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ABSTRACT N
Neural prosthetic device has the potential of benefiting millions of lock-in and spinal cord
injury survivors. One branch of the ongoing research is to construct reach movement based
prosthetic devices. An important research topic in this area is to accurately and efficiently
extract the essential behavioral and cognitive control signals from the relevant brain area,
Parietal Reach Region (PRR). This thesis proposes statistical methods based on applying

the Haar wavelet packets to spike trains in order to answer some of the questions in this

field.

Although spike train is the most frequently used data in the neural science community, its
stochastic properties are not fully understood or characterized. Many applications simply
assume it is Poisson by nature. This thesis suggests a formal spike train characterization
method using the Haar wavelet packet. The Haar wavelet packet projection coefficients are
first generated by projecting the observed spike train ensembles onto the Haar wavelet
packet function. Then the ensuing empirical distributions of these coefficients are
computed. At the same time, the projection coefficients’ distribution of a Poisson process
with the same rate function as the observed spike train ensembles are recursively derived.
Comparison between the empirical distributions and the hypothesized ones are carried out
using a x” test. If the underlying process of the observed spike trains is indeed Poisson in
nature, then the two distributions should have good agreement; otherwise, the deviation
would be manifested by a large x* variate. Because of the multi-scale property of the
wavelet packet, Poisson-ness at different scales can be assessed. Moreover, Poisson Scale-
gram is proposed to help visualize the characteristics of the spike train at different scales.

Examples from both surrogate and actual data from PRR are subjected to the test.

Because some neurons display non-Poisson characteristics, simple mean firing rate based
decoding technique does not take advantage of all the information embedded in the spike
train. It is necessary to extract the relevant features in the context of decoding. The thesis
suggests a feature extraction method that searches all the wavelet packet coefficients for the

ones with the largest discriminability. The biological relevance of the projection



\%
coefficients is especially appealing to the neural science community. Also in this thesis,

discriminability is quantified by mutual information, an information theoretic measure.
Because of the tree-like hierarchy of the projection coefficients, the extraction method
prunes the tree while scoring each feature with mutual information. It returns the most
informative feature(s) in the context of the Bayesian classifier. Decoding performance of
this proposed method is compared against the one using mean firing rate only on both

surrogate data and the actual data from PRR.

It is also crucial to decode cognitive states because they provide the extra control signals
necessary for practical implementation of the prosthetic devices. This thesis proposes a
simple finite state machine approach where transition occurs among baseline, plan, and go
states. Additionally, an interpreter is introduced to interpret the decoding results and to
regulate when the transition should occur. Also, different interpretation rules are explored.
This thesis demonstrates that the finite state machine framework, when coupled with the
interpreter, offers a simple autonomous control scheme for the neuron prosthetic system

envisioned.

While the neural prosthetic system is in its infancy, many theoretical and experimental
works lay the foundation for a bright future in this field. This thesis answers the spike train
characterization and decoding questions in a theoretical manner. It offers several novel
techniques that bring new ideas and insights into the research field. Moreover, the methods

presented here can be extended to accommodate more general problems.
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Chapter 1 Introduction
People’s fascination with the brain can be traced back for thousands of years to the time

Hippocrates discovered that the brain was involved in sensation and was the source of
intelligence. Since then numerous researchers have devoted their careers to unlocking
the mystery of the brain: its organization, its functionality, and its operating mechanism.
With the advance of physics and electronics in the last century, scientists were able to
investigate the brain from its functionality to its microscopic organization. One direct
practical result of the explosion of the neuroscience research activities is the development
of brain-machine interfaces. Engineers and scientists are using these new scientific
discoveries to construct devices that enable the blind to see and the deaf to hear. Another
ambitious endeavor is to tap into the thoughts of millions of locked-in patients who are
deprived of any motor functions, while their cognitive processing abilities are still
functional. With the recent advance of micro-scaled fabrication, probing and recording

techniques, reading people’s thoughts has become more than just science fiction.

Neural prosthetic systems are invented under the above premises. They are systems that
connect the brain to external devices so that the user can operate the device merely by
thinking about it. Specifically, a neural prosthetic arm system is a system that connects
prosthesis directly to motor or pre-motor area of the brain so that thoughts of movement
can be used to drive the system. In other words, one can control peripheral devices just
by thinking where to reach. Figure 1.1 illustrates an idealized prosthetic system to

command arm-reaching motions.
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Figure 1-1 Idealized neural prosthetic system

In this figure, a patient with spinal cord injury, or lesion, or motor cortex damage is
deprived of any limb movement. However, because the functional area in the brain that
plans and commands arm-reaching motions is still intact, a neural prosthetic system can
extract the thoughts/intentions from this brain area in order to form control signals. Then
the signals are relayed directly to a prosthetic arm in order to achieve the desired

movement. Visual feedback of the arm’s movement “closes the loop”.

