

850 350 350 650 150 150
800 600 400 200 400 600
400 600 800 600 400 200
400 800 400200 0 200
800 600 400 200 400 600
900 450 400 350 300 250
400 200 400 600 800 600
100 100 900 400 300 200

period 11

850 350 350 650 150 150
750 250 250 750 400 400
850 350 350 650 150 150
750 250 250 750 400 400
900 600 300 200 1000
400 800 400 200 0 200
400 800 400 200 0 200
850 350 350 650 150 150

period 12

400 800 400 200 0 200
400 600 800 600 400 200
750 250 250 750 400 400
900 600 300 200 100 0
900 600 300 200 1000
800 600 400 200 400 600
850 350 350 650 150 150
400 800 400 200 0 200

period 13

900 600 300200 1000
400 800 400 200 0 200
850 350 350 650 150 150
900 450 400 350 300 250
400 200 400 600 800 600
900 450 400 350 300 250
400 200 400 600 800 600
850 350 350 650 150 150

period 14

900 450 400 350 300 250
400 600 800 600 400 200
800 600 400 200 400 600
100 100 900 400 300 200
800 600 400 200 400 600
400 200 400 600 800 600
400 600 800 600 400 200
900 600 300200 1000

period 15

400 800 400 200 0 200
400 600 800 600 400 200
750 250 250 750 400 400
800 600 400 200 400 600
850 350 350 650 150 150
900 450 400 350 300 250
750 250 250 750 400 400
750 250 250 750 400 400



High-Contention cont.

period 16

400 800400200 0200
400 600 800 600 400 200
100 100 900 400 300 200
900 600 300200 1000
400 600 800 600 400 200
800 600 400 200 400 600
400 200 400 600 800 600
400 600 800 600 400 200

period 17

100 100 900 400 300 200
800 600 400 200 400 600
400 800 400 200 0 200
400 800 400 200 0 200
900 450 400 350 300 250
900 450 400 350 300 250
400 600 800 600 400 200
800 600 400 200 400 600

period 18

300 300 300 300 300 900
750 250 250 750 400 400
900 600300200 1000
100 100 900 400 300 200
900 600 300200 1000
800 600 400 200 400 600
300 300 300 300 300 900
300 300 300 300 300 900

period 19

400 800 400 200 0 200
750 250 250 750 400 400
Q00 450 400 350 300 250
750 250 250 750 400 400
750 250 250 750 400 400
400 200 400 600 800 600
900 450 400 350 300 250
900 600300200 1000

period 20

800 600 400 200 400 600
850 350 350 650 150 150
850 350 350 650 150 150
400 200 400 600 800 600
400 200 400 600 800 600
900 450 400 350 300 250
750 250 250 750 400 400
750 250 250 750 400 400
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Appendix B.

INSTRUCTIONS FOR EXPERIMENT

You are about to participate in an experiment in which you
will make decisions in a market. Your profits from the
experiment will be in terms of francs. You can convert your
franc earnings into U.S. dollars at a conversion rate of 600
francs to 1 U.S. dollar. Any profits you make in the experiment
are yours to keep. You will be paid at the end of the

experiment.

The experiment will be divided up into a series of
"periods." At the beginning of each period you will be given
redemption values on your terminal screen. The redemption values
are the franc values to you of six different items. Your
redemption values are known only to you, and you should not
reveal them to any other participants. Your profit each period
is equal to the redemption value of the unit you receive. For
example, suppose the redemption value for the unit you bought is
700 francs. Then your profit for that period is 700 francs.

In our market you will be one of 8 participants to be
assigned units. There will be six units, which will be numbered
from one to six, allocated simultaneously each period. These
units are not the same; that is, they do not necessarily have
the same redemption values to a participant. They will be
allocated through a procedure that will be described later.

In Table 1 you will find the ten possible sets of redemption
values. The table lists the number of the unit and the
corresponding value. The sheet has eleven rows. The first row,
labeled unit, indicates the number of the unit being allocated
(in the experiment there will be six units assigned, which will
be referred to as units 1,2,...,6). The second through the

eleventh row give the possible participants' redemption values.
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For the first set of redemption values, unit 1 is worth 800

francs to the participant, whereas unit 4 is worth 200.

Each participant in the experiment is given one of the ten
possible sets of redemption values at the beginning of each
period. The sets of redemption values other participants happen

to receive do not affect the redemption values you receive.

TABLE 1.
Unit Number

Set of

Values 1 2 3 4 5 6
1 900 450 400 350 300 250
2 400 600 800 600 400 200
3 800 600 400 200 400 600
4 100 100 900 400 300 200
5 400 800 400 200 0 200
6 900 600 300 200 100 0
7 300 300 300 300 300 900
8 750 250 250 750 400 400
9 400 200 400 600 800 600
10 850 350 350 650 150 150
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THE ALLOCATION PROCESS

Each period you will be given a budget of "chits" with which
to bid. The chits themselves have no value to you and cannot be
redeemed at the end of the experiment. They are of use only to
make bids on the units. You may use only chits (not francs) to
make bids. You need not use all your chits in a period. The
chits will be good only for that period, after which any
remaining chits will be forfeited. You will then receive a new

budget for the next period.

Each period you will see a display on your terminal like the
one shown below. The top row gives the number of the unit to be
allocated. The third row, labeled value, gives your redemption
values for that period. The second row indicates your bids on
the corresponding units. You may enter a bid on the unit by
selecting the correct box and typing in your bid. You must enter
a bid that is greater than or equal to zero for each unit. 1In
the following figure, the buyer has bid 0 for unit 1, 500 for
unit 2, and 600 for unit 3. ©Notice that the amount of chits in

your budget is given in the upper right corner.

Chits = 3980

Unit 1 2 3 4 5 6
Bid 0 500 600 199 205 22
Value 800 600 400 200 400 600

Once you have entered all of your bids and pressed the END
key, you will be asked to confirm them. After checking them and
making sure they are the bids you want, press the Y key to send
the bids. A market program determines the recipient of each

unit. By this procedure you can receive at most one unit, and

all six units will be assigned.




THE ALLOCATION:

Once the bids are received from all the participants, the
six units are allocated by the following method. It finds the
combination of "assignments" for which the total of the winning
bids for all six units is the greatest. That is, it gives units
to buyers (recall, however, that one buyer can get at most one
unit) so that the total of the bids of the buyers on the units
they actually receive is the highest possible. An example with

three participants and three units is given below (example 1).

Example 1: Three Buyers and Three Units

Units and Bids
Buyer 1 2 3
1 800 700 200
2 700 500 400
3 400 400 400

Here, buyer 1 has bid 800 chits for wunit 1, 700 for unit 2,
and 200 for unit 3. Buyer 2 has bid 700 chits for unit 1, 500
for unit 2, and 400 for unit 3. Buyer 3 has bid 400 chits for

each unit.

The allocation is:

Buyer 1 receives unit 2.

Buyer 2 receives unit 1.

Buyer 3 receives unit 3.

The total of the winning bids from this assignment is 1800,
and the total of winning bids from any other assignment is less

than 1800. Notice from the example, that the buyer who bids the

most on a unit does not necessarily receive that unit. If two or
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more assignments yield the same maximum total, the assignment is

chosen randomly.

PRICES

In addition to allocating the slots, the market program
computes a price for each slot. These would be the prices paid
if money was being used; they will be subtracted from your chit
budget each period, but they do not influence your profits. They
are for your information only, and the prices of all 6 slots will
be posted on the board each period. They are calculated as
follows:

2) After the allocation is made, the program calculates the
total of the bids of the buyers on those units that they are
allocated.

3) The following total is calculated for unit 1. The
program supposes that there was an extra unit 1 available and
therefore a total of seven units to be sold. It then finds the
combination of assignments for which the total amount bid for
units received is the greatest possible (as in step 1). The
total of the bids of the buyers on the units they would receive
is calculated (as in step 2). Notice this is always greater than
or equal to the amount in step 2 because there are more
combinations available, and all of the combinations previously
available are still available.

4) The difference between the two-bid total is calculated.
This difference is the price charged for unit one.

5) Steps 3 and 4 are repeated for units 2-6. The example
below works out the process for a case when there are two units

to be sold and two buyers.
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EXAMPLE 2:

Units and Bids

Buyer 1 2
1 1000 600
2 800 100

The combination of assignments where the total amount bid on
the units is the greatest possible is the following: Buyer 1
receives unit 2 and buyer 2 receives unit 1. The total amount
bid is 600 + 800 = 1400. If there were another unit 1 available,
however, each buyer would receive a unit 1, and the total amount
bid would be 100 + 800 = 1800. Therefore, the price charged for
one unit is 1800 - 1400 = 400. If there was another unit 2
available, the allocation would be unchanged. Therefore, the

price of unit 2 is zero.

After this process is completed, the terminal will indicate
the unit you received. The redemption value of the unit you
receive is your profit for the period. If you do not receive a

unit, your profit is zero for the period.

You can press the H key at any time to see the history
screen. The screen shows your redemption values for each unit
during the past periods in the rows labelled values, and the bids
you submitted on each unit during the past periods in the rows
labelled bid. The units which you have already received and the
payoffs you have earned are in the rows labelled payoffs, which
are highlighted.

This concludes the instruction for the experiment. If you
have any questions, please raise your hand and a monitor will
answer your questions. We will have a practice period to help

familiarize you with the experiment.
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Appendiz C: Formal description of the mechanisms.
Let K = the set of slots, and N = the set of agents.
VICKREY-LEONARD MECITANISM (Leonard 1983)

Message Space:

- Each agent submits a vector of monetary bids b = (b,,...,b;), one bid for each of & slots.

-b;20, jEK.

Outcome Rule:
1) The allocation (‘”ij) is determined by solving the assignment problem:
Find (z,;) to Maximize V = Z 2 bz (VL)
zed i€ENjE€K

such that

VL1) Y o<1, VieN;.
JEK

VL2) Yz <1, VieK;
iEN

VL3) 2, € {0,1}, Vie N, Vi€ K,

where b, is agent i’s bid for slot j.

2) Prices for Vickrey-Leonard
Two methods to determine prices
2a) Dual Method

Find (p,) to Minimize Y _ p; (D)
JEK

such that

Dl) w;+p;2b;; VjeK, VieN;
D2) ¥ pj+ D wi=W;

JEK 1EN
D3) pj, w; 20, Vi€N, Vj€K,

where V is the total value of the optimal assignment.



2b) Direct Vickrey-Groves method:

Prices are determined by p; = V]I\(,+j—V§, where V& = maximum of bids on slots
K ={1,...,k} assigned to agents N = {1,...,n}, and V{S*'j:maximum of bids on slots
K U{j} assigned to agents N = {1,...,n}; that is, adding another slot of type j. The price

charged to each bidder is equal to the cost he imposes on the rest of the bidders.

In the VL mechanism honest revelation is a weak dominant strategy. Honest
revelation is a weak strategy since the optimal allocation is additive-invariant as noted in
Section 2. In the VL transfer mechanism, the surplus goes to the planner (extracted via the

payments).

