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Abstract  

High performance aircraft of the future will be designed to be lighter, more 

maneuverable, and operate over an ever expanding flight envelope.  This set of 

conditions will necessarily mean highly flexible vehicles operating in nonlinear regimes.  

A methodology proposed to better optimize their responses to both pilot input and 

external disturbances, as well as to decrease the cost of vehicle design is the novel 

dynamic inversion.  The attractiveness of this methodology lies in the fact that the 

inherent nonlinearities of the problem and the coupled nature of flexible dynamics are 

explicitly considered.   

The contribution of this work to the state of the art is predicated on the development 

and application of the novel dynamic inversion methodology to handle highly flexible 

aircraft in an integrated flight/structural mode control manner.  The unprecedented small 

separation between rigid body and flexible dynamics as well as the reciprocal interaction 

between them due to flight control action are the key elements of the aircraft model.  The 

novel approach to the nonlinear dynamic inversion allows the methodology to more 

intelligently handle flexible dynamics in the context of the dual objectives of integrated 

flight/SMC control by altering flexible mode damping without cancellation; thus, 

improving disturbance response and avoiding the potentially destabilizing effect of pole 

cancellation close to the jω-axis in case of modeling uncertainty.  The necessary level of 

model complexity for design has been established with particular attention given to 

understanding physics.  The effect of uncertainty in the structural mode dynamics has 

been addressed.   

Further contribution of this work addresses the issue of stability of the dynamic 

systems driven by nonlinear controllers.  One result shows how assessing stability of an 

n-dimensional system can be reduced to checking stability of a two-dimensional one 

using algebraic expressions that are based on the vehicle characteristics such as 

aerodynamic coefficients.  This reduces a complicated dynamical problem to something 

purely algebraic and manageably complex.  Another approach is based on algorithmically 

finding a local Lyapunov function using sum of squares.  The presented results are the 
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first to address the question of stability for the nonlinear dynamic inversion in the 

presence of flexible dynamics. 
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  Chapter 1 – Introduction 

Chapter 1 – Introduction  

1.1 Motivation  

High performance aircraft of the future will be designed to be lighter, more 

maneuverable, and operate over an ever expanding flight envelope1.  This set of 

conditions will necessarily mean highly flexible vehicles operating in nonlinear regimes.  

In order to control these vehicles, new methods are being sought to better optimize their 

responses to both pilot input and external disturbances, as well as to decrease the cost of 

vehicle design.  Over the last decade, dynamic inversion methodology has gained 

considerable popularity in application to highly maneuverable fighter aircraft2-5 , as 

underlying methodology to new generation of highly maneuverable vehicles under 

development6-9, and might be of benefit to highly flexible aircraft.   

The attractiveness of this methodology lies in the fact that the inherent nonlinearities 

of the problem are explicitly considered.  In other words, a nonlinear control law is 

designed that globally reduces the aircraft dynamics of interest into a set of integrators 

and, thus, allows one linear controller to provide desired response throughout the flight 

envelope.  This eliminates the need for extensive linearization of the aircraft model for 

different flight conditions, design of individual controllers for each of these conditions, 

and finally performing gain scheduling, which is typically an ad hoc and time consuming 

procedure to link the individual controllers over the flight envelope.  Despite these 

apparent advantages, dynamic inversion is not a panacea of high performance flight 

control.  A number of issues dealing with global system stability and robustness have not 

been fully addressed.  However, the fighter aircraft examples to which dynamic inversion 

had been applied have shown that this methodology works for current advanced 

aircraft2, 3. 

One of the largest differences from the flight control perspective between current and 

future advanced aircraft is elasticity.  All of the aircraft to which dynamic inversion had 

been applied to date are considered rigid vehicles.  In the context of flight control, this 

means that the frequency separation between the fastest aerodynamic modes and the 

slowest body deforming mode is typically on the order of 60 rad/sec (10 Hz)10.  The 

aircraft of the future will not have this luxury.   
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One type of aircraft that has gained prominence in recent years is an Uninhabited 

Aerial Vehicle (UAV).  These vehicles span a great variety of missions and hence have a 

number of very different configurations.  One such vehicle is a Helios Prototype designed 

for very long duration flight, non-stop at least 24 hours at 100,000 ft11.  As can be seen 

from Figure 1.1, the aircraft is an ultra-lightweight flying wing, which is inherently very 

flexible.  The wingspan is 247 ft, longer than the wingspans of U.S. Air Force C-5 

military transport (222 ft) or Boeing 747 commercial jetliner (215 ft).  The aircraft 

recently crashed and an investigation to determine the causes of the control problems that 

led to the loss of the craft are still in progress. 

   

Figure 1.1: Helios Prototype long duration solar powered flight 

(courtesy NASA Dryden Flight Test Center).  

 

Furthermore, conceptual combat UAV designs may incorporate highly flexible delta-

type wing shapes.  The University of Bath and AFRL undertook an 

experimental/computational research effort investigating flexible delta wings’ nonlinear 

aeroelastic response due to unsteady vortex flow12.  And in a recent announcement, 

QinetiQ, the UK’s defense research agency, has designed a flying wing tail-less UAV 

with no external control surfaces, which uses wing twist and deformation for pitch and 

roll control.  The UAV, called AEUAV-F, applies aeroelasticity to enhance the control 

power of these controls13.  Consequently, in light of all these developments, the question 

of integrated flight/aeroelastic control assumes great prominence. 

The aircraft that typifies this new set of complex dynamics is the next generation 

High Speed Civil Transport (HSCT).  This aircraft was chosen as a representative of the 
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dynamics of interest because very extensive development in modeling and simulation has 

been performed over a number of years and the available models are of very high fidelity.  

This vehicle class is 300 ft in length with gross weight of 700,000 lbs.  The sheer size of 

this vehicle is put in perspective by a drawing found in Figure 1.2 that places the aircraft 

on a football field inside a stadium.  While this aircraft is not a traditional high 

performance aircraft, it does operate over an extensive flight envelope and exhibits elastic 

characteristics expected of future advanced vehicles.  The weight savings produced by 

lighter materials also result in low frequencies for elastic modes.  Generally, these first 

modes occur around 1.5 Hz (9 - 10 rad/sec) with the first five under 4 Hz, while for a 

typical subsonic transport this value is 3.2 Hz (20 rad/sec).  The implication for this class 

of vehicles is that the frequency separation between the fastest rigid body dynamics and 

the slowest elastic mode is less than 10 rad/sec.  The lack of separation between rigid and 

elastic dynamics has significant consequences for flight control and is discussed in detail 

in later chapters.   

If dynamic inversion is to be seriously considered as a methodology for control 

design of future advanced flexible aircraft, it must be able to deal with the small 

frequency separation between rigid and elastic modes.  Before applying dynamic 

inversion to a high performance flexible fighter, which includes both elasticity and high 

performance over an extreme flight envelope, the issue of elasticity must first be 

resolved.  The HSCT class of vehicles mentioned above offers an opportunity to address 

elasticity through dynamic inversion while operating under a wide range of aerodynamic 

conditions but without adding the extra complexity of highly nonlinear post-stall 

aerodynamic regimes and very rapid aircraft response requirements.  Hence, a model of 

such a vehicle is selected here to address the ability of dynamic inversion to handle 

highly elastic vehicles that require a new approach to flight control due to complexity of 

their dynamics. 
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Figure 1.2: HSCT aircraft parked on the football field. 
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1.2 Integrated Flight/Structural Mode Control and Dynamic Inversion Literature  

The state of the art that has bearing on the research presented in this work falls into 

two separate fields: those of integrated flight/structural mode control and those of 

dynamic inversion application to aircraft control.  The state of the art in dynamic 

inversion aircraft control is presented first. 

1.2.1 Dynamic Inversion Aircraft Control   

The application of direct dynamic inversion to aircraft control has reached its peak in 

open literature with the High Angle-of-Attack Research Vehicle (HARV) project2-5.  

Subsequent to that project, control involving dynamic inversion changed directions and 

the methodology became an underlying partner for direct adaptive control with neural 

networks6, 7.  Dynamic inversion has also been used as the underlying methodology for 

indirect adaptive control to enhance survivability of the next generation of fighter aircraft 

and implemented online in real-time8, 9.  The innovation in both of these methods dealt 

with adaptively regulating the error in the plant inversion of the rigid vehicles.  This new 

turn did not advance the state of the art of dynamic inversion itself or improve the 

theoretical underpinning for the methodology beyond that developed in the HARV 

project, though it has provided some very interesting and useful results in aircraft 

adaptive control.  Consequently describing the state of the art for dynamic inversion itself 

is going to focus on the results produced for HARV, summarizing some work on 

robustness issues5, and discussing the latest result in global stability for nonlinear rigid 

aircraft pitch-axis models14.   

1.2.1.1 Dynamic Inversion for Aircraft  

The nonlinear equations of motion for an aircraft can be written in the control input 

affine form: 

 
( , )

 ( ) ( )
x F u x

f x g x u
=
≈ +

�
 (1.1) 

where x is the vector of state variables and u is the vector of control effectors.  It is often 

desirable to rewrite the above equation in a normal form, which is very useful in 

expressing generalized results of feedback linearization15.  The formal process for 

transforming the system in (1.1) into normal form does not always work for arbitrary 
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nonlinear systems; but fortunately, for rigid body aircraft dynamics, it can always be 

completed.  Note that any aircraft outputs are a function of the state variables and can be 

used as the control variables (CV) for (1.1): 

 ( )CV CV x=  

where CV is the vector of control variables.  Rewriting the equations in normal form for 

aircraft is always possible because (1.1) has CVs for the three axes (pitch, roll, yaw), 

each including a body rate, and control effectors primarily producing torque in the same 

three axes.  However, in review of aircraft application, the original coordinates prove 

sufficient in considering the problem.  Continuing with the idea that CVs are functions of 

state variables: 

 ( ) ( )CV CV CVCV x f x g x u
x x x

∂ ∂ ∂
= = +

∂ ∂ ∂
� �  (1.2) 

Let ( ) ( )y CV x h x=�  then (1.2) can be rewritten as  

 
( ) ( ) ( ) ( ) ( )x x

h xy x h x f x h x g x u
x

∂
= = +

∂
� �  (1.3) 

So the dynamic inversion part of the control law appears: 

 [ ] 1( ) ( ) ( ) ( )cmd des
x xu h x g x y h x f x− ⎡ ⎤= −⎣ ⎦�  (1.4) 

with ( ) ( )xh x g x  invertible for all values of x.  For an aircraft with multiple control 

effectors for a single axis, ( ) 1( ) ( )xh x g x −  in (1.4) should be interpreted as a (non-unique) 

right inverse. 

The important generalization to notice is that the number of control effectors must 

equal the number of control variables.  Since three control variables (one for each axis) 

have a strong angular rate content and conventional aircraft typically have three moment-

producing controls (differential ailerons, symmetric horizontal tail, and rudder), this 

control handles conventional aircraft easily.  For an aircraft that has multiple control 

effectors for a single axis, a method to allocate control requirements to the different 

effectors is required. 

1.2.1.2 Dynamic Inversion Fighter Applications  

The HARV program was NASA’s high angle-of-attack flight test program to explore, 

among other issues, flight control for low speed, high angle-of-attack, rapid maneuvering.  
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Honeywell was one of the participants and their dynamic inversion based control law was 

one of several utilized for this program.  The HARV flight control is the most detailed, 

flight-ready set of control laws designed based on dynamic inversion2 that is available in 

open literature.  

The Honeywell design methodology consisted of dynamic inversion for flight control 

laws.  µ-synthesis was employed to determine optimal robust performance for special 

point cases against which the dynamic inversion based performance was compared.  The 

control laws were analyzed using singular value and µ-analysis techniques.  They were 

also extensively exercised with batch and piloted simulation. 

1.2.1.3 Control Law – Basics  

The conceptual development of the HARV control laws are presented here because 

these have become a standard initial starting point for other designs including the one 

pursued here for flexible aircraft.  Some of the reasons for this formulation are elaborated 

upon in this subsection; some are further discussed in the next subsection.   

In general, the control variables are modeled with the differential equations 

 ( , )y f u x=�  (1.5) 

which depend on aircraft state variables x and the control effectors u.  The differential 

equations are just the rigid body equations of motion.  The state variables – roll, pitch, 

yaw rates, bank angle, angle-of-attack, sideslip, velocity, and flight path angle – are 

assumed measured (xmeas).  The control effectors are aerodynamic surfaces (ua) and thrust 

vectoring (ut).   

A desired rate of change of the control variable is selected to achieve satisfactory 

handling qualities in response to pilot commands.  This is modeled with a first-order 

differential equation 

 
1 ( )desired cmd measy y y
τ

= −�  (1.6) 

with a specified time constant, τ, for each control variable based on the MIL-SPECS16.  

The two differential equations for rate of change are then equated which leaves an 

expression 

 
1( , ) ( )cmd meas cmd measf u x y y
τ

= −  (1.7) 
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to be solved for the control effector commands.  Desirable pilot handling qualities are 

achieved by precompensation of stick and pedal commands, and trim inputs.  The pilot 

inputs are scaled with flight condition dependent gains and a first-order shaping filter to 

achieve time constants other than those resulting from feedback objectives. 

To decrease the sensitivity of the closed loop response to modeling errors and low 

frequency atmospheric disturbances, integral feedback was incorporated into the desired 

dynamics without altering the handling qualities as seen by the pilot.  With integral 

feedback, the desired dynamics for the control variables are 

 2 ( )
2 2

cmd meas cmd measc c
dt

y y y y y
ω ω⎡ ⎤

= − + −⎢ ⎥
⎢ ⎥⎣ ⎦

∫�  (1.8) 

The integral term implies that the control variable will have zero steady state error in 

response to step commands in the presence of model errors and constant disturbances.  

Assuming perfect sensors ( )measy y= , the transfer function between cmdy  and y is first 

order with a time constant given by 2/ωc.  Thus, the handling qualities are unaltered from 

the first order characteristics of the proportional only feedback. 

The value of the proportional feedback of the control variable sets the crossover 

frequency (ωc) or bandwidth.  The bandwidth has an upper limit related to airframe 

elasticity such that control action does not excite elastic modes. 

Stability of the closed loop system is related to the selection of control variables.  In 

the linear case, closed loop poles are equal to open loop zeros in the transfer function 

between control effectors and control variables5, 14. 

Robust stability consists of basic loop properties that are degraded by high frequency 

lags; delays; details of the inversion, which depend on control variables and their 

complements; and state estimation, if state variables are not measured directly.  

Satisfactory basic loop properties are a prerequisite to achieving satisfactory robustness 

with respect to more detailed assumptions.  The basic loop properties are a Bode gain plot 

that crosses over at ωc with a phase margin of 87 deg.  This allows for 42 deg. of phase 

margin degradation associated with details of implementation2. 

The multiple control effectors were allocated according to a special model, 

 desired
a a t ty B u B u= +�  (1.9) 
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where aB  and tB  are control moment effectiveness divided by inertia; hence, they are 

dependent on the current state measurements.  Control commands are given by  

 
{ }

{ }

1

1 1

lim

lim

cmd desired
a a

cmd desired cmd
t t t a a

u B y

u B y B B u

−

− −

=

= −

� �

�
 (1.10) 

where a aB B=�  unless division by aB  is unacceptable in which case aB�  is set to a 

specified invertible matrix.  Reversion to aB�  typically takes place when either dynamic 

pressure is small or angle-of-attack exceeds stall.  The control law is intended to operate 

only when thrust vectoring is available, so tB  is always an inevitable matrix.  Note when 

aerodynamic surfaces are not limited, 0cmd
tu = ; otherwise, tu  is only required for what 

cannot be provided by aerodynamic control surfaces.  This is essentially known as a 

daisy-chain method of control allocation.  It is necessary to stop the integration of 

tracking error under limiting conditions to prevent integrator windup. 

1.2.1.4 Control Law – Other Aspects  

The special HARV linear model used for design assumes the time rate of change of 

the control variable is a nonlinear function of the measured state plus linear terms in the 

control effectors.  The model subroutine is part of the implementation and computes the 

function of the state using aircraft equations of motion evaluated at the measured state.   

A reduced aerodynamic data base was obtained with a least squares fit for HARV 

data with assumptions that aerodynamic coefficients are linear in everything except the 

angle-of-attack and have angle-of-attack dependent multipliers.  The accuracy of the fit 

was deemed acceptable based on the performance and robustness tests of the computed 

control laws.  This aircraft model database, in a sense, replaces the set of gain schedules 

regarding inner loop feedback gains that is present in existing flight control systems. 

It quickly becomes evident from a variety of sources2, 5, 17 that CVs play a central role 

in the dynamic inversion concept.  They determine how handling quality specifications 

are satisfied, how disturbance responses are attenuated, how good zero dynamics are 

obtained, and how favorable performance/robustness trade-offs for overall closed loop 

system are achieved.  The CVs chosen for each of the aircraft axis initially came from 

one of the designers with long experience in conventional classical control and then were 
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modified based on the physics of the high angle-of-attack problem17.  Essentially, a 

“judicious” selection of CVs produced a control law that provided good behavior in all 

the categories mentioned in the above paragraph for HARV.  Of course, the “judicious” 

selection was based on the physics not only of the aircraft generic relations but also on 

the specifics of the flight regime of interest. 

Another example of dynamic inversion based control laws evaluated in a piloted 

simulation can be found in Reference 3.  The control laws for the F-16 piloted evaluation 

example were designed based on the HARV report.  The control laws produced for the 

HARV program were used with a change in the aerodynamic database to reflect a 

different vehicle.  It is important to reiterate that, in both cases, the vehicles were 

described by rigid body equations that were an accurate representation of the physical 

system in the frequency range of interest, i.e., anything that can be affected by a pilot in 

combination with external inputs.  

The question of robustness and stability were addressed, for both of the design 

examples, during the control law evaluation using µ-analysis, batch, and piloted 

simulations.  The robustness issues associated with dynamic inversion were addressed 

more generically in Reference 5.  These results are summarized in the next section. 

1.2.1.5 Robustness Issues  

Good nominal response and well-behaved zero dynamics are not enough for a good 

control law design.  These qualities must also be robust with respect to various modeling 

errors inherent in aircraft systems.  The inversion part of the control law produces the 

desired dynamics exactly only when f(x) and g(x) are known precisely.   

For the rest of this section consider a perturbed model of the aircraft given by  

 ( )( ) ( )y CV x f f x g g uδ δ= = = + + +�� �   (1.11) 

and assume for algebraic simplicity that y=h(x)=x.  A common cause for such model 

perturbations is the aerodynamic data uncertainty.  Another source of perturbation is 

added to the robustness analysis.  In (1.12), the ideal control effector position is replaced 

with a perturbed value obtained by passing the ideal position through actuator dynamics, 

flexible structural elements, and other high-frequency uncertainties 

 1( ) ( ) ( ( ) )desu I g x f x y−= + ∆ − + �  (1.12) 
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where ∆(s) is an arbitrary stable dynamic perturbation, small for low frequency signals, 

but increasing in size to unity and beyond as frequency increases.  A short derivation 

shows that the resulting dynamic model for y CV= ��  is then given by  

 ( ) ( ) desy CV f f I yδ= = − + +D D�� �  (1.13) 

with 

 1 1 1g g gg g gδ δ− − −= ∆ + + ∆D  (1.14) 

These equations replace the integrators as a new dynamic model for the CVs.  Note 

that there are two major uncertainty terms.  The first term, ( )f fδ − D , is a direct 

disturbance input to the integrators, while the second term, ( ) desI y+ D � , is a 

multiplicative perturbation on the control inputs of the integrators.  Both terms are 

correlated through their common perturbation operator D, and all functions in this 

operator, f, g, δf, and δg, remain dependent on the state vector x. 

Note that the new model is still almost linear.  Only the perturbation terms are not 

linear.  If this fact is ignored for the moment, well-established design methods are 

available to construct robust controllers.  Perhaps the simplest of these are loop-shaping 

methods, which satisfy norm-based robustness constraints on the CV-feedback loops 18.  

If the multiplicative and direct disturbance terms are re-written in terms of Da and Dm, 

which are dependent on y and desy�  terms, respectively (see Ref. 5 for details), then there 

are two basic constraints: 

(1) sufficient conditions for robust stability with respect to the multiplicative term 

alone 

 
[ ]

1
max

max

1( ( ) ( )) ( ) ( )  for all 
( )m

I K s P s K s P s s j
D s

σ ω
σ

−⎡ ⎤+ < =⎣ ⎦  (1.15) 

(2) sufficient condition for robust stability with respect to the direct disturbance term 

alone 

 [ ] [ ]min max( ( ) ( ))  ( ) ( )  for all aI K s P s D s P s s jσ σ ω+ > =  (1.16) 

In these expressions, P(s)=I/s is the nominal plant and K(s) is the feedback compensator 

for the CV-loop. 
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High-frequency constraints are imposed by the multiplicative term, which requires 

that the loop be rolled off before the magnitude of Dm(s) exceeds unity.  Low-frequency 

constraints are imposed by the direct disturbance term, which calls for sufficient low-

frequency gain to overpower any destabilizing effects of Da(s).  Combining these two 

extremes gives the familiar loop-shaping requirements.  Whenever the above loop-

shaping constraints are widely separated, simple CV compensators suffice like the one 

employed for HARV aircraft2. 

In more challenging situations, when the frequency-domain constraints are tight, the 

fact that the direct disturbance and multiplicative perturbations occur together and in a 

correlated way can no longer be ignored.  Any of the sophisticated modern multivariable 

design tools could then be brought to bear to execute the design.  Arguably, the most 

powerful of these is the µ-synthesis method 19, 20. 

If the critical assumption of linearity is removed, the formal design options are much 

less powerful.  This occurs because formal norm-based robustness conditions for general 

nonlinear perturbations are blunt instruments.  Consider the following generalization of 

(1.15) and (1.16), derived from the small gain theorem (see Ref. 5 for more details). 

(1) sufficient condition for robust stability with respect to the nonlinear multiplicative 

form alone 

 1 1( )
m

I KP KP
D

−+ <  (1.17) 

(2) sufficient condition for robust stability with respect to the nonlinear direct 

disturbance alone 

 1 1( )
a

I KP P
D

−+ <  (1.18) 

Here the symbol  ( ) ⋅  denotes an induced operator norm.  This norm corresponds to the 

largest input/output gain of the operator taken over all signals.  If the operator is linear, 

the norm is equal to the largest magnitude of its frequency response taken over all 

frequencies.  Thus, the left-hand side of (1.17) is nothing more than the M-peak, the 

maximum value of the magnitude curve, of the CV-loop’s closed loop transfer function. 

On the other hand, the right-hand side of (1.17) is more complicated.  To examine this 

term, consider an “optimistic” version of Dm given by 
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 1( ) ( )m g x g x −= ∆D  (1.19) 

The norm above is equal to the M-peak of the linear actuator/flex perturbation in the 

control channels of the aircraft and is typically much greater than unity.   

Thus, (1.17) can be satisfied only if the M-peak of the CV-loop is much smaller than 

unity.  This requires very small loop gains, i.e., |K(s)P(s)|<<1 for all s=jω.  Unfortunately, 

such gains cannot satisfy (1.18) because it requires large loop gains to make the M-peak 

of (1+KP)-1P small enough.  Thus, the formal robustness guarantees of the nonlinear 

theory currently do not help in design. 

1.2.1.6 Global Stability Results  

One aspect of dynamic inversion concept is the presence of hidden zero dynamics.  

The zero dynamics15 is a set of system responses that is not observed in the output but is 

influenced by the control action.  They may also present a problem to system 

performance if not properly handled.  

These dynamics are implicitly defined by the selected CVs and must be examined 

separately to ensure that they are stable and well behaved.  While it is far from trivial to 

establish properties of zero dynamics globally, local properties obtained from 

linearizations are often enough to identify potential problems5.  

A recent global stability result for dynamic inversion applied to nonlinear rigid 

aircraft pitch-axis dynamics appeared in Reference 14 and is summarized in this section.  

Even though both the airplane model and the control law are somewhat simplified, the 

result is an important building block for future analysis.  The following discussion is to 

establish under what circumstances can necessary and sufficient conditions for global 

stability of closed loop system with a dynamic inversion controller hold.   

The aircraft longitudinal axis model is based on body-axis coordinates with four 

states (U, velocity in longitudinal (x) axis; W, velocity in vertical (z) axis; q, pitch rate; 

and θ, pitch attitude) and two control inputs (T, thrust; and δ, elevator angle).  To define 

the equilibrium set, assume T and θ fixed.  At equilibrium, q=0 and the only unspecified 

terms are aerodynamic forces and moments.  The aerodynamic forces in the U, W 

degrees of freedom must exactly balance out gravity and thrust forces, thus being 

completely determined for any point in (U,W) space.   
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In practice, aircraft stability cannot be expected under all possible flight conditions.  

For the purpose of analysis, two different sub problems of stability are considered: 

1.  assume unlimited control authority and work globally, or 

2.  restrict attention to a subset of the states on which control authority is adequate.     

In what follows, only the first sub problem, i.e., the discussion of global results, is 

considered. 

The control problem can be stated as follows: 

Given an equilibrium state x , determine a controller u=K(x, x ) so that x  is a global 

attractor for the system  

 ( , ( , ))x f x K x x=�  (1.20) 

Any global attractor must be an equilibrium state.  This problem is addressed using 

dynamic inversion for vehicle models having a unique equilibrium point for appropriately 

chosen engine thrust, T. 

The approach is to invert the rotational degrees of freedom to a set of stable, second 

order dynamics.  The steps include constructing controller K, showing stability of the 

attitude dynamics, and addressing the stability of zero dynamics.  A desired stable set of 

second-order linear dynamics for θ is  

 22 ( )cmd cmdq qξω ω θ θ= − − −�  (1.21) 

With this controller, the closed loop dynamics decouple into velocity dynamics (U,W) 

given by  

 ,2

,,

sin( ) /1
cos( ) 02 ( )

xy cmdx

zMz

CI qWq g T mCU
V S

CUq g m cmCCW
δ

δδ

θ
ρ

θ α
− − ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + + + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

� �
�  (1.22) 

and attitude dynamics (q,θ) given by 

 
22 ( )

1 0
cmdq

q
ξω ω θ θ

θ
⎡ ⎤−⎡ ⎤ ⎡ ⎤ − −

= + ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�  (1.23) 

The dynamics of the attitude loop, (q,θ), have been reduced to linear by dynamic 

inversion and converge to (0,θcmd).  

For longitudinal axis models, computer simulations show that the pitch-attitude 

control strategy presented in (1.21) has excellent stability properties over extreme ranges 
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of initial and transient state conditions.  The global stability result that follows provides 

an explanation for the above observations.  

 

Theorem14:  Assume that  

1.  the total drag coefficient 

 ,
,

( )( ) ( ) ( ) 0
( )

M
D D D

M

CC C C
Cδ

δ

αα α α
α

= − >  (1.24) 

2.  the aerodynamic function satisfy the dissipative condition 

 3 ( ) ( ) 0L
D

dCC
d

α α
α

+ >  (1.25) 

3.  for a given T and �cmd, the following equation of � 

 sin( ) ( ) cos( ) ( ) 0cmd z cmd x
T C C

mg
θ α θ α

⎛ ⎞
− − =⎜ ⎟

⎝ ⎠
 (1.26) 

has only one solution α= α*. 

Then, for a given T and θcmd, the closed loop system (1.22)-(1.23) has a unique 

equilibrium (θ*,q*,U*,W*) given by 

 , 0cmd qθ θ∗ ∗= =  

and  

 
2 cos( ) 2 cos( )* cos( *),     * sin( *)

( *) ( *)
cmd cmd

z z

mg mgU W
SC SC

θ θ
α α

ρ α ρ α
− −

= =   (1.27) 

where α* is the unique solution of (1.26). 

Moreover any solution (θ(t), q(t), U(t), W(t)) of the closed loop system 

(1.22)-(1.23) satisfies 

 ( ) ,    ( ) 0,    ( ) *,    ( ) *cmdt q t U t U W t Wθ θ→ → → →  

as t → ∞ .  That is to say (θcmd,0,U*,W*) is a global attractor of the closed loop 

system (1.22)-(1.23). 

 

In practice, Assumptions 1 and 2 are valid.  Hence, whether the system is globally 

stable or not depends on whether (1.26) has a unique solution, which in turn depends on 

the engine thrust, T, and the selected pitch attitude command, θcmd. 
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Now return to the question of stability of zero dynamics of the closed system (1.22). 

In the linear case, the issue of stability is related to right half plane zeros in the elevator to 

pitch angle transfer function.  This transfer function has two such zeros21 and under 

typical flight conditions for rigid body aircraft, these are both minimum phase.  It has 

been mentioned in Reference 5, as well as in Reference 14, that the zeros of open loop 

plant become poles of the closed loop system when dynamic inversion is employed.  This 

result has been both observed in practice2, 5, including present work, and shown 

mathematically14.   

The stability robustness of the above result to uncertainty in the aerodynamic 

coefficients must be analyzed.  If no uncertainty on the pitch moment exists, then the 

dynamics of the pitch attitude and the pitch rate are still decoupled from those of the 

velocities.  The stability results for the nominal aerodynamic functions work immediately 

for the perturbed CL, CD, CL,δ and CD,δ.  This generalization is significant because it is the 

first result obtained for robustness of nonlinear dynamic inversion control laws for rigid 

fighter aircraft.   

1.2.2 Integrated Flight/Structural Mode Control  

The state-of-the-art for the second major issue for the research problem is discussed 

in this section.  Since initial development and deployment of the B-1 bomber, which 

served as the most recent aircraft where structural modes had to be actively controlled, 

integrated flight/structural mode control (SMC) received limited coverage in open 

literature.  The primary reason for this is unavailability of reasonable fidelity models that 

are not proprietary.  In fact, the high fidelity HSCT model used as a proving ground for 

the research presented is restricted, though the results obtained with it are now 

publishable.  Hence, the work in this area, until very recently, has concentrated in those 

agencies and companies that deal with the next generation of supersonic transports and 

had access to good models (Aerospatiale, Boeing, NASA).  Very recently, an interest in 

this area has reemerged with the advent of different types of UAVs under consideration 

and will be addressed later in this section.   

Conventional aircraft rely on flight control roll-off and notch filtering where 

controller roll-off is insufficient to attenuate flexible mode excitation.  The B-1 bomber 

most closely approaches the problem of small separation between rigid body and flexible 
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mode dynamics.  The first fuselage bending mode for the B-1 is at 18 rad/sec (2.8 Hz)22, 

which makes the rigid body flexible dynamics separation considerably larger than that for 

an HSCT-type vehicle.  The structural mode control system developed for the B-1 was 

the first of its kind in that it actively managed the flexible dynamics.  One of the 

requirements for this system was that it was to be installed on top of an already existing 

flight control system and would not interfere with it in any way.  Since the system was 

installed to provide a specific level of ride quality to the crew, the requirement of 

noninterference with flight control and the design of the two systems separately were 

consistent with the objective and the dynamics of the aircraft.  This approach, while not 

optimal, was adequate for aircraft displaying the dynamic separation between rigid and 

flexible dynamics of the B-1.  However, as discussed in later chapters and as been 

confirmed by other researchers23, 24, the unprecedented small separation between rigid 

body and flexible modes of the HSCT type vehicle would make this approach completely 

inadequate.  Briefly the reasons for this are that the desired flight controller bandwidth, to 

satisfy the flying qualities criteria, has less than a decade frequency separation with the 

first elastic mode.  Furthermore, compromising and reducing the controller bandwidth 

would still result in insufficient roll off to attenuate flexible mode excitation.  The elastic 

modes themselves are too closely spaced to make notch filters, a popular device for 

vehicles with large dynamic separation and only one or two modes in need of attenuation, 

an attractive option.  The HSCT vehicle is roughly 2.5 times the size of the B-1 (see 

Fig. 1.3), which partially accounts for the differences in flexible dynamics, but the 

similarity in shape also foreshadows the similar control problems. 

A step towards integrated flight/SMC was taken in Reference 25 where quantitative 

feedback theory was used for design of a longitudinal pitch-axis flight control system for 

a highly flexible B-1 type vehicle.  The aircraft model utilized in this work was an 

integrated longitudinal/single flexible mode linear model that was artificially perturbed in 

the A, B, and C matrices to simulate uncertainty.  This work showed that command-

following, disturbance rejection, and desired handling qualities could be achieved with a 

single control surface without employing an active SMC but at the cost of much faster 

actuator dynamics than those available for the B-1.  The dynamics were modeled as first 

order with 75 rad/sec break frequency vs. 10 rad/sec representative of the B-1.   
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Figure 1.3: HSCT size comparison with B-1. 

 

Work on an integrated flight/SMC control for a highly flexible aircraft with 

significant cross coupling between flight mechanics and flexible modes appeared in 

Reference 26.  Based on the published open loop poles, the vehicle under consideration 

was indeed an HSCT class vehicle.  The model used for control design and analysis was 

linear and consisted of the longitudinal rigid body model linearized about a steady-state 

condition and the aeroelastic model that includes aerodynamic lag terms, τ, (a general 

discussion of aeroelastic models follows in Chapter 3).  These two models are coupled by 

connecting their respective measured outputs at the same structural points on the aircraft.  

The combined model is given by  
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 (1.28) 

with the third order actuator dynamics completing the system.  Note that this model does 

not reflect the interaction between the rigid body and the flexible mode states.  The only 

cross coupling occurs at the output.  To control this vehicle model a method that 

combines full state LQR for rigid body performance with guaranteed flexible mode 
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stability and output feedback that tries to recover this performance.  The full state 

feedback LQR is used on the combined rigid/elastic model and the performance index 

weighting matrices are manipulated to place rigid body poles into an eigenspace that 

would provide the desired performance.  The resulting controller would then provide 

rigid body performance compatible with flexible mode stability.  The next step is to 

obtain an output feedback controller whose resultant closed loop dynamics are as close as 

possible to the ones produced by the LQR.  The approach chosen to produce this output 

controller is the constrained minimization of the difference between the actual and 

desired eigenstructure produced by LQR 

 1

min max

P
des

i i i
i F

J p

K K K

λ λ
=

= −

< <

∑  (1.29) 

where pi are scalar weights, and constraints on K are defined for practical consideration 

of gain scheduling.  The results for the model in (1.28) do provide stable pitch rate and 

normal acceleration response free of significant flexible mode dynamics to 0.1 g 

command.  However, the model does not reflect the inherent complexity of dynamics for 

the aircraft with cross coupling between rigid body flight dynamics and structural 

dynamics so the proposed control technique cannot be adequately evaluated. 