Various research groups have actively constructed virtual or mechanical systems, which
are different versions of the above description, in order to achieve this goal
[Georgopoulos 1986, Zhang 1997, Schwartz 1988, Moran 1999, Schwartz 2000,
Wessberg 2000, Issacs 2000, Donoghue 2001, Nicolelis 2001, 2002]. While other
researchers mainly access motor areas in the brain in order to extract the necessary
information for controlling the prosthetic devices, a research group at Caltech focuses on
a pre-motor area called Parietal Reach Region (hereafter abbreviated as PRR) as a source
of neuro-prosthetic command signals. It is believed that PRR forms the reaching plans

which precede the actual reach [Snyder 1997, Batista 1999, Shenoy 1999, Meeker 2001].
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The advantage of using such high-level cognitive brain activities is that they are more
anatomically removed from regions that are damaged. While motor areas on the other
hand may degenerate following spinal cord injury [Florence 1998, Kaas 2002], most
cognitive areas of the brain are known to sustain even after loss of motor functions.
Furthermore, the plasticity, which is the capability of learning and adaptation, of the area
also holds promise that users may quickly learn to adapt to a brain machine interface

[Meeker 2003].

The construction of such a neuro-prosthetic system is no small feat. The quest of
designing and building the system involves disciplines ranging from neurobiology to
mechanical engineering, in which each field finds its interesting application or
challenging questions. Generally speaking, designing and building such a cognitively
controlled system requires several large building blocks: behavior experiments and signal
harvesting, learning and decoding machinery, control schemes, and system integration.

We briefly define each block and its function.

The behavioral experiments are controlled experiments in which the animal performs
designated behavior tasks while researchers monitor and record its brain activities. Then
either online or off-line, the recorded signals are examined to determine if any possible
patterns are embedded in the neural signals so that inferences can be made about the
animal’s behavioral states during the experiments. The procedure of inferring the
animal’s behaviors or sensory inputs from its recorded brain activities is termed

decoding. Next, knowledge gained in the learning/decoding stage enables us to construct
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high-level control schemes necessary for commanding prosthetic devices so that they are
directed by the user’s thoughts. Finally, the software and hardware package must be

miniaturized for possible clinical implementation.

Among these building blocks, neural decoding is itself a very active research topic. It
includes, but is not limited to, characterizing the firing process of the spike trains and
estimating or predicting behavioral parameters from neural activities. A topic of ongoing
debate in the community is whether spike trains are rate coded or time coded: the former
refers to the assumption that the only informative feature in a spike train is the number of
spike counts observed in a time window, while the latter refers to the assumption that
timing between spike events also plays a role in conveying information. To answer this
question, different metrics and approaches ranging from statistical tools to information
theory have been proposed over the years [Teich 1986, Holt 1996, Koch 1997, Johnson
1996, Victor 1999, Johnson 2001]. In addition, the quest to promptly and accurately
predict some behavioral parameters from neural activities has also attracted large amount
of interest, especially in the emerging field of neural prosthetic systems [L. Abbot 1994,
Zhang 1997, Schwartz 1988, Moran 1999, Schwartz 2000, Wessberg 2000, Issacs 2000,

Nicolelis 2002].

In order to address the above questions, it is necessary to first understand the stochastic
characteristics of the spike train. In this thesis, a novel approach to characterize spike
trains is proposed. This approach determines the Poisson-ness of a spike train at different

scales. It takes advantage of the multi-scale capability of wavelet packets, a relatively
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new signal processing technique. Under this approach, the spike trains are projected onto
wavelet packets and the distributions of the projection coefficients are analyzed. The
coefficients whose empirical distributions significantly deviate from the theoretical
distribution of a comparable Poisson process are counted. The higher the counts, the less
likely the process is Poisson in nature. It allows us to assess Poisson-ness from different
scales, thus avoiding the stationary assumptions employed in some other analysis of the
spike trains [Gabbinni and Koch 1998]. Both surrogate data and the spike data collected

from neurons in PRR are characterized using this approach.

With knowledge of a spike train’s underlying stochastic nature, it is natural to extend the
wavelet packet approach to the decoding problem described earlier. Most current
decoding efforts use the mean firing rate, i.e., the number of spikes in a window to
estimate the behavioral or stimulus parameters. When neurons are well characterized as a
Poisson process, this decoding model is appropriate. However, using the Haar wavelet
packet family, spike train features beyond mean firing rate can be exploited. In addition,
these features have biological interpretations that are appealing and intuitive to
researchers in the neuroscience community. Of all the features, the most informative
ones are the ones with the largest power to discriminate among the behavioral or stimulus
parameters; thus, decoding based on these features can potentially improve both accuracy
and efficiency. In this thesis I propose an optimal feature selection technique which
combines the wavelet packet framework with mutual information, an information
theoretic measure. Because of the hierarchical structure of the wavelet packet and the

special properties of the mutual information, this method returns the wavelet packet
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projection coefficients with the largest decodability towards the decoding task. Finally, I
incorporate these selected features into a Bayesian classifier to estimate the behavioral
parameters, such as reach directions in the case of decoding from PRR. Again both
artificial data and actual neuronal data are used and the decoding performance is

compared against the ones using only mean firing rate.