BARR-SHAFTEL PROGRESSIVE AUCTION
(Barr and Shaftel 1976)

Message Space:
- At each step of the auction, each agent submits a request for a set of slots.

- A request c C KU is an offer to buy a set of slots at the announced prices.

Outcome Rule:

- At the start of the auction, the auctioneer announces a vector of prices (one price for
each object) at arbitrarily high values.

- The prices are then lowered in any manner whatever—one at a time, all at once or at
different rates. As the price of an object drops, requests are placed on that object. Agents do
not know the number of requests on any slot.

- As soon as two bids on the same object have been made, the highest bidder is informed
that he has been temporarily assigned that object at a price equal to the second highest bidder.
The price of that object stops dropping at that time. No knowledge of objects assigned is
provided to anyone but the highest bidder.

- If the bidder is temporarily assigned two or more objects, he must retract his bid on all
but one of them. The prices on those objects with retracted bids will then start dropping once
again until a new second bid is received.

- When there are exactly two bids on each object, the auction stops.
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DEMANGE-GALE-SOTOMAYOR EXACT AUCTION
(Demange, Gale and Sotomayor 1986)

Message Space:
- At each step of the auction, each agent submits a request for a set of slots.

- A request ¢ C KU is an offer to buy slots at the announced prices.

Outcome Rule:

- At the start of the auction, the auctioneer announces a vector of prices (one price for
each slot) at arbitrarily low values.

- At each announcement of prices, agents submit requests.

- The auctioneer finds either an assignment or the largest pure-overdemanded set. (A set
of slots is overdemanded if the number of bidders demanding only items in this set is greater
than the number of items in the set).

- If no overdemanded set exists (then there is a feasible assignment), the auction ends
and an assignment is made.

- If an overdemanded set exists, prices are raised to the next increment in the over-
demanded set.

- The process continues until a feasible assignment is found (no overdemanded set
exists).

- If a slot goes unrequested, it goes unassigned.

DEMANGE-GALE-SOTOMAYOR APPROXIMATE AUCTION
(Demange, Gale and Sotomayor 1986)

Message Space:
- At each step of the auction, each agent submits a request for one slot.

- A request c € KU is an offer to buy a slot at the announced price.

Outcome Rule:
- At the start of the auction, the auctioneer announces a vector of prices (one price for
each slot) at arbitrarily low values.

- At each announcement of prices, agents submit requests.
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- The auctioneer finds either an assignment or the set of slots with more than one
request.

- If there is a feasible assignment the auction ends and an assignment is made.

- If there are slots with more than one request, then the prices of those slots are raised to
the next increment.

- Once an agent submits a request for a slot he can remove his request only if the price
is increased (another agent submits a request for the same slot).

- The process continues until a feasible assignment is found (there is at most one request
for each slot).

- If a slot goes unrequested, it goes unassigned.

SERIAL DICTATOR

Message Space:
- Each agent submits a vector of ranks r=(ry,...,r;), where re€ H(K), where

H(K) = set of permutations of K = (1,...,k) slots.

Outcome Rule:

- An ordering f € H(N ) of agents is chosen by the planner and announced to the
agents.

- The first agent in the ordering is assigned to her preferred slot.

- The second agent in the ordering is assigned to her preferred slot of those remaining.

- This continues with the second, third, and so on until all slots are assigned.

MULTIPLE-UNIT ENGLISH CLOCK AUCTION

Message Space:

- At each step of the auction, agents submit a request for a single slot, c € K U@.

Outcome Rule:
- At t =0, an initial price vector p, is announced by the auctioneer. Agents submit

requests and if a feasible assignment exists, the auction ends.
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- A feasible assignment is one where there is at most one agent requesting each slot.
- If no such assignment exists, prices are raised to the next increment in those slots with
more than one bidder.

- The process continues until a feasible assignment is found.

MULTIPLE-UNIT ENGLISH OPEN AUCTION

Message Space:
- At each step of the auction, agents submit a bid for a single slot, b]- >0, jelkK.

Outcome Rule:
- At t =0, an initial price vector p, is announced by the auctioneer.
- Agents submit bids and the highest bidder in each slot becomes committed to that slot.
- Agents are allowed to submit a bid on at most one slot. A bid is accepted and the
bidder becomes committed if the bid is greater than the current bid on a slot.
- If no new bids are tendered for 30 seconds, then the auction ends and committed bidders

are assigned to their slots.

GALE-SHAPLEY MECHANISM (Gale and Shapley 1962)

Message Space:
- Each agent submits a vector of ranks r = (rypeenmr) € H(K), where H(K) = set of

permutations of K = (1,...,k) slots.

Outcome Rule:
- An ordering f € H(N) of agents is chosen by the planner and announced to the
agents.
- The agent-optimal Gale-Shapley algorithm is applied, with agents as the proposers,
and the ordering f as the rejector or tie-breaking rule.
- The algorithm:
1) Each agent is matched with their first-ranked slot.
2) In each slot all but the highest-ranked agent is rejected according to the ranking f.
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3) Each rejected agent is matched with their next-highest ranked slot.

4) Steps 2 and 3 are repeated until there are no rejected agents.

- If the number of agents > the number of slots, extra slots are added that are ranked
lowest among all agents.

- Since the slots have the same preference ordering over agents, there is a unique

outcome (for that ordering).
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Appendix D. Predicted efficiencies--graphs
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Appendix E. Observations--graphs
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Appendiz F: Equilibria for chit mechanism

In this section we discuss equilibria for the chit mechanism. We will
discuss equilibria in 2 simple cases (1) k=2,n>2, and 2) k=3,n=3 ), and
give some numerical examples. We will then discuss the equilibria of the chit
mechanism in the experimental environment, including the use of a genetic
algorithm to compute an equilibrium. We first present some facts associated

with the implementation of the chit mechanism:

1. The chit mechanism uses the solution to the optimal assignment
problem, where an agent submits a bid of chits or “funny money” to allocate

slots; ties are broken randomly.

2. Chit bids are allowed to be from a discrete set with lower-bound 0 and
upper bound an assigned and known chit budget. Every agent’s budget is known
to the planner, and each individual agent knows her own budget and the budgets

of the other agents.

3. Chits do not affect an agent’s valuation of a slot or her utility; chits

affect only the probability of being assigned a particular slot.

4. An agent’s preferences (her type) are randomly chosen with

replacement from a given population of types.



Notation:

Let K ={1,..,k} Dbe the set of slots to be allocated and let
N ={1,...,n} be the set of agents. Let B‘=agent i’s chit budget, and let
B' = B, Vi € N; this is not necessarily a simplifying condition. A bid is a vector
b€ R% such that 3 ,b; < B. Let P;(b") = Probability that ¢ wins slot j with
bid &'. If n>k, then ile(bi) =1, Vj € K, since the VL mechanism yields a
strictly feasible outcom: when all bids are nonnegative; that is, all slots are
assigned if there are as many bidders as slots. Let A¥(B) = {b e ®% | T ;b;, = B}
the set of feasible bids where all chits are used. Let U(b*,8') = Utility of a type
6" c © with a bid of b; we will usually write U(b) with 6' and 7 implicit,
specifically, U(b) =j ;KOJ-PJ-(I)).

There are two simple restrictions on bidding rules that are necessary for a

bidding rule to be undominated:
C1. Bid all chits on the slots.

C2. Bid zero on the least preferred slot. If there are more bidders than

slots, then there is an implied slot that has zero value to all agents.

We will discuss equilibria in 2 simple cases!: 1) k=2,n>2, and 2)

k=3n=3.

1 For the trivial case of k=1, n>1 we observe: U(b)=6,P,(b); b€[0,1]. Result: b*=B' is a

dominant strategy for all { € N. The probability of winning the slot is:

. 3 . . . n—l . . .
P, (b¥)=Prob(b*>max {67})+Prob(b'=max {b7}) ¥ Prob(l bids tied with b’ | b® = r_naxA{bJ})(L)

1 J#d FEX ,; J#i I+1

. 123 .
Pl(b') is maximized with the largest b possible,;&w’hich is B, independent of the other agents’ bids. In this
case no information about the value of the slot is obtained from the agents and the resulting allocation is

random.
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Casen=k =2

U(b) =8, - Py(b)+ 6, P,(b),
=8, + (6, —8,)- P,(b); be AYB);
result: if 8, > 8, bid so P,(b) is maximized, b; = B, b, = 0,
if 8, < 6, bid so P,(b) is minimized, b; = 0, b, = B,
if 8, = 0,, the agent is indifferent between slots, so any feasible bid,

is a weakly dominant strategy for all ¢ € N.

The probability of winning slot 1, given that agent ¢ uses the above strategy, is
P,(b') = Prob(b} > rln;tzc{d' =b —bL})

+ Prob(bj = IP;%‘{CII mz;: {Prob m d™ tied with b} | b} = max{d’}) (——_*_—1)},
™

where d' =b! —b). P,(b') is maximized with the largest bi possible,

which is B’, independent of the other agents’ bids.
P,(b*) is similar to P;.

In this case the agents supply information on their rankings, and the

allocation is the same as the serial dictator.
Casen=k =28

U(b) =6, - P1(b) + 6, Py(b) + 85 P3(b) ,
=03+ (6, — 83) - P1(b) + (6, — 65) - Po(b); b€ AY(B).
Without loss of generality let 6, > 6, > 6.
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Given the observations made in Cl and C2, chits will be allocated
between an agent’s two highest valued slots. There are three resulting types of
strategies:
S1. Bid all chits on the highest valued slot.
S2. Bid all chits on the second highest valued slot.
S3. Divide the chits between the highest valued and the second highest
valued slots. There are three variations of the strategy:
S3-1. Bid more on the highest valued slot.
S3-2. Bid more on the second highest valued slot.
S3-3. Bid an equal amount on the highest valued slot and the second

highest valued slot.

We will first describe the probability of being assigned a slot. We will
restrict the strategies of agents : =2 and 3 to strategy S1, and compute the

probabilities of receiving a slot to agent i = 1.

Suppose agent 1 uses the strategy S1:
Then b= (B,0,0),
P,(b) = Pr(no tie slot 1) +3Pr(1 tie slot 1) + 3Pr(2 ties slot 1);
P,(b) = Pr(no tie slot 1) + 3{Pr(bid slot 1 and 3) + Pr(bid slot 1 and 2)}
+1Pr(2 ties slot 1);
P,(b) = 3Pr(bid slot 1 and 3) + 3Pr(2 ties slot 1);
P4(b) = 3Pr(bid slot 1 and 2) + 3Pr(2 ties slot 1),

where the probabilities on the right-hand side describe the placement of
bids by agents 2 and 3; e. g., Pr(bid slot 1 and 2) = Probability that either
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agent 2 bids on slot 1 and 3 bids on slot 2 or agent 2 bids on slot 2 and 3 bids on
slot 1. When agents ¢ = 2,3, use strategy S1, then
P,(b) = Prob(b! > max,{b{}) + 1Pr(b} = b%,b! > b3)
+1Pr(b1 = 83,0} > b}) +3Pr(b} = 2,61 = b3).