Other work related to an HSCT class vehicle focused on the attainment of multiple 

control objectives with minimal architecture27.  This work approached the problem from 

classical sequential loop closing perspective.  Two channel, two directional crossfeed 

control law architecture is proposed.  One channel is dedicated to the pitch rate, or some 

blend thereof, and the second channel is the flexible mode dynamics channel.  The 

perceived benefit of this technique is the clear and concise relationship between the 

design parameters and resulting closed loop features.  Knowledge underlying the role of a 

particular feedback loop, or the effect from a specific dynamic compensation feature, 

upon the closed loop properties is advantageous.  The difficulty arises from the fact that 

when the loops are closed sequentially, the designer must anticipate effects from the 

current loop closure upon channels yet to be closed.  The control law architecture is 

provided in Figure 1.4.  The elevator belongs to the rigid body channel and the ride 

control vane (RCV), (see Fig. 1.3), is associated with the flexible dynamics.  P2(s) is a 
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Figure 1.4: Multi-loop control law architecture. 

 

command shaping filter, Aδ(s) are actuator dynamics, G(s) is the plant, and Kij(s) are 

individual dynamic filters.  In the final result the Kij(s) filters are 3rd, 3rd, 3rd, and 4th order 

respectively with a 4th order command prefilter P2(s).   

The model used for design and analysis of this controller was similar to the one 

discussed in this work and is based on the integrated rigid/structural mode dynamics, 

though necessarily linearized for application of this methodology.  The controller 

simulation results are very favorable in response to small input commands and provide 

good robustness to gain and phase perturbations in individual loops.  Here the difficulty 

in designing all of the dynamic filters and command prefilter is balanced by a classical 

controller architecture.  This methodology presents a potential linear alternative to the 

novel dynamic inversion methodology explored in this work. 

There is another potentially emerging area of research that employs integrated 

flight/SMC control.  With a myriad of new development efforts for UAVs with a variety 

of missions, there is a renewed interest in the integrated flight/SMC.  In addition to the 

problem formulated here, another issue arises that is not driven by close proximity of 

structural dynamics to those of rigid body, but instead by a possibility of designing such 

control without a good knowledge of the structural model.  An adaptive control approach 

has been proposed to potentially replace structural mode filtering, which occurs in more 

typical flight vehicles such as missiles where the structural modes are relatively far away 

from rigid body dynamics compared to an HSCT class aircraft28.  The control law is 
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based on the measured output, the regulated output, and the model inversion error.  As in 

other adaptive control methods that utilize model inversion error and then use an adaptive 

neural network law to drive that error to zero6, 29, this attempts to do the same but it lacks 

the inversion error since the structural model is unknown.  This inversion model error is 

provided by an adaptive observer described in detail in Reference 30.  At this stage, this 

approach is a candidate approach to either reducing the dependence of existing design on 

structural model filtering or eliminating the need for structural filtering in the future 

design altogether.   

1.3 Contribution of This Work  

The contribution of this work to the state of the art is predicated on the development 

and application of dynamic inversion methodology to handle highly flexible aircraft in an 

integrated flight/structural mode control manner.  The development and evaluation are 

performed on a sophisticated, high fidelity, nonlinear dynamic model across the 

frequency spectrum.  The dynamic nature of structural modes and the flight control 

reciprocal interaction with flexible modes because of unprecedented small separation 

between rigid body and flexible modes are the key elements of the aircraft model.  An 

innovation to the standard methodology of dynamic inversion has been introduced in the 

manner described in this work to accommodate the nature of the vehicle and fulfill the 

dual objectives of integrated flight/SMC control.  These objectives constituted command 

following, disturbance rejection in the rigid body, improved structural dynamic damping 

to minimize excitation from turbulence, and rendering the aircraft rigid from the pilot 

station perspective.   

The novel approach to the nonlinear dynamic inversion allows the methodology to 

more intelligently handle flexible dynamics (or any dynamics with pole-zero pairs very 

close to the jω-axis).  In the standard dynamic inversion, the controlled variable’s 

dynamics are cancelled by the controller, which may or may not be an appropriate 

approach.  This new approach to standard dynamic inversion still maintains control of 

CVs while the innovation allows a change to the dynamics of the controlled variable 

without cancellation of its dynamics.  This is accomplished by introducing dynamics into 

the inversion loop itself.  What this novel approach enables is altering flexible mode 

damping without cancellation, thus improving disturbance response and avoiding the 
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potentially destabilizing effect of pole cancellation close to the jω-axis in case of 

modeling uncertainty. 

The structural nature of the modification to the standard dynamic inversion 

methodology and its effect on the necessary level model complexity for design has been 

established with particular attention given to establishing physical understanding of the 

control design process.  Furthermore, the effect of uncertainty in the structural mode 

dynamics has been addressed as well.  

Further contribution is addressing the issue of dynamic inversion and stability of 

highly flexible aircraft studied in this work from the mathematical perspective.  The 

approach is rather straight forward.  The vehicle driven by a controller must reach some 

equilibrium whose stability must be evaluated.  The results show how assessing stability 

of an n-dimensional system can be reduced to checking stability of a two-dimensional 

one using algebraic expressions that are based on the vehicle characteristics such as 

aerodynamic coefficients.  This reduces a complicated dynamical problem to something 

purely algebraic and manageably complex.  The results presented are the first to include 

flexible dynamics in stability analysis of the dynamic inversion methodology.  These 

form an initial basis to more complicated control problem formulation that includes the 

novel dynamic inversion methodology employed to design an integrated flight/SMC 

controller for a high fidelity model discussed earlier.  The changes in dynamics attributed 

to the innovation in the inversion methodology are explored for both linear and nonlinear 

systems.  This work has added to both analytical and physical insight regarding the nature 

of novel dynamic inversion applied to an integrated flight/structural mode control for a 

high flexible aircraft. 

Furthermore, a new tool is introduced in an attempt to systematically find Lyapunov 

functions that would guarantee local stability for the nonlinear system with the novel 

dynamic inversion controller alluded to above.  The tool, called SOSTOOLS, is based on 

the Sum of Squares decomposition for finding a Lyapunov function algorithmically.  

Portions of this work have been published in publicly available forums and are 

included in the reference section31–33.    
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1.4 Organization of the Thesis 

This dissertation is divided into eight chapters each addressing a major component of 

the work.  There are also five appendices each containing important information and 

results pertinent to the main results but not central to them.  The chapters are divided as 

follows.  Chapter 2 provides a brief overview to the dynamic inversion, discussing 

necessary background for a reader who might not be familiar with the technique.  Chapter 

3 concentrates on the development of the sophisticated, high fidelity, nonlinear dynamic 

model of the highly flexible aircraft across the frequency spectrum.  The development 

touches on the general unsteady aerodynamic influences on the structural modes and how 

his was incorporated in to the standard aircraft equations of motion that retained the 

reciprocal dynamic rigid body and flexible dynamics.  The open loop nature of the 

vehicle class model such way is also presented. 

Chapter 4 introduces the novel dynamic inversion methodology in detail and explores 

the influence it has on the closed loop system dynamics.  The design and evaluation of 

the control law based on this methodology in the high fidelity, full nonlinear simulation 

in the presence of turbulence and flexible mode uncertainty is discussed in Chapter 5.  

Chapter 6 continues the analysis with theoretical stability result concerning dynamic 

inversion and highly flexible aircraft.  Chapter 7 touches on newly evolving methodology 

of proving stability by finding Lyapunov function based on sum of squares and applying 

this methodology to the problem at hand.  Finally, Chapter 8 contains the conclusions and 

suggestions for further research. 

Appendix A elaborates on the high fidelity simulation model by providing the buildup 

equations for the aerodynamic coefficients.  Appendix B gives visual presentation to the 

flexible dynamics by showing the shape of the aircraft for the first few modes and then 

general shape and relative size of the first ten longitudinal modes.  Appendix C includes 

two sub studies.  The first involves parametric look at the ability to control both flight 

and structural deformations with only one surface.  The second highlights results of the 

novel dynamic inversion controller applied to an alternative set of control effectors.  

Appendix D provides details on calculating div(G) that is necessary for proof of stability 

result in Chapter 6.  And finally, Appendix E provides supporting work for stability 

analysis of the novel dynamic inversion presented in Chapter 7.
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Chapter 2 – Introduction and Background to Dynamic Inversion  

2.1 Introduction  

Dynamic inversion, also known as feedback linearization, fundamentally is an 

algebraic transformation of a nonlinear system dynamics into a fully or partially linear 

and controllable one, so that linear control techniques can be applied.  It deals with 

techniques for transforming original system models into equivalent models of a simpler 

form.  The central premise of dynamic inversion control methodology is based on the 

idea that control effector commands are a sum of signals from essentially two different 

controllers that together comprise what is commonly known as a dynamic inversion 

controller.  One part of the controller is based on the nonlinear model of the system and 

generates commands that would cancel the nonlinearities and make the actual system 

behave in the manner of first order linear dynamics, typically an integrator.  The other 

part of the controller is linear in nature and issues commands that make the linear 

dynamics behave in a desired way.  This linear controller is ideally the same throughout 

the region of interest, but in practice may be divided into two or three parts each 

representing a distinct dynamic regime for better system performance.  It is designed as 

any linear controller to provide robustness for dynamics mismatch between the nonlinear 

system model and the actual system dynamics.  The robust performance analysis on the 

entire dynamic inversion controller can be conducted at different flight conditions using a 

very powerful linear technique of µ-analysis.  However, since the controller is nonlinear 

in nature and spans the entire flight envelope, one would like to perform analysis that 

would guarantee stability in the entire operating regime.  Part of the current work 

proposes such a stability test.   

A number of references give details on the underlying theory and methodology of 

dynamic inversion15, 34.  The brief overview in this chapter provides important highlights 

that should facilitate the motivation behind the research presented. 

2.2 Dynamic Inversion Brief Overview  

2.2.1 Input-Output Linearization: SISO Case  

Consider a nonlinear system that is affine in control variable u described by 
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In order to produce an input-output controller, an explicit relationship between input u 

and output y must exist.  At this point the notion of relative degree must be introduced.  

Informally, relative degree r is defined as exactly equal to the number of times one has to 

differentiate the output y(t) at t=to in order to have the value of u(to) of the input explicitly 

appearing.  In a linear system this is equivalent to the difference between the number of 

poles and zeros.  A system with a relative degree defined in some neighborhood of ox  

allows us to transform the nonlinear system into the normal form.  Prior to giving a 

formal definition of relative degree some mathematical tools need to be defined. 

 

Definition: Let : nh →\ \  be a smooth scalar function, and : n nf →\ \  be a 

smooth vector field on n\ , then the Lie derivative of h  with respect to f  is a 

vector field defined by  

 ( ) ( )f
hL h x f x
x

∂
=

∂
 

 

Thus, the Lie derivative fL h  is simply a directional derivative of h  along the trajectories 

of the system ( )x f x=� .  The new notation is convenient for repeated calculation of the 

derivative with respect to the same or a different vector field.  For example, repeated Lie 

derivatives can be defined recursively 

 0 ( ) ( )fL h x h x=  

 
1

1 ( )
( ) ( ) ( )

k
fk k

f f f
L h

L h x L L h x f x
x

−
− ∂

= =
∂

 

Similarly, if g  is another vector field, then the scalar function ( )g fL L h x  is  
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The relevance of the Lie derivative to dynamic systems is easily apparent by considering 

the following SISO system  
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then the derivatives of the output are 
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and so on.  Now the formal definition of relative degree can be given. 

 

Definition: The single-input single-output nonlinear system (2.1) is said to have 

relative degree r at xo if  

 ( ) 0k
g fL L h x =  for all x in a neighborhood of xo and all k<r-1 

 -1 ( ) 0r o
g fL L h x ≠  

Note that relative degree cannot be defined when ( )gL h x  that is not identically 

zero (in a neighborhood of xo) has a zero exactly at the point x= xo.  An important 

property of relative degree is its invariance under coordinate transformation and 

feedback. 

 

Using the notion of relative degree we introduce state space description of a 

dynamical system in normal form, which makes what transpires in input-output 

linearization clearer.  Suppose the system has relative degree r<n at ox , then the first r 

equations are  
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 (2.2) 

There is no special structure for the last n-r equations, which therefore will appear in a 

form below with input u explicitly present.  In addition, the output of the system must be 

related to these new variables.  Hence the rest of the equations are given by  
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The structure of these equations is nicely illustrated in Figure 2.1. 

 

Figure 2.1: Nonlinear system equations in normal form. 

 

Consider a nonlinear system with relative degree r=n and suppose the following 

control law is chosen 

 
1 ( ( ) )            where  is an external reference input
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Then the resulting closed-loop system is governed by  
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that is linear and controllable.  In other words, exact linearization via feedback is 

achieved and input ν is connected to output y by a chain of r integrators illustrated below 

(Figure 2.2). 
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Figure 2.2: Exact feedback linearization.  

 

If a system has relative degree r<n for some given output h(x), then partial feedback 

linearization occurs.  This system decomposes into a linear subsystem, of dimension r, 

which is the only one responsible for the input-output behavior, and a possibly nonlinear 

subsystem, of dimension n-r, whose behavior however does not affect the output.  This 

case is depicted below (Fig. 2.3). 

 

Figure 2.3: Partial feedback linearization. 

 

As can be seen from Figure 2.3, the control u results in partial feedback linearization 

that makes n-r states unobservable at the output yet still influenced by the control action.  

These unobservable, i.e., internal dynamics, are also referred to as zero dynamics because 

they correspond to the dynamics describing the “internal” behavior of the system when 

input and initial conditions have been chosen in such a way as to constrain the output to 

remain identically zero.  In other words, the dynamics described by 
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with T(x), a diffeomorphism, controlling the behavior of the closed loop system, and thus 

its stability.  These internal dynamics consist of open loop zeros, open loop 

uncontrollable modes, and open loop modes that are not the primary control objectives. 

2.2.1.1 Zero-Dynamics  

What happens to the remaining variables, z, in the new state vector when y is 

controlled but not z?  This question deals with so-called zero-dynamics15 of (2.1) and 

must be addressed by ensuring that these dynamics are stable and well behaved. 

Conceptually, zero dynamics are nothing more than the remaining motions permitted 

by (2.1) when CVs in the output are constrained to be constant or prescribed.  That is, 

they are the solutions of  

 ( , ) with constraints ( )dx x u x c
dt

= =F H  (2.7) 

If F(.,.) and H(.,.) were linear functions, i.e., F(x,u)=Fx+Gu and H(x)=Hx, then these 

constrained solutions would be determined by the zeros of system (2.1). Specifically, 

with ν=0, they would satisfy  

 ( ) exp( )i i i
i

x t a x z t= ∑  (2.8) 

where ai, i=1,2,..., p, are arbitrary constants and (zi x), i=1,2,..., p, are zero/zero-direction 

pairs, defined by a generalized eigenvalue problem35. 

 0
0

ii

i

xz I F G
uH

− ⎡ ⎤⎡ ⎤
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⎣ ⎦ ⎣ ⎦
 (2.9) 

Note that these constrained solutions are not observable in the outputs, i.e., Hx=0, and 

they are stable and well behaved whenever all zeros of the CVs are located in the left 

half-plane and have reasonable damping ratios. 



  31 

 Chapter 2 – Introduction and Background to Dynamic Inversion 

Zero dynamics are nonlinear generalizations of these same ideas, and CVs must 

likewise be chosen to make them stable and well behaved.  One can use a linear 

interpretation to verify this behavior. 

Although, all of these concepts have been illustrated on the system transformed into 

normal form, they could have been similarly derived in the original coordinates.  It is 

instructive to look at internal dynamics in original coordinates since they control the 

stability of the closed loop system, which is a major part of this research.  Let the control 

law in original coordinates be given by ( ) ( )u x xα β υ= + .  Notice that 

 ( ) ( )0 0 ( )y t u x tξ α≡ → ≡ → ≡  (2.10) 

Thus, keeping the output identically zero implies 
( 1) 1( ) 0 ( ( )) 0,   1i i

fy t L h x t i r− −= → = ∀ ≤ ≤  and the system dynamics evolve on the subset  

 { }1: ( ) ( ) ( ) 0n r
f fx h x L h x L h x−= ∈ = = = =*Z \ "  (2.11) 

that, locally around ox , is exactly the same set of points whose new coordinates 1, , rz z…  

are 0 (see Fig 2.4).  And the input must be  

 ( ) ( ) x Zu u x xα ∗
∗

∈= �  (2.12) 

which is constrained by  

 ( ) 10 ( ) ( ( )) ( ( )) ( )r r r
f g fy t L h x t L L h x t u t−= = +  (2.13) 

The restricted motion of the closed loop system on Z*, the smooth manifold of dimension 

n-r, is described by 

 [ ]( ) ( ) ( ) ( ) x Zx f x f x g x xα ∗
∗

∈= +� �  (2.14) 

The vector field f*(x) is tangent to Z* for all x Z ∗∈ , consequently any trajectory of the 

closed loop system staring at a point of Z* remains in Z* (for small values of t).   
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Figure 2.4: Closed loop internal dynamics behavior.  

 

2.2.2 Input-Output Linearization: MIMO Case  

Generalizing the SISO results to the multi-input multi-output case, we restrict the 

analysis to the consideration of systems with equal number of inputs and outputs, i.e., 

, mu y ∈\ , 
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 with 1( ), ( ), , ( )mf x g x g x…  are smooth vector fields, and 1( ), , ( )mh x h x… are smooth 

functions defined on an open set of n\ .  One immediate difference is an appropriate 

definition of the multivariate relative degree. 

 

Definition: A multivariate nonlinear system (15) is said to have (vector) relative 

degree {r1,…,rm} at xo if 

(1) ( ) 0k
gj f iL L h x = for all x in a neighborhood of xo and for all 

1 ,  1,  1ij m k r i m≤ ≤ < − ≤ ≤  

(2) the mxm matrix 
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is nonsingular at x= xo. 

 

Assumption 2 is restrictive but it allows a straightforward extension of most of the 

results developed for SISO case.  Nonsingularity of A(xo) may be interpreted as a 

multivariable equivalent to the assumption that coefficient 

 -1( ) ( )o r o
g fx L L h xα =   (2.16) 

is nonzero in a single-input single-output case, which is fundamental for inversion. 

The notion of zero dynamics that parallels the single-input single-output case can now 

be developed.  In order to yield ( ) 0y t ≡  for all times, the system must evolve on the 

subset   

 { }: ( ) 0,  0 1,  1n k
f i ix L h x k r i m= ∈ = ≤ ≤ − ≤ ≤*Z \  (2.17) 

under the effect of control u(t) constrained by  
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The solution to this equation  

 1( ) ( )u A x b x∗ −= −  (2.19) 

is such that the closed loop vector field ( ) ( ) ( ) ( )
x Z

f x f x g x u x ∗
∗ ∗

∈
⎡ ⎤+⎣ ⎦�  is tangent to Z*, 

and any trajectory of the closed loop system staring at a point of Z* remains in Z* (for 

small values of t).   

The most important results from the general discussion of dynamic inversion 

performed on special type of nonlinear systems described in (2.1) and (2.15) are 

summarized as follows.  The feedback linearization problem (exact or partial) is solvable 
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if and only if the system under consideration has some (vector) relative degree.  

Furthermore, in case relative degree of the specified input-output is less than the 

dimension of the state vector, the stability of the closed loop system is governed by the 

behavior of zero or internal dynamics.  At this point it becomes instructive to transition 

from general nonlinear systems to specificity of aircraft nonlinear system. 

2.3 Dynamic Inversion for Aircraft  

The fundamentals of dynamic inversion control methodology are based on the idea 

that control effector commands are a sum of signals from essentially two different 

controllers that together comprise what is commonly known as a dynamic inversion 

controller.  One part of the controller is based on the nonlinear model of the aircraft and 

generates commands that would make the actual aircraft behave in the manner of first 

order linear dynamics, typically an integrator, throughout the flight envelope.  The other 

part of the controller is linear in nature and issues commands that make the linear aircraft 

dynamics behave in a desired way.  This linear controller is ideally the same throughout 

the flight envelope, but in practice may be divided into two parts such as one for subsonic 

and one for supersonic flight regimes.  It is designed as any linear controller to provide 

robustness for dynamics mismatch between the onboard aircraft model and the actual 

vehicle.  The robust performance analysis on the entire dynamic inversion controller can 

be performed at different flight conditions using a very powerful linear technique of µ-

analysis.  However, since the controller is nonlinear in nature and spans the entire flight 

envelope one would like to perform analysis that would guarantee robustness in the entire 

operating regime.  Unfortunately, the current state of the art in theory does not provide a 

meaningful test.   

The general format for the dynamic inversion controller explored in this paper can be 

summarized as follows.  Nonlinear aircraft dynamics naturally lend themselves to be 

expressed in control affine form, which in fact permits the use of dynamic inversion.  

Consider an input/output nonlinear aircraft dynamics to be given in the form of   

 ( , ) ( ) ( )x F u x f x g x u= ≈ +�  (2.20) 

where x is the vector of state variables, and u is the vector of control effectors.  Note that 

any aircraft outputs are a function of the state variables and can be used as the CVs 

for (2.20): 



  35 

 Chapter 2 – Introduction and Background to Dynamic Inversion 

  ( ).y h x=  (2.21) 

Continuing with the idea that CVs, y, are functions of state variables, we see from (2.22) 

that the time rate of change of the output is also in the form similar to (2.20) and allows 

us to solve for the required control inputs: 

 
( ) ( ) ( ) ( ) ( )x x

h xy x h x f x h x g x u
x

∂
= = +

∂
� � . (2.22) 

So the dynamic inversion part of the control law appears: 

 [ ] 1( ) ( ) ( ) ( )cmd des
x xu h x g x y h x f x− ⎡ ⎤= −⎣ ⎦�  (2.23) 

with ( ) ( )xh x g x  invertible for all values of x.  For an aircraft with multiple control 

effectors for a single axis or more effectors than control objectives, 1( ( ) ( ))xh x g x −  in 

(2.23) should be interpreted as a (non-unique) right inverse.  A method to allocate control 

requirements to the different effectors is required in the case of non-unique right 

inverse36, 37.   

The linear controller defines the desired aircraft dynamics.  For the initial application 

of the dynamic inversion methodology, we applied a simple PI-like controller structure, 

shown in (2.24), in order to gain better understanding of the results.  The integral part of 

the feedback was incorporated in order to decrease the sensitivity of the closed loop 

response to modeling errors and low frequency atmospheric disturbances.  With integral 

feedback, the desired dynamics for the control variables are 

 ( )des cmd meas cmd meas
cmd iy K K y y K y y dt⎡ ⎤= − + −⎣ ⎦∫�  (2.24) 

where K, Kcmd, and Ki are adjustable gains and perfect sensors ( )measy y=  are assumed in 

the design.  The integral term implies that the control variable will have zero steady state 

error in response to step commands in the presence of model errors and constant 

disturbances. 

Though not explicitly considered here, desirable pilot handling qualities are achieved 

by precompensation of stick and pedal commands, and trim inputs.  The pilot inputs are 

scaled with flight condition dependent gains and a first order shaping filter to achieve 

time constants other than those resulting from feedback objectives. 

An illustration of this general concept is depicted in Figure 2.5.   
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Figure 2.5: General scheme for dynamic inversion control for aircraft. 

 

With this brief overview of dynamic inversion and its general application to aircraft 

dynamics, there is enough background material to facilitate the discussion of the specific 

problem of controlling large, highly flexible aircraft that has been the subject of this 

research. 



  37 

  Chapter 3 – Model Development 

Chapter 3 – Model Development  

3.1 General Equations of Unsteady Motion  

The basis for analysis, computation, or simulation of the unsteady motions of a flight 

vehicle is the mathematical model of the vehicle and its subsystems.  An airplane in flight 

is a very complicated dynamic system.  It consists of an aggregate of elastic bodies so 

connected that both rigid and elastic relative motions can occur.  For example, the jet-

engine rotor rotates, the control surfaces move about their hinges, and bending and 

twisting of the various aerodynamic surfaces occur.  The external forces that act on the 

airplane are also complicated functions of its shape and its motion.  The model developed 

to describe these interactions cannot be simple, but yet must be simple enough to be 

tractable.  Traditionally, the vehicle is treated as a single rigid body with six degrees of 

freedom (6 DOF).  This body is free to move in the atmosphere under the actions of 

gravity and aerodynamic forces – it is primarily the nature and complexity of the 

aerodynamic forces that distinguish airplanes from other dynamic systems.   

The standard dynamic and kinematic equations of motion can be found in any number 

of references21, 38, and thus are not given here.  These equations consist of 15 coupled 

nonlinear ordinary differential equations in the independent variable t (12 of these are 

independent) and 3 algebraic equations.  It is universally assumed in flight dynamics that 

the six forces and moments are functions of the six linear and angular velocities 

( , , , , , )u v w p q r  and of a control vector.  The latter clearly depends on the particular 

airplane, but with adequate generality, is written as [ ]TL M N Tc δ δ δ δ=  that is the 

roll, pitch, and yaw moments as well as the thrust control.  From the standpoint of the 

mathematical system, the control variables are arbitrary functions of time.  One other 

note: the Earth is treated as flat and stationary in inertial space.  These assumptions 

simplify the model enormously and are acceptable for dealing with most problem of 

airplane flight. 

It has been a long-standing practice to employ non-dimensional derivatives when 

analyzing the equations of motion or building a simulation of the airplane’s behavior.  

This practice arose from using scaled wind tunnel models to provide data about the full-

scale aircraft behavior.   
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It has been established over a number of years of research that the stability and 

control characteristics of flight vehicles may be profoundly influenced by the elastic 

distortions of the structure under dynamic load (like aileron reversal when the surface 

reverses the sign of the produced force or moment due to the severe elastic 

distortion)39-41.  Many of the important distortions can be accounted for simply by 

altering the aerodynamic derivatives.  The assumption is made that the changes in 

aerodynamic loading take place so slowly that the structure is at all times in static 

equilibrium.  This is equivalent to assuming that the natural frequencies of vibration of 

the structure are much higher than the frequencies of the rigid-body motions.  This is the 

standard assumption made in analysis for the vast majority of airplanes.  When the 

separation in frequency between the elastic degrees of freedom and the rigid-body 

motions is not large, then significant inertial coupling can occur between the two.  In that 

case, a dynamic analysis that takes into consideration the time dependence of the elastic 

motions is required.      

Creating a viable aeroservoelastic (ASE) model for a class of large aircraft (B-747 

weight class, 300 ft in length) with low frequency elastic modes (1+Hz) is a difficult 

problem.  Traditionally, aeroservoelastic models either are created strictly for flutter 

analysis, which has much higher frequencies than flight control, or are simply appended 

to the rigid body models without accurate rigid-body/elastic cross-coupling.  Neither case 

is useful for an HSCT-type aircraft because they both misrepresent dynamics involved in 

flight control.  In fact, rigid-body/ASE interactions have been shown to be a major issue 

for control system design23.  This work does not intend to address general modeling 

issues since these are beyond what is necessary for flight control; however, the significant 

progress that has been made under the auspices of the High Speed Research program in 

addressing these issues can be found in Reference 42 and other documents referenced 

therein43-45.  The specific modeling issues pertaining to flight control, such as inertial 

coupling and unsteady aerodynamics, are briefly covered in this chapter. 

3.2 Coupled Quasi-Steady/Dynamic Aeroelastic Equation Development  

The problem is to augment the nonlinear quasi-static aeroelastic (QSAE) simulation 

with linear dynamic aeroelastic (DASE) effects while preserving the nonlinear QSAE 
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characteristics.  This problem was motivated by the fact that conventional rigid body 6 

DOF nonlinear simulation equations typically have quasi-static correction factors applied 

to the aerodynamics.  Rigid body equations with QSAE corrections make use of two 

assumptions: (1) the airplane’s deformation state is always in equilibrium with the air 

loads, (2) the air loads are well approximated by their steady flow solution.  When the 

dynamic aeroelastic degrees of freedom are added to a 6 DOF simulation, the added 

elastic modes bring their own QSAE effect, and unless these are removed, the QSAE 

effects are double book kept in the simulation.  The QSAE effects supplied with 

conventional “rigid” model are derived from high-fidelity finite element structural 

models and with higher-fidelity (for steady effects) aero codes than used to form dynamic 

aeroelastic models.  Therefore, it is desired to retain the original QSAE effects. 

In either case, the DASE integration with nonlinear simulation occurs as follows.  

The core of the simulation is a mathematical model represented by the equation 

 ( , )NL NL NLx F x u=  (3.1) 

where NLx denotes an array of state variables that specify the aircraft motion.  The 

function ( , )NL NLF x u represents the solution to the nonlinear 6 DOF equations, which are 

based on information derived from an aerodynamic database as well as from models of 

the atmosphere, aircraft mass distribution, engine performance, and actuator 

characteristics.  The initial conditions are computed using a constrained nonlinear 

optimization process that determines the equilibrium point where selected “trim-to” NLx  

response values are generated from a set of “trim-with” NLu  variables.  The equilibrium 

point is referred to as the trim point even though nonzero accelerations may be specified 

in the NLx  vector.  Each selected output represents one degree of freedom or one 

constrained equation of motion.  The trim procedure may contain a maximum of 11 

equations defining three linear accelerations, three angular accelerations, aircraft velocity, 

rate of climb, sideslip, roll rate, and pitch rate.  The NLu  set may include three linear 

velocities, three angular velocities, pitch angle, bank angle, control surface deflections, 

and engine thrust.   
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Aircraft structural dynamics are modeled by adding the unsteady aerodynamic part of 

the linear equations to the nonlinear simulation in the following manner 

 ( , )NL NL A Bx F x u F x F u= + ∆ + ∆  (3.2) 

where x denotes a state vector that combines NLx  with the structural degrees of freedom.  

Similarly, u represents a vector of input variables.  Defining the linear structural response 

equations in a manner that allows for efficient computation while maintaining model 

fidelity in “rigid” and flexible dynamic frequency range has been a major issue. 

Of the two methods proposed in Reference 42, the method based on rational function 

approximation of unsteady aerodynamics was chosen to provide the DASE vehicle 

model.  To accurately represent the underlying physics, the model for a class of highly 

flexible vehicles is derived from a more fundamental set of equations.  The generalized 

force equation (3.3), is used to represent the equations of motion.  The terms on the left 

hand side are rigid and elastic displacement states respectively and the terms on the right 

represent the generalized aerodynamic forces and moments acting on the airplane 

 ( )2 ˆaMs Ds K F q Qξ+ + Χ = =  (3.3) 

where M is the generalized mass matrix, D is the generalized damping, and K is the 

generalized stiffness.  The state vector X is a vector of rigid displacements, elastic 

displacements, and control deflections.  The generalized coordinate ξ is in terms of rigid 

rates, elastic displacements, and gust velocities.  The generalized mass matrix consists of 

vehicle mass and appropriate moments of inertia all modified by aerodynamic force and 

moment derivatives with respect to unsteady aerodynamic accelerations such as 

( , , , , , )u v w p q r . 

For a typical rigid body vehicle, the aerodynamic forces and moments are considered 

in steady state and the only unsteady aerodynamic terms are those associated with gust 

velocities.  However, in an elastic aircraft all aerodynamic forces must be considered as 

unsteady. The generalized force, Q, premultiplied by dynamic pressure, is a complex 

matrix representing unsteady aerodynamic forces, which are Mach number and frequency 

dependent, arising from motion of the generalized coordinates, ξ.  In order to express 

(3.3) in a state space representation, the generalized aerodynamic force matrix is 
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approximated with rational functions in s.  This rational function approximation, 

described in detail in Reference 44, explicitly introduces state dependence on control 

surface rates and acceleration not typically present in standard equations of motion.  The 

acceleration terms are from inertial mass coupling of actuators to the fuselage and 

directly influence aircraft states.   

In order to focus on the question of rigid body and structural deformations, the 

equations of motion were separated into longitudinal and lateral-directional parts.  As is 

generally the case with rigid aircraft, with the exception of rapid maneuvering at very 

high angles of attack, the longitudinal and lateral-directional separation holds for 

structural deformations of the vehicle.  Thus, two different axes of motion can be studied 

separately without loss of important dynamics.  This entire work focuses on the 

longitudinal axes of motion, and any future reference to the equations of motion pertains 

strictly to the longitudinal axes. 

3.3 Aircraft Equations of Motion  

The aircraft longitudinal equations of motion based on the properly integrated quasi-

steady/dynamic aeroelastics consist of four aircraft states ( , , , )u w qθ , i flexible mode 

representations ( , )i iη η , and third order actuator dynamics ( , , )j j jδ δ δ  for j surfaces that 

reflect the presence inertial mass coupling of actuators to the fuselage and directly 

influence aircraft states. 
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The modal characterization of the aircraft is typically provided in terms of an 

orthogonal set of in vacuo modes.  Each mode has an associated apparent mass which is 

simply vehicle mass modified by appropriate unsteady aerodynamic accelerations and 

properly scaled.  The total structural displacement of the vehicle is a superposition of an 

infinite number of in vacuo modes, 
1

( , , ) ( , ) ( )i i
i

z x y t x y tφ η
∞

=

= ∑ where ( , )i x yφ  is ith mode 

shape.  In practice, the number of retained structural modes, N, is chosen by engineering 

judgment when the vehicle’s elastic behavior is deemed “close enough.”  Thus, the above 

equations represent full nonlinear DASE longitudinal system with N elastic modes and P 

control actuators.  It is interesting to note how such a vehicle would respond to a surface 

deflection at its tail generating a pitching moment.  Such a response is illustrated in 

Figure 3.1 where both rigid aircraft and dominant first fuselage bending more are 

displayed.  The initial response to nose down moment for the elastic vehicle is non-

minimum phase, i.e., response is in direction opposite of that commanded.  This type of 

response has implications for flight control design and will be further discussed in the 

following chapters. 

