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"ABSTRACT

The problem of radiation from an electric line source in a
homogeneous, cold, incompressible electron plasma is considered when a
large static current is superposed. The static axial current gives rise
to a magnetostatic biasing field which is oriented in the azimuthal
direction and varies with radial distance. When the driving frequency is
greater than the plasma frequency, and the medium is assumed to be unbounded,
the presence of the static current reduces the amount of radiation. On
the other hand, if the driving frequency is less than the plasma frequency
and the medium is assumed to be bounded, the amount of radiation is
increased.

The problem of scattering from an axial current in a plasma is also
considered. The medium in this problem is taken to be a bounded column
of plasma containing a radially distributed axial current. At normal
incidence the scattered wave contains a cross polarized field component
due to the gyrotropic nature of the column. The scattered cross polarized
component vanishes in the incident direction as well as in the backward
direction. This null is explained by considering the effect of Faraday
rotation on various rays traversing the column. Solutions to the scattering
problem when the axial current density varies inversely with radial distance
are considered in some detail. This case is labeled fhomogeneous" since
the dielectric tensor does not vary with radial distance and the resulting
field equations are thus simplified. The field behavior in the vicinity
of the origin is also considered in detail since phenomena similar to those

encountered in wedge type media (unbounded fields) occur.
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CHAPTER 1
INTRODUCTION

Investigations of the propagation of electromagnetic waves in the
jonospheric plasma as well as other astrophysical plasmas have resulted
in a great body of knowledge concerning propagation in plane stratified
gyroelectric media [1,2]. Furthermore, interest in controlled
thermonuclear fusion, particle beams, and bounded p]asma§ in general has
resulted in numerous investigations of electromagnetic fnteraction with
cylindrical plasmas containing axial biasing fields [3], including
scattering at oblique incidence [4]. The added complication of radial
stratification has also been treated [5,6]. The work presented here is
concerned with the case when the direction of the biasing field does not
coincide with a cartesian coordinate but instead is purely azimuthal.
Such a situation arises when an axial static current is present.

Chapters 2, 3, and 4 discuss the radiation problem. The static
current in this case is confined to a filamentary wire and a small dynamic
component of current is superposed. Figure 1 depicts the radiation
problem. The static current generates a magnetostatic field which varies
inversely with radial distance. The presence of the static current thus
influences the properties of the surrounding plasma medium. We take the
plasma density to be constant and treat the plasma as being cold and
incompressible. Since the dynamic current component is small we may
treat the plasma in the usual linear approximation [7]. A dielectric

tensor may therefore be determined to describe the electrical
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Fig. 1. A wire carrying a large static current, Ig, is immersed in a
cold homogeneous plasma. A small dynamic current component is
superposed and radiates into the resulting anisotropic medium.

Fig. 2. A plane electromagnetic wave scattering off of a column of plasma
c?rry1ng a strong axial static current, Jo, which biases the
plasma.
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characteristics of the medium. The variation of the magnetostatic field
results in a medium which becomes uniaxial in the vicinity of the wire,
gyrotropic in the intermediate region, and isotropic at very large
distances. The formulation of the radiation problem is given in Chapter
2. The dielectric tensbr is determined and used in Maxwell's equations to
yield an equation for the axial component of the dynamic electric field.
The problem is one dimensional and the equation for the axial field is
shown to be a confluent form of Heun's differential equation [8]. Heun's
equation is also of current interest in planar inhomogeneous plasmas [9].
We define a transmission and reflection coefficient for the medium. The
solution of the equation is given in Chapter 3 and is similar to that of
the spheroidal wave equation [10]. This solution is compared to a direct
numerical integration of the equation and the WKB approximate solution.
Chapter 4 presents the results of the radiation problem. When the plasma
is unbounded, as for example in the case of a long wire antenna in the
ionosphere, and a large static current is induced, the radiation is
reduced. When the plasma is bounded, such as the wake of a reentering
space vehicle [11], and the driving frequency is below the plasma
frequency a static current (or low frequency current) on a trailing wire
antenna can increase the radiation.

Chapters 5, 6, and 7 discuss the scattering problem. The static
current in this case is taken in general to be distributed radially. A
plane electromagnetic wave is normally incident on a bounded column of
plasma containing the axial currents. Figure 2 depicts the scattering

problem. Such a medium resembles, for example, a portion of a 1ightning
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stroke [12], or certain fusion devices [13]. The formulation of the
scattering problem is given in Chapter 5. The dielectric tensor of
Chapter 2 when substituted into Maxwell's equations leads to coupled
equations. The problem is two dimensional since all quantities are
independent of the axial coordinate. The field components are expanded
in a Fourier series in the azimuthal variable reducing the problem to a
coupled pair of ordinary differential equations in the axial electric and
magnetic fields. A matrix reflection coefficient is defined which gives
the fields in the external region. Chapter 6 considers the solution of
the scattering problem. For general inhomogeneous columns, including
variable plasma density, a matrix Riccati equation satisfied by the
matrix reflection coefficient is determined. This equation is determined
by the method of invariant imbedding [14], which has been used in
cylindrical isotropic problems [15] and is extended to this gyrotropic
case. The case of axial current density inversely proportional to radius
gives rise to a uniform magnetostatic field. This case is labeled as
"homogeneous"” since the dielectric tensor becomes independent of radial
distance. The solution of this "homogeneous" case is also considered in
Chapter 6. Chapter 7 presents the results of the scattering problem. A
cross polarized component of the scattered field exists which has a null
on the axis defined by the incident wave. These results are explained in
terms of Faraday rotation.

For the most part, the radiation problem, covered in Chapters 2, 3,
and 4, and the scattering problem, covered in Chapters 5, 6, and 7, can be

read independently. Chapter 8 gives some general conclusions.
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CHAPTER 2
FORMULATION OF RADIATION PROBLEM

Section A determines the dielectric tensor for a plasma with
azimuthal biasing field. When substituted into Maxwell's equations an
ordinary differential equation of the second order is obtained for the
axial electric field. Section B gives the relevant boundary conditions
and defines the reflection and transmission coefficients 6f the

surrounding medium.

2A. The Dielectric¢ Tensor and Maxwell's Equations

An infinitely long wire is immersed in a cold incompressible
electron plasma. The wire carries a large static current of amplitude
Io. A cylindrical coordinate system (p, ¢, z) is aligned so that the z
axis coincides with the wire, Fig. 3.

The static electric current generates a static magnetic field §0

Iop
_ 0
L (2A.1)

where Ho is the permeability of free space and is a unit vector in the

e
_¢
¢ direction. Now we must determine the dielectric tensor pertaining to
this medium with magnetic biasing field 50. Following the notation in

[7] the velocity of the plasma electrons, v, can be determined from the

force law

- inmu v = - neE(§_+ vxB ) (2A.2)



<

Fig. 3. A wire jmmersed in a plasma is coincident with the z axis and
carries a large static current, I,.
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where i is the imaginary unit, Ne is the electron number density, e is the
magnitude of the electron charge, m is the electron mass, E is the dynamic

electric field of the wave;

wy = w+ iweff (2A.3)

where w is the dynamic temporal frequency; and Wofgs is the effective
collision frequency. All dynamic quantities are assumed .time harmonic
with variation e'iwt. We have dropped nonlinear terms in the above force
law since the dynamic fields are assumed weak. The current density is

equal to
Jd = -n_eyv (2A.4)

or using the above expression for y

2 2 2
E. W . £ W 1 we
S i = rell (ST N (2A.5)
0%-% @bwb 1woﬁ%ﬂ%)
2 - 2 : ' = - -e_ ]
where wp = nge /me0 is the plasma frequency and 99 = §0 with the

amplitude Wy (to conform to notation this will be a negative quantity
for electrons) being the electron gyrofrequency, and €, the permittivity
of free space. The dyadic quantity £ representing the dielectric

properties of the medium can now be found from Maxwell's equation

VxH = J - jwe E = - juwe-E (2A.6)



which yields

a 0 ig
e= 0 b 0 (2A.7)

-ig 0 a
w2
L, w2 w_wle

where a = ¢ ]_LL) b=¢ ]__.E_> gz_g__Lo_
0 2 2/ 0 Ww s 2 2 ’

Wy - wg () w(wo wg)

and the ordering of components follows that of the cylindrical system

(p, ¢, z). The collision frequency, Wogf will be taken as a very small

positive quantity in what follows. Indeed it is used only for

mathematical purposes and will be allowed to approach zero in all results.
Physical considerations will thus be limited to the collisionless case.

Using this dyadic description of the medium, Maxwell's equations

become

(2A.8)

2
m
"
—te
(>
=
pu

VxH = = jwe « E (2A.9)

which upon elimination of H becomes

WUKE = w'p g o E (2A.10)



The radiation problem is independent of the coordinates ¢, z.
Furthermore, we may ignore the TE configuration (H mode) with components
E., Hz, Hp since these components are not excited by the infinite line

9
source. The equations of interest are then

_ 2 -
0 = w‘po(aEp + 1gEZ) (2A.11)
2
d?E 1 dE

e wzuo(aEz - igE ) (2A.12)
do p dp P

Eliminating Ep yields

2
. 1 dE a - g

L4 - —Z +w2u0———-——— E, = o (2A.13)
do p dp a

The above definitions of a and g allow the coefficient of EZ to be

written as
22

2 _ P\ _ 2

) a2 . g2 ) mo(] wg) wg
W, — = k0 5 (2A.14)

a w
u)2(1 i _p__) 2
) w0 g

where kg = mzuoeo is the free space wave number.

The gyrofrequency, wg, is the variable quantity in this problem so we

define
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=.n 2A.15
wy = - 3 (2A.15)
el p
- 00
T om (2A.16)

Use of (2A.15) results in the ordinary differential equation

2 22 2
dE, 1 dE, , kipt-q
7t -tk Sy E =0 (2R.17)
dp o dp kip” = p
where
2 2
2 2 ) ' w
2 Y
I q2=p2/(1-£_), k§=k2(1-_P_) :
c wo wwo wwO

and k1 is the wave number of an unbiased isotropic plasma.

" 2B. Boundary Conditions and Definition of Reflection and Transmission

Coefficients

The asymptotic behavior of solutions to Eq. (2A.17) together with
the particular physical application will make clear the appropriate

boundary conditions. Close to the wire we may approximate (2A.17) as

2
d°E 1 dE
z + — Y4 + ki Ez =0, klp << P,y q (ZB.])

dp2 p dp

which has solution

_ 4@ (2)
E, = H, (kop) + RH, (kop) (2B.2)
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The Hankel function of the first kind represents the expanding

cylindrical wave emitted by the 1ine source. The Hankel function of the
second kind represents the conyerging cylindrical wave reflected by the

medium. This equation serves to define the reflection coefficient R

which is one of the two quantities of interest in the problem. The
arguments of the Hankel functions are kop which shows that the medium
behaves similar to free space in the vicinity of the wire. This is to be
expected as a result of the very large magnetostatic field in this region.

At large distances from the wire we may approximate (2A.17) as

d? E 1 dE
,m¥_.+ - —Z4 k E,=0 , kp>>0p,9 (28.3)
do® o dp

which has solution
E, = T H (ko) (28.4)

The single solution has been chosen to satisfy the radiation

condition
<dEz )
p]imoo /5 HE'—- 'I_klEZ =0 (28.5)

representing an expanding cylindrical wave at infinity. The quantity
T defined by this equation represents the transmission coefficient.
The argument of the Hankel function,klp,is indicative of an ordinary
unbiased plasma and is expected since the magnetostatic field becomes

negligible at large distances.
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The solutions (2B.2) and (2B.4) are only leading order asymptotic
solutions to equation (2A.17). We will however take them as definitions
of Rand T. This definition is equivalent to adjoining homogeneous media
with propagation constant ko near the origin, and with propagation
constant k1 near infinity.

When the operating frequency, w, is above the plasma frequency, W s
radiation exists at infinity and the transmission coefficient T is
physically meaningful. However in the case where the opéfating
frequency, w, is below the plasma frequency, wp’ the wave is evanescent
at infinity. There is therefore no transmitted wave, the reflection
coefficient has magnitude unity, and a standing wave exists in the
yicinity of the wire. The physical applications mentioned in the
introduction for the case w < wy involve a bounded plasma medium. So
in this case we terminate the plasma at radius o and replace the

external region with free space. The solution in this region is

therefore

E, = THY (ko) o 0> 0, (28.6)

The boundary conditions at the interface P, are then

- 1
EZ =T HO (kopo) (2B.7)
dE
i = e —-_Z = 1)
1wpoH¢ & koT H) (kopo) (2B.8)



13

Therefore the solution of Eq. (2A.17) matched to condition (2B.2)
near p = 0 and the appropriate condition either near infinity (2B.4) or
at fo (2B.7) and (2B.8) will determine the reflection and transmission
coefficients. These quantities are of primary interest since they give
not only the amplitude of the radiated field but also the influence of

the medium on the antenna.
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CHAPTER 3
SOLUTION OF RADIATION PROBLEM

The differential equation (2A.17) is a confluent form of an equation
with four regular singular points, Heun's equation [8]. The designation
of the solution to Heun's equation is not standard but in terms of the

notation in [16] we can write a solution to (2A.17) in the form

2
12’9'2';
p

-£

1 2 2

1im Hu(@
p

L) P—,l,o;szﬁ>
2 2 1
and the quantities Ll and 22 approach infinity. Useful solutions to
confluent forms of Heun's equation such as the spheroidal wave equation
can be obtained by use of a series of special functions [10]. The
solution of the radiation problem is obtained by this method in Section
A. Section B briefly discusses an alternative numerical solution of

(2A.17). Section C presents the approximate solution for the reflection

and transmission coefficients by the WKB method.

3A. Solution in Special Function Series

The differential equation (2A.17) involves three parameters, p, g,
and kl. The wave numberk1 can be removed by using the dimensionless

independent variable

£=kpp (3A.1)
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which transforms (2A.17) into

2z 4 _ + E =0 (3A.2)
2 £ dt EZ - p2 b4

d’c, 1 dE, £ -q

dg

This equation has four singular points. The points O, + p are regular
singular points and infinity is irregular.

The quadratic transformation

2
§§-= X (3A.3)
p
transforms (3A.2) dinto

2
d°E dE. 1

x(1-x) =%+ (1) =2 + = (¢?-p*x)E,, = 0 (3A.4)
dx dx 4

an equation with regular singular points at 0, 1 and an irregular

singular point at infinity. A useful means of solution of (3A.4) involves
expansion of the solution in a series of special functions resulting in a
larger region of convergence than simple power series [10,17]. This
procedure is carried out in Appendix 1 using results from Appendices 2

and 3. The solutions to (3A.2) or (3A.4) can be written as

E.= I cC & (3A.5)

-0

3
"

where c, are constant coefficients and é% are special functions. The

solution which is analytic at the origin is designated as EF(p, g, x)
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and d& in this instance is a special case of the hypergeometric function.
The solution which is analytic at unity is designated as EG(p, q, x) where
d% represents the linearly independent solution of the hypergeometric
equation. The series (3A.5) converges for all finite x in the case of

EF and EG. A second pair of solutions are designated as EJ(p, q, £) and
EY(p, q, £). In this second case é% is proportional to either the Bessel
function of the first kind or the second kind, respectively. The series
(3A.5) only converges when {&| > p (|x] > 1) for EJ or EY. The
connection between the pair of solutions EF, EG and EJ, EY is given in
Appendix 1 and Appendix 3.

We may now apply these results to the "radiation" problem. The
case where the operating frequency is above the plasma frequency is
treated first.

The radiation condition at infinity (2B.5) requires use of the

solution

EH(p, 9, E) = EJ(p, q, E) + iEY(p, q, E) (3A.6)

and provides a representation of the solution for [E] > p ([x]| > 1).

