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ABSTRACT 

Neural prosthetic device has the potential of benefiting millions of lock-in and spinal cord 

injury survivors.  One branch of the ongoing research is to construct reach movement based 

prosthetic devices.  An important research topic in this area is to accurately and efficiently 

extract the essential behavioral and cognitive control signals from the relevant brain area, 

Parietal Reach Region (PRR).  This thesis proposes statistical methods based on applying 

the Haar wavelet packets to spike trains in order to answer some of the questions in this 

field. 

Although spike train is the most frequently used data in the neural science community, its 

stochastic properties are not fully understood or characterized.  Many applications simply 

assume it is Poisson by nature.  This thesis suggests a formal spike train characterization 

method using the Haar wavelet packet.  The Haar wavelet packet projection coefficients are 

first generated by projecting the observed spike train ensembles onto the Haar wavelet 

packet function.  Then the ensuing empirical distributions of these coefficients are 

computed.  At the same time, the projection coefficients’ distribution of a Poisson process 

with the same rate function as the observed spike train ensembles are recursively derived.  

Comparison between the empirical distributions and the hypothesized ones are carried out 

using a χ2 test.  If the underlying process of the observed spike trains is indeed Poisson in 

nature, then the two distributions should have good agreement; otherwise, the deviation 

would be manifested by a large χ2 variate.  Because of the multi-scale property of the 

wavelet packet, Poisson-ness at different scales can be assessed.  Moreover, Poisson Scale-

gram is proposed to help visualize the characteristics of the spike train at different scales.  

Examples from both surrogate and actual data from PRR are subjected to the test. 

Because some neurons display non-Poisson characteristics, simple mean firing rate based 

decoding technique does not take advantage of all the information embedded in the spike 

train.  It is necessary to extract the relevant features in the context of decoding.  The thesis 

suggests a feature extraction method that searches all the wavelet packet coefficients for the 

ones with the largest discriminability.  The biological relevance of the projection 



 v
coefficients is especially appealing to the neural science community.  Also in this thesis, 

discriminability is quantified by mutual information, an information theoretic measure.  

Because of the tree-like hierarchy of the projection coefficients, the extraction method 

prunes the tree while scoring each feature with mutual information.  It returns the most 

informative feature(s) in the context of the Bayesian classifier.  Decoding performance of 

this proposed method is compared against the one using mean firing rate only on both 

surrogate data and the actual data from PRR. 

It is also crucial to decode cognitive states because they provide the extra control signals 

necessary for practical implementation of the prosthetic devices.  This thesis proposes a 

simple finite state machine approach where transition occurs among baseline, plan, and go 

states.  Additionally, an interpreter is introduced to interpret the decoding results and to 

regulate when the transition should occur.  Also, different interpretation rules are explored.  

This thesis demonstrates that the finite state machine framework, when coupled with the 

interpreter, offers a simple autonomous control scheme for the neuron prosthetic system 

envisioned. 

While the neural prosthetic system is in its infancy, many theoretical and experimental 

works lay the foundation for a bright future in this field.  This thesis answers the spike train 

characterization and decoding questions in a theoretical manner.  It offers several novel 

techniques that bring new ideas and insights into the research field.  Moreover, the methods 

presented here can be extended to accommodate more general problems. 
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Chapter 1 Introduction 
People’s fascination with the brain can be traced back for thousands of years to the time 

Hippocrates discovered that the brain was involved in sensation and was the source of 

intelligence.  Since then numerous researchers have devoted their careers to unlocking 

the mystery of the brain: its organization, its functionality, and its operating mechanism.  

With the advance of physics and electronics in the last century, scientists were able to 

investigate the brain from its functionality to its microscopic organization.  One direct 

practical result of the explosion of the neuroscience research activities is the development 

of brain-machine interfaces.  Engineers and scientists are using these new scientific 

discoveries to construct devices that enable the blind to see and the deaf to hear.  Another 

ambitious endeavor is to tap into the thoughts of millions of locked-in patients who are 

deprived of any motor functions, while their cognitive processing abilities are still 

functional.  With the recent advance of micro-scaled fabrication, probing and recording 

techniques, reading people’s thoughts has become more than just science fiction.   

 

Neural prosthetic systems are invented under the above premises.  They are systems that 

connect the brain to external devices so that the user can operate the device merely by 

thinking about it.  Specifically, a neural prosthetic arm system is a system that connects 

prosthesis directly to motor or pre-motor area of the brain so that thoughts of movement 

can be used to drive the system.  In other words, one can control peripheral devices just 

by thinking where to reach.  Figure 1.1 illustrates an idealized prosthetic system to 

command arm-reaching motions.  
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Figure 1-1 Idealized neural prosthetic system 

In this figure, a patient with spinal cord injury, or lesion, or motor cortex damage is 

deprived of any limb movement.  However, because the functional area in the brain that 

plans and commands arm-reaching motions is still intact, a neural prosthetic system can 

extract the thoughts/intentions from this brain area in order to form control signals.  Then 

the signals are relayed directly to a prosthetic arm in order to achieve the desired 

movement.  Visual feedback of the arm’s movement “closes the loop”.   

 

Various research groups have actively constructed virtual or mechanical systems, which 

are different versions of the above description, in order to achieve this goal 

[Georgopoulos 1986, Zhang 1997, Schwartz 1988, Moran 1999, Schwartz 2000, 

Wessberg 2000, Issacs 2000, Donoghue 2001, Nicolelis 2001, 2002].  While other 

researchers mainly access motor areas in the brain in order to extract the necessary 

information for controlling the prosthetic devices, a research group at Caltech focuses on 

a pre-motor area called Parietal Reach Region (hereafter abbreviated as PRR) as a source 

of neuro-prosthetic command signals.  It is believed that PRR forms the reaching plans 

which precede the actual reach [Snyder 1997, Batista 1999, Shenoy 1999, Meeker 2001].  
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The advantage of using such high-level cognitive brain activities is that they are more 

anatomically removed from regions that are damaged.  While motor areas on the other 

hand may degenerate following spinal cord injury [Florence 1998, Kaas 2002], most 

cognitive areas of the brain are known to sustain even after loss of motor functions.  

Furthermore, the plasticity, which is the capability of learning and adaptation, of the area 

also holds promise that users may quickly learn to adapt to a brain machine interface 

[Meeker 2003]. 

 

The construction of such a neuro-prosthetic system is no small feat.  The quest of 

designing and building the system involves disciplines ranging from neurobiology to 

mechanical engineering, in which each field finds its interesting application or 

challenging questions.  Generally speaking, designing and building such a cognitively 

controlled system requires several large building blocks: behavior experiments and signal 

harvesting, learning and decoding machinery, control schemes, and system integration. 

We briefly define each block and its function.   

 

The behavioral experiments are controlled experiments in which the animal performs 

designated behavior tasks while researchers monitor and record its brain activities.  Then 

either online or off-line, the recorded signals are examined to determine if any possible 

patterns are embedded in the neural signals so that inferences can be made about the 

animal’s behavioral states during the experiments.  The procedure of inferring the 

animal’s behaviors or sensory inputs from its recorded brain activities is termed 

decoding.  Next, knowledge gained in the learning/decoding stage enables us to construct 
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high-level control schemes necessary for commanding prosthetic devices so that they are 

directed by the user’s thoughts.  Finally, the software and hardware package must be 

miniaturized for possible clinical implementation.   

 

Among these building blocks, neural decoding is itself a very active research topic.  It 

includes, but is not limited to, characterizing the firing process of the spike trains and 

estimating or predicting behavioral parameters from neural activities.  A topic of ongoing 

debate in the community is whether spike trains are rate coded or time coded: the former 

refers to the assumption that the only informative feature in a spike train is the number of 

spike counts observed in a time window, while the latter refers to the assumption that 

timing between spike events also plays a role in conveying information.  To answer this 

question, different metrics and approaches ranging from statistical tools to information 

theory have been proposed over the years [Teich 1986, Holt 1996, Koch 1997, Johnson 

1996, Victor 1999, Johnson 2001].  In addition, the quest to promptly and accurately 

predict some behavioral parameters from neural activities has also attracted large amount 

of interest, especially in the emerging field of neural prosthetic systems [L. Abbot 1994, 

Zhang 1997, Schwartz 1988, Moran 1999, Schwartz 2000, Wessberg 2000, Issacs 2000, 

Nicolelis 2002].   

 

In order to address the above questions, it is necessary to first understand the stochastic 

characteristics of the spike train.  In this thesis, a novel approach to characterize spike 

trains is proposed.  This approach determines the Poisson-ness of a spike train at different 

scales.  It takes advantage of the multi-scale capability of wavelet packets, a relatively 
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new signal processing technique.  Under this approach, the spike trains are projected onto 

wavelet packets and the distributions of the projection coefficients are analyzed.  The 

coefficients whose empirical distributions significantly deviate from the theoretical 

distribution of a comparable Poisson process are counted.  The higher the counts, the less 

likely the process is Poisson in nature.  It allows us to assess Poisson-ness from different 

scales, thus avoiding the stationary assumptions employed in some other analysis of the 

spike trains [Gabbinni and Koch 1998].  Both surrogate data and the spike data collected 

from neurons in PRR are characterized using this approach. 

 

With knowledge of a spike train’s underlying stochastic nature, it is natural to extend the 

wavelet packet approach to the decoding problem described earlier.  Most current 

decoding efforts use the mean firing rate, i.e., the number of spikes in a window to 

estimate the behavioral or stimulus parameters.  When neurons are well characterized as a 

Poisson process, this decoding model is appropriate.  However, using the Haar wavelet 

packet family, spike train features beyond mean firing rate can be exploited.  In addition, 

these features have biological interpretations that are appealing and intuitive to 

researchers in the neuroscience community.  Of all the features, the most informative 

ones are the ones with the largest power to discriminate among the behavioral or stimulus 

parameters; thus, decoding based on these features can potentially improve both accuracy 

and efficiency.  In this thesis I propose an optimal feature selection technique which 

combines the wavelet packet framework with mutual information, an information 

theoretic measure.  Because of the hierarchical structure of the wavelet packet and the 

special properties of the mutual information, this method returns the wavelet packet 



 

 

14

projection coefficients with the largest decodability towards the decoding task.  Finally, I 

incorporate these selected features into a Bayesian classifier to estimate the behavioral 

parameters, such as reach directions in the case of decoding from PRR.  Again both 

artificial data and actual neuronal data are used and the decoding performance is 

compared against the ones using only mean firing rate. 

 

Besides decoding the estimated reach directions from PRR signals, we must estimate 

additional parameters from neural signals in order to successfully control a robotic device 

using brain activities.  These additional parameters are termed cognitive parameters in 

this thesis.  They describe the brain’s internal behavioral states.  For a minimally 

autonomous robotic device, we define the behavior states to include a baseline state, 

reach planning states, and the reach execution go state.  Because of the structure of the 

postulated state transitions, we cast them into a novel framework.  When combined with 

an Interpreter that acts on the classification results of these states, it returns an efficient 

algorithm that extracts the necessary control parameters.  Experimental data collected 

from animals performing a sequence of actions are subjected to this method while we 

compare different state transition rules. 

 

The contributions of this thesis work include the following: 

• A novel wavelet based spike train characterization method that assesses the 

underlying stochastic properties of given spike trains is introduced and studied.  

Traditional characterization methods have limitations or shortcoming when 

dealing with long term correlation or non-stationarity in the data.  On the other 
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hand, because of the statistical properties of the Haar wavelet packet, this method 

provides versatility and insight into the spike train’s characteristics compared to 

the traditional approaches.   

• A wavelet packet based feature extraction method that searches for the most 

informative features in spike trains is introduced in this thesis.  In many decoding 

problems, researchers automatically use firing rate as the lone feature in their 

decoding algorithms.  Although for spike trains with Poisson nature, firing rate is 

indeed the only informative feature, as shown in this thesis, not all spike trains 

exhibit Poisson characteristics.  Thus, more generally it is necessary to search for 

features embedded in the spike trains that are most informative towards decoding.  

The algorithm introduced here combines information theoretic measures with 

wavelet packet tree pruning techniques and returns features that offer improved 

decoding performance. 

• Finally, this thesis offers a first look at decoding cognitive states from reach 

movement sequences.  For practical purposes, a neural prosthetic system requires 

control signals beyond mere reach directions.  Thus, this thesis presents a 

framework based on finite state machine, and different transition rules are 

explored.  Although the framework is very simple, it is the first in the field that 

demonstrates the feasibility of using cognitive parameters to control autonomous 

prosthetic arm systems. 

 

This thesis is organized as follows:  
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• Chapter 2 provides background information on the experimental paradigms used 

to collect neural data, and introduces the data type used in this thesis.  A brief 

review of the wavelet and wavelet packet concepts, with a focus on Haar wavelet 

family, is also presented in the chapter.  And finally, we review the Bayesian 

classifier, which is the principal estimation tool used in the thesis. 

 

• Chapter 3 describes a method to characterize spike trains using the Haar wavelet 

packet function.  We investigate the probabilistic properties of the wavelet packet 

projection coefficients of Poisson processes.  From the analysis, we derive both 

the analytical forms of the distribution and an iterative method that approximate 

these distributions in practical situations.  Additionally this chapter proposes a test 

that investigates the Poisson-ness of an unknown spike processes.  This chapter 

concludes with applications of the test to different types of data. 

 

• Chapter 4 presents a framework for decoding behavioral parameters from neural 

activities.  First we review mutual information as a measure that quantifies the 

discriminability of each feature.  Then we introduce an algorithm that uses the 

mutual information as the decodability score and prunes the wavelet packet tree in 

search of the best features for decoding.  We compare the decoding performance 

using the optimal features to the performance obtained when using just standard 

firing rates with applications to surrogate data as well data from neurons in PRR.  

In the appendix, we also present a finite sample analysis that further justifies the 

use of mutual information.   
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• Chapter 5 presents work on decoding logic parameters and sequences of 

behaviors.  We define the necessary states and the state transition concepts that 

enable a construction of an autonomous model.  When coupled with an 

Interpreter, this model allows us to integrate decoding with state transition rules 

so that we can extract practical control signals for a prosthetic system.  Several 

different Interpreter rules are explored as we compare their performance to reach 

sequences recorded from the animals. 

 

Some final remarks as well as some future works are proposed in Chapter 6 to conclude 

this thesis. 
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Chapter 2 Background 
This chapter provides background information on the experimental setup and the 

mathematical model of the neural data used in the thesis.  Also, brief overviews of 

wavelet and wavelet packet are presented as well.  Finally, we discuss relevant concepts 

from Bayesian classification, which is the principal classification tool used through out 

the thesis. 

 

2.1 Experimental setup and data type 

Most of the actual neuronal data used in this thesis are obtained from behavioral 

experiments that were conducted on Rhesus monkeys (Macaca mulatta) performing 

delayed center-out reach tasks, which are illustrated in Figure 2.1.   

Baseline 
(500 ms)

Target 
(300 ms)

Plan 
(800 ms)

Completed     
(variable)

Go  

Figure 2-1 Center-out reach task 

In the physical reach experiments, the animal is secured with the head position fixed in 

front of a vertical touch screen in a dark room.  At the start of each trial, a fixation dot 

(red) is first displayed at the center of the touch screen where the animal fixates both its 

hand and eye.  After ~500 ms of fixation, a reach target (green) is shown to the animal for 

300 ms.  The animal is required to memorize the reach direction and to form a reach plan 

in the next ~800 ms while it is still holding the arm and eye on the fixation dot.  After the 

plan period, the fixation dot extinguishes, and the animal makes a reach to the previously 



 

 

19

shown target location.  A juice reward is administered upon a successful completion of 

the trial.  The target locations are randomly chosen among 8 different locations, and the 

length of the plan period is also randomized to minimize an anticipation effect [Batista 

1999, Meeker 2001]. 

 

Alternatively, a virtual reach experiment very similar to the physical reach experiment is 

carried out in order to simulate a neural prosthesis at work, and also to explore the 

learning capability of PRR.  The distinction between the physical reach and the virtual 

reach is that in the latter, the animal does not actually perform the reach movement.  

Instead of moving its arm towards the target, the animal forms the intention of making 

the movement, which is subsequently decoded.  Based on the decoded reach direction, a 

visual feedback (yellow dot) appears on the touch screen.  The animal is given the juice 

award if the decoded reach direction matches the target.   

 

The recording apparatus consists of a custom-made micro-electrode, signal amplifier, 

A/D converter, and spike detection and sorting software.  The micro-electrode is a 10 cm 

long glass-coated platinum-iridium wire with the diameter 0.4 mm.  The wire is insulated 

throughout except at the sharpened tip, thus giving it an impedance of 1.5-2 MOhm.  The 

wire is housed in a glass guide tube of diameter 0.5 mm so that it can penetrate the dura 

upon insertion.  The A/D converter has a sampling frequency for 40 KHz for the brain 

activities.  
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During a recording session, the electrode is first acutely inserted into the brain’s 

functional area pre-determined using fMRI.  Then using a micro-drive, the electrode is 

advanced incrementally at 700 microns per step in the vicinity of PRR in searching for 

extra-cellular neuronal activities.  Once extra-cellular activities are detected, the animal is 

required to make a sequence of movements to the 8 different locations in order to decide 

the relevance of the neuron with respect to the behavior paradigm.  If no identifiable 

correlation exists between the neural activity and the reach locations, the electrode is 

advanced further until new extra-cellular activities are detected; otherwise, the electrode 

is fixed at the position that exhibits behaviorally modulated neural activities.  Figure 2-2 

displays a trace of recorded PRR neural activity.  The local surge of the voltage is called 

the action potential fired by the neuron. 

 

Figure 2-2 Trace of neural activities from a neuron in PRR 

X-axis is the time and y-axis is the amplitude in voltage.  The sudden surges of the voltage amplitude 
are action potentials, and the timing of the action potentials marks the occurrence of the spikes. 

 
The analog raw waveform is then sampled at 40KHz.  Because the recorded extra-cellular 

neural activities may contain signals from several neighboring neurons, spike sorting is 

necessary in order to decipher the signals on a neuron by neuron basis [Abeles 1977].  In 

another word, we need to sort the spikes (action potentials) from the signal and label 

them with the corresponding neurons that generate the specific waveforms.  The spike 

sorting algorithm uses either principal components analysis (PCA) based method or 
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template method [Lewicki 1998].  Once the spikes are sorted, the time of occurrence of 

each spike is recorded to a precision of 1ms.  A sequence of the spikes forms a spike 

train, which is one of the most frequently used data types in the neuroscience community.  

This thesis thus places a strong emphasis on the spike train data format though some of 

the techniques described have broader applications.  The model of the spike train will be 

the topic of next section. 

 

All of the experimental neural signals used in this thesis are recorded from the Parietal 

Reach Region (PRR), a sub-region of Posterior Parietal Cortex.  PRR is believed to be 

responsible for reach intentions or planning.  A series of papers on this area suggest that 

it not only encodes the reach plan in the retinotopic coordinates, but also codes the next 

movement target in a sequential reach task [Snyder 1997, Batista 1999].  Therefore, 

unlike motor areas, PRR encodes relatively simple movement parameters in a 

straightforward coordinate frame.  In addition, the posterior parietal cortex bridges the 

sensory-motor transformation areas, which may be important for the type of learning 

necessary for the proper alignment of sensory maps with motor maps, as demonstrated in 

some recent works [Meeker 2003].  The learning ability of the area is especially 

appealing for neural prosthetic applications because PRR may retain or quickly re-

establish the reach planning ability.  Taking advantage of its learning ability thus may 

prove necessary for optimizing the performance of a neural prosthesis.  
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2.2 Spike train representation 

In the previous section, a brief description on the data collection apparatus is introduced.  