1st Aeroelastic Body Mode

Rigid
δElev

 

Figure 3.1: Vehicle response to elevator deflection: 

(+) deflection (down) produces nose down moment. 

 

The aircraft simulation used to numerically evaluate the results of this work uses the 

general model of equations of motion displayed in (3.4) with 20 flexible modes in the 

longitudinal and lateral-directional axis and third order actuator dynamics for each of the 

control surfaces on the airplane that include leading edge flaps, trailing edge flaps, 

rudder, ailerons, stabilator, elevator, and ride control vanes (see Fig. 3.2).  The details as 
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to what is exactly included in each of these aerodynamic coefficients and how the force 

and moments coefficients are built-up are given in Appendix A.  The equations in (3.4) 

result in a very large dimensionality of the model making it completely unsuitable for 

 
Elevator
(δelev)

Stabilator
(δstab)

Trailing edge flaps

Leading
edge flaps

(δRCV)
Ride Control Vane

 

Figure 3.2: HSCT configuration. 

 

both controller design and any analytical analysis.  In fact, it would be difficult, if not 

impossible, to understand the fundamental dynamics of the rigid body and elastic mode 

interaction for a vehicle where there is minimal separation between these sets of 

dynamics and the close clustering among the elastic modes themselves.  This 

understanding lies at the core of exploring dynamic inversion applicability to just such 

problems.  Hence, simplifying assumptions that retain the important dynamics are 

imperative.  The simplifying assumptions about the relative influence of some force and 

moment coefficients are made.   

Assume that the following coefficients are negligible 

 
( ), ( ), ( ), , , , ,

, , , , ,

0        0      0     0

0          0          0
q q u x x

u w q u

C C C C C C

C C C
α η η η η

η η η η

• • •= ≈ ≈ ≈ = ≈

≈ ≈ ≈
 (3.5) 

and for control law design assume that the unsteady aerodynamic effects are small, 

0δ δ= ≈ .  Since designing a controller commanding actuator rates and accelerations is 

impractical, then the longitudinal DASE equations of motion simplify to  
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A short remark on the composition of the coefficients 
j i

Cη η  and 
j i

Cη η .  In general, the 

frequency jω  and damping jζ  of the jth mode are contained in the 
j j

Cη η  and 
j j

Cη η  

respectively.  This convention is followed with one exception.  When uncertainty is 

introduced into the flexible modes, it is convenient to extract ( jω , jζ ) from the 

coefficients and treat them separately. 

The next question to be asked is how many elastic modes must be included in the 

controller design.  Can the model be reduced further and by how much and still retain the 

essential dynamics?  Exploring this question is the focus of the rest of this chapter.  
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3.4 HSCT Dynamic Behavior  

Typically, in trying to understand new complicated dynamics, we look for the 

simplest system to begin.  In this case, the choice of a linear system at a flight condition 

where flexible modes are most prominent appears to be a logical place to start.  The 

original aircraft system is described by a combined nonlinear/linear model with dynamics 

of interest, close proximity flexible modes, comprising the linear part of the model.  

Hence, choosing low altitude, low speed, light aircraft and linearizing the DASE model at 

this condition provides a good starting point in open loop system dynamic interactions.    

The linear representation of the EOM, with third order actuator dynamics, 20 elastic 

modes and 5 control surfaces, assumes the form given in (3.7).   
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 (3.7) 

The control surfaces that might be used for longitudinal control on this vehicle are two 

trailing edge surfaces per wing, stabilator, elevon, and ride control vanes (see Fig. 3.2).  

The 20 symmetric elastic modes subdivide into primary fuselage modes and wing modes.  

The details of these modes are given in Appendix B.   

It is of interest to look at the linear dynamics in terms of frequency response and pole 

location with actuator dynamics present before any further simplifications are made.  

Since the model contains closely spaced flexible modes in proximity to rigid body 

dynamics, the actuator dynamics would invariably play a significant role in their 

response.  Before proceeding further it is important to mention the sensors measuring the 
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response of the vehicle.  These are rate gyros and accelerometers located on the fuselage 

centerline, starting at the nose and going backwards all the way to the tail.  Among these, 

two locations are of particular interest, the first is the pilot station (ps) and the second one 

is referred to as mean axis (ma).  Since the mean axis refers to an imaginary line that 

approximates the middle of a rigid vehicle and does not physically exist, it is 

approximated by a sensor measurement that shows the least flexible mode contamination 

in measuring pitch rate; in this case is located behind the c.g.  The physical locations of 

these sensors are at 359 inches and 2459 inches from the nose, respectively.  

The effectiveness of control surfaces in producing pitch rate at different sensor 

locations on the aircraft fuselage is illustrated in Figures 3.3 and 3.4.  As expected the 

elevon alone and in combination with the stabilator, creating an all-movable tail, has a far 

more powerful effect on the pitch rate across the frequency range than the RCV because 

of its much larger size.  However, another important characteristic that is present for all 

responses is the excitation of the higher frequency dynamics and, in some cases (e.g., 

q_ps), more excitation than at the lower frequencies.  These responses underline the 

flexible nature of the vehicle under study and strongly suggest that some sort of counter 

damping to the movable tail excitation will be required for a satisfactory vehicle control.  

The significantly larger effect of the all-movable tail (stab+2*elev) compared to just the 

elevon suggests a powerful control effector for flight control but also reinforces the 

previous statement on counteracting high frequency dynamic excitation. 

The observations made regarding open loop pitch rate dynamics also hold for normal 

acceleration.  Consider nz response at the pilot station (nz_ps) and mean axis 

approximation (nz_ma) to different control surfaces depicted in Figures 3.5 and 3.6.  

Note a very large high frequency excitation at the pilot station from both only elevon and 

especially all-movable tail deflection (see Fig. 3.6).  One positive fact emerges from both 

pitch rate response and normal acceleration response observations is that at the pilot 

station, the RCV has a significant impact on high frequency dynamics while its impact on 

the mean axis dynamics is significantly less.  This would imply that the RCV can be used 

to counteract the high frequency dynamic excitation at the pilot station produced by the 

elevon or all-movable tail while having a limited impact on resisting the whole vehicle 

rotation as measured by the mean axis response. 
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Figure 3.3: Open loop frequency response of pitch rate at the pilot station (qps) and mean 

axis approximation (qma) responses to control excitation at the back, elevon (solid), and 

the front, ride control vane (dashed), of the aircraft. 
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Figure 3.4: Open loop frequency response of pitch rate at the pilot station (qps) and mean 

axis approximation (qma) responses to control excitation at the back, all-movable tail 

(solid), and the front, ride control vane (dashed), of the aircraft. 
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Figure 3.5: Open loop frequency response of normal acceleration at the pilot station (nzps) 

and mean axis approximation (nzma) responses to control excitation 

at the back, elevon (solid), and the front, ride control vane (dashed), of the aircraft 

(original response in g’s). 
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Figure 3.6: Open loop frequency response of normal acceleration at the pilot station (nzps) 

and mean axis approximation (nzma) responses to control excitation 

at the back, all-movable tail (solid), and the front, ride control vane (dashed), of the 

aircraft (original response in g’s). 

 

Having explored the control effectiveness of various surfaces, the next logical 

question in model analysis is the impact of the actuator dynamics themselves.  Figures 

3.7 and 3.8 illustrated the open loop response of pitch rate and normal acceleration 

respectively for a system with and without actuator dynamics present.  The most striking 
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impact is on the high frequency dynamics.  The presence of actuator dynamics continues 

excitation of high frequency modes while their absence allows for the dynamic roll off 

and modal attenuation.  This observation is very important for control design purposes 

since typically actuator dynamics are not considered during the design process.  The 

implication here is that the controller must roll off significantly before the excitation of 

flexible modes due to actuator dynamics comes into play. 

10
-1

10
0

10
1

10
210

-2

10
-1

10
0

10
1

10
2

Lo
g 

M
ag

ni
tu

de

Frequency (radians/sec)

10
-1

10
0

10
1

10
2-200

-100

0

100

200

P
ha

se
 (d

eg
re

es
)

Frequency (radians/sec)

qps w/ act dyn
qps no act dyn

10
-1

10
0

10
1

10
210

-3

10
-2

10
-1

10
0

10
1

Lo
g 

M
ag

ni
tu

de

Frequency (radians/sec)

10
-1

10
0

10
1

10
2-200

-100

0

100

200

P
ha

se
 (d

eg
re

es
)

Frequency (radians/sec)

qma w/ act dyn
qma no act dyn

 

Figure 3.7: Pitch rate dynamics comparison of system with (solid) and 

without (dashed) actuator dynamics. 
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Figure 3.8: Normal acceleration dynamic response to elevator excitation comparison of 

system with (solid) and without (dashed) actuator dynamics (original response in g’s). 
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Figure 3.9: Open loop pole locations of a linear system at Mach =0.24 and 1,000 ft, Mass 

Cruise Final. 

 

At this point it might be interesting to look at the actual pole locations for the system 

represented by (3.7).  Figures 3.9 and 3.10 give the pole location of the system in (3.7) 

with 20 elastic modes and actuator dynamics for stabilator, elevon, and RCV.  Figure 3.9 

provides a large-scale overview of the entire system.  Note the very fast actuator 

dynamics of the elevon and the RCV as well as the somewhat slower but still fast 

stabilator dynamics.  Also note the 20 flexible modes along the imaginary axis and how 

closely a number of them are clustered together.  Figure 3.10 gives an enlargement of a 

section of Figure 3.9 to better illustrate the dynamics that become very important in 

controller design that is described in the subsequent chapter.  The vehicle has what is 

commonly referred to as a degenerate short period, where the eigenvalues are real and 

one is very low frequency.  This leads to a potential coupling between the short period 
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and the phugoid in the closed loop response.  Note that the first eight modes are at lower 

frequency, or right at it for mode eight, than the first break frequency for the slowest 

control surface, the stabilator.  This means that all of these modes get the full energy 

transmission without attenuation every time the stabilator moves.  Therefore, the first 8 

elastic modes in the model are used in the controller design. 
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Figure 3.10: Enlarged area of the linear system above. 

 

Furthermore, the first frequency breakpoint for the elevator and other surfaces is at 75 

rad/sec, which is higher than all of the 20 flexible modes modeled.  Thus, unlike more 

traditional vehicles where the flexible modes are typically at frequencies where control 

activity energy is already attenuated so their excitation is not that severe and certainly not 

at frequencies that interfere with flight control.   

Another question worth considering is the effect inertial actuator mass coupling, 

which manifests itself as the actuator dynamics acceleration term, has on excitation of 
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higher frequencies.  The largest high frequency excitation of concern is at the pilot station 

and that is where this segment of analysis concentrates.  Figures 3.11 and 3.12 below 

illustrate the difference a factor of 10 in actuator acceleration term has on the open loop 

dynamics.  The pitch rate response shows some difference in magnitude of high 

frequency dynamics with a change in the inertial mass coupling acceleration terms (see 

Fig. 3.11). 
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Figure 3.11: Effect on pitch rate at pilot station of inertial coupling terms of 

stabilator, elevon, and RCV. 

 

All three control surfaces show higher excitation by the reduced magnitude 

acceleration term.  In addition, this difference is even more pronounced for normal 



  55 

  Chapter 3 – Model Development 

acceleration as illustrated in Figure 3.12.  These phenomena may seem intuitively 

contradictory and requires further discussion. 
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Figure 3.12: Effect on normal acceleration at pilot station of inertial coupling terms of 

stabilator, elevon, and RCV. 

 

Consider 3rd order actuator dynamics that are modeled as a transfer function 
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This decreases damping as shown in Figure 3.13 for both slower stabilator and faster 

elevon and RCV; and the flexible modes in psq  are excited more by stabilator than by the 

faster actuators for decreased inertial damping in corresponding frequency range.  In 

addition, as seen from Figure 3.12, the psnz  response, as a whole, is shifted higher 

implying that the change in inertial coupling changes the response over low and high 

frequencies.  For explanation consider the equation for psnz  

 20
1 where

ps
ps i

ps cg i cgi

l w uqnz nz q nz
g g g

φ
η

=

−
= + + =∑ . 

Thus, in , ,w q η  equations of (3.4), the term δ  is 10 times smaller and since this is 

viewed as inertial coupling, the appearance is of a lighter airplane.  If the airplane is 

lighter, it is easier to maneuver given a specific surface size.  Based on these observations 

the attenuation of flexible modes can be considerably improved if the actuators are mass 

balanced as much as possible.   
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Figure 3.13. Third-order actuator model response for original δ  and /10δ .  

 

3.5 Summary  

This chapter presents a brief overview of the general equations of unsteady motion 

for an aircraft.  It then proceeded to development of coupled quasi-steady/dynamic 

aeroservoelastic equations that are required for an aircraft whose flexible modes are low 

enough frequency to start impacting rigid body flight dynamics and hence are no longer 
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validly represented as quasi-static states.  Continuing this development the dynamics 

associated with the specific vehicle under study are presented and discussed in detail at a 

flight condition that makes the flexible mode interaction with the rigid flight dynamics 

most pronounced.  The specific dynamics description prepares the background and 

highlights some issues that arise in controller design for the HSCT vehicle under study 

that is presented in Chapter 5. 
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Chapter 4 – Introduction to Novel Dynamic Inversion  

4.1 Introduction  

An innovation has been added to the standard methodology of dynamic inversion in 

the manner described in this work to accommodate the highly flexible nature of the 

advanced aircraft and fulfill the dual objectives of integrated flight/SMC control.  The 

novel approach to the nonlinear dynamic inversion allows the methodology to more 

intelligently handle flexible dynamics (or any dynamics with pole-zero pairs very close to 

the jω-axis).  In the standard dynamic inversion, the controlled variable’s dynamics are 

cancelled by the controller, which may or may not be an appropriate approach.  This new 

approach to standard dynamic inversion still maintains control of CVs while the 

innovation allows a change to the dynamics of the controlled variable without 

cancellation of its dynamics.  This is accomplished by introducing dynamics into the 

inversion loop itself.  What this novel approach enables is altering flexible mode damping 

without cancellation, thus improving disturbance response and avoiding the potentially 

destabilizing effect of pole cancellation close to the jω-axis in case of modeling 

uncertainty. 

This chapter introduces the novel dynamic inversion and explores the effects on the 

closed loop dynamics the innovation has both analytically and numerically.  In order to 

make the problem mathematically tractable and to gain better understanding of dynamic 

interactions in a closed loop system under novel dynamic inversion, the aircraft model 

has been simplified from the very complicated one described in Chapter 3 while retaining 

the essential characteristics.  These essential characteristics are the interaction of flexible 

modes on rigid body dynamics and vice versa.  What is not retained is the interaction of 

flexible modes among themselves, but based on experience it is not a critical element of 

the dynamic behavior.  The simplification involved considers longitudinal dynamics with 

a single elastic mode and a control law based on novel dynamic inversion only.  In 

addition, throughout this chapter the analysis considers the inner loop of the dynamic 

inversion only, i.e., the desy  to y portion.  It is important to note that the nature of desy  

impacts the overall closed loop dynamics but will not be discussed here. 
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The influence that novel dynamic inversion has on the closed loop dynamics is 

studied analytically for both linear and nonlinear systems as well as different cases of 

dynamics for the new methodology.  In addition, the affects the dynamics of the 

innovative dynamic inversion have on the closed loop system response is studied through 

pole movement as a function of the innovation’s dynamics.  The model involved 

considers a linearized version of the aircraft dynamics while still retaining essential 

characteristics such as rigid body/flexible mode coupling.  The initial linear system 

considered is short period longitudinal dynamics with a single elastic mode to which 

dynamic inversion, both original and novel concept, is applied to show the affects on 

aircraft dynamics due to the introduced modifications.  The complexity of the model is 

then gradually increased to include more dynamics. 

This chapter is organized as follows. Following the introduction, section 2 introduces 

the novel dynamic inversion followed by a section discussing model selection for use in 

the symbolic analysis.  Section 4 explores the linear system case.  Three different 

variations in the novel dynamic inversion dynamics are explored in this section.  Section 

5 discusses the same three variations for a nonlinear system.  Following this, the second 

major portion of this chapter considers the influence of novel dynamic inversion on 

system response.  To provide context for the results that follow it, section 6 discusses the 

standard dynamic inversion results as applied to the short period plus one elastic mode 

linear equations of motion.  The following section then deals with the innovation 

introduced into the dynamic inversion that is the primary focus of this chapter.  The 

subsequent sections address the increasing complexity of the model by introducing full 

longitudinal dynamics and additional flexible modes, respectively.  The final section 

explores how uncertainty introduced into elastic mode frequency and damping influences 

closed loop dynamics that are found in the traditional rigid body frequency range.  The 

conclusions that are drawn from this analysis then follow. 

Throughout this chapter, the analysis considers the inner loop of the dynamic 

inversion only, i.e., the y to desy  portion.  It is important to note that the nature of desy  

impacts the overall closed loop dynamics but will not be discussed here. 
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4.2 Novel Dynamic Inversion  

The presence of flexible modes in the close proximity to rigid body dynamics that are 

typically controlled raises a new set of challenges for the control engineer in utilizing 

dynamic inversion.  In order to design a successful controller, the method of novel 

dynamic inversion was developed to influence the damping of elastic modes so that the 

response to system disturbances and model uncertainties is acceptable.  This is 

accomplished by introducing dynamics into the inversion loop itself.  The analytical 

description of a simplified version of such dynamics and their influence on the closed 

loop is the main result of the first part of this chapter.   

The modification to dynamic inversion is introduced in the forward section of the 

dynamic inversion feedback loop and is illustrated in Figure 4.1.  Since the problem 

formulation is MIMO, a matrix ( )W x  is introduced to limit the frequency range of the 

dynamics that are passed to the inverse of the effective control effectiveness matrix that 

produces actuator commands.   

4.3 Novel Dynamic Inversion General Case  

For the general nonlinear system of the form  

 
( ) ( )
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x f x g x
y h x

δ= +
=

 (4.8) 

and the filter ( )W x  represented by (4.9) and shown in Figure 4.1  
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the inversion loop from desy  to y  is 
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Three different variations in the novel dynamic inversion dynamics are explored.  In this 

analysis, the filter is limited to a first order system in each loop, the exact nature of which 

will be made more precise later in the chapter.  Specific cases for the ( )W x  structure are 

explored on a simplified model introduced in the following section. 
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= +
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W

 

Figure 4.1: Novel dynamic inversion – the introduction of a filter into the  

inversion loop.  

 

4.4 Model Selection  

Specifically, the model is limited to the full longitudinal flight dynamics with a single 

flexible mode that is the dominant fuselage bending mode, i.e., the worse-case dynamic 

interaction.  The aircraft equations of motion are given below. 
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with  

 sensed

sensed sensed

ma
sensed

ps ma

q q
y

q q
φ η

φ η

⎛ ⎞ ⎛ ⎞′+
= =⎜ ⎟ ⎜ ⎟⎜ ⎟− ′∆⎝ ⎠⎝ ⎠

 

as desired outputs. 

The analyses begin with a linear system representation and then proceed to a 

nonlinear model.  

4.5 Linear Case  

This section compares the closed loop linear dynamics for three representations of the 

( )W x  filter.  The general representation of the inversion loop is illustrated in Figure 4.2. 
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Figure 4.2: Novel dynamic inversion - introduction of a filter into the  

inversion loop – linear case.  

 

The linear system representation of the longitudinal dynamics with one flexible mode 

is given by  
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The control effector commands in terms of the inversion loop variables are given by 
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and for 
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The specifics for each case are explored below. 

4.5.1 Case 1: Standard Dynamic Inversion  

Applying the standard dynamic inversion to the system in (4.12) results in the closed 

loop system  
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Thus, there is separation between controlled and zero dynamics in the sense that the 

( ), , ,q θ η η  equations do not contain ( ),u w  dynamics.  And if the controlled dynamics are 

stable by design, then the overall system stability depends only on the ( ),u w dynamics.  

This is a linear case of the stability result that will be presented in Chapter 6.  

4.5.2 Case 2: Filter in the Flexible Dynamics Loop   

Introducing a filter into the dynamic inversion loop complicates the standard 

relationship.  For a filter in one of the two loops the state space representation for W  is  
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and the general linear closed loop relationships are  
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Employing the relations for closed loop ( ), ,c c cA B C results in  
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where 
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or in other words  
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where ( ) ( ),A B⋅ ⋅  are appropriate elements of the closed loop and c cA B  matrices, e.g., 

 
2 1

[ ] and [ ]x u w q xA X X X X X X B Xθ η η δ δ= =  

Note that the introduction of a filter into the flexible dynamics loop alters these 

dynamics.  Specifically, in the closed loop A matrix q φ η′= −  or 

( )/ 1/f fA x x A x xη ηφ φ φ φ φ′ ′ ′ ′ ′− − ∆ = − + ∆ .  The input/output decoupling of pitch rate 

response dynamics, characteristic of dynamic inversion, is preserved despite introduction 

of a filter into the inversion loop.  Since the filter introduces a change in flexible 

dynamics, in order to recover des
ma maq q=  this change in flexible dynamics must be 

subtracted from the closed loop pitch rate dynamics.  Another way to look at the closed 
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loop pitch rate dynamics is as an error between the original and new filter induced 

dynamics, which are equal to the flexible modes. 

4.5.3 Case 3: Filters in Both Flight and Flexible Dynamics Loops  

The state space form for ( )W x  is 
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and the resulting closed loop system is  
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where 
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or  
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Note that the open loop  and A B  matrices constitute part of cA  directly related to the 

nonfilter states.  The change of dynamics for the entire closed loop comes from the 

interaction with the additional filter states.  The y  response is that of the open loop 

system augmented with filter states.  It is through these states, fx , that desy  enters y .  In 

a sense, this can be interpreted as an increase in relative degree of a system from desy  to 

y .  The system relative degree changes from 1 to 2 when a first order filter is introduced 

into both loops of the inversion loop; the higher the degree of the filter the higher is the 
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relative degree.  When a filter is introduced into one of the two loops the relative degree 

in that direction changes in a similar fashion. 

4.6 Nonlinear Case  

A parallel development is undertaken for a nonlinear system model and the results are 

similar.  For convenience, define the general system in section 4.4 as  
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 (4.23) 

4.6.1 Case 1: Standard Dynamic Inversion  

In the standard case, for this 2-input, 2-output system the following expressions give 

the inversion variables in specific terms  
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as well as the control input coming into the system  
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Combining these different parts into the closed loop system results in 
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with the expanded version  
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As expected for standard dynamic inversion, desy y=  is recovered and the controlled 

variables equations have no influence from the ( ),u w  dynamics.  Furthermore, for 

convenience rewrite the closed loop system as 
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This result is equivalent to the one presented in Chapter 6 for a system with a single 

flexible mode.  The next step is to add a single level of complexity in the inversion loop 

and trace its resulting influence on the closed loop dynamics. 

4.6.2 Case 2: Filter in the Flexible Dynamics Loop  

In this specific case, the filter equation (4.9) becomes 
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The control input coming into the system in this case is 
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Calculating sub-elements of the closed loop system: 
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and applying to the closed loop system results in  
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 (4.30) 

The combined expanded version is  
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The closed loop system can be rewritten as 
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or  
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Note the similarities with the linear case.  This is to be expected since the nonlinear 

system is assumed to be affine in controls and the filter is a linear system.  This view 

provides another indication that the change in the flexible dynamics due to filter 

introduction in the inversion loop appears as a delta on the closed loop dynamics of the 

standard dynamic inversion. 

The connection between Cases 1and 2 comes from letting the filter 
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In abusing the functional notation a bit, ( )ˆ ( )f f xη∆  simply implies that the difference in 

dynamics between the two cases is a function of the flexible modes as the detailed 

expansion indicates. 
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(4.34) 

 

A filter in a single loop provides a good intermediate case to connect the stability 

results of the standard dynamic inversion in the presence of strong flight/structural mode 

dynamic interactions and a novel dynamic inversion on a full scale, highly complex, high 

fidelity aircraft simulation.  The choice of the model that dispenses with higher frequency 

elastic modes and actuator dynamics allows for fulfilling the stated controller objectives 

by only introducing a modification in the structural dynamics loop.  Recall that the 

original control objectives are to design an integrated flight/SMC controller that would 
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make the aircraft behave as a rigid body in response to a flight command while 

improving very lightly damped low frequency structural modes without their outright 

cancellation.  The additional higher order dynamics present in the high fidelity model 

also introduce more complicated rigid body/flexible mode interactions that necessitate an 

introduction of the modification filter into both loops to achieve the stated control 

objectives.  Thus, Case 2 appears to be an appropriate bridge between standard dynamic 

inversion analytical results and high fidelity simulation studies.  This will be used in 

Chapter 7 for assessing the stability of the novel dynamic inversion. 

 

4.7 Standard Dynamic Inversion – Short Period  

This section starts the second half the chapter that deals with the relationship between 

the novel dynamic inversion and the specific response of aircraft dynamics, which start 

from the simplest and increase in complexity.  The aircraft model used to explore the 

analytical response relationships considered in this section has the standard short period 

approximation plus an elastic mode21 and has been modified to show the interaction 

between rigid and flexible body dynamics.  The equations expressed in dimensional 

derivatives are given below: 
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 (4.35) 

The controlled variables are consistent with those used for the HSCT aircraft controller in 

Chapter 5 and are described in the following equation  
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where φ′  is the slope of the mode shape.   

Applying the standard dynamic inversion to a set of linear equations in general gives 

the following results. 
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Thus, applying (4.37) to the dynamics described by (4.35) and (4.36) gives the transfer 

function matrix for the closed loop  
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The closed loop system dynamics from desy  to y  are given by (4.39).   
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The set of closed loop poles, shown in expression (4.40), contains two poles at s=0 that 

correspond to the integrators shown in (4.38) plus those coinciding with the transmission 

zeros of the open loop system.   

  ,  0,  0,  0w rcv rcv w w w
w rcv

rcv rcv rcv rcv

E M E M E M E M
Z Z Z

E M E M E M E M
δ δ

δ
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⎧ ⎫⎛ ⎞ ⎛ ⎞− −⎪ ⎪+ +⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
 (4.40) 

These are the internal or zero dynamics; one root corresponding to the vertical velocity w, 

which is not directly controlled in the problem formulation, and the other to s=0.  So the 

results are standard as expected when standard dynamic inversion is applied to an 

aircraft. 

However, this methodology works well if the only interest is in controlling the 

dynamics from some commanded pitch rate coming from either a pilot stick or an 

autopilot command, but it has no effect on controlling disturbances or improving 

robustness to model uncertainties that always exist. 

4.8 Novel Dynamic Inversion – Short Period.  

In order to illustrate just how the novel dynamic inversion influences the closed loop 

dynamics, several variations of the simplified open loop system and ( )W x  are presented.  

The introduction of the dynamics matrix ( )W x  into the inversion loop is illustrated in 

Figure 4.3. 
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ydes y
δ

RCV

cmdL

N
MM
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Q
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x
 

Figure 4.3: Novel dynamic inversion. 

 

The initial step is to start looking at SISO system dynamics and begin with short 

period dynamics only.  Let ( )W x  equal a first order filter.  The closed loop dynamics and 

transfer function are presented in (4.41).   
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Note that the right side of (4.41) is no longer a pure integrator as is the case for standard 

dynamic inversion (see (4.38)).  The filter ( )W x  in the loop introduces another pole-zero 

pair that precludes pole-zero cancellation resulting from the standard dynamic inversion.  

The movement of the poles with the changing value of a is illustrated in Figure 4.4.  For 

a>1, the non-integrator closed loop dynamics are concentrated around open loop poles, as 

follows from (4.41).  On the other hand, for a<1, the short period dynamics become faster 

as both non-integrator poles move further into the left-half plane.  It is interesting to note 

that as 1/ a → ∞  the pole-zero cancellation is recovered and 1
des
y

sy
→ .  While this result 

may not be particularly interesting when dealing with rigid body dynamics, its real value 

is recognized when the flexible mode dynamics are explored. 
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Figure 4.4: Short period closed loop poles as a changes. 

Consider a similar SISO system setup, but this time dealing with typical second-order 

flexible mode dynamics   
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The resulting closed loop system dynamics are again altered by the introduction of a filter 

( )W x .  As (4.42) clearly shows, the damping of the closed loop elastic mode is 

controlled by the time constant of the filter ( )W x  that modifies the standard dynamic 

inversion procedure.  The change in the damping and hence the movement of the elastic 

mode dipole is illustrated in Figure 4.5.  For the values of b>1, the elastic mode dipole 

barely moves from the open loop dynamics.  However for b<1, there is a pronounced 

movement in the poles along the line of constant frequency and increasing damping for 

diminishing b.  In fact, for b=1/17.5, the damping becomes supercritical and the elastic 

mode dipole becomes a pair of real poles that approach s=0, 1/b in the limit and  
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Figure 4.5: Flexible mode closed loop poles as b changes. 
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recovering the pole-zero cancellation with 1
des
y

sy
→ .  This observation that an addition 

of a filter into a dynamic inversion loop influences damping in a SISO system is carried 

through to a MIMO system that combines short period and elastic mode dynamics. 

A small observation regarding the SISO examples of systems (4.41) and (4.42) – 

introducing the filter ( )W x  is equivalent to placing unmodeled first order actuator 

dynamics in the dynamic inversion control.  One would expect that as the actuator 

bandwidth increases, the 1
des
y

sy
→ , which is precisely the case.   

The combined short period/one elastic mode MIMO system open loop dynamics are 

given by (4.35) and (4.36).  The addition of the matrix ( )W x  into the feedforward loop 

modifies the results of the standard dynamic inversion.  Let ( )W x  be a diagonal matrix of 

first order filters given by (4.43), which can also be expressed in state space system as 

shown.   
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 (4.43) 

The block diagram that illustrates this modification is given in Figure 4.6.  Combining the 

novel dynamic inversion with the aircraft equations results in the following set of 

dynamics, expressed in matrix notation   
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 (4.44) 
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Figure 4.6: Novel dynamic inversion with dynamics in the dynamic matrix ( )W x . 

 

Clearly (4.44) shows that as expected the dynamics of filter ( )W x  alter the closed loop 

dynamics.  After some algebraic manipulation, the result is a very large and messy 

analytical expression for the closed loop poles.  In order to understand how the first order 

filter matrix influences the dynamic inversion inner loop, it is instructive to look at the 

pole movement while holding one of the time constants fixed and changing the other.  

Looking at the numeric values of the closed loop poles, it becomes immediately apparent 

that for 0 and 0a b≠ ≠  two of the six poles are integrators.  Another pole maintains a 

value in the neighborhood of 1/a.  However, there are no longer poles coincident with 

open loop transmission zeros, so there is no pole-zero cancellation. 

Figures 4.7 and 4.8 illustrate the pole movement as the filter time constants are 

varied.  In Figure 4.7, b is fixed and a is allowed to vary over the same range as was 

previously shown in Figure 4.4.  Notice that short period poles move in the manner 

similar to that observed in the SISO short period case, while the flexible mode dipole 

remains essentially fixed in the neighborhood that is specified by the given value of b.  In 

fact the movement of the faster of the two short period poles is clearly visible in the 

figure.  Similar phenomenon is observed in Figure 4.8, where a is fixed and b is allowed 

to vary.  The short period dynamics remain essentially fixed on the real axis while the 

elastic mode dipole travels along fixed frequency and increasing damping with 

decreasing value of b.  Again this is similar to what has been observed in the SISO elastic 

mode case and shown in Figure 4.5.   
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Figure 4.7: Closed loop poles for short period + 1 flexible mode with a changing, b=1/5. 
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Figure 4.8: Closed loop poles for short period + 1 flexible mode with b changing, a=1/8. 

 

The fact that while one filter time constant is fixed the other can be varied to 

manipulate a set of dynamics that are of interest is very useful in design. At first glance, it 

would not be surprising that the time constants modify the system in the decoupled 

manner described.  There is some frequency separation between the short period and the 

elastic dynamics.  Furthermore, maq  is predominantly rigid body whereas ps maq q−  is 

predominantly elastic based.  However, the frequency separation causing decoupling is a 
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very deceptive conclusion in this case as examination of full longitudinal plus flexible 

mode dynamics will show.  

4.9 Additional Flexible Modes  

Additional complexity in structural dynamics is explored in this section.  The 

longitudinal plus 1 flexible mode equations of motion (4.45) are augmented by 3 

additional flexible modes with all the associated interdependencies of rigid and elastic 

dynamics as well as inter-mode dependencies.  Thus, the system dynamics consist of 12 

states and retain the same control variables as have been used throughout.  In the 
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Figure 4.9: Longitudinal + 4 modes with a 

changing. 
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now familiar process, one of the time constants in ( )W x  is kept fixed while the other 

varies.  The results are illustrated in Figures 4.9 and 4.10.  For a changing a with constant 

b, figure 4.9 shows the movements of short period poles while all but one flexible mode 

remain clustered near their open loop positions.  The pole corresponding to the primary 

fuselage bending mode has migrated away from its open loop position to a higher 

damping.  When b is changing while a is held constant, the pole movement, illustrated in 

Figure 4.10, is similar to the one observed in the prior section.  The poles of the flexible 

modes that are not primarily fuselage modes (modes 1, 3 and 4) form tight clusters 

around their open loop positions.  The primary fuselage bending mode poles (mode 2) 

follow the previously established movement pattern of increased damping with 

decreasing b along what is essentially a constant frequency.  There is also movement 

from the rigid body poles with the amount dependent on the value of constant a. 

Hence, the introduction of additional modes to the dynamics has not changed the 

observed general pattern of behavior from either rigid body or flexible dynamics.  The 

additional flexible modes do not significantly alter the dependence of the primary flexible 

mode on the ( )W x  time constant b, nor do they have a large influence on the interaction 

between rigid body and flexible mode dynamics.  From the physics perspective of this 

problem, this result is not surprising, since the additional flexible modes are primarily 

wing modes and are not significantly affected by the fuselage mounted control surfaces 

considered here.  Similar behavior has been observed with a much higher number of 

elastic modes, some of which were fuselage modes, but beyond effective power of the 

controller.  Thus it appears that a reasonable independence of control still exists for 

longitudinal plus flexible mode system dynamics under the dynamic inversion 

modification described in this chapter.  Granted this apparent separation exists in a 

perfect world, and once unmodeled dynamics as well as actuator dynamics are introduced 

the separation is not as clean, however, enough decoupling still exists to allow for a great 

deal of controller tuning to be done through ( )W x .  