The asymptotic form of this solution for large £, from Appendix 4, is

given by
EHp, g, 8) ~ WD (2) s ™, gl v e (3A.7)
> n m
where 51 = 3 ﬁ—-(-l) , § =m+ v, v = characteristic exponent

- 00

m
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discussed in Appendix 1, and we have refrained from using the asymptotic
form of the Hankel function simply to make (3A.7) identifiable with (2B.4).
Comparison with the asymptotic form of the field at a large radius,

(2B.4), shows that the electric field in the region [£] > p is given by

E, = e & EH(p, g, &) (3A.8)
1
where T is the transmission coefficient. The analytic continuation to
the inner region [E] < p (|x] < 1) is accomplished by the connection to

the solutions EF and EG
EH = [A EF(p, q, x) + B EG(p, g, x)]5, ™™ (3A.9)
The constants A and B are determined from the last two formulas in

Appendix 1 to be

. jle”im () _ ) gim) (3.10)
4 coszwv sinmv S1 |

B = - ] (™ + ) (3A.11)
4 cos“mv S1

where the connecting constants é(t) are given in Appendix 1. Therefore

the field in the inner region can be determined from the expression

E, = T[A EF(p, q, x) + B EG(p, g, x)] (3A.12)
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Finally this expression must be matched to the asymptotic form of the

field near the origin, (2B.2), which in terms of x reads

E. = HD) (%) + R #D) (o) (3A.13)
z 0 ()

Expanding the Hankel functions for small x gives

E,~3(-R) tax+ (1+R) +i2[ ta(a/2) +y 10 -R) (3A.14)

where y is Euler's constant. Appendix 4 shows that (3A.12) can be

expanded as

E,~T[-BS,&nx+ (AsS, +Bs) (3A.15)
where S, = I c

2 D, W

S;=-27v5S, "I Cn [w(sz)+w(-9)]

and ¥ is the digamma function. The matching of the log and constant

terms in (3A.14) and (3A.15) determines R and T

-1 (3A.16)

1-R (3A.17)
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iltA 53
where C = - il o §;—+ 2 &n (q/2) + 2 v

Making use of equation (3A.10) and (3A.11) these become

R = T+37D (3A.]8)
- N : 9
T = -7 (3A.19)
2 @), ()
where N = 4 cos” mv g—-/(c S AR
2
C(+) - C(’) 53
2iD= -=wcot v —m———t+t F=+2 In %— +2y

O R I

Therefore by calculation of several sums involving rational functions
and the coefficients c, We obtain the transmission and reflection
coefficients.

The case where the driving frequency is below the plasma frequency
differs simply by the fact that the outer boundary conditions are now
(28.7) and (2B.8) applied at £ = kjp . If IEOI > p we may use the
Bessel series solutions to match the boundary conditions (2B.7) and

(2B.8) giving

E, = T[P EJ(p, a, £) + Q EY(p, q, E)] (3A.20)
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T E q Q4,0
where P = -S—Z-[Hél)(a E,) EY' (b, 0, £) + 5 (5 £ ) EYG, a, g )]

T g q 9 (1,9
Q= -5 §§-[H§l)(5-€0) E)'(py 0, ) + 5 H(5 £) EI(p, a, )]

where the prime denotes differentiation with respect to £ and

“m

Q

wn
i
ne 8

The analytic continuation to |x| < 1 is accomplished by using
E, = T[A EF(p, q, x) + B EG(p, q, x)] (3A.21)
where in this case

‘kP + Q cot 2mv) ) Q csc 2mv c("ﬂ %—sec ™

b -3
]

B=- ei"v [(P + Q cot 2mv) c(+) + Q csc 2mv c(_)]-§%‘ sec v

and the formulas (3A.16) and (3A.17) determine R and T.
If |€o' <p (or if liol > p but not too large) we use only the

solutions EF and EG to match the outer boundary condition.
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S

A= - x—°[H§”(§ ARRICENES i (S ) Ealp, a, x,)]
2

0 [ (§5) G0 5+ B AO(ES) o e ]

where the dot denotes differentiation with respect to x and Xo = Eg/pz.

Equations (3A.16) and (3A.17) determine R and T once again.

3B. Numerical Treatment of Radiation Problem

There are several approaches to the numerical solution of problems
involving wave propagation in one dimensional inhomogeneous media. If
the reflection and transmission coefficients are the only quantities of
interest, Ambarzumian's principle may be invoked to determine rate of
change (Riccati) equations for these quantities (invariant imbedding).
This method has had wide spread use in planar configurations and has also
been applied to cylindrical and spherical problems [14], [15]. The
cylindrical application requires the integration of a Riccati equation
with Bessel function coefficients. Althouah this is a rather elegant
method énd perhaps the most well adapted to computation, for ease of
programming we resort to integration of the second order equation (3A.2)
in this section. The method of invariant imbedding will be applied to
the solution of the scattering problem in Chapter 6. The integration
method made use of a packaged program using a Runge-Kutta algorithm.

The numerical scheme will not be discussed other than to note the initial

conditions used and the means of handling singularities of the coefficients.
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Equation (3A.2) has regular singular points at 0 and + p. In the
case where w > Wy the physical values of the variable £ 1lie along the
positive real axis. Integration in this case would typically begin at
a large distance from the origin, g(w), and proceed inward. The solution
and its derivative would be matched at this initial point, g(m), to that
of an expanding cylindrical wave, or Hankel function of the first kind

of order zero

_ () (e
E, = H (£ (3B.1)
dE

Tz (1) (=)

= = - 1 E®) (38.2)

However if we integrate inward the singularity +p will be encountered
and special treatment required. This has been avoided by rotating the
problem to the positive imaginary axis. The point +p is a branch point of
the solution. The branch cut as shown in Appendix 3 is taken below the
initial point E(w) and thus rotation to the positive imaginary axis does
not involve crossing the cut. The initial conditions (3B.1) and (3B.2)
now become modified Bessel functions Ko and Kl‘ It is permissible to
rotate these asymptotic solutions onto the Stokes line at the imaginary
axis since they are subdominant there [18] and Stokes phenomenon does not
(0)

occur. Integration can now proceed toward the origin, near which, £/,

the solution and its derivative are matched to
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£, = [0 €@y m(E € 8-3)
di, = - 3y (0N, pu(2)q Oy (3B.4
& p MG E) R ET) 4

which determines R and T.

The case where o < mp is simpler in that the physical values of ¢
now actually lie along the positive imaginary axis to begin with as
discussed in Appendix 3. The regular singular points + p remain on the
real axis and thus it is not necessary to deform around them. Integration
proceeds inward from the boundary of the plasma to a region near the

origin. The initial conditions are applied at Eo

-y rg
E, =Wy (R 8,) (38.5)
dE q q
2. Iy (38.6)
1 0
dg P P

where 50 is now positive imaginary and integration proceeds towards the

origin where (3B.3) and (3B.4) are matched.

3C. WKB Solution

The WKB method is an approximate method of solving differential
equations [19,20]. This method has been widely used in wave propagation
problems involving both dielectric media [21] and plasmas. The
method provides useful quantitative results as well as a qualitative

understanding of the phenomena.
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The method is useful when aside from several special points,
transition points, the properties of the medium vary little within a
wavelength. Equation (2A.17) shows that as the static current I becomes
large (equivalently the parameter p becomes large) the coefficient EZ
varies slowly over distances of a wavelength. The square root of the
coefficient of Ez divided by ko is often referred to as an index of
refraction. Thus the medium properties vary slowly when the static

current becomes large. Making use of a new variable
g' =¢&/p (3C.1)

equation (3A.2) becomes

d?E 1 dE ) £12 - o2

2, Tz, 22 "% g (3c.2)
d£|2 E' dE' €|2 _.] y4

where we assume o = q/p is an order one quantity and that p is a large

parameter. Near the transition points, 0, 1, o local solutions must be
found which can be matched to the exponential approximations on either

side of these points, details are supplied in Appendix 5. The leading

order WKB results in the case where w > Wy are

R

exponentially small (3C.3)

-pz
T=e © (3C.4)

where
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a
2,2
A [ -t

]
[o]
' = !
A
Q
N
v §
~
]
m
N
Q.
LS
onad
—

E, K being complete elliptic integrals [22]. The exponential factor in
(3C.4) represents the exponential decay of the wave as if propagates
through the region 1 < &' < o where the wave is evanescent. The
reflection coefficient (3C.3) represents the contribution from the turning
point at £' = a. The two way travel of the wave through the region

1 < £' < a is responsible for the exponential smallness of R.

The definition of reflection coefficient, (2B.2), has several useful
features. This definition relates the inhomogeneous problem to a
homogeneous cylindrical problem by use of the Hankel functions. The value
of R is also identical to that which would be determined by integration of
the Riccati equation which R satisfies (the invariant imbedding method).
We should, however, keep in mind that R cannot be uniquely defined in an
inhomogeneous media [23]. It is known that the reflection coefficient in
smooth media, without turning points, becomes exponentially small as the
characteristic length to wavelength ratio becomes large [21]. However if
discontinuities in the medium electrical properties or their derivative
appear, then R decays like a power of this large parameter [21]. The
definition (2B.2) as noted in Chapter 2 is equivalent to adjoining a

homogeneous medium in the vicinity of the origin. It thus introduces a
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discontinuity in the second derivative of the refractive index giving an
R which decays as the inverse square of p [21]. This discontinuity will
therefore contribute to the value of R, particularly in the large current
1imit. The next order WKB solution will yield such a behavior in R.

The w < wp problem involves positive imaginary £' and negative
imaginary a as can be shown from the results in Appendix 3. We can
therefore write (3C.2) in the form

2 ~2 ~2
.d°E 1 dEZ 2 E° - a

dg

Z

— —£ - p® =
2 F g B2 41

~

where a = ic and £ = - if' are positive real quantities. Transition
points are 0 and o . A larger reflection may result in this case since
the turning point at o is not shielded by an evanescent region as it was

in (3C.2). The plasma is bounded in this case with Timit

£y = -1E,/p = -ikyp /P (3C.6)
where Eo is real and positive. We assume that o is an order one quantity
and that the boundary is placed at a large distance o p EO >> 1. The
uniformly valid solution for R and T is given in Appendix 5. We note
that if §O< o (boundary inside turning point) we can approximate these

results as
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QY

i2pz,
e (3€.7)

- =
0,(E ) +

Q2

202 Q2 (g) iplz,-af))
1. 220l [P (3.8)
Q,(g,) +a

4

%o
where t, = [/ Qz(t)dt
0
~2 2
-t
Qz(t) = -1
2 t2 +1

and if §6> a (boundary outside turning point) we can approximate these

results as

-2
i2[Q,(E,) - ia] - [Q(E) + ia] e

i2[0,(€) - ial + [Q (E ) + ia] e™2P%1

PZy )
12pz,
e (3C.9)

B
4o Q,(E)) e

i2[0,(E,) - 1al + [Q (E,) + ia] e72P%1

Py : .
1(pz4-apE tn/4)

(3c.10)

1
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£
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2 ~2
2 t® -
1 t2+'|
a
Ty = g Q,(t)dt

and E(|) is an elliptic integral of the second kind [22]. The results
(3C.7) and (3C.8) are the expressions one would obtain for R and T in a
planar medium with a refractive index discontinuity, at Eo’ without
turning points. The magnitude of R is simply the Fresnel reflection
coefficient at the discontinuity.

The results (3C.9) and (3C.10) show the presence of a region where
the wave is evanescent. The quantity (- represents the exponential
attenuation of the wave in the region between the turning point o and the
boundary Eo. The results obtained using the special function series
(Section A), the numerical solution (Section B), and the WKB approximation

(Section C) are plotted and compared in Chapter 4.
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CHAPTER 4
RESULTS OF RADIATION PROBLEM

Section A presents the results of the unbounded case with w > mp.

Section B presents the results of the bounded case with w < w_.

P
4A. Driving Frequency Greater than the Plasma Frequency
The behavior of the square of the refractive index n
2 .2 2 2 2
k] ki e” - g _w
ne oL 1T T 22 (] _B.>
2 2 2 2 1 o 2
kO k1 p” - p w
(4A.1)

is given in Fig. 4. The point klp = p is known as a resonance. At this
point the driving frequency is equal to the upper hybrid frequency

(m2 = wg + mg). This is the natural frequency of electron oscillations
perpendicular to a static magnetic field [24]. Thus at this radius there
is a resonance between the applied field and the electron oscillations
perpendicular to the magnetostatic field. Energy is transferred from the
field to the kinetic energy of the electrons in this region. In the
collisionless steady state, as treated here, the velocity of the electrons
increases until the linear approximation breaks down. Therefore in
reality the energy stored in this region will be dissipated as heat as
well as being transferred by nonlinear effects to other modes. The linear
approximation simply indicates that energy has been stored in this region

and does not show up in the transmitted or reflected waves. This

phenomenon of energy storage can be qualitatively understood by the fact
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Fig. 4. The behavior of the refractive index in the case where w > wp-
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that the group velocity approaches zero at the point-klp = p. By use

of (4A.1) we may write

P - ko)
which when inverted and integrated yields an infinite travel time as the
resonance point is approached. The preceding qualitative argument is
identical to the planar case [1]. |
Near the wire (p » 0) the magnetostatic field is very large. The
electrons are frozen to the field lines in this region and thus do not

respond to the applied electric field. The medium therefore resembles

free space with unit index of refraction as far as electric fields
in the p - z plane are concerned.

At large distances from the wire the magnetostatic field is weak
and the medium behaves similar to an unbiased isotropic plasma.

The results are presented as a function of the static current Io'
Instead of plotting the coefficients R and T themselves we plot the

real quantities N and D related by

R=—1 | (4A.3)
1+ 1i/D

7-_N (4A.4)
1 - 4D

Figure 5 gives the values of N and D for four different values of the

ratio w/mp. As a result of the small magnitude of D the
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(c) (d)

Fig. 5. The quantities N and D (approximately |T| and [R|) as functions
of static current (note that p = 1 is equivalent to Iy = 8.5 kA)
for four ratios of w to wp.
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value of D is approximately equivalent to the magnitude of R. Further-
more the magnitude of T is approkimate]y equivalent to the value of N.
The WKB result (3C.4) for T is also plotted as the dashed curve. Note
that although (3C.4) is the WKB result for T, due to the small values of

D we can also associate this value with N as
N~eg © (4A.5)

These are the values plotted as dashed curves in Fig. 5. The solid curves
represent the identical results derived from the special function series
solution, Section 3A, and the direct numerical integration, Section 3B.
The transmission coefficient decreases approximately exponentially with
increasing static current and follows closely the WKB result. The
reflection coefficient also decreases with increasing current. The fact
that both R and T decrease with increasing static current means that the
energy carried by the transmitted and reflected waves is smaller than the

incident energy.

4B. Driving Frequency Less than the Plasma Frequency

The behavior of the square of the refractive index n is given in
Fig. 6. The wave number k1 and the parameter q are both imaginary in
this case. The boundary of the plasma is placed at Po The wave is
freely propagating in the region near the wire (lklp] < ]q]). In the
region between |g] and the boundary, the wave is evanescent. Thus as the
static current is increased the location of the point [q| moves away

from the wire. The amplitude of the transmitted wave will therefore
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Fig. 6. The behavior of the refractive index in the case where < w

and the medium is bounded by free space. P
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increase with increasing current since the width of the cutoff region
shrinks.

Figure 7 gives the magnitude of R and T as functions of static
current for three different positions of the column boundary [klpl. The
solid curves represent the results of numerical integration and the
dashed curves are the WKB results. The discrepancy between the WKB and
numerical solutions in Fig. 73 results from the fact that the boundary is
close to the origin, vio1atiﬁg the assumptions set forthnin the
derivation of the WKB solution (Appendix 5). The agreement is otherwise
quite close except when the turning point |q| Ties near the boundary
Iklpol. The discrepancy in this region is simply due to the fact that
we used the simpler equations (3C.7) through (3C.10) rather than the
uniformly valid WKB solution, Appendix 5.

The results show that the presence of the static current does indeed
increase the transmission coefficient provided the magnetic field
influences a significant portion of the column (the value of the current
must be very large to do so).

We have not mentioned the special function series in the above
calculations. Since the outer boundary condition must be applied at a
finite radius we must evaluate the special functions involved in this
series at this radius. Although a relation exists between the hypergeo-
metric functions and the Legendre functions, due to the lack of available

programs for calculating these functions we dispensed with series solution.
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Fig. 7. The magnitudes of T and R for bounded columns of three different
radii when wp/w = V574 (note that p = 1 is equivalent to
IO = 8.5 kA). .

> P




37

CHAPTER 5
FORMULATION OF SCATTERING PROBLEM

Chapters 5, 6, and 7 discuss the problem of a plane wave normally
incident upon a bounded column of plasma. The plasma column contains a
static axial current which gives rise to a static magnetic field. This
static azimuthal magnetic field biases the plasma. The problem thus
involves scattering from a gyroelectric cylindrical mediﬁm. |

Section A sets up the equations for the modal fields. Section B
gives the boundary conditions and defines the matrix reflection coefficient
of the scattered fields. Section C considers the behavior of the fields

in the vicinity of the origin.