The over-sampled analytical signals as seen in Figure 2.2 are further processed to 

generate spike trains.  The two basic pre-processing steps are spike detection and spike 

sorting.  The spike detection step separates the action potentials from background noises 

such as thermal noise of the recording equipment and the average response from 

neighboring neurons.  There are many detection methods in existence, and the one 

applied in this thesis is the thresholding method [Humphrey 1979, Abels and Goldstein 

1977, Nenadic 2003].  It indicates the presence of a spike when a local peak of the raw 

analytical signal passes a threshold.  As a stream of spikes is recorded, the next step is to 

classify the spikes to their respective source neurons because not all observed spikes are 

originated by the same neuron.  Many times two or three neighboring neurons may be 

responsible for some of the spikes.  The spike sorting technique used in this thesis is the 

template method [Lewicki 1998].  Because the spike waveforms (128 data points of the 

raw data centered around a peak) are markedly different given different neurons while 

remaining homogeneous for the same neuron, the template method matches different 

templates to all the observed spike waveforms.  The ones exhibit similarities are 

classified as being from the same neuron; and vice versa.  Thus, the raw analytical signal 

is deciphered into several data streams, each with spikes believed to be generated from 

different neurons.  In addition, because the spike waveforms for a given neuron are very 

homogeneous, only the timings of the spikes are retained [Rieke 1997].  Finally, because 

the refractory period physically limits a neuron’s ability to fire consecutive spikes within 
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2 ms, the processed and sort signals are down sampled to 1 kHz.  This processed version 

of the spike will be used throughout this thesis. 

 

We employ a standard representation of a spike train as a binary function with 0’s and 

1’s.  We assume that the onset of a spike can be localized at best to a sampling interval of 

length δT.   Moreover, we assume that spikes are sampled over an interval of length T, 

where T=2mδT for some integer m. With this assumption, a spike train, s, can be 

described as  

Equation 2.1  
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Equivalently, a spike train can be interpreted as a T-dimensional vector (where T=2m for 

some integer m), whose kth element is determined as 

Equation 2.2  
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where k=0,…,T-1.  For some analyses, we further assume that there exists an ensemble of 

N spike trains gathered under repeated behavioral, stimulus, and recording conditions.  

Conceptually, these different spike trains are different samples of the same underlying 

stochastic process. A superscript will index the members of the ensemble: { } Mits ,..,1)( = .  In 

all the computational examples of this paper, the sampling interval δT is taken to be 1ms 

because of the refractory period.  It is the physiological limit on the time intervals 

between two consecutive spikes fired by the same neuron.  Generally the refractory 

period is taken to be 2ms, meaning a neuron can not fire a spike within the 2ms following 

an earlier firing [Rieke 1997]. 
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2.3 Haar Wavelet Packet Projection 

We now review the Haar wavelet packet, its waveform, and its construction.  Details are 

outlined in several standard textbooks on wavelet theory [Daubechies 1992, Wickhauser 

1994, Mallat 1999, Percival and Walden 2000].  This section also establishes our notation 

for the projection coefficients of the spike trains.  Knowledgeable reader may skip this 

section and proceed directly to Section 2.4. 

 

2.3.1 Haar Wavelet Review 

A wavelet basis is a set of orthonormal functions that partition the time-frequency 

domain in a dyadic fashion.  As shown below, wavelets are constructed from a choice of 

scaling function and a set of filters.  In one sense, a filter can be interpreted as a set of 

coefficients that are applied to a data stream in order to reveal meaningful features.   That 

is, let a filter be defined by a set of coefficients, {hk}, k=1,..,L.  The filter output is given 

by   

∑ +=
k

kiki xhv , 

where xk represents the raw data stream, the hk’s are the filter coefficients, and vi is the 

filter output, or feature.  From another perspective, filters are usually described by their 

frequency domain characteristics because the filtering operation resembles convolution, 

which is equivalent to multiplication in the frequency domain [Oppenheim 1999].  Some 

basic types of filters include low pass (attenuates high frequency) and high pass 

(attenuates low frequency).  In this section we describe a filter by its filter coefficients.  
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We begin with the continuous wavelet function.  First we define a low pass filter H by 

coefficients { }kh  and a complementary high pass filter G by coefficients { }kg , where the 

coefficients { }kg  and { }kh  are required to have the following relationship: 

kL
k

k hg −−= )1( , L being the number of filter coefficients. These filters are generally 

termed Quadrature Mirror Filters (QMF) [Percival 2001].  Next define a scaling function, 

)(tφ ,  that satisfies the following conditions, 

Equation 2.3   ∫∑
∞

∞−=

=−= 1)(,)2(2)(
1

dttktht
L

k
k φφφ . 

For simplicity, we denote the analogous operations of convolution and scaling by a factor 

of two (“decimation”) with respect to the filter pair { }kh  and { }kg  by H and G, i.e., 

∑∑ −=−=
k

k
k

k ktfgGfktfhHf )2()2(  . 

Now construct a function, )(tψ , complimentary to )(tφ , such that 

Equation 2.4  ∫∑ =−=
Rk

k dttktgt 0)()2(2)( ψφψ , 

where )(tψ  is termed the wavelet function.  For the Haar wavelet function, the low pass 

filter and the high pass filter coefficients are {1 1} and {-1 1}, respectively.  The 

associated scaling function and wavelet functions are plotted in Figure 2.3. 
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Figure 2-3 Haar scaling function and Haar wavelet Function on the interval [0 1]. 

X-axis is the time in ms and y-axis is the value of the functions. 

The strength of wavelet-based analysis for this application resides in both its multi-

resolution analysis (MRA) capability and the computational efficiency of the associated 

numerical algorithms.  To understand MRA, consider a nested sequence of subspaces 

{ }
ZjjV

∈
 of )(2 RL , where Z is the set of integers and )(2 RL  is the space of all square 

integrable functions.  These nested subspaces satisfy the following conditions: 

 

C1 211 LVVV jjj ⊂⊂⊂⊂⊂ +− LL        for all Zj ∈ , 

C2 2lim LV jj
=

∞→
, 

C3 }0{lim =
−∞→ jj

V . 

Further, define another complementary set of subspaces { }
ZjjW

∈
 such that  

jjj WVV ⊕=+1 . 
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Combining the above definitions, the space )(2 RL  can be expressed as  

jj
WRL

∞

−∞=
⊕=)(2 . 

This relation is termed a Multi-Resolution Analysis [Mallat 1999].  Using the actions of 

translation and dilation, one can construct the following indexed version of the wavelet 

function, )(tψ , 

)2(2)( 2/
, ktt jj
kj −= ψψ , 

where j is the scale (or dilation) index and k is the location (or translation) index.  

Because for a fixed integer j*, the set of functions { },....1|)(
,* =kt
kj

ψ  forms a basis for the 

subspace *j
W ,  the set of functions { },...1,...;1|)(, == kjtkjψ  forms a basis for )(2 RL  

with different resolutions indexed by j [Percival 2001].  Hence any signal )()( 2 RLtf ∈  

can be represented as a weighted sum of the wavelet bases: 

)()( ,,
tvtf kjkj jk ψ∑= , 

where the weighting coefficients jkv  are obtained by projection onto the wavelet basis via 

the regular inner product on )(2 RL ,  

dtttfv kjjk ∫= )()( ,ψ . 

Even though the MRA is defined for the continuous function space, )(2 RL , its 

construction can be easily generalized to the domain of discrete data.  Consider a vector X 

in RT, the space of all T-dimensional vectors, where T =2m with m an integer.  We can 

interpret X as a discrete sampling of a continuous function at sampling interval δT.  With 

this interpretation in mind, the scaling function )(tφ  is scaled and adapted to each 
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sampling interval of the discrete data.  We denote the resulting set of adapted scaling 

functions as )(0 tkφ , whose support is [ ]TkTk δδ )1(, +  for k=0,…,T-1. Now apply the low 

pass filter { }kh  and the high pass filter { }kg  to the set of adapted scaling functions )(0 tkφ  

so that, 

Equation 2.5   ∑ −=
l

lklk h 021 φφ , 

Equation 2.6   ∑ −=
l

lklk g 021 φψ . 

We note the support of the functions )(1 tkφ  and )(1 tkψ  is [ ]TkTk δδ )1(2,2 +  for 

1
2

,...,0 −=
Tk .  Moreover, the sets of functions )(1 tkφ  and )(1 tkψ  are called the scaling 

function and the wavelet functions at scale j=1.  We can extend Equation 2.3 and 

Equation 2.4 recursively for all j such that  

Equation 2.7   ∑ −−=
l

ljkljk h 12 φφ , 

Equation 2.8   ∑ −−=
l

ljkljk g 12 φψ , 

where the sets of functions )(tjkφ  and )(tjkψ  are called the scaling function and the 

wavelet functions at scale j, and their support is [ ]TkTk jj δδ )1(2,2 + .  The recursion 

stops at scale j=log2T, where both the wavelet function and the scaling function have 

support [0 T], with T being the presumed length of the spike train data sequence.  For the 

Haar wavelet function, the low pass filter and the high pass filter are {h0=1 h1=1} and 

{g0=-1 g1=1 } respectively.  The scaling and wavelet function up to scale j=2 are plotted 

in the following tree diagram (Figure 2.4), 



 

 

29

0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

0 2 4
0

0.2

0.4

0.6

0.8

1

1.2

 

0 1 2 3 4

-1

-0.5

0

0.5

1

0 1 2 3 4

-1

-0.5

0

0.5

1

0 1 2 3 4

-1

-0.5

0

0.5

1

0 1 2 3 4

-1

-0.5

0

0.5

1

 

      
0 1 2 3 4

-1

-0.5

0

0.5

1

0 1 2 3 4

-1

-0.5

0

0.5

1

 

Figure 2-4 Haar wavelet and scaling functions up to scale j=2. 

The top panel contains the scaling functions at scale j=0, for this example, k=1,2,3,4.  The middle left 
panel contains the scaling function at scale j=1, and the middle right panel contains the wavelet 

function at scale j=1.  The bottom left panel is the scaling function at scale j=2, and the bottom right 
panel is the wavelet function at scale j=2.  The symbols H and G indicate the filtering operation that 

generates these functions.  Notice the support at each scale increases dyadicly.  

 
This recursive relationship also enables MRA in the discrete context. 

H

H G

G
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The above application of the wavelet functions to the discrete data inspires the so-called 

Pyramid Algorithm [Mallat 1999], an efficient method for computing the wavelet 

projection coefficients of discrete data.  Again we take a vector X={x0,…,xT-1} in RT, the 

space of all T-dimensional vectors, where T is a power of 2.  Similarly, we interpret the 

vector X as a piece-wise constant continuous function with constant values xk over the 

sampling interval [ ]TkTk δδ )1(, +  for k=0,…,T-1.  The projection coefficients of X onto 

the 0th scale scaling functions are, 

∫= dtttXu kk )()( 00 φ . 

Because X(t) is a piece-wise constant function with piecewise support coinciding with the 

support of )(0 tkφ , and by Equation 2.3,  

kk xu =0 . 

Therefore, the finest scale coefficients are exactly the input data itself.  Now we can use 

the low pass filter { }kh  and the high pass filter { }kg  to recursively compute the wavelet 

coefficients at each scale.  The governing equations for the Pyramid Algorithm are  

Equation 2.9   ∑ −−=
l

ljkljk uhu ,12 , 

Equation 2.10   ∑ −−=
l

ljkljk ugv ,12 , 

where the {vjk} are the wavelet projection coefficients and the {ujk} are the scaling 

projection coefficients, an intermediate set of coefficients that are derived by projecting 

the signal f(t) onto the scaling function )(tjkφ .  In addition, the cardinality of the sets {vjk} 
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and {ujk} at each scale are j

T
2

.  For the Haar wavelet, we can illustrate the idea behind 

the Pyramid algorithm using a decomposition tree similar to the one illustrated in Figure 

2.4, where each node at level j in the tree represents a set of wavelet coefficients at scale 

level j (Figure 2.5).    

 

  

Figure 2-5 Pyramid Algorithm for the special case of Haar wavelet decomposition  

At scale j=0, the scaling coefficients u0,k  are the input data sequence whose length is T.  At scale j = 1, 
we obtain the scaling coefficients u1,k and wavelet coefficients v1,k by performing the convolution-

decimation operation with H and G, respectively.  Note the cardinality of the coefficient set is now T/2 
because of the decimation.  The two nodes at j=1 are termed children of the parent node at j=0 

because they are derived from that parent node.  Similarly, the scaling coefficients u2,k and wavelet 
coefficients v2,k at scale j=2 are generated from the parent node at scale j=1, and their corresponding 

cardinality is T/4.  Using this algorithm, we can proceed to calculate the wavelet coefficients at all 
scales until the size of the coefficient set equals 1. 

 

2.3.2 Haar Wavelet Packet 

The wavelet packet is an extension of the basic wavelet construction described above.  

Because wavelet packets are a super-set of wavelets, they offer a richer selection of basis 

functions.  In the context of the spike train classification problem, this added richness 

yields a more refined analysis of the spike train.  The construction of the continuous Haar 

wavelet packet basis functions again involves a low pass filter { } { }1,1=kh  and a 

complementary high pass filter { } { }1,1 −=kg .  Assuming that the wavelet functions )(tψ  

u0,k=  s (spike train) 

u1,k=u0,2k-1+u0,2k v1,k+T/2= u0,2k-1-u0,2k 

u2,k v2,k 

H 

H 

G

G

Scale j=0 
k=0…T-1 

Scale j=1 
k=0…T/2-1

Scale j=2 
k=0…T/4-1
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defined below have support on the real interval [0 1], we can again apply the convolution 

and decimation operation recursively to define the set of functions, 

∑

∑
−=

−=

+
k

nkn

k
nkn

ktgt

ktht

)2()(

)2()(

12

2

ψψ

ψψ
, 

where the sum is over the cardinality of the filter coefficients hk and gk, and for the Haar 

wavelet, 

[ )


 ∈

=
otherwise

tif
0

101
0ψ . 

Note that ψ0 is the same as the Haar wavelet scaling function, and ψ1 is the Haar wavelet 

described above.    

 

Like wavelets, wavelet packets can be extended to the discrete MRA using the double 

index of scale j and location k.  Consider a vector X in RT, the space of all T-dimensional 

vectors, where T is again a power of 2.  With the interpretation of the piece-wise constant 

function in Section 2.3.1, the scaling function )(tφ  is first scaled and adapted to each 

sampling interval of the discrete data.  We denote the resulting set of adapted scaling 

functions as )(0 tkψ , where 

Equation 2.11  
[ ]



 +∈

=
otherwise

TkTktif
tk 0

)1(,1
)(0

δδ
ψ , 

whose support is [ ]TkTk δδ )1(, +  for k=0,…,T-1.  Now we apply the low pass filter { }kh  

and the high pass filter { }kg  for all j such that  

Equation 2.12   ∑ −−=
l

ljkljk h 12 ψψ  
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Equation 2.13   ∑ −−
+

=
l

ljklTjk
g

j
12

2

ψψ , 

where the sets of functions )(tjkψ  have support [ ]TkTk jj δδ )1(2,2 + , and the limit of the 

summation is the cardinality of the filter coefficients H and G.  The recursion stops at 

scale j=log2T, where both the wavelet packet functions have support [0 T].  For the Haar 

wavelet function, the low pass filter and the high pass filter are {h0=1 h1=1} and {g0=-1 

g1=1 } respectively, thus the relationship becomes 

)()()( 2,112,1, ttt kjkjkj −−− += ψψψ , if low pass 

)()()( 2,112,1
2

,
ttt kjkjTkj j

−−−
+

−= ψψψ , if high pass 

where j is the scale index, k is the position index, and T is the length of support of the 

filter at the largest scale, as defined above.  An example of Haar wavelet packets and 

their recursion relationship is shown graphically in Figure 2-6.   
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Figure 2-6 Haar wavelet packet functions up to scale j=2. 
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A) The top panel contains the wavelet packet functions at scale j=0.  It is identical to the scaling 
function.  The middle left panels contain the wavelet packet functions at scale j=1 as a results of the 
low pass filtering, and the middle right panels contain ones as a results of high pass filtering.  The 

two bottom left panels contain the wavelet packet functions that are children of the two middle left 
ones, and similarly the two bottom right ones are children of the two middle right ones.  The H and G 

indicate the filtering operation towards these functions.  Notice the support at each scale increases 
dyadicly. B) The Haar wavelet packet functions on [0 1] up to the 19th iteration. 

 
In particular, we notice that the set of Haar wavelet functions is the left vertical branch in 

the packet tree (Figure 2.6A). 

 

An interesting property of the Haar wavelet packet functions is the orthogonal 

relationship between all of the packet functions.  Before describing the orthogonality in 

detail, we first define several relevant terms.  A tree is an arrangement of the wavelet 

packet functions such that they are structured in a branching fashion.  A node jlN  is either 

a tree branches or a tree leaf, and at a given scale j there are 2j nodes.  In the above 

example, there are 1 node N01 at scale j=0, 2 nodes at scale j=2, and 4 nodes at scale j=3.  

Moreover, the member functions of a node are defined as the wavelet packet functions 

related to each node.  The relationship is the constructive iteration shown in Figure 2.6.  

The number of member functions for any node at scale j is T/2j, where T is the length of 

the input vector under investigation.  Now we are in position to discuss the orthogonality 

property. 

 

Proposition 2.1 Member functions of each node are orthogonal to the member functions 

of any nodes residing on a different branch of the dyadic tree. 
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For example, in the above figure, the member functions of N21 are orthogonal to the 

members of N22, N23, and N24.  Likewise, it is also orthogonal to the parent node of N23 

and N24, namely N12 because N21 and N12 do not share a branch. 

 

Proof: 

Note that the member functions of any two child nodes derived from the same parent are 

orthogonal. To show this, directly integrate the functions: 

∫ dttt jkjk )()(
21

ψψ , 

where )(
1

tjkψ  is a member function of 
1jlN and )(

2
tjkψ  is a member function of 

2jlN .  

There are two possibilities for the above integration: 

1) If jJkk −+
≠

212 , then 0)()(
21

=∫ dttt jkjk ψψ  because by construction, 
1jkψ  and 

2jkψ  have 

non-overlapping support. 

2) If jJkk −+
=

212 , then  

0

)()(

)]()()][()([

)()(

2
2,1

2
12,1

2,112,12,112,1

11

1111

21

=

−=

−+=

−−−

−−−−−−

∫
∫

∫

dttt

dttttt

dttt

kjkj

kjkjkjkj

jkjk

ψψ

ψψψψ

ψψ

. 

In addition, the wavelet packet functions contained in the branches derived from the two 

child nodes are also orthogonal.  To see this, we observe that the space spanned by the 

first child node is orthogonal to the one spanned by the second child, i.e., 

{ }
11 jkSpanS ψ= , 11 nodechildk ∈  

{ }
22 jkSpanS ψ= , 22 nodechildk ∈  
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21 SS ⊥  

because the member functions, { }
1jkψ  and { }

2jkψ  are orthogonal as shown earlier.  

Moreover, the wavelet packets contained in the branches of the two child nodes are linear 

combinations of the ones in { }
1jkψ  and { }

2jkψ  by construction.  Hence they are also 

orthogonal to one another. 