To determine this probability, denote the possible rankings of slots:

(0):1,2,3 = 6,>6,>6, (1):1,3,2
(2):2,1,3 (3) : 2,3,1
(4) :3,1,2 (5) :3,2,1.

Define three different types by their highest valued slot; type A = {ranks
0 and 1}, B = {ranks 2 and 3}, C = {ranks 4 and 5}. Let P, = Pr(type A),
Py = Pr(type B), and Py = Pr(type C). Given that agent 1 is type A we define
the following notation:
P(2) = Pr(both agents 2 and 3 are type A) = P %
P(1) = Pr(only one agent is type A)
= Pr(1 type A, one type C) + Pr(1 type A, 1 type B)
= P(A,C)+ P(A,B)
= 2P 4P, + 2P Pg;
P(0) = Pr(no (;ther agent is type A)
= Pr(one type B, one type C) + Pr(2 type B)+Pr(2 type C)
=2P,Pg+ Pg’+ P>
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Py(b) = P(0) +3P(1) + 5P(2) = 2PcPp+ Py + P% + PsPo + P4Pp+3PY%;
Py(b) = 3P(A,C) +3P(2) = P4Pc +3P 4%
Py(b) = 1P(A,B) +1P(2) = P,Pg+3P,>.

Suppose agent 1 uses the strategy b* = (0, B%,0), while agents 2 and 3 use
the strategy S1, then:
P,(b*) = Pr(no tie slot 2) +1Pr(1 tie slot 2) + 3Pr(2 tie slot 2);
P,(b*) = $Pr(1 tie slot 2, bid slot 3) + 3Pr(2 tie slot 2);
Py(b*) = 3Pr(1 tie slot 2, bid slot 1) + 3Pr(2 tie slot 2).

Py(b*) = 3P(B,C) +3P(2);
Py(b%) = P(0) +3P(1) +3P(2);
Py(b”) = 3P(A,B) +5P(2).

P(0) = P(A,B) + P(B,C);
P(2) = Pg%

P(B,C) = 2P5P;

P(B,A) =2PgP,;
P(1)=2PgP 4 +2PgPg;
P(0) = 2P,P,+ P2+ P2

P2(b*) =PBP0+%PBZ;
P,(b*) =2PyP4+ P*4,+ P+ P,Pg+ PcPg+3Pg
Py(b*) = PP 4 +3Pg%
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Suppose agent 1 uses the strategy b= (B'—¢,¢,0), while agents 2 and 3

use the strategy S1; then:

P,(b%) = Pr(2 bids slot 3) 4+ Pr(2 bids slot 2) + Pr(1 bid 2, 2 bid 3),
P,(b9) = Pr(1 bid 1, 1 bid 3) + Pr(2 bid 1),
P4(b%) = Pr(1 bid 1, 1 bid 2).

P,(b) = Pc® + Pg® +2PgP¢
Py(b¢) =2PcP 4+ P4
P3(b%) =2PgP,

Given the probabilities computed above, we can find the utility to agent

one of playing each one of the strategies b, b*,b°.

U(b) = 65+ Py(b)(8, — 63) + Py(b)(8, — 65)
=03+ (2PoPp+ P+ P4+ P 4Py + PP +3P%)(6, — 65)
+ (P 4P +3P%) (6, — 65).

U(b*) = 03+ Py(b")(6, — 83) + P,(b")(6, — 63)
=03+ (PpP¢ +%PZB)(91 —8s)
+ (2PcP,+ P4+ Py + P Pg+ PcPg+3P%) (6, —6;).

U(b%) = 05 + Py(b°)(6;, — 03) + Py(b°)(8, — 63)
=03+ (2P;Pg+ Ph+ P%)(6, — 05) + (2P 4P + P%)(6; — 63).



F-8
We can describe the conditions necessary for S1 to be an equilibrium

strategy. Without loss of generality let §; = 0.

U®b) > U(b*)

(2PoPg+ P+ Pt + P Pc+ P,Pg+1P%)6, + (P 4P +1P%)6,
> (PgPg+3P%)0, + (2PoP 4+ P4+ Pt + P4Pg+ PPy + 1P%)6,

(PcPg+2P%+ Pt +P4yP.+ P,Pg+1iP%)6,
> (PoP4+%P%+ PL+ P,yPg+ PoPg+iP%)0,

(PcPy+3P4+ P+ P,Pg+ PoPg+iP%) ™ 01"

(PcPg+%P3+ PL+ P, Po+ P, Pg+1iP%) S 6,

So U(b) > U(b*) is true for all 8, and 6,, since 8, < 6, when
5P +3P4 2 3Py +3Pp = P32 Py = Pp> P,
Similarly, U(b) > U(b¢) is true for all 6, and 6, when Pg>1iP,,
and U(b*) > U(b°) is true for all 6, and 6, when 3Pz > P,.
When P, = Pg= P, the strategy Sl is an equilibrium strategy. The

above relationships indicate that in some circumstances it is optimal (in an

expected utility sense) to bid on the second, most preferred slot.



Genetic algorithm for chit equilibria

To calculate the equilibria for the experimental environment, we used a
genetic algorithm?. Genetic algorithms (GAs) are “search algorithms that are
based on the mechanics of natural selection and natural genetics.”® We use the
GA as numerical method to compute the equilibria of the chit mechanism and
not as a tool for studying “learning behavior.”* The GA is designed to be
effective in solving problems where more traditional methods (such as calculus-
based methods) fail. The GA is robust to changes in its parameters and uses
payoff (or objective function) information, not derivatives or other external
knowledge®. Because of the use of payoff functions, GAs are easily adapted to

find equilibria of games.

To compute equilibria using a GA, we used the following approach.
Individual strategies were represented by a string of 6 digits (0,...,9), one for
each slot. Each digit represented the percent of chits (relative to the sum of the
digits) to be applied to its corresponding slot. For example, if s = 402712, the
sum is 16 so the percent of chits placed on slot 1 is 4/16 or 25%, and on slot 6 is
2/16 or 12.53%. The total number of chits was set to 1000 (as in our
experiments), so the corresponding bid is (250, 0, 125, 437, 62, 125), fractions are
truncated so that the total may not be 1000. This truncation rule is arbitrary
but meets the requirement that the sum of bids is no greater than 1000. In this
representation all of the chits are allocated to the slots, except for 1 or 2 chits

because of truncation. We will discuss this restriction on the strategy space

2 See Goldberg (1989) for an introduction to genetic algorithms, and Andreoni and Miller (1990) for

the use of a GA in an economic game.
3 Goldberg (1989), p. 1.
4 See Andreoni and Miller (1990) for an example of GAs used to study individual learning behavior .

5 Goldberg (1989 ), p. 7.
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below.

The GA was performed under both the low-contention and the high-
contention experimental environments. Since there are 10 types (slot-valuation
sheets) in each of our experimental environments, we created the same 10 types
for the GA in each environment. Each type had a population of 20 strategies.
Initial strategies were chosen at random by choosing a digit from the uniform
distribution, Prob(digit =d) =3, d € {0,...,9}, with replacement. This popula-
tion of strategies comprises a generation. The genetic operations of reproduction,
crossover, and mutation are then applied to a generation to form a new

generation. The process repeats itself for a specified number of generations.

To form a new generation of strategies, participants (six for the low-
contention environment and eight for the high-contention environment) were
chosen at random (uniformly) from the population of strategies with
replacement. The strategies of these chosen participants were submitted to an
assignment algorithm, and the optimal assignment was computed and the payoffs
assigned to each participant (based on their type). Four hundred games were
played, given a population of strategies.® If a strategy was chosen more than
once (each strategy' was expected to be chosen 12 times in the low-contention
environment and 16 times in the high-contention environment), the average
payoff was calculated and assigned to the strategy. If a strategy was not chosen

in the 400, games it was assigned the average payoff for its type.

A new population was then constructed by first assigning a probability
weight to each strategy. The weight was constructed by first removing strategies

that had payoffs 1.5 standard deviations below the mean payoff to the strategies

6 I initially set the number of games to 200, but found that in playing 400 games, there was faster

convergence, since a better estimate of the performance of a strategy was obtained.
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of its type (the standard deviation was calculated only from the strategies of the
same type). The payoffs were then scaled as described by Goldberg (1989), page
79, and the resulting scaled payoffs are called the fitness of the strategy. The
fitness was then used to construct the probability weights (weights for each type
were constructed separately), where the probability that strategy s is chosen is
the fitness of s divided by the sum of fitness for its type. Ten pairs of strategies

were then chosen with replacement on the basis of these probability weights.

The process of constructing a new population from the fitness is called
reproduction and is a genetic operator. Two other genetic operators, crossover
and mutation, were then applied to the new pairs of strategies. A crossover was
applied to a pair of strategies with a 60% probability. A crossover exchanges
information between two strategies to create two new strategies and mimics
innovation and mating. After thé population of strategies completes the
crossover step, individual digits undergo mutation. Mutation is a random selec-
tion of a new digit. If a digit is selected for mutation, then a new digit is chosen
at random from {0,...,9}. The probability of mutation was initially set to
between 3 and 6% and was decreased after a specified number of generations.

This completes a generation.

We varied the parameters (number of generations, mutation probability,
generations between reduction in mutation probability, and number of games
each generation) of the GA, and the results we obtained appear robust. We also
artificially used an equilibrium outcome as an initial population to see if it would

be stable. There were no variations from the initial population.

The construction of strategies by representing slots by a 0-9 digit is not

the only construction available. In fact, there is a question about the restriction
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of the strategy space that should allowed. For example, the first representation
of strategies we used consisted of a binary digit 0/1 for each slot; the allocation
of chits was divided among those slots that were represented by a 1. A
restriction that we used for both of these representations was to allocate the
entire chit budget, which is a weakly dominant strategy for all types and a
strong dominant strategy for most types. This relates to a third restriction
which we have begun to test, the restriction to dominant strategies when they
exist or to perturbations about dominant strategies when they exist. For
instance, in the low-contention case, type 9 has a dominant strategy to bid all
her chits on slot 6 (value 900), since she is guaranteed to receive a slot worth
300. We could restrict strategies of this type to the dominant strategy, or we

could allow slight perturbations, perhaps in the range [ — 50, + 50].

The result of allowing a broader strategy space may be in equilibria that
are more robust. The most evident result of restriction of the strategy space is
to speed convergence. It is unknown whether a broader strategy space will allow
us to find different or more robust equilibria, or whether it is worth the cost of a
slower process. A faster process allows us to have a larger number of GA runs,
since if there are more than one equilibria, it will usually take a number of runs

to find them.