5A. Coupled Equations in the Axial Fields

Instead of considering a single current carrying wire as we did in
the radiation problem, we generalize the problem somewhat by allowing the
axial current to be distributed radially. The static current is assumed
to be independent of the azimuthal angle, ¢, and of the axial distance, z.

The static magnetic field is thus given by

:Me (5A 'I)

0 2np —0

where M, is the permeability of free space, g¢ is a unit vector in the ¢

direction, p is the radial distance, and Io(p) is the "enclosed" current.
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The “enclosed" current can be found by integrating the axial current

density Joz(p) as

o]
Io(p) =2n f Joz(p )o'dp (5A.2)
0

A current density distribution of interest in the following chapter for its
mathematical simplicity is

J

Joalp) = 5% (5A.3)

which yields a constant magnetic field
B . =ulJd (5A.4)

This current distribution thus gives fise to a "homogeneous" medium in
the sense that the dielectric tensor will be independent of p (this
statement is of course contingent upon also having a uniform plasma
density).

The dielectric tensor was shown in Chapter 2 to be

a 0 g
E = 0 b 0 (5A.5)
-ig 0 a

where a
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W, =0 + 3 Weffs> € is the permittivity of free space, w is the temporal

frequency, Woff is the collision frequency, which will be set to zero, @p

is the plasma frequency, and wg'is the gyro frequency.

The gyro frequency is dependent on the magnetic field through

vy = - & Boy (5A.6)

where e is the magnitude of the electron charge and m is the electron

mass. Maxwell's equations can be written as

VxE=7iwu H (5A.7)
VxH=-iwg-*E (5A.8)

The fields are periodic in the azimuthal angle ¢, and therefore may be

expanded as

eiN? (5A.9)

__I’m

>
n
'
8

eiNd (5A.10)

™ 8

_H_:
n

H

Since the medium is linear and is itself independent of ¢ the solution of
the field equations can be carried out individually for each angular
mode. We assume that the fields are independent of the coordinate z.

The equations (5A.7) and (5A.8) can be reduced to two coupled second
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order equations in the axial magnetic and electric fields

dzHZ 11 dby dH, ) n b gn
5 +<--———>————+<m uob-—2—>Hz=i——wbEz (5A.11)
dp p bdp/ dp p- a ap
e, 1dE, ,, af-g* n? g n

+ —-—+ <w Mg — - _§>Ez = - — — ¥y HZ (5A.12)
do p dp a P a p

where we have suppressed the modal subscript n on all field components.
The remaining field components may be derived from the axial ones through

the relations

i dEz
H¢ = _Z (5A.13)
Wi, dp
i dHZ
E = - — —2% (5A.14)
¢ wb dp
n
Hp = -y Ez (5A.15)
0
E ) H ;2 E (5A.16)
= - —H_ -i- .
P awp 2 a ?

If the plasma density is constant, meaning that the quantity b is

constant, equations (5A.11) and (5A.12) can be written as
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dZHZ 1 dH, , v B,
—2-+—-——+<k1-—2)Hz=i———Ez (5A.17)
dp p dp P o
2 2
dEz+ld_Ez_+<k§-12.>Ez=-1§£HZ (5A.18)
dp p dp o p
where v = n? b K2 = w2y b, K2 =2 AEE—:—SE- g. =ndyb
a’ "1 WHP Ky TwHy T e By a o
=n 39
By =N 3 Wi,

and we have used the notation v due to its familiarity as the order in
Bessel's equation. This quantity should not be confused with the
characteristic exponent in the radiation problem. When the current
density profile (5A.3) is present, the parameters in (5A.17) and (5A.18)
are independent of the coordinate p. These equations thus take the form
of two coupled Bessel equations. The solution of this "homogeneous"

case as well as the general inhomogeneous problem will be considered

in Chapter 6.

5B. Definition of Incident and Scattered Field Components and

Boundary Conditions

We are interested in the scattered field generated by a plane wave
impinging on the column of plasma. The plasma boundary will therefore
be placed at a finite distance Pe The geometry is shown in Fig. 8.

Outside of the column the fields can be written as

_ ,inc scatt
Hy = H'" +H (5B.1)
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- X

Fig. 8. The geometry of the scattering problem. A column of plasma
biased by an azimuthal magnetostatic field is irradiated by a
normally incident electromagnetic wave. The column is coincident
with the z axis.
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E = ginc | pscatt

z z z (5B.2)

The incident wave is assumed to be propagating in the x direction and

can be written as

. ik x © .
inc _ 0" _ N ing
HZ H0 e H0 z i Jn (kop) e (5B.3)
n:-co
. ik x © .
inc _ 0" _ N ing
E, E, e E, I L (kop) e (58.4)

- 00

n

where the wave amplitude is Ho’ Eo’ and ¢ is the angle measured from
the x axis. We have included incident waves with general polarization
in equations (5B.3) and (5B.4). However, due to the linearity of the
problem, we may take sequentially E0 =0 and then Ho = 0, these two
polarization states providing the complete solution.

The scattered fields satisfying the radiation condition can be written

U u .
0 ,scatt _ N 0 11 21 ¢ ing
\/E;'Hz = ik /E;-Ho Rn + E, Rn Hn (kop) e (5B.5)

n:-oo

&~ 8

scatt _ o .l [Yo 12 221 ,(1) ine
E, = I N/ H, R+ E RS H (ko) e (5P.6)
n=-ow )

where the quantity Rn
11 12
Rn Rn

Rn = (5B.7)
R21 R22
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is the modal reflection coefficient matrix. The off diagonal elements

of Rn represent the coupling due to the gyrotropic nature of the medium.

The expressions (5B.5) and (5B.6) can be simplified when the

observation point is in the far zone yielding

U i(k_p-m/4) = U 21| 1
To scatt | Trk2 e © 5 Eg'Ho R:1+ 3 R2 oind
€0 Z of n=-ow 0
(5B.8)
i(k_p-m/4) = U 12 :
scatt 2 0 o 22| ing
EZ ~ m e x c HO Rn + EO Rn e
0 0
n=-o
(5R.0)
which make clear the meaning of the quantity
R(6) = = R e (5p.10)

as being the scattering amplitude matrix in the far zone. (In this case
it can be shown that the diagonal components of Rn are even in n and the
off diagonal components are odd in n, so that only n > 0 need be
calculated).

The modal reflection coefficients Rn are determined by matching the
tangential field components at the column boundary, p_. Therefore we

c
require
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Hz continuous at Pe

Ez continuous at Pe

1 aHz

5 5 continuous at Pe

%, i (5B.11)
3o continuous at Pe .

The modal fields inside the column must in general ;atisfy the

equations (5A.11) and (5A.12). It is possible for solutions of these

equations to become unbounded at the origin. However, we require the

electric and magnetic energy densities [25]

1 E* 3 (we)
We> = —L - E 5B.12
€ 4 dw ( )
1 *
W> = =g H -H (5B.13)

4
to be volume integrable in this region (the energy in any finite region

being finite [26]). This in turn means that the axial fields, H, and E,,
must be bounded at the origin. This condition completes the setup of the

boundary value problem. We note in Section 5C that in certain cases,

regarding the collisionless plasma as the 1imit of a lossy plasma, the
solution will violate the intergrability of (5B.12).

Chapter 6 will consider the solution of the problem for the modal
reflection coefficient matrix Rn' However, since in general, numerical
methods will be required in solving (5A.11) and (5A.12) the method of
invariant imbedding will be used to set up a rate of change equation for
the quantity Rn‘ This matrix Riccati equation can then be integrated

numerically to determine the scattered fields.
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5C. Behavior of Fields Near the Origin

Before leaving this chapter, several interesting aspects of the
field behavior near the origin will be considered. This will also serve
as motivation for the types of solutions discussed in Chapter 6.

We consider here only cases where the plasma density is uniform
allowing us to pass to the equations (5A.17) and (5A.18). For the moment
let us take the magnetostatic field to be very large within the column

of plasma. This means that

2 2
ky = kg

d’H, 1 d, [, v
el LSy LM (5C.1)
dp p dp P
dE, 1 ¢, [, n
7 t— —+ |k, - JE, =0 (5C.2)
dp p dp p
The solutions of (5C.1) and (5C.2) consistent with the finiteness
condition at the origin are
(5C.3)

H, = Jv(klp)
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E, = Jn(kop) (5C.4)

The choice of the square root, v; appearing in (5C.3) is obvious in the
case (0 > mp), it being the positive branch. The collisionless case with
(w < mp) however results in a pure imaginary square root. The choice of
the positive imaginary branch can be justified by allowing the collision
frequency, Qo ff? to assume small positive values and performing analytic
continuation [27], then allowing the medium to become lossless.

The solution (5C.4) is identical with the external free space solution
and shows that there is no scattered wave for this polarization. The
solution (5C.3) contains the isotropic plasma wave number k1’ as expected,
however, the order of the Bessel function is not an integer. Very close

to the origin we may expand the Bessel function to obtain

H, ~cp (5C.5)
where Ch is a constant. The electric fields corresponding to this behavior

are

iv v-1
E¢> ~ - ab— Cnp (5C6)
E ~- D ¢ V! (5C.7)
p we, nP :

Now when n is plus or minus one and (o > wp) the quantity v is real and

lies between zero and one. (This can also be the case for greater values
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of |n|). Equations (5C.6) and (5C.7) show that E  and Ep both become

¢
infinite at the origin. This fact is not too surprising if one considers

further the characteristics of the medium. The dielectric tensor is given

by
1 0 0
e=¢, 0 b/e, O (5C.8)
0 0 1

which describes a uniaxial medium. If instead of a plasma, we consider
the construction of a medium with similar characteristics to those of
(5C.8) made out of a laminated structure, we might be led to a medium such
as that shown in Fig. 9. The wedges of alternating dielectric constant
would be chosen to have thicknesses small compared to the wavelength. The
structure shown in Fig. 9 would thus appear to have similar dielectric
properties in the radial and axial directions, but quite different
dielectric properties in the azimuthal direction. So qualitatively the
characteristics of the medium shown in Fig. 9 resemble that of (5C.8).

The singularity of fields near the tip of a dielectric wedge is well

known [26]. A singularity in the Ep and E¢ field components near the
origin of Fig. 9 would therefore be expected. Thus the behavior of E¢

and Ep given by (5C.6) and (5C.7) seems somewhat more reasonable. We can
take this analogy a bit further by computing the form of the fields near
the origin of Fig. 9. The HZ and Ep components in the mth region can be

written as [28]



Fig. 9. A model for the magnetoactive plasma column consists of a series
of wedges in contact with alternating dielectric properties,
€1 and €3, each of thickness small compared to the wavelength.

NN

| L

€] —E—

t t 1INNEPY €

L] e — —&
€, =2/(€'+€) €,=(€,+€,)/2

Fig. 10. A planar stratified medium with alternating dielectric
constants e; and €. Each layer is thin compared to the
wavelength. The effective dielectric constants, €, and €l]>
depend on the electric field orientation.
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xI
[}

of (A sin to + B cos t¢) [1 + 0(p)] (5€.9)

R |
= - tg‘— (A, cos to - By sin t¢) [1 + 0(p)] (5C.10)

m
[

where Am and Bm are unknown coefficients and t is an eigenvalue that
determines the field behavior near the origin. The value of t is
determined from the transcendental equation resulting from the enforcement
of continuity of HZ and Ep at each interface. If we let the number of
wedges, M, approach infinity, with alternating dielectric constants €;

and €ys the equation for t reduces to

cos it \[(5:1 + 52)(8;1 + 551 =1 (5C.11)

which has solutions

t = 25/ \/(sl re ety . i=01,2, . (5C.12)

where we have neglected the negative solutions since HZ must be bounded.
Fig. 10 shows two laminated slabs of material. When the wavelength of the
electromagnetic wave is long compared to the thickness of each segment, a
Tumped circuit model can be used to determine the equivalent dielectric
constant of the slab [29]. The dielectric constant thus depends on the
orientation of the electric field as shown in Fig. 10. Assuming we can

use these same equivalent parameters in the wedge geometry, (5C.12) becomes
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t=3j ,/el/slf' , (5C.13)

However in our problem we know

which results in
2
w
t=j 1--% ., j=0,1, ... (5C.14)
[

This equation gives values identical to the value of v given above (5C.1).
The order of the singularity can therefore also be predicted
quantitatively by this wedge model.

Let us consider the case where (w < wp) which makes v become positive

imaginary. The Poynting vector

(5C.15)

172}
"
|m
x
|

N| —

computed for the fields (5C.5), (5C.6), and (5C.7) has two components

Sp and S Let us consider at present the Poynting vector for only one

o
angular mode.
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The radial component of S near the origin is given by

*

S "‘-lcnl 20b

p
and if we integrate over a cylindrical surface of unit length the radial

power is

* .
2 dym v : (5C.17)

Py~ - Icn| wb

p

Now since v is positive imaginary and b is negative this expression

represents a time average flow of power inward.
P o~ |c |2 |¥L (5C.18)
P | nl |wb )

The other angular modes can be taken into account simply by summing
(5C.18) over the mode number n. We see from (5C.18) that there is a time
average loss of power at the origin even though the medium is Tossless.
This effect resembles that which occurs near the tip of a conducting
wedge immersed in a uniaxial plasma [30,31] where it has been referred to as
intrinsic loss. The inward power flow (5C.18) vanishes sufficiently
close to the origin if a small loss is allowed in the problem (weff >0).
However, in such a case large energy losses can be expected in the
vicinity of the origin [32].

In summary, the problem involving infinite magnetostatic field

thus gives rise to two rather interesting phenomena near the origin.
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These phenomena are analogous to those found in wedge type problems.

The problem of finite (and possibly rho dependent) magnetostatic
field results in the coupled equations (5A.17) and (5A.18). The solution
of these equations is not so simple as (5C.3) and (5C.4). Nevertheless,
the behavior of the field near the origin is similar to the solutions
(5C.3) and (5C.4). For example, if a filamentary current exists at the
origin, the magnetostatic field becomes large in the vicinity of the origin
giving rise to the same type of behavior. The "homogeneéus" problem
(constant Bo¢) also can result in singular behavior of the dynamic fields
at the origin. (In this case if o < Wy 2 ~Wg then Im v is taken to be positive,
but if o > W=ty and w2'< w§ + wg then Im v is taken to be negative).

1f the magnetostatic field vanishes at the origin, however, then all
field components are finite there. The intrinsic loss phenomenon
discussed by Hurd [30,31] is accompanied by infinite electric energy at
the origin in the lossless limit. This js true here as well and in the
resonance region of the radiation problem. In reality the energy will be
finite as a result of various effects including losses, finite current

density on the axis, and breakdown of the Tinear approximation.
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CHAPTER 6
SOLUTION OF SCATTERING PROBLEM

The scattered fields resulting from a normally incident plane wave
impinging on a gyroelectric plasma column will be determined. The
external medium is assumed to be homogeneous and isotropic. The scattered
fields can thus be described by the modal reflection coefficient matrix
defined in Chapter 5. This quantity is shown to satisfy é matrix
Riccati equation in Section 6A, which can be constructed by the method
of invariant imbedding. This Riccati equation is not in general possible
to solve analytically but can be integrated numerically. The
determination of the reflection coefficient matrix is thus reduced to the
solution of an initial value problem.

The invariant imbedding method allows us to build up the solution
to a general inhomogeneous problem by considering the medium fo consist
of many thin annular shells. The material properties within each shell
are usually assumed to be constant. The solution to Maxwell's equations
must be known within each shell for the method to be useful. The
assumption of constant properties within a shell forces us to consider the
"homogeneous" problem described in Chapter 5. Section 6B discusses the
solution to the "homogeneous" problem which is of considerable interest
in itself. This solution however is not as readily calculable as the
well known special functions. We therefore, as an alternative, allow the
elements of the dielectric tensor to vary in a prescribed fashion within

each shell. This variation is permitted solely to allow solution of the
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resulting equations in terms of well known functions (Bessel functions).
Section 6C discusses this alternative formulation of the invariant

imbedding method.