 

Therefore, we have shown that the wavelet packet functions in any node are orthogonal 

to the ones in nodes that are a member of a different branch. ٱ 

 

Similarly, we can adopt the Pyramid Algorithm to efficiently compute the projection 

coefficients of the wavelet packets.  The algorithm is almost identical to the one used for 

wavelets, with the only difference being that the branching of the wavelet packet tree 

occurs at every node, while branching occurs only in the first node of its wavelet 

counterpart.  We can likewise devise a tree diagram to illustrate the decomposition of a T-

dimensional vector (Figure 2-7) 

 

Figure 2-7 Pyramid Algorithm for the Haar wavelet packet decomposition 

At scale j=0, the coefficients v0,k  are the input data sequence whose length is T.  At scale j = 1, we 
obtain the coefficients v1,k and v1,k+T/2 by performing the convolution-decimation operation with H 

and G, respectively.  Note the cardinality of the coefficient set is now T/2 because of the decimation.  
The two nodes at j=1 are termed children of the parent node at j=0 because they are derived from 

v0,k=  xk 

v1,k=u0,2k-1+u0,2k v1,k+T/2= u0,2k-1-u0,2k 

v2,k v2,k+T/4
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that parent node.  Similarly, the same relationship is observed at scale j=2, in which the cardinality of 
the coefficients in each node becomes T/4. 

 

Using this version of the Pyramid Algorithm, we can efficiently compute all the wavelet 

packet coefficients up to scale j=log2T.  In all, the wavelet packet decomposition of a 

vector of length T returns TlogT wavelet packet coefficients, compared to the T 

coefficients by wavelet decomposition.  

2.3.3 Computing the Projection Coefficients 

Using the concepts and the background presented in the previous sections, the T-

dimensional spike train, s={s0,…,sT-1} can be projected onto the Haar wavelet packets 

using the aforementioned Pyramid Algorithm.   

 

Based on spike train model shown in Section 1, the 0th scale wavelet packet coefficients 

v0,k are precisely the original spike train sk, 

Equation 2.14    kk sv =0 . 

For the Haar wavelet packet, the recursive relations for the remaining coefficients then 

become 

)()()( 2,112,1, tvtvtv kjkjkj −−− += , if low pass 

)()()( 2,112,1
2

,
tvtvtv kjkjTkj j

−−−
+

−= , if high pass. 
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2.4 Biologically Relevant Properties of the Haar Wavelet 

Packet 

Although there are many possible choices of wavelet functions, the Haar wavelet packet 

carries some special properties which make it an appealing choice for projecting, 

analyzing, and interpreting spike trains.  As seen in Section 2.3, the Haar wavelet packet 

functions have compact support in the time domain.  This bodes well with the fact that 

spike trains consist of spike signals with support as small as the sampling interval δT.  In 

other words, Haar wavelet packet functions completely capture the discrete nature of the 

spike trains. On the other hand, other basis functions such as trigonometric functions 

would produce undesirable artifacts because of Gibb’s phenomenon.  Furthermore, some 

of the Haar wavelet packet projection coefficients have intuitive interpretations that relate 

them to measures widely recognized in neuroscience.  For example, the coefficient vj1 at 

a scale j corresponds to the number of spikes in a window of length jT 2/ , with which 

we can express the mean firing rate in that window as Tv j
j /2 1 .  In other words, the vj1 

corresponds to the mean firing rate in an associated time interval, or window (see Figure 

2-8a).  Furthermore, coefficients such as vj2 are closely tied to the local change of firing 

rate, often observed in the case of changing stimulus (see Figure 2-8b), i.e., this 

coefficient corresponds to a localized slope in the Post-Stimulus Time Histogram (PSTH) 

[Rieke 1997].  Finally one can describe bursting, a local consecutive firing of spikes, 

using highly oscillatory wavelet packet functions that reside in a small time window 

(Figure 2-8c).  Some other advantages of Haar wavelet packet will be evident in the 

subsequent sections. 
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Figure 2-8 Haar wavelet packet function at different scale and locations over 512 units of the basic 
sampling period δT 

A. j=9, k=1, the wavelet packet function corresponds to a window that spans the whole 512 units.  
Consequentially, the resulting coefficient v9,1 correlates to the mean firing rate in the sampling 

window of length 512 δT.  B. j=6, k = 10, the wavelet packet function corresponds to one up-down 
cycle over 64 units.  The resulting coefficient v6,10 in this case represents the difference of the firing 
rate in two consecutive 32 units windows.  C. j = 4, k =300, the wavelet packet function corresponds 

to high frequency oscillation in a 16 units window. The resulting wavelet coefficients v4,300 have direct 
implication on local bursting activities. 

 

2.5 Bayesian classifier 

This section reviews basic concepts about the Bayesian classifier, a widely used 

classification method.  It classifies an unlabeled observation by estimating its probability 

associated with each different class.  More rigorously, denote the stimulus parameter 

(class label) as X and the feature (unlabeled observation) as v, both are random variables.  

Then the ubiquitous Bayes’ rule states that 

Equation 2.15   
)(

)()|()|(
vP

XPXvPvXP = , 
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where X is the class label, v is the feature, P(X|v) is the posterior probability, P(X) is the 

prior probability of X, and P(v|X) is the likelihood of v given X.  In this thesis X is 

interpreted as the reach direction, and v as the neural signals.  Bayesian classification is 

based on the principle, 

Equation 2.16   { })|(maxarg
~

vXPX
X

= , 

the estimated class or reach direction 
~
X  is the one that maximizes the posterior 

probability P(X|v).   

 

Since the conditional probability p(v|X) must be estimated,  this thesis estimates the 

conditional densities using the Parzen window method [Parzen 1965].  The Parzen 

window approach applies Gaussian kernels to the observed data and returns density 

estimation in the form of the normalized sum of Gaussians centered at each data point.  

We can write the resulting density function as  

∑
=

−==
cN

i
i

c

vvG
N

cXvp
1

),(1)|( σ , 

where G(v, σ) is a Gaussian kernel with standard deviation σ, and Nc is the total number 

of trials in class Xc.  Clearly p(v|X=c) is a density function because it integrates to 1 over 

all values of v.  Therefore, we can use the Parzen window approximation in place of the 

true conditional density functions (which is unavailable) to estimate the mutual 

information.  The choice of σ controls the smoothness of the probability density.   
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A special case of the classification problems is the binary classification problem.  

Because of its simplicity, many well-established theories of pattern recognition are built 

upon the binary classification problem.  Let the two classes be X1=1 and X2=0. The 

Bayesian classification rule can be defined as 

Equation 2.17   


 >=

=
otherwise

vXPif
xg

0
2/1)|1(1

)(* . 

 

Interestingly this simple classification rule turns out be the optimal binary classifier. 

Define the classification error E as 

Equation 2.18   )()|~(

)~(

vPvXXP

XXPE

v
∑ ≠=

≠=
. 

 

Theorem 2.1: [Devroye 1998] Let the Bayesian classification error be E*.  That is, E* is 

the error in the estimate produced by Equation 2.16, then EE ≤* for all E. 

 

The above theorem shows that the Bayesian classifier minimizes the classification error 

amongst all binary classifiers.  This thesis thus uses Bayesian classifier as the principal 

classification strategy. 
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Chapter 3 Characterizing spike train processes using 
Haar wavelet packet 

3.1 Introduction 

A sequence of spikes forms a spike train, which is often modeled as a random process [F. 

Rieke 1997].  It is the most widely used data type in the neuroscience community.  

Problems, such as neural encoding and decoding given spikes, have been studied 

extensively [Gabbiani and Koch 1998, Rieke 1997, Victor 1997, Strong 1998, Johnson 

1996, 2001].  However, the precise characteristics of this random process are still an open 

question.  Researchers have proposed different models to capture the statistical 

characteristics of spike trains while the debate over the correctness of rate coding or 

temporal coding of spike trains has been on going for some years [Johnson 1996, 2001, 

Reich 2000, Steveninck, 2002].  Here rate coding refers to the assumption that 

information is only conveyed in the firing rate of the spike train, and time coding refers to 

the assumption that precise timing of the spikes also codes information.  Schemes that 

better characterize the firing process will help to understand the underlying neural code. 

 

Often, the statistical behavior of a spike train is modeled as a homogeneous or 

inhomogeneous Poisson process.  A homogeneous Poisson process is completely 

quantified by its mean firing rate, λ, which is equivalent to the number of spikes observed 

in a fixed time period [Abbott 1994, Zhang 1998, Brown 1998].  Several approaches to 

characterize a Poisson process have been proposed. The simplest approach is based on 

counting the number of spikes in a window of length T, as the probability of observing n 

spikes in the window is  
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( ) T
n

e
n
Tnp λλ −=
!

)( . 

Thus, for a homogeneous Poisson process the mean and variance of the spike counts up 

to time T are both λT.  The ratio of the variance to the mean is termed the Fano factor.  A 

unit value of this factor can indicate the presence of a Poisson process [Rieke 1997].  

However, the Fano factor only focuses on the first two moments of a spike train’s 

statistical characterization, while discarding the remaining higher ones.  One can also 

measure the coefficient of variation (COV), which is the ratio of the standard deviation to 

the mean of the inter-spike intervals [Gabbiani and Koch 1998].  In the case of a Poisson 

process, the COV is 1, which exemplifies one of the properties of a Poisson process: the 

inter-spike intervals are exponentially distributed.  However, using the COV as a measure 

discards the possibility of discovering any possible patterns embedded in the spike trains 

[Gabbiani and Koch 1998].  Another approach is to project the auto-correlation function 

of a spike train onto a Fourier basis, and examine the resulting power spectral function 

[Gabbiani and Koch 1998].  For a Poisson process, the power spectrum should be flat 

everywhere except at the origin.  Yet, the use of the auto-correlation function assumes by 

default that the underlying spike generation process is stationary.  When this assumption 

is violated, blindly applying the power spectrum may produce artifacts in the frequency 

domain [Mallat 1999].  The method described in this chapter can be applied to mildly 

nonstationary signals.  

 

This chapter introduces a new method to characterize spike trains based on wavelet 

analysis.  Particularly, it examines the projection of spike train ensembles onto a Haar 

wavelet packet basis. If the spike generating process is stochastic by nature, the 
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coefficients obtained by projecting ensembles of the spike trains onto the wavelet packets 

are random variables themselves.   The statistical properties of the projection coefficients 

shed light on the statistical nature of the spike train.  This thesis shows that the 

distribution of the projection coefficients for both homogeneous and inhomogeneous 

Poisson processes can be well characterized.  Using hypothesis testing on the coefficient 

statistics, one can determine if a spike train is well characterized as a homogeneous or 

inhomogeneous Poisson process.  If the spike train is not deemed to be a Poisson process, 

then this method also suggests the degree of non-Poisson-ness, and also highlights the 

spike train’s characteristic time scales at which the spike train exhibits non-Poisson 

behavior.   To help visualize the degree of non-Poissonness at different scale, the Poisson 

scale-gram is introduced.  Taken together, these analyses provide guidance for further 

investigations of a neural process in the case that it is significantly non-Poisson. 

 

Furthermore, the characteristics of a spike train have important implications in the neural 

decoding context.  Decoding is the task of inferring external stimulus or behavioral 

parameters given neural activities, or more precisely the spike trains in this thesis.  If a 

spike train is indeed Poisson by nature, then the stochastic properties of a Poisson process 

suggests that mean firing rate is the only feature that carries information about the 

stimulus parameter [Ross 1994], in which case decoding based on the mean firing rate 

captures all the essential information content in the spike trains.  On the other hand, if the 

spike trains are not Poisson, then special treatment has to be applied in order to extract 

the informative features embedded in the spike trains.  Chapter 3 investigates the 

decoding problem and the feature extraction approach in depth. 
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Generally, wavelet-based analysis is more suitable than Fourier analysis when dealing 

with non-stationarity and specifically locally stationary processes [Mallat, 1998].  Power 

spectrum based characterization method often encounters Gibbs phenomenon in which 

local discontinuity of the signal produces bleeding of power into the higher frequency 

domain, thus creating artifacts in the spectral-gram [Mallat 1999].  By using wavelet-

based methods, the spike train characterization technique presented here overcomes some 

of the disadvantages of the methods reviewed above. Moreover, the multi-resolution 

analysis feature of wavelets provides additional versatility in handling possible patterns 

embedded in the spike trains.  In this chapter, a wavelet basis consisting of the Haar 

wavelet packet, which is an extension of the Haar wavelet [Wickerhauser 1994, Mallat 

1999, Percival and Walden 2000], is the basis of the computational test.  Some of the 

Haar wavelet packet’s special properties, such as compactness and biologically intuitive 

interpretations of the projection coefficients (see Section 2.2), make it an ideal candidate 

for decomposing spike trains.  Note that others have explored the possibility of using 

wavelet packets as a mean of processing spike data [Kralik 2001, Oweiss 2001, 2002].  

Yet, the work in this thesis appears to be the first to use wavelet methods for formal 

characterization of spike trains. 

 

This chapter is organized as follows.  Section 2 analyzes the distribution of the wavelet 

packet projection coefficients.  Particular emphasis is placed on the special cases of 

homogenous and inhomogeneous Poisson processes.  In the case of the homogeneous 

process, the probabilities of the projection coefficients are obtained analytically.  Finally, 
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in Section 4 we integrate these ideas into a methodology that characterizes spike train 

modeled as stochastic point processes.  Several examples illustrate the main points in 

Section 5. 

 

3.2 Statistics of projection coefficients 

Chapter 2 reviewed the concepts underlying the construction of Haar wavelet packets, 

and introduced the projection coefficients arising from a binary spike train.  This section 

investigates the statistics of these coefficients when the given firing process is a 

homogeneous or inhomogeneous Poisson process.  Using a hypothesis testing 

methodology based on a χ2-statistic applied to the coefficient distributions, one can then 

check if a given spike train is statistically close to a Poisson process by comparing the 

statistics of the projected data against the formulas derived below.  This hypothesis 

testing approach is developed in the next section. 

3.2.1 Homogeneous Poisson Process 

For simplicity, let us first analyze the case of a homogeneous Poisson process with a 

constant firing rate λ.  Poisson processes have three relevant properties: 

 

P1. Each non-overlapping time increment of a Poisson process is independent and 

identically distributed with the probability, P(.) of a spike occurring in the interval 

[t,t+∆t] given by 

tNNP ttt ∆≈=−∆+ λ)1( , 

where N(t) is the counting process that counts the number of spikes up to time t. 
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P2. When conditioned on a fixed number of spikes, a Poisson process uniformly 

distributes all the spikes in a window of length T.  We can formulate this 

mathematically as  

T
tNttttP ∆

==∆+<< )1|''( , 

i.e. given that only 1 spike occurs somewhere in a window of length T, the 

probability of observing that    spike in a any interval of length t∆  is 
T

t∆ . 

P3. The probability of observing n spikes in a window of length T given the firing rate 

λ is  

( ) T
n

e
n
TnP λλ −=
!

)( . 

Now we derive the probability distributions of wavelet packet coefficients generated by 

the projection of an ensemble of spike trains that arises from a homogeneous Poisson 

process with fixed firing rate λ onto the Haar wavelet packet.  First, notice that the 

resulting projection coefficients are integer valued because the Haar wavelet packets are 

functions that assume the value -1 and 1 only; and the spike trains are similarly binary 

valued.  Also, recall from Equation 2.2 that the integrals of wavelet packet functions at all 

scales are 0.   This symmetry of the wavelet packet, when coupled with property P2, 

implies that when a single spike is projected onto the support of a wavelet packet 

function, the probabilities of the resulting coefficient being 1 or -1 are the same, namely 

½.  Based on this observation, we can write the conditional probabilities of the projection 

coefficients as follows: given N spikes in a window of length T, 















=−=

n
N

NnNvP
N

2
1)|2( ,   Nn ,...,1,0=  
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where )|( NkvP =  is the probability that coefficient v takes the integer value k when N 

spikes occur in the support of the wavelet packet function associated with coefficient ν.  

In addition, we can write  

∑∑ ==
NN

NPNvPNvPvP )()|(),()( , 

where P(N) is the probability of finding N spikes in the time interval of length T, 

expressed by property P3.  Thus, the probability of observing a projection coefficient of 

integer value n is 

Equation 3.1  T
N

N

N

e
N

T
nN
N

nvP λλ −
∞

=
∑ 
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Equation 3.2  T
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,  if n is odd. 

The above analysis offers the theoretical distributions for wavelet packet coefficients that 

result from an ensemble of spike trains arising from a given a homogeneous Poisson 

process with constant firing rate λ.  In practice, spike trains are sampled discretely.  Let 

the finest sampling resolution be δT.   For such discretely sampled data, the probability 

distributions given above become approximations that only work well when the finest 

sampling period, δT, is sufficiently small as compared to the length of the sampling 

window T.  In other words, property P2 is approximated in practice because the 

probability distribution of N spikes conditioned on N is only uniform when δT is 

infinitesimally small, which is not possible in actual applications.  To better understand 

this subtlety, consider the simple case where two spikes are to be placed in a sampling 

window that is subdivided into two sampling periods, 1t∆  and 2t∆ .  If one spike is placed 
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in the interval 1t∆  with probability ½, then the second spike has to reside in 2t∆  with 

probability 1.  Therefore, we see that the approximation breaks down in this case.  In the 

next section, where the more general case of inhomogeneous Poisson processes are 

considered, I propose a computational approach that approximates those probabilities so 

that they are not susceptible to discretization errors.  In addition, the computational 

approach can be generalized to inhomogeneous Poisson processes.  The theoretical 

derivations of this section provide a standard against which we can check our 

computational theory in the simple case of a purely homogeneous Poisson process. 

 

3.2.2 Inhomogeneous Poisson Process 

An inhomogeneous Poisson process is a Poisson process with a variable firing rate λ(t).  

Even though it’s not stationary like a homogeneous Poisson process, it retains the same 

memoryless property, P2, namely that disjoint increments of an inhomogeneous Poisson 

process are independent. 

 

Due to the variable firing rate, the approach outlined in the previous section becomes 

unfeasible for inhomogeneous Poisson processes because the probability of observing n 

spikes in an interval of duration T is now a combinatorial problem that depends on the 

cardinality of the different firing rates present in this interval.  Fortunately, a simpler 

alternative to the computation of the coefficient distributions exists by utilizing the 

Pyramid Algorithm and the memory-less property of an inhomogeneous Poisson process.  

Recall that an inhomogeneous Poisson process has independent disjoint increments, i.e., 

)()(),( 1,0,01,0,0 ++ = kkkk vPvPvvP , 
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where, 

Equation 3.3    T
k

kevP ∆−== λ)0( ,0  

Equation 3.4    T
k

kevP ∆−−≈= λ1)1( ,0 , 

where that v0,k is the 0th level wavelet packet projection of the point process at location k.  

It is a random variable indicating whether a spike is present in the kth time increment.  

Equation 3.3 is the direct result of property P3, while Equation 3.4 is a reasonable 

approximation when the time interval ∆T is small.  Also recall that the Pyramid 

Algorithm for the Haar wavelet consists of a low-pass filter { }kh  with coefficients {1 1} 

and a high-pass filter { }kg  with coefficients {1 -1}.  Therefore, by applying the pyramid 

algorithm to the inhomogeneous Poisson process at the finest scale (j=1), we obtain new 

random variables of the form  

kkTk

kkk

vvv
vvv

2,012,0
2

,1

2,012,0,1

−=

+=

−
+

−

, for 
2

,...,2,1 Tk =   . 