Besides decoding the estimated reach directions from PRR signals, we must estimate
additional parameters from neural signals in order to successfully control a robotic device
using brain activities. These additional parameters are termed cognitive parameters in
this thesis. They describe the brain’s internal behavioral states. For a minimally
autonomous robotic device, we define the behavior states to include a baseline state,
reach planning states, and the reach execution go state. Because of the structure of the
postulated state transitions, we cast them into a novel framework. When combined with
an Interpreter that acts on the classification results of these states, it returns an efficient
algorithm that extracts the necessary control parameters. Experimental data collected
from animals performing a sequence of actions are subjected to this method while we

compare different state transition rules.

The contributions of this thesis work include the following:
e A novel wavelet based spike train characterization method that assesses the
underlying stochastic properties of given spike trains is introduced and studied.
Traditional characterization methods have limitations or shortcoming when

dealing with long term correlation or non-stationarity in the data. On the other
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hand, because of the statistical properties of the Haar wavelet packet, this method
provides versatility and insight into the spike train’s characteristics compared to
the traditional approaches.

e A wavelet packet based feature extraction method that searches for the most
informative features in spike trains is introduced in this thesis. In many decoding
problems, researchers automatically use firing rate as the lone feature in their
decoding algorithms. Although for spike trains with Poisson nature, firing rate is
indeed the only informative feature, as shown in this thesis, not all spike trains
exhibit Poisson characteristics. Thus, more generally it is necessary to search for
features embedded in the spike trains that are most informative towards decoding.
The algorithm introduced here combines information theoretic measures with
wavelet packet tree pruning techniques and returns features that offer improved
decoding performance.

e Finally, this thesis offers a first look at decoding cognitive states from reach
movement sequences. For practical purposes, a neural prosthetic system requires
control signals beyond mere reach directions. Thus, this thesis presents a
framework based on finite state machine, and different transition rules are
explored. Although the framework is very simple, it is the first in the field that
demonstrates the feasibility of using cognitive parameters to control autonomous

prosthetic arm systems.

This thesis is organized as follows:
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Chapter 2 provides background information on the experimental paradigms used
to collect neural data, and introduces the data type used in this thesis. A brief
review of the wavelet and wavelet packet concepts, with a focus on Haar wavelet
family, is also presented in the chapter. And finally, we review the Bayesian

classifier, which is the principal estimation tool used in the thesis.

Chapter 3 describes a method to characterize spike trains using the Haar wavelet
packet function. We investigate the probabilistic properties of the wavelet packet
projection coefficients of Poisson processes. From the analysis, we derive both
the analytical forms of the distribution and an iterative method that approximate
these distributions in practical situations. Additionally this chapter proposes a test
that investigates the Poisson-ness of an unknown spike processes. This chapter

concludes with applications of the test to different types of data.

Chapter 4 presents a framework for decoding behavioral parameters from neural
activities. First we review mutual information as a measure that quantifies the
discriminability of each feature. Then we introduce an algorithm that uses the
mutual information as the decodability score and prunes the wavelet packet tree in
search of the best features for decoding. We compare the decoding performance
using the optimal features to the performance obtained when using just standard
firing rates with applications to surrogate data as well data from neurons in PRR.
In the appendix, we also present a finite sample analysis that further justifies the

use of mutual information.
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e Chapter 5 presents work on decoding logic parameters and sequences of
behaviors. We define the necessary states and the state transition concepts that
enable a construction of an autonomous model. When coupled with an
Interpreter, this model allows us to integrate decoding with state transition rules
so that we can extract practical control signals for a prosthetic system. Several
different Interpreter rules are explored as we compare their performance to reach

sequences recorded from the animals.

Some final remarks as well as some future works are proposed in Chapter 6 to conclude

this thesis.
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Chapter 2 Background

This chapter provides background information on the experimental setup and the
mathematical model of the neural data used in the thesis. Also, brief overviews of
wavelet and wavelet packet are presented as well. Finally, we discuss relevant concepts
from Bayesian classification, which is the principal classification tool used through out

the thesis.

2.1 Experimental setup and data type

Most of the actual neuronal data used in this thesis are obtained from behavioral
experiments that were conducted on Rhesus monkeys (Macaca mulatta) performing
delayed center-out reach tasks, which are illustrated in Figure 2.1.

Baseline Target Plan Completed
(500 ms) (300 ms) (800 ms) (variable)

o o o

Figure 2-1 Center-out reach task

In the physical reach experiments, the animal is secured with the head position fixed in
front of a vertical touch screen in a dark room. At the start of each trial, a fixation dot
(red) is first displayed at the center of the touch screen where the animal fixates both its
hand and eye. After ~500 ms of fixation, a reach target (green) is shown to the animal for
300 ms. The animal is required to memorize the reach direction and to form a reach plan
in the next ~800 ms while it is still holding the arm and eye on the fixation dot. After the

plan period, the fixation dot extinguishes, and the animal makes a reach to the previously
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shown target location. A juice reward is administered upon a successful completion of
the trial. The target locations are randomly chosen among 8 different locations, and the
length of the plan period is also randomized to minimize an anticipation effect [Batista

1999, Meeker 2001].

Alternatively, a virtual reach experiment very similar to the physical reach experiment is
carried out in order to simulate a neural prosthesis at work, and also to explore the
learning capability of PRR. The distinction between the physical reach and the virtual
reach is that in the latter, the animal does not actually perform the reach movement.
Instead of moving its arm towards the target, the animal forms the intention of making
the movement, which is subsequently decoded. Based on the decoded reach direction, a
visual feedback (yellow dot) appears on the touch screen. The animal is given the juice

award if the decoded reach direction matches the target.