In the next two pages we present the chit equilibrium that resulted from
the GA. In the low-contention environment, notice that a number of types have
dominant strategies to bid their entire budget on one slot. Also in the low-
contention environment, notice that there are two strategies that are entirely
indifferent between any bid, since they are guaranteed to receive a slot and they

value all of the slots the same.
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In the high-contention environment, all strategies except for type #2 had
an equilibrium strategy to bid all the chits on one of the top-valued slots. Where
there are two top-valued slots (type #7), the equilibrium strategy is to bid all
chits on the lowest-contention slot (slot 4). These strategies resulted from a
number of different GA runs; in each of the runs the only strategy that differed
was for type #2. All the strategies thay were computed for #2 were consistent
in that they all had positive bids on the same slots, and the ranking of the slot
values was the same; they differed only on the numerice quantity for the bids.
In the low contention environment the results were even more consistent and

there were no other equilibria that appeared.
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Results of genetic algorithm

High contention

type# | slot 1 2 3 4 5 6 | Comment

0 value: 900 450 400 350 300 250
bid 1: 1000 0 0 0 0 0

1 400 600 800 600 400 200
0 0 1000 0 0 0
2 800 600 400 200 400 600 not unique to
0 500 0 125 125 250 perturbations
3 100 100 900 400 300 200
0 0 1000 0 0 0
4 400 800 400 200 0 200
0 1000 0 0 0 0
5 900 600 300 200 100 0
1000 0 0 0 0 0
6 300 300 300 300 300 900
0 0 0 0 0 1000
7 750 250 250 750 400 400
0 0 0 1000 0 0
8 400 200 400 600 800 600
0 0 0 0 1000 0
9 80 350 350 650 150 150

1000 0 0 0 0 0

#top bids 3 1 2 1 1 1  does not include #2
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dominant strategy

dominant strategy

dominant strategy

type# | slot 1 2 3 4 5 6 | Comment
0 value: 800 600 400 200 400 600
bid 1: 1000 0 0 0 0 0
1 400 600 800 600 400 200
0 0 1000 0 0 0
2 400 200 400 600 800 600
0 0 0 0 1000 0
3 80 350 350 850 350 350
0 0 0 1000 0 0
4 750 400 400 750 400 400
0 0 0 1000 0 0
5 900 300 300 300 300 300
1000 0 0 0 0 0
6 300 300 900 300 300 300
0 0 1000 0 0 0
7 500 500 500 500 500 500
? ? ? ? ? ? all strategies
indifferent
8 550 350 350 350 550 550
? ? ? ? ? ? all strategies
_ indifferent
9 300 300 300 300 300 900
0 0 0 0 0 1000
#top bids 2 2 2 1

1 does not include #7,8
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Numerical ezamples, n =k = 3:

ezample 1.

Let P, = Pg=P,=1%
P(A,C)=3% P(A,B)=3}
P(0)=3+5+5=35 P()=5+5=35 P()=%

Wi

"
=
I

YW YT
w [ %]
~~ ——~

(w,] o

Il Il
[ Ll wof— Ol

U(b) = b3+ P1(b)(6, — 05) + Py(b)(8, — 65)
= 0.7 . 01 + 0.15 . 92 + 0-15 "03
= 63 + 0.7 M (91 - 93) + 0.15 . (92 - 03).

P,(b*) = 0.15, P,(b*)=0.70, P,(b")=0.15,
Ub*) =63+ P,- (6, —63)+ P, (8, —63)
= 03 + 0.15 (91 - 93) + 0.7 (92 - 03).

U(b) > U(b") :
03 + 0.7 ° (01 - 93) + 0.15 ¢ (92 - 93) > 93 + 0.15 (01 - 03) + 0.7 (02 - 93),
0.55- (6, — 65) > 0.55- (8, — 03), which is true since (6; — 83) > (6, — 65).

Pi(b) =35, Py(b) =3, Ps(b%)=
U(5¢) = 65 + 0.4(8, — 65) + 0.3(6, 9)
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Ub) > U(b) :

B3+ 0.7+ (6, — 83) +0.15- (8, — 65) > 6 + 0.4(8, — 65) + 0.3(6, — 6),
0.25- (8, — 6) > 0.183 - (6, — 85),

(6, —85)
(6; —6s)

> 0.71, which is always true since (8, — 83) > (6, — 85).

ezample 2.

Let P, =0.9, Pg=0.05, Ps=0.05:

P(0) = 0.01, P(1)=0.18, P(2)=0.81,

P,(b)=0.01+1.(0.18) +1.(0.81) = 0.37,
Py(b) =1.(0.09) +1-(0.81) = 0.315,

Py(b) =1-(0.09) +3-(0.81) = 0.315.

U(b) = 85+ P,(b)(8; — 85) + Py(b)(6, — 85),

=0, +0.37- (6, — 85) + 0.315- (6, — 65).

]

1
2
1
2

Il

P(2) = 0.0025, P(1:0,3) = 0.005, P(1:1,0) = 0.09, P(1) = 0.095, P(0) = 0.9025.
P,(b*) = 0.003, P,(b*) = 0.95003, P,(b*)= 0.04583.
U(b*) = 65+ P, - (8; — 65) + P, - (6, — 65),

= 6, + 0.003(6, — 85) + 0.95083(8, — 65).

U(b) > U(b*) :
63 + 0.37 * (01 - 03) + 0-315 * (92 - 93) > 93 + 0-00§ (01 - 93) + 0-9508§(02 - 93),
0.36 - (8, — 65) > 0.63583 - (6, — 65),
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(6, —83) _ 0.63583
- = = ]. 409.
ARG 1.73409

So b is optimal only if M > 1.73409.
(6, — 65)
P,(b°) = 0.01, P,(b%)=0.90, P,(b%)=0.09.
U(b%) =03+ Py (6, — 63) + Py~ (6, — 63),
= 65+ 0.01(6, — 65) + 0.90(6, — 65).

Ub) > UK :
By +0.37 - (6; — B5) + 0.315 - (8, — B5) > 65 + 0.01 (8; — 63) +0.90(6, — 85),

(6, —65) _0.585 _
609> 636 = 1.625.

So b is optimal for the agent only if (6, = 65) > 1.625.
(6; — 65)
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Appendix G.1. Individual behavior sealed-bid auction--graphs
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Appendix G.2 Individual summary statistics for VL auction

All experiments:

Variable Mean Std Dev Minimum Maximum Valid
PAYOFF 380.7632 310.5245 -1600.000 900.000 680.00
TRUTHPAY 426.2000 258.5429 0.000 900.000 680.00
TRUTHDIF 45.4368 146.7570 0.000 1600.000 680.00
VBMIN -163.8368 470.0848 -900.000 9099%.000 680.00
VBMEAN 14.6676 570.6582 -416.667 9649.000 680.00
VBMAX 337.7397 1395.6819 -300.000 9999.000 680.00

(Contention Low)

Variable Mean Std Dev Minimum Maximum Valid
VBMIN ~-160.9028 174.7272 -600.000 0.000 360.00
VBMEAN -50.9958 93.6785 -299.833 241.667 360.00
VBMAX 57.9250 142.3833 0.000 800.000 360.00
PAYOFF 575.9583 172.5558 100.000 900.000 360.00
TRUTHPAY 601.4500 157.3724 300.000 900.000 360.00
TRUTHDIF 25.4917 77.8262 0.000 500.000 360.00

( High contention)

Variable Mean Std Dev Minimum Maximum Valid
VBMIN -167.1375 660.2900 -900.000 9099.000 320.00
VBMEAN 88.5391 820.3294 -416.667 9649.000 320.00
VBMAX 652.5313 1983.8441 -300.000 9999.000 320.00
PAYOFF 161.1688 283.4856 -1600.000 895.000 320.00
TRUTHPAY 229.0438 201.8817 0.000 895.000 320.00
TRUTHDIF 67.8750 195.1230 0.000 1600.000 320.00

( By Experiment )

exper eq 1

Variable Mean Std Dev Minimum Maximum Valid
VBMIN ~-247.5375 271.8287 -900.000 1200.000 160.00
VBMEAN -51.7479 251.8547 -416.667 1666.500 160.00
VBMAX 312.6313 912.5508 -300.000 9099.000 160.00
PAYOFF 148.0375 304.8587 -1600.000 895.000 160.00
TRUTHPAY 230.4438 210.5809 0.000 895.000 160.00

TRUTHDIF 82.4063 219.7484 0.000 1600.000 160.00
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Exper eq 3

Variable Mean std Dev Minimum Maximum Valid
VBMIN -188.1917 197.9628 -599.000 0.000 120.00
VBMEAN -62.6042 107.1294 -299.833 241.667 120.00
VBMAX 47.1333 97.5774 0.000 550.000 120.00
PAYOFF 586.0833 177.4733 200.000 900.000 120.00
TRUTHPAY 616.6917 159.1284 300.000 900.000 120.00
TRUTHDIF 30.6083 89.1370 0.000 500.000 120.00

exper eq 4

Variable Mean Std Dev Minimum Maximum Valid
VBMIN -86.7375 887.5851 -900.000 9099.000 160.00
VBMEAN 228.8260 1116.7245 -381.333 9649.000 160.00
VBMAX 992.4313 2613.5725 -200.000 9999.000 160.00
PAYOFF 174.3000 260.6678 -1352.000 749.000 160.00
TRUTHPAY 227.6438 193.4438 0.000 796.000 160.00
TRUTHDIF 53.3438 166.3463 0.000 1352.000 160.00

exper eq 8

Variable Mean Std Dev Minimum Maximum Valid
VBMIN -168.6833 166.5264 -600.000 0.000 120.00
VBMEAN -51.1542 96.6341 -283.333 188.000 120.00
VBMAX 50.7417 107.3225 0.000 501.000 120.00
PAYOFF 575.4750 167.0253 100.000 900.000 - 120.00
TRUTHPAY 604.6500 148.1712 300.000 900.000 120.00
TRUTHDIF 29.1750 74.7656 0.000 300.000 120.00

exper eq 19

Variable Mean Std Dev Minimum Maximum Valid
VBMIN -125.8333 152.0834 -500.000 0.000 120.00
VBMEAN -39.2292 73.3766 -248.833 175.000 120.00
VBMAX 75.9000 199.0602 0.000 800.000 120.00
PAYOFF 566.3167 173.8830 200.000 900.000 120.00
TRUTHPAY 583.0083 163.8610 300.000 900.000 120.00

TRUTHDIF 16.6917 67.9640 0.000 400.000 120.00



By sheet index

shtindx eq 1

(Low contention)

G.2-3

Maximum

Variable

VBMIN -149
VBMEAN -33
VBMAX 61.
PAYOFF 537.
TRUTHPAY 573.
TRUTHDIF 35.

shtindx eq 2

Maximum

Variable

VBMIN -121
VBMEAN -43
VBMAX 49
PAYOFF 596
TRUTHPAY 606
TRUTHDIF 10.

shtindx eq 3

Variable

Mean Std Dev
VBMIN -204
VBMEAN -91
VBMAX 0.
PAYOFF 655
TRUTHPAY 655
TRUTHDIF 0.

shtindx eq 4

Variable

Mean Std Dev
VBMIN -195
VBMEAN -74
VBMAX 59
PAYOFF 627
TRUTHPAY 655
TRUTHDIF 27.