The analytical expression for the transfer function matrix, not shown here, is no 

longer a diagonal set of integrators but instead is a fully populated matrix.  This follows, 

as it did in SISO system, from the fact that introducing additional dynamics into the 

dynamic inversion loop precludes the pole-zero cancellation required to give the diagonal 
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set of integrators.  While not as elegant mathematically, this result allows control of 

flexible mode damping and thus tailor the disturbance response of the closed loop in 

addition to the commanded variable response.     

4.10 Adding Complexity  

Consider the full longitudinal model with a single flexible mode.  Retaining the same 

control variables as used above in (4.36), the system dynamics are given by 
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 (4.45) 

Following the same process as before, the direct dynamic inversion produces results seen 

in (4.38).  The closed loop poles are  

 
  dynamics

0,  0,  0,  0
u w± −⎧ ⎫

⎨ ⎬
⎩ ⎭

 (4.46) 

The closed loop poles are a set comprised of 4 poles of internal dynamics that coincide 

with open loop transmission zeros of the system in (4.45) and of two poles at s=0 which 

correspond to the integrators found in (4.38).  The closed loop system dynamics from 
desy  to y  are given by (4.47).  From this equation, it is apparent that the controlled 

variables are independent of the u-w dynamics.  Furthermore, the steady-state system 

internal dynamics are described by motion on the u-w-η-manifold. 
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Introducing modification to the dynamic inversion as shown in the earlier section, the 

result is no longer a clean separation as has been observed with short period 

approximation and an elastic mode.  The closed loop A matrix structure resembles the 

more fully populated one of the open loop (4.45) rather than the nice decoupled one of 

the closed loop (4.47).  The pole movement associated with changing time constants of 

the transfer matrix ( )W x  is shown in Figures 4.11 and 4.12.  The closed loop poles 

structure of { },  ,  , ,  ,  , 0,  0∗ ∗ ∗ ∗ ∗ ∗  applies to both of the figures. 

For changing a, time constant of the measured mean axis pitch rate, there is the 

expected movement of the longitudinal poles that has been previously seen in Figures 4.4 

and 4.7, but there is also some minor movement of the flexible mode as illustrated in 

Figure 4.11.  When the value of b is allowed to change, as shown in Figure 4.12, the 

flexible mode follows the now familiar pattern witnessed in Figures 4.5 and 4.8 of 

changing damping along a constant frequency.  However, there is also movement of 

longitudinal poles, the extent of which depends on the value of a.  This begins to 

constrain some of the decoupling freedom in the control design.  Taking another step 
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Figure 4.11: Longitudinal + 1 mode with a 

changing. 
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Figure 4.12: Longitudinal + 1 mode with b 

changing. 

 

towards a real flexible aircraft, an additional level of complexity is introduced in the 

following section. 

4.11 Adding Uncertainty in Flexible Mode  

As with any control methodology, the issue of robustness must be addressed.  The 

work in the previous chapter considered parametric uncertainty in the frequency and 

damping of the primary fuselage flexible mode.  It was found that the novel dynamic 

inversion methodology produced a controller with good stability robustness to the 
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indicated uncertainty.  In this section, the dynamics discussed earlier in this chapter are 

revisited and the effects parametric uncertainty in frequency and damping of a flexible 

mode have on the closed inner loop behavior of the system is explored.   

Consider for clarity, the simplest available set of dynamics, those of short period plus 

1 flexible mode described by (4.35) and (4.36), and introduce damping and frequency 

multiplicative uncertainty  
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. 

The closed loop perturbed system dynamics associated with the standard dynamic 

inversion are given in (4.48).  Note that the difference between nominal (4.39) and 

perturbed closed loop system is in the η  equation with appearance of 2ςω  and 2ω  

terms.  Both are dependent on the nominal frequency and damping as well as the 

introduced uncertainty (4.48). 
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 (4.48) 

The transfer function of the closed inner loop dynamics, shown in (4.49), is no longer 

the integrator chain seen in (4.38). 
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And the closed loop poles associated with the perturbed system are  
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 (4.50) 

Since the nature of the uncertainty did not change the open loop transmission zeros and 

this is a direct dynamic inversion, the first two poles coincide with the open loop 

transmission zeros as was seen earlier in (4.40).  The two integrators, however, have 

changed into poles that are a function of ς  and ω , which are given in terms of their 

components in (4.50).  As is evident from (4.48), the w internal dynamics remain 

independent of attitude dynamics and are only indirectly influenced by the flexible mode 

uncertainty through state variables η  and η  in the w  equation.  This is also confirmed 

by coincidence of transmission zeros with closed loop poles. 

The same observation holds for a full longitudinal system with a flexible mode.  The 

closed loop dynamics of direct dynamic inversion are given in (4.51).  Again the 

difference between the nominal closed loop (4.47) and the perturbed system resides in the 

η  equation with reappearance of 2ςω  and 2ω  terms. 
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The transfer function of the closed inner loop dynamics, shown in (4.52), is very 

similar to the one for short period found in (4.49).  There is no longer a chain of 

integrators present.  However, in the limit as 0ς∆ →  and 0ω∆ →  the chain of 

integrators, as seen in (4.38) is recovered. 
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The first four closed loop poles, described in (4.53) correspond to open loop 

transmission zeros which is similar to the observed behavior of the short period system 

and show no dependence of internal dynamics on the uncertainty.  The two remaining 

poles changed from dynamic inversion produced integrators to functions of uncertainty, 

again in a manner similar to the short period system.  
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Thus when uncertainty is added into the direct dynamic inversion, whether the system 

is a short period approximation or the full longitudinal model, the resulting closed loop 

dynamics are governed by the open loop transmission zeros and flexible mode 

uncertainty.  This points to a potentially serious issue with stability of direct dynamic 

inversion.  System stability is affected by uncertainty in the dynamics far separated in 

frequency from the dynamics that actually go unstable.  In this case, flexible mode 

uncertainty could drive one of the dynamic inversion integrator poles unstable for large 

enough ς∆  and ω∆ .  The existence of potentially unstable closed loop poles confirms the 

disadvantage of direct inversion especially with lightly damped dynamics of the flexible 

modes.   

For control design there are two questions that are important to consider.  The first is 

what happens for a given controller designed using the novel dynamic inversion as a 

range of uncertainty is considered.  The second is does enough decoupling between the 

rigid body and flexible mode dynamics still exist so that time constants of the matrix 

( )W x  might be used to tune the controller. 

To answer the first question, consider longitudinal dynamics with one flexible 

uncertain mode in the context of novel dynamic inversion.  The plot in Figure 4.13 

illustrates the pole migration for changing frequency uncertainty while maintaining a 

constant damping uncertainty and a fixed value of a and b time constants of ( )W x .  The  
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Figure 4.13: Closed loop poles for longitudinal + 1 flexible mode with {a,b,∆ζ} 

constant, ∆ω,vaying. 
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frequency uncertainty is used because as will be shown in Chapter 5 it has been found to 

be the driving factor.  Also, as the frequency of the flexible mode decreases, the low 

frequency instability it causes becomes more pronounced.  However, recall that the 

nature of desy  dynamics has a pronounced affect on the overall system stability that is not 

taken into consideration in this analysis.  In the implemented controller closed loop 

system, discussed in Chapter 5, the low frequency dynamics were not as sensitive to 

uncertainty due to the use of second order filters in the ( )W x  dynamics matrix.  The 

influence of second order filters is not discussed in this chapter.  

To address the second question, consider again the longitudinal plus one flexible 

mode dynamics (4.45) and apply novel dynamic inversion.  In order to explicitly consider 

system uncertainty during the design phase, a controller is designed on a nominal system 

and then applied to a system perturbed in flexible mode frequency and damping.  Once 

the uncertainty parameter boundaries are set, the affect of independent manipulation of 

the a and b time constants of the matrix ( )W x  on the behavior of the closed loop system 

is explored.  This behavior is illustrated in Figures 4.14 and 4.15.  It is interesting to note 

that in Figure 4.14 while a is varied with b fixed the rigid body poles move while the 

flexible mode remains completely stationary unlike the clustering observed in Figure 4.11 

where no uncertainty was present in the system.  The unstable low frequency rigid body 

pole also seems to be insensitive to the variation in a.  This would imply that the closed 

loop flexible mode associated poles are dominated by uncertainty and b, unlike the 

nominal case where a had some influence.   

In Figure 4.15, the time constant b is varied while a remains fixed.  The results show 

the higher frequency rigid body dynamics remain fixed contrary to what was observed in 

Figure 4.12 when no uncertainty was present.  The flexible mode no longer follows the 

familiar pattern of changing damping along constant frequency.  It now changes both 

frequency and damping with changing b.  The low frequency rigid body pole also moves 

with changing b, becoming more unstable with smaller b.   

This observed behavior suggests that the presence of uncertainty overwhelms the 

influence of the modification matrix ( )W x  on the low frequency rigid body dynamics.  

The effect on the controller design is somewhat limiting in that very low frequency 
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Figure 4.15: Longitudinal + 1 mode with 
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a=(1/8,1/15). 

 

dynamics must now be carefully considered when attempting to specify the desired 

flexible mode damping via the adjustment of the b time constant of the matrix ( )W x .  As 

previously mentioned, the problem is somewhat mitigated by the use of second order 

filters on the diagonal of ( )W x  as well as the effect of the desy  dynamics on overall 

closed loop stability. 
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4.12 Conclusion  

This chapter introduced the novel dynamic inversion methodology.  The first half of 

the chapter focused on exploring the effect of the additional dynamics, introduced by the 

novel dynamic inversion, on the closed loop system in an analytical manner.  The aircraft 

equations of motion were simplified to include the longitudinal axis and one flexible 

mode.  This simplification retained the crucial rigid/flexible mode dynamic interactions 

while making the problem mathematically tractable.  The changes in dynamics attributed 

to the innovation in the inversion methodology have been traced for both linear and 

nonlinear systems.  The modification alters the internal dynamics of the system and 

destroys the separation between internal dynamics and controlled dynamics that was 

present for the standard inversion case.  However, when additional dynamics of ( )W x  are 

present in one loop, the input-output dynamics reflect the modification in the altered loop 

and recover the standard integrator in the nominal one.  This work has added to both 

analytical and physical insight regarding the nature of the novel dynamic inversion 

applied to an integrated flight/SMC control for a highly flexible aircraft. 

The second half of the chapter focused on specific effects that the additional 

dynamics associated with the novel dynamic inversion have on the response of the closed 

loop aircraft system.  The additional dynamics have been analytically explored on 

longitudinal and symmetric flexible dynamics of varying complexity.  While the model 

used here is much simpler than the full model for which the controller introduced in next 

chapter was designed, the results are revealing nonetheless.  This chapter provides some 

analytical basis and further insight into the workings of dynamic inversion methodology 

that has been modified to address the problem associated with these large, flexible 

aircraft. 

There exists a large degree of freedom to control rigid body and flexible dynamics 

independently of one another in the novel dynamic inversion context.  The apparent 

separation in controlling the short period and elastic mode dynamics through novel 

dynamic inversion is valuable when control of disturbances is as important as control of 

commanded variable.  Specifically, the ability to alter the damping of elastic modes as 

well as cancel their response to the commanded vehicle motion is the main objective of 

an integrated flight/SMC control that is required for advanced, large, flexible aircraft.   
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The increased complexity of system dynamics that included full longitudinal as well 

as multiple symmetric flexible mode dynamics showed that a certain degree of separation 

in controlling rigid body and flexible dynamics still exists.  However, the introduction of 

parametric uncertainty into frequency and damping of the dominant flexible mode also 

showed the coupling between very low frequency rigid body and flexible dynamics.  This 

coupling must be carefully considered during a controller design process since in the real 

world application there is always uncertainty present in the system.  
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Chapter 5 – Novel Dynamic Inversion Controller  

5.1 Introduction  

To provide an integrated flight/SMC controller for complex dynamics exemplified by 

the large, flexible transport aircraft whose model is described in detail in Chapter 3, the 

method of dynamic inversion is considered.  Over the last decade, dynamic inversion 

methodology has gained considerable popularity in application to highly maneuverable 

fighter aircraft2, 3, 5 and might be of benefit to highly flexible aircraft.  The attractiveness 

of this methodology lies in the fact that the inherent nonlinearities of the problem are 

explicitly considered.  In other words, a nonlinear control law is designed that globally 

reduces the aircraft dynamics of interest into a set of integrators and thus, allows one 

linear controller to provide desired response throughout the flight envelope.  This 

eliminates the need for extensive linearization of the aircraft model for different flight 

conditions, design of individual controllers for each of these conditions, and finally 

performing gain scheduling, which is typically an ad hoc and time consuming procedure, 

to link the individual controllers over the flight envelope. 

The work presented in this chapter is a first step in determining whether dynamic 

inversion is a viable methodology to address the whole flight control problem of 

advanced flexible aircraft.  The methodology is applied over a section of the flight 

envelope that includes the approach-to-land condition at the end of cruise, which makes 

for the worse case flight/flexible dynamics interaction.  The problem is formulated to 

provide command following to pilot/autopilot inputs while minimizing elastic deflection 

at the pilot station.  The aircraft has RCVs, all movable tail, and independently moving 

elevator.  The controller is designed on a reduced longitudinal elastic model, which is 

open loop unstable, with 8 elastic modes considered, and then applied to the full 

nonlinear longitudinal elastic model of 20 modes.  As the first step, a standard dynamic 

inversion controller design was attempted, but failed to produce a stable closed loop 

system.  This result is discussed in more detail in a later section.  The results from the 

novel dynamic inversion controller, however, show substantially increased damping of 

the fuselage bending modes, which attenuates any excitation due to turbulence, and 

coordinated pitching of the entire vehicle thus minimizing the bending at the pilot station.  
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These results are compared to those of a controller designed for performance on a QSAE 

vehicle only, in order to provide a reference for low frequency flight performance as well 

as high frequency dynamic response.  

As the vehicle models developed and matured, so has the dynamic inversion 

controller design.  Initially, the vehicle did not have RCVs so the control had to be 

designed using the available surfaces.  With development of RCV, the alternative control 

strategies did not have to be used; however, they produced some very interesting and 

useful results that are instructive for this class of vehicles.  The results from these designs 

are described in detail in Appendix C.  

5.2 Control Problem Formulation  

Several issues specific to the dynamic inversion control methodology had to be 

addressed first in designing a controller for an elastic airplane.  These issues included 

selection of the control variables in such a way as to ensure the system was minimum 

phase.  And, more importantly, an issue that had not been addressed before in any 

implementation of the methodology was how to handle state dependence, in addition to 

the standard actuator position, on actuator rates and accelerations.  This means, for 

example, that the rate of change of pitch rate, q , depends not only on the elevator 

deflection but also on the elevator rate and its acceleration.  Such dependence is very 

much a characteristic of elastic aircraft.  Traditionally, dynamic inversion has been 

applied to aircraft that are modeled such that the aircraft states and actuator dynamics 

(rates, accelerations) form a block diagonal matrix, thus enabling separation and an 

inversion controller that commands only the actuator position.  For the elastic aircraft, the 

validity of such separation depends on the contribution of unsteady aerodynamics and 

inertial mass coupling to control effectiveness, which has been touched on in Chapter 3.  

The effect of actuator dynamics on the controller and the robustness of the closed loop 

system to these dynamics are explicitly addressed in the simulation analysis presented 

later in this chapter.  

5.3 Philosophy Behind Novel Dynamic Inversion  

Consider a very fundamental look at the dynamic inversion controller.  Essentially an 

error between the desired state of controlled variables and an actual state is fed through 
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the inverse of the control effectiveness matrix in order to obtain actuator commands to 

drive that error to zero.  As with any system, there are dynamics that are not of interest or 

are not directly controllable.  For an aircraft with sufficient control degrees of freedom, it 

is possible to select a set of controlled variables, such as rotational velocities, and design 

a controller that in the closed loop would keep rotational degrees of freedom independent 

of the translational axes.  Hence, provided that the translational dynamics follow certain 

assumptions, e.g., they are stable, we are ensured that the desired dynamics are not 

corrupted by the translational degrees of freedom and the system is stable by design.  In 

the case of a flexible vehicle, the nature of internal system dynamics changes.  The 

translational and rotational degrees of freedom can still be separated and rotation can be 

controlled without interference from the former, but now the dynamics in the frequency 

range beyond the controller bandwidth must be considered.  These dynamics become 

internal dynamics as well as influence the controlled dynamics and the internal dynamics 

of the translational degrees of freedom.  Specifically, assume that there is interest in 

controlling the pitch rate of the aircraft as well as the behavior of the first few fuselage 

flexible modes that come close to the pilot operating bandwidth.  Two things make this 

problem very different from a typical one.  First, in typical cases the actuator dynamics 

are fast enough to be negligible within the frequency range of interest.  Second, the 

higher frequency dynamics are sufficiently far enough away from both the controller 

bandwidth and the actuator dynamic frequency and can be neglected.  If these dynamics 

are close enough to the actuator dynamic frequencies such that their effect cannot be 

ignored, then they are dealt with on separate basis employing notch filters.  However, in 

the problem under consideration neither case holds.  In this problem, there are several 

actuators for controlling the vehicle with different dynamic capabilities.  In addition, the 

higher frequency dynamics are very close to the dynamics being controlled and hence 

cannot be discounted or controlled with notch filters.  As already mentioned in Chapter 3 

during the discussion of the open loop dynamics, the proximity of flexible mode 

dynamics to the flight dynamics as well as close clustering of a number of flexible modes 

suggest a need for an integrated flight/SMC law for optimum aircraft performance. 

In fact, further modifications are required for successful implementation of an 

integrated flight/SMC controller using dynamic inversion.  The modifications to the 
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methodology and the motivation behind them are discussed in detail below.  A dynamic 

inversion controller designed in a typical manner, i.e., dynamic cancellation in the 

frequency range of interest, and then applied to the entire system that includes higher 

frequency modes and actuator dynamics behaves nothing like the design.  Consider only 

the system dynamics for which the controller has been designed and then add the actuator 

dynamics.  The resulting system immediately reflects the destabilizing effect of this 

addition on the closed loop system.  The dynamics that are destabilized are the flexible 

modes, which are half as fast as the slowest actuator, i.e., ~12 rad/sec.  This is reflected in 

Figure 5.3 presented in a later part of the chapter.  If the actuator dynamics are sped up to 

about 6 to 7 times the speed of the primary fuselage mode under control then the original 

controller functions as per design.  Hence, somehow the original controller must be 

modified in order to effectively deal with actuator dynamics as well as higher frequency 

dynamics that are also destabilized by the presence of actuator dynamics.  (Recall from 

Chapter 3 Figures 3.7 and 3.8 the effect the presence of actuator dynamics had on open 

loop response.)  One way of doing this is to make sure that the controller bandwidth is as 

small as the performance requirements allow and have the controller roll-off as quickly as 

possible past that bandwidth frequency.   

Consider again the control variables of interest, [ , ]ma ps maq q q− .  The difference 

between the desired and the actual dynamics can be compared at two different frequency 

intervals.  The first frequency interval upper bound is restricted to the highest frequency 

of the system model used for controller.  In this range, the error between desired and 

actual is, in fact, something that the controller is designed to drive to zero.  The second 

interval contains the frequencies higher than those of the design model.  In this case, the 

error is in reality just the actual system response in that frequency range.  If this were fed 

back to the controller, then the controller would attempt to react to this error for which it 

was not designed, move the actuator in response to these higher frequencies and hence 

start destabilizing the system in both frequency intervals.  One solution would be to 

impose a low-pass filter on the error fed into the control effectiveness matrix in order to 

minimize the impact of the higher frequency dynamics and thus let the controller deal 

with the problem for which it was designed.  For this purpose, the aforementioned filter 
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would be placed in the inversion loop of the controller preceding the feed into the control 

effectiveness matrix. 

Further consideration must be given to the question of direct flexible mode control 

within the frequency range of the design model.  Applying standard dynamic inversion to 

this portion of the problem has several drawbacks.  First, canceling dynamics close to the 

jω-axis is not very prudent in case there are model mismatches and exact cancellation 

does not occur.  More importantly, simply canceling flexible mode dynamics only means 

that they are not observed at the pilot station, it does nothing to improve their response to 

turbulence or other excitation.  So instead of cancellation, the proper objective for 

flexible modes is to improve their dynamic response by increasing their damping ratio 

and design the flight control portion of the compensator such that it minimizes the 

excitation of flexible modes in the first place.  These dual objectives, in addition to 

discussion in the paragraph above, lead to the development of the novel dynamic 

inversion technique that is the subject of this research.  

The linear controller portion can also be viewed as specifying the desired dynamics of 

the variable being controlled that the inversion part of the controller will match where 

dynamic inversion is perfect.  With this in mind, the linear controller portion started as a 

PI compensator.  The PI controller, also known as a lag compensator, is essentially a low-

pass filter.  The attenuation characteristic of the PI compensator is useful and permits an 

increase in loop gain.  The lag part of the phase-shift characteristic is detrimental to 

system performance (destabilizing effect) but must be tolerated.  The proportional part 

increases the gain of the system at low frequencies for better performance response while 

the integral part rolls off the controller for better response to high frequency dynamics 

and disturbance attenuation.  That is a classical reason and approach to pitch rate control, 

which is made even more important here by the fact of close proximity of flexible modes 

to the pilot bandwidth.  The case in the other loop, elimination of elastic mode excitation 

at the pilot station, produces the best response with only a proportional controller.  The 

destabilizing effect of the lag on the phase at high frequency plays a decisive role.   

The details of the novel dynamic inversion controller design based on the principals 

discussed in this section are described below, followed by analysis of the actual 

controller. 
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5.4 Controller Design  

The first task in the controller design is to choose control variables (CVs) such that 

the resulting open loop system is minimum phase.  The phase minimality is not a 

necessary requirement but it provides more freedom with linear controller design.  Pitch 

rate as a control variable was chosen due to readily available sensor data at multiple 

locations and its use in conventional control systems.  Since we are interested in 

controlling the oscillation at the pilot station caused by the vehicle’s aeroelastic response 

in addition to conventional command following, the sensor located at the pilot station and 

one approximating the mean axis were chosen.  The available control surfaces on the 

vehicle configuration considered are RCV, stabilator and elevator, which together 

comprise an all-movable tail.  Both sensor locations and available control surfaces used 

are illustrated in Figure 5.1.  It has been recognized by the controls community working 

on the aeroservoelastic control problem that multiple locations for the sensor arrays are a 

necessary prerequisite to design, irrespective of the methodology.  With the chosen 

sensor and actuator locations, the open loop system is minimum phase, thus allowing us 

to proceed to the question of required model fidelity for design and the overall 

performance of the controllers.   

 

Figure 5.1: Sensors and actuators used in the study. 

 

One of the characteristics of a large flexible transport aircraft (700,000+ lbs category) 

is the clustering of the flexible modes and the first couple of elastic modes being within 

the typical pilot bandwidth.  The latter fact necessitates an integrated stability 
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augmentation system/structural mode control (SAS/SMC) design.  To fulfill the 

fundamental functions of stabilizing the vehicle, precisely tracking pilot commands and 

rejecting turbulence while suppressing flexible modes at the pilot station, a PI 

compensator structure was chosen for the linear part of the dynamic inversion controller 

based on the reasons given above.  The conceptual representation is shown in Figure 5.2. 

 

 
Figure 5.2: Conceptual dynamic inversion control law block diagram. 

 

The controller scheme is a basic regulator and hence poses a question of which 

variable to regulate in order to control the pilot station pitch rate response.  Since the 

objective is to have the aircraft follow a commanded pitch rate, the pilot station as well as 

the mean body must track it.  That initial thinking proved very erroneous and only 

underscores the difficulty in dealing with a highly flexible vehicle.  Applying the 

suggested strategy resulted in a controller that would try to bend the aircraft and snap the 

pilot station to follow the commanded input.  Recall from Figure 3.1 in Chapter 3 that the 

initial response at the pilot station to a pitching command is to bend in the direction 

opposite to the command.  In other words, the control variables [ , ]ma psq q  exacerbated 

the flexibility problem, not improved it.  Reflecting on these results, it became apparent 

that the controller really must render the aircraft as close to a rigid body as possible while 

maintaining desired command following response.  Hence, the pilot station response must 

be compared to that of the mean axis of the aircraft and the difference, which is the 

flexible dynamics contamination, minimized. 

The model used for design included longitudinal rigid body states, [ , , , ]u w q θ , plus 

the first 8 flexible modes.  Because the frequency of these modes was sufficiently close to 
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longitudinal modes, it was deemed necessary to attempt to directly control them before 

rolling off the controller.  The pitch rates being fedback, [ , ]ma psq q , are sensed by rate 

gyros placed along the centerline of the fuselage.  It is anticipated, though not 

implemented in the first application, that the first several flexible modes can be estimated 

with very good accuracy and the rigid body states are readily measurable.   

Recall from Chapter 2 that the input/output aircraft dynamics represented by (2.20) 

are affine in control and the desired dynamics have the form of a PI-controller given by 

(2.24).  In terms of the aircraft equations of motion and longitudinal axis in particular the 

system is given by (2.6).  Recall that as discussed in Chapter 3 the dynamic part of the 

aeroelastic equations are linear so the entire system is a nonlinear/linear hybrid that 

assumes the form below 
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where iφ′  is the slope of the ith mode at either pilot station or mean axis location.  It is 

instructive to look at the composition of the measured pitch rate variables used for 

control.  Note from (5.2) that ps maq q−  is just the difference in flexible mode 

contribution; if the mean axis sensor picks up a minimal amount of flexible dynamics, 

then this quantity represents only the flexible dynamics at the pilot station which the 

controller is trying to eliminate.  Moreover, the number of flexible modes selected for the 

design model depended largely on the minimum number of modes necessary to produce a 

stable closed loop system, particularly for higher frequency dynamics.  The cutoff 

frequency for the inclusion of the modes, in this case resulting in the first eight, correlates 

to the lowest frequency of the actuator dynamics (stabilator at 20 rad/sec).  Also, because 

the flexible modes are so closely spaced, the highest mode included was in the mid 20s 

rather than exactly at 20 rad/sec. 

The controller design involved selecting gains Kcmd, Ki, and K as well as finding the 

dynamic matrix ( )W x  such that the steady state error has been minimized and the 

damping of the first couple of fuselage flexible modes has been increased.  The feedback 

linearization part of the total controller had to take care of increasing the damping of the 

flexible modes, which allowed the PI compensator to deal with command following part.  

In order to produce a satisfactory linear system for the PI compensator to control, the 

dynamic matrix W(x) was created from the following parts.   

First, to abide by the physical limitations of the aircraft, a constant matrix was used to 

modify the control effectiveness matrix ( )xh g x .  The RCV is both relatively small and 
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has negligible impact on the vehicle pitch rate and should not participate in pitching the 

entire vehicle, hence the rigid body contribution to calculating the RCV command is 

zeroed by an appropriate constant matrix M.  Because the elevator has significant 

contribution to the control of the rigid body, in this initial application, it was geared to the 

stabilator, and what effects the stabilator command effects the elevator command as well.  

Thus, the feedback linearization part is a 2x2 MIMO problem.  Furthermore, in order to 

stabilize the system, improve the flexible modes damping, and the rigid body response, a 

diagonal dynamic matrix W  was used.  Another reason for the elevator/stabilator gearing 

is that the QSAE control law, used here for comparison, also employed such gearing.  

The details of the dynamic inversion control law are illustrated in (5.3).  Note that best 

results obtained in this configuration required just proportional controller for i iφη′∆  

variable for reasons touched in an earlier discussion.   
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 (5.3) 

In contrast to the ( )W x  dynamics explored in the previous chapter, which were first 

order, the dynamics in the actual controller are second order filters.  This approach was 

necessitated by the need to roll off the controller as quickly as possible before the 

actuator dynamics come into play.  Recall that the first breakpoint for the third order 

stabilator dynamics is at 20 rad/sec, same as one of the time constants for a filter in the 

flexible dynamics loop.  The pitch rate loop also had to be rolled off quickly so as to 

minimize the flexible mode excitation.  The lower frequency filters in both loops served 

as a mechanism to balance the speed of the pitch rate response and the increased damping 

of the first few fuselage bending modes as well as the stability of the higher frequency 

modes.  Higher order filters were unnecessary and inadvisable based on desire for 

40 db/decade roll off of the loop shape at the crossover frequency.  

Though not explicitly mentioned here, desirable pilot handling qualities are achieved 

by precompensation of stick and pedal commands, and trim inputs that exist as part of the 
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nonlinear simulation.  The pilot inputs are scaled with flight condition dependent gains 

and a first-order shaping filter to achieve time constants other than those resulting from 

feedback objectives. 

The evaluation of the controller was done on the full nonlinear high fidelity 

longitudinal model plus 20 symmetric elastic modes with actuator rate and deflection 

limits and was conducted in the presence of three levels of turbulence (none, moderate, 

and severe vertical turbulence).   

5.5 Controller Results  

5.5.1 Standard vs. Novel Dynamic Inversion  

As has been mentioned in the earlier sections, a standard dynamics inversion 

controller design was attempted, if rather unsuccessfully.  The inversion could control the 

first fuselage bending mode with some modest success but the higher frequency modes, 

especially the fuselage rather than the wing ones, went unstable as Figure 5.3 illustrates.  

Any adjustment to the desired dynamics to increase damping of the first fuselage mode 

drove the higher frequency modes more unstable.  Figure 5.3 provides a good overview 

of the dynamics of all 20 flexible modes as well as a close up of the dynamics of the first 

8 for open loop, standard dynamic inversion, and novel dynamic inversion.  The inability 

of the standard dynamic inversion to handle flexible dynamics in the integrated 

flight/SMC context motivated the development of the novel dynamic inversion 

methodology. 
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Figure 5.3. Standard vs. Novel dynamic inversion closed loop system.  

1st and 2nd 
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5.5.2 Novel Dynamic Inversion Controller 

The open loop aircraft is characterized by a moderately unstable short period and a 

typical flexible mode damping of less than 7%.  In particular, the damping of the first two 

fuselage bending modes is 5% and 2.5% respectively.  The achieved level of damping on 

the first couple fuselage bending modes are on the order of 20% for the first and 5% for 

the second fuselage mode (sequentially mode 8), which is also much higher in frequency 

and is the last mode being actively controlled by the dynamic inversion controller.  The 

effect on the damping of the other flexible modes, be they wing modes of the design 

model or modes of frequencies above that of mode 8, is neutral to positive.  In other 

words, no modes were pushed towards the jω-axis as a result of the novel dynamic 

inversion controller.  In fact, this was a balancing act between improving the damping of 

the fuselage modes within the frequency range of the design model and speeding up the 

flight controller response and destabilizing higher frequency modes. 

The simulation analysis of the controller has been performed on the high fidelity, 

fully nonlinear model and the results are presented below.  The established baseline is 0.5 

stick pitch rate command in the presence of no turbulence.  The baseline closed loop 

pitch rate and normal acceleration response to 0.5 stick pitch rate command as well as 

corresponding actuator behavior is illustrated in Figures 5.4 and 5.5.  In this case the 

controller succeeds in making the flexible airplane behave essentially like a rigid one as 

evidenced by virtual overlap of pitch rate response at the pilot station and mean axis as 

well as normal acceleration response devoid of high frequency dynamics.  Note that the 

way the controller achieves its objectives is to blunt an initial sharp actuator deflection to 

quickly follow the pitch rate command, which abates flexible mode excitation and 

enables the RCV to counteract the excitation that does occur.  The controller then 

overcompensates by allowing a large overshoot to speed up the response, though a large 

overshoot is a typical characteristic of pitch rate response type controllers. 
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Figure 5.4: Pitch rate and nz response to 0.5 stick pitch rate command with no vertical 

turbulence at pilot station (dashed) and mean axis (solid). 
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Figure 5.5: Actuator displacement and rate response to 0.5 stick pitch rate command with 

no vertical turbulence. 

 

5.5.2.1 Turbulence Response 

Further analyses include controller performance in severe and moderate turbulence 

(see Figs. 5.7-5.10) as well as under conditions that cause surface saturations in the 

presence of the aforementioned turbulence (see Figs. 5.11-5.14).  Turbulence was 

injected into the high fidelity simulation as [ , , ]gust gust gustu w w .  The level of turbulence is 

determined based on the values provided in Reference 46 and generated by the standard 

atmospheric simulation Dryden filter.  The actual turbulence profiles used are 
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documented in Figure 5.6.  Since turbulence was generated each time it was used for 

analysis, there are four profiles given in Figure 5.6.  Note that moderate turbulence has 

roughly one half the magnitude peak-to-peak of the severe turbulence. 
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Figure 5.6: Vertical turbulence in the severe and moderate range for 

saturated actuators and no saturation cases. 

 

The pilot station is more affected by turbulence than the mean axis representing the 

whole of the vehicle both in pitch rate and in normal acceleration responses (see Fig. 5.7).  

The severe turbulence excites the flexible modes and this excitation manifests itself as 

high frequency oscillations superimposed on the response of the vehicle to 0.5 stick pitch 

rate command.  The turbulence most influences the measured normal acceleration, 

especially at the pilot station.  The dynamic inversion controller is attempting to 

counteract this flexible mode excitation as evident from the highly oscillatory RCV rate 

response documented in Figure 5.8.  However, the RCV does not have sufficient 

authority and speed of response to completely cancel flexible mode excitation from 

turbulence, hence the high frequency oscillations.  In general, the control surface 

deflections are on par with those of the baseline case (see Fig. 5.5).  All three control 

surfaces are somewhat effected by the turbulence though their rates are again on par with 

those of the baseline with the exception the RCV rate which shows significant 

manifestation of turbulence in its higher peak rate magnitude.   
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Figure 5.7: Pitch rate and nz response to pitch rate command in severe vertical turbulence 

to 0.5 stick at pilot station (dashed) and mean axis (solid).  
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Figure 5.8: Actuator response to pitch rate command in severe vertical turbulence to 0.5 

stick.  