The following proposition illustrates the independence of these wavelet packet 

coefficients. 

 

Proposition 3.1: For a given homogeneous or inhomogeneous Poisson process, 

the wavelet packet coefficients contained in any node of the wavelet packet tree, 

namely { } j

j
Tl
lTkjkv 2/)1(

2/1
+

+=
, 12,...,1,0 −= jl , are independent.  { } j

j
Tl
lTkjkv 2/)1(

2/1
+

+=
 is the set of 

wavelet packet coefficients in the jth scale and lth node of the wavelet packet tree.  

Once again, the index j and k are reserved as the scale and location index.  T is 
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the length of the spike train in multiples of δt. And l indexes the nodes at a 

particular scale. 

 

The proof of this proposition can be found in Appendix 1. 

 

Based on the structural independence established by Proposition 3.1, the respective 

probabilities of the coefficients v1,j then become  

Equation 3.5   ∑ −==
−

n
vk nvPnPvvP

kkv
)()()(

2,012,0,1   if 2/Tk ≤  

Equation 3.6   ∑ +==
+−

n
vk nvPnPvvP

kkkv
)'()()'(

2,012,0,1  otherwise , 

which are the convolutions between the probabilities of the parent random variables v0,k 

and v0,k+1, a consequence of the above proposition.   

 

The above equations can be extended to the wavelet packet coefficients at any scale.  For 

consistency we keep the same notation.  We define the random variable obtained through 

the wavelet packet projection at scale j position k as jkv .  Then by the Pyramid 

Algorithm, 

1',1',1, +−− += kjkjkj vvv , if jNk −2/  even 

1',1',1, +−− −= kjkjkj vvv , if jNk −2/  odd 

where x  is the floor operation that takes x to its nearest integer from below, and k’ 

indexes the parent nodes of kth node.  And the corresponding probabilities can be 

described using the convolutions, 
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Equation 3.7  ∑ −==== +−−
n

kjkjkj nvvPnvPvvP )()()( 1',1',1, , if jNk −2/  is even 

Equation 3.8  ∑ +==== +−−
n

kjkjkj nvvPnvPvvP )()()( '
1',1',1

'
, , if jNk −2/  is odd. 

Thus, the probabilities of the projection coefficients of an inhomogeneous Poisson 

process at any scale and position can be calculated using the above equations.  Equation 

3.3 and Equation 3.4 form the initial conditions for the algorithm. 

 

3.3  A Computational Test for Poisson Processes 

Based on the results derived above, this section develops a novel method to characterize 

the Poisson-ness of an unknown stochastic point process.  If the underlying process is 

indeed Poisson, then the method will successfully conclude so; otherwise, it will label the 

scales and locations where the given process deviates from a Poisson process.  As 

discussed below and as shown in the examples, the knowledge of these deviations can be 

used to further characterize the spike train process.  Following Section 2.2, we assume 

that a spike train is described by a T-dimensional vector },...,{ 10
i
T

ii ssS −= , and 



 +

=
otherwise

TkTkinspikeaexiststhereif
si

k 0
])1(,[1 δδ
 

where k=0,…,T-1 and the superscript i indexes the ith observed spike train in an ensemble 

of spike trains. 

 

Our approach is based on a classical hypothesis testing paradigm applied to the 

coefficient distributions. First, we claim a null hypothesis stating that the given point 

process is indeed Poisson.  To carry out the hypothesis test, as a first step the rate 
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function λk, k=0,…,T-1 must be estimated from the spike train ensembles.  Note that the 

estimation of λ is itself an active research area [Donoho 1994, Kolaczyk 1997, Nowak 

1999]   This paper adopts the wavelet thresholding method proposed by Donoho to 

estimate λ(t) from the spike trains.  For completeness, the algorithm and its properties are 

briefly reviewed.  First we average the spike train ensemble over all the realizations i to 

obtain a noisy estimation of the rate function at each time step k, 

∑
=

=
L

i

i
kk s

TM 1

1
δ

λ  

where L is the total number of spike trains of the ensemble.  This computation effectively 

estimates the firing rate at each sampling interval at length δT.  Likewise, the standard 

deviation of the rate function at each k can be estimated as 

∑
= −

−
=

L

i

k

i
k

k L
T

s

1

2

1

][ λ
δσ .  

Because of the Central Limit Theorem, kλ  is asymptotically normally distributed for 

each k when L approaches infinity.  Therefore, we can scale the noisy rate function at 

each time step by the quotient between L  and the estimated standard deviation, σk, to 

produce a scaled noisy rate function at each k, 

k
k

ns
k

L
σ

λλ = , 

note that ns
kλ  is normally distributed with variance 1 at each k again because of the 

Central Limit Theorem.  Now decompose the T-dimensional vector ns
kλ  into wavelet 

coefficients, αjk, using the Pyramid Algorithm described earlier 
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The family of wavelet functions, ψjk of choice here is Daubechie’s 4 wavelet (DB4) 

[Percival 2001].  Note other wavelet built for de-noising also works in this context.  

Following Donoho (1994), we threshold the wavelet coefficients using a threshold value  

T
T )log(2

=ε . 

The thresholding rule is the so-called soft threshold, where the coefficients *
jkα  are 

adjusted by the rule 



 >−

=
otherwise

ifsign jkjkjk
jk 0

)(* εαεααα . 

Finally, we invert the thresholded wavelet coefficients to recover the de-noised rate 

function λ={λk, k=0,…,T-1} using the following inversion formula: 

∑=
jk

db
jkjk t)(* ψαλ . 

Certainly the robustness of the rate estimation process will affect any further analysis on 

the Poisson nature of the spike train.  However, as we will see below, the effect of rate 

function estimation error vanishes exponentially with respect to the amount of data in this 

characterization method. 

 

Given the estimated rate function, the theoretical probabilities of each wavelet packet 

coefficient can then be derived, i.e., the distribution of the projection coefficients under 

the hypothesis that the process is an inhomogeneous Poisson process with rate function 

λ(t) = {λk}, k=0,…,T-1.  Again, because the rate function λ  is a T-dimensional vector 
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with {λk}, k=0,…,T-1, the theoretical probabilities of the wavelet packet projection 

coefficients are computed as 

T
k

kevP δλ−== )0( ,0
*  

T
k

kevP δλ−−≈= 1)1( ,0
*  

and 

∑ −==== +++
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',1
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,
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∑ +==== +++
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kjkjkj nvvPnvPvvP )()()( '
1',1

*
',1

*'
,

*  

The notation P* represents the theoretical probability distribution given the spike 

generation process is indeed Poisson with the above estimated firing rate function, λ(t).  

Notice that the uncertainty associated with the seed probability P*(v0k) is 

TkeP δελ )(* ±−≈∆ , 

where ε is proportional to the standard deviation of λk and to L/1 , the cardinality of the 

ensemble.  The error on the P* therefore is 

TT eeE εδλδ m−= − 1 , 

which approaches 0 exponentially fast as the number of available data sets, L increases.  

Hence, errors in the estimation error of λk have little effect on the estimated coefficient 

probability distributions as L increases. 

 

Meanwhile, one can also compute the respective empirical probabilities of all the wavelet 

packet coefficients, P(vjk) from the data sets.  Under the null hypothesis, the empirical 

probabilities will match the hypothesized probabilities; otherwise, they will be 

significantly different, indicating that the process is not Poisson.  To assess the 
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significance of the differences between the coefficient distributions of the idealized 

Poisson model and the experimental data, we apply the χ2-statistic.  The χ2 variate is 

calculated as following 

∑
=

=−=
=

Mv

vv jk

jkjk
jk vP

vvPvvP

1
)(

)]()([
*

2*
2χ , 

where the summation is over all possible values of the random variable vjk.  Because the 

sample space of vjk has cardinality M depending on the scale j, the degree of freedom 

(DOF) of the χ2 variate is M-1.  For example, when j = 1, M = 3 since v1k can only equal 

{0, 1, 2} for the case k=0…T/2-1 and {-1, 0, 1} for the case k = T/2…T-1.  Thus, the 

DOF both of cases is 2.  Using the χ2 and DOF pair, we can finally infer a p-value that 

signifies the difference between the empirical probability and that coming from the ideal 

Poisson process.  In this paper, a p-value that is greater than 0.95 signals a statistically 

significant discrepancy between the two.  Note that studies on the χ2-statistics suggest the 

minimal number of observations required for a reliable test is 20 [Greenwood 1996]. 

 

For a true Poisson process, we expect the p-values to remain small for all the wavelet 

packet coefficients at any given j and k.  However, when the p-values exceed 0.95 at one 

or more scales, we can no longer conclude having a Poisson process at hand.  To address 

this case, we examine the number of wavelet packet coefficients that are significantly 

different from its Poisson counterpart.  For a fixed scale j*, we first identify all the 

wavelet packet coefficients with large p-values.  Because the comparison is made against 

a process with independent increments, the large p-values suggest that correlations exist 

in the spike train on the scale of j*.  To quantify the level of correlation, we introduce ηj 
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Equation 3.9    
T

vvaluepv kjkj
j

}95.0)(|{# **

*

>⋅
=η , 

where T is the length of the spike train, i.e., the same as the number of wavelet packet 

functions at a given scale.  ηj marks the fraction of all the wavelet packet coefficients at 

scale j that exhibits correlation.  If ηj is small, then the correlation at that scale is minimal, 

in which case we may label the process as approximately Poisson at that scale; else if ηj 

is large, the process is deemed to be non-Poisson at that scale.  When a given scale is 

non-Poisson, it may be desirable to further investigate the dependence between the 

wavelet packet coefficients residing in that scale in order to fully understand the spike 

train process.  In Section 3.4 we introduce the Poisson scale-gram as a simple graphical 

technique to represent the non-Poissonness of a neural process. 

 

3.4 Examples 

To illustrate the utility of our approach, and to additionally show how the method can be 

used to characterize spike trains, this section applies the methods described in the 

previous sections to different data sets.  In order to have a concrete understanding of the 

ideas presented in Section 3.2, we first give an example of the coefficients’ distribution 

when the underlying process is either a homogeneous or an inhomogeneous Poisson 

process.  Next we apply the spike characterization method outlined in Section 3.3 to a 

number of different simulated and actual neural processes.  The empirical distributions 

throughout this section are computed using the histogram method.  
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Moreover the surrogate data used to produce the histograms in the simulation examples 

below are generated using the following simple technique.  For each 1ms window, we 

compute the probability of not observing a spike as  

001.0)0( kesP k
λ−==  

and observing a spike as  

001.01)1( kesP k
λ−−≈= . 

Now we generate a uniform random number r using a generic random number generator.  

If r>P(sk=0), we register a 1 at time k in the artificial spike train; otherwise, we register a 

0 at time k.  Thus, using this method we can generate spike trains of any given length that 

model a Poisson process with rate function {λk}. 

 

Example 1:  The Coefficient Distributions of Poisson Processes 

Before applying the characterizing method directly, we first study the distributions of the 

projection coefficients in the case of idealized Poisson processes.  As will be seen, the 

nature of the coefficient distributions can shed light on the nature of the underlying 

process. Consider the following three cases: 1) a homogeneous Poisson processes whose 

constant firing rate is λ=20Hz; 2) an inhomogeneous Poisson process whose firing rate 

function is a concatenation of two homogeneous Poisson processes, i.e., a Poisson 

process with an abrupt change in firing rate 





>
≤

=
25620
25610

)(
t
t

tλ ; 

and  3) an inhomogeneous Poisson process with a linear firing rate function 

bmtt +=)(λ , 
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where m = 1 and b = 1.  In all three cases, the sampling interval δT is 1ms and the length 

of the artificial spike train T is 512ms.  Figure 3.1 displays the selected wavelet packet 

projection coefficients for all three cases.  The theoretical distributions were obtained 

from the formulas derived above, while the “empirical” distributions were obtained using 

the method described above to simulate a Poisson process.  Each ensemble contains 2000 

spike trains.  The close match between the theoretical values of the distributions and the 

values obtained from the simulations confirms the theoretical calculations of Section 3.3. 

  



 

 

61

-30 -20 -10 0 10 20 30
0

0.05

0.1

-20 -10 0 10 20 30

0

0.05

0.1

0.15

-100 -50 0 50 100 150
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

 

Figure 3-1 Distribution of wavelet packet projection coefficients of Poisson processes 

A) Homogeneous Poisson process with constant firing rate 20Hz.  The blue curve connects the 
discrete probability of coefficient v90 at different values.  It corresponds to the mean firing rate over 
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the whole window.  The red curve corresponds to the coefficients v9k, k=1,…,511. The theoretical 
probabilities value are shown in circles ‘o’ and the empirical values are indicated by ‘*’.  B) 
Inhomogeneous Poisson process with a step firing rate.  The blue curve connects the discrete 

probability of coefficient v90 at different values, the red curve corresponds to the coefficient v91, and 
the cyan curve relates to the coefficients v9k, k=2,…,511.    C) Inhomogeneous Poisson process with a 

linearly increasing firing rate.  The probability distributions for coefficients v9k, k=0,…,511 are 
shown.  In all the figures x-axis marks the value of the coefficient and y-axis indexes the 

corresponding probabilities.  

 

 
Notice that for the homogeneous Poisson process, the coefficient distributions at all 

locations (k= 2,…,128) at scale j=9 are identical.  This agrees with our analysis in 

Section 4.  Additionally, the coefficient distributions resemble a zero-mean Gaussian 

distribution because of the Central Limit Theorem, which states that the distribution of 

the sum of independent random variables asymptotically approaches a Gaussian 

distribution [S. Ross 1994].  As seen in Figure 3.1B, for the inhomogeneous Poisson 

process with step firing rate function, only the first two coefficients (k=0,1) have 

associated distributions whose centers are not at zero.   This arises because the support of 

these two wavelet packets straddles the point of rate discontinuity.  All the remaining 

wavelet packet functions (k=2,..,511) have associated coefficients that sum to 0 over the 

two half-windows in which the two homogeneous Poisson processes reside, i.e. 
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by the construction of the Haar wavelet packet reviewed in Section 2.2.  Thus, their 

projection coefficients have zero-centered distributions.  More generally, a non-zero-

centered distribution is an indication of a firing rate change in the support interval of the 

associated wavelet packet.  Finally, we observe that the distributions of the wavelet 

packet coefficients for the inhomogeneous process with linearly increasing rate are more 

complex and span a wide range of centers because the rate function λ(t) differs 
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substantially from a constant.  Therefore, we see that increasing complexity in the firing 

rate function leads to increasingly complicated coefficient distributions.   

 

Example 2: An Inhomogeneous Poisson Process  

Next the characterizing procedure described in Section 3.4 is applied to a known 

inhomogeneous Poisson process with rate function B
T
tAt += )4sin()( πλ , where A is 10 

Hz, B is 15 Hz, and T is 512 ms.  The surrogate data are generated using the 

aforementioned numerical method.  Both the actual and estimated rate functions are 

plotted in Figure 3-2.  The estimation of the rate function is carried out using the soft-

thresholding method presented in Section 3.3. 
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Figure 3-2 Actual and estimated firing rate function with length T being 512 ms.   

A) The actual firing rate function, B) The noisy estimation of the firing rate by averaging the spike 
trains, C) The denoised estimation of the firing rate function using soft-thresholding with Daubechies 

4 wavelet family.  X-axis is the time in millisecond and y axis is the frequency on the firing rate 
function in Herz. 
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At each level, the number of coefficients that are significantly different from a Poisson 

process (P>0.95), ηj, in terms of percentage of all the wavelet packet coefficients at that 

scale (T=512 in this case) summarized in Table 3.1.  For a true Poisson process, the 

coefficient distributions at all scales indeed match well with an idealized Poisson process. 

 WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 WP9
Inhomogeneous 
Poisson 
Process 

0.39% 1.95% 1.95% 1.56% 0.39% 0% 0.2% 0.39% 0% 

Table 3.1 Percentage of wavelet packet coefficients that is different from an ideal Poisson process for 
the simulated system of Figure 3.2. 

 

Example 3: Algorithm Performance on a Cyclic Poisson Process 

We next show how our method can pick up potential correlations in spike train data that 

can be missed by traditional COV techniques. A cyclic Poisson process can be created 

from the simulated data of the last inhomogeneous Poisson process example as follows.  

Copy a portion of a spike train from an interval [t1,t2], and replace a portion of the same 

spike train with this copy starting at a point that is one period away, i.e. 

)
2

()( Ttsts −=  ,  for TtttT
≤≤≤≤ 212

, 

where s(t) is the spike train signal, and where t1 and t2 bound the width of the replaced 

data.  A cyclic Poisson process is not strictly a Poisson process when considered at the 

time scale T, as it violates the independent increments property.  To test the effectiveness 

of our procedure, we constructed cyclic Poisson processes with different repetitive 

widths: 96,64,3212 =−=∆ ttt  msec when the simulated Poisson spike train is of 



 

 

65

length 512ms, with the sampling interval being 1ms.  Figure 3.3 illustrates a graphical 

example of the construction of the cyclic Poisson process.   
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Figure 3-3 Construction of cyclic Poisson spike trains.    

A) The original inhomogeneous spike trains.  The shadowed region, a window of length 64 ms, is 
copied.  B) The copied portion of the data is then inserted and replaces the stretch of data 256 ms 

downstream.  X-axis is the time in ms and y-axis marks the trial number. 

 

The resulting numbers of significantly non-Poisson wavelet packet coefficients (P>0.95), 

ηj in terms of percentage over all wavelet packet coefficients at that scale (512 in this 

case) are summarized in Table 3.2.  

 

 WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 WP9 
Cyclic Poisson 
Process 1 ∆t = 
32 

0.39% 1.95% 2.34% 1.37% 0.2% 0% 0.39% 0.2% 1.95%

Cyclic Poisson 
Process 2 ∆t = 
64 

0.39% 1.76% 2.34% 1.37% 0.2% 0% 0.2% 0.39% 100% 

∆t

∆t 
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Cyclic Poisson 
Process 3 ∆t = 
96 

0.39% 1.76% 2.34% 1.56% 0.2% 0% 0.78% 0.39% 100% 

Table 3.2 Percentage of wavelet packet coefficients that are significantly different (P>0.95) from a 
Poisson process, η   

For each scale j, the numbers of wavelet packet coefficients that are significantly different from the 
ones generated by a Poisson process are first counted, where the significance test is the proposed χ2 
test.  There are a total of 512 wavelet packet coefficients for each j, thus the percentage is calculated 

as η=#{significant}/512. 

 

Note that at scale j=9 (where the interval of support spans the entire 512 length cycle), 

the number of significantly non-Poisson wavelet packet coefficients increases 

dramatically as the length of the repetition window (the section of data copied and pasted) 

∆t increases.  An intuitive explanation is that the length of the repetition window is 

proportional to the non-Poisson characteristics introduced in the process.   In addition, ηj 

at j=1,…,8 remains steadily small for all the experiments because all wavelet packet 

functions at these scales have supports that are too short to simultaneously cover the two 

identical stretches of data.  Therefore, for scales j=1,…,8 the process appears Poisson 

while at scale j=9, our method suggests that the data are not really Poisson due to the 

correlations in the data that violate the independent increment assumption.  On the other 

hand, the COV analysis returns 1 for the cyclic Poisson processes because the repetition 

in spike trains does not alter the inter-spike interval distribution.  