Mean Std Dev Minimum
8788 189.3781 -599.000
5202 96.0956 -299.833
3939 144.6876 0.000
8182 158.6698 200.000
0909 132.7673 400.000
2727 80.9345 0.000
Mean Std Dev Minimum
2381 178.8194 -597.000
8492 98.4283 -298.500
7619 136.0029 0.000
3333 141.4826 350.000
3333 130.1704 400.000
0000 45.8258 0.000
Minimum Maximum
7778 231.1708 -597.000
2593 112.3225 ~-298.500
2222 0.4410 0.000
6667 148.7078 501.000
6667 148.7078 501.000
0000 0.0000 0.000
Minimum Maximum
8000 159.2303 -550.000
7778 91.7295 -255.000
3778 144.0018 0.000
3111 201.2411 200.000
1556 168.8651 300.000
8444 93.9797 0.000



shtindx eq 5

G.24

Variable

VBMIN -153
VBMEAN -37
VBMAX 38
PAYOFF 533.
TRUTHPAY 568.
TRUTHDIF 34.

shtindx eq 6

Variable

Mean Std Dev
VBMIN -209
VBMEAN -78
VBMAX 74
PAYOFF 635.
TRUTHPAY 653.
TRUTHDIF 18.

shtindx eq 7

Variable

Mean Std Dev
VBMIN -180
VBMEAN =71
VBMAX 51
PAYOFF 636.
TRUTHPAY 648.
TRUTHDIF 11.

shtindx eq 8

Variable

Mean Std Dev
VBMIN -207
VBMEAN -80
VBMAX 0
PAYOFF 599
TRUTHPAY 665
TRUTHDIF 65.

Mean Std Dev Minimum
3833 176.1485 -600.000
5111 70.0996 -283.333
0167 92.5932 0.000
7000 164.9302 100.000
3667 148.8919 300.000
6667 92.0010 0.000
Minimum Maximum
3333 175.8559 -597.000
0598 107.7966 -298.500
8462 173.8781 0.000
7692 176.0150 300.000
9487 173.7980 300.000
1795 66.8013 0.000
Minimum Maximum
4889 172.0896 -599.000
9074 95.0623 -266.833
2444 140.9837 0.000
6000 170.2225 300.000
4000 163.6025 300.000
8000 44.8825 0.000
Minimum Maximum
0833 206.0262 -550.000
0000 86.9182 -271.667
8333 2.8868 0.000
8333 196.5622 300.000
2500 121.0328 550.000
4167 119.9897 0.000

900.
900.
300.
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shtindx eq 9

Variable
Mean Std Dev Minimum Maximum Valid
VBMIN -122.1667 148.6959 -500.000 0.000 42.00
VBMEAN -24.6111 95.2401 -275.000 153.333 42.00
VBMAX 94.8810 190.3243 0.000 800.000 42.00
PAYOFF 506.7619 140.2572 250.000 800.000 42.00
TRUTHPAY 527.7143 133.5042 300.000 800.000 42.00
TRUTHDIF 20.9524 55.1835 0.000 279.000 42.00
shtindx eq 10

Variable
Mean Std Dev Minimum Maximum Valid
VBMIN -123.5926 171.6961 -595.000 0.000 54.00
VBMEAN -30.0123 90.3325 -263.333 241.667 54.00
VBMAX 66.7963 146.7699 0.000 600.000 54.00
PAYOFF 537.0000 156.6922 300.000 850.000 54.00
TRUTHPAY 565.9815 152.3612 300.000 850.000 54.00

TRUTHDIF 28.9815 91.4113 0.000 485.000 54.00



By sheet index

(High contention)
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shtindx eq 11

Variable

Mean Std Dev
VBMIN -172
VBMEAN 41
VBMAX 681
PAYOFF 190.
TRUTHPAY 286.
TRUTHDIF 95.

shtindx eq 12

Variable

Mean Std Dev
VBMIN -273
VBMEAN -64
VBMAX 246
PAYOFF 153.
TRUTHPAY 189.
TRUTHDIF 35.

shtindx eqg 13

Variable

Mean Std Dev
VBMIN -175
VBMEAN 119
VBMAX 582
PAYOFF 136.
TRUTHPAY 190.
TRUTHDIF 53.

shtindx eq 14

Variable

Mean Std Dev
VBMIN -265
VBMEAN -59
VBMAX 258
PAYOFF 176.

TRUTHPAY 220.
TRUTHDIF 43.

Minimum
5250 174
7667 309
4000 1931
8250 400
4750 218
6500 276

Minimum
8438 246
1875 160
5313 601
3125 184
0000 169
6875 63

Minimum
8095 200
6746 759
5714 1627
3571 196
0952 179
7381 145

Minimum
3889 237
8426 130
3889 487
8333 264
6111 209
7778 140

Maximum
9529 -600
7123 -327
3904 -200
6573 -1200
3016 0
4384 0

Maximum
0135 -900
6272 -350
2750 -185
7999 -20
6558 0
7902 0

Maximum
1959 -600
4356 -300
3214 -100
7648 -300
9111 0
0105 0

Maximum
8816 -750
4816 -250
0777 -1.09
1620 -449
1437 0
8623 0



shtindx eq 15

G.2-7

Variable

Mean Std Dev
VBMIN -64
VBMEAN 300
VBMAX 1033.
PAYOFF 55.
TRUTHPAY 184.
TRUTHDIF 129.

shtindx eq 16

Variable

Mean Std Dev
VBMIN 53
VBMEAN 265.
VBMAX 714.
PAYOFF 197.
TRUTHPAY 268.
TRUTHDIF 70.

shtindx eq 17

Variable

Mean Std Dev
VBMIN -316
VBMEAN 212
VBMAX 1477
PAYOFF 332.
TRUTHPAY 407.
TRUTHDIF 74.

shtindx eq 18

Variable

Mean Std Dev
VBMIN -169
VBMEAN 16
VBMAX 493
PAYOFF 222.

TRUTHPAY 263.
TRUTHDIF 41.

Minimum
5882 984
4265 1295
9412 2628
5588 428
6176 191
0588 352

Minimum
3333 1566
6065 1637
7778 2234
8333 225
5556 218
7222 163

Minimum
4167 243
1944 950
0000 3596
5000 326
4167 240
9167 146

Minimum
8913 359
7065 534.
3913 1913.
4348 217.
7826 205.
3478 110.

Maximum
0650 -850
8821 -366
9678 -190
3433 -1600
8102 0
5876 o]

Maximum
2086 -700
6937 -416
6621 -200
5003 -200
8579 0
7679

Maximum
5292 -750
2532 -358
5829 -200
5735 -249
9200 100
7685

Maximum
6489 -900
2716 -400
2696 -300
6088 =27
6451
5821 0
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shtindx eq 19

Variable
Mean Std Dev Minimum Maximum Valid
VBMIN -209.0000 364.8068 -800.000 1200.000 26.00
VBMEAN 35.0320 420.4939 -381.333 1500.000 26.00
VBMAX 689.5000 1814.9992 -200.000 9089.000 26.00
PAYOFF 124.3846 310.4104 -878.000 745.000 26.00
TRUTHPAY 223.5000 200.1296 0.000 745.000 26.00
TRUTHDIF 99.1154 246.9503 0.000 1200.000 26.00
shtindx eqg 20

Variable

Mean Std Dev Minimum Maximum Valid
VBMIN -245.2059 281.8173 -900.000 200.000 34.00
VBMEAN 22.4902 394.4564 ~-349.000 1333.167 34.00
VBMAX 744.5000 2275.7007 -295.000 9249.000 34.00
PAYOFF 107.5882 159.8354 -125.000 596.000 34.00
TRUTHPAY 148.6176 147.3760 0.000 596.000 34.00

TRUTHDIF 41.0294 76.4875 0.000 275.000 34.00
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Appendix G.3 Analysis of Covariance for VL auction

GLS ERROR COMPONENTS RESULTS

Low contention by subject

Dependent variable: VBMIN

Observation

Number of Groups

s

Degrees of freedom

Residual SS

Std error of est

Total SS (corrected)

F
P-value

360

18

349
8004446.701
151.444
8499879.406

5.441 with 11, 349 degrees of freedom

0.000

Std. errors of error terms:
Individual constant terms: 105.844
White noise error

CONSTANT
PERIOD
D2

D3

D4

D5

D6

D7

D8

D9

D10

152.591
Std. Coef. Std. Error t-Stat
-0.182106 36.188089 -3.549768
-0.100518 37.974833 -1.735371
0.034404 41.496244 0.853523
0.008693 57.274231 0.071163
-0.167352 34.413821 -2.072477
-0.007031 32.381191 -0.108388
-0.181856 35.209334 -2.416199
-0.033451 34.091385 -0.843004
-0.072629 50.698363 -0.690628
0.009159 34.497670 0.116917
-0.185159 33.032698 -0.005605

O 0O 0O O O O O O o o o
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Group Number Random Components
31 -210.864392
32 -12.419136
33 -13.737341
34 15.920589
35 -0.796971
36 72.598412
81 34.119915
82 60.123754
83 -140.668986
84 47.072023
85 -58.061607
86 16.146577

191 -54.170855
192 -16.290779
193 92.879196
194 -33.188654
195 51.162395
196 150.175785

Lagrange Multiplier Test for Error Components Model

Null hypothesis: Individual error components do not exist.

Chi-squared statistic (l1): 158.5066
P-value: 0.0000

Hausman (1978) Chi-Squared Specification Test

Null hypothesis: Error components model is the correct specification.

Chi-squared statistic (10) = 1.7064
P-value = 0.9981
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———————————————— GLS ERROR COMPONENTS RESULTS --—=——===-=—=—===—————o

Observations : 360

Number of Groups : 18

Degrees of freedom : 349

Residual SS : 2429750.586

Std error of est : 83.439

Total SS (corrected) : 2609150.635

F = 3.741 with 11,349 degrees of freedom
P-value = 0.000

Std. errors of error terms:
Individual constant terms: 52.445

White noise error : 84.280

Var Coef. Std. Coef. Std. Error t-Stat P-Value
CONSTANT -27.80 -0.071152 19.001426 -1.463477 0.144
PERIOD -35.58 -0.098002 20.921961 -1.701075 0.09%0
D2 -7.07 -0.012429 22.857708 -0.309724 0.757
D3 -38.32 -0.147566 31.526900 -1.215550 0.225
D4 -45.45 -0.192649 18.948060 -2.398983 0.017
D5 2.63 0.009515 17.832001 0.147569 0.883
D& -49.25 -0.19%90097 19.391099 -2.540295 0.012
D7 -30.30 -0.063694 18.775509 -1.614058 0.107
D8 -31.52 -0.118074 27.918552 -1.129288 0.260
D9 2.67 0.010952 18.998048 0.140580 0.888
D10 -3.24 -3.249203 18.189483 -0.178631 0.858
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Group Number Random Components
31 ~-65.662690
32 -45.619217
33 3.334816
34 0.153149
35 ~3.904560
36 48.777015
81 14.659179
82 32.071568
83 ~72.495911
84 60.103229
85 -11.457626
86 -23.235174

191 -16.667029
192 34.327375
193 18.194185
194 -24.941312
195 3.058917
196 49.304101

Lagrange Multiplier Test for Error Components Model

Null hypothesis: Individual error components do not exist.