6A. Invariant Imbedding Formulation

Chapter 5 showed that the scattering problem can be formulated in
terms of the axial field components HZ and EZ. We therefore group these
two field components into the row vector ‘

u . .
_ o ,inc inc
wi"<‘ €5 Hzi Ezi ) (6A.1)

i=1,2

where the subscript i denotes a particular solution to the field
equations (5A.11) and (5A.12). Equations (5A.11) and (5A.12) being a
coupled pair of second order equations have four linearly independent
solutions. The two denoted by (6A.1) as wi will be referred to as the
"incident wave". The second pair of linearly independent solutions will

be denoted by

u
V. =< 2 pisatt E;?att> (6A.2)

i=1,2
and will be referred to as the "scattered wave". The choice of what

constitutes the "incident wave" or the "scattered wave" is somewhat

arbitrary. We will use two criterion for this selection. First we
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require the "incident wave" to reduce to the Bessel functions of the

first kind when the medium becomes homogeneous and isotropic. We

further impose the condition that E;?C

"incident wave" (6A.1) will also be required to have bounded axial

and H;gc vanish in this limit. The

field components at the origin of the coordinate system. Second we need
the "scattered wave" to reduce to Hankel functions of the first kind when
the medium becomes homogeneous and isotropic. We further impose the

el scatt scatt
condition that EZl and sz

vanish in this 1imit. We will also only
make use of solutions (6A.2) which represent outwardly moving waves.

The condition that the solutions (6A.1) and (6A.2) reduce to either
Bessel or Hankel functions as the medium becomes homogeneous and isotropic
will allow us to identify a multiplicative coefficient of (6A.2) in the
external medium as the reflection coefficient. The boundedness of the
incident solution (6A.1) at the origin will allow us to use the initial
condition that the multiplier of the "scattered wave" (6A.2), the

reflection coefficient, must vanish at the origin.

We group the solutions (6A.1) and (6A.2) into the two by two

matrices

W1

W= : (6A.3)
W
2
V1

V = (6A.4)
Vv
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The formulation now follows that of Latham [15] except that we are
dealing with matrices rather than scalars.

We must first consider the solution to two "elementary" problems
which will define quantities needed in the formulation of the Riccati
equation for the reflection coefficient. The first "elementary" problem
consists of a modal wave impinging on a cylinder. The second consists
of a source radiating at the axis of a cylinder.

The incoming elementary modal reflection coefficient matrix

P

rie,s p,)
2° P1

is defined as the reflection coefficient when an nth mode wave in an
infinite medium, whose parameters are those of position 0, in the final
problem, is incident upon a uniform cylinder whose parameters correspond
to position Py in the final problem, and is of radius Py Similarly,

the incoming elementary transmission coefficient

>

is the amplitude of the wave in the interior of the cylinder. The total

field U can therefore be written as

[
]

= W(P(p,)s 0) + rlp,s py) V(P(p,)s 0}y 0 > p, (6A.5)

-

U= tlp,s p;) W(P(p;), p)s p < p; (6A.6)
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where the vector P{p) indicates that the parameters of the medium are
those at position p in the final problem. The matching of tangential

field components at the boundary of the'cylinder, Pys gives

WP(p,)s 0,) + v (0y0 07) V(P(0,), 0)) = £ (pys 0)) W(P(p,), o)

(6A.7)
and
W (P(o,)s py) S(Pp,)) + v (pys 0)) V' (Plo,), pp) S(P(p,)) =
= tlp,s ;) W (P(o))s 0,) S(Pp,)) (6A.8)

where the prime denotes differentiation with respect to p and S(P(p)) is

the matrix

s - (6A.9)

where b is the central element of the dielectric tensor (5A.5) evaluated

-«

at position p in the final problem. Solving (6A.7) and (6A.8) for r and

-3

t we obtain
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-

r (o 0y) = [H(Po,)s 0)) W (Ploy)s ) W' (P(o)). py) S(P(o)))

W' (Plo,)soy) S(P(o,))] [V*(Ploy)s ) S(PLo,)) - V(P(,). 5,) WL(P(o,), b))

W' (P(o)), o)) S(PEo (64.10)

-

t (pys 0y) = W(Poy), o)) WH(P(o,), ) + v (0ys p;) V(P(p,). py)
WHP(o,)s o)) (6A.11)

Expressions (6A.10) and (6A.11) will be used only when discontinuities
occur in the dielectric profile of the final problem, taking Py =0y * 0.
When the medium is continuous we let Py = py + A and approximate (6A.10)

and (6A.11) to first order in A as

-
r(oy +8,p) =80 + o(s?) (6A.12)
> 2

t (p1 + A, pl) =1+ A D2 + 0(A°) (6A.13)

where 0 is the conventional order symbol.
The matrices D1 and D2 are given by

D, = (w W W oW - WS s'l) (v' - vl w')‘1 (6A.14)
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D, = (W +D, v)w! (6A.15)

where the dot denotes

W (Ploy)s oy) = = 2! (o) (6A.16)
1 1

W (P(o))s o) = 2 24P (o) (68.17)
1

s (P(py)) = g—gb' (6A.18)

and Pi(pl) represents the elements of the medium parameter vector P(pl).
A1l quantities in (6A.14) and (6A.15) are evaluated at position p, With
medium parameters corresponding to position Py in the final problem.

We must also determine the elementary modal coefficients when a
source coincides with the axis of the cylinder. The parameters of the
cylinder are those of position Py in the final problem and those of the
external medium are those of position Py in the final problem. The
total field is given by

->

U=V({P(p;)s p) +r (0,, ;) W(P(p,)s p), p < 0y (6A.19)
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-

U=t (py, p;) V(P(p,)s 0) » o> Py (6A.20)

The boundary conditions at the boundary of the cylinder enable us to

- “
determine r and t as

-

r (oys ) = [V(P(,), 00V (Plo,)s py) V' (P(o,), p,) S(P(0,))

- V' (P(p)s 07) S(P(p)))]

¥ (Ploy)s 0y) S(PG;)) = W(P(o,), 0)) V7E(P(s,), o) V' (P(py), 0y)S(P(s,))]

(6A.21)
) -1
+

+ 1 (pys ) WP(p)), £)) VT (Plp,), ) (6A.22)
we again take Py =Py * A and approximate these as

M 2

r (p1 + A, pl) = A D3 + 0(A°) (6A.23)

N 2

t (p1 + A, pl) =144 D, + o(a”) (6A.24)

The matrices 03 and D4 are given by
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D, = -(V Vv v v s ST (W - vyt (6A.25)

D, = (-V+D, W) vt v (6A.26)
where the dot denotes

y _ VN ,

V (P(p))s py) = I gpr Pi(p;) (6A.27)

ViPloy), op) = 2 —g—g—; P.(o,) (6A.28)

Again all quantities in (6A.25) and (6A.26) are evaluated at position N
with medium parameters corresponding to position Py in final problem.

We are now in a position to determine the equation for the reflection
coefficient matrix in the inhomogeneous problem. The geometry is shown
in Fig. 11 which as been taken from Latham [15]. In the external medium

the field can be written as

U=W(P{p; +4), p) +R(p, +8) V(P(p; + ), o) (6A.29)

We wish to determine an equation for the reflection coefficient matrix R
by considering how it changes when a thin additional layer is added to
the cylinder of radius py- Assuming the reflection coefficient of the

original inhomogeneous cylinder of radius Py is R(pl) we may write
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T
A
—>—
P
> - 1
tRt
—g—
>
> - -
tRrRt
P(R)
+ P(R+A)
11. A cylindrical shell of thickness A in which the material

properties have the value of position pj in the inhomogeneous
problem. The three rays shown are the ones that centribute
to the change in reflection coefficient as A becomes small.
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“«

-+ <«
R(o, +8) =r (o, +8, p)) +t (p; +4,0,) R(p,) t (p; + 4, 0p,)
>

+
P
+ t (p; + 8, p)) Rlpy) r (p) + 28, py) R(p,) t (py + 8, py) + ... (6A.30)

This series may be summed as

-

Rlo, +8) = (o, + 8, 0) + t (o) + 2, [V = Rlpy) v (o) + 8, 0]
R(oli t (o, +4,0) (6A.31)

However for small A we may approximate the right hand side of (6A.30) and

obtain
R(p,;) + A R(p;) = 2D, +R(p) + 4D, R(p;) +AR(p) D, +
+ 5 R(p,) D, R(p,) + 0(s?) (6A.32)

where the dot denotes differentiation with respect to Py This equation

gives us the equation for the reflection coefficient matrix R(pl)
R(p,) = D, + D, R(p;) + R(p;) D, +R(p;) D, R(p,) (6A.33)

which is a matrix Riccati equation. As described at the beginning of

this section, the incident and scattered components of the field will be
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chosen so that the initial condition associated with (6A.33) will be

R(D) = 0 (6A.34)

Equations (6A.33) and (6A.34) thus together constitute an initial value
problem for R. At any points of discontinuity in material properties we
must use (6A.31) which can be written as

+ ->

R(p, +0) = (o, + 0, p)) +t (o, +0, o) [1 - R(oy) ¥ (o, + 0, p)]

“«

R(p,) t {p; + 0, p;) (6A.35)

The radius Pe represents the boundary of the inhomogeneous plasma
cylinder. The incident and scattered components of the modal field
reduce to Bessel and Hankel functions in the external medium. This makes
it possible to identify R(pc) with the modal reflection coefficients
R, defined in Chapter 5 (5B.5), (5B.6), and (5B.7). The solution of
this initial value problem thus provides us with the scattered fields in
the external region.

The choice of the solutions (6A.1) and (6A.2) to the field
equations, which appear in the coefficients of equation (6A.33), will be

discussed in the following two sections.
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6B. Solution to "Homogeneous" Modal Equations

The solutions (6A.1) and (6A.2) used to formulate the Riccati
equation for the reflection coefficient are solutions to Maxwell's
equations in a cylindrical shell with certain assumed variations in
material properties. It is typically assumed that the material properties
are constant within such a shell. The "homogeneous" problem described
in Chapter 5 gives rise to constant material properties. Equations
(5A.17) and (5A.18) with rho independent parameters must therefore be
solved to determine the axial fields. We hasten to point out that the
"homogeneous" problem is interesting in itself since it provides a
tractable setting in which to view many aspects of the scattering problem.

To effect a solution of (5A.17) and (5A.18) we first transform them into

2 2

g—%+lgﬁ+<1-v—2)h=i§e (GB.])
dg £ dg £ 3

2 2

g__§_+l_d£+<k2-n_2_>e=_-i§.h (6B.2)
dg g dg £ 3
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It is possible to obtain fourth order equations for each of the axial

field components. The only singular points of the fourth order
equations are at the origin (kegular singular point) and infinity

(irregular singular point).

A solution of (6B.1) and (6B.2) can be determined by the method

of Frobenjus [33]. Assuming that v is not equal to an integer and that

n >0 with Re v > 0 we write the four solutions as

a (DF 2m+ v
h+ = Z a, £
L,
am (D 2m+ v + 1
e, = I bm 3
T m=o0
(20 7 (@F wmin+1 o+ (2)
hi. = I am £ +x h, fng
m=20
) T @+ m+n + (2)
ei =z bm £ + ke in £
m=20

which converge for |£| < = and where the coefficients satisfy the

recurrence relations

(68.3)

(6B.4)

(6B.5)

(6B.6)
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(L 2 2 (6554 (DH+
a4 [(2m1v+2)-v]+a =i8b
(nx 2 2 2 )+ (D
by [(2mj_v+'l)-n]+k bpoy = - 18 a,
(Dt
a, =1
(2)+ 2 2 )+ (2)+ + @+
a [(2min+'l) -V ] ta,, =i18b - 2(2m-ntIk a
)+ 2 2 2 ()+ )+ 2+
b4l [(Zmin +2) - n] +k b T =-iBa  -2(mnm2k b
)+
=1
0
0
+
K =
2 - @
-(k bpy t+ 18 an—1)/2n
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Coefficients with negative subscripts in the above recurrence relations
are taken to be zero. The restriction n > 0 results in no loss of

generality since the solutions for n < 0 can be obtained by using the

above equations with n positive and Re v positive, but taking ?eil),

(2)
’ﬁt

instead of.eil),.hfz) (since B is proportional to n and changes sign).

The case n = 0 results in uncoupled Bessel equations with solutions

J,(€)
1)
hi =
Y, (&)
eil) = 0 (6B.7)
(2) _
hi = 0
J, (k)
e -
Yo (KE)

The "homogeneous" scattering problem can now be solved by taking



m 1
/ 0 hil) . e,(,l)
e B, . ;B

02 1
W(P(py)s p) = | (68.8)
/——p 1
0 hEZ) _ eiZ)
€of2 B
inside the plasma column and
Ho
\/— Ip(kge) 0
o
W(P(pz), p) = (6B.9)
0 Jn(kp)
U .
o (1)
———Hn (kop) 0
V(P(p,)s p) = (68.10)
(1
Hy o (ko)

in the external free space region.

These are then used in equation (6A.10) at the boundary of the column
to find :. The elementary reflection coefficient, :, coincides with the
total reflection coefficient, R(p1 + 0), as seen from (6A.35) since R(pl)
is zero when the cylinder is "homogeneous". Examples of this "homogeneous"
solution are given in Section 7A. The solution (6B.8) also can be used as

the solution W in the inhomogeneous problem. The solution is rather simple

because we have taken the magnetic field to be independent of radius
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resulting in modal equations with only one finite singular point, at the
origin.

The minus solutions were not needed in this case as a result of the
required boundedness of the axial fields at the origin. These solutions
will be required however to form the scattered field V in the invariant
imbedding method.

An asymptotic solution to the modal equations (6B.1) and (6B.2) for

large values of [£| can be written as [34]

~
(98]
S
1+
]
N+
]
3

(3) +if o
h, ~ e T a £ (6B.11)
- m=o0

(3  HE® @+ -3-m
e, ~ e I b £ (6B.12)
- m=o0

@) otk = (Wt -2-m
h, ~ e g £ (6B.13)
- m=o0

. 1

@) 4k © @+ -1-m
e, ~¢€ & b & (68.14)
- m=o0

for |g] » o
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where the coefficients satisfy the recurrence relations

_ (3)+ 3+ 3+
+1i2(m+1) a4y +-[(%—+ m)z - vz]am =3iB bm
)+ (3)+ (3)+
2 o L1, 2 2 r
(K- 1) by ™ Fizme )b #[(F4m)?-n?] b ",
e
=TV any,
(3)+
a, =1
(4)+ )+ (4)+ 4)+
2 - = — 1 2 2 _ -
(1 - k%) a ., *+i2 k(m+ 1) a. 4-[(-§-+ m) -V ] . iB bm+1
(4)+ (4)+ (4)+
Fizkm+ )b T+[(zemP-n?] b T=-ipa
@)+
b0 =1

The physical values of £ will be restricted to either entirely positive

real or positive imaginary. It is therefore appropriate to take
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o

M

/ 0 h£3) e£3)
6032 B

V = (68.]5)

Mo v 1w
+ +
€48, VB,

since this will represent either an expanding cylindrical wave, when

(o

E is real, or an evanescent solution, when £ is imaginary.

These asymptotic solutions have greater importance than merely
defining the scattered wave (6B.15). For example, large "homogeneous"
columns will require the evaluation of the solution to the modal
equations with large arguments. It is far easier to evaluate such
solutions by use of the asymptotic representations than the series
representations.

Since the modal equations (6B.1) and (6B.2) are coupled second
order differential equations there exist four linearly independent
solution pairs (h e). It must therefore be possible to write each of
the series solutions as an appropriate linear combination of the four
asymptotic solutions and vice versa. The coefficients in these relations
are known as connecting constants. These constants are not determined by
the local analyses used to obtain {6B.3) through (6B.6) and (6B.11)

through (6B.14). Their evaluation forms a much more complicated global

problem. But their evaluation is necessary for the asymptotic expansions
(1) (1) (@2 (2
hi. » €77 hi. N

to be of use in calculating the modal solutions

for large arguments, or for the series expansions to be of use in



74

calculating h£3),.ei3),vhi4),.e£4) for small arguments.

The connection—broblem can_be related to one which has been studied
previously, namely, the second order equation with four regular singular
points (Heun's equation). This can be shown by assuming a solution of
(6B.1) and (6B.2) in the form of Hankel transforms. The procedure is
carried out in Appendix 6. It is shown that the connection of (6B.3)
through (6B.6) to (6B.11) through (6B.14) involves the connection constants
of solutions to Heun's equation about the various singulaf points. The
connection problem for Heun's equation has been studied. The connecting
constants can be determined as the sum of factorial series [16,35].