 

The response to moderate turbulence follows the analysis with the magnitude of the 

high frequency oscillatory response significantly less in both pitch rate and normal 

acceleration responses (see Fig. 5.9) as well as rate response of the RCV in an attempt to 

control these oscillations.  Similarly, the actuator response is similar to the baseline 
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response (see Fig. 5.5) with RCV peak magnitude rate somewhat higher as a consequence 

of attempting to counteract turbulence excitation effect on elastic modes (see Fig. 5.10). 

Another important aspect of controller analysis is response to commands that 

saturates control surfaces and to make it more difficult this command occurs under severe 

and moderate turbulence.  In order to achieve saturation at this flight condition, the gain  
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Figure 5.9: Pitch rate and nz response to pitch rate command in moderate vertical 

turbulence to 0.5 stick at pilot station (dashed) and mean axis (solid).  
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Figure 5.10: Actuator response to pitch rate command in moderate vertical turbulence to 

0.5 stick.  
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between stick and pitch rate command had to be increased by a factor of two.  Hence, 

surface displacement and rate saturation has occurred for both elevon and stabilator for a 

full stick pitch rate command (see Fig. 5.12).  System response to this command in the 

presence of severe atmospheric turbulence is illustrated in Figure 5.11.  Note that the 

magnitude of the pitch rate command is 15 deg/sec compared to 3.5 deg/sec for baseline 

case (see Fig. 5.4).  Because of the control surface displacement saturation, the pitch rate 

response does not reach the proportionately large overshoot observed for baseline.  The 

normal acceleration, especially at the pilot station, again exhibits high frequency 

oscillations superimposed on the command response (see Fig. 5.11).  The magnitude of 

these high frequency oscillations is comparable to those seen in the presence of severe 

turbulence but without surface saturation.  The reason that these magnitudes are 

comparable is that the RCV is the surface attempting to damp out high frequency 

oscillations, and it is one surface that does not saturate (see Fig. 5.12).  The reason that 

there are high frequency oscillations present is that the RCV does not have sufficient 

authority and speed of response to completely cancel flexible mode excitation from 

turbulence. 
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Figure 5.11: Pitch rate and nz response to pitch rate command of full stick that saturates 

controls in severe vertical turbulence at pilot station (dashed) and mean axis (solid). 
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Figure 5.12: Actuator response to pitch rate command of full stick that saturates controls 

in severe vertical turbulence.  

 

The response to moderate turbulence in the presence of control surface saturation, 

shown in Figures 5.13 and 5.14, combines the response to saturation discussed above and 

response to moderate turbulence with no saturation earlier in this section.  The pitch rate 

response and normal acceleration show some high frequency dynamics (see Fig. 5.13).  

The actuator dynamics show surface displacement saturation for stabilator and elevon 

(see Fig. 5.14), which limits the magnitude of pitch rate response and by association 

normal acceleration.  The rates for these surfaces are also saturated and it leaves the 

RCV, which is considerably faster to work to cancel out the elastic mode excitation from 

turbulence that manifests itself as high frequency oscillations superimposed on the 

commanded response in both pitch rate and normal acceleration. 
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Figure 5.13: Pitch rate and nz response to pitch rate command of full stick that saturates 

controls in moderate vertical turbulence at pilot station (dashed) and mean axis (solid). 
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Figure 5.14: Actuator response to pitch rate command of full stick that saturates controls 

in moderate vertical turbulence. 

 

5.5.2.2 Uncertainty Analysis 

The final analysis performed for the novel dynamic inversion controller is assessing 

its stability with respect to uncertainty in the flexible modes.  Specifically robust stability 

is checked with respect to varying frequency and damping of the first two elastic modes.  

The variations are modeled as real parameter variations.  The µ-analysis indicates that the 

closed loop system is guaranteed robust stability to 15% variation in frequency and 50% 
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variation in damping for each mode, which is well within expected envelope of model 

fidelity.  Figure 5.15 illustrates the results of the robustness analysis.  The dominant 

parameter influencing stability is frequency variation.  An important point is the fact that 

uncertainty in flexible modes causes the system to go unstable at very low frequencies 

and not at where the system is uncertain.  This is a result of the coupling of the elastic 

modes into the zero dynamics of the closed loop airplane.  The analytical basis for this 

coupling was explored in Chapter 4.  From the physics perspective, the decrease in 

flexible mode frequency (destabilizing uncertainty is negative delta) changes the vehicle 

deformation that in turn alters its lift locally and influences the low frequency phugoid 

like dynamics.  Recall, that this aircraft has a degenerate short period, i.e., two real 

eigenvalues, and the typical clear separation between the short period dynamics and the 

phugoid does not really exist.  The open loop dynamics are illustrated in Chapter 3, 

Figure 3.10. 
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Figure 5.15: Robust stability analysis. (µ lower and upper bounds with µ=1 robust 

stability boundary) 

 

5.5.3 Importance of Integrated Design 

In order to check the speed and character of the response of the novel dynamic 

inversion controller against the accepted norm, a controller47 designed and tuned in a 
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QSAE piloted simulation was used.  The analysis performed here are not intended to 

show how well the novel dynamic inversion controller performs in general against the  

QSAE one, but to evaluate the character of the response and to emphasize the need to 

approach the design process from the integrated flight/SMC perspective. 

To compare the responses of the novel dynamic inversion controller to that of the 

QSAE /Vγ  response type, the high fidelity, fully nonlinear simulation was again 

employed.  The responses shown are to 0.5 stick throw in the presence of moderate 

vertical turbulence.  The responses of the dynamic inversion controller are co-plotted 

with the responses of the controller designed for the QSAE aircraft using classical 

techniques and evaluated for performance in the piloted simulation on a QSAE aircraft.  

This controller is evaluated on a dynamic aeroelastic model along with the dynamic 

inversion controller not for the purpose of showing that it performs badly but to show that 

it actually excites flexible modes and makes it much more difficult for a separate SMC 

controller to work.  This argues for an integrated design approach in contrast to 

Reference 22.  It is also used to show that the novel dynamic inversion controller has 

similar performance in the pilot’s bandwidth range.  The dynamic inversion controller 

response is slightly slower, but it remains to be determined in a piloted evaluation 

whether there is a perceptible effect on flying qualities.   

Figure 5.16 illustrates the response to 0.5 stick throw at the pilot station of pitch rate.  

Figure 5.17 shows the mean axis response, which is approximated by a sensor placed 

behind the center of gravity, exhibits the least amount of excitation due to oscillation of 

the flexible modes.  The novel dynamic inversion pitch rate response at the pilot station 

and at the mean axis essentially overlap, as is evident from Figure 5.18.  The QSAE 

controller on the other hand excites flexible modes, particularly at the pilot station. 

The normal acceleration at the pilot station is plotted in Figure 5.19.  The sensed 

mean axis response is plotted in Figure 5.20.  Both of the figures indicate that the QSAE 

controller induces normal acceleration by exciting the flexible modes of the vehicle.  It is 

particularly bad at the pilot station where the absolute g excursion is 400% as the stick is 

reversed.  Even the sensed mean axis where flexible mode influence is minimized by the 

physics shows a 60% g variation at the same point.  The novel dynamic inversion 

controller on the other hand achieves its stated objective of minimizing pilot station 
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oscillation with respect to the mean axis.  In fact, based on the response in Figures 5.16-

5.20, it can be concluded that the novel dynamic inversion controller makes the fuselage 

behave essentially like a rigid aircraft by keeping the pilot station response very close to 

that of the sensed mean axis.   

 

0 5 10 15
-4

-2

0

2

4

6

8

Time, sec

M
ag

ni
tu

de
, d

eg
/s

ec

qcmd
qps QSAE
qps DynInv

 

Figure 5.16: Pitch rate response at the pilot 

station to 0.5 stick throw. 
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Figure 5.17: Pitch rate response at the mean 

axis sensor to 0.5 stick throw. 
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Figure 5.18: Pitch rate response at the pilot station and measured mean axis of the 

dynamic inversion controller to 0.5 stick throw. 
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Figure 5.19: Nz response at the pilot station 

to 0.5 stick throw. 
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Figure 5.20: Nz response at the sensed mean 

axis to 0.5 stick throw. 

 

To further illustrate that the novel dynamic inversion controller achieves its 

objectives with performance comparable to that of the QSAE controller at low 

frequencies, control activity is considered.  In Figure 5.21, the deflections for the control 

surfaces available to both controllers are shown.  The magnitudes are normalized by the 

maximum available deflection to show just how much of the available control power is 

used by each controller.  It is interesting to note that the novel dynamic inversion 

controller uses less stabilator and consequently less elevator than does the QSAE 

controller.  Apparently, although the RCV deflection is small, it does contribute enough 

moment to lessen the required tail deflection or it could be due to a slower response.  

Also of interest is the fact that for the dynamic inversion control, the RCV and the tail 

surfaces are deflected simultaneously, as if to say that the controller is anticipating the 

bending of the aircraft as it tries to pitch and is actively trying to minimize the ensuing 

bending and then snapping effect at the pilot station.   

The actuator rates are also presented in Figure 5.22 for comparison.  Similar to the 

deflections, the surface rates are normalized by their respective limits.  The stabilator is 

considered a slow surface while both the elevator and the RCV are considered fast 

surfaces.  It is interesting to note that the flexible nature of the vehicle drives the 

stabilator rate of the QSAE controller to its limit, at around 3 seconds.  This is another 
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indication of potential difficulties when SAS and SMC are designed independently for 

this class of vehicles.   

Frequency response is often helpful in identifying which dynamics are contributing to 

the behavior seen in the time response.  In a typical aircraft, turbulence excites the 

flexible modes, not the pilot inputs.  Several frequency response plots are presented here 

to illustrate the difficulty of the problem under consideration by showing a transfer 

function that represents a typical operating bandwidth of a pilot on the same plots as the 

 

0 5 10 15
-15

-10

-5

0

5

10

15

Time, sec

M
ag

ni
tu

de
, d

eg

Stab QSAE
Elev QSAE
Stab DynInv
Elev DynInv
RCV DynInv

RCV 

Elev 

Stab 

 

Figure 5.21: Actuator surface deflection. 
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Figure 5.22: Actuator surface rates. 

 

closed loop frequency responses.  At the frequency of the first flexible mode, the pilot 

command is attenuated by less than half.  It becomes quickly apparent from the responses 

in Figures 5.23 and 5.24 that the flexible modes are clustered together and, as previously 

mentioned several of the elastic modes are well within the pilot’s bandwidth.  Hence, the 

typical 1 decade plus separation between rigid body and flexible modes that is 

characteristic of most piloted vehicles does not exist for this type of aircraft.  Also, as has 

been pointed out, the elastic modes are very lightly damped and, thus, easily excitable. 
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Figure 5.23: Frequency response pitch rate 

at the pilot station to stick input. 
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Figure 5.24: Frequency response nz at the 

pilot station to stick input. 

 

As can be seen from the frequency responses in Figures 5.23 and 5.24, the dynamic 

inversion control law attenuates flexible modes that are within a decade of the pilot 

bandwidth while the control law designed on the QSAE aircraft amplifies the flexible 

modes in the same range.  While this fact is not surprising it does make the objectives of 

a separate SMC design so much more difficult on an all ready difficult problem.   

The frequency response to turbulence shown in Figure 5.25 is even more pronounced.  

The open loop system frequency response is co-plotted with the dynamic inversion and 

QSAE response to turbulence.  It is interesting to note that the QSAE attenuates 

turbulence better than the dynamic inversion controller at the lower frequencies and does 

somewhat better than the open loop at the first two flexible modes, but then matches the 

response of the open loop system.  The dynamic inversion controller, while not  
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Figure 5.25: Frequency response of the pitch rate at the pilot station to vertical 

turbulence. 

 

attenuating as much as the QSAE at the lower frequencies, does better than the open loop 

and has a superior response starting with the flexible modes frequencies. 

After looking at the time and frequency response comparisons between the novel 

dynamic inversion and QSAE controllers, it is interesting to look at the actual pole 

locations that govern the observed responses.  The poles of the open loop, QSAE, and 

novel dynamic inversion controllers are illustrated in Figure 5.26, with each plot showing 

a progressively smaller section of the s-plane enlarged for better viewing.  Note that 

actuator dynamics remain primarily unchanged in all cases as seen from the very high 

frequency pole locations in the upper left quadrant plot.  The upper right quadrant gives a 

nice overview of the flexible modes near the jω-axis and poles associated with different 

compensator dynamics.  The plot in the lower left quadrant provides a very nice 

illustration of flexible modes within the frequency range controlled by dynamic inversion 

compensator.  Note the positive movement of the elastic modes toward increased 

damping relative to their open loop locations, especially the first fuselage bending mode 

around 10 rad/sec.  Looking at the locations of the elastic modes and particularly first 

fuselage bending mode for the QSAE controller, it becomes apparent that any indirectly 

induced movement is destabilizing.  But even without any pole movement, the control 

surface deflections at the tail excite modes with 4%-5% damping ratio that resonate along  
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Figure 5.26: Pole map of the entire 20 mode system with third order longitudinal 

dynamics.  Progressively enlarged sections showcasing different dynamic aspects. 

 

the entire fuselage according to their mode shapes.  Since there is no attempt to either 

minimize the initial excitation or to damp it out once it begins, the large high frequency 

oscillations observed in the pitch rate and normal acceleration response for the QSAE 

controller is to be expected.  One further observation related to the rigid body dynamics 

as seen in the plot in the lower right quadrant shows comparable dynamics between the 

two controllers.  Some of the differences relate to the different response types, with 

dynamic inversion based on q response and QSAE based on /Vγ response, the dynamic 

inversion has faster short period dynamics but less damped phugoid dynamics of 

comparable frequency than the QSAE compensator.  
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As the controller comparison demonstrates, an integrated flight/SMC control is a 

more effective option for achieving optimum vehicle performance.  Using separate flight 

and SMC control would result in the two controllers fighting each other’s actions, in 

addition to the fact that the SMC controller would try to damp out an already excited 

mode rather than minimizing the excitation in the first place as the integrated controller 

would.   

5.6 Summary  

An initial application of the novel dynamic inversion control methodology to a 

flexible vehicle is presented in this chapter.  While the standard dynamic inversion has 

been applied to aircraft that could be treated as rigid, it never has had to contend with a 

piloted aircraft whose first few flexible modes resided well within the pilot’s bandwidth.  

The associated problems as well as the proposed modifications to the standard dynamic 

inversion to deal with them have been presented.  The resulting novel dynamic inversion 

controller was assessed in a high fidelity nonlinear simulation under a variety of 

conditions including severe turbulence, saturated control surfaces, and uncertainty in the 

flexible modes.   

The results obtained in this initial application are very promising.  The novel dynamic 

inversion controller makes a highly flexible aircraft appear as essentially rigid to pilot in 

response to his commands.  In addition, the damping ratio of the primary fuselage 

structural mode has been increased from around 5% to close to 20%.  The second 

fuselage flexible mode damping was improved as well, and the higher frequency mode 

dynamics either remained the same or slightly improved.  Furthermore, the aircraft had a 

favorable response to moderate an severe turbulence.  The vehicle was robust to 50% 

variation in damping and 15% uncertainty in the frequency of the first two flexible modes 

as well as remained stable for saturated control surfaces.   

The obtained results were compared to a controller designed on a QSAE aircraft 

model and tuned for performance in extensive piloted simulations.  While the dynamic 

inversion controller has not yet been tuned in piloted simulation, the response at lower 

frequency is similar to that of the QSAE controller.  Although it is expected that the 

QSAE controller would not attenuate the flexible modes since it is not designed on a 

flexible model, it exacerbates the problem of flexible mode control by a separately 
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designed SMC.  Thus, the results of this work also advocate the integrated design of the 

SAS/SMC controller to maximize the performance of the aircraft.   

Another interesting observation is that a number of flexible modes are primarily wing 

modes and require wing surfaces to attenuate them.  While fuselage mounted control 

effectors do a good job on the fuselage bending modes they have little to no effect on the 

wing modes which in turn contribute to the excitation of fuselage modes and to a slight 

heave of the entire aircraft.  
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Chapter 6 – Stability  

6.1 Introduction  

The results in this chapter are an assessment of stability of the dynamic inversion in 

the presence of high degree of rigid body/dynamic aeroelastic coupling and an integrated 

flight/SMC control system.  The method of reasoning follows the work of Morton, et al. 

that applied to a SISO rigid body fighter control system.  This work builds on the results 

in Reference 14 and adds a new level of complexity that is the flexible aircraft dynamics, 

which cannot be ignored even in the most basic flight control as well as an integrated 

MIMO flight/SMC control system. 

The whole of this thesis deals with the design of nonlinear controllers for a highly 

flexible aircraft.  Each preceding chapter dealt with a different aspect of that design.  The 

issue that remains to be addressed is that of the stability of the dynamic systems driven by 

these controllers.  The approach is rather straight forward.  The vehicle driven by a 

controller must reach some equilibrium whose stability must be evaluated.  The results in 

this chapter show how assessing stability of an n-dimensional system can be reduced to 

checking stability of a two-dimensional one using algebraic expressions that are based on 

the vehicle characteristics such as aerodynamic coefficients.  This reduces a complicated 

dynamical problem to something purely algebraic and manageably complex. 

In order to make the problem mathematically tractable, the aircraft dynamics have 

been simplified for analytical work while retaining the essential characteristics.  These 

essential characteristics are the influence of flexible modes on rigid body dynamics and 

vice versa.  What is not retained is the interaction of flexible modes among themselves, 

but based on experience, it is not a critical element of the dynamic behavior.  The 

simplification involved considering longitudinal dynamics with a single elastic mode and 

a control law based on standard dynamic inversion only.  In addition, throughout this 

chapter the analysis considers the inner loop of the dynamic inversion only, i.e., the desy�  

to y  portion.  It is important to note that the nature of desy�  impacts the overall closed 

loop dynamics but will not be discussed here.   

This chapter is organized as follows.  Section two discusses system stability from an 

abstract nonlinear system perspective.  Section three introduces aircraft equations of 
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motion used for analysis followed by a definition of equilibrium set in section four.  

Section five presents the dynamic inversion decoupling of the closed loop system.  

Section six addresses global stability for a two-dimensional system, followed by general 

global stability result in section seven.  Concluding remarks follow in section eight.  

6.2 System Stability 

Consider the issue of stability of a highly coupled rigid body flexible dynamics 

aircraft.  The integrated flight/SMC dynamic inversion controller produces a closed loop 

system that separates into controlled dynamics and internal dynamics.  The controlled 

dynamics are stable by design and the stability of the closed loop system depends on 

stability of internal dynamics.  If a commanded change in flight condition is executed by 

the controller, then the closed loop system would be considered nonautonomous through 

the control action that occurs over a finite interval of time.  The question of stability then 

translates into whether the resulting flight condition is a stable one and was the transition 

to this new state done in a bounded way.   

The stability problem is to be addressed from a more general nonlinear system 

perspective while providing specific algebraic conditions for aircraft that would establish 

these stability guarantees.  A special case for a control action is assumed.  The dynamic 

inversion controller and the selected output control variables are such that the closed loop 

system is separated into a string of integrators corresponding to the controlled states and 

internal dynamics that are a function of open loop and controller states.  Furthermore, the 

internal dynamics belong to a two-dimensional system; thus, there are special tools that 

can be introduced to show global stability of the closed loop system.  The special case of 

a closed loop nonlinear system that is reduced from an n-dimensional to a two-

dimensional system is predicated on the controller having sufficient degree of freedom 

and the controlled variables selected such that the closed loop dynamic separation 

mentioned above occurs.  An example of such a case would be an integrated flight/SMC 

controller of longitudinal aircraft dynamics with flexible mode and attitude dynamics as 

control variables.    

After the dynamic inversion controller decomposes the closed loop system into two 

subsystems, controlled and internal dynamics, the questions that remain to be answered 

are what are the equilibria and are the internal dynamics stable in the neighborhood.  The 
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determination of the equilibria is a static behavior issue, independent of the control 

design, and is vehicle specific based essentially on the aerodynamics.  As will be shown 

in a later section, the stability of the equilibria depends on the stability of system zero (or 

internal) dynamics in the neighborhood, which is reduced to a set of algebraic conditions 

to be checked.  However, prior to developing the algebraic conditions, these questions are 

addressed in a more abstract manner on a nonlinear system. 

The actions of a controller are transient, or implicitly time dependent, as it transfers 

the closed loop system from one state to another.  As the target state is achieved, in the 

limit the controlled states go to their commanded values and the only nonconstant 

dynamics left are the internal dynamic states.  So as t →∞ , the internal dynamics go 

from being, implicitly through control action, a nonautonomous system to an autonomous 

one, all control action has stopped.  Mathematically, the autonomous system ( )x f x=�  is 

called a limiting system of ( , )x f x t=� 48 .  The idea behind limiting systems is to use 

asymptotic behavior of the time-dependent function ( , )f x t  in the investigation of the 

asymptotic behavior of solutions of ( , )x f x t=� .  Specifically, the idea is used extensively 

in the study of asymptotically autonomous case, i.e., ( ) ( , )x f x g x t= +�  where the 

perturbation ( , ) 0 as g x t t→ →∞ .  Intuitively the limiting behavior of the time-

dependent law is portrayed by the time-independent equation ( )x f x=� .  It can be said 

that the latter is a limiting equation of ( ) ( , )x f x g x t= +� , and in fact it is the limiting 

equation since a unique equation exists in this case. 

To summarize, the steps that will be taken to show closed loop system stability are as 

follows.  The determination of stability of an n-dimensional system is reduced to that of a 

two-dimensional nonautonomous one via a dynamic inversion controller.  The 

nonautonomous system is then reduced to its autonomous limiting system and the 

stability of the limiting system is established.  The stability of the autonomous system is 

shown in two steps that produce vehicle specific conditions.  The first step establishes the 

boundedness of the solution using the Lyapunov argument.  Then given that the limiting 

system is two-dimensional with a solution that is bounded and unique, the solution must 

be either an equilibrium or a limit cycle.  A vehicle specific condition is then established 

to eliminate the possibility of the limit cycle.  
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The following gives the requirements for showing stability, as outlined above, on a 

nonlinear system in the abstract.  Consider a nonlinear system ( ) ( )x f x g x u= +�  with a 

closed loop dynamic inversion controller that decomposes a closed loop system into 

2n −  integrators that are made stable by the desired dynamics and internal dynamics that 

can be written as  

 2 2ˆ ˆ ˆ( ) ( , , , ), , , , n
i i c c des i c c desx f x g x x x t x Q x x x −= + ∈ ⊂ ∈R R� � �  (6.4) 

where Q is an open set in 2R , ( , )i cx x  are internal and controlled states respectively, and 

ˆ( , )c desx x�  are dynamic inversion controller states.  The stability of the closed loop system 

will depend on stability of (6.4).  If the dynamic system (6.4) has the following property - 

ˆ ˆ( , , , ) 0 asc c desg x x x t t→ →∞� , then its limiting system is described by the autonomous 

system   

 ( )i ix f x=�  (6.5) 

(see Reference 48, pages 57-62.)  Furthermore, assume that ( )x t , a solution of (6.4), is 

bounded and a solution ix  of (6.5) is a unique point, then the autonomous limiting system 

(6.5) can be used to establish the global stability result for the original closed loop 

system.  Provided the solutions to both (6.4) and (6.5) satisfy the stated conditions, the 

global stability of the closed loop system can be established, as will be shown later in the 

chapter.  The stated characteristics on the solutions are converted into algebraic 

conditions that will provide a test to determine whether the autonomous two-dimensional 

nonlinear system is globally stable.  These conditions are vehicle dependent and so it 

makes sense to introduce aircraft equations of motion and to show how the closed loop 

dynamics are reduced to an autonomous system by the dynamic inversion controller.  

After determining the algebraic expressions for the abstract conditions on the solutions of 

(6.4) and (6.5), the global stability of the closed loop system is going to be presented. 

6.3 System Equations of Motion  

The system equations of motion used in the analysis are a modified version of (3.6) 

presented in Chapter 3.  The modification involves limiting the number of flexible modes 

to one and using two-surface control effectors as described in the actual controller design 

in Chapter 5.  Hence, the simplified longitudinal equations of motion are given below.  
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 (6.6) 

where  
m = vehicle mass,   = generalized mass associated with an elastic mode

*  = mass distibution,   = thrust,  M = Mach number,    = speed
 = mean aerodynamic cord,   = planform area,   = dyn

m

GW T V
c S q

η

amic pressure,   = density   ρ

 

The notation in the last equation, where η η=� � , may cause some confusion.  Thus, please 

note that η�  on the left hand side of (6.6) is the time rate of change of the flexible 

deformation state η , while η�  on the right hand side is the flexible mode velocity state.   
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The system under investigation is considered to have two control surfaces as 

described in Chapter 5 in addition to a low-bandwidth control of thrust.  Though not 

explicitly written as a control mass distribution, GW* can certainly be considered one.  

The GW* can be changed by shifting fuel around the vehicle as is done in the Concorde.   

The intent is to explore the stability of aircraft undergoing rapid maneuvering, which 

implies that the behavior of the fast states and parameters affecting them is of primary 

concern.  Also, this allows for a large time scale separation between the surfaces, slower 

changing thrust T, and still slower movement of c.g. through mass distribution GW*.  

Moreover, such time scale separation allows the treatment of thrust as well as the 

parametric dependence on GW* to be considered constant, which becomes advantageous 

in analysis as shown below.  And as previously mentioned, the coefficient dependence on 

the Mach number can be legitimately dropped in the subsonic regime. 

6.4 Equilibrium Set  

The equilibrium and the associated equations for the system described by (6.6) are 

developed in this section.  But first a more general approach to the equilibrium state is 

taken.  Consider system equations of the form  

 ( , )x f x u=�  (6.7) 

where x is a vector in nR  and u is a vector in mR .  Let U  denote a set of allowed control 

values in mR  .  Define the equilibrium set  

 ( ) ( ){ }, | , 0,  M x u f x u u U= = ∈  (6.8) 

Projecting M  onto the first factor x results in M, the set of equilibrium states for some δ  

 ( ){ }| , 0,  M x f x Uδ δ= = ∈  (6.9) 

Note that M  and M depend on the specified control limits. 

The equilibrium set of a system with m inputs is typically m-dimensional.  The 

system modeled by (6.6) has four inputs *
1 2( , , , )T GW δ δ  and its equilibrium set M is 

four-dimensional.  The equilibrium set defined in (6.8) for equations of motion in (6.6) is 

simply an aircraft in steady state, straight, wings-level flight.  Equilibrium in a more 

general dynamical sense corresponds to an equilibrium of all the external forces, i.e., a 

state of zero acceleration ( , , )u w q = 0� � � .  Furthermore, in the aerodynamic steady state, the 
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Euler angle θ  must be constant in addition to ( , )u w  being constant.  From flexible mode 

dynamics, steady state implies that ( , )η η = 0�� � .  This leaves four states, ( , , , )u w θ η , with 

nontrivial solution on the equilibrium state manifold M.  At equilibrium, the control 

surface deflections are determined by the need to balance the gravity and aerodynamic 

forces and moments.  In particular, the need for the attitude dynamics to remain constant, 

i.e., ( , , )q qθ = 0� � , defines the values the control deflections must assume in terms of the 

total pitching moment.  Examining the equilibrium equations of motion (6.10) the 

controls 1 2( , )δ δ  can be eliminated as follows.   

 

*
,

*
,2

*

0( ) / m0 sin / m
( , ) / m( ) / m0 cos 0

( ) /0 0 0 ( , ) /1
0 0 0 2 0 0
0 0 0 0 ( ) /
0 0 0 0 0

x

zz

M y M y

Cg T
C GWCg

cC I cC GW I
SV

qC GW m

η

η

ηη η

αθ
ααθ

α α
ρ

⎛ ⎞⎛ ⎞−⎡ ⎤ ⎛ ⎞ ⎛ ⎞ ⎜⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜⎜⎢ ⎥⎣ ⎦ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝
*

, 1

*
, 2*

, 1

*
, 2*

, 1
1

* *

*
1

( , ) 0
m

( , )0
( , )

0 m
m

0 ( , )
( , )

0

( ) ( ) 0
0

( )
0

0

x

z
z

M
M

y
y

u w

C GW

C GW
C GW

cC GW
cC GW

I
I

C GW u C GW w
m m C

C GW
m

δ

δ
δ

δ
δ

η η

η η ηδ
ηδ

η

η

α

α
α

α
α

δ

⎧
⎪ ⎟
⎪ ⎟
⎪ ⎟
⎪ ⎟⎨ ⎟⎪ ⎟⎪ ⎟⎪ ⎟⎟⎪ ⎠⎩

⎛ ⎞
⎜ ⎟
⎜ ⎟

⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎜ ⎟
⎜ ⎟
⎝ ⎠

2

*
2 ( )

0

GW
mη

δ

⎫
⎛ ⎞ ⎪
⎜ ⎟ ⎪
⎜ ⎟ ⎪
⎜ ⎟ ⎪
⎜ ⎟ ⎪
⎜ ⎟ ⎪
⎜ ⎟ ⎪⎪

⎬⎜ ⎟
⎪⎜ ⎟
⎪⎜ ⎟
⎪⎜ ⎟
⎪⎜ ⎟
⎪⎜ ⎟
⎪⎜ ⎟⎜ ⎟

⎝ ⎠ ⎪⎪⎭

(6.10) 

Solving the pitching moment and the flexible dynamics equations for the controls 
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Substituting for the controls in (6.10) and simplifying gives 
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which reduces to the following  
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(6.14) 

The equations in (6.14) govern the behavior of states on the equilibrium manifold 

defined in (6.10). These contain four states ( , , , )u w θ η  and two slow controls ( , )T GW ∗ .  

Since the manifold is four-dimensional, if four of the variables are chosen as coordinates, 

the behavior of the other two would be prescribed without a need for a specific solution if 

such a solution exists for the chosen values of the prescribed variables.  In other words, if 
*( , , , )o o o oT GW θ η  are chosen as coordinates on M, then ( , )u w  are completely specified 

and define the rest of the equilibrium.  The variables chosen as coordinates are a mixture 

of slow controls and position states, while surface positions have been determined by the 

restriction on the pitching moment they produce such that 0q = .  The forces of thrust 

and gravity must be balanced by the aerodynamic forces and moments.  Hence, for a 

given ( , )o oT θ , a solution to (6.14) exists wherever the aerodynamic coefficients, ( ) ( )C α⋅ , 

are continuous and a ( , )u w  pair (or equivalently ( , )V α ) required to produce the 

equilibrium balance between competing forces is achievable.  Both of these conditions 

are vehicle dependent and, in practice must be checked against the aerodynamic database 

and the flight envelope restrictions on ( , )V α .   

In addition, the equilibrium equations (6.14) also allow for a natural separation of 

dynamics due to rigid body and elastic interactions.  The equilibrium aerodynamic 

functions introduced are required to maintain equilibrium state and have direct 

connection to the aerodynamic forces in the limiting equations that govern dynamic 

behavior.   
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Definition: For a system represented by equation (6.14), the equilibrium 

aerodynamic functions due to rigid body effects are ( )xC α  and ( )zC α  defined 

by 

 

( )
( )

( ) ( ) ( )
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, (6.15) 

the equilibrium aerodynamic functions due to the rigid body effects on the elastic 

dynamics and control cross-coupling are ( )re
xC α  and ( )re

zC α  defined by 

 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( )
, 1 , 2

, 1 2 1 , 2

, 1 , 2 , 2 , 1

, 1 2 1 , 2

( )
cos sin

( )

x M
re

M Mx
u wre

z M z Mz

M M

C C
C C C CC

C C
C C C CC

C C C C

δ δ

δ ηδ ηδ δ
η η

δ δ δ δ

δ ηδ ηδ δ

α α
α αα

α α
α α α αα

α α

⎛ ⎞
⎜ ⎟

−⎛ ⎞ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎜ ⎟
⎜ ⎟−⎝ ⎠

.(6.16) 

where cosu V α=  and sinw V α= , the equilibrium aerodynamic functions due 

to control cross coupling with the elastic dynamics are ( )e
xC α  and ( )e

zC α  

defined by 
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(6.17) 

Hence the equilibrium aerodynamic force vector on the M manifold at any 

equilibrium state is 

 2( , ) ( , ) ( , , ) ( ) ( ) ( )1
2( , ) ( , ) ( , , ) ( ) ( ) ( )

re e re e
x x x x x x

re e re e
z z z z z z
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V S

F u w F u w F u w C C V C

η α α α η
ρ

η α α α η

⎛ ⎞ ⎛ ⎞+ + + +
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ + + +⎝ ⎠ ⎝ ⎠

. (6.18) 
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Under practical circumstances, an aircraft has a given flight envelope outside of 

which stability cannot be guaranteed or expected.  This suggests dividing the analysis 

into two cases. 

Assume unlimited control authority and work globally, or 

Restrict analysis to a subset of states with adequate control authority. 

 
The analysis of a global case does not require any specific numerical data unlike case 

two where specifics about the available control power must be available; hence, the initial 

analysis involves the global case only.  The restriction on control authority simply 

confines the global results to a subset. 

The equilibrium equations (6.14) are restated in terms of the equilibrium aerodynamic 

coefficients  

 2m sin ( ) ( ) ( )0 1
m cos0 2 ( ) ( ) ( )

re e
o o x x x o

re e
o z z z o

g T C C V C
SV

g C C V C

θ α α α η
ρ

θ α α α η

⎛ ⎞− + +⎛ ⎞⎛ ⎞
= + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (6.19) 

where *( , , , )o o o oT GW θ η  are parameters and (m, , , ,g)S ρ ω  are fixed constants.  Since 

*( , , , )o o o oT GW θ η  are chosen parameters, the remaining variables are ( , )V α .  Since 

( , )V α  are the wind axis or polar coordinate representation of the velocity components 

( , )u w , and as previously mentioned, with *( , , , )o o o oT GW θ η  chosen, the ( , )u w  behavior is 

completely specified and defines the rest of the equilibrium.  Then the solution ( , )V α  

verifying (6.19) will completely define the equilibrium.  The existence of such a solution, 

as mentioned above, depends on the continuous nature of the aerodynamic coefficients in 

the region where a specific ( , )V α  is required to balance the forces produced by 

*( , , , )o o o oT GW θ η .  