Chi-squared statistic (1): 85.1848
P-value: 0.0000

Hausman (1978) Chi-Squared Specification Test

Null hypothesis: Error components model is the correct specification.

Chi-squared statistic (10) = 0.9190
P-value = 0.9999



Observations

Number of Groups

Degrees of freedom

Residual SS

Std error of est

Total SS (corrected)

F
P-value

Std. errors of error
Individual constant
White noise error

36
18
34

4225199.817

11

4406599.336

= 1.

terms:
terms:

Std. Coef.

0

9

0.030

888
0.040

99.566
110.451

G.3-5

GLS ERROR COMPONENTS RESULTS

with 11,349 degrees of freedom

Std. Error

t-Stat

P-value

Var Coef
CONSTANT 60.95
PERIOD 80.38
D2 -23.03
D3 -32.04
D4 -22.46
DS -21.51
D6 0.16
D7 -38.80
D8 —-49.94
D9 10.29
D10 -24.77

.120016
.170228
.030998
.094879
.073117
.059845
.000500
.062685
.143812
.032421
.778965

.243064
.591127
.159951
. 680008
.032414
.546417
.599083
.785958
.867271
.084333
.023318

.015589
.913562
.763727
.768886
.897436
.913766
.006585
.565721
.354736
.410239
.031455

o O 0O 0O 00O O 00O oo



G.3-6

Group Number Random Components
31 -52.651226
32 -55.001202
33 10.360827
34 5.248988
35 —33.419858
36 62.423792
81 12.168077
82 6.636152
83 -51.465261
84 54.659014
85 -3.839465
86 -58.568620
191 -40.292593
192 321.851372
193 -38.003988
194 -57.621209
195 -48.072124
196 -34.412644

Lagrange Multiplier Test for Error Components Model

Null hypothesis: Individual error components do not exist.
Chi-squared statistic (1): 494.5633
P-value: 0.0000

Hausman (1978) Chi-Squared Specification Test

Null hypothesis: Error components model is the correct specification.

Chi-squared statistic (10) = 1.4409
P-value = 0.9991



G.3-7

High contention by subject ====s======

—————————————————————— GLS ERROR COMPONENTS RESULTS —---==-=—==—=---

Dependent variable: VBMIN

Observations : 320

Number of Groups : 16

Degrees of freedom : 309

Residual SS : 129905239.426

Std error of est :  648.387

Total SS (corrected) : 133994691.159

F = 1.772 with 11,309 degrees of freedom
P-value = 0.058

Std. errors of error terms:
Individual constant terms: 158.676

White noise error : 653.928

Var Coef. Std. Coef. Std. Error t-Stat P-value
CONSTANT -232.18 -0.078160 109.951793 -2.111739 0.036
PERIOD 286.26 0.130968 169.705389 1.686845 0.093
D2 -87.32 -0.045366 154.049544 -0.566882 0.571
D3 20.65 0.007319 141.900411 0.145579 0.884
D4 -26.14 -0.012302 181.645924 ~0.143937 0.886
D5 129.50 0.063080 153.188561 0.845396 0.399
D6 201.64 0.059004 149.273125 1.350867 0.178
D7 -126.91 ~-0.067769 215.137344 -0.589947 0.556
D8 11.08 0.004659 141.350555 0.078448 0.938
D9 -19.71 -0.009280 163.306049 -0.120700 10.904
D10 -100.98 -100.985391 151.608099 -0.666095 0.506



G.3-8

Group Number Random Components
11 41.381488
12 -70.324744
13 -40.706971
14 -12.036099
15 -11.932653
16 44.880858
17 -210.533720
18 -90.365941
41 -29.686375
42 -23.700370
43 34.286809
44 64.832715
45 205.983006
46 -21.919980
47 -15.560546
48 135.402547

Lagrange Multiplier Test for Error Components Model

Null hypothesis: Individual error components do not exist.

Chi-squared statistic (1): 0.7528
P-value: 0.3856

Hausman (1978) Chi-Squared Specification Test

Null hypothesis: Error components model is the correct specification.

Chi-squared statistic (10) = 1.7258
P-value = 0.9980



G.3-9

—————————————————————— GLS ERROR COMPONENTS RESULTS ----—--—-===----

Dependent variable: VBMEAN

Observations : 320

Number of Groups : 16

Degrees of freedom : 309

Residual SS : 154702691.490

Std error of est : 707.570

Total SS (corrected) : 167456591.732

F = 2.349 with 11,309 degrees of freedom
P-value = 0.009

Std. errors of error terms:
Individual constant terms: 573.287

White noise error : 716.606

Var Coef. Std. Coef. Std. Error t-Stat P-value
CONSTANT -78.53 -0.023647 180.667683 -0.434667 0.664
PERIOD 768.16 0.310119 185.229677 4.147087 0.000
D2 -49.10 -0.022698 169.797604 -0.289196 0.773
D3 137.17 0.043065 155.345481 0.883036 0.378
D4 53.73 0.022380 199.914914 0.268769 0.788
D5 232.46 0.100928 169.013479 1.375431 0.170
D6 125.42 0.032501 163.730970 0.766017 0.444
D7 86.01 0.040501 236.875839 0.363114 0.717
D8 -88.15 -0.032788 155.218068 -0.567946 0.570
D9 -39.45 -0.016388 178.974800 -0.220451 0.826

0.

D10 -124.06 -124.064053 167.115720 -0.742384



G.3-10

Group Number Random Components
11 -114.982839
12 -211.485156
13 -215.812286
14 -157.949042
15 -162.504842
16 65.582534
17 ~-59.945554
18 -186.243770
41 -212.164434
42 -164.333470
43 -60.425093
44 -39.954872
45 859.834086
46 -171.642291
47 -222.938646
48 1054.965892

Lagrange Multiplier Test for Error Components Model

Null hypothesis: Individual error components do not exist.

Chi-squared statistic (1): 126.1285
P-value: 0.0000

Hausman (1978) Chi-Squared Specification Test

Null hypothesis: Error components model is the correct specification.

Chi-squared statistic (10) = 0.4373
P-value = 1.0000



G.3-11

————————————————————— GLS ERROR COMPONENTS RESULTS ~—---————-————====-

Observations : 320

Number of Groups : 16

Degrees of freedom : 309

Residual SS : 700594639.164

Std error of est : 1505.754

Total SS (corrected) : 774915286.217

F = 3.163 with 11,309 degrees of freedom
P-value = 0.000

Std. errors of error terms:
Individual constant terms: 1831.087

White noise error : 1525.035

Var Coef. Std. Coef. Std. Error t-Stat P-value

CONSTANT 463.46 0.064876 511.316353 0.906425 0.365
PERIOD 2010.18 0.376730 394.187869 5.099569 0.000
D2 -371.61 -0.079805 361.731936 -1.027308 0.305
D3 7.06 0.001031 330.698134 0.021373 0.983
D4 -91.65 ~-0.017728 425.820197 -0.215243 0.830
D5 55.68 0.011234 360.082940 0.154633 0.877
D6 -361.23 -0.043471 348.616517 -1.036188 0.301
D7 441.59 0.096520 504.548040 0.875230 0.382
D8 -460.25 -0.079493 330.537129 -1.392447 0.165
D9 -146.17 -0.028184 381.040742 -0.383615 0.702
D10 -333.98 -333.989378 356.014020 -0.938135 0.349



G.3-12

Group Number Random Components
11 -449.085323
12 -652.929629
13 -657.748002
14 -506.956624
15 —488.335517
16 23.686027
17 575.749522
18 -465.820472
41 -740.646871
42 -634.747569
43 -430.208602
44 -467.079513
45 3195.221783
46 -555.560734
47 -731.089433
48 2985.550403

Lagrange Multiplier Test for Error Components Model

Null hypothesis: Individual error components do not exist.

Chi-squared statistic (1): 432.2591
P-value: 0.0000

Hausman (1978) Chi-Squared Specification Test

Null hypothesis: Error components model is the correct specification.

Chi-squared statistic (10) = 0.2298
P-value = 1.0000



G.3-13

=== BY SHEET INDEX ===

Low contention by sheet index ====

——————————————————————— OLS DUMMY VARIABLE RESULTS ————=-=-—=———=====

Dependent variable: VBMIN

Observations : 360
Number of Groups : 10
Degrees of freedom 349
Residual SS : 10505614.025
Std error of est : 173.499
Total SS (corrected) : 10575031.962
F = 2.306 with 1,349 degrees of freedom
P-value = 0.130
Var Coef. Std. Coef. Std. Error t-Stat P-value
PERIOD -66.16 -0.081021 43.573032 -1.518581 0.130
Group Number Dummy Variable Standard Error
1 -136.559336 31.450173
2 -111.472797 38.402899
3 -200.631386 57.897556
4 -184.029452 27.000235
5 -141.260560 23.778739
6 -200.910431 28.330402
7 -159.648734 29.279128
8 -194.551290 50.760290
9 -111.223797 27.724386
10 ~114.892352 24.295451

F-statistic for equality of dummy variables
F(9, 349) = 1.3852 P-value: 0.1932



G.3-14

——————————————————————— OLS DUMMY VARIABLE RESULTS -——---

Dependent variable: VBMEAN

Observations : 360
Number of Groups : 10
Degrees of freedom 349
Residual SS :  2957292.682
Std error of est : 92.052
Total SS (corrected) : 2977008.970
F = 2.327 with 1,349 degrees of freedom
P-value = 0.128
Var Coef Std. Coef. Std. Error t-Stat -value
PERIOD -35.26 -0.081381 23.118211 -1.525380 0.128
Group Number Dummy Variable Standard Error

1 -26.421762 16.686278

2 -38.644905 20.375133

3 -89.049488 30.718264

4 -68.504804 14.325308

5 -31.050426 12.616104

6 -73.570948 15.031045

7 -60.800897 15.534403

8 -73.321200 26.931499

9 ~18.779240 14.709516

10 -25.375656 12.890252

F-statistic for equality of dummy variables

F(9, 349) = 2.2085 P-value: 0.0211
——————————————————————— OLS DUMMY VARIABLE RESULTS ---——---——————=———=

Dependent variable: VBMAX
Observations : 360
Number of Groups : 10
Degrees of freedom : 349
Residual SS : 7003445.350
Std error of est : 141.659
Total SS (corrected) : 7108467.024
F = 5.234 with 1,349 degrees of freedom

P-value = 0.023



G.3-15

Var Coef. Std. Coef. Std. Error t-Stat P-value
PERIOD 81.387788 0.121549 35.576477 2.287685 0.023
Group Number Dummy Variable Standard Error
1 45.011075 25.678414
2 37.750627 31.355170
3 -4.877813 47.272153
4 44.900049 22.045132
5 23.105709 19.414847
6 64.486026 23.131185
7 25.611140 23.905800
8 -14.581020 41.444724
9 81.421270 22.636386
10 56.095039 19.836731

F-statistic for equality of dummy variables
F(9, 349) = 1.0317 P-value: 0.4140



High contention by sheet index =

Dependent variable: VBMIN

Observations
Number of Groups

Degrees of freedom

Residual SS
Std error of est

Total SS (corrected)

F
P-value

320
10
309

134656039.