We have thus shown that the functions which are solutions of the modal
equations (6B.1) and (6B.2) can be determined by methods of local analysis
in the form of Frobenius series and asymptotic series. Furthermore, the
connection between these two forms can be accomplished in terms of the
connection between solutions of Heun's equation, a problem which has been
studied.

Section 7A presents the results of this "homogeneous" problem for

moderate size columns. The modal solutions in this case were calculated

by means of the Frobenius solutions.
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6C. Bessel Function Solution to “Inhomogeneous" Modal Equations
Solutions to the modal equations (5A.11) and (5A.12) in the case
when the dielectric tensor varies with rho in a prescribed fashion will now
be discussed. The goal of the present section is to find what type of
rho variation the dielectric tensor must possess such that the modal
equations have solutions involving well known functions. This die]ecfric
tensor must remain flexible enough, however, to form a close approximation
to the actual inhomogeneous dielectric profile over a thiﬁ annular region.
Since we are dealing with cylindrical geometry we expect Bessel
functions to play some role in these solutions. The synthesis of a
dielectric profile which gives rise to solutions in the form of well
known functions is not a unique process. But in this discussion we limit
ourselves to two different types of rho variation. To accomplish our goal

the dielectric tensor must first be generalized to the form

al 0 ig
g = 0 b 0 (6C.])
-ig 0 a2



dZEZ.’l..dEZ ) g\ n g on
—5= 4= =5+ oty (az- )-— E,==-1——ay  H, (6C.3)

we now choose a particular form for the functions ;s 3,5 b, and g. A

useful choice is

<1
o
—de
T ko>

(6C.4)

oo
]
o
o>
S

]
ka
o
o>
[
ho) Io»
pof N

where a, b, §, and § are constants. Equations (6C.2) and (6C.3) become

2 t\2 ~
d°H 1 dH N v B
—Tz'l'—— -——Z—+(k2 -—z‘)H = i —IE (6C-5)
Z 2 "2
dp p dp P p
2 ~2 A
d°E 1 dE u B
z Z ~2 L P
5 +—————+<k1-7>EZ—-17HZ (6C.6)
dp p dp p p



wherevﬁf = mzuob . 52 = n2

(o>

R ~2 R _
82 o 2 +(§_ + 52> o2
a 0

The solution to (6C.5) and (6C.6) can be obtained by substituting

= =
!

= x€, (ﬁlp) | (6C.7)

m
I

= y€, (k) (6C.8)

A

where %a (klp) is a cylinder function of order A, and x, y, and A are
constants to be determined. Substitution of this trial solution results

in the equations
(2 - 3% x = B,y (6€.9)
(2 -3%) y=- B, x (6C.10)

Equations (6C.9) and (6C.10) constitute an eigenvalue problem. The

eigenvalue Az can be determined by the requirement that the

determinant vanish yielding
(7 =37 (-0 - B B, =0 (6c.11)

Denoting by A, and Ay the two solutions of (6C.11) with
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positive real parts, the solutions of the modal equations can now be

written in the form

H A PN

0

— x,J, (k,p) y.J, (k.p)
\/ g, 171 19,1

W= (6C.12)

. uo A A
Mo . (D)7 (1)
H (k p) H (k o)

V= (6C.13)
\/‘7 x H‘”( ki) yhy (k)

W and V are the "incident" and "scattered" solutions described in Section
6A, and the ratios of X, to Y, or x, to y, are determined from (6C.9) or
(6C.10) using Af or Ag, respectively. The matrices (6C.12) and (6C.13)
thus form the set of solutions required in the formulation of the Riccati
equation for the reflection coefficient R. The values of the parameters
entering equations (6C.5) and (6C.6) are varied to make the dielectric

tensor (6C.4) fit the actual tensor (5A.5). This means we must have

2 2
k1"‘1
~2 2



79

§ = pSl

™>
n

2 = PBy

8% = n® 4 0% (K] - k3)
The solutions (6C.12) and (6C.13) provide a rather flexible model, namely
dielectric tensor (6C.4), for building up arbitrary profiles via the
invariant imbedding method. This fact can be illustrated by considering
two limits. When the plasma density vanishes near the boundary of the
column, the order, X, becomes an integer, n, reducing (6C.12) and (6C.13)
to free space solutions (note that k1 becomes k0 in this Timit).
Secondly, near the origin the incident solution, (6C.12), is flexible
enough to take on the varfous types of field behavior discussed in Section
5C. Therefore, although in themselves (6C.12) and (6C.13) do not
represent solutions of interest in the context of the medium described
by the dielectric tensor (5A.5), they are useful in building up such a
solution. The invariant imbedding method thus treats the actual profile
as consisting of many thin annular slabs of this inhomogeneous anisotropic
medium.

There is a drawback to using solutions W and V, defined by (6C.12)

and (6C.13), in the invariant imbedding scheme. The derivative
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vV, W', V!
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required in Section 6A are taken with respect to parameters of the

medium which vary with radial distance.

W and V must be taken with respect to A.

This means that derivatives of

However the derivatives of

Bessel functions with respect to order are not included in standard

numerical libraries.

For this reason a second choice of the functions

;5 8,5 Gs b will be considered. The second choice of the tensor is

2, 0 igpa1
€ = 0 B 0 (6C.14)
LA A2
-igea, 0 a2+g pza1

where a, = 1/(1/b + lez), and 31, 52, g, b are constants. The modal

equations (6C.2) and (6C.3) thus become

dHZ o n? R

;i__.,, kl - — JH, = i8, E, (6C.15)
p p

dEZ a9 n? ~
p p
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$2_ 24
k2 = wHy,
81 = gnwb

82 = ghwy

The solution to (6C.15) and (6C.16) can be obtained by suBstituting

pa
n

x€_ (vp) (6C.17)

m
n

y €, (o) (6C.18)

where x, y, and y are constants to be determined. This yields the

equations
(k7 - v) x = i, y (6€.19)
(k5 - v y = - B, (6€.20)

Equations (6C.19) and (6C.20) have non trivial solutions provided the
determinant vanishes or

B, =0 (6C.21)

22 2y 42 2, 7
(kl =Y ) (kz =Y ) = 81 2
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which has solutions

e o a0 2 A
Vel@eid el \[(kf - K2) + 488, (6¢.22)

where by yf we will denote the + sign value, and by yg the - sign value.

The solutions of the modal equations may therefore be written as

1‘[0
E;—den(Ylp) ¥19,(vs0)
IJO
E;’xzdn(sz) Y59, (v,p)
Yo HD (4 0) HO (4 0)
g, 1N ¥4P Yify \YyP
v = (6C.24)

T
0 (1) (D
\/E;'szn (v,p) Y H " (v,0)

A2 2 _ .A
where (k1 - yl)x1 = 1By,

W (6C.23)

v I
(k3 - v3)y, = - 18,x,

The values of the parameters entering equations (6C.15) and (6C.16) are
varied to make the dielectric tensor (6C.14) fit the actual tensor (5A.5).

This determines these parameters as
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K= - (v - n?)/p?
k2=«

,§1 = B,/p

éz = B,/p

The solutions (6C.23) and (6C.24) reduce to the free space solutions when
the plasma density vanishes (yz becomes kg). However, the type of

field behavior near the origin modeled by these solutions is somewhat
restricted. This fact is evident from inspection of the "incident"
solution (6C.23). The ¢ component of the electric field, which is the
derivative of HZ with respect to p, remains bounded at the origin. As
noted in Section 5C bounded fields result when the magnetostatic field
vanishes at the origin. Therefore the solutions (6C.23) and (6C.24) are
most useful in solving problems where this condition is actually met at

the origin.
The solutions (6C.23) and (6C.24) were used to set up a computer

program to determine the reflection coefficient matrix via the Riccati
equation of Section 6A. A slightly modified form of (6C.23) and (6C.24)
were actually implemented in the program. These modifications are required
for certain numerical purposes as well as to make the off diagonal elements
vanish as the external region is approached. They are discussed briefly

in Appendix 7. Chapter 7 presents solutions obtained using this program.
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CHAPTER 7
RESULTS OF SCATTERING PROBLEM

This chapter presents the results of the scattering problem. Section
7A discusses the "homogeneous" case whose solution was given in Section
6B. A qualitative interpretation of the results is given by considering
Faraday rotation in a magnetized plasma (with plane biasing field).
Section 7B presents several examples of inhomogeneous co1hmns. The
solutions in Section 7B were calculated by numerical integration of the

matrix Riccati equation for the reflection coefficient.

7A. "Homogeneous" Plasma Column

We present in this section several examples of scattering from a
"homogeneous" plasma column. The results were calculated through use of
the series expansions of the modal equations described in Section 6B.

Since the exterior medium is reciprocal there exists a simple
relation among the four entries of the reflection coefficient matrix [36].

Indeed, in conformity with its definition, in Section 5B, we must have

12 . _ g2l | (7A.1)

Figure 12 comprises a sequence of scattering results for various plasma
column radii. Three magntiudes and phases, 6, are given on each plot.
The curves labeled H represent the magnitude and phase of ri! and

correspond to an incident plane wave with the H field in the axial
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Fig. 12. () kyo, =3
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Fig. 12. (d) k. =10



Fig. 12. (e) ko =20



90
direction. The curves labeled E represent the magnitude and phase of R22
and correspond to an incident plane wave with the E field in the axial
direction. The unlabeled dashed curves represent the magnitude and phase
of R12 and correspond to the cross polarized component of the scattered

field. We have restricted the phase to 1ie between + 180°.

We notice that when the column radius is small compared to the
wavelength the magnitude curves take on well known shapes. The E
polarization curve represents the radiation pattern of an electric dipole
perpendicular to the plane of the paper. The H polarization curve
represents the radiation pattern of an electric dipole in the plane of the
paper oriented perpendicular to the direction of the incident wave. These
two patterns are similar to those resulting from scattering off an
isotropic column. The cross polarized pattern however is not so familiar.
We see that its relative magnitude decreases rapidly with column size.

If we take as an approximation a uniform exciting field within the column
we see that in the case of E polarization charges are accelerated in the
axial direction. This axial current is responsible for the symmetric E
pattern on the figure. However an interaction of this current with the
magnetostatic field also results in radial charge motion. But such a
symmetric current does not radiate. Similarly for the H polarization
charges are accelerated perpendicular to the axis giving rise to the
dipole H pattern. The interaction with the magnetostatic field accelerates
charges axially. However, in the top half of the column the axial
current flows in one direction, while in the bottom half of the column it
flows in the opposite direction. The two dipole moments cancel when the

column radius is small. The generation of the cross polarized components
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therefore results from the phase change of the field within the column
and explains why its relative magnitude diminishes as the column becomes
small.

The null of the cross polarized component along the direction of the
incident wave persists throughout all these figures. This can be
qualitatively understood by the following ray optical model. Figure 13
shows two rays traversing the column. Ray A propagating antiparallel to
the static magnetic field undergoes Faraday rotation in fhe counterclock-
wise direction. Ray B propagating parallel to the static field undergoes
Faraday rotation in the clockwise direction. On the symmetry line of the
figure the rotations are equal in magnitude but opposite in sense. The
cross polarized field components generated by the Faraday rotation there-
fore exactly cancel on the symmetry line.

The predominantly forward direction (in the direction of the incident
wave) of the scattered fields when the column becomes larger, resembles
that of a phased linear array of dipoles. The phasing is retarded due to
the propagation delay of the incident wave.

The H and E phase curves are even in ¢ while the cross polarized
curves are odd in ¢. This fact follows from the evenness of the diagonal
components of Rn with respect to n, and the oddness of the off diagonal
components of Rn'

Figure 14 shows the two Timiting cases, small magnetostatic field
resulting in a nearly isotropic column, and large magnetostatic field
resulting in a nearly uniaxial column. The cross polarized components
become small in both cases. The E polarization also becomes small in the

uniaxial case since the electrons are frozen to the magnetostatic field
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ray A

rayB

Fig. 13. A ray optical picture of the generation of the cross polarized
component of the scattered field. The Faraday rotations cancel
on the symmetry line.
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column radius is kgpe = 10/3.
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lines and cannot respond to the applied field.

Figure 15 illustrates the case where the wave number k2 is imaginary.

Figure 16 illustrates the case where the quantity v defined in
Section 5B is imaginary. This results in intrinsic loss at the axis as
described in Section 5C.

The next section presents examples when the column is inhomogeneous.

More "homogeneous" patterns will also be given there as a comparison.

7B. Inhomogeneous Plasma Column

We now give two examples of scattering from an inhomogeneous plasma
column. The matrix reflection coefficient was calculated by numerical
integration of the Riccati equation of Section 6A. Figure 17a represents
a column of plasma containing a uniform axial current density. The
magnetostatic field thus varies linearly from zero at the axis to a
maximum at the boundary of the cylinder. The vanishing of the magnetic
fie]d at the axis makes this example well suited to computation as
discussed in Section 6C. Figure 17b gives the result for a "homogeneous"
column with an intermediate strength magnetostatic field as a
comparison.

The second example, Fig. 18a, represents a column of plasma
containing a uniform axial current density in its central portion and zero
axial current in the surrounding annular region. The magnetostatic field
thus varies linearly from zero at the axis to a maximum at the edge of the
current carrying portion, and then decreases inversely with distance.
Figure 18b gives the result for a "“homogeneous" column with an intermediate

strength magnetostatic field as a comparison.
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Fig. 15. The wave number ko is imaginary in this case.

The parameters
are wp/w = 3/4, - wg/w = 1/2, and kopC = 10/3.
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Fig. 16. The quantity v is imaginary in this case resulting in intrinsic
loss at the origin. The parameters are wp/w = 3/4, - wg/w = 3/4,
and kgpe = 10/3. )
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Fig. 17. A case of uniform current density is compared with a "homogeneous"
casz. The behavior of - wg/w is shown. The other parameters
are wp/w = 3/5, kope = 10/3.

(a) Inhomogeneous



Fig. 17. (b) "Homogeneous"
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Fig. 18. A case of uniform current density in the central portion of the
column is compared with a "homogeneous" case. The behavior of
- wg/w is shown. The other parameters are wp/w = 3/5, Kopc = 20/3.

(a)  Inhomogeneous
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Fig. 18. (b) "Homogeneous"
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We see from the above two examples that qualitatively the
"homogeneous"” solution has many of the characteristics of the inhomogeneous
results.

The computer program used above was limited in two respects. First,

special functions were not available to allow us to have w < W+ Second,

we did not incorporate the necessary asymptotic solutions to allow

resonances (singularities occur in the coefficients when mz = mé + mg)

But the method can be used in these cases also.
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CHAPTER 8
SUMMARY AND CONCLUSIONS

We have shown that the problem of an electric line source radiating
into a homogeneous cold plasma containing an azimuthal biasing field,
(generated by a large static current on the line source) can be formulated
as a confluent form of Heun's differential equation. This differential
equation can be solved by means of special function seriés analogous to
the spheroidal wave equation. Reflection and transmission coefficients
have been defined to describe the transmitted field amplitude at large
radial distances and the reflected field amplitude in the vicinity of the
line source. When the driving frequency is greater than the plasma
frequency, and the plasma is unbounded the reflection coefficient is
typically small and decreases with increasing static field or axial
static current. The transmission coefficient decreases approximately
exponentially with increasing static current as shown by the WKB
approximation. These results are similar to the planar results when a
resonance is present in the plasma. When the driving frequency is below
the plasma frequency and the plasma is bounded, the transmission
coefficient increases with increasing static current. The reflection
coefficient decreases with increasing static current. These results are
due to the fact that the magnetostatic field confines the motion of the
plasma electrons near the wire. These results are accurately predicted

by the WKB approximation.
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The problem of scattering from a bounded column of plasma
containing an azimuthal biasing field has also been treated. The problem
has been formulated as a pair of coupled second order ordinary
differential equations in the axial magnetic and electric fields. A
matrix reflection coefficient has been defined which describes the
scattered field amplitudes when a plane wave is normally incident. Using
the method of invariant imbedding a matrix Riccati equation has been
developed for this reflection coefficient. The so]utionfof the
scattering problem has thus been reduced to an initial value problem
which can be integrated numerically.

The case of an axial static current density which is inversely
proportional to radial distance leads to what has been labeled the
fhomogeneousf problem. The dielectric tensor in this case is independent
of radial distance when the plasma is uniform. The coupled second order
equations have only one finite singular point in this case. Their
solution has been carried out by the method of Frobenius and by asymptotic
methods. The connection between these two forms of solution has been
related to the connection of solutions to Heun's equation which has been
studied elsewhere.