 
6.1 Remark: For a given *( , , , )o o o oT GW θ η , the equilibrium of system (6.6) is 

formed by all points  

 ( ) ( ), , , , , , ,0, , ,0o ou w q u wθ η η θ η=�  

where 

 cosu V α= ,  sinw V α= , 



  143 

  Chapter 6 – Stability 

and ( , )V α is a solution of (6.19) corresponding to the given *( , , , )o o o oT GW θ η .  

Thus, given *( , , , )o o o oT GW θ η  if (6.19) has a unique solution, then the system 

represented by (6.6) has a unique equilibrium point. 

 

There are two parameters to consider when discussing the uniqueness of solution of 

(6.19) – thrust T  and pitch attitude θ .  For a fixed oT , V  is fixed and α  becomes a 

function of oθ .  Recall the relationship θ α γ= + , where γ  is flight path angle.  Hence, 

for a given oT , α  is a single valued function of θ  on some interval(s) and a multi value 

function on others.  Typically, the multiple values occur for higher values of θ  where the 

longitudinal and lateral-directional coupling becomes pronounced.  Where these regions 

occur depends on the aerodynamic and structural characteristics of a specific aircraft; no 

generalization is available in literature.  

6.5 Dynamic Inversion  

The algebraic equations required to obtain system equilibrium independent of the 

control design have been established.  Now a dynamic inversion controller to achieve a 

given equilibrium state is introduced.  The control problem in general can be stated as 

follows: 

Problem Statement: Given an equilibrium state x , determine a controller 

( ),u K x x=  so that x  is a global attractor for the system  

 ( )( ), ,x f x K x x=�  (6.20) 

Any global attractor must be an equilibrium state.  Using dynamic inversion this 

problem is addressed for vehicle models having a unique equilibrium point for 

appropriately chosen engine thrust T and mass distribution GW*. 

 
The approach is to invert the rotational dynamics to a stable set of desired dynamics.  

Since the throttle is typically a low-bandwidth control that is not changed during dynamic 

maneuvers, it is left fixed throughout the construction of the controller K and the 

analysis.   
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The philosophy behind the control law is for the vehicle to follow the pitch rate 

commands and, for the purpose of this analysis, to directly control the elastic modes.  The 

structure of the dynamic inversion controller K is given by the following expression  

 ( ) ( )
1 0 2 0

0 3 0 4

des
cmd cmd

cmd cmd

q qq K K
K K

θ θ
φ η η φ η ηη
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 (6.21) 

The desired dynamics are realized if the control surfaces conform to the following 

expression in the closed loop 
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Substituting the expression for controls (6.22) into the system equations (6.6) results in a 

closed loop system that readily separates into the following two subsystems.  The 

controlled variables q and η�  and their associated equation give 
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These equations are linear and decoupled from the u-w dynamics.  The remaining 

dynamics of the u-w subsystem result in  
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Substituting the equilibrium aerodynamic functions to simplify the expression results in 
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(6.24) 
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Consequently proving the stability of the u-w subsystem would prove the stability of 

the entire closed loop system (6.23) and (6.24), since the commanded variables are stable 

by design. 

 

6.6 Stability of a 2-D System   

This section derives explicit algebraic conditions that guarantee that the solutions of 

(6.4) and (6.5) satisfy the assumptions stated in Section 6.2.  As was shown in the 

previous section, the dynamic inversion controller decomposes a six-dimensional system 

into a four-dimensional controlled dynamics and a two-dimensional internal dynamics.  

Furthermore, as observed earlier, the dynamics of ( , , , )q θ η η�  are decoupled from the 

velocity dynamics ( ),u w .  Therefore, while studying the internal dynamics, it may be 

assumed that ( , , , )q θ η η�  are known functions; hence, (6.24) becomes a two-dimensional 

time-varying nonlinear system.  The time dependence enters implicitly from the actions 

of the controls.  The regulation of the closed loop system takes time and it asymptotically 

reaches the new state as t →∞ . 

Furthermore by design and physical limitation of the aircraft , 0q η →�  and 

,cmd cmdθ θ η η→ →  as t →∞ , so the internal dynamics in (6.24) become 

 
( , ) ( , ) ( , , )sin 1

m
m ( , ) ( , ) ( , , )cos

re e
x x x cmdcmd

re e
z z z cmdcmd

T F u w F u w F u wu g
w F u w F u w F u wg

ηθ

ηθ

⎛ ⎞ ⎛ ⎞+ +− +⎛ ⎞ ⎜ ⎟= + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ + +⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

�
�

 (6.25) 

where , ,  for ,re e
i i iF F F i x z=  have been substituted from (6.19). Mathematically, the 

internal dynamics of the closed loop system in the limit, as t →∞ , (6.25) are called the 

limiting system of (6.24); furthermore, their dynamic behavior determines that of 

(6.24)48 .  The idea behind limiting systems has been mentioned earlier in Section 6.2.  

The closed loop equations in (6.24) assume precisely the asymptotically autonomous 

form ˆ( ) ( , )x f x g x t= +�  with perturbation ˆ ( , )g x t  describing direct control driven states, 

i.e., as t →∞ , cmdx x→ .  The details of limiting equations and stability of 

nonautonomous systems are discussed in Reference 48.    
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To this point, in the development of the global stability result, the n-dimensional 

system has been reduced to a two-dimensional nonautonomous one via a dynamic 

inversion controller.  Earlier in this section, the nonautonomous system (6.24) was 

reduced to its limiting system (6.25), which is autonomous.  The next step is to establish 

conditions for stability of the equilibrium of (6.25).  The first of these is to prove the 

bound on a solution of (6.24).  This is accomplished in the following lemma. 

 

Lemma 6.1: Assume the total aerodynamic drag ( )re
DC α  is always positive.  

Then there exists a finite neighborhood 2D ⊂ R  on the u-w surface into which all 

trajectories enter and remain.  And the dynamic system described by (6.24) is 

bounded.  

 

Proof: Lyapunov’s direct method of finding a Lyapunov function will show 

boundedness of the trajectories ( )( ), ( )u t w t .  Consider Lyapunov stability and the 

function 2 2 2V u w= +  as a candidate Lyapunov function.  The variable V is 

speed of the vehicle and is directly proportional to the kinetic energy.  (Recall that 

Lyapunov functions tend to be energy like.)  If the candidate function proves to 

be a Lyapunov function, then a conclusion about the stability of the internal 

dynamics given by (6.24) can be made.  The function is a quadratic, hence it is 

easy to verify that it will satisfy the first criteria of a Lyapunov function, 

(0) 0 and ( ) 0, {0}V V x x D= > ∀ ∈ − .  Since the original equations do not have 

the equilibrium at the origin, a change of variable ˆ ou u u= −  and ˆ ow w w= −  is 

applied to (6.24) and (0)V  is computed.  Let (0,0)ˆ ˆ(0) ( , )V V u w= , then 

2 2
(0,0)ˆ ˆ( , ) ( ) ( )

o oo u u o w wV u w u u w w= == − + − , (0,0)ˆ ˆ( , ) 0 V u w = , and 

{ }ˆ ˆ ˆ ˆ( , ) 0, , 0V u w u w D≠ ∀ ∈ −  

To satisfy the second criteria, from (6.24) compute the time rate of change of 

ˆ ˆ( , ) /dV u w dt  along the trajectory with new variables ˆ ˆ( , )u w .  For convenience of 

algebraic manipulations define new variables.  These can be also considered to 

form elements of a closed loop “control effectiveness” matrix and are defined as 

follows: 
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( )

( )
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z
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α α α α

=
−

−
=

−

−
=

−

− +
=

( ), 1 2 1 , 2( ) ( )M MC C C Cδ ηδ ηδ δα α−

 

Then the equations in (6.24) can be rewritten as  

 

, 1 , 2

, 1 , 2

2

( ) ( )

ˆˆ ( ) sin
mˆ( ) m ( ) ( )ˆ cos

ˆ( ) ( ) ( )( )ˆ( )
2m ( ) ( )

x x
des

yyo
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o z z

y
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T m Im Iq w wu qg
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η
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θ
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α α η αρ
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⎡ ⎤
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z o

x M x q
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C C C qC C q

C C C C qC C q
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⎧⎛ ⎞⎪⎜ ⎟⎨⎜ ⎟+⎪⎝ ⎠⎩
⎫⎛ ⎞− − + ⎪⎜ ⎟+ ⎬⎜ ⎟− − + ⎪⎝ ⎠⎭
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Using the above equation, the time rate of change of ˆ ˆ( , )V u w  becomes 
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( )( )}

2

2

, 1 , , 2

, 1 , 2
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m 2m

ˆ
ˆ2 ( ) ( ) ( )

( ) ( )
m

ˆ( ) cos

ˆ2

e re
o o x x x o

x M x q

des
y x x

des
y

o

T Sq w w g V V C C C V V

dV u C C C qC C q
dt

m I C cC q
c m I

Sq u u g

w

δ η δ ηη η

η δ δ

η

ρθ η α

α α η α η

α α

η

ρθ

⎛ ⎞
⎜ ⎟− + − + + + + + +⎜ ⎟
⎜ ⎟
⎜ ⎟= + − − +
⎜ ⎟
⎜ ⎟⎛ ⎞⎡ ⎤
⎜ ⎟+ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠

+ + +

+

� �� �

�

��

( ){
( )( )}

2

, , 1 , , 2

, 1 , 2

ˆ ˆ( ) ( ) ( ) ( )( )
2m

( ) ( ) ( ) ( )

( ) ( )
m

e re
o z z z o

z z M z q

des
y z z

des
y

V V C C C V V

C C C C qC C q

m I C cC q
c m I

η δ η δ ηη η

η δ δ

η

α α η α

α η α α η α η

α α

η

⎛ ⎞
⎜ ⎟+ + + +⎜ ⎟
⎜ ⎟
⎜ ⎟+ − − +
⎜ ⎟
⎜ ⎟⎛ ⎞⎡ ⎤
⎜ ⎟+ ⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎝ ⎠

� � �� � �

�

��

 



150 

Chapter 6 – Stability 

where desq�  and desη��  are defined in (6.21).  Changing the coordinate system to 

polar coordinates and expressing aerodynamic coefficients in terms of lift and 

drag necessitates the following expressions 

 ( ) ( ) ( ) ( )( ) ( )sin cos cos sinx zL D L DC C C C C Cα α α α= − = − −i i i ii i  

( ){
( )( )}

, 1 , 2

2
2

, 1 , , 2
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m m

ˆ ˆ ˆ ˆ2 cos ( ) ( ) ( ) ( )( )
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Collecting terms and simplifying 



  151 

  Chapter 6 – Stability 

 

( )

{
( )}

( )

2

, 1 , 2

2
, 1 ,

, , 2

ˆ ˆ2 cos sin sin cos cos ( ) ( )
m m m

ˆ ˆ ˆ( ) ( ) ( ) ( )( ) ( ) ( )
m

sin ( ) ( )

2 cos sin sin cos
m

y des des
D D

e re
o D D D o D M

z D q

I mdV Tg C q C V
dt c

S V V V C C C V V C C

C C qC C q

Tg

η
δ δ

δ η

η δ ηη η

α θ α θ α α α η

ρ α α η α α α η

α α η α η

α θ α θ

⎛ ⎞
= − + + − −⎜ ⎟

⎝ ⎠

+ + − − − + +

+ + +

= − + +

�

� �

���

�

� �

( )

, 1 , 2

, 1 , ,2

, 2

, 1 , ,2

, 2

ˆcos ( ) ( )
m m

( ) ( ) ( ) ( ) sin ( )
ˆ

m ( )

( ) ( ) ( ) ( ) sin ( )
ˆ2

m (

y des des
D D

e
D D D M z

o
D q

e
D D D M z

o
D

I m
C q C V

c

C C C C CS VV
C qC C q

C C C C CS V V
C

η
δ δ

δ η η

δ ηη η

δ η η

δ

α α α η

α α η α α η α α ηρ
α η

α α η α α η α α ηρ
α

⎛ ⎞
− −⎜ ⎟

⎝ ⎠
⎛ ⎞− − + +
⎜ ⎟+
⎜ ⎟+ +⎝ ⎠

− − + +
+

+

� �

�

� �

���

� �

�

� �

( )

( )

( )

, 1 , ,3

, 2

4 3 2 2 3

)

( ) ( ) ( ) ( ) sin ( )
ˆ

m ( )

ˆ ˆ ˆ ˆ3 3 ( )
m

q

e
D D D M z

D q

re
o o o D

qC C q

C C C C CS V
C qC C q

S V V V V V VV C

ηη η

δ η η

δ ηη η

η

α α η α α η α α ηρ
α η

ρ α

⎛ ⎞
⎜ ⎟
⎜ ⎟+⎝ ⎠

⎛ ⎞− − + +
⎜ ⎟+
⎜ ⎟+ +⎝ ⎠

− + + +

�

� �

�

�

� �

�

 

( ) ( )

2

, 1 , 2

, 1 , ,2 2

, 2

, 1 ,3

ˆ ˆ2 sin( ) cos ( ) ( )
m m m

( ) ( ) ( ) ( ) sin ( )
ˆ ˆ2

m ( )

( ) ( ) ( ) ( )
ˆ

m

y des des
D D

e
D D D M z

o o
D q

e
D D D M

I mdV Tg C q C V
dt c

C C C C CS VV V V
C qC C q

C C C CS V

η
δ δ

δ η η

δ ηη η

δ η

θ α α α α η

α α η α α η α α ηρ
α η

α α η α αρ

⎛ ⎞
= − + − −⎜ ⎟

⎝ ⎠
⎛ ⎞− − + +
⎜ ⎟+ +
⎜ ⎟+ +⎝ ⎠

− − +
+

� �

�

�

���

� �

�

�

( )

( )

,

, 2

2 2 3 3 4

sin ( )

( )

ˆ ˆ ˆ ˆ3 ( ) 3 ( ) ( )
m m m

z

D q

re re re
o o D o D D

C

C qC C q

S S SV V VV C V C V C V

η

δ ηη η

η α α η

α η

ρ ρ ρα α α

⎛ ⎞+
⎜ ⎟
⎜ ⎟+ +⎝ ⎠

− + − −

�

�

�

�

(6.26) 

 

where  
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(6.27) 

The expression for ( )re
DC α  denotes the total equilibrium drag due to the elastic 

effects on the rigid body including direct surface effects.  The coefficient of V̂  

consists of functions of thrust and gravity as well as of desired dynamic variables 

all of which are bounded by physics, gravity, or design.  For sufficiently large V, 

the 4V̂  term will dominate the candidate Lyapunov function.  (In fact, all of the 
3 3 2 2ˆ ˆ ˆ, ,o o oV V VV V V  coefficients are ( )re

DC α .)  Hence, if the coefficient of 4V̂  is 

positive, the time rate of change of 2 2 2ˆ ˆ ˆV u w= +  is negative and the conclusion 

of boundedness of (6.24) from above follows.  □ 

 

The expression for ( )re
DC α  can also be considered in terms of feedback control cross-

coupling and the flexible mode excitation due to velocity in the direction of drag.  The 

requirement that ( ) 0re
DC α >  sets limitations on the size of the elastic dynamic excitation 

due to velocity and the rigid body control effectiveness cross-coupling.  This condition 

ensures that a solution ( ( ), ( ))u t w t  of (6.24) is bounded, and is based on the physics on 

the problem.  It is reassuring when the mathematics reassert the understanding of the 

physical behavior. 

Now given the boundedness of solution ( ( ), ( ))u t w t  of (6.24), the equilibrium of a 

two-dimensional autonomous system (6.25) is either a point or a limit cycle and is either 

stable or not.  Here the physics of the problem are used to create appropriate conditions 

for stability.  For straight and level flight equilibrium, the aerodynamic forces must 

balance the force of gravity and thrust.  For a given value of thrust T, if the vehicle is too 

fast for its equilibrium, the pitch angle would increase, thus increasing drag to slow the 
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vehicle down.  If, on the other hand, the aircraft is slower than its equilibrium velocity, 

the pitch angle would be decreased to increase the gravitational acceleration and 

potentially decrease drag in order to speed up.  This is not an optimum approach in 

practice, especially at low altitude, but it is a legitimate maneuver to achieve desired 

speed.  Notice that in both cases, drag, and implicitly its companion lift, would play a 

role, so it would be natural to suppose that they would play a role in describing stability 

conditions.  It can be further argued that the aerodynamic force of drag would be 

dissipative for any speed greater than zero.  Appropriate amount of thrust balanced with 

gravitational force is what overcomes this dissipative effect in actual flight.  The 

following lemma codifies this relationship. 

 

Lemma 6.2: Define G as the right hand side of (6.25).  Assume that the 

aerodynamic forces have a dissipative effect, that is  

( ) 0
where

( )

( ) ( ) ( )
3 ( ) 4 ( ) 3 ( )

2m

re e
re eL L L

D D D cmd

div G

div G

dC dC dCSV C C V C
d d d

α α αρ α α α η
α α α

<

=

⎧ ⎫⎛ ⎞ ⎛ ⎞⎛ ⎞⎪ ⎪− + − + − +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

(6.28) 

for all ( ),u w  not equal to (0,0).  Then the only possible closed orbits of the 

limiting system (6.25) are equilibria.   

This lemma is a restatement of the Bendixson’s criterion. 

 

Proof:  The proof is by contradiction and application of the Green’s Theorem.  

Assume that there exists some closed orbit C and let R define the interior region, 

then by the Green’s Theorem 

 
C R

G nd divGd Areaσ⋅ =∫ ∫∫  

where ndσ is a vector element on a plane directed along the unit outer normal 

vector n to C.  The inner product on the left side is thus zero by construction, 

while divG on the right is negative by assumption.  Hence, there exists a 

contradiction that proves the lemma.  (This Lemma is an extension of the 
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theorem in Hale (1980) Chapter 2, Exercise 1.3.)  The detailed calculation of 

divG is shown in detail in Appendix D. □ 

 

Prior to proceeding, a definition of an ω-limit set and an associated invariance 

property are introduced here for background purposes.  These will be used in upcoming 

technical developments. 

 

Definition: The ω-limit set of a solution ( , , ) n
o ox t x t ∈R  of (6.5), denoted 

( ) nxΩ ⊂ R , consists of all points y such that there exists a strictly increasing 

sequence kt  such that ( , , )k o ox t x t y→  as kt →∞ .   

 

For convenience, a well known invariance property of ω-limit set of the autonomous 

system is restated here.  The proof can be found any standard text, e.g. References 34 or 

48  

 

Lemma 6.3:  If a solution ( )x t  of (6.5) is bounded and belongs to nD ⊂ R , a 

domain containing the equilibrium point, for 0t ≥ , then its ω-limit set ( )xΩ  is a 

nonempty, compact, invariant set.  In other words, for any ( )y x∈Ω , the solution 

( )x t  through y stays in ( )xΩ  whenever it is defined.  Moreover, the trajectory 

actually approaches its limit set, ( ) ( )x t x→Ω , as t →∞ . 

 

As a corollary of the above dissipative condition lemma 6.2, the following stability 

result applies to the limiting system (6.25).  

 

Corollary 6.1:  Assume that  

(1) the limiting system (6.25) has a unique equilibrium ( ),u w  for given 

*( , , , )o o cmd cmdT GW θ η ; 

(2) the forces defined by vector G that includes the equilibrium aerodynamic 

forces F satisfy the divergent condition (6.28). 
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Then the unique equilibrium is a global attractor for the limiting system (6.25), 

i.e., any solution ( ) ( )( ),u t w t  of the limiting system (6.25) satisfies 

 lim ( ) , lim ( )
t t

u t u w t w
→∞ →∞

= =  

 

Proof:  Since the asymptotically limiting behavior of (6.24) is expressed by (6.25) 

and since a solution of (6.24) is bounded by Lemma 6.1, then any solution 

( ) ( )( ),u t w t  of (6.25) is bounded.  Thus, its ω-limit set ( )xΩ  is either equilibria 

or a periodic orbit.  But Lemma 6.2 excludes the periodic closed orbit case and 

Assumption 1 excludes a union of equilibria and connecting trajectories.  Hence, 

by the invariance property stated in Lemma 6.3, the ω-limit set ( )xΩ  of any 

solution consists of one point ( ),u w , which is the unique equilibrium of (6.25) by 

assumption.  This is equivalent of saying that ( ),u w  is the global attractor of the 

system (6.25).  □ 

 

Remark 6.2:  For a given *( , , , )o o cmd cmdT GW θ η , the limiting system (6.25) has a 

unique equilibrium if and only if the equations  

  2m sin ( ) ( ) ( )0 1
m cos0 2 ( ) ( ) ( )

e re
cmd x x x

e re
cmd z z z

g T C C C V
SV

g C C C V

θ α α η α
ρ

θ α α η α

⎛ ⎞− + + +⎛ ⎞⎛ ⎞
= + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (6.29) 

have only one solution ( , )Vα  for given *( , , , )o o cmd cmdT GW θ η .  

 

The solution can be found by looking for an intersection of contour plots of each 

equation.  For a given mass distribution *
oGW  and flight condition specified by 

( , , , )o cmdT Vθ α , the aircraft will assume a unique quasi-static deformation cmdη .  The 

uniqueness of solution ( , )Vα  depends on where for a given value of /oT mg , α  is a 

single valued function of cmdθ  as well as where α  is a singled valued function of /oT mg  

for a given value of cmdθ .  The size of these regions depends on the thrust-to-weight ratio 

for an aircraft and its controllability across the α  range.  The higher the /oT mg , the 

larger the α  range where ( , )Vα  is a unique solution.  Furthermore, bifurcation analysis, 
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given a specific aircraft, can determine regions of a unique solution versus multiple 

solutions.  As previously mentioned, there are no generalizations available to determine 

these regions without actual aircraft aerodynamics being employed in the analysis.  

In summary, the lemmas and corollary have shown that there is a unique, stable 

global attractor for the limiting system (6.25), provided it has a unique equilibrium (see 

Remark 6.2), the equilibrium is not a limit cycle (see Lemma 6.2), and the solution of the 

nonautonomous two-dimensional system is bounded (see Lemma 6.1).  At this juncture 

the global stability theorem that relates the stability of the autonomous limiting system 

(6.25) to that of the internal dynamics (6.24) is stated in terms of the required algebraic 

conditions. 

 

Theorem 6.1:  Assume that 

(1) the total drag coefficient  

 ( ) 0re
DC α >  

(2) the aerodynamic functions satisfy the dissipative condition 

 ( ) 0div G <  

with G defined as the right side of limiting equation (6.25), 

(3) for a given *( , , , )o o cmd cmdT GW θ η , the equations (6.29) 

2m sin ( ) ( ) ( )0 1
m cos0 2 ( ) ( ) ( )

e re
cmd x x x

e re
cmd z z z

g T C C C V
SV

g C C C V

θ α α η α
ρ

θ α α η α

⎛ ⎞− + + +⎛ ⎞⎛ ⎞
= + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

have a unique solution ( , )Vα , 

 
Then, for a given *( , , , )o o cmd cmdT GW θ η , the closed loop system (6.23) and (6.24) 

has a unique equilibrium ( ), , , , ,u w q θ η η�  given by  

cos , sin , 0, , 0,cmd cmdu V w V qα α θ θ η η η= = = = = =�  

where ( , )Vα  is the unique solution of the equations (6.29). 

Furthermore, any solution ( )( ), ( ), ( ), ( ), ( ), ( )u t w t q t t t tθ η η�  of the closed loop 

system (6.23) and ( 6.24) satisfies 

 ( ) , ( ) , ( ) 0, ( ) , ( ) , ( ) 0cmd cmdu t u w t w q t t t tθ θ η η η→ → → → → →�  
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as t →∞ .  In other words ( ), ,0, ,0,cmd cmdu w θ η  is a global attractor of the 

closed loop system (6.23) and (6.24). 

 

Proof Outline:  A basic sketch of the proof is given here. A more rigorous and detailed 

version is presented in the following section along with the necessary background theorems.  

By the design of the feedback control the closed loop system is decoupled into 

internal dynamics (6.24) and stable controlled dynamics (6.23).  Furthermore, 

since , 0q η →�  and ,cmd cmdθ θ η η→ →  as t →∞ , internal dynamics system 

(6.24) is asymptotically autonomous and its limiting equation is given by an 

autonomous system (6.25).  A corollary to the Markus theorem49 is invoked to 

relate the stability of (6.24) to that of (6.25), which establishes that ( ),u w  is the 

local attractor to the nonautonomous system (6.24).  It is possible to apply this 

extension of the Poincare Theorem only because the system is two-dimensional.  

The Yoshizawa theorem50 is then applied to show that ( ),u w  is also a global 

attractor of (6.24).    

 

The first two assumptions are based on the physical characteristics of the vehicle 

under consideration.  Furthermore, a variation of these assumptions that does not include 

the flexible vehicle dynamics, have been shown by Morton, et al. to hold for a variety of 

fighter aircraft.  Hence, the stability of the closed loop system depends on whether 

equations (6.29) have a unique solution ( , )Vα .  This in turn depends on the uniqueness 

of α for a given engine thrust T and the commanded attitude θ.   

The next section reverts to addressing the stability in a more general form of 

nonlinear system representation.   

6.7 Stability of a Standard Dynamic Inversion Controlled System  

This section establishes the connection between the behavior of a nonautonomous 

two-dimensional nonlinear system and it limiting system.  Furthermore, the reduction 

from n-dimensional to two-dimensional system by control and why that is necessary for 

the global stability result is discussed. 
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The basics of standard dynamic inversion or feedback linearization are introduced in 

Chapter 2.  For exact feedback linearization, all original dynamics are cancelled and 

converted to a string of integrators.  These are then assigned desired dynamics by the 

controller and the system is stable by design.  All of this, of course, occurs for a nominal 

system that is known exactly and the issue of robust stability is not considered.  In the 

case that the system relative degree r is not equal to the number of states n, feedback 

linearization results in a system with linearized dynamics, a string of integrators, and 

internal dynamics that are unobservable in the output.  The system stability then depends 

on the stability of its internal dynamics.  However, the standard feedback linearization 

stability results are local in nature, in the sense that they lead to a design of feedback laws 

which are defined only in a neighborhood of a given equilibrium point15.   

The interest in this work is in global stability of the aircraft dynamical system, which 

the standard feedback linearization results do not accommodate.  Fortuitously, the 

dynamic inversion controller reduces the problem such that the internal dynamics are 

two-dimensional and a special tool available only in two-dimensional can be used to 

establish global stability result as will be shown in this section. 

Consider a nonlinear system representative of aircraft dynamics given by  

 
( ) ( ) , ( , )
( )

n
i cx f x g x x x x

y h x
δ= + = ∈

=

R�
 (6.30) 

where cx  are the states that are controlled in the output and ix  are internal states that are 

not controlled.  In certain cases, there exists an input-output feedback linearizing 

controller ( )ˆ , ,c desu x x tδ = �  where 

 ( ) ( ) ( )1ˆ , , ( ) ( ) ( )c des c c des cu x x t h x g x x f x−= −� �  

such that the closed loop system assumes a special structure 

 
( )

2

2

ˆ ˆ( ) ( , , , )
ˆ, ,

ii i c c des
n

c des c c des

xx f x g x x x t
x x x x x −

∈+⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

∈⎝ ⎠ ⎝ ⎠

R

R

� �
� � �

 (6.31) 

The time dependence arises implicitly from the control action as the system reaches a 

new commanded value.  The stability of the system, as been alluded to before, depends 

on the stability of it internal dynamics, ( )ix t .  What makes this case special is that the 
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internal dynamics belong to two-dimensional space, 2R , which enables a proof of global 

stability by introducing certain mathematical tools available only in this space.  An 

example of just such a system is the integrated flight/SMC controller closed loop 

discussed in Section 6.5.   

The desired dynamics of the controlled states are expressed as a difference between 

the commanded and actual measurement of the state, ( )des cmd cx f x x= −� ; so as t →∞ , 

the controlled states reach their commanded value c cmdx x→ .  Consider the dynamic 

behavior of the internal dynamics, also represented by (6.4), in the limit, i.e., as t →∞ .  

As mentioned in the earlier section of this chapter, the nonlinear autonomous dynamic 

system that describes the behavior of (6.4) as t →∞  is a limiting system of (6.4).  Hence, 

as t →∞ , the controlled states go to their commanded values c cmdx x→  and the desired 

dynamics ( )des cmd cx f x x= −�  go to (0) 0desx f= →� .  Consider the behavior of the 

controller ( )ˆ , ,c desu x x t�  in this situation.  First there is no longer time dependence in the 

control action since the commanded value has been reached, hence as t →∞  

 ( ) ( ) ( ) ( )1ˆ ˆ, , ,0 ( ) ( ) ( )c des cmd cmd cmd cmdu x x t u x h x g x f x−→ = −�  

with ˆcmdx  constant.  Since the perturbation ˆ ˆ( , , , )c c desg x x x t�  of (6.4) is the result of the 

controller influence on the internal dynamics, ˆ ˆ ˆ ˆ( , , , ) ( , ,0)c c des cmd cmdg x x x t g x x→� .  

Moreover, ˆ ˆ( , ,0)cmd cmdg x x c→  where c is a constant.  Hence, without loss of generality, 

ˆ ˆ( , , , ) 0c c desg x x x t →�  as t →∞  and(6.4) becomes (6.5).  When a nonlinear system 

assumes the characteristics exhibited by (6.4), it is called an asymptotically autonomous 

system with ( )i ix f x=�  as the limiting equation.  Recall from Lemma 6.3 that the ω-limit 

set ( )ixΩ  of the solution ( )ix t  is invariant.  In other words, for any ( )iy x∈Ω , the 

solution ( )ix t  through y stays in ( )ixΩ  whenever it is defined.  Moreover, the trajectory 

actually approaches its limit set, ( ) ( )i ix t x→Ω , as t →∞ . 

The limiting system and the asymptotically autonomous form of the internal 

dynamics allow for two-dimensional specific tools to be used to prove global stability of 

the closed loop system (6.31).  There are two theorems that are stated for convenience 

and are used in the proof prior to the statement of the global stability result.   
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Theorem (Markus)48, 49:  Let in 2R  system (6.4) be asymptotically autonomous 

(i.e., ˆ ˆ( , , , ) 0c c desg x x x t →�  uniformly on compact sets as t →∞ , as in Markus49 

(see also LaSalle48).  Let a solution ( )i ix x t=  of (6.4) lie in a compact set 

2K ⊂ R  and suppose ( )xΩ  does not contain any critical points of ( )i ix f x=� .  

Also assume that ( )i ix f x=�  has the uniqueness property.  Then ( )xΩ  is the 

union of closed orbits of ( )i ix f x=� . 

 

The direct corollary to the Markus theorem is given below.   

 

Corollary 6.2:  Assume 

(1) limiting system (6.5) has a unique equilibrium ix  for a given ox ,  

(2) limiting system (6.5) has a stable equilibrium that is not a limit cycle. 

Then there is a neighborhood D of ix  such that for any ox D∈ , the solution 

( )ix t  of the original system (6.4) with (0) ox x=  satisfies   

 lim ( )i it
x t x

→∞
=  

 

Proof:  This is a direct corollary of the Markus’ Theorem and the fact that ix  is 

not only a global attractor for the limiting system, but also a stable equilibrium.  

The algebraic conditions that make ix  the global attractor and stable equilibrium 

are given in Corollary 6.1 in terms of aircraft parameters.  □ 

 

The above corollary states that ix  is a local attractor of the original system (6.4), 

which is asymptotically autonomous.  The goal is to show that ix  is also a global 

attractor to original system, which is achieved by using the following Yoshizawa’s 

theorem, modified for the system under consideration. 

 



  161 

  Chapter 6 – Stability 

Theorem (Yoshizawa)50:  Let D be a nonempty closed set in the space Q.  

Assume that as t →∞ , ( , ) ( , )x f x t g x t= +�  evolves such that ( , ) ( )f x t f x→  

and ( , )g x t  is bounded; and, corresponding to each 0ε >  and each y D∈ , 

there exists a ( , ) 0yδ ε >  and a ( , ) 0T yε >  such that if ( , )x y yδ ε− <  and 

( , )t T yε≥ , then ( , ) ( , )f x t f y t ε− < . 

Suppose that a solution ( , , )i o ox x t t  of (6.4) is bounded and approaches a closed 

set D in the space Q.  If ( )if x  satisfies the assumption, then the ω-limit set 

( )ixΩ  is an invariant set contained in D of the equation (6.5) contained in D. 

 

The global stability result for the nonlinear system described in this section can now 

be stated.  

 

Theorem 6.2:  Assume that 

(1) the solution ( )ix t  of (6.4) is bounded  

(2) the limiting system (6.5) has a unique equilibrium ix  for a given ox  

(3) the equilibrium ix  of the limiting system (6.5) is a point and not a limit cycle 

 
Then, for a given ox , the closed loop system (6.31) has a unique equilibrium x  

given by  

( , )i cx x x=  

where ix  is a unique solution of 0 ( )if x=  (equilibrium form of (6.5)) and 

c cmdx x= . 

Furthermore, any solution ( )( ), ( )i cx t x t  of the closed loop system (6.31) satisfies 

 ( ) , ( )i i c cmdx t x x t x→ →  

as t →∞ .  In other words, ( , )i cmdx x  is a global attractor of the closed loop 

system (6.31). 
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Proof:  The system (6.4) satisfies the assumptions of the Yoshizawa’s theorem 

by inspection (see Note below for aircraft application).   

(1) It follows from the Yoshizawa’s theorem, that the ω-limit set ( )ixΩ  of ( )ix t  

is an invariant set of the equation (6.5).  From Corollary 6.1, the unique 

equilibrium ix  of the limiting system (6.5) is contained inside the closure of 

any ω-limit set of (6.5), in particular ( )i ix x∈Ω .   

(2) By Corollary 6.2, there is a neighborhood D of ix  such that if the solution 

( )ix t  enters into D, then ( )i ix t x→  as t →∞ .   