660.136

= 2.873
= 0.091

Std. Coef.

G.3-16

907

135908130.115

Std. Error

OLS DUMMY VARIABLE RESULTS

with 1,309 degrees of freedom

t-Stat P-value

292.186805 0.095983

PERIOD

Group Number

11
12
13
14
15
16
17
18
19
20

-209.
-335.
.419733

=217

-308.
-112.

-16.
-401.
-223.
-267.
-295.

F-statistic for

F(9,

309) = 0.

Dummy Variable

325890
544103

867083
013598
023568
384015
982897
885211
045945

equality of dummy variables
7943 P-value:

172.375869

106.
122.
104.
157.
116.
117.
197.
102.
134.
116.

Standard Error

610774
241973
777474
695676
618458
384906
047401
429565
043263
968407

0.6219

1.695056 0.091



G.3-17

——————————————————————— OLS DUMMY VARIABLE RESULTS —-------=—====—==

Dependent variable: VBMEAN

Observations : 320
Number of Groups : 10
Degrees of freedom : 309
Residual SS : 201486264.302
Std error of est : 807.502
Total SS (corrected) : 210098223.424
F = 13.207 with 1,309 degrees of freedom
P-value = 0.000
Var Coef. Std. Coef. Std. Error t-Stat P-value
PERIOD 766.291079 0.202460 210.856150 3.634189 0.000
Group Number Dummy Variable Standard Error
11 -54.747610 130.410001
12 -226.003259 149.530627
13 10.547387 128.167446
14 -173.868808 192.898828
15 176.048405 142.651748
16 83.710604 143.589294
17 -10.641538 241.035225
18 -125.154437 125.295401
19 -119.400698 163.966375
20 -108.220677 143.079817

F-statistic for equality of dummy variables
F(9, 309) = 0.7365 P-value: 0.6754



G.3-18

——————————————————————— OLS DUMMY VARIABLE RESULTS ——------===-=-—---

Observations : 320
Number of Groups : 10
Degrees of freedom : 309
Residual SS : 1175058403.536
Std error of est : 1950.071
Total SS (corrected) : 1232427786.193
F = 15.086 with 1,309 degrees of freedom
P-value = 0.000
Var Coef. std. Coef. Std. Error t-Stat P-value
PERIOD 1977.802301 0.215754 509.205723 3.884093 0.000
Group Number Dummy Variable Standard Error
11 432.296043 314.932805
12 -171.116287 361.108041
13 300.913361 309.517161
14 -35.913521 465.839802
15 712.920526 344.495936
16 245.303333 346.760056
17 901.858912 582.086489
18 127.247240 302.581336
19 290.908061 395.969559
20 407.134383 345.529698

F-statistic for equality of dummy variables
F(9, 309) = 0.6383 P-value : 0.7641



G.3-19

============ TRUNCATED VARIABLES: BY SUBJECT ====== ==

this is from fiel tsbidtnc.out

————————————— GLS ERROR COMPONENTS RESULTS —--——-----==-=

Dependent variable: VBMIN

Observations : 320

Number of Groups : 16

Degrees of freedom : 309

Residual SS ¢ 17279990.755

Std error of est : 236.479

Total SS (corrected) :  18248536.447

F = 5.387 with 11,309 degrees of freedom
P-value = 0.000

Std. errors of error terms:
Individual constant terms: 117.098

White noise error : 235.773

Var Coef. Std. Coef. Std. Error t-Stat P-value
CONSTANT -146.11 -0.133281 47.638663 -3.067152 0.002
PERIOD -144.88 -0.177793 61.903229 -2.340488 0.020
D2 -107.79 -0.151130 56.600618 -1.904400 0.058
D3 -10.79 -0.010293 51.875560 -0.208149 0.835
D4 -80.56 -0.101918 66.666989 -1.208454 0.228
D5 -35.51 -0.046752 56.329108 -0.630513 0.529
D6 -7.84 -0.006172 54.649676 -0.143501 0.886
D7 -81.98 -0.117358 78.989545 -1.037883 0.300
D8 3.70 0.004189 51.791462 0.071593 0.943
D9 -9.58 -0.012105 59.750329 -0.160465 0.873
D10 -111.79 $111.792581 55.707506 -2.006778 0.046



G.3-20

Group Number Random Components
11 103.221630
12 -85.282845
13 -26.873781
14 17.980824
15 49.337123
16 76.663914
17 -279.773947
18 -121.828375
41 -4.877923
42 -16.278889
43 87.091029
44 133.342876
45 178.361200
46 -17.447328
47 17.997899
48 -111.633388

Lagrange Multiplier Test for Error Components Model

Null hypothesis: Individual error components do not exist.

Chi-squared statistic (1): 122.6052
P-value: 0.0000

Hausman (1978) Chi-Squared Specification Test

Null hypothesis: Error components model is the correct specification.

Chi-squared statistic (10) = 6.0091
P-value = 0.8145



Dependent variable:

VEMEAN

Observations
Number of Groups

Degrees of freedom

Residual SS
Std error of est

Total SS (corrected)

F
P-value

320
16
309

G.3-21

15967254.503

227.319

16715162.361

1.316
0.214

Std. errors of error terms:

Individual constant terms:

White noise error

Var Coef
CONSTANT 36.84
PERIOD 131.51
D2 -110.37
D3 -1.81
D4 -66.57
D5 -66.33
D6 -77.57
D7 -15.55
D8 -92.26
D9 -27.75

D10 -109.

26

Std. Coef.

.035114
.167808
.161396
.001799
.087670
.091128
.063562
.023141
.108502
.036437
.263513

283.247
230.034

GLS ERROR COMPONENTS RESULTS

with 11,309 degrees of freedom

Std. Error

.735408
.509364
.611989
.925175
.287173
.363158
.630712
.172909
.901555
.525600
.748703

t-Stat

.467931

2.209966

.021149
.036294
.035547
.220281
.474000
.204150
.849008
.482502
.032859

O O O 0O O O O O O O o
e e s e e e s e s



G.3-22

Group Number Random Components
11 2.641768
12 -169.029291
13 -152.679493
14 -78.524075
15 -51.027282
16 95.842366
17 21.679731
18 -141.280675
41 -98.861051
42 -124.237628
43 8.103828
44 41.141112
45 614.068863
46 -126.700567
47 -118.344720
48 277.207322

Lagrange Multiplier Test for Error Components Model

Null hypothesis: Individual error components do not exist.

Chi-squared statistic (1): 497.4950
P-value: 0.0000

Hausman (1978) Chi-Squared Specification Test

Null hypothesis: Error components model is the correct specification.

Chi-squared statistic (10) = 0.2801
P-value = 1.0000



Observations
Number of Groups

Degrees of freedom

Residual SS
Std error of est

Total SS (corrected)

F
P-value

Std. errors of error terms:

Individual constant terms:

White noise error

G.3-23

GLS ERROR COMPONENTS RESULTS

with 11, 309 degrees of freedom

t-Stat

P-value

Var Coe
CONSTANT 220.
PERIOD 213.
D2 -104.
D3 -5.
D4 -0.
D5 -107.
Dé -95.
D7 -120.
D8 -145.
D9 41.
D10 -133.

VBMAX
320
16
309
23456995.193
275.522
25227427.873
2.483
0.005
379.310
278.859
Std. Coef.
.170960 103
.221845 72
.124629 66
.004236 60
.000378 77
.120025 65
.063521 63
.146042 92
.139272 60
.044751 69
.328892 65

Std. Error
.402833 2
.128610 2
.202977 -1
.514890 -0
.929699 -0
.501854 -1
.796082 -1
.337687 -1
.489195 -2
.728525 0
.156323 -2

.131136
.961889
.581790
.086637
.004526
.628885
.493150
.305968
.405745
.600730
.046292

O O OO 0O O O O o o o
I T T R



G.3-24

Group Number Random Components
11 13.685775
12 -242.685790
13 -255.092611
14 -90.784929
15 -55.538979
16 293.754882
17 396.618040
18 -75.175078
41 -212.175700
42 -221.746325
43 -72.836627
44 -23.739790
45 645.425312
46 -149.589821
47 —-245.513838
48 295.395658

Lagrange Multiplier Test for Error Components Model

Null hypothesis: Individual error components do not exist.

Chi-squared statistic (1): 646.3336
P-value: 0.0000

Hausman (1978) Chi-Squared Specification Test

Null hypothesis: Error components model is the correct specification.

Chi-squared statistic (10) = 0.1100
P-value = 1.0000



============= TRUNCATED VARIABLES

---------------- OLS DUMMY VARIABLE RESULTS

this is from file tsbdtnc2.out

Dependent variable: VBMIN

Observations

Number of Groups
Degrees of freedom
Residual SS

Std error of est
Total SS (corrected)

320
10
309

G.3-25

BY SHEET INDEX

21817143.649

265.717

22120376.542

= 4.295

F with 1,309 degrees of freedom
P-value = 0.039
Var Coef Std. Coef. Std. Error t-Stat P-value
PERIOD -143.79 -0.117082 69.384505 -2.072375 0.039
Group Number Dummy Variable Standard Error

11 -154.414565 42.912827

12 -243.479819 49.204676

13 -155.332340 42.174889

14 —-243.992428 63.475453

15 -169.190485 46.941106

16 -137.507021 47.249616

17 -274.602585 79.315257

18 -156.315274 41.229812

19 -187.713761 53.954916

20 -220.678635 47.081967

F-statistic for equality of dummy variables
F(9, 309) = 0.8035

P-value:

0.6133



——————————————————————— OLS DUMMY VARIABLE RESULTS

G.3-26

with 1,309 degrees of freedom

t-Stat

1.609114

P-value

Observations 320

Number of Groups : 10

Degrees of freedom : 309

Residual SS : 28074094.913

Std error of est : 301.421

Total SS (corrected) :  28309340.099

F = 2.589

P-value = 0.109

Var Coef. Std. Coef. Std. Error

PERIOD 126.64 0.091158 78.707557

Group Number Dummy Variable Standard Error
11 16.744356 48.678934
12 -90.931737 55.816206
13 14.348830 47.841842
14 -78.688373 72.004518
15 19.271738 53.248485
16 -9.331513 53.598449
17 -7.926626 89.972684
18 -57.457062 46.769776
19 -22.536825 61.204726
20 -14.789626 53.408273

F-statistic for equality of dummy variables

F(9, 309) = 0.5485

P-value:

0.8384



Observation
Number of G
Degrees of

Residual SS
Std error o
Total SS (c
F

P-value

G.3-27

OLS DUMMY VARIABLE RESULTS

with 1,309 degrees of freedom

t—-Stat P-value

Group Numbe

11
12
13
14
15
16
17
18
19
20

s 320
roups 10
freedom 309
45115090.506
f est 382.104
orrected) 45753822.360
= 4.375
= 0.037
Coef Std. Coef. Std. Error
208.69 0.118153 99.775627
r Dummy Variable Standard Error
192.9154388 61.709083
117.181413 70.756827
190.970984 60.647922
185.668553 91.278350
178.421231 67.501791
148.629507 67.945431
53.979954 114.056150
63.018041 59.288891
254.057475 77.587720
126.608344 67.704350