 

Example 4: The Brandman and Nelson Non-renewal Model 

We also apply the Poisson test to a known non-renewal process.  Brandman and Nelson 

(2002) proposed an adaptive linear threshold model neuronal firing model that generates 

spike trains with non-renewal, specifically long-term regularization, properties.  The 

model has three parameters a, b, and σ, with a being proportional to the firing rate, and 
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σ/b being proportional to the COV as well as the scale of regularization.  Here we 

generate spike trains of 512 unit times with a=30, σ=1 and ]1,1.0[∈b .  The fractions of 

non-Poisson coefficients, ηj, determined by our technique are summarized in Table 3.3.  

The total number of wavelet packet coefficients in this case is also 512 because the data 

string is of the same length. 

 

 WP1 WP2 WP3 WP4 WP5 WP6 WP7 WP8 WP9 
Nelson1 
(b=1) 

0% 5.86% 72.9% 100% 100% 94.9% 45.9% 1.95% 1.37%

Nelson2 
(b=0.5) 

0% 0.79% 6.84% 63.9% 95.3% 4.88% 0.98% 0.79% 0.59%

Nelson3 
(b=0.25) 

0.2% 0.39% 1.56% 2.73% 3.32% 1.56% 0.79% 0.39% 0.39%

Nelson4 
(b=0.1) 

0.2% 0.59% 1.76% 0.39% 0.59% 0% 0.39% 0.39% 0.2% 

Table 3.3  Percentage of significantly non-Poisson wavelet packet coefficients at each scale, ηj 

Significant is determined by the proposed χ2 test.  There are a total of 512 wavelet packet coefficients 
for each j, thus the percentage is calculated as #{significant}/512.  Brandman and Nelson (2002) 

model is used to generate the test spike trains; a=30, σ=1, and b=1, 0.5, 0.25, 0.1. 

 

As b decreases, the scale of regularization increases [Brandman & Nelson 2002].  In 

another words, locally in time the spike trains become more Poisson-like as b decreases.  

Therefore, with b=1, the scale regularization is small, which means most of the wavelet 

packet coefficients at smaller scales would exhibit non-Poisson characteristics.  As b 

decreases, this effect becomes less influential and spike trains would resemble Poisson 

processes when viewed at a short time scale.  Table 2 validates the above argument as we 

observe large numbers of significantly non-Poisson wavelet packet coefficients when b is 

large.  We notice as b decreases, ηj also decreases at each scale j, signaling that the 

process becomes more and more Poisson-like. 
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Example 5: Characterizing Monkey Parietal Reach Region Neuronal Spike Trains 

(the Poisson Scale-gram) 

Signals from fifteen neurons were recorded in this experimental setting, each with 2 

different reach conditions.  Thus, we have a total of 30 distinct spike processes.  The 

number of spike train trials available for analysis ranges from 25 to 144 for each of the 30 

conditions.  Without loss of generality, we focus on a particular 512ms window which 

occurs 400ms after the cue onset [Shenoy 2003].  Since the spike train is sampled at 1ms, 

the processed spike data is a 512 point binary string with a unit value at the estimated 

times of spike onsets, and zero otherwise.  The values of ηj, j=1,…,9 obtained by 

applying our procedure are summarized in Figure 3.4. 
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Figure 3-4 Fraction of significantly non-Poisson wavelet packet coefficients, ηj for the 30 
neuronal/behavioral combinations from PRR recordings 

The X-axis indexes the behavior/neuron combination, the Y-axis indexes the wavelet packet scale, and 
the Z-axis marks the value of ηj.   A true Poisson process would return near-0 ηj at all scales j. 
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The figure shows that of the 30 processes, about 1/3 displays characteristics that resemble 

Poisson processes, i.e. ηj is small for all j.  Another 1/3 displays small-scale non-Poisson 

properties, i.e. on a short time scale (~8 ms) j=1,…,3, the spike trains contain correlations 

that give rise to large p-values.  The remaining 1/3 of the recorded neurons have mid to 

large scale non-Poisson properties, which mean the spike trains have dependent structures 

over longer time periods (~100-200 ms), j=4,…,9.   

 

The Poisson Scale-gram.  

More generally, the Poisson or non-Poisson characteristics of a spike train process can be 

conveniently depicted by the Poisson Scale-gram.  In this visualization scheme, each 

pixel in a grid of TT ×2log  pixels is associated with a specific wavelet packet 

coefficient. That is, the pixel in the (j,k) grid location represents the p-value of vjk.  The p-

values of the coefficients at scales j = 1,…,n  (where n=9 for the data set under 

discussion) are color-coded.  At the 0th scale, the horizontal axis (or location index, k) can 

be directly associated with time in the spike train.   At larger scales, the horizontal axis is 

still time-like, but with time smeared across increasingly larger windows while finer 

frequency resolutions are introduced.  Along the vertical axis, the wavelet scale increases 

in the downward direction.  Analogously, the characteristic time scale (frequency) 

increases (decreases) in the downward direction.  Graphically, the following figure 

(Figure 3.5) illustrates the main idea.   
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Figure 3.5 Illustration of the Poisson Scale-gram 

Each pixel represents the p-value of the χ2 variate associated with the wavelet coefficient vjk.  The 
scale j decreases from 1 to log2T, and the location k increases from 0 to T-1.  There are a total of 
Tlog2T pixels in the image.  At the smaller scales, the location index k is strongly related to time 

increments.  But at larger scales, the temporal resolution is traded off by the frequency resolution, as 
k indexes frequency increments.   

 
We have chosen a color scale based on blue being a 0 p-value (not significantly different 

from a Poisson process) and red being the p-value of 1 (significantly different from a 

Poisson process).   In the case of an ideal Poisson process, the Scale-gram should display 

dark blue color at every pixel.   

 

For the same PRR neurons presented earlier, the associated p-value color is plotted in 

Figure 3.6 for the coefficient at all available scale j and location k.. 
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Figure 3-6.  Poisson Scale-grams: Images of the P-values at different scales. 

The color bar indicates the P-value with red being 1 (significantly different from Poisson) and blue 
being 0 (not different from Poisson).  The Y-axis indexes the wavelet packet scales, j=1,..,9, and the X-

axis indexes the 512 wavelet packet coefficients (or locations) at each scale. 

A) P-values from a neuron/behavior condition with dominant short-scale non-Poisson characteristics.  
Most of the large P-values are concentrated at small scales, j = 1,...,3.  B) P-values from a 

A 
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neuron/behavior condition with dominant mid to large-scale non-Poisson characteristics. Most of the 
large P-values are concentrated at scales, j = 5,...,8.  C) P-values from a neuron/behavior condition 
with relatively little non-Poisson characteristics.  Most of the P-values at different scales are small. 

 

It plots the Poisson scale-gram for one neuron/behavior combination that is representative 

of the three types of behavior that we found in this set of PRR neurons.  Evidently, 

different neuron displays different characteristics on the Poisson Scale-gram.  Some 

resembles a Poisson process on a shorter time scale (10 ms); some have longer time 

Poisson characteristics (200ms); others are Poisson over all time scales.  This can be 

completely captured by the Poisson Scale-gram as shown in Figure 3.7. 

 

3.5  Conclusion 

Understanding the statistical nature of a neuron’s spike generating processes is a crucial 

step towards better understanding of the underlying neural code and constructing more 

reliable neural controlled devices.  In this chapter, a technique is proposed such that the 

Haar wavelet packet projection is used to characterize the spike firing process because 

the Haar wavelet packet carries some interesting properties that are particularly suitable 

for strings of binary data.  This approach, which is analogous to the Pyramid Algorithm, 

computes the probabilities of wavelet packet projections given either homogeneous or 

inhomogeneous Poisson process.  Then it characterizes a spike train process by 

comparing its wavelet packet coefficients’ probability distributions to the distributions of 

a Poisson process with identical rate function.  If the underlying process is indeed 

Poisson, then the coefficients have distributions very close to its Poisson counterpart; 

otherwise, significant deviation may be observed.  Moreover, a Poisson scale-gram 
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(visualization method) is presented so that extra insight about the process’ scale of 

Poisson-ness can be investigated.  It allows us to infer the Poisson-ness of the process by 

assessing at which scale it resembles a Poisson process.  This chapter concludes with 

several applications of the technique to both surrogate data and actual spike data from 

PRR. 
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Chapter 4  Decoding Reach Direction Using Wavelet 
Packet 

4.1 Introduction 

In Chapter 1, we defined decoding as the task of inferring or estimating external stimuli 

or behavioral states from neural signals [Abbot 1994, Rieke 1997].  Depending on the 

specific problem at hand, the technical approaches to the decoding problem may vary 

substantially.  In one class of problems, a continuous stimulus parameter must be 

decoded.  In these cases, functional approximation techniques are exploited [Rieke 1997, 

Brown 1998, Frank 2000].  At the other end of the spectrum lies the problem of decoding 

discrete stimuli.  For such problems, pattern recognition methods are employed 

frequently [Georgopoulos 1986, Zhang 1997, Moran 1999, Schwartz 2000, Wessberg 

2000, Issacs 2000, Nicolelis 2002].  Methods that accurately and efficiently decode 

stimulus parameters given neural signals not only advance the state of bio-engineering 

research, but also shed light on how the brain encodes information [Rieke 1997]. 

 

Pattern recognition, which is synonymous to classification, is the action of predicting or 

classifying an unknown observation into predefined classes based on historical data.  In 

particular, decoding of a discretely valued stimulus using spike trains has been 

investigated extensively in the context of pattern recognition.  Researchers have applied 

various pattern recognition techniques to treat the decoding problem.  More importantly, 

most of the current work uses the mean firing rate, the number of spike counts in a fixed 

window, as the sole feature for decoding [Abbott 1994, Sanger 1996, Zhang 1998, Brown 

1998, Johnson 1996, Reich 2000, Johnson 2001].  Here, feature refers to the patterns 
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embedded in the spike trains (e.g., mean firing rate, change of firing rate, and precise 

timing of a particular spike) that are correlated to the stimulus parameter.  However, 

decoding based on firing rate alone assumes that no additional patterns exist in the spike 

train, an oversimplified assumption [Steveninck 2002].  Thus, we ask whether any 

improvements over either accuracy or resolution may be achieved when additional 

features besides firing rate are included in the decoding task.  The key issue thus becomes 

that of finding the optimal feature(s) that ensure the best decoding performance.   

 

To address this question, this chapter presents an adaptive scheme that searches for the 

optimal feature(s) based on wavelet and information theory.  Because different pattern 

recognition methods behave differently even on the same set of data, in order to ensure 

the comparability between the different features, we fix our classification tool to be the 

Bayesian classifier introduced in Section 2.4.  Under this scheme, a naïve feature set is 

first generated using Haar wavelet packet decomposition of the spike trains.  Because of 

the recursive construction of wavelet packets, these features form a tree structure called 

the wavelet packet coefficient tree.  Then we suggest a tree pruning strategy that searches 

for the most informative feature(s) along the coefficient tree with respect to the stimulus 

parameters.  Here, informative-ness is defined by a score function that quantifies the 

feature’s discriminability towards the stimuli.  The scored function proposed here is the 

mutual information between the feature v and the stimuli label X because of its statistical 

properties as well as its close relationship with the Bayesian classifier.  The technique is 

applied to both surrogate data and actual spike data.  Decoding performance based on the 
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optimal feature(s) is compared against the performance obtained using mean firing rate 

alone as the decoding feature. 

 

Generally, wavelet-based analysis is more suitable when dealing with non-stationarity 

and specifically locally stationary processes [Mallat, 1998].  As seen in Section 2.3, the 

multi-resolution analysis feature of wavelets efficiently decomposes the spike trains into 

features at different scales through projection, thus providing versatility in handling 

possible patterns embedded in the spike train.  Again, we use the Haar wavelet packet to 

decompose the spike trains.  Some of the Haar wavelet packet’s special properties, such 

as compactness and biologically relevant interpretations of the projection coefficients, 

make it an ideal candidate for decomposing spike trains.  We note that others have 

explored the possibility of using wavelet packet as a mean of processing spike data in the 

decoding context [Kralik 2001].  But we are the first to investigate the decodability for 

each individual wavelet packet coefficient. 

 

When dealing with wavelet packet projection, often times the features, i.e. the projection 

coefficients, are organized into a tree structure using the Pyramid Algorithm explained in 

Section 2.3.2.  Best Basis is an algorithm that prunes the coefficient tree in order to 

search for an optimal set of bases for compression or denoising purpose [WickerHauser 

1994, Mallat 1999, Percival and Walden 2001].  Saito (2002) presented a Best Basis 

algorithm that searches for the most discriminating basis among the wavelet packet tree 

using Kullback-Liebler distance as the discriminating measure.  However, in the context 

of decoding, the full optimal basis is less relevant as the curse of dimensionality results an 
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exponential explosion of the training data if the full basis is used for decoding.  Thus, the 

tree pruning method proposed in this chapter, although analogous to the Best Basis 

algorithm, searches for a few features with large decodability instead of the full optimal 

basis.  Instead of finding the optimal sub-space upon which to project data, we are 

looking for an optimal subset.  

 

In Section 2, a study of the mutual information as the decodability score function is 

presented.  Then the wavelet packet tree based optimal feature extraction routine is 

introduced.  In Section 3, the technique developed earlier is applied to both surrogate data 

and the actual spike data from PRR.  This thesis assesses the performance of the proposed 

method against that obtained by using mean firing rate alone.  In the appendix, a 

theoretical exposé on the finite sample effect is carried out for the two-class case in order 

to further justify the use of mutual information as the score function.  Even though all the 

examples in this chapter use spike train data, the techniques proposed can be easily 

generalized to other types of neural signals, such as the local field potential. 

 

4.2 Feature extraction 

As reviewed in Section 2.3, the wavelet packet decomposition returns a total of TlogT 

features given a spike train that is quantized into T sampling periods of length δT.  It is 

however not realistic to include all the features in the decoding process because the curse 

of dimensionality [Cherkasssky 1998] prohibits such a naïve approach.  Moreover, very 

few of these features are practically informative.  Thus, we must select a few relevant 
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features in order to make practical decoding feasible.  The selection strategy proposed 

here involves a score function D, which assigns a discriminability measure to each 

feature.  Then we couple the score function with a pruning strategy that searches the Haar 

wavelet packet coefficient tree while eliminating the less-informative coefficients.  In the 

following sections, we first investigate the use of mutual information as the score 

function.  Then we introduce the tree pruning strategy that searches for the most 

informative features. 

 

4.2.1 Discriminability and score functions 

In order to assess the relevance of each projection coefficient, vjk, it is necessary to 

introduce the concept of a score function D, which characterizes each feature’s 

decodability.  The score function is defined as a map from the feature’s conditional 

probability distributions with respect to the stimulus parameter to a positive real number, 

i.e. 

Equation 4.1  +→×× RPPPD M...: 21 , 

where P1, P2,…,PM are short for the conditional probabilities P(v|X1), P(v|X2),…, 

P(v|XM), with M being the number of stimulus classes available.  Intuitively, the larger 

the discrepancies between the Pi’s, the easier it is to classify different stimulus conditions 

given an observation.  Therefore, the score function should summarize the discrepancies 

amongst all the conditional distributions with respect to the different stimulus parameters 

Xi into a single discriminability number.  For example, the Fisher linear discriminant 

measure and the Kullbach-Liebler divergence are both frequently used discriminability 
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measures [Thomas and Cover 1991, Devroye 1996, Cherkassky 1998].  However, the 

Fisher linear discriminant measure implicitly assumes the conditional distributions P1, 

P2,…,PM are normally distributed, which constrains the statistical analysis to mean and 

variance only.  In addition, even though the KL divergence is a useful binary 

classification measure, it lacks a multiple-class parallel.  Researchers sometimes have to 

resort to awkward pair-wise summations of the binary KL divergences between all 

possible pairs of classes [Saito 2002].  Mutual information on the other hand does not 

have the above undesirable features while possessing some nice interpretation and 

properties.  The remainder of the section introduces mutual information in the context of 

decoding and assesses mutual information as the decodability measure.  For interested 

readers, an analysis of the finite sample effect and mutual information can also be found 

in the appendix. 

 

4.2.1.1 Mutual information overview 

One choice of the score function is the mutual information between the features and the 

classes, I(X;v).  Mutual information characterizes the knowledge that one random 

variable prescribes with respect to another [Thomas and Cover 1991].  To understand the 

role of mutual information in the decoding context, it is necessary to define some relevant 

information theoretical quantities.   

 

For class variable X and feature v, define the Shannon entropy H(X) and the conditional 

entropy H(X|v), two measures of information content as    
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where P(X=Xi) is the marginal probability of X, P(X=Xi|v=v’) is the conditional 

probability of X when another random variable v takes the value v’, and P(X=Xi,v=v’) is 

the joint probability between X and v [Cover and Thomas 1991].  We further notice the 

following relationship between H(X) and H(X|v) 

Equation 4.4  
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where I(x,v) is the mutual information between the stimulus class X and the feature v.   

 

Mutual information is also closely related to the Bayesian classifier as it can be directly 

derived from the Bayes’ formula.  Recall Equation 2.16 states that 

)(
)()|()|(

vP
XPXvPvXP = . 

Manipulating this equation yields the following expression 

)(
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XPvP
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Taking the log of the above probability and the expected value over X and v on the above 

equation yields the following, 

Equation 4.5 )(log),(
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By the definition in Equation 4.2 and Equation 4.3, the above relationship is equivalent to 

)();()|( XHvXIvxH −=− , 

the same relationship as Equation 4.4 again.  Furthermore, recall from Equation 2.17, the 

Bayesian classifier attempts to maximizes P(X|v) for every v.  Thus, when taken over the 

negative log expected value, it also minimizes the conditional entropy H(X|v), which in 

turn maximizes the mutual information between X and v.  Thus, we see Bayesian 

classifier itself manifests an important information theoretical dogma: conditioning 

reduces entropy. 

 

The above analysis suggests that mutual information is an ideal candidate for the score 

function D when the decoding tool is chosen to be the Bayesian classifier.  In addition, 

mutual information is closely related to the Bayesian classifier error E*, defined in 

Equation 2.18.  Assume there is no prior knowledge on the classes, i.e. the prior 

probabilities on the classes are equal, then the mutual information between the classes 

and features are bounded by the following relationship [Devroye 1998], 

]
1

1log)1(1log[1);()1log(1 *
*

*
**

E
E

E
EXvIE

−
−+−≥≥−+ , 

where the right-hand side inequality is the Fano inequality and the left-hand side 

inequality can be defined from Jensen’s inequality [Devroye 1998].  Evidently, large 

mutual information corresponds to a smaller classification error.  An in-depth 

investigation on the classification error and the mutual information presented in the 

Appendix further justifies the use of mutual information as the discriminability measure.  

Mutual information also carries some additional useful statistical properties. 
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P1 Mutual information ),...,,;( 21 dvvvXI  is invariant under an orthonormal 

transformation, T , on the feature set V={v1,v2,…,vd}. 

This can be easily verified as [Sirzaker 1994], 

T T ⋅= )()( VPVP , 

where ( )dvvvV ,...,, 21=  and T  is the determinant of the T, which equals 1 when T is an 

orthonormal matrix [Ross 2000].  Therefore, the value of the mutual information is 

invariant under the transformation. 

 

P2 Mutual information is additive, i.e. 