From (1), ix  is a limit point of ( )ix t , which guarantees that ( )ix t  will enter into D 

at some time 0ot > .  By (2) ( )i ix t x→  as t →∞  making ix , a unique 

equilibrium, the global attractor of (6.4).  This completes the proof. 

 

Note:  For the aircraft equations of motion (6.24), the assumptions of the 

Yoshizawa’s Theorem are satisfied if 2( )ixΩ = R  and  
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So that as t →∞  

 
2sin / m ( ) ( )( )

( , ) ( )
cos 2m ( ) ( ) ( )

re e
cmd x xx

cmdre e
cmd z x x

g T C CCSVf x t f x V
g C C C

θ ρ η
θ

⎧ ⎫⎛ ⎞ ⎛ ⎞− + ⋅ ⋅⎛ ⎞⋅⎛ ⎞ ⎪ ⎪→ = + + +⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⋅ ⋅ ⋅⎝ ⎠ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
 

and  

 ( , ) 0g x t →  

 

6.8 Summary  

The results of this chapter show how a complicated dynamical problem of 

establishing system stability reduces to checking algebraic conditions that are 

manageably complex.  This is accomplished by reducing the determination of stability of 

an n-dimensional system to that of a two-dimensional one via a dynamic inversion 

controller.  The resulting nonautonomous system is then reduced to its autonomous 

limiting system and the stability of the limiting system is established.  The stability of the 

autonomous system is shown in two steps that produce vehicle specific conditions.   

The established algebraic conditions provide an initial test that can guarantee global 

stability when applied to a real world problem that involves highly coupled flight and 

aeroelastic dynamics as well as an integrated flight/SMC control MIMO system.  The 

initial approach is to simplify the problem, address the pitch axis dynamics with only a 

single mode and no actuator dynamics, and then assess the ramifications of aeroelasticity 

on the stability results.  The role played by flexible dynamics is immediately apparent 

from consideration of the internal dynamics of the system.  Furthermore, these flexible 

dynamics play a role in establishing stability guarantees for the closed loop system.  

While the analysis represents a somewhat idealized case, the insight provided has 

immediate real world application with respect to the influence of flexible dynamics on 

the system as a whole. 

The results presented are the first to include flexible dynamics in stability analysis of 

dynamic inversion methodology.  These form an initial basis to more complicated control 

problem formulation that includes a modified dynamic inversion methodology employed 

to design an integrated flight/SMC controller for a high fidelity model discussed earlier.  

The next step undertaken in the following chapter is to introduce the modified dynamic 
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inversion into the analysis performed here and then establish stability guarantees that are 

still possible with this complication. 
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Chapter 7 – Stability for Novel Dynamic Inversion  

There is a need to make a connection between the case of standard dynamic inversion 

applied to a system with substantial rigid body/flexible mode interaction and novel 

dynamic inversion applied to a high fidelity model of highly flexible aircraft.  In the 

former case, a global stability result is derived that imposes limitations on the relative 

magnitude of dynamic rigid/flexible body dynamics.  In the latter case, the novel 

dynamic inversion is applied to a high fidelity dynamic model and achieves decoupling 

control results in the rigid body pitch loop while modifying the flexible dynamics without 

their cancellation.  This case is too complicated to establish an analytically based stability 

result, which leaves only simulation to show stability of the controlled system.  The goal 

of this chapter is to establish a link between these two cases, by utilizing the simplicity of 

the analytical model that still reflects the complexity of the rigid/flexible dynamic 

interactions and then introduce the fundamental changes of the modified dynamic 

inversion.  The simplest model that still reflects the complexity of the rigid body / 

flexible mode interactions requiring an integrated flight/SMC control consists of 

longitudinal plus one flexible mode dynamics.  This model structure has been used for 

most analytical analysis in this thesis and will again be employed throughout this chapter.   

The stability analysis once again is based on the Lyapunov’s method since it is the 

only mathematical framework available for a nonlinear system.  The work discussed in 

Chapter 6 is based on the premise that determination of stability of an n-dimensional 

system is reduced to a 2-dimensional one.  This is accomplished via a standard dynamic 

inversion controller that results in 2-dimensional internal dynamics.  This dimensionality 

is what allows the use of special tools available in 2R .  The application of the novel 

dynamic inversion controller to the same system destroys the separation between 

controlled and internal dynamics (as shown in Chapter 4), thus removing the advantage 

of 2R .  The problem of establishing stability then reverts to use of a more general 

method for nonlinear systems – the construction of a Lyapunov function.  Two 

methodologies are considered.  One considers a candidate function similar to the one 

used in Chapter 6 to show boundedness, and the other uses algorithmic techniques to find 

a Lyapunov function.  
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7.1 Stability - Analytical  

Assessing stability of the closed loop system with a filter in a flexible dynamics loop 

analytically is more complicated than might appear on the surface.  The lack of 

separation between the internal dynamic states and those of the controlled variables 

precludes the use of analysis similar to those of Chapter 6.  This leaves trying to find a 

Lyapunov function in a traditional way; which, as shown in Appendix E, results in 

constraints that are very difficult if not impossible to verify theoretically for a general 

case.  The other approach explored in this chapter is to find a Lyapunov function 

algorithmically.  A new tool, called SOSTOOLS, which has recently been developed at 

Caltech51, 52 to perform precisely such function, is introduced and its applicability to a 

system of equations representing a flexible aircraft is investigated.  

7.2 SOSTOOLS – Background  

This section provides a brief overview of the underlying ideas that govern stability 

analysis using Sum of Squares tools53.  For convenience, fundamental ideas about 

Lyapunov functions and the role they play in establishing stability for nonlinear systems 

are recalled.  Then some concepts are introduced that utilize Sum of Squares 

decomposition to created a framework where an algorithmic computation of a Lyapunov 

function is feasible. 

In 1892 A. M. Lyapunov developed a very powerful theorem that basically says if 

one can construct a function which is zero at the equilibrium, positive everywhere else, 

and whose time derivative along the system’s trajectories is non-increasing the stability 

of the equilibrium point follows.  This function resembles an energy function for a 

dynamical system since its minimum is at the equilibrium (the point of rest) and it is non-

increasing as the system evolves from a state other than equilibrium. However, Lyapunov 

functions are far more general than simple energy functions.  However, while providing a 

powerful analysis framework, one of its practical limitations is that no method is given to 

construct such a function.  Total energy of a system is a good candidate but it has 

limitations such as total energy may not be known or the system analyzed is an 

approximation of a higher order system and there is no intuition as to what the structure 

of its energy function should look like.    
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Now the Lyapunov stability theorem, which serves as a basis for the SOSTOOLS 

analysis can be formally stated.  Consider the equilibrium of interest of the system 

( )x f x=�  to be at the origin, i.e., (0) 0f = .  Then a Lyapunov function is given by the 

following theorem: 

 

Lyapunov Theorem 7.334:  Let 0x =  be an equilibrium point for ( )x f x=�  and 

nD ⊂ R  be a domain containing 0x = .  Let :V D → R  be a continuously 

differentiable function, such that  

 { }(0) 0 and ( ) 0 in 0V V x D= > −  (7.1) 

 ( ) 0 in V x D≤�  (7.2) 

Then, 0x =  is stable.  Moreover, if 

 { }( ) 0 in 0V x D< −�  (7.3) 

then 0x =  is asymptotically stable. 

 

Condition (7.1) is the positive definiteness condition on ( )V x  and condition (7.2) is 

the negative semidefiniteness of its time derivative ( )V x� . 

Intuitively Theorem 7.3 can be explained by introducing a concept of a Lyapunov 

surface or level set, which is simply the surface ( )V x c= , for some 0c > .  For 

decreasing values of c, the level sets form nested regions that restrict the flow of the 

system to within their boundaries.  The region D in the above theorem can be used to 

produce results that are not global in space. This is typically the case for systems, for 

example, that possess multiple equilibria.  Region D defines the section of space around 

the equilibrium where the constructed Lyapunov function is valid. The construction of 

Lyapunov functions in some region of the equilibrium reveals estimates of its region of 

attraction, i.e., the initial conditions that will lead to that equilibrium.  In order to provide 

an estimate, the concept of level sets is introduced.  A level set is simply the surface 

( )V x c= , for some 0c > .  The condition ( ) 0V x ≤�  implies that when a trajectory crosses 

a level set ( )V x c= , it moves inside the set { | ( ) }n
c x V x cΩ = ∈ ≤R  and can never 

come out again.  Hence, an estimate of the region of attraction is cΩ , the maximal level 
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set of a Lyapunov function that can fit in D.  The region D can be described fully by 

making use of inequality constraints in the state-space. 

The framework that would encapsulate the inequality constraints using Lyapunov 

functions is the following.  Consider the system 

 ( )x f x=�  (7.4) 

with the following constraints 

 
1 1 1( ) 0, for 1, ,ia x i N≤ = …  (7.5) 

Here nx ∈ R  is the state of the system.  We assume that the 
1
'sia , are polynomial 

functions in x, and ( )f x  is a vector polynomial or rational functions in x with no 

singularity in D, where nD ⊂ R  is defined as 

 { }1 1| ( ) 0,  for all n
iD x a x i= ∈ ≤R . 

Without loss of generality, it is assumed that ( ) 0f x =  for 0x = .  The following theorem 

is an extension of Lyapunov’s stability theorem, and can be used to prove that the origin 

is a stable equilibrium of ( )x f x=� .  The inequality constraints (7.5) are adjoined to the 

corresponding Lyapunov conditions  using a technique reminiscent of the well known S-

procedure54  in nonlinear and robust control theory.     

 

Theorem 7.455:  Suppose that for the above system there exist polynomial 

functions ( )V x , ( ) 0, ( ) 0iw x p x> ≥  in D, such that ( )V x  is positive definite in a 

neighborhood of the origin.  Then  

 
1 1

( ) ( ) ( ) ( ) 0i i
Vw x f x p x a x
x

∂
− + ≥

∂ ∑  (7.6) 

will guarantee that the origin of the state space is a stable equilibrium of the 

system. 

 

The proof of this can be found in Reference 55.  In the case in which ( )f x  is a 

rational vector field, the multiplier ( )w x  should be chosen such that ( ) ( )Vw x f x
x

∂
∂

 is a 

polynomial.  Indeed, rational vector fields are very common, and the denominators do not 
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change sign as the system evolves; otherwise the vector field would be infinite at that 

point.  The above framework is also ideal for robust stability analysis, etc. 

Observe that the construction of Lyapunov functions involves constructing and 

testing positivity of a function.  Testing polynomial nonnegativity is known to be 

NP-hard when the order of the polynomial is greater than or equal to 456: given a 

polynomial, test that it takes nonnegative values for all values in the domain over which it 

is defined.  This is an absolutely crucial element in using Lyapunov methods for 

nonlinear dynamical systems.  In fact, there is no algorithm that will efficiently answer 

the question “Does this polynomial take only nonnegative values when evaluated at every 

point in its domain?”  Altering the question to “Can this polynomial be expressed as a 

sum of other polynomials squared?”, i.e., trying to construct a Sum of Squares 

decomposition for it – finding other polynomials that squared and added together result in 

the original polynomial – can be solved efficiently.  This idea is indeed the step that 

opened up the way to an algorithmic analysis of nonlinear systems.  If a Sum of Squares 

decomposition is found, this implies that the polynomial is nonnegative.  The converse is 

not true: there are polynomials that are nonnegative but for which there is no Sum of 

Squares decomposition.  If the two were equivalent, then this would imply that P=NP.  

Thus, Lyapunov functions can now be constructed through the Sum of Squares 

decomposition algorithmically51.   

It is believed that the Sum of Square decomposition is an efficient and accurate 

relaxation of nonnegativity.  But how does one compute the Sum of Squares 

decomposition?  The following attempts to illustrate the algorithmic methodology.  A 

multivariate polynomial 1( , , ) ( )np x x p x… �  is a sum of squares (SOS), if there exist 

polynomials 1( ), , ( )mf x f x…  such that  

 2

1
( ) ( )

m

i
i

p x f x
=

= ∑  

This in turn is equivalent to the existence of a positive semidefinite matrix Q51, and a 

properly chosen vector of monomials ( )Z x  such that  

 ( ) ( ) ( )Tp x Z x QZ x= . 
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Finding Q can now be cast as a Semidefinite Program SDP54, which uses an 

algorithm with a worst-case polynomial time complexity.  The conversion of the question 

“Does there exist a Sum of Squares decomposition for ( )p x ?” to the question “Does 

there exist a matrix Q?” is done automatically using SOSTOOLS51, which solves the 

Semidefinite Program using SeDuJMi57, a semidefinite programming solver.  The details 

of the conversion are abstracted from the user, who only has to work at the polynomial 

formulation level. 

The challenge now lies in how the conditions in Theorem 7.4 can be verified 

algorithmically.  To this end, advantage can be taken of the computational tractability of 

the Sum of Squares decomposition in order to avoid the NP hardness of testing that a 

polynomial function is positive definite or positive semidefinite.  It has already been 

stressed that the condition ( )p x  is a sum of squares is stricter, yet more verifiable, than 

( ) 0p x ≥ .  Therefore, by deliberately choosing to work with polynomial and rational 

functions, the positive definite conditions in Theorem 7.4 can be relaxed to the existence 

of SOS decomposition, and the problem can be cast as an SOS program52.  Under this 

relaxation, the search for a bounded degree Lyapunov function ( )V x  and multipliers 

1
( )ip x  can be efficiently performed.  The SOS program can therefore be formulated as 

follows. 

 

Program:  Suppose that we are given the system (7.4-7.5).  For a polynomial 

function ( )W x  with a predetermined form that is locally positive definite, find 

bounded degree polynomials ( )V x  and 
1
( )ip x ’s 

1. ( ) ( )V x W x−  is sum of squares (implying 0≥ , 

2. The left-hand side of inequality (7.5 ) is a sum of squares, 

3. 
1
( )ip x  are sums of squares. 

 

In this SOS program, Condition 2 is a computational relaxation of inequality (7.5) in 

Theorem 7.4, whereas Condition 1 is required to impose strict positive definiteness on 

( )V x , as required by Theorem 7.4.  Using ( )W x  restricts ( )V x  to be positive definite, or 
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at least have a local minimum at the origin.  ( )W x  may be parameterized by some 

decision variables, on which restrictions may be applied to render it positive definite. 

If such a ( )V x  that fulfills the required conditions is not found, one of higher order 

will be sought.  Failure to find a Lyapunov function does not necessarily mean that the 

equilibrium is unstable, as all the above conditions are sufficient. 

The next section presents an attempt to use Sum of Squares techniques outlined above 

to analyze coupled longitudinal/flexible dynamics of a highly flexible aircraft. 

7.3 Model for SOSTOOLS  

The novel dynamic inversion is applied to the aircraft longitudinal dynamics as 

described in Chapter 4.6.2.  In terms of specific aerodynamic force and moment 

coefficients nonlinear closed loop system (4.31) becomes 
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 (7.7) 

 

If the force and moment coefficients in the equations of motion can be written 

explicitly in terms of state variables, then the stability of the closed loop can be checked 

via a Lyapunov function.  Typically force and moment coefficients are calculated as a 
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function of Mach and α , which require a conversion  of (7.7) into polar coordinates, 

( ),V α .  The flexible dynamics model can assume one of two forms - mη  is either 

absorbed into the coefficients or is 1mη =  by model development definition.  The 

numbers used for the model are based on the later. Taking into consideration the linear 

nature of the flexible dynamics model, the elastic coefficients become 
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that makes (7.7) assume the linear-nonlinear hybrid system form 
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Converting these equations into polar coordinates produces 
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 (7.8) 

Choosing worse case flexible dynamic interaction, which is a light aircraft at the end 

of cruise and low altitude (increased dynamic pressure).  This assumption provides the 

following constant values in the equations 
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with the filter given as  
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and desired dynamics as 
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In the absence of sensed variables, i.e., without the full simulation, and for the purposes 

of analytical analysis, the state feedback variables that approximate the measured ones 

can be used.  The polynomial coefficient equations are  
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where 10x xe �  for convenience. 

The trim condition is level flight at Mach = 0.24 and altitude of 1000 ft (see Fig. 7.1).  

All the state variables are allowed to vary within the constraint of the relationship of 

α θ≈  for level flight while the initial conditions are set from the complete model trim at 

this condition (all accelerations and angular velocities are zero).  The initial value for η   

Mach 0.24 
Altitude 1000 ft 

Mass 384,862 lbs 
  

Trim 
variables  

Resultant values for level 
flight trim 

,  q η�  0 
theta 7.5846 deg 
alpha 7.6668 deg 

η -0.8458 
Figure 7.1: Trim Conditions.  

 

should be maintained since it has very little bearing in steady state on the aerodynamic 

forces and moments. The system is trimmed in open loop and then is checked for closed 

loop with commanded variables ( ) ( )0 0 0 0, , , , , ,cmd cmd cmd cmdq qθ η η θ η η=� � .  Once nontrim 

commands are applied the system moves from level flight and is no longer in static 
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equilibrium.  It is the stability of this new dynamic status of the system that SOSTOOLS 

is attempting to establish.  

One point of note about trim is that the condition of interest is at the section of the 

flight envelope where the aircraft has very poor Lift characteristics, i.e., high speed  

aircraft operating at very low speed.  Since the model used is a simplified representation 

that does not have all the surfaces that provide additional Lift, the model could not be 

trimmed for reasonable values of angle of attack at the speed and thrust of the full 

nonlinear simulation.  The speed and thrust were allowed to change their value 

considerably to achieve trim, but the qualitative sensitivity of the aircraft to these 

variables from high fidelity simulation has been retained.  So the model while not a 

precise replica of the high fidelity dynamic response, nevertheless maintains the same 

qualitative characteristics both in time response and linearized system eigenvalues as the 

high fidelity aircraft.   

Combining the trim values and polynomial expressions for aerodynamic force and 

moment coefficients with the system given by (7.8) results in a model used by 

SOSTOOLS for stability analysis. 

7.4 SOSTOOLS Stability Analysis Results  

Nonlinear system in analytic form was initially evaluated for stability by taking the 

Jacobian at trim condition specified in the above section and evaluating the eigenvalues 

for a range of command parameters ( ),cmd cmdq θ .  The region where the linearized form 

of the system in (7.8) is stable is illustrated in Figure 7.2. 

In order to apply the SOSTOOLS the system equilibrium was translated to the origin 

and the variables were appropriately rescaled using ( 1)ox x x= +  variable substitution, 

with ox  trim value (equilibrium) and x  the new normalized state.  The rescaling of the 

translated state is done to improve the numerical condition of the problem.  This 

transformation cannot be applied if 0ox = , which occurs in level flight for q  and η�  

states.  In this, no translation to the origin is necessary and the rescaling, if any, uses an 

appropriate value. 
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Figure 7.2: Stability region of (7.8) for variation in control 

command parameters ( ),cmd cmdq θ .  

 

The translated and normalized version of the nonlinear system (7.8) can now be 

analyzed using SOSTOOLS.  Even though the vector field is rational, the framework of 

Theorem 7.4 can be used with polynomial ( )w x  defined as the least common multiple of 

the denominators in the vector field. 

The region D defined in Lyapunov’s Stability Theorem 7.3 can be described by the 

inequalities ia  as a ball around the equilibrium.  Therefore we can use 

 2 2 0i
i

a x γ− ≤∑�  (7.9) 

where γ  is the radius of the sphere and ix  denotes the normalized aircraft states.  The  

( )W x  described in Program is chosen to be 2( ) iiW x xε= ∑ , with ε  a small positive constant, 

which ensures that ( )W x  is positive definite. 
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There were a number of issues that arose in application of SOSTOOLS to the system 

described by (7.8) documented in Reference 58.  The major issue was the complexity of 

the system.  Even in simplified form the equations were too cumbersome, primarily due 

to the fact that the numerator of the system is 17th order with 6th order denominator.  If 

the Lyapunov function is 2nd order, then the derivative condition in Theorem 7.4 will be 

24th order polynomial in 7 variables.  The Semidefinite program is intractably large with 

any current solver.  

A promising solution to the complexity problem was to use Taylor series expansion 

about the equilibrium and to apply the analysis tools to the expansion.  A preliminary 

analysis has been performed to compare the linearized system, third-order Taylor series 

expansion and original nonlinear system (7.8) dynamics using simulation for initial 

conditions close to the equilibrium.  The results in Figures 7.3 and 7.4 indicate qualitative 

convergence of third-order Taylor series expansion dynamics to those of the nonlinear 

system.  This implies that third-order expansion makes a good approximation to the 

nonlinear system in the region considered.  Hence we can conclude that since the Taylor 

series expansion has local Lyapunov function and is stable, the equilibrium of the system 

(7.8) to which it converges will also be locally stable. 

The third-order Taylor series approximation was used on SOSTOOLS and a 

Lyapunov function was constructed for 0.1γ = .  The Lyapunov function is given by  
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where each of the bared variables is the translated and normalized version of the original 

state.  In addition, a maximal level set was computed for this Lyapunov function to give 

an approximation to the region of attraction described by  

 2( ) (0.006) 0V x − <  
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Figure 7.3: Velocity response of nonlinear system and its Taylor series expansions of 

linear, quadratic, and third-order.  Figure on the right is an extract from the left.  

   
Figure 7.4: Angle of attack response of nonlinear system and its Taylor series expansions 

of linear, quadratic, and third-order.  Figure on the right is an extract from the left.  

 

7.5 Conclusions  

This chapter attempts to bridge the stability results obtained for the novel dynamic 

inversion integrated flight/SMC controller on a high fidelity, high complexity aircraft 

model and the global stability analytical results for an integrated flight/SMC standard 

dynamic inversion controller in the presence of highly coupled flexible dynamics.  The 

former were constrained to simulation due to the complexity of the problem, while the 

later addressed the flexible dynamics issue but for a standard dynamic inversion.  The 

tools used to establish the global stability results are not available for the novel dynamic 
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inversion controller since the closed loop does not subdivide into a string of integrators 

and internal dynamics; and the question of stability cannot be reduced to evaluating the 

stability of the internal dynamics only.  Thus, determination of stability was based on 

finding a local Lyapunov function for the closed loop system driven by the novel 

dynamic inversion controller.   

A new tool was introduced in an attempt to find Lyapunov functions.  The tool, called 

SOSTOOLS, is based on the Sum of Squares decomposition for finding a Lyapunov 

function algorithmically.  In order to use the tool, the aircraft system model had to be 

expressed in terms of polynomials.  The system model also had to be simplified while 

retaining the critical interaction to enable the application of the SOSTOOLS.  While 

SOSTOOLS was unable to handle the complexity of the closed loop model, it was able to 

generate local Lyapunov function for a third-order Taylor series expansion of the system.  

The Taylor series expansion has been shown to qualitatively converge using a simulation 

to the nonlinear system and hence the equilibrium of the system to which it converges 

will also be locally stable.  
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Chapter 8 – Conclusions and Future Research Recommendations  

High performance aircraft of the future will be designed to be lighter, more 

maneuverable, and operate over an ever expanding flight envelope1.  This set of 

conditions will necessarily mean highly flexible vehicles operating in nonlinear regimes.  

In order to control these vehicles, new methods are being sought to better optimize their 

responses to both pilot input and external disturbances, as well as to decrease the cost of 

vehicle design.  The methodology that has been proposed here is modified dynamic 

inversion.  The attractiveness of this methodology lies in the fact that the inherent 

nonlinearities of the problem as well as the coupled nature of flexible dynamics are 

explicitly considered. 

One of the largest differences from the flight control perspective between current and 

future advance aircraft is elasticity.  All of the aircraft to which dynamic inversion had 

been applied to date are considered rigid vehicles.  In the context of flight control, this 

means that the frequency separation between the fastest aerodynamic modes and the 

slowest body deforming mode is typically on the order of 60 rad/sec (10 Hz)10.  The 

aircraft of the future will not have this luxury.  One type of such an aircraft that has 

gained prominence in recent years is an Uninhabited Aerial Vehicle (UAV).  These 

vehicles span a great variety of missions and hence have a number of very different 

configurations including highly flexible ones.  The aircraft of choice for this research has 

been an HSCT chosen based on its aeroelastic characteristics and the high fidelity of 

available models.   

8.1 Model  

The importance of the model utilized in this research comes from the fact that it is 

physically the highest fidelity model used to represent a highly flexible aircraft.  This 

model was formulated in the following way.  The general nonlinear equations of unsteady 

motion for an aircraft are expanded to include the coupling between rigid body and quasi-

steady aeroelastic modes.  These equations are further augmented with dynamic 

aeroelastic equations that are required for an aircraft whose flexible modes are low 

enough frequency to start impacting rigid body flight dynamics and hence are no longer 

validly represented as quasi-static states.  Continuing this development the dynamics 

associated with the specific vehicle under study are presented and discussed in detail at a 
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flight condition that make the flexible mode interaction with the rigid flight dynamics 

most pronounced.  The specific issues highlighted that make this a very challenging 

problem include the vehicle dynamic response to control surfaces as well as the dynamic 

modeling fidelity and encroachment of  the first few flexible modes into the pilot’s 

bandwidth.   

Since the model contains closely spaced flexible modes in proximity to rigid body 

dynamics, the actuator dynamics invariably play a significant role in their response.  The 

presence of actuator dynamics continues excitation of high frequency modes while their 

absence allows for the dynamic roll off and modal attenuation.  This observation is very 

important for control design purposes since typically actuator dynamics are not 

considered during the design process.  The implication here is that the controller must roll 

off significantly before the excitation of flexible modes due to actuator dynamics comes 

into play.  In addition, it is interesting to note how the HSCT vehicle would respond to a 

surface deflection at its tail generating a pitching moment.  The initial response to nose 

down moment for the elastic vehicle is nonminimum phase, i.e., response is in direction 

opposite of that commanded.  This type of response has implications for flight control 

design. 

8.1.1 Novel Dynamic Inversion Model Analysis  

The novel dynamic inversion methodology introduces additional dynamics, ( )W x , 

into the inversion loop to alter the controlled dynamics in a more intelligent manner than 

canceling dynamics very close to the jω-axis.  This modification alters the internal 

dynamics of the system and destroys the separation between internal dynamics and 

controlled dynamics that was present for the standard inversion case.  However, when 

additional dynamics of ( )W x  are present in one loop, the input-output dynamics reflect 

the modification in the altered loop and recover the standard integrator in the nominal 

one.  This work has added to both analytical and physical insight regarding the nature of 

the novel dynamic inversion applied to an integrated flight/SMC control for a highly 

flexible aircraft. 

Another part of this work focused on specific effects that the additional dynamics 

associated with the novel dynamic inversion have on the response of the closed loop 

aircraft system.  The additional dynamics have been analytically explored on longitudinal 
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and symmetric flexible dynamics of varying complexity.  While the model used here is 

much simpler than the full model for which the controller was designed, the results are 

revealing nonetheless.  These results provide some analytical basis and further insight 

into the workings of dynamic inversion methodology that has been modified to address 

the problem associated with large, flexible aircraft. 

There exists a large degree of freedom to control rigid body and flexible dynamics 

independently of one another in the novel dynamic inversion context.  The apparent 

separation in controlling the short period and elastic mode dynamics through novel 

dynamic inversion is valuable when control of disturbances is as important as control of 

commanded variable.  Specifically, the ability to alter the damping of elastic modes as 

well as cancel their response to the commanded vehicle motion is the main objective of 

an integrated flight/SMC control that is required for advanced, large, flexible aircraft.   

The increased complexity of system dynamics that included full longitudinal as well 

as multiple symmetric flexible mode dynamics showed that a certain degree of separation 

in controlling rigid body and flexible dynamics still exists.  However, the introduction of 

parametric uncertainty into frequency and damping of the dominant flexible mode also 

showed the coupling between very low frequency rigid body and flexible dynamics.  This 

coupling must be carefully considered during a controller design process since in the real 

world application there is always uncertainty present in the system.   

8.1.2 Novel Dynamic Inversion for Integrated Flight/SMC Controller Design  

An initial application of the novel dynamic inversion control methodology to a 

flexible vehicle is presented here.  While the standard dynamic inversion has been 

applied to aircraft that could be treated as rigid, it never has had to contend with a piloted 

aircraft whose first few flexible modes resided well within the pilot’s bandwidth.  The 

associated problems as well as the proposed modifications to the standard dynamic 

inversion to deal with them have been presented.  The resulting novel dynamic inversion 

controller was assessed in a high fidelity nonlinear simulation under a variety of 

conditions including severe turbulence, saturated control surfaces, and uncertainty in the 

flexible modes.   

The results obtained in this initial application are very promising.  The novel dynamic 

inversion controller makes a highly flexible aircraft appear as essentially rigid to pilot in 
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response to his commands.  In addition, the damping ratio of the primary fuselage 

structural mode has been increased from around 5% to close to 20%.  The second 

fuselage flexible mode damping was improved as well, and the higher frequency mode 

dynamics either remained the same or slightly improved.  Furthermore, the aircraft had a 

favorable response to moderate an severe turbulence.  The vehicle was robust to 50% 

variation in damping and 15% uncertainty in the frequency of the first two flexible modes 

as well as remained stable for saturated control surfaces.   

The obtained results were compared to a controller designed on a QSAE aircraft 

model and tuned for performance in extensive piloted simulations.  While the dynamic 

inversion controller has not yet been tuned in piloted simulation, the response at lower 

frequency is similar to that of the QSAE controller.  Although it is expected that the 

QSAE controller would not attenuate the flexible modes since it is not designed on a 

flexible model, it exacerbates the problem of flexible mode control by a separately 

designed SMC.  Thus, the results of this work also advocate the integrated design of the 

SAS/SMC controller to maximize the performance of the aircraft.   

Another interesting observation is that a number of flexible modes are primarily wing 

modes and require wing surfaces to attenuate them.  While fuselage mounted control 

effectors do a good job on the fuselage bending modes they have little to no effect on the 

wing modes which in turn contribute to the excitation of fuselage modes and to a slight 

heave of the entire aircraft.  

8.1.3 Integrated Dynamic Inversion Controller Closed Loop Stability  

This research started to establish conditions under which the standard dynamic 

inversion control methodology can be guaranteed global stability when applied to a real 

world problem that involves highly coupled flight and aeroelastic dynamics as well as an 

integrated flight/structural mode control MIMO system. 

From a mathematical perspective, the results show how a complicated dynamical 

problem of establishing system stability reduces to checking algebraic conditions that are 

manageably complex.  This is accomplished by reducing the determination of stability of 

an n-dimensional system to that of a two-dimensional one via a dynamic inversion 

controller.  The resulting nonautonomous system is then reduced to its autonomous 
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limiting system and the stability of the limiting system is established.  The stability of the 

autonomous system is shown in two steps that produce vehicle specific conditions.   

The established algebraic conditions provide an initial test that can guarantee global 

stability when applied to a real world problem that involves highly coupled flight and 

aeroelastic dynamics as well as an integrated flight/SMC control MIMO system.  The 

initial approach is to simplify the problem, address the pitch axis dynamics with only a 

single mode and no actuator dynamics, and then assess the ramifications of aeroelasticity 

on the stability results.  The role played by flexible dynamics is immediately apparent 

from consideration of the internal dynamics of the system.  Furthermore, these flexible 

dynamics play a role in establishing stability guarantees for the closed loop system.  

While the analysis represents a somewhat idealized case, the insight provided has 

immediate real world application with respect to the influence of flexible dynamics on 

the system as a whole. 

The results presented are the first to include flexible dynamics in stability analysis of 

dynamic inversion methodology.  These form an initial basis to more complicated control 

problem formulation that includes a modified dynamic inversion methodology employed 

to design an integrated flight/SMC controller for a high fidelity model discussed earlier.  

The next step undertaken in the following chapter is to introduce the modified dynamic 

inversion into the analysis performed here and then establish stability guarantees that are 

still possible with this complication. 

8.1.4 Integrated Novel Dynamic Inversion Controller Closed Loop Stability  

The next step is to introduce the novel dynamic inversion into the analysis and then 

establish stability guarantees that are still possible with this complication.  This next step 

attempts to bridge the stability results obtained for the novel dynamic inversion integrated 

flight/SMC controller on a high fidelity, high complexity aircraft model and the global 

stability analytical results for an integrated flight/SMC standard dynamic inversion 

controller in the presence of highly coupled flexible dynamics.  The former were 

constrained to simulation due to the complexity of the problem, while the later addressed 

the flexible dynamics issue but for a standard dynamic inversion.  The tools used to 

establish the global stability results are not available for the novel dynamic inversion 

controller since the closed loop does not subdivide into a string of integrators and internal 
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dynamics; and the question of stability cannot be reduced to evaluating the stability of the 

internal dynamics only.  Thus, determination of stability was based on finding a local 

Lyapunov function for the closed loop system driven by the novel dynamic inversion 

controller.   

A new tool was introduced in an attempt to find Lyapunov functions.  The tool, called 

SOSTOOLS, is based on the Sum of Squares decomposition for finding a Lyapunov 

function algorithmically.  In order to use the tool, the aircraft system model had to be 

expressed in terms of polynomials.  The system model also had to be simplified while 

retaining the critical interaction to enable the application of the SOSTOOLS.  While 

SOSTOOLS was unable to handle the complexity of the closed loop model, it was able to 

generate local Lyapunov function for a third-order Taylor series expansion of the system.  

The Taylor series expansion has been shown to qualitatively converge using a simulation 

to the nonlinear system and hence the equilibrium of the system to which it converges 

will also be locally stable.  

 

8.2 Contribution of This Work  

The contribution of this work to the state of the art is predicated on the development 

and application of dynamic inversion methodology to handle highly flexible aircraft in an 

integrated flight/SMC control manner.  The development and evaluation are performed 

on a sophisticated, high fidelity, nonlinear dynamic model across the frequency spectrum. 

The dynamic nature of structural modes and the flight control reciprocal interaction with 

flexible modes because of unprecedented small separation between rigid body and 

flexible modes are the key elements of the aircraft model.  The standard methodology of 

dynamic inversion has been modified in the manner described in this work to 

accommodate the nature of the vehicle and fulfill the dual objectives of integrated 

flight/SMC control.  These objectives constituted command following, disturbance 

rejection in the rigid body and improved structural dynamic damping to minimize 

excitation from turbulence and render the aircraft rigid from the pilot station perspective.   