The scattered fields contain a cross polarized component which has
nulls on the axis defined by the incident wave. The scattered radiation
is thus in general elliptically polarized. The scattered fields are
directed forward when the column's radius increases. The scattered
fields in the two "inhomogeneous" cases considered (where the axial

current density was not inversely proportional to radius) computed via
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the Riccati equation, resemble the "homogeneous" results.

The field behavior in the vicinity of the origin exhibits similarities
to that encountered in wedges if the biasing field does not vanish at the
origin. For example, under the simplifying assumption of infinite
magnetostatic field, the electric field components transverse to the

axial direction become infinite at the origin.
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APPENDIX 1

"So1uti0n‘Of'Confldent'Heuh's'EqUation

by Special Function Series

The solution of the equation

4’6, 1dE, £2-q’

2 z

de>  e£de g% - p?

will now be determined. The new variable

X = gz/p2 transforms (A1.1) into

d%E dE. 1

2+ (1-x) =2+ = (¢® - px) E, = 0 (A1.2)
dx 4

LE. = x(1-x)
X"z dx

an equation with regular singular points at 0, 1, and an irregular
singular point at o,

The exponents at a regular singular point can be determined by
solving the indicial equation [33]. The pair of exponents at the origin
of (A1.2) are 0, 0. The exponents at the point unity are 0, 1. The
special functions selected for the series representation must have the
same attributes as the solution at these singular points. Stated another
way, they should be solutions of a simpler equation also having regular
singular points at 0 and 1 with exponent pairs 0, 0, and 0, 1,
respectively [10]. The functions selected must also have a singularity

at infinity enabling a sum of them to emulate the essential singularity
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of the solution. The hypergeometric functions can be selected to fit

these requirements [22]. The solution to (A1.2) can be written as

m
n

EF(p, 9, x) = = ¢, F(2 -25 13 x) (A1.3)
m

1
1
8

m + v and the notation EF is thus defined by this series. The

where
constant v is known as the characteristic exponent of the irregular
singular point. The value of this exponent is determined by requiring
convergence of the series. Operating on the hypergeometric function
with Lx results in
Q? g2 _p*

LXF = (4 - Q° - ) x) F (A1.4)

Two of the Gauss contiguous relations for the hypergeometric function

F(a, b; c; x) are
(b-a)f+aFla+1)-bFb+1)=0 (A1.5)

(b-a)(1-x)F-(c-a)Fa-1)+(c-b)F(b-1)=0 (Al.6)

where only the incremented arguments of the hypergeometric functions are
shown. These two relations can be used to eliminate the variable x in

equation (A1.4) resulting in
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2 .
_{1 2 2 1 2 20° -1 . 1.
LXF = (E q - 7 - I P ;ﬁ) F(Q. '99 ]s X)

2
+B_8-1  pgoq,7. Q; 15 x)

4 2(20-1)
2 Q+1
+ B 270 R+, -1-0; 15 x) (A1.7)
4 2(20+ 1)

use of (A1.7) in (A1.3) gives

~ 8

LE =

«E5 mem F(Q, -0; 1; x) (A1.8)
m

-00

where Lm is a second order difference operator

2 2
Q 1 2 2 1 220 -1
Lc =¢c E—~-——————-—-+—(—-q -8 - =p )c
™ 220+1) \a 4 4@ - /M
2
+ B8 . (A1.9)
4 2(20-1) ™I '

Setting (A1.9) equal to zero gives the recurrence relation among the

coefficients Crpe Convergence of the series (A1.3) hinges on the behavior

of the coefficients o for large m. The equation

LGy = 0 (A1.10)

is a three term difference equation and it thus has two linearly

independent solutions. Let us define
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c
m+l
= = ! Al.
) c l/vm (A1.11)

and from (A1.10) we obtain

Y(.-)
- m
me1 T T, =, | (A1.12)
m m m
+)
¥
y! = m (A1.13)
m -I - 6 - 'Y(_)V'
m m m-1

@ . p
m™ T BREaF 1)

Equations (A1.12) and (A1.13) can be used to determine the asymptotic

behaviors of Vi and v$ as m becomes large

v_ = o= m->+e
" o (A1.14)
v! = 0(0=") m-> - e
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where 0 is the conventional order symbol. The behavior with the minus
sign in (A1.14) will result in convergence of the series (A1.3). We are
free to impose the desired behavior of v (minus sign) in one direction,
m > + «, but the behavior of vé in the other direction, m » - =, will

in general be undesirable (plus sign). The characteristic exponent, v,
is chosen in such a way that the desirable solution in one direction
connects to the desirable solution in the other direction. The

transcendental equation determining v is found by iterating (A1.12) and

(A1.13) to give the infinite continued fractions

) CONNCY
v = m+1 Ym+1 Ym+2 (A7.15)
m - ] _ 6 - ] - (S - te . )
m+1 m+2
(+) -). &)
v m m_Ym-1 (A1.16)
ym - -l _ (S - -I - 6 -t .
m m-1

where the second term of the sequence is in the denominator of the first
term, etc. Equations (A1.15) and (A1.16) give values which do not in
general satisfy the definition (A1.11) o% Vp @nd v’ unless the
characteristic exponent v is chosen correctly. Thus (A1.11) together
with (A1.15) and (A1.16) determine the value of v. The value of m in
these equations may be set conveniently. A general consideration of the
differential equation (A1.2),which is identical to that used on the
spheroidal wave equation, shows that if v is a solution then so are v +
any integer [10]. Thus we may take the real part of v to be between

zero and one half. The above calculation of v also determines Vo and vé
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and therefore determines all coefficients, Cye aside from an overall
scaling factor. We make the solution definite by taking ¢ = 1.
Appendix 2 shows that the series (A1.3) with appropriate choice of v
converges for all x such that |x| < o,

The differential equation (A1.2) is second order and has two

linearly independent solutions. The second solution can be represented

as

e~ g

cmG(Q, -0 1 3 x) (A1.17)

- 0

E, = EG(p, q, x) =
m

where G(Q, -0; 15 x) = (1 -x) F(1 + 0,1 -@; 2; 1 - x)r(1 + 2)r(1 - @)
is a linearly independent solution of the hypergeometric equation. Using
the above procedure and the contiguous relations (A1.5) and (A1.6) we can
show that the coefficients Cn in (A1.17) are the same as in (A1.3).
Appendix 2 shows that (A1.17) converges for all x such that [x| < =.

The representations (A1.3) and (A1.17) provide the general solution
to (A1.2) for all x. Yet since the terms of these series grow like
positive powers of x for large |x|, they do not provide the asymptotic
form of the solution for large |x|. These series furthermore become
sTowly convergent as x becomes large. As in the case of the spheroidal
wave equation [10], two other series representations will supplement
(A1.3) and (A1.17). The functions used in these additional series possess
the same essential singular behavior as the solution to (A1.2) at the point
of infinity. They will therefore provide useful solutions for large x as

well as the asymptotic form of the solution for large x. They are
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C

- .5 m 1
E, = EY(p, g, E) "I .a Y, 0(E) (A1.19)

The differential equation for EZ in terms of £ is (A1.1) which can
be written as
2

d%E p? \ dE
LE = (6% - p%) 2+ (a - ———)-—JE + (2 - %) E, = A2
£z a2 : e q9°) E, =0 (A1.20)

where LE is a linear differential operator.

Operating on the Bessel function with Lg results in

2
L, J= (492 - q* +p? - p? 59—) J (A1.21)
£ 2

The variable £ can be eliminated by repeated use of the relation

49 _
T g (6) =dy0 , (B) + 3,0, (B) (A1.22)
we obtain
2 2 22&-—1) 2
LJ=<4Q-q+P oo (£) - —B2& 5 ()
: a? - 1) 2 2(20 - 1) 2072
2
9
- P Jyory (E) (A1.23)

2(20 + 1)
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which when combined with (A1.17) gives

L 0 n 2

,...
m

"

]

-9
"~ g

-00

where Lm is the same difference operator as defined in (A1.9). Thus the
recurrence relation among the coefficients is identical to those obtained
previously (A1.10).

This is also true of the Bessel function of the secona kind, ng(g),
since it satisfies both the Bessel differential equation and relation
(A1.22). Therefore the coefficients ¢, are the same as in (A1.3). Appendix
2 shows that these series only converge for || > p (or in terms of the
variable x = Ez/p2 for x| > 1).

The connection between the solutions (A1.3), (A1.17) and the solutions
(A1.18), (A1.19) is now determined. It will be assumed that the character-
istic exponent, v, is not an integer or half odd integer. Making use of

the power series expansions of the Bessel functions we can write

EJ(p, q, px?) = x° I (p> g9, x) (A1.25)

xVEg € (p, 9, x)cot(2mv) - x'vEJ(')(p, q, x) csc(2mv)
(A1.26)

1
EY(p, q, px?)

where the denoted functions on the right are single valued and possess

the Laurent series expansions

B%(p, g, x) = 32 X" (A1.27)

m

o8

- 00
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where the j£+). jé') are known coefficients involving sums of the

coefficients c_, and the series are convergent in the region 1 < |x| < =,
The values of jéi)

The power series representation of the hypergeometric function

are given in Appendix 3.

convergent in the domain 1 < |x| < » can be obtained by using the
linear transformation formulas for the hypergeometric functions
(Appendix 3). Making use of this power series expansion allows us to write

ei'ﬂ'\) x"‘\) EF(-) (p’ q’ x) + e--iTr\) X\) EF(+) (p’ qs -X)

EF(p, q, x)
(A1.28)

EG(p, q, X) = 7 csc ™V [x'v EF &) (P, q, X) - x° EF P (p, q, X)]
(A1.29)
where the denoted functions on the right are single valued and possess

the Laurent series expansions

™~ 8

F® (o, q, x) = fngi) X

(A1.30)

m=-ow

where fé+), féf) are known coefficients involving sums of the
coefficients ¢, and the series are convergent in the region 1 < x| < =,

The values of féi)

are given in Appendix 3. The solutions EJ, EY can
be written as linear combinations of the solutions EF, EG. But since
the functions EJ(i? and EFQt) are single valued in the annulus

1 < |x] < » we must have

D (b, q,x) = P D (p, g, x) (A1.31)
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where c(+), c(') are unknown coefficients of proportionality. However
since the functions in equations (A1.31) are analytic in the annulus
1 < |x]| < =, the coefficients in their Laurent series expansions must be
identical,

@ ©H W

ip =c f (A1.32)

which determine the constants of proportionality c(+) and'c(_). The

index m may be set conveniently. Finally we may write

EJ = x° B3P = ¥ ¢ gD (A1.33)

P (eF - e'™ sin m EG/n)/2 cos mv

And we have

) esc 2mv (EF + eiﬂv sin mv EG/7)/2 cos mv

(A1.34)

EY = cot 2mv EJ - ¢

The procedure used above to obtain the connection between solutions

parallels that used on the spheroidal wave equation [10].
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APPENDIX 2

Convergence of the Series

Representations Given in Appendix 1

To discuss the convergence of the hypergeometric function series we
must use asymptotic forms of these functions for large parameters. From
the asymptotic form of F(a + A, b - A3 c; %—- %—z) for large A given in

[37] we deduce

1
- L
Fle+1, -2+ 15 15 x) 1+(1-%)
- 3 Mt (A2.1)
F(9, -0 15 x) 1 - (1 - %) %
and
1
T 1. 1. 'I_ 2
G+ 1, 0¥ 15 T5x) 1+(1_x)1 heae 2.2
G(Q, -5 15 x) 1 - (1 - %) 3

where G(Q, -0; 13 x) = (1 -x) FO+Q, 1 -0;2; 1 -x)T(1-0) (1 +¢)

and Q =m + v.

From (A1.12) and (A1.13) the ratio of coefficients in the series

expansions are given by

2
c p
0 U R (A2.3)
m c, 16m
2
' C
v = m P M - (A2.4)
moo 16m?

m+1
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where as discussed in Appendix 1 the characteristic exponent is chosen
properly so that Vi and vé decrease as m becomes large in the positive and
negative direction, respectively. The ratio test therefore shows that the
series EF (A1.3) and EG (A1.17) converge for all finite values of x.

From the asymptotic form of the Bessel functions for large order [22]

we can deduce that

2
m-=>+ o
2 L]
oo () 16m
(A2.5)
Jag () 16m2
52 ’ m-> « c©
Yoo + 2 (8) 16m?
~ s, M~ ;i-_co (A2.5)
2
o (E) £

The ratio test therefore shows that the series EJ (A1.18) and EY (A1.19)

converge only for || > p.
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APPENDIX 3

‘Connection of the Series

Representations Given in Appendix 1

Two linear transformation formulas of the hypergeometric function

will be used [22].

F(a, b; c; x) = I(c) T(b - a) (-x)"2 Fa, 1 - c +a; 1ob+ a,-l)
r(b) I'(c - a) X

E ;I’Ea : b; ()P F(b, 1 - cHbs1-a ;L) (A3.1)
T{c -
(larg(1-x)| < m) ”

F(a, b3 ¢3 x) = (1 - x)72 r(c) r(b - a) Fa, c -b;a-b+1; ] )
r(b) r(c - a) 1-x

s (1-x)PIedT@=-b) gy ¢ ayb-a+1; ——) (A3.2)
r{(a) r'(c - b) 1 -x

(larg(1-x)| < =)
These two formulas are used to obtain the analytic continuation of the

series expansions given in Appendix 1. The formula (A3.1) gives
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F(a, -0; 15 x) = r(-20) (-x) "¢ FQQ, Q; 1+ an;il)
r{-) r(1 - Q) X
e 1) () F(a, 051 - 205 ) (A3.3)

r(Q) T(1 + Q)

and (A3.2) gives

G(R, -0; 1; x) = (;—- 1)[F('i?3 r(1)+ Q) xS F(] +Q, 1+0; 1+ 20; %.>
Tl - Q

+ r2e) r(1 - @) XQ F(] -0, 1 -0;1-29;

) (A3.4)
r(1+Q)

> |—

where @ =m+ v, G(Q, =03 13 x) = (1 -x) F(1+Q,1-9;2;1-x)
r'(1 - Q) r(1 +Q) and T is the gamma function. The identity

F(a, by ¢, x) = (1 - X)c-a-b F(c - a, ¢ - b; ¢; x) and the reflection
formula for the gamma function T(1 - z) I'(z) = m csc « z allows

(A3.4) to be written as

T(-20)

{QF@,Q;1+29;%)
r(-) (1 - Q)

G(Q, -3 1; x) =mescm Q[

r(20)
Q) (1 + @)

> |—

xQ F(-Q, -Q; 1 - 203

)] (A3.5)
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We take the branch cut for the hypergeometric function G(Q, -2; 1; x)
along the positive real axis. This definition allows us to match the
hypergeometric series solutions with the Bessel series solutions since
both will have branch cuts along the positive real x axis.

The solution, EZ, of differential equation (A1.1) has branch points
in general at klp =g =0, +p(x= gz/p2 =0, 1). If we allow the
collision frequency Waff to take on small positive values we find from the

definition of k1

2 . 2,3
W i 0. e 0 /0
k. =~ k 1 - P '|+__e_ff_P___. (A3.5)
1 0 2 2,2
® 2 1-wp/w

p =g (1~ T /o)
so for w > wp k1 has a small positive imaginary combonent and p has a
small negative imaginary component. The singularity of Ez at p = p/k1
thus 1ies slightly below the positive real axis. The branch cut at
p = p/k1 must be taken to lie slightly below the positive real axis to
avoid discontinuities in the solution for physical values of p. This
branch point in the £ plane lies at the point £ = p below the real
positive axis for w > mp' Physical values of £ however now 1lie just
above the positive real axis. This branch point singularity in the x
plane lies at x = 1. Physical values of x for w > Wy thus also lie just
above the positive real axis, arg x = 0+.

The case of w < Wy does not involve singularities along the physical
axis. We may take kl, and thus £, to be positive imaginary and x to be
negative real with arg x = 7 (the parameter q in this case will be

negative imaginary).
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We use the relation
+) #1040

(-x) = e X (A3.7)
where 0 < arg x < 27
in equation (A3.3).