The recording apparatus consists of a custom-made micro-electrode, signal amplifier,
A/D converter, and spike detection and sorting software. The micro-electrode is a 10 cm
long glass-coated platinum-iridium wire with the diameter 0.4 mm. The wire is insulated
throughout except at the sharpened tip, thus giving it an impedance of 1.5-2 MOhm. The
wire is housed in a glass guide tube of diameter 0.5 mm so that it can penetrate the dura
upon insertion. The A/D converter has a sampling frequency for 40 KHz for the brain

activities.
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During a recording session, the electrode is first acutely inserted into the brain’s
functional area pre-determined using fMRI. Then using a micro-drive, the electrode is
advanced incrementally at 700 microns per step in the vicinity of PRR in searching for
extra-cellular neuronal activities. Once extra-cellular activities are detected, the animal is
required to make a sequence of movements to the 8 different locations in order to decide
the relevance of the neuron with respect to the behavior paradigm. If no identifiable
correlation exists between the neural activity and the reach locations, the electrode is
advanced further until new extra-cellular activities are detected; otherwise, the electrode
is fixed at the position that exhibits behaviorally modulated neural activities. Figure 2-2
displays a trace of recorded PRR neural activity. The local surge of the voltage is called

the action potential fired by the neuron.

0.06

0.04 |

0.02}

Amplitude (V)

-0.02

Figure 2-2 Trace of neural activities from a neuron in PRR

X-axis is the time and y-axis is the amplitude in voltage. The sudden surges of the voltage amplitude
are action potentials, and the timing of the action potentials marks the occurrence of the spikes.

The analog raw waveform is then sampled at 40KHz. Because the recorded extra-cellular
neural activities may contain signals from several neighboring neurons, spike sorting is
necessary in order to decipher the signals on a neuron by neuron basis [Abeles 1977]. In
another word, we need to sort the spikes (action potentials) from the signal and label
them with the corresponding neurons that generate the specific waveforms. The spike

sorting algorithm uses either principal components analysis (PCA) based method or
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template method [Lewicki 1998]. Once the spikes are sorted, the time of occurrence of
each spike is recorded to a precision of Ims. A sequence of the spikes forms a spike
train, which is one of the most frequently used data types in the neuroscience community.
This thesis thus places a strong emphasis on the spike train data format though some of
the techniques described have broader applications. The model of the spike train will be

the topic of next section.

All of the experimental neural signals used in this thesis are recorded from the Parietal
Reach Region (PRR), a sub-region of Posterior Parietal Cortex. PRR is believed to be
responsible for reach intentions or planning. A series of papers on this area suggest that
it not only encodes the reach plan in the retinotopic coordinates, but also codes the next
movement target in a sequential reach task [Snyder 1997, Batista 1999]. Therefore,
unlike motor areas, PRR encodes relatively simple movement parameters in a
straightforward coordinate frame. In addition, the posterior parietal cortex bridges the
sensory-motor transformation areas, which may be important for the type of learning
necessary for the proper alignment of sensory maps with motor maps, as demonstrated in
some recent works [Meeker 2003]. The learning ability of the area is especially
appealing for neural prosthetic applications because PRR may retain or quickly re-
establish the reach planning ability. Taking advantage of its learning ability thus may

prove necessary for optimizing the performance of a neural prosthesis.
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2.2 Spike train representation

In the previous section, a brief description on the data collection apparatus is introduced.
The over-sampled analytical signals as seen in Figure 2.2 are further processed to
generate spike trains. The two basic pre-processing steps are spike detection and spike
sorting. The spike detection step separates the action potentials from background noises
such as thermal noise of the recording equipment and the average response from
neighboring neurons. There are many detection methods in existence, and the one
applied in this thesis is the thresholding method [Humphrey 1979, Abels and Goldstein
1977, Nenadic 2003]. It indicates the presence of a spike when a local peak of the raw
analytical signal passes a threshold. As a stream of spikes is recorded, the next step is to
classify the spikes to their respective source neurons because not all observed spikes are
originated by the same neuron. Many times two or three neighboring neurons may be
responsible for some of the spikes. The spike sorting technique used in this thesis is the
template method [Lewicki 1998]. Because the spike waveforms (128 data points of the
raw data centered around a peak) are markedly different given different neurons while
remaining homogeneous for the same neuron, the template method matches different
templates to all the observed spike waveforms. The ones exhibit similarities are
classified as being from the same neuron; and vice versa. Thus, the raw analytical signal
is deciphered into several data streams, each with spikes believed to be generated from
different neurons. In addition, because the spike waveforms for a given neuron are very
homogeneous, only the timings of the spikes are retained [Rieke 1997]. Finally, because

the refractory period physically limits a neuron’s ability to fire consecutive spikes within
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2 ms, the processed and sort signals are down sampled to 1 kHz. This processed version

of the spike will be used throughout this thesis.