∑
=

=
d

i
id vXIvvvXI

1
21 );(),...,,;(  

if the features v1, v2,…vd are conditionally independent (independent conditioned on the 

stimulus parameter X) and unconditionally independent simultaneously (independent 

without conditioning).  We denote the conditionally and unconditionally independence as 

CU-independence. 

 

Finally, the definition of mutual information naturally accommodates multiple-class 

classification problems without resorting to the awkward pair-wise sum often found in 

other distance measures like KL-divergence or Hellinger distance [Saito 2002].  The 

conditioning reduces entropy interpretation remains intact for multiple class applications. 
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4.2.1.2 Mutual information and optimal features 

The above review on the mutual information I(X;v) not only justifies its use as a score 

function for measuring discriminability, but also hints at the possibility of devising a 

feature selection strategy.  We notice that without any prior knowledge, the entropy 

associated with the stimulus parameters X1, X2,…, XM is  

)log()( MXH = , 

a fixed number independent of the features.  Under this assumption, reducing the 

conditional entropy H(X|v) is equivalent to increasing the mutual information I(X;v).  As 

H(X|v) approaches 0, X becomes almost deterministic given v.  Therefore, the most 

informative feature for the Bayesian classifier is the one that maximizes the mutual 

information I(X;v).  This important observation will be expanded and formalized in the 

remainder of the section. 

 

First we revisit the neural decoding problem.  The task of decoding is to infer some 

discrete behavior parameter X from an observed spike train s={s0,…sT-1}, given 

historically collected spike train data under behavior states, X1,…,XM.  The best possible 

decoding strategy is to plug the whole observed spike train s into the Bayesian classifier 

such that Equation 2.16 becomes 

{ })|(maxarg
~

sXPX
X

= . 

Here P(X|s) is the posterior probability which is proportional to the likelihood P(s|X).  In 

this case, no information is lost as the mutual information I(X;s) contains the full 

knowledge that the spike train holds about the stimulus X.  This is a version of the Data 
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Processing Inequality outlined in Thomas and Cover [1991].  However, in practice this 

approach is not feasible because one needs to estimate the conditional probability P(s|X), 

i.e. P(s0,…,sT-1|X).  As T grows, the curse of dimensionality [Cherkassky 1998] demands 

an exponential explosion of the training data in order to construct the joint distribution 

P(s0,…,sT-1|X).  Thus, it is not practically possible to use the full spike train s in the 

Bayesian classifier.   

 

An alternative alternative approach is to project the spike train onto some basis or feature 

vectors such that the projection coefficients display large decodability.  Then, instead of 

the full spike train s, we include those selected features into the Bayesian classifier.  

Formally, we denote an orthonormal transformation as T such that 

Equation 4.6   sv ⋅= T , 

where v={v0,…,vT-1} is the projection coefficients of s onto the basis vectors of T.  By 

property P1, mutual information is invariant under this transformation,   

Equation 4.7   ),();( vs XIXI = . 

In addition, if the components of v, v0,…,vT-1 are CU independent, then by property P2, 

Equation 4.8  ∑
−

=
− =

1

0
11 );(),...,,;(

T

i
iTo vXIvvvXI . 

Thus, ideally, the suggested feature extraction method will focus on finding a 

transformation, T *, such that the following criterion is satisfied: the d CU independent 

projection coefficients *
1

*
0 ,..., −dvv  preserve most of the mutual information, namely 

∑
−

=

≈
1

0

* );();(
d

i
i XIvXI s . 
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Because of the independence as well as the reduction of dimensionality, estimating the 

corresponding conditional probabilities )|( * XvP i  will not result in the explosion of the 

number of training samples required as seen in the curse of dimensionality.  In Section 

4.2.2, we explore some techniques that extract the features v0,…,vd-1 under the Haar 

wavelet packet transformation framework. 

 

4.2.1.3 Estimating the mutual information 

To compute mutual information, the conditional probability p(v|X) must be estimated.  As 

shown in Section 2.4, Parzen window method is used [Parzen 1965].  The Parzen window 

approach applies Gaussian kernels to the observed data and returns density estimation in 

the form of the normalized sum of Gaussians centered at each data point.  One can write 

the density function estimated by his approach as  

∑
=

−==
cN

i
i

c

vvG
N

cXvp
1

),(1)|( σ  

where G(v, σ) is a Gaussian kernel with mean vi ( the observed data in class X=c) and 

standard deviation σ, and Nc is the total number of trials in class Xc.  Clearly p(v|X=c) is a 

density function because it integrates to 1 over all values of v.  Therefore, we can use the 

Parzen window approximation in place of the true conditional density functions (which is 

unavailable) to estimate the mutual information.  The choice of σ controls the smoothness 

of the probability density.  We observe that when σ is sufficiently small, the mutual 

information is equivalent to the one computed using the histogram rule, namely,  

∑
=

===
cN

i
i

c
i vIn

N
cXvvP

1
)(1)|( , 
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where In(vi) is the indicator function, 



 =

=
otherwise

vvif
vIn i

i 0
1

)( . 

Generally, we keep the value of σ small when the scales of the wavelet coefficients are 

small and vice versa. 

 

4.2.2 Wavelet packet tree pruning 

The previous section defined mutual information as the score function, D, that assesses 

the discriminability of features, v, with respect to the stimulus parameter X.  Moreover, 

the theoretical analysis of the mutual information I(X;v) suggests a feature extraction 

approach that searches for an orthonormal transformation T on the spike train s such that 

a few independent transformed features *
1

*
0 ,..., −dvv  preserve most of the mutual 

information I(X;s).  This section realizes this proposition by introducing a feature 

selection strategy that integrates mutual information with the Haar wavelet packet.  The 

selection strategy adopted here is analogous to the Best Basis algorithm used in the signal 

processing and data compression community [Wickerhauser 1994, Mallat 1999, Percival 

and Walden 2001].  Moreover, Saito and Coifman suggested a most discriminating Best 

Basis method in a different context [Saito 2002].  However, unlike the Best Basis 

algorithm, our approach searches for the d most discriminating features instead of a full 

basis. 

 

As seen in Section 2.3.3, the cardinality of the Haar wavelet packet coefficients given a 

spike train of length T is TlogT.  In addition, the construction of the Haar wavelet packet 
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ensures that the member functions within a node and between different nodes are 

orthogonal (Proposition 2.1).  This poses a challenge when the optimal basis for some 

signal processing criterion (de-noising, compression, etc.) is required because searching 

through all the possible collections of orthonormal functions causes a combinatorial 

explosion.  The Best Basis algorithm is an efficient technique that prunes the wavelet 

packet tree and evaluates the applicability of each node in the tree by comparing it with 

its parent node, using an additive score function [Wickhauser 1994].  In the case of the 

most discriminating Best Basis algorithm [Saito 2002], the score function is chosen as the 

pair-wise summation of Kullbach-Liebler divergences between all the conditional 

probabilities P(v|Xi) and P(v|Xj). 

 

Our approach on the other hand looks for the d most discriminating features instead of 

the full basis.  Recall from Section 4.2.1.2 that we ideally seek a transformation T * such 

that the d largest CU-independent projection coefficients *
1

*
0 ,..., −dvv  preserve most of the 

mutual information, namely, 

∑
−

=

≈
1

0

* );();(
d

i
i XIvXI s . 

However, because I(X;s) is difficult to compute in practice and CU independence is a 

stringent requirement, it is necessary to either use the sufficient condition for the 

constraints or modestly relax the above constraints for practical implementation.  First, 

note that orthogonality is a necessary condition for the independence between the 

features.  To see this, define two non-orthogonal random variables v1 and v2.  Because 

they are not orthogonal, v1 can be expressed as the weighted sum of v2 and a residual term 

vres , i.e. 
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resbvavv += 21 . 

Obviously, v1 and v2 are dependent and the level of dependence is determined by the 

weight a.  Thus non-orthogonality implies non-independence, and the first modification 

of the constraint is that the wavelet packet functions associated with the selected features 

have to be mutually orthogonal.  Another observation is that the mutual information of 

the member coefficients of the parent node Njl equal that of the two children nodes N(j+1)2l 

and N(j+1)(2l+1),  

 

{ } { } { }])|,|[;(])|[;( )12)(1(2)1(11 +++++ ∈∈=∈ ljjkjkljkjkjjljkjk NvvNvvXINvvXI . 

 

The validity of this equation relies on the fact that the coefficients 

{ } { }]|,|[ )12)(1(112)1(11 +++++++ ∈∈ ljkjkjljkjkj NvvNvv  can be obtained via an orthogonal 

transformation on the coefficients { }]|[ jljkjk Nvv ∈  as seen in the nature of the Pyramid 

Algorithm (Section 2.3) and property P1.  In another words, the coefficients in the two 

children nodes are orthonormal transformations of the ones in the parent node; thus the 

associated mutual informations are invariant.  Ideally, we would like to find a few 

features from either the parent node Njl or the two children nodes N(j+1)2l and N(j+1)(2l+1) so 

that the sum of their mutual information is close to the overall mutual information, 

{ }])|[;( jljkjk NvvXI ∈ .  However, the node mutual information { }])|[;( jljkjk NvvXI ∈  is 

difficult to calculate and the CU-independence is hard to satisfy in general.  Thus our 

second relaxed constraint is that instead of keeping a few CU-independent features, 

*
1

*
0 ,..., −mvv  i.e. 
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{ }∑
−

=

∈≈
1

0

* )|;();(
m

i
jljkjki NvvXIvXI  

where  

{ })12)(1(,2)1(
*

1
*
0 ,..., +++− ∈ ljljjld NNorNvv , 

only the one with the largest discriminability score among the parent and children nodes 

should be retained, namely 

{ }),|max( )12)(1(,2)1(
*

+++∈= ljljjljkjk NNNvvv . 

 

In summary, the two relaxed constraints are 

Constraint 1: The wavelet packet functions that correspond to the optimal features have to 

be orthogonal to each other.  

Constraint 2: The single most informative feature in any pairs of parent-children nodes 

must be included.   

 

Now we are ready to describe out recursive wavelet packet pruning technique.  Let the 

training spike train ensembles be denoted by { } { } { }i
M

ii SSS ,...,, 21 , where the subscript 

corresponds to the stimulus parameters X1,…,XM.  Furthermore, assume the spike trains in 

the ensembles are of length T, where T is a power of 2.  Using the Pyramid Algorithm, 

the Haar wavelet packet projection coefficients at any scale j and location k can be 

computed.  These coefficients are called the naïve feature set, and they are naturally 

organized in the tree structure seen in Section 2.3.2.  Denote the tree associated with the 

decomposition as the feature tree, F.  Now starting from the coarsest scale, i.e. 
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Tj 2log= , first compute the score function D for the feature set { }jkv  with j=log2T 

whose score function for { }jkv  is defined as 

Equation 4.9  ∑∑ ∑
=

v X
X

jk

jk
jkjk XpXvp

Xvp
XpXvpD

)()|(
)|(

log)()|(  

and form a discriminability set { }jkD  for each k.  The conditional probability p(vjk|X) is 

estimated using the Parzen window method shown in Section 4.2.1.3.  Also we seed the 

optimal feature set as  

Equation 4.10   { } { }jk
opt
k vv = , 

i.e. to start, the optimal feature set is initialized to be the jth scale projection coefficients 

because they are the descendants of the rest of the coefficients.  Next we proceed to the j-

1th scale, where we again compute the score functions D for each feature vj-1,k and form 

the discriminability set { }kjD ,1− .  For each triplet of parent-children nodes 

{ })12(,,2,),1( , +− ljljlj NNN , l=0,..T/2-1, we can find the feature v* with the largest 

discriminating measure, 

{ }),|max( )12(),1(,2),1(,
*

+++∈= ljljljjkjk NNNvvv . 

Once it is located, the node that contains v* is labeled N* and we can replace the 

corresponding features in the set { }opt
kv  by the ones in N*.  For example, if ljNN ),1(

*
−= , 

then 

{ }{ } { }*
),1(),1()12(,2, |,| NvvNNvv kjkjljlj

opt
k

opt
k ∈=∈ −−+ , 

effectively the optimal feature set { }opt
kv  is updated to include all the features in N* along 

with v*.  As a result, we remove the node Nj,2l and Nj,(2l+1) from the original feature tree, 
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F.  On the other hand, if )12(,2,
*

+= ljlj NorNN , then no update of { }opt
kv  occurs and 

both Nj,2l and Nj,(2l+1) remains on the feature tree, F.  Once the update is completed at 

scale j-1, we move up to scale j-2 and repeat the above process by comparing the parent 

node Nj-2,l with its remaining descendents.  Again, the optimal feature set { }opt
kv  as well 

the tree F is updated.  This procedure terminates when the updates on { }opt
kv  terminates 

and F is no longer modified.  Also the Haar wavelet packet functions associated with the 

features { }opt
kv  are orthogonal to each other because of Proposition 2.1.  Graphically, we 

may express the pruning procedure in Figure 4.1: 
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Figure 4-1 Prune the wavelet packet tree using score function D 

The optimal set of features { }opt
kv  comprises the wavelet packet projection coefficients 

from different scales and locations, and they include all the locally most discriminating 

features v* as shown by the above algorithm.  Finally from { }opt
kv , we can select d 

features opt
d

opt vv 10 ,..., −  to be used in the decoding of the stimulus parameter X.    

 

j = log2(T) 

Compute { }kjD ,  for each 
wavelet packet coeffcients 

Compute the respective 
parents nodes score { }kjD ,1−  

Remove the 
children nodes 

Y

N

( ) ( kjkkjk
DD ,,1 maxmax >−

Cease pruning and extract the d features 
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In practice, the d features not only need to carry large discriminating scores, but also 

should be evaluated for conditional independence because as we pointed out earlier, 

orthogonality is only a necessary condition for independence.  We can use hypothesis test 

methods (e.g., cross-tabulation by Mathworks) to help understand the dependence 

between features so that a minimal amount of redundant information is included in the 

decoding process.  At the current stage, properties of opt
d

opt vv 10 ,..., −  will be assessed on an 

individual basis for each application.  In addition, a good way of picking the number d is 

currently lacking.  Rather, it varies depending on the actual application.  However, as we 

will see in the results section, even by letting d=1, the single most informative feature 

often outperforms the mean firing rate. 

 

4.3 Results 

This section applies the above ideas and algorithms to both surrogate data sets and actual 

behavior conditioned spike trains in order to illustrate the utility of the method.  First 

examine the application of the algorithm to artificial data with different discriminating 

features.  These simulations confirm the basic operation of the approach.  Next apply the 

method to actual neural data recorded in PRR.  In both cases, we compare the decoding 

performance of our method against the performance obtained using mean firing rate as 

the only feature. 

 

Inhomogeneous Poisson Processes I 

We first investigate the performance of the proposed decoding method on surrogate data 

generated from known inhomogeneous Poisson processes.  The surrogate data are 



 

 

94

generated using the technique outlined in Section 3.4.  Recall that for each 1 ms window, 

the probability of not observing a spike is specified as  

001.0)0( kesP k
λ−== , 

while the probability of observing a spike is  

001.01)1( kesP k
λ−−≈= . 

Now we generate a uniform random number r using a generic random number generator.  

If r>P(sk=0), we register a 1 at time k in the artificial spike train; otherwise, we register a 

0. 

 

The first example presents inhomogeneous Poisson processes with undistinguishable 

mean firing rates; however, patterns besides mean firing rate are embedded in these 

processes.  Assume there are 4 classes, X1, X2, X3 and X4 whose firing rate function )(tλ   

are the following 

])12897([8])9665([8])5121([15)(
])12897([4])9665([4])5121([15)(
])12897([8])9665([8])5121([15)(
])12897([4])9665([4])5121([15)(

4

3

2

1

111
111
111
111

+−=
+−=
−+=
−+=

t
t
t
t

λ
λ
λ
λ

, 

where 1([t1 t2]) defines a constant function over the range [t1 t2] and the units are in Hz.  

Note the value of the mean firing rate over the range [1 512], namely, 

512

)(∑
= t

tλ
λ  

is 15 Hz, identical for all classes.  Therefore, we expect that using the mean firing rate as 

the feature yields decoding performance no better than chance, which is 25% correct.  On 

the other hand, the difference of the firing rate over the range [65 96] and [97 128], i.e. 
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32

)()(
128

97

96

65
∑∑
==

−
= tt

tt
f

λλ
, 

yields the most discriminating feature because the firing rate at each time step is the only 

modulated parameter for an inhomogeneous Poisson process [Ross 1994].  The sum of 

the difference of the firing rates thus becomes the best discriminating feature. 

 

The wavelet packet decoding method is applied to spike trains generated according to the 

above firing rate functions.  For each class, the aforementioned simulation algorithm 

produces 500 training samples and 500 testing samples.  The following test and analysis 

is done on the 500 testing samples and the average performance is reported.  The optimal 

selection strategy outlined in Section 4.2.2 returns 512 features that are the projections of 

the spike trains onto the selected orthonormal Haar wavelet packet basis functions.  The 

values of the mutual information associated with these features are plotted in Figure 

4-2A.  The wavelet packet function corresponds to the largest mutual information (red 

circle in Figure 4-2A) is plotted in Figure 4-2B.  It indeed agrees with the aforementioned 

feature f.  In addition, the distribution of mean firing rate and the optimal feature are 

shown in Figure 4-2C.  
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Figure 4-2 Application of the optimal wavelet packet to the surrogate data 

A) The value of mutual information of the pruned wavelet packet features.  The x-axis indexes the 
512 wavelet packet functions, while the Y-axis indicates the value of the corresponding mutual 

information.  B) The wavelet packet function with the largest mutual information.  X-axis is time, 
and Y-axis is its value.  C) The distribution of the mean firing rate and the optimal wavelet packet 
feature.  The panel on the left displays the mean firing rate distribution of the training data; the 

panel on the right shows the optimal feature.  In both figures, the x-axis is the value of the coefficients 
and the y-axis is its distribution.  Color codes the 4 classes. 

 

To validate the optimal feature, we apply the Bayesian classifier to the training data using 

both the optimal feature vopt as well as the mean firing rate λ .  Not surprisingly, the one 

using mean firing rate returns an average correct classification of 25%, exactly on par 

with chance.  On the hand, the optimal feature on average returns correct classification of 

33%.  While this result may not seem impressive, it should be recognized that these 

classes are extremely similar, and therefore difficult to discriminate. 

 

Inhomogeneous Poisson Processes II 

We can also augment the above firing rate function to include a discriminating feature 

that describes precise timing in a spike train.  For each previously generated surrogate 

spike train, we embed a single spike at a specific location in a background of spikes 

generated from a Poisson process.  We use the following equations to illustrate this 

important addition to our surrogate data, 

1)(),(~)( =τλ sandtts , 

where s(t) is the spike train generated from the firing rate function λ(t), and τ marks the 

location of the single precise spike.  We continue the previous example and let the τ’s be 

τ1=1, τ2=5, τ3=9, and τ4=13, the subscripts index the four classes.  Once again, the 

surrogate data contain 500 training and testing spike trains for each reach direction.  We 

apply the method illustrated in Section 4.2.2 to the surrogated data and obtain the optimal 
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feature set { } 512,...,1, =kvopt
k .  The values of the mutual information of the pruned 

wavelet packet features are plotted in Figure 4-3A.  In addition to the optimal feature that 

appeared in the original example (red circle), several new features exhibit large values.  