We now define the functions

) r(+20) +m 1
F(, -; 13 x) = x FGo,30; 17 20; ;) (A3.8)
r(+) r(1 + Q)

in terms of which (A3.3) and (A3.5) become

. I G ) -imv,, +)
F(, -0; 1; x) = (-1)" [e”“’ xVFE (R, 2 13 x)ve  XF(Q,-031:x)

(A3.9)
and

6o, -0; 1; x) = (-1)" 7 ¢csc m [X-VF(-)(Q,=Q; 1; x) - va(+)(Q,=Q;1;x)]

(A3.10)

The hypergeometric function series solutions EF (A1.3) and EG (A1.17) can

therefore be written as

i -v EF(')(p, g, x) + LA EF(+)(p, q, X) (A3.11)

EF(p, x, x) = e

T CSC TV [x'v EF(')(p, q, X) - x" EF(+)(D, g, X)] (A3.12)

n

EG(p, g, x)
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where the functions denoted on the right are given by

) w m )
EF  (p, g, X) = Z (-1) C Fo(, -0; 1; x) (A3.13)

m

- 00

Substituting the power series representation of the hypergeometric

function
=  (a) (b)
F(a, b; ¢; x) = —mexm (A3.14)
m=o (C)m m:
where
(a)m =a(a+1) ... (a+m-1), (ao) = ]
into (A3.8) allows (A3.13) to be written as
) o (H
EF ~ (p, q, X) = I f X" (A3.15)
ms= -
where
2 £+m
) = r(2,) () (1) 5.16)
f =z c — - A3.16
m +(2+m)
t=0 () (1 +e,) (- =,), 2

and @, =L+ m% v, The recurrence properties of the gamma function can

be used to cast (A3.16) into a form more useful for computation

) T(2m + 2v) (-1)"

= 3 Z‘
T“(1 +m + v) )

(£ +m+v) (2m+ 2v),
“+(e+m) 2!
=0 ' (A3.17)

m
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The Bessel series solutions EJ (A1.18) and EY (A1.19), using

E = pxk, can be written as

Ed(p, g, px?) = x° B3 (p, q, x) (A3.18)

and

EY(p, q, px%) = xY EJ(+)(p, q, x) cot 2mv - xV EJ(')(p, q, X)csc 2mv

(A3.19)
Using the series expansion for the Bessel function
u /A ~\Mm
1 » kz¥
0, 0 =(z8) = - (A3.20)
m=o ™ Tm+p+1)
and the definition of the Bessel function of the second kind
Y, (g) = J, (£) cot mu -J_ (£) csc mu (A3.21)

the functions on the right of (A3.18) and (A3.19) can be written as

D) o LG
B0 (ps g, x) = in X (A3.22)
ms= -
where
4
(-1)" ¢
L(+) _ 2\ mty +(m-£)
= (F) T (A3.23)
26 T(2m - 2+ 2v+ 1)(m - 2 +v)

£ =0
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The recurrence properties of the gamma function give

2 MEV
FONEN () » Ly,
T T remt+2v+) 2! (m- £ +v)
£=0

which is simpler for computation.

C+(m-£)

(A3.24)
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APPENDIX 4

‘Limiting Forms of Solutions

The behavior of the solutions EF (A1.3) and EG (A1.17) as x tends

to zero will be determined. Since we know
F(o, -0; 1; 0) =1
it immediately follows that
EF(p, q, x) ~ S, » x>0 (r4.1)

2]
where we define 52 = 3 c

m

The analytic continuation of the function G(Q, -Q; 1; x) to the origin is

carried out with the linear transformation formula

ra+b) « (a) (b)
. ————"(2(m+1) - w(a+m) - p(b+m)
r(a) r(b) (m!)

m=20

- en(1 - xﬂ (1 - x)"(larg(1 = x)| <m, |1 - x| < 1) (A4.2)

™~

F(a, b, a + by x) =

where ¥ is the digamma function. The series expansion for G near the

origin is therefore

8

G(Q, -3 1; x) = =F(Q, -Q; 1; x) &nx - % 5
(£!)

£

o

[w(/a +Q) +ue -q) - 20(L + 1)] N (A4.3)
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The asymptotic form of EG is therefore

EG(py @, X) ~ - (2y +£ax)S, = I c (@) + p(-0)]
.

- O

where ¥ is Euler's constant

We define the sum

M8

S3 = -2y Sy - c fw(a) + v(-2)]

m

- 00

(A4.4)

(A4.5)

and using the recurrence properties of the digamma function this can be

written as

53 = - [ZY + mcot v + 2w(v)] 52 - I Cn [
0

3
]

- m-1
1 1
- I C—m[ +2 = ]
1

m

where the last sum is defined to be zero if m equals zero.
The asymptotic behavior of the solution
o

EH(p, g, ) = = 2 W) (g)
m

n
1
8

(A4.6)

(A4.7)

as £ tends to infinity will now be determined. The asymptotic form of

the Hankel function is



127

i€-m-7
o' (€) ~ | % e ( L. (h2.8)

Therefore the expansion of (A4.7) is
EH(P, q, E) ~ ;TE e e Sl (A4.9)

where

S = 3 m_qym (A4.10)

3
n
1
8

We note from (A4.8) that the Hankel function of zeroth order has the same
asymptotic form as the initial two factors in (A4.9). The replacement of

these two factors by Hél)(g) in Chapter 3 is only done as a notational

convenience and is not meant to indicate higher accuracy.
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APPENDIX 5
‘WKB Solution to Radiation Problem

The differential equation to be solved is (3C.2) in the case where

w > mp. Defining a new dependent variable by

E.=¢&8'" wu (A5.1)

transforms (3C.2) into

2 . -]

du 21 A2 1
= - p?| Q%) + Ju (A5.2)
dg.z l 0 4p2£'2
where
2 2

2 [ — El - QO

Q(g') = 25—

0 £2 .

To apply the WKB method the positive real £' axis is split into six

regions. The approximate solution in each region is

u~ g% [ WD (ape?) + R (ape')] L0 < £ < <1 (A5.3)

- 5 e ipz! -ipz! -1 '
u-~ag 002 (g )[ e taj e ] , p <<t <] (A5.4)

(£'- 1) > p™?
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where ' = [ Qo(t)dt
o

b Y Y )
u-~a,y, [II(Zyl) +a K1 (2y1 ﬂ s (E' = 1) << 1 (A5.5)
2
where ¥, = p2 o 2' 1 (' - 1) and Il, Kl are modified Bessel functions,
=1 3 -3
u~a, 0 (g') [eP v a, e L P PP (A5.6)
- -2/3
g (' -1)>>p 2, (' -a) > p /

where ¢ = [ Qo(t)dt
o

u~a [Bi(-yz) 4 Ai(-yz)] (B - ) << 1 (A5.7)

1/3
where y, =<p2 22°L ) (' - a)

a -1
-i(p P, + 7/4) _ ipz
u~T 1% e 1 Qo‘"2 (t'Ye , E'>a, (A5.8)

where P1 =f [Qo(t) - 1] dt - a
a

and the multipiicative factor in (A5.8) has been chosen so that this
solution agrees with the asymptotic form of (2B.4). The matching of
(A5.3) to (A5.8) 1in the regions of overlap determines the transmission

and reflection coefficients T and R. To first order these are
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=5 €
2
o 2 2
where ¢ = f 9?—1—3— dt
1 Vt© -
1 2 2
po = f EE_:_E_. dt
) t -1
and
-pz
T=e °©
The @ < wy problem deals with equation (3C.5).
placed at
Ey = - 1&,/p = - k.o /P

(A5.9)

(A5.10)

The boundary 1is

(A5.11)

where 2615 a real quantity. The boundary conditions (2B.7) and (2B.8) can

be written as

- (1)~ >
E, = TH ""(apt)

dE _
—2 = - Tpa P GeE)
d?

The transformation

(A5.12)

(A5.13)

(A5.14)
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transforms (3C.5) into

2 o
d“u 2| A2, 1
—=p"|Q(E) - —=|u (A5.15)
dgz [ 1 4p2E2]
h 2(~) = u nd Q (N) =T for r < o
where Q1 g) = Ez Ny and argQ, E) = i £ <o

We assume that the quantity a is order unity and to further simplify

matters that

apk >>1 (A5.16)

o~

which allows the approximation of the boundary conditions (A5.12) and

(A5.13) [38] as

u~Tq[5 e (A5.17)

~Tiapy/—= e (A5.18)

Making use of the Langer transform [39] we can write the asymptotic

solution to (A5.15) as

u~dp T Q7% E)EIM() + d, Bi(v)] (A5.19)

2/3
0, (t) dt}

o

Q 1=

where ¢ = [%E
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and argy = 7 if £ < d

Ai and Bi are the Airy functions and d1 and d2 are arbitrary constants.

The boundary conditions (A5.17) and (A5.18) determine the values of d1

and d2 as

PR T . o
oy Ay ) - Ai'(y,) Q(g)

d, = °©o o o 170 (A5.20)
Bi' () Q,(E,) - 1@y Bi(y,)

2 L~ -y i(apgo"'ﬂ'/zl)
,fﬁ:‘ Ql (Eo) Vo ©
= Tfap

Ai(y,) + d, Bi(y,)

4

(A5.21)

where Y, = w(go) and the prime denotes differentiation with respect to

¥. In the overlap region 1 > > £ > > 1/p the boundary condition (2B.2)

becomes
;| i(@pE-m/4) -i(ap & - m/4)
u-~ — e + Re (A5.22)
TOP
which when matched to (A5.19) determines R and T as
1+id i2ptg
R=——2— & (A5.23)
-1+ d2
2 \ﬁ;eip:3
T = P (A5.24)
(i + dz) d1
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~

a
where T3 = [ Qz(t) dt
0

and Q,(t) = -1 Q(t)
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APPENDIX 6

" "Integral Representations and Connection of

‘Solutions to Modal Equations

The modal equations given in Section 6B are

2 2

ah, 1 91*1+(1-V—2)h=1§e (A6.1)
dg g dg £ £ :

2 . 2 .

d_%+l d_e+<k2_l‘7)e=_1§h (A6.2)
e £ dt 3 -

Series solutions were derived by the method of Frobenius in Section 6B.

These are designated as hil), eil) and hiz), eiz). Asymptotic solutions

for large £ were also found. These are designated as h£3), eiB) and

hia), ei4). We wish now to find the connections which exist between the

series and asymptotic solutions.

The connection problem can be related to one which has been studied
previously, namely, the second order equation with four regular singular

points (Heun's equation). To show this we assume a solution of the form

h=7sA(Q) Jv(xg) dx (R6.3)
[of

e=/B()E Jv(xg) dx (A6.4)
C

where c is a suitably chosen contour. Inserting this trial solution into

(A6.1) yields the relation
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(1-2%) AQ) = i 8 B(2) (A6.5)
Inserting this trial solution into (A6.2) and using (A6.5) gives
/c' B(2) L, Jv(xg) d» =0 (A6.6)

where Lv represents the differential operator

2 2 22 2
L\)=(A2-k2)d—2—+<3x-5—>d—+k\2’ -n2+1+2B
dx A dx A AT -1
Successive integrations by parts give
£ J,(ag) M B(x) dr + Q,(B) =0 (R6.7)

where Mv is the adjoint to Lv given by

2

2 2 202
M =()\2-k2)d—2+<>\+k—>d——+k—-@——2——l)—-n2+ 28
v d) A/ dx A Ac -1

and Qv represents the boundary terms resulting from integration by parts
2,2\ d k2
o8 = [B {02 - k) G+ 3 - K a0,

- [0,00){ 0% - KB S+ 21} BO],
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where the notation [ ]c indicates the quantity within the brackets is to

be evaluated at the end points of the contour c. The integral

representation (A6.4) for e will yield a solution to the modal equations

if we take
Mv B=20 . (A6.8)

and choose the contour appropriately so that the boundary terms Qv(B)

vanish.

By making the change of variables

zZ = >\2/k2
(R6.9)
B(x) = 232 u(z)
equation (A6.8) becomes
2
dw vy 8 €.\ dw aB (z-q)
_2+<_0+ o, 0>_+ o0 of  ,-=0 (A6.10)
dz z z-1 z-a’dz z(z-1) (z - a)
where Yo = 1T -wv o, = (1 =-v-n)/2
6, = 1 By = (1 -v+n)/2
Bza
e = o q = a -
0 0 (-l _ \))2 - n2
a = 1/k o +B +1=vy +6 +¢
o 0 0 0 0
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Equation (A6.10) is a second order ordinary differential equation with
four regular singular points known as Heun's equation. The solution which

is analytic at the origin is designated [16] by

W= Hu(a, 95 oy, Bys Yos S5 2) (R6.11)

where Yo is not equal to zero or a negative integer. This solution has

the series expansion

~ 8

9,,(9,) z" (R6.12)
0

Hu(a, q,5 o5s Bys Ygs 83 z) =
m

where the gm(qo) satisfy the three term recurrence relation

a(m+ 1)(m+ v,) g,(a.) - [m?(1 +a) + m{aly, + 8, - 1) +v, +e, -1}

+ aB, 9] gp(a,) + (m+o - 1) (m+8 -1) g, (q) =0

(R6.13)
with go(qo) =1 and g_l(qo) = 0. The series expansion (A6.12) only
converges out to the nearer of the two singular points 1 or a. Solutions

of (R6.10) near z = » can be written as

-0
=5 0 py] . ]
Ww=2z Hu(g s G, 3 Ogs @y~ Yt T, a) - By + 1, S 3 2—) (R6.14)

-8 N
w=z ° Hu(%-, Go 3 Bg s By = Yo * 15 By - g * 1, &, ¢ %) (A6.15)
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where
@B 9, = 2 alay - vy + 1)q, +a 8 (1 +a) -6 -¢  al
a B9, = @ By(By - v, + 1) q, + B, [0 (1 +a) -8 -el

In our case the exponents at infinity,ao and Bo,differ by an integer,n.
Thus only the solution (A6.15) is valid. The equation (A6.14) must be
modified by the inclusion of log terms. At present let us take (A6.15)

as the desired solution of (A6.10). The integral representation for e now

becomes
—n 2
e— l— l. = . - _ .k__
g-_ é (k) Hu<a » % 5 Bos By ot Th By g T, 605 22 )Jv(lg)dl

(A6.16)

We will assume for simplicity that k is real and between 0 and 1. We
further assume that £ is positive real. This represents a typical case.
The contour c¢ is shown in Fig. 19. The boundary terms, Qv(B), vanish
at the end points provided n > 2. Thus (A6.16) represents a solution to
the modal equations for n > 2.

The series expansion for e may be extracted from (A6.16) by
deforming the contour as shown in Fig. 20. We may now replace the
solution of Heun's equation with its series representation about the

point A = o,

m

~ 8

50 @I(%2)

2
Hu(l s Og 3 Bos By =Yg ¥ 15 By -0y +1,8, 3 —5) =
a
0

3
"

(A6.17)
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A Plane
—— —— c —
........ iy iphylylytyiy e ivivivivivivipipty@iviyiytyiytotyinipty
AR Aatatapter J’o K i

Fig. 19. Contour for the Hankel transform in the A plane.

A Plane

Fig. 20. Deformed contour for the evaluation of the Hankel transform

as a power series.
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where g_(q,) satisfies recurrence relation (A6.13) with the parameters
as indicated in the above expression. Since (A6.17) is uniformly
convergent on the deformed contour c we may interchange the order of

summation and integration

£= 1z g @)K fx' A (ag)dr (A6.18)
m=o ¢
or
e= 1 g(g)Km gt f AT T2 g (1 )dy (A6.19)
m=0 c

By use of the Poisson integral representation for the Bessel function

we obtain the identity [40]

. 'IE}J
21 sin %—u r (%) e 2

2V "Mt ir(v-he)

u-v-1 -
f A Jv(x)dx =

c

(A6.20)

Re(p - v - 1) < %—

Use of (A6.20) in (A6.19) along with the reflection formula of the

gamma function yields

i%—(v-n) ~ 2m, _o\m
e . 0. () (k/2)2"(-1) 2
e = - T
n-1,n n+2m+ 1 +v n+2m+1 -v
2 KW m=o T 2 )r( )

(R6.21)
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By transforming the recurrence relation (A6.13) we find that the

coefficient

g,(@.) (k/2)2"(-1)"

Cm = r(n + 2m ; 1 + v) I.(n + 2m ; T-v )

satisfies the recurrence relation

(2m + n + 1)2 -2 (2m + n + 2)2 -n?le +
m+l

2
+[k2{(2m+n+1)2-v2}+ (2m +n) - n? - g? ]°m+k2°m-1=°

(R6.22)

the same recurrence relation satisfied by bé2)+ in (6B.6). Therefore

i g—(v-n)
e= - T e eiz) (R6.23)
n

We now wish to determine the asymptotic form of e from the integral

representation (A6.16). First we transform the integral to the z plane.