We employ a standard representation of a spike train as a binary function with 0’s and
I’s. We assume that the onset of a spike can be localized at best to a sampling interval of
length 67. Moreover, we assume that spikes are sampled over an interval of length 7,
where T=2"6T for some integer m. With this assumption, a spike train, s, can be

described as

Equation 2.1 S(0) = {1 in 1, =[koT,(k+1)0T] if thereis a spikein I, ,

0 in I, =[koT,(k+1)ST] if there is no spikein I,
Equivalently, a spike train can be interpreted as a 7-dimensional vector (where 7=2" for
some integer m), whose k" element is determined as

1 if there exists a spike in I, =[koT ,(k+1)0T]

Equation 2.2 Sy = {0 otherwise

where k=0,...,T-1. For some analyses, we further assume that there exists an ensemble of
N spike trains gathered under repeated behavioral, stimulus, and recording conditions.

Conceptually, these different spike trains are different samples of the same underlying
stochastic process. A superscript will index the members of the ensemble: {s(t)}’ﬁl’“’M . In

all the computational examples of this paper, the sampling interval 67 is taken to be /ms
because of the refractory period. 1t is the physiological limit on the time intervals
between two consecutive spikes fired by the same neuron. Generally the refractory
period is taken to be 2ms, meaning a neuron can not fire a spike within the 2ms following

an earlier firing [Rieke 1997].
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2.3 Haar Wavelet Packet Projection

We now review the Haar wavelet packet, its waveform, and its construction. Details are
outlined in several standard textbooks on wavelet theory [Daubechies 1992, Wickhauser
1994, Mallat 1999, Percival and Walden 2000]. This section also establishes our notation
for the projection coefficients of the spike trains. Knowledgeable reader may skip this

section and proceed directly to Section 2.4.

2.3.1 Haar Wavelet Review

A wavelet basis is a set of orthonormal functions that partition the time-frequency
domain in a dyadic fashion. As shown below, wavelets are constructed from a choice of
scaling function and a set of filters. In one sense, a filter can be interpreted as a set of
coefficients that are applied to a data stream in order to reveal meaningful features. That

is, let a filter be defined by a set of coefficients, {4}, k=1,..,L. The filter output is given
by

Vi :z Iy X s
k

where x; represents the raw data stream, the /;’s are the filter coefficients, and v; is the
filter output, or feature. From another perspective, filters are usually described by their
frequency domain characteristics because the filtering operation resembles convolution,
which is equivalent to multiplication in the frequency domain [Oppenheim 1999]. Some
basic types of filters include low pass (attenuates high frequency) and high pass

(attenuates low frequency). In this section we describe a filter by its filter coefficients.
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We begin with the continuous wavelet function. First we define a low pass filter H by

coefficients {hk} and a complementary high pass filter G by coefficients {g . }, where the
coefficients {g,} and {h,} are required to have the following relationship:

g, =(=D"h,_,, L being the number of filter coefficients. These filters are generally

termed Quadrature Mirror Filters (QMF) [Percival 2001]. Next define a scaling function,

#(t), that satisfies the following conditions,

Equation 2.3 #(t) = ﬁihk(zﬁ(zt—k), T é(t) dt =1.

For simplicity, we denote the analogous operations of convolution and scaling by a factor

of two (“decimation”) with respect to the filter pair {hk } and {g k} by H and G, i.e.,
Hf =3 h f(2t—k) Gf =2 g /Qt=k) .
k k

Now construct a function, y/(¢), complimentary to ¢(¢), such that

Equation 2.4 w(0)=v2Y g, ¢t -k [w@at=o,

R
where /(¢) is termed the wavelet function. For the Haar wavelet function, the low pass

filter and the high pass filter coefficients are {/ I} and {-I I}, respectively. The

associated scaling function and wavelet functions are plotted in Figure 2.3.
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Haar wawelet function

Figure 2-3 Haar scaling function and Haar wavelet Function on the interval /0 1].

X-axis is the time in ms and y-axis is the value of the functions.
The strength of wavelet-based analysis for this application resides in both its multi-
resolution analysis (MRA) capability and the computational efficiency of the associated
numerical algorithms. To understand MRA, consider a nested sequence of subspaces

J

{V}jez of L,(R), where Z is the set of integers and L,(R) is the space of all square

integrable functions. These nested subspaces satisfy the following conditions:

Cl1 "'CVj_ICI/jCV

J+l

c--cl, forall jeZ,

2 limV, =L,

Jj—o

C3 ,IEEO v, =10}.
Further, define another complementary set of subspaces {W} }jez such that

v

Jj+l

=V, OW;.
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Combining the above definitions, the space L, (R) can be expressed as
L,(R)= @ W,.
Jj=—©