However, a closer look at these new features using a cross-tabulation method [Matlab] 

reveals that the ones spaced with a period of 128 are highly statistical dependent, i.e. they 

carry the same information.  For visualization purpose, we mark the dependent ones with 

the same marker.  Therefore, we only need to show the wavelet packet functions 

associated with the independent features.  In Figure 4-3B and Figure 4-3C, we sketch the 

wavelet packet functions that produce pair-wise independent features and the distribution 

of the corresponding coefficients, optv33 and optv65 . 
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Figure 4-3 Application of the optimal selection strategy to the 2nd set of surrogate data 

A) Values of the mutual information of the indexed pruned wavelet packet features.  Red circle 
marks the feature appeared in the first example.  □, ∆, and ○ each marks the features that are highly 

dependent.  B) Waveform of the 33rd, the 65th, and the 97th wavelet packet functions.  C) The 
distribution of the projection coefficients onto the 33rd and the 65th wavelet packet function.  

Different color represents different classes: blue-X1, green-X2, purple-X3, and red-X4.  The ellipsoids 
are centered at the means of the projection coefficients, and the minor and major axis are the 

corresponding standard deviations. 
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Note that the wavelet packet functions not only cover the region of interest [1,16], but 

also separate the 4 different classes.  Observe that the separation of the classes on the two 

dimensional probability plane shown in Figure 4-3C allows for good classification 

outcome.  On the contrary, using mean firing rate over the whole 512ms window in this 

example completely ignores the information coded in the precise spike location.  Thus, 

just as the previous example, the decoding performance using the mean firing rate fares 

no better than chance while the feature extraction method displays better decoding 

performance.  In this example, the decoding performance rises from chance (25%) to 

91%, as exemplified by the separation of features among the 4 classes in Figure 4.3C. 

 

PRR Spike Trains during Reach Task I 

Next the method is applied to decode actual spike signals recorded from PRR during 

reach tasks.  The experimental paradigm is described in Section 2.1.  Here we focus on a 

particular 512ms window which is 300ms after the cue onset.  The data is sampled at a 

sampling interval of 1ms.  The biological importance for this particular time window is 

that reach intention is formed during that period [Batista 1999, Shenoy 2003].  There are 

a total of 15 neurons, each with 2 reach conditions, X1 and X2.  The number of samples 

ranges from 25 to 115.  Because of the limited samples, the classification of the reach 

condition given an unknown spike train uses the leave-one-out cross-validation method 

[Cherkassky 1998].  It singles out one sample as the test sample and use the remaining 

ones as the training sample to classify the test sample. 
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And example of the spike trains from one neuron along with the most informative 

wavelet packet feature is shown in Figure 4.4A. 
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Figure 4-4 Comparison of mean firing rate and optimal wavelet packet feature for a neuron in 
binary reach task 

A) The two panels showcase the neuron’s spike trains in two different reach conditions.  The x-axis 
marks the time in millisecond and the y-axis indexes the trial number.  B) The optimal wavelet 

B 

A 

C 



 

 

102

packet function with a support of 128ms, ( j = 7,  k=1).  The x-axis marks the time in milliseconds, 
and the y-axis is the value of the function.  C) The left panel shows the distribution of the mean firing 

rate given the two different reach directions. Each color represents a reach direction.  X-axis is the 
value of the coefficients and y-axis marks the probabilities.  The right panel displays the optimal 

feature distribution for the same two reach directions.   

 

In the above example, we can visually identify from Figure 4-4A that the neurons fire 

more frequently in the first 100ms in one direction than the other one.  The optimal 

wavelet packet feature selected in this case is a window function corresponding to the 

first 128ms.  Evidently, the discriminability of the optimal feature surpasses the ones of 

the mean firing rate because the two conditional distribution functions are further apart, 

as demonstrated in Figure 4-4C.  Fittingly the correct classification rate using the mean 

firing rate is 36.7%, while the optimal feature approach realizes a 72% correct rate.  Note 

the reason for the sub-50% decoding performance of the mean firing rate case can be 

contributed to the cross-validation technique.  For each cross-validation, the training 

distribution is rebuilt by taking out the test sample from the whole ensemble.  For sparse 

data sets, this results a large reduction of the prior probability P(v|X); thus numerically, it 

is  possible to achieve sub-50% performance. 

 

Within the wavelet packet feature selection framework, we can also assess the effect of 

mutual information by replacing the score function with the Fisher linear discriminant 

measure [Fisher 1936], DFisher, which is defined as 

( )
2
2

2

2
21

1
σσ +

−
=

mmDFisher , 

where m1 and m2 are the means of the data points belonging to class 1 and class2; σ1 and 

σ2 are the respective standard deviations.  Obviously DFisher is large when the two clusters 
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are far apart, meaning the between-cluster distance is significantly larger than the within-

cluster distance.  We further note that the Fisher linear discriminant measure DFisher 

implicitly assumes that the clusters are Gaussianly distributed, in which case the 

discriminability can be sufficiently described by the mean and standard deviation. 

 

Now we compute the classification performance for each neuron using mean firing rate, 

the optimal Fisher score feature, and the optimal mutual information feature for the 15 

neurons whose number of samples ranges from 25 to 115.  The average performance for 

each neuron is summarized in Figure 4-5.   
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Figure 4-5 Binary single neuron reach direction classification performance 

The x-axis indexes the neurons, and the y-axis marks the correct classification in percentage.  The 
blue bar indicates the performance achieved using DFisher.  The green bar indicates the performance 

achieved using Mod
QI .  And the red bar indicates the performance achieved using the mean firing 

rate. 
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Notice the DFisher based classification returns an average decoding performance of 65.0% 

for all the neurons while the Mod
QI  based classification returns an average decoding 

performance of 71.5%.  On the other hand, the mean firing rate based classification 

returns an average decoding performance of 62.2%, the lowest amongst all three.  We see 

that combining mutual information with the wavelet packet selection scheme returns the 

best decoding performance in this case.  This improvement of the decoding performance 

can be attributed to the assumption-free nature of mutual information against the 

Gaussianity assumption used in the Fisher linear discriminant score.  This improvement 

of performance also suggests that over-fitting is negligible in this example because 

otherwise the decoding performance can not rise [Vapnik 1995]. 

 

PRR Spike Trains during Reach Task II 

Finally we apply the proposed method to spike trains in an 8 directions reach task.  

Again, we record from PRR with the same experimental paradigm.  Instead of only two 

reach directions, this time the animal is required to reach to 8 different targets.  Spike 

data from 44 neurons are collected in this experiment.  For each neuron, the 8 reach 

locations are labeled as classes X1,…,X8.  First the optimal feature selection technique 

descried in section 4.1 is applied to each neuron.  Note that for the majority of the 

neurons (40 out of 44), the mean firing rate over the whole 512ms window is the most 

discriminating feature.  This result is not surprising because during the experiment, all the 

neurons are isolated based on their mean firing rate’s responsiveness towards the 

stimulus, i.e. the reach directions.  Therefore, we expect most of them display a strong 

correlation between the mean firing rate and the stimulus.   
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We thus focus on the ones with the most discriminating feature not being the mean firing 

rate.  In Figure 4-6, we plot the most discriminating Haar wavelet packet function of an 

un-tuned neuron, i.e. the one modulated by the mean firing rate.  Also, the distributions of 

the optimal projection coefficients as well as the mean firing rate are shown. 
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Figure 4-6 Comparison of mean firing rate and optimal wavelet packet feature for a neuron in 8 
direction reach task 

A) The left panel shows the constant window function over a 512ms window sampled at 1 kHz.  The 
right panel displays the optimal wavelet packet function (j=1,k=305) over the same window. B) The 

left panel shows the distribution of the mean firing rate given 8 different directions. Each color 
represents a reach direction.  X-axis is the value of the mean firing rate and y-axis marks the 
probabilities.  The right panel displays the optimal feature distribution for the same 8 reach 

directions.   
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Note in Figure 4-6B that the conditional distributions of the optimal coefficients are more 

spread out than their mean firing rate counterpart.  This validates the argument in Section 

4.2.2 that the feature chosen using mutual information corresponds to better 

discriminability.   

 

Moreover, the average single neuron Bayesian decoding performance of 4 un-tuned 

neurons and the combined decoding performance of the 4 neurons are shown in Figure 

4-7 using the leave-one-out cross-validation method [Cherkassky 1998].  The 4 un-tuned 

neurons are combined for decoding using the Bayesian classifier, 

∏ ==
)(

)()|(
)|( 4

1
ineruon

ineuron
i vP

XPXvP
VXP , 

where X is the class label, V={vneruon 1,…vneuron 4} is the feature vector for all 4 neurons, 

P(X|V) is the posterior probability, P(X) is the prior probability of X, and P(V|X) is the 

likelihood of V given X, and 

{ })|(maxarg
~

VXPX
X

= . 
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Figure 4-7  Comparison of 8-reach direction decoding performance 

A) Single neuron average decoding performance of 8-reach directions.   

The x-axis indexes the 4 neurons, and the y-axis marks the correct classification in 
percentage/100.  The blue bar indicates the average correct decoding performance achieved 

using mean firing rate.  The red bar indicates the average decoding performance achieved using 
the wavelet packet search algorithm with the score function being Mod

QI .  And the red dash-line 
indicates the chance, which is 12.5%.   

B) 4 neurons’ combined decoding performance of the 8 reach directions.   
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Every 45 degree represents a reach direction, and the radius marks the correct decoding 
percentage.  The blue line is the performance achieved using mean firing rate, and the red line is 

the performance by the optimal feature method. 

 

The above figure demonstrates that the wavelet packet method consistently out-performs 

the mean firing rate.  In Figure 4.7A, the individual neuron’s average decoding 

performance is shown with chance at 12.5%.  The feature extraction method improves the 

decoding performance by 5 to 7 percentage point, which translates to a 20% percent 

increase over the mean firing rate performance.  In Figure 4.7B, the combined decoding 

performance of the 4 neurons using the Bayesian classifier at each reach direction is 

displayed.  Although mean firing rate out-performs the feature extraction method at two 

directions, on average the feature extraction method still improves the average 

performance by 40% over the mean firing rate method.  This average performance agrees 

with the discriminating property of mutual information as it quantifies the average 

decodability over all classes.  This figure confirms that using the optimal wavelet packet 

feature allows for more accurate decoding performance over mean firing rate. 

 

4.4 Conclusion 

Decoding discrete stimulus parameters is an important step towards building practical 

neural prosthetic systems.  In addition, better decoding also potentially enables a better 

understanding of the underlying neural code.  This chapter presents a Haar wavelet 

packet based feature selection method for decoding.  Under the framework of Haar 

wavelet packets, a set of naïve features, which are the wavelet packet projection 

coefficients of the spike trains, are first generated.  Then this method takes advantage of 
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the special properties of the Haar wavelet packet functions and the tree hierarchy of the 

features and subsequently prunes the tree.  When coupled with a discriminability score 

function, the pruning process extracts the most informative features, namely the ones 

with the highest decodability.  The proposed discriminability score is the mutual 

information between the stimulus parameters and the features.  Its relationship to the 

Bayesian classifier and its statistical properties make it an ideal candidate for the score 

function.  Because this method goes beyond the common practice in the neuroscience 

community where mean firing rate is treated as the only feature, decoding performances 

using both mean firing rate and the optimal features are compared on surrogate and actual 

neural data.  We conclude that this method generally improves the decoding 

performances when the optimal feature is used instead of the mean firing rate when the 

underlying classification rule is the Bayesian classifier. 
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Chapter 5  Decoding the Cognitive Control Signals for 
Prosthetic Systems 

5.1 Introduction 

Earlier chapters studied a general frame work and a computation methodology for 

decoding reach directions from neuronal spike trains.  However, to be practically 

successful, an autonomous prosthetic control system requires more than just directional 

information.  High-level cognitive control signals are another important component.  

Here, the high level cognitive states include, but are not limited to the idling state before 

reach, as well as the execution of the reach movement.  Although the process of including 

cognitive states in a prosthetic control systems is relatively new, similar ideas have been 

explored extensively in areas such as speech recognition and discrete control systems 

where finite state machine and hidden Markov model are the main analytical tools 

applied [Jelinek 1998, Cassandras 1999, Viterbi 1967, Savage 1989, Rabiner 1989, Alur 

1994, Brandin 1994, Allur 1994].  The state transition rule naturally allows for 

incorporating external states into the driving algorithm for the prosthetic system. 

 

Before extending a formal study of this topic, let us first revisit the brain area of interest, 

the Parietal Reach Region (PRR).  The PRR of the posterior parietal cortex (PPC) is 

located at an early stage in the sensory-motor pathway. It is closely related to sensory 

areas, particularly visual areas, and projects to limb movement areas within the frontal 

lobe [Johnson 1996, Andersen 1997]. Many properties of PRR make it an attractive 

source of plan activity to derive cognitive control signals. First, PRR plan activity is 

selective for arm movements and persists until a reach is initiated [Snyder et al., 1997]. 
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This selectivity is critical if a prosthetic limb is to move according to arm movement 

plans. The persistence of activity during planning does not require an actual movement; 

thus this area codes the “thoughts” to move.  In addition, during sequential reaching to 

two memorized locations, PRR plan activity codes just the next intended reach [Batista, 

2001]. This simplifies the interpretation of activity in this region for prosthetic control 

since plan activity reflects the upcoming movement, not any or all planned movements. 

These properties suggest that intended movement activity from PRR may be well suited 

for generating high-level, cognitive control signals for prosthetic applications.  Therefore, 

the spike signals from PRR are used to harvest the necessary control and cognitive 

signals that are needed to command a prosthetic device. 

 

In the subsequent sections, we first model the sequence of actions in a reach movement as 

a finite state machine.  Then different transition rules are studied and compared against 

each other.  And finally the chapter concludes by describing how high-level, cognitive 

control signals can be used to control external devices such as a robot limb or a computer 

[Wolpaw 2000; Kennedy 2000, Shenoy 2003].  The work presented in this chapter is 

largely a version of the work found in Neural prosthetic control signal from plan activity 

in NeuroReport 14: 591:596. 

 

5.2 Finite State Machine Modeling of Reach Movement 

The spike data are analyzed from the experimental setup described in Chapter 2, in which 

action potentials, eye movements and push-button state are recorded while two monkeys 
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perform a delayed center-out reaching tasks.  Figure 5.1 plots the response of a PRR 

neuron during repeated reaches to the memorized location of a flashed visual target. 

 

12
deg

100sp/sRes
po

ns
e 

(S
pi

ke
s/

se
c)

100

0

+12
0

-12

R
es

po
ns

e 
(S

pi
ke

s/
se

c)
100

0

+12
0

-12

Button
Eye 
Pos. 
(deg)

Baseline 
(500 ms)

Target 
(300 ms)

Plan 
(800 ms)

Completed     
(variable)

Reach cue

Reach

Go

 

Figure 5-1 Parietal reach region (PRR) neural activity during the delayed, center-out reaching task 

 
Three periods of neural activity are of particular interest: a baseline period preceding 

target presentation, a plan period following target presentation but preceding the reach 

cue, and a pre-movement or go period following the reach cue but preceding the onset of 

the arm movement. Plan and go period activity levels vary with the location of the 

flashed visual target, which specifies the goal of the arm movement. Figure 5.2 plots the 

average plan period response of 41 neurons from PRR of the right hemisphere of one 

monkey (DNT), recorded sequentially while reaching in eight different directions. Most 

neurons are tuned for a particular goal direction, with other directions eliciting weaker 

plan period activity.  These three distinctive periods provide the necessary structural 
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information on the reach movement sequence.  This information is especially important 

for a prosthetic system that relies heavily on the control signals extracted from the neural 

activities.  Proper knowledge of these cognitive states not only provides extra control 

parameters for practical implementation of the prosthetic devices, but also reveals how 

PRR prepares and reacts to a reach movement. 

 

In order to construct a robust autonomous prosthetic system, we also define the following 

objects.  The direction classifier uses spike data from the past 500 ms to estimate the 

probability that a reach is being planned to each of the eight directions, and the most 

probable reach direction is then selected.  The period classifier uses spike data from the 

past 250 ms to estimate the probability that PRR is currently in a baseline, plan or go 

period (see Figure 5.1), and then the most probable class is selected using the Bayesian 

classifier.  Finally the interpreter takes in the series of baseline, plan and go 

classifications, generated by the period classifier as time evolves, and determines when a 

reach should be executed.  It must also take in where the reach should be directed from 

the direction classifier and finally issue the high-level control signal stating: reach here, 

reach now.   

 

Having introduced the concepts of period, period classifier, and direction classifier, we 

now focus on the function and operation of the interpreter (Figure 5.2C).  
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Figure 5-2 Computational architecture for generating high-level, cognitive control signals from PRR 
pre-movement, plan activity 

(A) Spike raster for each PRR neuron contributing to the control of the prosthetic device as a 
function of time in the delayed, center-out reach task. A single trial is illustrated and the visual 

target, specifying the eventual reach goal, occurs at 0 ms. The onset of arm movement occurs after 
1100 ms (not shown). (B) Classifiers use neural activity from finite-duration sliding analysis windows 

to estimate the direction of arm movement (direction classifier) and the current neural/behavioral 
period (period classifier). Both classifiers first calculate the probability of each class, and then select 

the most probable class for subsequent use. (C) The interpreter receives the stream of period 



 

 

115

classifications (i.e., baseline, plan or go) from the period classifier and the stream of real direction 
classifications (e.g., downward reach) from the direction classifier. The interpreter consists of a finite 

state machine that transitions among three states (baseline, plan and reach) according to some 
transition rules. 

 

Again, the first function the interpreter must perform is to determine when a reach should 

be executed given the series of baseline, plan and go classifications from the period 

classifier. We implemented the interpreter with a finite state machine consisting of three 

states: baseline, plan and reach. Importantly, although these states have similar labels to, 

and have certain relationships with, the period classifier outputs (i.e., baseline, plan and 

go period classifications) they are distinct. The period classifications govern, in part, the 

transitions between states. 

 

The interpreter starts in the baseline state and, as shown in Figure 5.2C, can transition to 

the plan state or return to the baseline state each time the period classifier issues another 

period classification. A baseline or go period classification keeps the interpreter in the 

baseline state, while a plan period classification advances the interpreter to the plan state. 

Once in the plan state, a baseline- or go-period classification will return the interpreter to 

the baseline state. The reason for this operating logic will become clear when we discuss 

below the possible rules for transitioning the interpreter from the plan state to the reach 

state. Once the reach state is achieved the interpreter automatically transitions back to the 

baseline state, and simultaneously issues a high-level, cognitive control signal 

commanding an immediate reach to the location given by the goal classifier (Figure 

5.2C, asterisk). 
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The question of when to transition the interpreter from the plan state to the reach state, 

and subsequently triggering an arm movement, can be answered by considering the 

behavioral task instructions and go period classifications. We now summarize the logic of 

three different transition rules, as well as the results we obtained using these rules, to 

show how increasingly sophisticated rules can potentially improve prosthesis control 

performance. 

 

1. Time transition rule.  If the behavioral task instruction to the subject is simply “plan a 

reach to a particular location for half a second,” then a prosthetic system can safely 

execute an arm movement after detecting 500 ms of plan activity. In other words, the 

interpreter can transition from the plan state to the reach state when the period classifier 

issues 500 ms of contiguous plan classifications. Importantly, with this strategy the 

subject could abort an arm movement by ceasing to plan at any time before 500 ms or 

shift the reach target by simply changing his/her planned reach location before 500 ms 

has passed.  We term this the “time” transition rule.  While this is the typical behavior 

with the time criterion transition rule, particularly with large neuron populations and for 

reaches to particular locations, this rule can error by failing to transition to the reach state 

before the end of the trial’s experimental data or by executing a reach to the wrong goal 

location. 