-B
e _k 0 1 ~ . _ .1
T2 g z Hu<3” o Bys By = Yo * 15 By =g + 1, 843 z>

2 ~V/2 Jv(kgzllz)dz (A6.24)
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where the contour in the z plane is shown in Fig. 21 . We have chosen

the origin branch cut to 1ie along the positive real axis rather than its

typical definition. The contour is deformed as shown in Fig.22.

We

label the circular contour about the origin Cyo the top contour Cpe and

the bottom contour Ce Now let us define

B, ~ 1
w(z) = z oHU(];,Q(,C,; Bos By = Yo * 15 85 7 )

and in terms of this we can write

Ia =/ w(z) z=\”l2 Jv(kgzllz)dz, 0 <argz«<2n
Ca

I, =/ w(z) 27V/2 Jv(kgzllz)dz, arg z = 0
h

I.=/ w(zeizw) 2~v/2 Jv(kgzl/z)dz, arg. z = 0
c
c

and £ e/c =1+ 1y +1

(A6.25)

(A6.26)

(R6.27)

(A6.28)

we need to consider the form taken by w(z) in the vicinity of the origin.

The analytic continuation is
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Z Plane

Fig. 21. Contour for the Hankel transform in the z plane.

Z plane
ca€~w e cb
0 1 a Cc

Fig. 22. Deformed contour for asymptotic evaluation of the Hankel transform.
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01
w(z) = c,, Hu(a, qgs oy, By Yps 855 2) +

02 l-yo -
+Cw2 z Hu(a, qO; aO-YO+]' BO—YO+]’2-YO’ 6°a Z)—
0l 02
=c,., W.%+cC,, W (A6.29)

ol 02
where Co and Coon

equation (A6.29) thus connects the 2

are connecting constants for Heun's equation. The

nd solution at e, (A6.25), with the

two solutions near the origin. From the form of w(z) given in (A6.29) and
the value of vy, given below (A6.10) we see that I vanishes as the radius

of the contour . approaches zero. Using the identity

Jv(kgzl/z) - %» Hél)(kgzl/z) + Héz)(kgzllz)] (A6.30)

we write Ib and IC each as the sum of six integrals.

Ip = Iy + Tpp + g # Ip, + Ipe + Iy (A6.31)

where

;o ow(z) 2~V/2 Hél)(kgzllz)dz, argz =7
c

I ow(z) 2V/2 Hél)(kgzl/z)dz, 0 <argz<m
c
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2] -
Ib3 = ff w(z) z v/2 H\Ez)(kgzl/z)dz, argz = -
b3
-] -
by =7/ W)z v/2 Hsz)(kﬁll/z)dz, -m<argz <0
Che
1 v/2 (2)y0n.1/2 mmeargz <
I, =5/ w(z)z H 7 (kez dz, m
b5 2 Chs v (ke ) - %E-< arg(l - z) <2
1 w2 (2) 1/2 -m<argz <0
1. =571 w(z)z H “/ (kEz dz, - ul
b6 2 Che v ke ) - gﬂ-< arg(a - z) < 2

The various contours are shown in Fig. 23. Similarly,

where
Ii ® %'f u(ze'?") 2772 Héz)(kézllz)dz, argz = -7
Ce1
I, = %—f w(zeizn) 2~v/2 HSZ)(kgzl/z)dz, -m<argz <0
c
c2
Ies = %’g W(ze'?") 2™/ Hél)(kézl/z)dz, argz = =

c3

(A6.32)
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Z plane

Fig. 23. Contour cp further broken up for asymptotic evaluation of the
Hankel transform.

Fig. 24. Contour c. further broken up for asymptotic evaluation of the
Hankel transform.
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I, =1r wize?) 22 kD (ke 2z, 0 < argz < v
v
c
c4
. _ : O<argz <
c5 ?’é v - g-< ara(1l - z) < %E
c5
. _ 0 < arg z <
Ig = %—f w(ze'2T) z7V/2 Hél)(kizllz)dl, - 3
e -y <argla - z) <5

where the various contours are shown in Fig. 24. The contribution to Ibz’

I

b4® Icz’ and Ic4 from the w_. component of w(z) vanish as the radii of

02
these circular contours approach zero. Furthermore, since wol(z) is

analytic at the origin wol(zeIZ") = wol(z) and therefore

Ib2 - IcA

Ib4 - c2

Thus the contribution from the circular contours near the origin cancel.

The analyticity of wol(z) at the origin also means that

Iy = - Ic3
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where the superscript 1 indicates the Wo1 component. We are therefore

. 2 2 2 2
left to consider Ibl’ Ib3"Lc1’ and Ic3’ the W02 components. We note
that
-imy _ _=i2mv i
woz(ze ) =e woz(ze )
and therefore
2 _ {2 _ _ i _-imv 02 imy -v/2 1/2
I; = - Iig —e hs dlawoz(ze ) z Kv(kgz )dz
(i
and similarly
2 _ 2 _ _ i _imw 02 imy _-v/2 1/2
Icl Ic3 —e Coot -/-woz(ze ) z Kv(kgz )dz
0

where Kv represents the modified Bessel function.

The integrals near the origin therefore all cancel and we are left

with

+ 1 +1 (A6.33)

=1 b6 c5 cé

+1

xiro

€
3 b5
We will now perform an asymptotic evaluation of the integrals in (A6.33).
However, we must first discuss the analytic continuation of w(z) to the

vicinity of the points z = 1 and z = a. Since the exponent differences

at each of these points are integers log terms will appear. Near z =1
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we have
_ 11 12 .

w(z) = Coz Y11 ¥ Coz Y12 (R6.34)
where

Wi, = Fl(z) + n (1 -2) W,

Wy, = Hu(l - a, q;5 00, B, 1, vy3 1 -2)

60 =1
and

a1 =1- %

The function Fl(z) is analytic at z = 1. The constants cié and cig

connect the solution at z = » to those at z = 1. The precise form of the
function Fl(z) does not concern us since only the log term will contribute
to the integral.

Near z = a we have

al a2
2 wa1 + Coo2 waz (A6.35)

Fa(z) + In (1 - §:>wa2

X
"

=
n

oz a-1 =~ . _5)
a2 (1 a)HU( T > G5 gt 1B+ 1, 2, vy 51 -3
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and

@y By 9, =2 (g +1) (B, +1) (1 -4q,) -v,

al

The function Fa(z) is analytic at z = a. The constants Con2 a2

and Coon
connect the solution at z = «» to those at z = a.

The asymptotic form of the integrals in (A6.33) can now be
obtained. We are only interested in leading order results since these
will provide the connection we are seeking. The circular parts of the
contours will not contribute as a result of the behavior of w(z) near
Zz=1and z =a. Near the point z = a we deform the path Cpg SO that it

proceeds vertically downward. Let us take

z = a(l - ix)

and expanding the Hankel function we obtain

—i(kallZE 1 m

) (_1. §_’rr_)] 2l . 2 VT T Z)a-v/z
2 /] %\ nkeal/?

oy
o
o
14
N |-
| e |
wte
N

°r - %Z-kali
[ ixe (-ia)dx, & »

noting that a = 1/k?
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m

. 1
. L 2 -'l E - — VT = —
v _al 2r [2 ( 2 4)
Ie ~ iK% 2 /—g <—k€) e , o (A6.36)

similarly deforming the contour Cps Near z = 1 and lettingz = 1 - ix

we obtain

. 1 L
“i(kg -2 wr - I _
Ths ~ Cap \kE (%) ‘ ke “), [ (R6.37)

we must next find the asymptotic expansion of IC5 and Ic6‘ To find these
we must know the form of w(zeiZH) in the vicinity of z = 1 and z = a.

Near z = a w(zeizn) signifies a counterclockwise circuit (positive sense)
of z=0and z = 1. This is equivalent to circuits of z = = and z = a in

the negative sense. Thus

-i2nB

121y _ 0 . al . a2
w(ize' ") = e [c002 wal(z) - i2m waz(z) *c, waz(z)]
(A6.38)
Near the point unity we write
w(ze‘zﬂ) =il oy o4 E2 (A6.39)

w02 11 w2 12

11 ~12

where the new constants c¢.. and Cwy Must be determined by making a

2
rotation about the origin in the positive sense with (A6.34). We deform

the contour IC6 vertically upward near z = a and let z = a(l + ix)
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resulting in

. 2 it -1 STy 5T (-
I ~-ikvcal\/§_l(_2_) e1(5 > T 4)e12(vn),g+w

c6 2 £
(A6.40)
similarly for ICS let z = 1 + ix resulting in
. ilke - L oom -‘E)
~11  [27 (2 i(k 2 4 o A6 .41
Ig~ - coy Jor(£)e . E- (R6.41)

Therefore the asymptotic form of e is given by

2 02

. 1 m . 1 il
o i(kg - = vm -+ ~i(kg - = vm - ,
+ g_’gﬁ [_"‘:‘11 e ( 2 4) + Cll e ( 2 4) (A6.42)

which furnishes the connection between the series eiz)and the asymptotic

expansions ei3) and eiA). Equation (A6.42) contains three constants

which repres;ﬁt conne;fing constants of solutions to Heun's equation. We
have therefore determined the connection of the solutions to the modal
equations in terms of the connection of solutions to Heun's equation.

The connection of solution fo Heun's equation has been studied previously.
Using difference equation methods [41], the connecting constants can

be found as the sum of factorial series [16,35].
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We have thus related the connection problem of the solution.e

(2)

+

to Heun's equation. The next question is how can the other solutions

be constructed in the form of an integral representation such as

(A6.16). The trial solution pair

-
n

s R(x) £ 3, (x8) da
C

1)
n

f B(») J () dr
(o}

(A6.43)

(A6.44)

when substituted into the modal equations (A6.1) and (A6.2) results in

the relation
(k2 - 22) B(\) = -ig A(n)
and subsequently in the equation
g A(A) L, 9,(a) dr =0

where Ln is the operator

2 2 2
L=02-1% . <3A - l>‘9—- s VP e B

a2 A A a A

Repeated integration by parts yields

2 _ 2

(A6.45)

(A6.46)
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£ 9,06 M KO) o+ g (®) =0

where Mn is the adjoint

2 . 2
Mn=(x2-1)9—2+(x+]—)9—+"']-v2+ e
dx A d A A%- K

and Qn represents the boundary terms

o, () = [An {02 -1 &+ an -1} ()
n dx A n

c

- [Jn(xg) {02 -1 &+ ) K(;\)]c

(R6.47)

The integral representation (A6.43) for h will yield a solution to the

modal equations if we take

and choose the contour so that Qn(ﬁ) vanishes.

By making the change of variables
z = 22/k?

E(x) = 2 (1-M)/2 w(z)

(A6.48)

(A6.49)
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one finds that w(z) satisfies Heun's equation (A6.10) with the

parameters
Y, = 1-n @, = (1 = n-v)/2
60 =0 Bo = (1 -n+v)/2
2 .

B~a

e. =1 q. =1-
(o] 0 (]_n)z_vz

a = 1/k

(Note that the differential equation (A6.10) with the above set of
parameters is identical to the differential equation (A6.10) with the

a
original set of parameters under the transformation x = @/z and x °

w(x) =
w(z)). The solutions near z = » (A6.14) and (A6.15) both have meaning
since the exponent difference at this point is no longer an integer. The
choice (A6.15) and the previously discussed contour leads to an integral
representation for hil) when Re(v) > %—. The manipulations required to
extract the asymptotic expansion are the same as those previously used.
The exponent difference at the origin now is an integer giving rise to log
terms. But once again the integrals in the vicinity of the origin cancel.
We still must construct the remaining two solutions. Furthermore,
we need to extend the above solutions to cover the cases 0 < Re(v) 5_%
and n = 1. If we look back at the identity (A6.20) we find a clue useful
o

in achieving these two goals. The right hand side of (A6.20) is an

entire function of y and v. But the integral on the left only converges
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for Re(p - v - 1) < %—. Can we generalize the integral on the left, so
that it remains valid regardless of the values of u and v, but coincides

with this integral when Re(u -v-1) < %—? Let us define

=72V () d (A6.50)
c v

Now we write

_ n=v-1 1 pev-1 ,,(1)
I= £ A Jv(x) dan + ?-£ A Hv () dr +

1 2
iy .
+ %—f AH-v-1 Héz) (A) dn + &— 1 Hil) (e ™) VL gy 4
C3 C4
imTv .
+&— g H\‘)Z) (e ') AHVL gy (A6.51)
(o}
5

where the contours are as shown in Fig. 25. When the condition

Re (p-v-1)c« %—15 satisfied the contours ¢, and c3 can be deformed

4 and Cg can be deformed

to the negative real axis. Thus the quantity I in (A6.51) becomes that

to the positive real axis and the contours ¢

in (A6.50). However, the intearals (A6.51) remain convergent regardless of
the values of u and v and are equal to the right hand side of (A6.20).

This generalization can now be used on the integral representations

(R6.4) and (A6.43). The boundary terms Q (B) or Qn(K) will now vanish
regardless of the values of n or v. In terms of this generalized

definition we may also make use of the other linearly independent solution
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Fig. 25. Contours for the generalized definition of the Hankel transform.
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of Heun's equation at z = = . For example, use of the solution (A6.14)
in the integrand of (A6.43) yields an integral representation for hfl).

Use of the log solution at infinity in the integrand (A6.4) yields
(2)

an integral representation for e The latter case involves the
integration of a logarithm, times a power, times a Bessel function, which
can be handled by differentiating the identity (A6.20) or its extended

definition (A6.51) with respect to u.
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APPENDIX 7

Bessel Function Solutions

to Inhomogeneous Modal Equations

The solutions

H
0
\/6— %19, (v;0) ¥19,(v0)

0 .
W= (A7.1)

’ 0
9
’ (1) (1
0 Hn (Ylp) H (Ylp)

V= (A7.2)

i
0 N (1)
‘}E;'XZHn (v,0) YoH, (Yzo)

introduced in section 6C have two drawbacks. First it is possible under
certain circumstances for Yy to become equal to Yoy at a certain position
in the dielectric profile. The solutions represented by each row of W
(or V) become identical in such a situation. Second if y, or y, should
vanish at a given position, the solution V becomes singular. Both
problems occur due to the fact that the actual solutions of the modal

equations no longer have the form (A7.1) and (A7.2).
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The following solutions were used instead

,jgg(vzn 3,(v;0) = xy v;" 9, (v,0)) ¥y 9 (vie) - ¥5 9, (,p0))
0

n
W= 0
1 - xy
20 Xy 3 (vp0) = 13" 0 (ve)) 5" 3 Crpe) on
Eo X Y2 n sz = Y]. n Ylp Yz n sz - Xy Yz Jn(Ylp)
(A7.3)
vy .
o/.n n n (1 n Q1
2] oo = vy (o)) YOy )(110) - ¥y B (ryo))
-n
y = o
1 - xy

Mo g y(D) n (1) n (1) n (1)
\/E; x(vy Hot” (v,0) = vq Bt/ (vpe)) vy Hooo(vge) = xy vy Hotilyge)

(A7.4)
A2 2 _ .A
where (k1 - yl) = 1By
T2 2y _ 2%

and y, = external medium wave number.

The 1limiting forms of (A7.3) and (A7.4) in both the cases y; > v,
and (y1 or yz) + 0 are well behaved solutions of the modal equations.
Furthermore, when the medium becomes homogeneous and isotropic (and Tet

us take Y, =S¥, = yo) (A7.3) and (A7.4) reduce to
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H
,/—Q-Jn(vop) 0
E0

W= : (A7.5)
0 Jn(YoD)
Hy (1)
,/EQ-Hn (voe) 0
V= 0 (A7.6)
0 Hél)(Yop) ‘

which match the external solutions as desired. We note that in terms of
the incident and scattered solutions (A7.3) and (A7.4) it is not clear
that R will remain a bounded quantity. This is the case since spontaneous
singularities may occur in a Riccati equation. However in the event that
R becomes Targe we may switch to R'l, which also satisfies a Riccati

equation, and continue the numerical integration.
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