This relation is termed a Multi-Resolution Analysis [Mallat 1999]. Using the actions of
translation and dilation, one can construct the following indexed version of the wavelet

function, w(?),

v (=227 1—k),
where j is the scale (or dilation) index and k& is the location (or translation) index.
Because for a fixed integer j*, the set of functions {Wj*’k )| k= 1,....} forms a basis for the

subspace Wj*, the set of functions {l//j,k ®]j=1..;k :1,...} forms a basis for L,(R)

with different resolutions indexed by j [Percival 2001]. Hence any signal f(¢) € L,(R)

can be represented as a weighted sum of the wavelet bases:
f@) = Zj,k Vi Vi (1),
where the weighting coefficients v, are obtained by projection onto the wavelet basis via

the regular inner product on L,(R),

v =[ 1@ v dr.
Even though the MRA is defined for the continuous function space, L,(R), its
construction can be easily generalized to the domain of discrete data. Consider a vector X
in R”, the space of all 7-dimensional vectors, where T =2" with m an integer. We can
interpret X as a discrete sampling of a continuous function at sampling interval 67. With

this interpretation in mind, the scaling function ¢(¢) is scaled and adapted to each
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sampling interval of the discrete data. We denote the resulting set of adapted scaling

functions as ¢, (t), whose support is [kéT ,(k+1)oT ] for k=0,...,7-1. Now apply the low

pass filter {hk} and the high pass filter {g k} to the set of adapted scaling functions ¢, (¢)

so that,

Equation 2.5 ¢1k = zhl—2k¢ol >
/

Equation 2.6 Vi = Zngzk%z .
/

We note the support of the functions ¢, (¢) and w, (¢) 1is [ZkéT ,2(k+1)oT ] for

k= O,...,%—l. Moreover, the sets of functions ¢, (¢) and w,,(¢) are called the scaling

function and the wavelet functions at scale j=/. We can extend Equation 2.3 and

Equation 2.4 recursively for all j such that

Equation 2.7 ¢jk = zhl—2k¢j—ll ’
1

Equation 2.8 l//jk = Zg1_2k¢j_11 )
!

where the sets of functions ¢, (#) and w , (¢) are called the scaling function and the

wavelet functions at scale j, and their support is [2-/ koT 2’ (k +1)0T ] The recursion

stops at scale j=/log,T, where both the wavelet function and the scaling function have
support [0 T], with T being the presumed length of the spike train data sequence. For the
Haar wavelet function, the low pass filter and the high pass filter are {hy=1 h;=1} and
{gp=-1 g;=1 } respectively. The scaling and wavelet function up to scale j=2 are plotted

in the following tree diagram (Figure 2.4),
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Figure 2-4 Haar wavelet and scaling functions up to scale j=2.

The top panel contains the scaling functions at scale j=0, for this example, k=1,2,3,4. The middle left
panel contains the scaling function at scale j=1, and the middle right panel contains the wavelet
function at scale j=1. The bottom left panel is the scaling function at scale j=2, and the bottom right
panel is the wavelet function at scale j=2. The symbols H and G indicate the filtering operation that
generates these functions. Notice the support at each scale increases dyadicly.

This recursive relationship also enables MRA in the discrete context.
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The above application of the wavelet functions to the discrete data inspires the so-called
Pyramid Algorithm [Mallat 1999], an efficient method for computing the wavelet
projection coefficients of discrete data. Again we take a vector X={x,...,x7.;} in R’, the
space of all 7-dimensional vectors, where 7 is a power of 2. Similarly, we interpret the
vector X as a piece-wise constant continuous function with constant values x; over the

sampling interval [k5T ,(k+1)oT ] for k=0,...,T-1. The projection coefficients of X onto
the 0" scale scaling functions are,

Uy, = j X (1), (H)dt .
Because X(?) is a piece-wise constant function with piecewise support coinciding with the
support of ¢, (¢), and by Equation 2.3,

U = X -

Therefore, the finest scale coefficients are exactly the input data itself. Now we can use
the low pass filter {hk} and the high pass filter {g k} to recursively compute the wavelet

coefficients at each scale. The governing equations for the Pyramid Algorithm are

Equation 2.9 Uy = th—zk” -1l
]

Equation 2.10 Vie = Zgl—zkuj—l,l ’
1

where the {v;/} are the wavelet projection coefficients and the {u;/} are the scaling
projection coefficients, an intermediate set of coefficients that are derived by projecting

the signal f(2) onto the scaling function ¢, (¢) . In addition, the cardinality of the sets {vj/
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and {u;} at each scale are 21/ For the Haar wavelet, we can illustrate the idea behind

the Pyramid algorithm using a decomposition tree similar to the one illustrated in Figure
2.4, where each node at level j in the tree represents a set of wavelet coefficients at scale

level j (Figure 2.5).

ugx= s (spike train) Scale j=0
k=0...T-1
H/

Uj k=U0,2k-1T U0 2k Scale j=1

k=0...T/2-1
H G

Scale j=2

k=0...T/4-1

Figure 2-5 Pyramid Algorithm for the special case of Haar wavelet decomposition

At scale j=0, the scaling coefficients u,; are the input data sequence whose length is 7. Atscalej=1,
we obtain the scaling coefficients u;, and wavelet coefficients v; ; by performing the convolution-
decimation operation with H and G, respectively. Note the cardinality of the coefficient set is now 7/2
because of the decimation. The two nodes at j=1I are termed children of the parent node at j=0
because they are derived from that parent node. Similarly, the scaling coefficients u,; and wavelet
coefficients v, at scale j=2 are generated from the parent node at scale j=1, and their corresponding
cardinality is 7/4. Using this algorithm, we can proceed to calculate the wavelet coefficients at all
scales until the size of the coefficient set equals 1.