The structural nature of the modification to the standard dynamic inversion 

methodology and its effect on the necessary level model complexity for design has been 

established with particular attention given to establishing physical understanding of the 
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control design process.  Furthermore, the effect of uncertainty in the structural mode 

dynamics has been addressed as well.  

Further contribution of this work is addressing the issue of dynamic inversion and 

stability of highly flexible aircraft studied in this work from the mathematical 

perspective.  The results presented are the first to include flexible dynamics in stability 

analysis of dynamic inversion methodology.  These form an initial basis to more 

complicated control problem formulation that includes a modified dynamic inversion 

methodology employed to design an integrated flight/SMC controller for a high fidelity 

model discussed earlier. 

The changes in dynamics attributed to the modification in the inversion methodology 

have been traced for both linear and nonlinear systems.  This work has added to both 

analytical and physical insight regarding the nature of modified dynamic inversion 

applied to an integrated flight/structural mode control for a high flexible aircraft. 

 Furthermore, a new tool was introduced in an attempt to find Lyapunov functions 

that would guarantee local stability for the nonlinear system with modified dynamic 

inversion controller alluded to above.  The tool, called SOSTOOLS, is based on the Sum 

of Squares decomposition for finding a Lyapunov function algorithmically.  While 

SOSTOOLS were unable to handle the complexity of the closed loop model, it was able 

to generate local Lyapunov function for a Taylor series expansion of the system up to 

order 3.  The Taylor series expansion has been shown to converge using a simulation to 

the nonlinear system and hence the results found apply to the nonlinear system as well. 

Portions of this work have been published in publicly available forums and are 

included in the reference section31-33.    

8.3 Future Research  

There are a number of areas for fruitful research that would build on this work.  One 

such area would incorporate adaptive control techniques to reduce the model fidelity 

necessary for integrated controller design.  This approach would potentially significantly 

reduce vehicle development cost.  The adaptation part of the controller would operate on 

the error between desired behavior based on the assumed model and actual behavior.  

This would enable both decoupled rigid body response as well as altering the damping of 

the flexible dynamics without precise knowledge of these dynamics.  The research issue 
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is not only how to do this in an intelligent way but also how to preserve the stability 

guarantees for such a system. 

Another area of important research is the maturation of the SOSTOOLS that would 

allow the algorithm to deal with complicated systems that describe the flexible aircraft 

dynamics.  The ability to find Lyapunov functions for aircraft becomes increasingly 

important as the flight envelope is extended to highly nonlinear regimes and certification 

issues require analytical guarantee of stability for operational vehicles. 

The third area of research that indirectly suggests itself, is how to incorporate 

nontraditional control effectors into a more traditional control analysis and design 

framework.  Certain vehicles in the future are expected to have 100’s and then 1000’s 

control effectors, whether these are fluidic like synthetic jets or a wing that continuously 

changes shape to provide optimal maneuverability and mission performance.  Can the 

research into integrated flight/structural mode control presented here serve to further the 

understanding of this new control problem, particularly in the latter case? 

The future awaits and it is full of challenges and opportunities. 
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Appendix A – Aerodynamic Coefficients  

The aerodynamic force and moment coefficient buildup in the simulation for all the 

major parts are given below59. 

The Lift coefficient is build up from individual surface parts and structural 

deformation in quasi-static flow corrections.  The model used in simulation for controller 

design and analysis contains all of these dependencies.  The equations used for symbolic 

analysis are simplified as indicated in Chapter 3. 
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The Drag coefficient is treated in a similar manner as Lift. 
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The pitching moment coefficient is given by 
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The dynamic aeroelastic part coefficient is given by  
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The apparent mass is given by  
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Appendix B – Flexible Modes  

The symmetric bending modes of the aircraft are illustrated in Figure B1.  Only the 

first three modes are shown since the shape gets more complicated and more difficult to 

discern on a full vehicle profile.  Of the first three modes note that mode 1 and 3 are 

predominantly wing modes, while mode 2 is the classic first fuselage bending mode.  In 

designing a controller for this vehicle, controlling the fuselage bending modes and 

especially the first bending mode was one of the primary objectives. 

 

 

 

 

 

 

 

 

 

Figure B1: Symmetric flexible modes of an HSCT vehicle. 

The in vacuo symmetric mode shapes for the first ten modes are presented in the 

Figures B2 and B3 below.  Note that the first eight modes are at lower frequency, or right 

at it for mode eight, than the first break frequency for the slowest control surface, the 

stabilator.  This means that all of these modes get the full energy transmission without 

attenuation every time the stabilator moves.  Furthermore, the first frequency breakpoint 

for the elevator and other surfaces is at 75 rad/sec which is higher than all of the 20 

flexible modes modeled.  Thus, unlike more traditional vehicles where the flexible modes 
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are typically at frequencies where control activity energy is already attenuated so their 

excitation is not that severe and certainly not at frequencies that interfere with flight 

control.   

Figure B2 gives symmetric mode shapes and their associated frequencies for the first 

5 modes.  The in vacuo mode displacements were calculated such that the associated 

generalized mass equal to 1, hence, the z displacement axis is for relative displacement 

comparison not an absolute vehicle displacement. 

Mode 1: 9.168 rad/s

Mode 2: 10.32 rad/s

Mode 3: 12.2 rad/s 

Mode 4: 12.39 rad/s

Mode 5: 16.73 rad/s
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Figure B2: Symmetric mode shapes 1 through 5 and their respective frequencies.  
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Mode 6: 16.88 rad/s 

Mode 7: 19.39 rad/s 

Mode 8: 25.16 rad/s 

Mode 9: 31.13 rad/s 

Mode 10: 32.13 rad/s
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Figure B3: Symmetric mode shapes 6 through 10 and their respective frequencies.  
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Appendix C – Alternative Dynamic Inversion Controller Strategies  

C.1 Introduction  

Without RCV availability, longitudinal control has at its disposal stabilator, elevon, 

and trailing edge flaps.  The stabilator is the slowest of the surfaces and is inappropriate 

for structural mode control, even though it is used in conjunction with the elevon for 

flight control in order to provide increased control power in the longitudinal axis.  

Alternative control strategies described in this appendix involve using the all-moving 

horizontal tail, i.e., stabilator+ elevon, as well as available trailing edge flaps to provide 

integrated flight/structural mode control.  However, before these are presented a short 

result on trying to use only the elevon for integrated flight/SMC is discussed. 

C.2 One Actuator Multi-Objective Control  

Rotational motion of the airplane in the longitudinal axis is typically controlled by 

one set of actuators, the elevator.  The primary mode of rotational motion is known as the 

short period mode and is typically the fastest mode in the longitudinal motion of a rigid 

airplane.  Hence if pitch rate is commanded, an elevator deflection is used to follow that 

command in a rigid vehicle.   

Now to make the problem more complicated, consider a flexible vehicle.  

Theoretically it is possible to control flexible motion and short period motion by using 

only one actuator, the elevator, provided there is sufficiently large frequency separation 

between short period and the flexible mode to be controlled.  The idea here is based 

strictly on the principle of superposition, the actuator dynamics, and the physics of the 

aircraft.  Provided that the speed of the elevator is fast enough to be effective, the elevator 

action to dampen out elastic oscillations would be superimposed on the action to change 

the attitude of the mean axis of the airplane.  An example of such elevator response is 

illustrated in Figures C1, C2, and C3 where the vehicle is subject to external gust 

disturbance simulated by impulse elevator while trying to track pitch rate command.  The 

controller is a PI filter that attempts to track a commanded pitch rate while minimizing 

the error between the mean axis and the pilot station response.  The results of this multi-

objective vehicle control are very dependent on the frequency of the elastic mode, and 

hence a function of the separation between it and the short period.   
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Figure C1: Pitch rate response, at mean axis and pilot station sensors, and elevator 

response to pitch rate command and impulse disturbance in elevator – elastic mode 

frequency ωe=23.1 rad/sec. 
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Figure C2: Pitch rate response, at mean axis and pilot station sensors, and elevator 

response to pitch rate command and impulse disturbance in elevator - elastic mode 

frequency ωe=15.4 rad/sec.  
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Figure C3: Pitch rate response, at mean axis and pilot station sensors, and elevator 

response to pitch rate command and impulse disturbance in elevator - elastic mode 

frequency ωe=7.7 rad/sec.  

 

As demonstrated in Figure C4, commanding a pitch rate, without additional external 

excitation, for a vehicle excites the first elastic mode, which the elevator cannot control 

while also trying to track a commanded pitch rate, and results in an unacceptable 

performance at the pilot station.  The disturbance rejection results, in addition to a 

commanded pitch rate, are considerably worse (see Fig. C3).  As the frequency of the 

first elastic mode is increased by 2X, the elevator no longer appreciably excites the first 

elastic mode due to a sufficient closed loop system roll off.  The disturbance results also 

improve as the elevator is beginning to handle both command to the vehicle and 

disturbance caused excitation to the first elastic mode (see Fig. C2).  As the elastic mode 

frequency is increased to 3X the original, the effects of the closed loop system roll off 

and the ability of the elevator to handle two objectives becomes even more apparent (see 

Fig. C1). 

One of the characteristics of a large frequency separation between short period and 

elastic modes that is very beneficial is the fact that the closed loop system has significant 

rolled-off to attenuate any excitation to the elastic modes from mean axis pitch rate 

command (see Fig. C5) or to disturbances (see Fig. C6).  The increase in the gain of the 
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Figure C4: Pitch rate response, at mean axis and pilot station sensors, and elevator 

response to pitch rate command - elastic mode frequency ωe=7.7 rad/sec. 

 

flexible mode peak as the frequency decreases from 23.1 rad/sec to 15.4 rad/sec to 7.7 

rad/sec is evident both at the mean axis approximating sensor and at the pilot station.  

The elevator controlling the pilot station flexible response is the extreme case of 

noncollocated sensor/actuator pair on this vehicle and the most difficult arrangement to 

control.  The effect of the increased flexible mode peaks in the frequency response is 

directly illustrated in the high frequency oscillatory response, especially at the pilot 

station, superimposed on the lower frequency command following response as seen in 

figures C1-C3.   

As the elastic mode frequency decreases, superimposing the flexible mode controller 

elevator command on the mean axis command becomes less and less effective since the 

oscillatory speed of the actuator must diminish in order to match the elastic mode 

frequency thus having greater impact on the mean axis vehicle response.  From the 

elevator time response it is still apparent that superposition of two actuator commands is 

present but the pitch rate response at the pilot station and at the sensor approximating 

mean axis response illustrate the inability to fulfill the control objectives with a single 

actuator.   
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These results, support the conclusion that given the dynamics of this particular 

aircraft a single actuator cannot fulfill the dual objectives of controlling the vehicle, i.e., 

its short period motion, and dampening the elastic mode excitation due to vehicle motion 

and external disturbances.  The required frequency separation between the short period 

and the first elastic mode that would allow a single actuator to fulfill the dual objectives 

depends on the requirements placed on both the vehicle response and the response of the 

elastic modes.  It would appear that the least acceptable separation would be 25 times the 

short period frequency or more than 10Hz. 

C.3 Dual Actuator Multi-Objective Control  

Recall the aircraft model discussed in Chapter 3.  The early configuration of the 

HSCT vehicle did not have the RCV surfaces and, hence, the trailing edge flaps were 

used in conjunction with all-movable tail for an integrated flight/SMC control.  The 

development of this control law is described in the following sections. 

C.4 Control Development  

The philosophy behind the design of the modified dynamic inversion controller is the 

same as described in Chapter 4.  In developing this controller aircraft models of 

increasing complexity were used and the results are presented below.  The results provide 

a good indication  of the necessary dynamics that the design model must posses in order 

to have a successful design.  Initial designs were also performed on the linear models in 

order to obtain a better understanding of the underlying dynamics.  The subsequent 

design for the final HSCT configuration that had the RCV surfaces proceeded on the 

nonlinear models.    

C.4.1 Control Design - 1 Degree of Freedom Problem  

The fundamental function of the control law is to stabilize the vehicle and enable 

precise command tracking.  For the specific flight condition under consideration, the 

vehicle is has benign rigid body instability and three lightly damped elastic modes.  The 

open loop eigenvalues of the model under investigation are given in Figures C7 and C8.  

Hence, the role of the control system is to stabilize the instability and to track a 

commanded pitch rate, whether it is initiated by the pilot or by a guidance autopilot.   
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Figure C5: Pitch rate at pilot station and mean axis to pitch rate command loop frequency 

response for 3 different elastic mode frequencies.  
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Figure C6: Pitch rate at pilot station and mean axis to input disturbance loop frequency 

response for 3 different elastic mode frequencies. 
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Nominal 3 elastic mode model
   Eigenvalue           Damping        Freq. (rad/sec)
   0.0117                     -1.0000             0.0117          
-0.4297 + 0.3280i        0.7949             0.5406          
 -0.4297 - 0.3280i        0.7949             0.5406 
-0.3430 + 7.7098i        0.0444             7.7175          
 -0.3430 - 7.7098i        0.0444             7.7175          
  -0.7117 +12.7449i     0.0558            12.7647          
  -0.7117 -12.7449i      0.0558            12.7647          
  -0.9873 +16.8986i     0.0583            16.9275          
  -0.9873 -16.8986i      0.0583            16.9275          
 -20.0000                     1.0000            20.0000          
 -56.5680 +56.5691i    0.7071            80.0000          
 -56.5680 -56.5691i     0.7071            80.0000          

1st mode

2nd mode

3rd mode

rigid
 body

actuator
dynamics

 

Figure C7: Open loop nominal 3 mode system eigenvalues.  Modes enclosed in the box 

used for controller design.  
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Figure C8: Sensors and actuators used in the study. 

 

The controller is designed based on the short period and 1st elastic mode, outlined in 

a box in Figure C7.  To facilitate better understanding of the results a linear model of the 

aerodynamics at a fixed flight condition is used.  The control law from (23) with 

weighted control effectiveness and linear system representation becomes (C1).  In this 

formulation the controller is an integrator of a degree equivalent to the number of the 

different desired CV dynamics.  In this application, the controller is a single and a double 

integrator respectively. 
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 (C1) 

Moreover, only the 1st elastic mode is included in the design in order to evaluate the 

controller effect on the adjacent modes not explicitly considered.  This, in fact, was the 

first controller design for the dynamic inversion methodology on an HSCT class vehicle.  

This 1 dof problem also served to motivate an active structural mode control of the lower 

elastic modes.  Figure C9 gives a conceptual implementation of the control law. 

A more detailed diagram of the controller is in the following section illustrating a 

more complex flight/structural mode control problem. 

The analysis of the system response of this 1 dof controller illustrate a problem that 

has been seen in other work23,27, an excitation of elastic mode at the pilot station.  The 

system time response to a half of a doublet is shown in Figure C10.  While the 1 dof 

controller, K1, provides some improvement in 1st elastic mode damping, it is still 

insufficient to eliminate the oscillations at the pilot station, which are unacceptable from 

the flying qualities requirements60.   
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Figure C9: Conceptual dynamic inversion control law implementation.  
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FigureC10: Pitch rate time response of a 1 mode system with the K1 controller to a half 

of a doublet pitch rate command (dashed - at pilot station; solid - at s7).  

 

The K1 controller is evaluated on the 3 mode system with the very similar results.  

Figure C11 shows the time response to the commanded pitch rate is similar to that of a 1 

mode system.  The similarity in the response is explained by the dominance of the first 

elastic mode as illustrated in Figure C12 comparing 1 and 3 elastic mode systems modal 

response.   
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Figure C11: Pitch rate time response of a 3 mode system with the K1 controller to a half 

of a doublet pitch rate command (dashed - at pilot station; solid - at s7).  
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Figure C12: Open loop modal deflection to 2.5 deg elevator command 

(solid - 3 mode model; dashed - 1 mode model).  

 
The presence of undesirable oscillation in the pilot station response to elevator 

deflection producing the commanded pitch rate prompted the consideration of the 2 dof 

design described in detail in the next section. 

C.4.2 Control Design - 2 Degree of Freedom Problem  

The 2 dof problem was designed to address the pitch rate oscillations induced by the 

elevator while performing a command following function.  Two aerodynamic surfaces 

were used to control the pitch rate response at two different positions on the aircraft.  The 

TE surface, due to its location, is not ideal to control the first symmetric elastic mode.  

However, since a canard-like surface is not available on this vehicle configuration, TE is 

the only available surface for longitudinal control other than elevator.  The problem was 

formulated such that TE and elevator worked to follow a pitch rate command and to 

minimize the error between pilot station and mean axis responses, utilizing ps and s7 

sensors respectively.  The selection of the sensor location s7 ensured minimum phase 

response; hence, stable zero dynamics.  The transmission zeros for the 2x2 problem were 

also minimum phase resulting in stable zero dynamics. 

The controller is illustrated in Figure C13.  The controller can be thought of as 

divided into two parts, (1) a standard linear compensator and (2) a feedback linearization.  

The linear compensator, in this case, is a PI controller with three selectable gains, similar 
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in structure to the one used on HARV2.  These gains can be interpreted as follows: b is 

the desired bandwidth of the loop response, Fi is the weight on the integral of the error, 

and Fc is the weight on the commanded inputs. 

One important adjustment to a 2x2 dynamic inversion problem formulation, which so 

far appears to be generic for this type of two surface vehicle configuration, had to be 

made.  A significant difference exists in pitch rate effectiveness for the aircraft between 

TE and elevon.  This is fine if the surface positions are directly commanded — the TE 

contributes very little pitch rate.  However, if pitch rate command is used by the dynamic 

inversion controller to calculate the surface deflections for both TE and elevon, there will 

be a very large discrepancy between magnitude deflection with emphasis on the least 

effective surface.  The q_cmd will produce a much larger TE deflection than the elevon 

because (CB)-1 is taken as “control effectiveness.”  To work around this problem, a 

weighting is introduced similar to the one described in (3) with the final form given 

below in (C2).  The difference feeding into (WCB)-1 can be thought of as the error 

between the desired and the actual rate of change of pitch rate. 

 ( ) 1 _ 7 0 _ 7

_ _

e e

e e

TE q s TE b q s
WCB

elev elev c dq ps q psδ δ
− ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⇒ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (C2) 

This means qe_s7 (error between q_cmd and q_s7) produces no TE deflection.  Since TE 

has essentially no influence on q_s7, this adjustment has negligible physical impact.  The 

elevator influence at q_ps is almost equal and opposite to that of TE, and in this 

formulation, TE is relegated to counter the elevator induced elastic excitation at the pilot 

station.    
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Figure C13: Control law block diagram for a 2 dof dynamic inversion compensator.  
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The analysis of the resulting controller, K2, applied to a 1 mode system indicate that 

TE is in fact successful in minimizing the difference between the pilot station response 

from that of the mean axis of the aircraft (see Fig. C14) without requiring excessive 

control surface deflections (see Fig. C15).  Furthermore, the speed of the response is 

consistent with that of other comparably large aircraft, e.g. B-747, without producing 

large overshoot or rapid oscillations.   

 

0 2 4 6 8 10
-1

-0.5

0

0.5

1

1.5

2

2.5

3

Time, sec

P
itc

h 
ra

te
, d

eg
/s

ec

qs7 1m model
qps 1m model
qcmd

 

Figure C14: Pitch rate time response of a 1 mode system with the K2 controller to a half 

of a doublet pitch rate command (dashed - at pilot station; solid - at s7).  
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Figure C15: Elevator (solid) and trailing edge 1+8 (dashed) commanded response to 

q_cmd with the K2 controller.  
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The stability analysis also indicate relatively good design even though the controller 

was neither optimized for performance nor designed with special consideration for 

robustness.  The traditional one loop at a time margins are shown in Figures C16 and 

C17.  The gain and phase margin at the pilot station are 10.09 dB and 74.58 deg, 

respectively.  Similarly, for the sensor location s7, the margins are infinite and 80 deg.   
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Figure C16: Gain (10.86dB) and phase (68.23 deg) margins for q_ps/q_cmd.   
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Figure C17: Gain (inf) and phase (72.73 deg) margins for q_s7/q_cmd.   

 

The initial test for robustness focused on uncertainty in the frequency and damping of 

the first elastic mode.  A robust stability µ problem was formulated for parametric 

uncertainty in frequency, (ω+δω), and damping, (ζ+δζ).  The µ analysis was performed 
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twice: once treating the uncertainty as complex, and the second time as primarily real, 

(δR+α2δC) where α is small61.  Modeling parametric uncertainty with complex scalars is 

beneficial from computational point of view and such approximation works reasonably 

well in some applications without introducing excessive conservatism into the problem.  

However, it is indisputably evident from the results in Figure C18 that this is not the case 

here.  The difference in the level of tolerable uncertainty is between real and complex 

formulation is almost two times.  From the form of the generalized force equation, (3), 

one can observe that modeling frequency as a complex scalar immediately introduces the 

imaginary part as a perturbation on the damping.  For relatively high frequency and low 

damping case, the frequency perturbation would render damping negative, hence making 

the system unstable and falling the µ robust stability test.   
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Figure C18: Robust stability for ζ and ω variation in 1st elastic mode (ζo = 0.0463; ωo = 

7.712 rad/sec) (uncertainty: [δζ δω]=[-50% -26%]; solid - (δR+α2δC); dashed - δC).  

 

The destabilizing perturbation for the 1st elastic mode uncertainty is                 

[δζ δω] = [ -80% -26%].  From varying the level of uncertainty, it became apparent that 

the uncertainty in modal frequency has larger effect on stability than does the modal 

damping.  Generally, modal frequency uncertainty in the first few elastic modes is 

expected to be on the order of 10%, so the µ test shows some promise in controller being 

robust to frequency and damping uncertainty at the expected levels. 

δc 

δ
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Furthermore, comparing the results between complex and real model of parametric 

uncertainty indicates a difference of where the system instability to the destabilizing 

perturbation would occur.  The instability for complex model would first occur around a 

first mode frequency, due to negative damping as described above.  For a real uncertainty 

model, on the other hand, instability occurs at very low frequency.  To understand the 

mechanism of this instability and to confirm the results of the µ test on a mostly real 

uncertainty model, a real perturbation, derived from the µ test, is incorporated into the 

nominal open loop model and then the K2 controller is wrapped around the system.  The 

results are presented in Figures C19- C21.   

The time responses of the nominal and perturbed closed loop systems are shown in 

Figure C19.  The perturbed closed loop system has a real pole at 0.021, which results in a 

relatively long time to double.  Note that the perturbed system response, while unstable 

(see Fig. C21 ), is rather benign.  Applying a dynamic inversion controller to a perturbed 

system is essentially equivalent to an imperfect cancellation of undesirable dynamics.  

The dynamics of the perturbed system are very different from the model used in 

controller design primarily from a 26% decrease in natural frequency of the first elastic 

mode.  Yet, despite this mismatch the resulting instability is rather benign.  While this 

type of result cannot be generalized so far, it does offer some promise that imperfect 

knowledge of the system to be controller would not cause severe instability. 
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Figure C19: Pitch rate time response of a 1 mode nominal and perturbed systems with the 

K2 controller to a half of a doublet pitch rate command, [δζ δω]=[-80% -26%].  
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Figure C20: Nominal 1 mode system with K2 controller pole-zero map.   
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Figure C21: Perturbed 1 mode system with K2 controller pole-zero map 

[δζ δω]=[-80% -26%].  

The difference between nominal and perturbed closed loop systems is illustrated in 

Figures C20 and C21.  The enlarged view around the origin indicates that the nominal 

closed loop has a double integrator, from the K2 controller, and two zeros essentially at 

the origin (see Fig. C20).  The perturbed system, as is evident from Figure C21, has an 

unstable pole and a NMP zero in the neighborhood of the origin as well as another NMP 

zero an order of magnitude away.  The precise reason for this particular pole-zero 

arrangement will be explored analytically in the context of robustness studies. 

The application of the K2 controller to a 3 mode system raises a number of issues.  

This is a potential illustration of interference with adjacent modes of the control action.  
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While the time response of a 3 mode system with the K2 controller is very similar to a 1 

mode system response, i.e., pilot station response almost matches that of the mean axis as 

the controller is designed to do, the effect on the adjacent modes is less than desirable 

(see Figs. C22 and C23).  The reasons for the move of the 2nd elastic mode from LHP to 

almost neutral stability on the imaginary axis as well as some movement of the 3rd elastic 

mode towards the imaginary axis are unclear.  One possibility is the move of the 1st 

mode so far into the LHP to increase its damping by more than 1000%, which as a 

byproduct also decreases its frequency, causes a corresponding decrease in the damping 

of the 2nd mode and some decrease in the 3rd.  Another, and much less welcome 

possibility, is that using wing based devices causes the decrease in damping of the 2nd 

and 3rd modes since they are primarily wing based modes.  If this in fact is the case, this 

would imply that wing mounted surfaces are not available for control that would in turn 

mandate some rethinking of the configuration.  
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Figure C22: Pitch rate time response of a 3 mode system with K2 controller to a half of a 

doublet pitch rate command (solid - s7; dashed – ps).  
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Figure C23: Pole zero map of a 3 mode system and effect of the K2 controller on its 

elastic modes. 
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Appendix D – General Derivation of div(G) for MIMO system  

D.1 General Nonlinear System  

Closed loop internal dynamics as t →∞  
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Then div(G) is given by  
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To enable simplified calculation taking div(G) by parts results in  
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So eliminating the nondependent parts results in  
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The interest is to obtain divG in terms of lift and drag forces, hence requiring coordinate 

transformation once again.  From definitions of α and V 
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The equilibrium force divergence is evaluated below. 
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calculating individual parts 
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combining terms in the u-direction 
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calculating individual parts 
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combining terms in the w-direction 
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Hence combining results for the div(F) gives 
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The aerodynamic equilibrium force divergence is  
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The final result for divG  
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D.2 Application of Stability Criterion  

In applying the stability results to the HSCT aircraft, for which high fidelity model 

exists, the structure of the aircraft model must be taken into consideration.  The dynamic 

aeroelastic data is derived in a linear fashion and is then combined with nonlinear rigid 

body aerodynamic model62.  The implications of this nonlinear/linear conglomeration on 

system shown in (6) is the removal of functional dependence of all η and η�  terms on V. 

They all become linear functions of α.  Define ( )E i  as a linear representation for the 

aerodynamic coefficients ( )C i , then the following replacements are made in system (25): 
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resulting in 
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The limiting equations reduce to  
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and in terms of the modified equilibrium aerodynamic force coefficients introduced in 

Chapter 6   
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where 
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In terms of the closed loop control effectiveness variables introduced in Chapter 6, the 

equations are given by  
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Define G  
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Then div(G) is given by  
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The interest is to obtain divG in terms of lift and drag forces, hence requiring coordinate 

transformation once again.  From definitions of α and V 
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and divG becomes 
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In addition recall the coefficient conversion equations: 
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Now, evaluating each individual component. 

u-direction: 
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combining terms in the u-direction 
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w-direction: 
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calculating by parts 
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combining terms in the w-direction 
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combining u and w directions: 
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The final result for divG  
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Appendix E – Longitudinal plus Flexible Mode Model Stability Analysis  

Additional discussion of analytical stability analysis for the longitudinal plus one 

flexible mode dynamics with a modified dynamic inversion using first order filter in the 

flexible dynamics loop is considered in this Appendix.  The linear version of the 

nonlinear equations of motion exploiting the linear nature of the flexible dynamics model 

(see (4.18)) is given as  
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For different structure of desy  the variation of closed loop poles are given below.  

Consider cases 1 (W I= ) and 2 ( ( )
1 0
0 /

W
b s b

⎡ ⎤
= ⎢ ⎥+⎣ ⎦

) and different combination of P 

and PI controller structure in the feedback loops. 

E.1 Controller Structure and Closed Loop Dynamics  

The inversion loop desy  to y  eigenvalues are 
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i
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− ±  

Note that in case 1 because of the separation between controlled variables and internal 

dynamics, it can be stated with certainty that the two nonzero eigenvalues are associated 

with internal dynamics of ( ),u w .  In case 2, the flexible mode dynamics are modified in 

the inversion loop, the pitch rate dynamics appear as integrators, and the real negative 

eigenvalues, similar in value to those found in case 1, should belong to ( ),u w . 

The closed loop eigenvalues and the associated linear controller structure are: 
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The presence of PI structure in both loops eliminates eigenvalues on the jω-axis and thus 

allows for existence of a unique P, symmetric positive definite, solution of the Lyapunov 

equation TAP PA Q+ = − .  This ensures that V( ) Tx x Px=  is a Lyapunov function with 

V( ) 0x <  resulting in 0x =  being globally asymptotically stable.  The LaSalle theorem 

relaxes the demand on V( )x  to be strictly positive definite and allows for positive semi-

definiteness to guarantee stability in the Lyapunov sense, or uniform asymptotic stability 

if V( )x  does not vanish identically.  But using the specific characteristics of a linear case, 

requiring positive definiteness of V( )x  guarantees global asymptotic stability and using 

PI controller structure allows for this stronger specification of stability.  Furthermore, the 

PI structure in the flexible dynamics loop insures that there is no residual η  in steady 

state due to an error build up. 

E.2 Analytical Stability Analysis  

In light of this analysis, the PI/PI structure is used in a linear system to derive a 

symbolic Lyapunov function with a full knowledge that it exists for a numeric 

representation of the system.  The linear system with PI controller structure is shown 

below 
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 (E.1) 

In the specific case finding a suitable Lyapunov function is achieved by simply 

solving the standard Lyapunov equation.  Alas, such approach does not work for 

symbolic analysis.  One potential approach to find the appropriate P for the quadratic 

Lyapunov function is to write out the elements of P in terms of the elements of the closed 

loop system matrix A and then apply the Sylvester’s theorem.  By requiring that all the 

principal minors of P to be strictly positive places restrictions on the relations between 

the elements of the A matrix.  These relationships are potentially very restrictive and 

have no physical basis.   

Another approach is to assume P I=  and use the physics of the problem to find 

conditions under which a candidate function ( )2 2 2 2 2 21V( )
2 fx V q xθ η η= + + + + +  will 

be Lyapunov.  This is the currently preferred approach.  Clearly V(0) 0=  and 

V( ) 0,  0x x> ∀ ≠ .  The question now rests with positive definiteness of V( )x .  
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 (E.2) 

Looking at the system in wind-axes coordinates brings an advantage of looking at vehicle 

velocity in terms magnitude, always greater than or equal to zero, and angle.  Converting 

(E.1) into polar coordinates results in 

 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

1 1 1

2 1

1 1 1

2 1

V( )

cos sin 1 2 1
cos

1 2

cos sin 1 2 1
sin

1 2

sin

u w q

f cmd cmd

u w q

f cmd cmd

w

x

X V X V X X k q X X k X X k
V

X X x X k q k

Z V Z V Z Z k q Z Z k Z Z k
V

Z Z x Z k q k

E V
q

δ θ δ η δ

η δ δ

δ θ δ η δ

η δ δ

α α θ φ η
α

η θ

α α θ φ η
α

η θ

φ α φ

=

⎛ ⎞′+ + − + − + −
⎜ ⎟
⎜ ⎟+ + + +⎝ ⎠
⎛ ⎞′+ + − + − + −
⎜ ⎟+
⎜ ⎟+ + + +⎝ ⎠

′ ′− −
+

( ) ( )
( )

( )
( ) ( )

( )

1 2 1 /

1 2

sin 1/

1sin 3 4

1 3 4

q f

cmd cmd

w q f

w q f

f

cmd cmd

E k q k E k E x

k q k

q E V E q E E x

E V E q E k E k x
b b b b bx

k k
b

η η

η η

η η

θ φ η φ η φ φ

θ

θ ηη η α η η φ

φ φ φ φα η η

φ η φ η

⎛ ⎞′ ′ ′ ′+ − − + − − ∆
⎜ ⎟
⎜ ⎟+ +⎝ ⎠

′+ + + + + + + ∆

′ ′ ′ ′∆ ∆ ∆ ∆⎛ ⎞− − − + − + −⎜ ⎟
+ ⎜ ⎟

⎜ ⎟′ ′+ ∆ + ∆⎜ ⎟
⎝ ⎠

 

and collecting terms 
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 (E.3) 

with 0cmd cmdη η= = .  Under what conditions will (E.3) be negative definite.  From a 

physical perspective the 2V  term would dominate provided that there are no unbounded 

flex dynamics.  The pitch rate is a controlled variable and because the standard dynamic 

inversion is recovered for this loop it is a stable bounded response by design.  The same 

assertion cannot immediately be made about the η  dynamics since there are filter 

dynamics involved.  The following condition should work for V( ) 0x <  
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 (E.4) 

The first should guarantee that 2V  coefficient is negative and the second stipulates that 

flexible dynamics are bounded.  These conditions are not based on any physical insight, 

might be overly conservative, and do not lend themselves to a generalized statement 

about closed loop stability akin to a result in Chapter 6. 
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If the flexible dynamics were not present the stability analysis would reduce to a 

single loop pitch dynamic case as shown below.  Consider nonlinear system described by 

(4.11).  If the flexible dynamics were not present the system would reduce to  
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 (E.5) 

with the filter equations given by 
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Schematically the controller would change from the one in Figure 7.1 to the one in Figure 

E1 below. 
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Figure E1: Transition of modified dynamic inversion controller when flexible dynamics 

are not present.  

 

With removal of flexible dynamics the filter state becomes an internal state and input-

output is a single loop pitch rate feedback dynamics.  The closed loop system becomes 
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In terms of actual aerodynamic coefficients, these equations can be rewritten as 
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 (E.7) 

Note that the closed loop system divides nicely into two subsystems.  One is the 

controlled variables ( , )q θ  which do not depend on the internal dynamics of ( , , )fu w x , 

and the other is the internal dynamics.  The controlled variables are stable by design, and 

hence the closed loop stability depends exclusively on the stability of the internal 

dynamics.  The internal dynamics subsystem has a natural separation between filter 

dynamics and velocity dynamics with filter dynamics stable by construction.   Therefore 

the closed loop system stability depends on the stability of the ( ),u w  dynamics.  The 

stability of these dynamics has been shown in Reference 14.   
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