 

The interpreter begins in the baseline state and correctly stays in the baseline state during 

the phasic-response period mentioned previously (~100-400 ms following target 

presentation). This is because the erroneous go period classification occurs after only a 
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brief period (less than 500 ms) of plan. The interpreter then correctly enters the plan state 

and remains in this state, as long as the period classifier issues plan period classifications, 

until the minimum length of continuous plan classification (500 ms) is surpassed causing 

a transition to the reach state. 

 

2. Time-consistency transition rule. A simple extension of the prior transition rule can 

address these concerns by adopting the conservative view that it is better not to execute a 

reach at all than to reach in the wrong direction. By adding the constraint that the period 

classifier’s plan classifications must also specify a given goal direction throughout the 

required plan period (500 ms) we effectively impose a plan-stability requirement. We 

term this the “time-consistency” transition rule. Importantly, the period classifier, which 

employs a 250 ms sliding window, can also estimate goal location using response models 

and estimation methods analogous to those in the familiar direction classifier.   

 

3. Go transition rule. While the previous two transition rules perform well for certain 

applications, and importantly they do not rely on neural signals associated with 

movement execution, we would also like to be able to produce a larger absolute number 

of correct reaches. We can achieve this by replacing the previous stability constraint with 

a requirement that the period classifier issue a go period classification, after plan period 

classifications have been issued continuously for 500 ms, in order to transition from the 

plan state to the reach state. We term this the “go” transition rule. Using a neural “go 

signal” could afford the subject an additional opportunity to abort a planned reach by 
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withholding the go command, or the possibility of reducing the length of the plan period 

on some trials. 

 

5.3 Results 

In this section, we apply the aforementioned state transition rules as well as the 

interpreter rules to neural data recorded in PRR.  The experimental paradigm and 

recording technique remain the same [Batista 1999].  We use the Bayesian classifier with 

a uniform prior probability distribution, to estimate reach parameters. Our assumptions 

were Poisson spike statistics and statistical independence between cells, but explicit 

models of tuning to the various parameters were not assumed [Zhang et al., 1998]. To 

reconstruct the planned reach direction, we defined the scalar X = (1, 2, …, 8) to be the 

reach direction and the vector n = (n1, n2, …, nN) to be the spike count from each neuron 

(ni) during a time interval (τ). Combining the expression for the conditional probability 

for the number of spikes n to occur given a plan to reach direction x with Bayes’ rule 

yields the following expression for the conditional probability of x given n:  

Equation 5.1 
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The normalization factor C(τ,n) ensures that the sum of the probabilities equals one. P(X) 

is the prior probability for reaches in each direction, and is uniform by experimental 

design, and the mean firing rate of the ith neuron while planning a reach to direction X is 
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fi(x). The estimated reach direction, 
∧

X , was taken to be the one with the highest 

probability. 

( )( )n|XPargmax
{1,2,...8}X∈

∧

=X  

 

A similar procedure was used to estimate the response distributions for the time-course 

analyses, but with the following variations.  After selection of the random subset of cells 

and the exclusion of a single random trial from each cell, the remaining trials were 

divided into 3 epochs: baseline, plan period, and pre-execution period (-600 to 0, 300 to 

1000, and 1100 to 1350, respectively). The trials from each direction, for each cell, and in 

each epoch were concatenated, and the data were sampled with 250ms long moving 

windows with 50ms time steps. The baseline epoch was concatenated across all 

directions.  Additionally the plan epoch was also sampled using 500ms windows rather 

than 250 ms windows. The mean of each epoch was used as the parameter for the single 

multidimensional Poisson distribution for the baseline period, and for each of the 8 

multidimensional distributions for each direction in the 3 other epochs (the 250ms 

sampled memory epoch, the 500ms sampled memory epoch and the pre-execution 

period).  Test-data firing rates were measured in 250ms windows, advanced 50 ms at 

each time step, through the duration of the test trial. The most probable condition 

(baseline, one of 8 plan directions, or one of 8 execution directions) was estimated 

independently in each time step as above.  The direct results of this classification process 

are shown in Figure 5.3. 
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Figure 5-3 Classification time courses, averaged over all reach goal locations, for three different 
neural population sizes (2, 16 and 41 neurons from monkey DNT) 

These time courses reflect, statistically, the output of the period classifier in the delayed center-out 
reach task. Each classification time course has three sections: the lower row corresponds to baseline 

period classification, the middle region corresponds to the eight possible reach-plan classification 
locations (the correct goal location is plotted at 0°), and the upper row corresponds to go 

classification. White indicates a 100% classification rate, black indicates a 0% classification rate, and 
the dashed-white vertical line indicates the onset of target presentation. Performance decreases as the 

number of neurons in the population is reduced. 

 

Next we implement the Interpreter in order to enforce different rules to the above 

classifier.  The results are summarized in Figure 5.4. 

 

1. Time transition rule.  Figure 5.4A shows the percent of trials achieving the reach 

state, and thus executing a reach, for a range of population sizes. Figure 5.4B indicates 

the percent of these trials that executed reaches in the correct direction for a range of 

population sizes. Ideally all trials would execute reaches, as all of our experimental data 

are from successful reach trials, and all trials would reach in the correct direction. 

Although this transition rule successfully executes reaches for most trials (Fig. 5.4A), 



 

 

121

many of the reaches go in the wrong direction (Fig. 5.4B). These errors are due to 

direction classifier miss-classifications, and are most likely caused by low signal to noise 

ratios. If errors were caused by drifts in plan or volition then the prediction accuracy 

would not be expected to increase dramatically by adding more neurons to the estimate. 

 

2. Time-consistency transition rule.  Figure 5.4 also summarizes the performance of 

this transition rule. As expected, fewer trials now execute reaches (Fig. 5.4A) but those 

that do tend to reach in the correct direction more often (Fig. 5.4B). 

 

3. Go transition rule. Figure 5.4 illustrates the performance. The period of time used by 

the direction classifier to estimate the reach direction, which is the 500 ms directly 

preceding the go period classification, tends to be slightly later than with the previous 

two transition rules. This is because the go period classification can occur up to several 

hundred milliseconds after the plan duration criterion has been met. This accounts for the 

increased percentage of reaches to the correct location (Fig. 5.4B). This algorithm 

executes an intermediate number of reaches, as compared to the other two transition rules 

(Fig. 5.4A), with good performance arising from the readily detected and classified go 

activity. 
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Figure 5-4 Interpreter performance characteristics 
 The interpreter was characterized, separately, while using the time, time-consistency, and go 

transition rules (color coded). (A) Percent of trials achieving the interpreter’s reach state, thereby 
triggering a reach, as a function of the number of neurons in the population. Perfect performance 

(100%) means that all trials executed a reach to some goal location, but not necessarily to the correct 
goal location. (B) Percent of trials that executed a reach to some goal location that did reach to the 

correct goal location. Perfect performance (100%), meaning that all trials executed went to the 
proper location, is plotted as a circle in all sub-panels. Each sub-panel shows performance for a 

different number of neurons in the analysis population. In both panels (A) and (B) neurons from 
animals DNT and CKY were used to generate the performance curves appearing to the left and 

right, respectively. Interpreter performance, including the relative performance of the three 
transition rules, was similar in both monkeys.  
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5.4  Conclusion 

Although decoding stimulus and behavior parameters have been in existence for many 

years, there does not yet exist a neural-prosthetic architecture that is optimal for all 

plausible prosthetic applications.  To explore the feasibility of using pre-movement 

neural signals from PRR to generate high-level cognitive control signals, a computational 

architecture is developed and tested in this chapter. This part of an envisioned neural 

prosthetic system estimates, from PRR neural activity, when an arm movement is being 

planned (period classifier), the direction of the planned movement (direction classifier), 

and when the arm should move (interpreter). The resulting computations issue a 

cognitive control signal with two parts: reach here and reach now.  Thus using the neural 

signal from PRR, it is sufficient to extract the necessary control signals for operating a 

neural prosthetic.  This structured decoding approach offers a first look at the possibility 

of building an autonomous prosthetic device based completely on the information in the 

neural data. 
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Chapter 6 Conclusion 

Inspired by the considerable success of cochlear implants, tremor-control devices and 

other neural-prosthetic systems aimed at delivering signals to the nervous system, 

research aimed at reading out neural signals for prosthetics applications has intensified in 

recent years.  While the concept of translating neural activity from the brain into control 

signals for prosthetic systems has existed for decades, substantial progress toward 

realizing such systems has been made only relatively recently. This progress has been 

fueled by advances in our understanding of neural coding, as well as by advances in 

forming stable electrical interfaces with neurons and computational technologies for 

processing neural signals in real time. 

 

One interesting application of the neural prosthetic system is a prosthetic arm that is 

connected directly to motor or pre-motor area of the brain.  This allows direct control of 

the prosthetic arm by mere thoughts of the user.  In other words, one can control 

peripheral devices just by thinking where to reach.  Such a system could be especially 

important for many locked-in patients or severe spinal cord injury sufferers [Katz 1992].  

In addition, successful construction of this system should also shed light on the 

underlying neural coding of the behavior parameters. 

 

As this endeavor spans many different disciplines and research subjects, this thesis in 

particular focuses on obtaining the necessary control signals for a prosthetic system such 

as reach directions and cognitive states.  In Chapter 3, a novel approach to characterize 

spike trains is proposed.  This approach determines the Poisson-ness of a spike train at 
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different scales while taking advantage of the multi-scale capability of wavelet packets, a 

relatively new signal processing technique.  Under this approach, the spike trains are 

projected onto wavelet packets and the distributions of the projection coefficients are 

analyzed.  It allows us to assess Poisson-ness from different scales.  The Poisson-ness is 

an especially important quantity for decoding because if the spike train is indeed Poisson 

in nature, then the ubiquitous mean firing rate measure is the only relevant feature. 

 

As seen from the examples of Chapter 3, not all neurons exhibit a Poisson nature.  

Therefore, it is necessary to devise a method that searches for the most discriminating 

feature(s) towards decoding.  Chapter 4 first uses the Haar wavelet packet to construct a 

naïve feature set.  Because of the time domain properties of the Haar wavelet packet 

functions, these features have intuitive biological interpretations that are appealing to 

researchers in the neuroscience community.  Then of all the features, the most 

informative ones are selected using an optimal feature search technique.  The technique 

prunes the wavelet packet tree while using mutual information as a score function to rank 

the decodability of each feature.  When combined with the Bayesian classifier, this 

method returns improved decoding performance versus approaches based on the firing 

rate.  The method was tested on both artificial data and actual neuronal data from PRR, 

and compared to mean firing rate decoding. 

 

Besides decoding the estimated reach directions from PRR signals, additional cognitive 

parameters are necessary for building an autonomous prosthetic device.  For a minimally 

autonomous robotic device, Chapter 5 defines the behavior states to include a baseline 
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state, reach planning states, and the reach execution go state.  When combined with an 

Interpreter that acts on the classification results of these states, it returns an efficient 

algorithm that extracts the necessary cognitive control parameters.  Experimental data 

collected from PRR while the animal is performing a sequence of actions are subjected to 

this method while we compare different state transition rules. 

 

Although the work in this thesis largely focuses on decoding discrete stimulus parameters 

from spike data, the decoding framework and technique can be extended to other types of 

signals such as LFP and EEG.  In addition, it is possible that more complicated trajectory 

decoding problem may be cast in the discrete parameter problems as well because studies 

have shown that PRR encodes the next movement target.  Therefore, it is conceivable that 

one can discretize a trajectory into a set of sequential movement targets though further 

experiments and studies are necessary to validate this suggested approach. 
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Appendix 1: Proof of Proposition 3.1 

The proof of this proposition proceeds by induction. 

Step 1: First consider the scale j = 1.  The wavelet packet coefficients Tvvv 00201 ,...,,  at 

scale 0 are independent because of the independent increments property P1.  By 

construction from the Pyramid Algorithm, we know that the child coefficients at scale j=1 

are 
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The last equality is due to the independence given by property P2.  Here x and y describe 

the range of the coefficients at scale j=1, where Range(v1k) = {-1 0 1}.  Continuing, we 

have: 
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where the last step is a consequence of the parent-child relationship in the Pyramid 

algorithm.  We can generalize the above result to all the members of the low pass child to 
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show that all the coefficients 
2

11211 ,...,, Tvvv  are mutually independent. Similarly, we can 

show the independence between all the members of the coefficients related to the high 

pass child TTT vvv 1)2
2
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,...,,

++
 . 

 

Step 2:   To establish the induction, consider the wavelet packets and their coefficients at 

scale j = j*.  Assume all the coefficients  
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at each node are mutually independent.  We know from Step 1 that this is true for j*=1. 

 

Step 3:  To proceed with the induction, assume the mutual independence of coefficients 

at scale j*.  Now consider scale  j*+1.  Using the same approach as step 1 of the proof, at 

scale j = j*+1 the coefficients associated with the low pass child node branched from the 

parent node at scale j* have the following joint distribution,  
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We can further generalize the above result to all the members of the low pass child so 

that the set of coefficients { } 1*

1*

*
2

)1(

2
1)1(

+

+

+

+=+

j

j

Tl

Tlkkjv  , 
*

2,...,1,0 jl = are all mutually independent.   

Similarly, we can show the independence between all the members of the high pass child 

of the parent node at scale j*.  Therefore, we have proven that the members of any child 

node, namely the leaf of  the wavelet packet tree, are independent. � 
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Appendix 2 

In the Section 4.2, we introduced mutual information as our score function and presented 

the feature selection strategy.  To fully understand its effect, we investigate its associated 

discriminability in the finite sample setting.  For simplicity, the analysis in this section is 

done specifically for binary classification.  However, many of these ideas can be 

generalized to multiple-class problems.  

 

An important question regarding mutual information as a measure is how it is related to 

the Bayesian classification error, E*.  Assume we have no prior knowledge about the 

classes, then the mutual information between the classes and the features are bounded by 

the following relationship [Devroye 1998], 

Equation 2 ]
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Figure 2 plots the bound on mutual information by the Bayesian classification error.   
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Figure A.0-1 Mutual information bounded by the Bayesian classification error E*.  

The red line corresponds to the lower bound and the blue line corresponds to the upper bound.  X-
axis is the error rate E*and y-axis marks the mutual information 

 

Evidently, large mutual information corresponds to a smaller classification error.  Notice 

the bound is somewhat loose, i.e. a large range of mutual information can correspond to 

the same classification error.  Then why does mutual information work well as a 

discriminability measure? 

 

To address this question, E* is first re-examined.  Recall Equation 4, the classification 

error is defined as  
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Using the Bayes’ rule, we can rewrite the above equation as, 
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assuming the two classes are equally likely.  With some algebraic manipulation, the 

above equation is re-formulated as  

Equation 3  
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where for simplicity of notation, P1(v) and P0(v) replaces P(v|X=1) and P(v|X=0) 

respectively.  In addition, the term 
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Equation 4  ∑ −=
v

Ko vPvPD )()( 01  

is called the Kolmogrov divergence [Devroye 1998].  Further note that the Kolmogrov 

divergence can be written as, 

Equation 5  ∑ +
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which can be interpreted as the expected value over v of the scaled absolute difference 

between the two conditional probability distributions.  Here, the scaling factor is 

)(
1
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2
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+
.  Its effect will be explained in the following simple example.   

 

Example: Consider two observed coefficients v1 and v2 where the absolute difference 

between the conditional probability distributions is the same, 
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In addition assume  
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This result makes practical sense because even the difference between the conditional 

distributions is the same at v1 and v2, the classification error at v1 is greater than the one at 

v2, i.e. 
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where  
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the Bayesian classification error at v.  Thus, 
)(

1
vP

 augments the difference between the 

conditional distributions according to the classification error. 

 

The above assertion assumes the conditional probabilities P1(v) and P2(v) are known a 

priori, in which case the Kolmogrov divergence DKo as well as the classification E* can 

be computed exactly.  In practice however, one must estimate the conditional 

probabilities from the observed training data.  When the training data samples are limited, 

the above calculation breaks down considerably.  Consider the following simple case in 

which v takes value 1 or 0 only, and the true conditional probabilities are 
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Therefore, for a training sample of size N, the probability of observing n1 1’s given class 

X1 is  
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and similarly the probability of observing n2 1’s given class X2 is  
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where S is a random variable such that 

∑
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i
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1
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In addition, if we estimate the conditional probabilities using the histogram rule, i.e. 
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then the probability of obtaining these estimation becomes 
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where 
∧

1P  and 
∧

0P  are two random variables representing the estimated probability 

)|( 1XvP
∧

 and )|( 2XvP
∧

, respectively.  Because the above probabilities are nothing more 

than binomial distributions, the expected value of the estimated probabilities are  
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and the variance of the estimated probabilities are 
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Consequently, the variances associated with the sums and differences of the conditional 

distributions are 
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Hence, the term 
)()(
)()(

21

01

vPvP
vPvP

+
−  depends on the estimation of the conditional distributions.  

And this dependence become substantial when )()( 01 vPvP −  or )()( 01 vPvP +  approaches 

0.  In another word, the Kolmogrov discriminability measure, DKo is overwhelmed by the 

uncertainty at v if 0)()( 01 ≈− vPvP  or 0)()( 01 ≈+ vPvP .  Therefore, it is essential to trade 

off the classification performance for robustness against such a finite sample effect. 

 

 

In order to suppress the finite sample effect, it is necessary to become conservative when 

interpreting the weighted difference between the conditional probability distributions, 

namely 
)()(
)()(

21

01

vPvP
vPvP

+
− .  First revisit the mutual information and manipulate it into the 

following,  
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Equation 6 

[ ]∑

∑

∑

−−+++=









+=

+=

v

v

v

vPFvPFvPFvPFvP

vP
vP

vP
vP

vP
vP

vP
vPvP

vP
vPvP

vP
vPvPvXI

))(1log())(1())(1log())(1()(
2
1

)(
)(log

)(
)(

)(
)(log

)(
)()(

2
1

)(
)(log)(

)(
)(log)(

2
1);(

2211

2
2

1
1

 

where  

)()(
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vPvPvPF

+
−

= , 

the same term present in Equation 15.  We can further compare the two functionals, 

xxF 2)(1 =  and )1log()1()1log()1()(2 xxxxxF −−+++=  that appear in Equation 3 and 

Equation 4.  Figure 2 illustrates the two functionals from [-1 1]. 
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Figure A.0-2 The functionals in Kolmogrov divergence and mutual information 

The red curve is F1 and the blue curve is F2.  Notice the difference between F1 and F2 becomes large 
when approaching 0.  X-axis is the value of PF and y-axis marks the value of the Kolmogrov and 

mutual information functionals.   
 

Compared to F1, F2 significantly suppresses the portion of the curve in the vicinity of 0.  

Intuitively, this occurs when PF is close to 0, where the difference between P1(v) and 
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P2(v) is dominated by the variance of the estimation, an effect of finite training sample.  

Therefore, using mutual information as the discriminability measure remains 

conservative when the underlying probability estimation is dominated by uncertainty.  By 

doing so, the finite sample effect is also successfully suppressed.  Hence, mutual 

information effectively trades tightness of the error bound for robustness when dealing 

with a finite number of samples. 

 

 

 