2.3.2 Haar Wavelet Packet

The wavelet packet is an extension of the basic wavelet construction described above.
Because wavelet packets are a super-set of wavelets, they offer a richer selection of basis
functions. In the context of the spike train classification problem, this added richness
yields a more refined analysis of the spike train. The construction of the continuous Haar

wavelet packet basis functions again involves a low pass filter {& }={l1} and a

complementary high pass filter {gk } = {1,—1}. Assuming that the wavelet functions y(¢)
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defined below have support on the real interval [0 /], we can again apply the convolution
and decimation operation recursively to define the set of functions,
Vo, (0 =2y, (2t =k)
k

l//2n+l (t) = ng!r//n (2t _k) ’
k

where the sum is over the cardinality of the filter coefficients /; and g, and for the Haar

wavelet,

%z{l if tefo 1)

0 otherwise

Note that gy is the same as the Haar wavelet scaling function, and y; is the Haar wavelet

described above.

Like wavelets, wavelet packets can be extended to the discrete MRA using the double
index of scale j and location k. Consider a vector X in R’, the space of all 7-dimensional
vectors, where 7 is again a power of 2. With the interpretation of the piece-wise constant
function in Section 2.3.1, the scaling function ¢(¢) is first scaled and adapted to each
sampling interval of the discrete data. We denote the resulting set of adapted scaling
functions as y, (¢), where

1 if telkdT,(k+1)oT]

Equation 2.11 W (1) = {0 otherwise

whose support is [kéT,(k + l)éT] for k=0,...,T-1. Now we apply the low pass filter {hk}

and the high pass filter {gk} for all j such that

Equation 2.12 Wy = Zhl—zk Vi
7
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Equation 2.13 V4 T = Zg,_Zkl//j_ll s
. 271 1

where the sets of functions y , (¢) have support [ZJ kST 27 (k +1)6T ], and the limit of the

summation is the cardinality of the filter coefficients H and G. The recursion stops at
scale j=log,T, where both the wavelet packet functions have support [0 7]. For the Haar
wavelet function, the low pass filter and the high pass filter are {hy=1 h;=1} and {gy=-1

g1=1 } respectively, thus the relationship becomes
Wi (O =, 0 () +y ., (), if low pass

v ol (1= V1,261 () - Vic12k (¢) , if high pass

J> 2
where j is the scale index, £ is the position index, and 7 is the length of support of the
filter at the largest scale, as defined above. An example of Haar wavelet packets and

their recursion relationship is shown graphically in Figure 2-6.
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Figure 2-6 Haar wavelet packet functions up to scale j=2.
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A) The top panel contains the wavelet packet functions at scale j=0. It is identical to the scaling
function. The middle left panels contain the wavelet packet functions at scale j=1 as a results of the
low pass filtering, and the middle right panels contain ones as a results of high pass filtering. The
two bottom left panels contain the wavelet packet functions that are children of the two middle left
ones, and similarly the two bottom right ones are children of the two middle right ones. The H and G
indicate the filtering operation towards these functions. Notice the support at each scale increases
dyadicly. B) The Haar wavelet packet functions on [0 1] up to the 19™ iteration.

In particular, we notice that the set of Haar wavelet functions is the left vertical branch in

the packet tree (Figure 2.6A).

An interesting property of the Haar wavelet packet functions is the orthogonal
relationship between all of the packet functions. Before describing the orthogonality in
detail, we first define several relevant terms. A tree is an arrangement of the wavelet

packet functions such that they are structured in a branching fashion. A node N ; is either

a tree branches or a tree leaf, and at a given scale j there are 2 nodes. In the above
example, there are 1 node Ny; at scale j=0, 2 nodes at scale j=2, and 4 nodes at scale j=3.
Moreover, the member functions of a node are defined as the wavelet packet functions
related to each node. The relationship is the constructive iteration shown in Figure 2.6.
The number of member functions for any node at scale j is 7/2, where T is the length of

the input vector under investigation. Now we are in position to discuss the orthogonality

property.

Proposition 2.1 Member functions of each node are orthogonal to the member functions

of any nodes residing on a different branch of the dyadic tree.
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For example, in the above figure, the member functions of N,; are orthogonal to the
members of N,,, N, and N»,. Likewise, it is also orthogonal to the parent node of N,;

and N, namely N;, because N,; and N;, do not share a branch.

Proof:
Note that the member functions of any two child nodes derived from the same parent are

orthogonal. To show this, directly integrate the functions:
Jvi, 0w, 0,
where y , (#) is a member function of N, and y, (¢) is a member function of N, .
There are two possibilities for the above integration:
DIfk, #k ., ,then j W i, @Oy ;. (D)dt =0 because by construction, v, and v, have

non-overlapping support.

2)If k, =k, then

4277

(v Ow ., (Dat
= I[Wj_l,zkl_l 0+ Wik (] [l//j—l,Zkl—l (1)— V12K (1)]dt _

= [ i O
=0

In addition, the wavelet packet functions contained in the branches derived from the two
child nodes are also orthogonal. To see this, we observe that the space spanned by the
first child node is orthogonal to the one spanned by the second child, i.e.,

S, = Span{t//jkl }, k, € child node 1

S, = Span{t//jk2 }, k, € child node 2
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S, LS,

because the member functions, {y/jkl} and {y/ } are orthogonal as shown earlier.