F-statistic for equality of dummy variables
309) = 0.7457

F(9,

P-value:

0.6668

2.091595



G.4-1
Appendix G.4 Individual behavior by period divisions

PERIOD 1l to 5

Variable Mean Std Dev Minimum Maximum Valid
VBMIN -175.4667 179.8640 -599.000 0.000 90.00
VBMEAN -49.8426 107.0428 -299.833 188.000 90.00
VBMAX 93.8444 180.6452 0.000 800.000 90.00
PAYOFF 542.1556 178.5770 100.000 900.000 90.00
TRUTHPAY 580.4778 156.0742 300.000 900.000 90.00
TRUTHDIF 38.3222 88.3086 0.000 400.000 90.00
PERIOD 6 to 10

Variable Mean Std Dev Minimum Maximum Valid
VBMIN -158.3889 170.7468 -599.000 0.000 90.00
VBMEAN -53.2056 84.6268 -271.667 133.333 90.00
VBMAX 37.8556 116.3402 0.000 700.000 90.00
PAYOFF 576.3444 181.1273 200.000 900.000 90.00
TRUTHPAY 592.0222 169.5073 300.000 900.000 90.00

TRUTHDIF 15.6778 60.4226 0.000 400.000 90.00
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PERIOD 11 to 15

#
Variable Mean Std Dev Minimum Maximum Valid
VBMIN -163.0667 180.6967 -600.000 0.000 90.00
VBMEAN -57.4778 89.4872 -283.333 157.167 90.00
VBMAX 42.1667 108.2595 0.000 600.000 90.00
PAYOFF 585.4667 162.0807 300.000 850.000 90.00
TRUTHPAY 611.2667 145.9788 300.000 850.000 90.00
TRUTHDIF 25.8000 82.8256 0.000 500.000 90.00
PERIOD 16 to 20

#
Variable Mean Std Dev Minimum Maximum Valid
VBMIN -146.6889 168.9991 -597.000 0.000 90.00
VBMEAN -43.4574 93.0829 -298.500 241.667 90.00
VBMAX 57.8333 148.0688 0.000 700.000 90.00
PAYOFF 599.8667 165.2683 300.000 900.000 90.00
TRUTHPAY 622.0333 156.3231 300.000 900.000 90.00

TRUTHDIF 22.1667 76.4680 0.000 485.000 90.00
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————————————————————————— High contention -—-—-—----—-—-———————————-

PERIOD 1 to 5

Variable Mean Std Dev Minimum Maximum Valid
VBMIN -211.7500 1107.8233 -900.000 9099.000 80.00
VBMEAN 296.4167 1408.3965 -416.667 9649.000 80.00
VBMAX 1397.7000 3046.3494 -300.000 9999.000 80.00
" PAYOFF 195.0250 367.1203 -1600.000 895.000 80.00
TRUTHPAY 326.6250 222.7397 0.000 895.000 80.00
TRUTHDIF 131.6000 267.1279 0.000 1600.000 80.00
PERIOD 6 to 10

#

Variable Mean Std Dev Minimum Maximum Valid
VBMIN -185.9125 664.4671 -900.000 5350.000 80.00
VEMEAN 74.4521 764.2088 -343.833 6249.833 80.00
VBMAX 750.1375 2055.7620 -200.000 9249.000 80.00
PAYOFF 152.6875 312.9644 -1352.000 749.000 80.00
TRUTHPAY 231.4000 205.2678 0.000 749.000 80.00

TRUTHDIF 78.7125 222.8717 0.000 1352.000 80.00
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PERIOD 11 to 15
#

Variable Mean Std Dev Minimum Maximum Valid
VBMIN -144.3375 220.2144 -850.000 400.000 80.00
VBMEAN -12.5250 219.5355 -366.667 983.333 80.00
VBMAX 196.9625 524.7299 -162.000 2300.000 80.00
PAYOFF 153.3500 189.8666 -200.000 600.000 80.00
TRUTHPAY 181.8000 170.5538 0.000 600.000 80.00
TRUTHDIF 28.4500 56.0314 0.000 210.000 80.00
PERIOD 16 to 20

Variable Mean Std Dev Minimum Maximum Valid
VBMIN -126.5500 196.5641 -900.000 100.000 80.00
VBMEAN -4.1875 196.2467 -325.000 1266.500 80.00
VBMAX 265.3250 1084.5790 -200.000 9099.000 80.00
PAYOFF 143.6125 232.6523 -1200.000 600.000 ) 80.00
TRUTHPAY 176.3500 170.3407 0.000 600.000 80.00

TRUTHDIF 32.7375 150.0455 0.000 1200.000 80.00
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Appendix H. Progressive individual behavior--graphs
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Appendix 1. Algorithm for overdemanded set

file demagalg.c
/*
these routines find either an assignment or
an overdemanded set give a matrix of bids
*/
#include <stdio.h>
#include <mem.h>

#define mem0i(a,b) memset(a,0,(b)*sizeof(int));

#define MAXN 20

#define PINC 1 /* price increment  */
#define RINT register int

#define DEBUG 0

int cnt=0; /* demage if this is first time */

demagepkn(K, N, g, s, assign,price,incrmnt)
int K,N,q[IIMAXN],s[],assign{],price(],incrmnt;
/!i'

* the same as demagep except assumes k=n

* and that q =1 when max val-p =0

* hence simplier

*/

{

RINT j, ovrd;

if (ent==0) {

/* first time thtrough at the begin of period */
cnt=1;
mem0i(assign,N+1);
mem0i(price,K+1);

}

ovrd=demage(K, N, g, s, assign);

if (ovrd==1) { /* overdemanded®/
for (j=1;j<=K;j++)
if(s[j-11 == 1) {
price(j-1] +=incrmnt;
)
return(l);
}
else { /* else assigned */
cnt=0;
return(0);

}



int

demage(K,N,q,s,ass_p)

int K,N,q[lIMAXN],s(],ass_pl];

/* Demange algorthim to find and assignment or an overdemanded set
* via Gale -

* - turns it into a pure overdemanded set via Mo
— ala molson (in a manner of speaking)

* N = number of players

* K = number of slots

qlll] is the qualification matrix
qlil(jl = 1 if player i bids for slot ]
qlillj] = 0 otherwise
s returns overdemanded slots
ass_p returns slots subjects are assigned to
slots = [0,..,K-1] = -1 if not assigned

*/

{

inti,j;

int p(IMAXN};
int bids[MAXN];
int unass_bid;

/* let bids[i] = 1 if player i has a bid
bids[i] = 0 otherwise
let s[1,...,.K] =0, and pl1,...N] =0
s{] is for slots and pl(] is for players
s[jl=1 ==> slot j is assigned.
s[jl=0 ==> slot j is not assigned.
similar for plj]

*/

memdi(s, K+1);
mem0Oi(bids,N+1);
mem0i(p,N+1);

for (i=1;i<=N;i++)
for (j=1;j<=K;j++) {
if (qlillj] > 0) bidsli-1] =1;
}

flowass(N,K,q,s,ass_p) ;

unass_bid=0;
for (i=0;i<N;i++)
if (bids[i]>0 && ass_plil<0) {
unass_bid=i+1;
break;
}

if (unass_bid==0) {
return(0);



} /* end if unass=0*/

else {
fndovrd(N,K,s,p,q,unass_bid); /* overdemaned */
return(1);

}

/* no unassigned bidder so assignment is possible
returned in ass_p
return(0);

*/

} /* end demage */

fndovrd(N,K;s,p,q,unass_bid)

int N,K,s[},pl},q[IIMAXN],unass_bid;
{

/*6*/

RINT i,j,u;

int numbids{MAXN] ;

int unass[MAXN];

/* this is hopefully the corrected version that gets
the minimum pure overdemanded set
for only one unassigned bidder that can not
be re-assigned
*/

mem0i(s,K+1);

for (j=1;j<=K;j++)
if (glunass_bid][jl==1) slj-1]=1;

return(0);

}/* end 6%/

file flowass.c

#include <stdio.h>

#define MAXN 20
#define RINT register int
#define DEBUG 0
#define maxV (3*MAXN)

int val[maxV};

int dad[maxV];

int id;

intV;

int size[maxV][maxV];
int flow[maxV]{maxV];
int savef[maxV][maxV];



int
flowass(n,k,q,s,assign)
int n,k;
int q[JIMAXN];
int s[], assignl];
{
intij;
V=n+k+2;
makeflow(n,k,q);
assflow();
for (i=1;i<=n;i++) {
assign[i-1] = -1;
for (j=n+2;j<V;j++)
if (savef[i+1][jl==1) assign[i-1]=j-n-2;
}
for (i=n+2;i<V;i++) s[i-n-1]=savef[il[V];
)
int
makeflow(n,k,mq)
int nk;
int mq{lIMAXNJ;
{
inti,j;

int bidsIMAXN]; /*if a subject placed a bid */

for (i=0;i<=n+2;i++) bids[i]=0;
for (i=1;i<=n;i++)
for (j=1;j<=k;j++) {
if (mqlil[j}>0) {
bids{il=1;
break;
)
}

for (i=1;i<=V;i++)
for (j=1;j<=V;j++) {
flow[i][j]l=0;
savefli][jl=0;
size(i](j]=0;
}

for (j=2;j<=n+1;j++)  /* from source */
size[1](j] = bids[j-1];

for (i=2;i<=n+1;i++)
for (j=2;j<=k+1;j++)
if (mq[i-1]{j-1D {



sizelil[n+j} = 1;

)

for (i=k+2;i<=n+k+1;i++) /* tosink */
size[il[V] =1,

}
int
assflow()
{
int listmpfs();
inty,x;
for ;) {
if (llistmpfs(1,V)) break;
y=V;x=dad[V];
while (x '=0) {
flow[x]ly] = flow[xllyl+1;
flowlyl[x] = -flow[x][y];
y = x; x = dad[yl];
}
}
}
int
visit(k)
intk;
{
int t,tmax,m;
vallk] = ++id;
if (k==V) return(V);
tmax=k;
for (t=1; t<=V; t++)
if (sizelk][t] 1= 0)
if (val[t] == 0) {
m=visit(t);
dad[ti=k;
if ( m>tmax ) tmax=m;
if (tmax==V) return(V);
}
return(tmax);
)
int
listmpfs(a,b)
int a,b;
{

intikmyv;



for (i=1;i<=V;i++) {
flowlil[1]=0;
flow[V][i]=0;
}

for (i=1,i<=V;i++)
for (k=1;k<=V k++) {
size[il[k}-=flow[il[k];
savef(i](k]+=flow[i](k];
flowl[il[k]=0;
}

for (k=0; k<= V; k++){ val{k]=0; dad[k]=0;}
id=0;

mv=visit(1) ;

if (mv==V) return(1);

else return(0);
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