Jky

Moreover, the wavelet packets contained in the branches of the two child nodes are linear

combinations of the ones in {'//ﬂcl} and {1//.].,(2} by construction. Hence they are also

orthogonal to one another.

Therefore, we have shown that the wavelet packet functions in any node are orthogonal

to the ones in nodes that are a member of a different branch. [

Similarly, we can adopt the Pyramid Algorithm to efficiently compute the projection
coefficients of the wavelet packets. The algorithm is almost identical to the one used for
wavelets, with the only difference being that the branching of the wavelet packet tree
occurs at every node, while branching occurs only in the first node of its wavelet
counterpart. We can likewise devise a tree diagram to illustrate the decomposition of a 7-

dimensional vector (Figure 2-7)

Vor= Xk Scale j=0
’ k=0...T-1
Vi k=W, 2k-1T U0, 2k VI k+T/2= U0, 2k-1-U0, 2k Scale j=1
k=0...T/2-1
H / \G H / \G
Vok V2 i+ T/ V2 k+T/2 V2 k+3T/4 Scale j=2
k=0...T/4-1

Figure 2-7 Pyramid Algorithm for the Haar wavelet packet decomposition

At scale j=0, the coefficients v, are the input data sequence whose length is 7. At scalej=1, we
obtain the coefficients v;; and v; .7, by performing the convolution-decimation operation with H
and G, respectively. Note the cardinality of the coefficient set is now 7/2 because of the decimation.
The two nodes at j=1I are termed children of the parent node at j=0 because they are derived from
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that parent node. Similarly, the same relationship is observed at scale j=2, in which the cardinality of
the coefficients in each node becomes 7/4.

Using this version of the Pyramid Algorithm, we can efficiently compute all the wavelet
packet coefficients up to scale j=log,T. In all, the wavelet packet decomposition of a

vector of length T returns TlogT wavelet packet coefficients, compared to the T

coefficients by wavelet decomposition.

2.3.3 Computing the Projection Coefficients

Using the concepts and the background presented in the previous sections, the 7-
dimensional spike train, s={sy,...,s7-;} can be projected onto the Haar wavelet packets

using the aforementioned Pyramid Algorithm.

Based on spike train model shown in Section 1, the 0" scale wavelet packet coefficients

vox are precisely the original spike train sy,
Equation 2.14 Vor =S«

For the Haar wavelet packet, the recursive relations for the remaining coefficients then

become

Vi (O =V, 0 (O +v, 5, (), if low pass

vj T (t)= VK (1) - Vi (1), if high pass.
e
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2.4 Biologically Relevant Properties of the Haar Wavelet

Packet

Although there are many possible choices of wavelet functions, the Haar wavelet packet
carries some special properties which make it an appealing choice for projecting,
analyzing, and interpreting spike trains. As seen in Section 2.3, the Haar wavelet packet
functions have compact support in the time domain. This bodes well with the fact that
spike trains consist of spike signals with support as small as the sampling interval 7. In
other words, Haar wavelet packet functions completely capture the discrete nature of the
spike trains. On the other hand, other basis functions such as trigonometric functions
would produce undesirable artifacts because of Gibb’s phenomenon. Furthermore, some
of the Haar wavelet packet projection coefficients have intuitive interpretations that relate

them to measures widely recognized in neuroscience. For example, the coefficient v;; at
a scale j corresponds to the number of spikes in a window of length 7' /2, with which

we can express the mean firing rate in that window as 2/ v, /T. In other words, the v;,

corresponds to the mean firing rate in an associated time interval, or window (see Figure
2-8a). Furthermore, coefficients such as v;; are closely tied to the local change of firing
rate, often observed in the case of changing stimulus (see Figure 2-8b), i.e., this
coefficient corresponds to a localized slope in the Post-Stimulus Time Histogram (PSTH)
[Riecke 1997]. Finally one can describe bursting, a local consecutive firing of spikes,
using highly oscillatory wavelet packet functions that reside in a small time window
(Figure 2-8c). Some other advantages of Haar wavelet packet will be evident in the

subsequent sections.
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Figure 2-8 Haar wavelet packet function at different scale and locations over 512 units of the basic
sampling period 07

A. j=9, k=1, the wavelet packet function corresponds to a window that spans the whole 512 units.
Consequentially, the resulting coefficient v, ; correlates to the mean firing rate in the sampling
window of length 512 67. B.j=6, k = 10, the wavelet packet function corresponds to one up-down
cycle over 64 units. The resulting coefficient v, ;o in this case represents the difference of the firing
rate in two consecutive 32 units windows. C.j=4, k =300, the wavelet packet function corresponds
to high frequency oscillation in a 16 units window. The resulting wavelet coefficients v, ;5 have direct
implication on local bursting activities.

2.5 Bayesian classifier

This section reviews basic concepts about the Bayesian classifier, a widely used
classification method. It classifies an unlabeled observation by estimating its probability
associated with each different class. More rigorously, denote the stimulus parameter
(class label) as X and the feature (unlabeled observation) as v, both are random variables.

Then the ubiquitous Bayes’ rule states that

Pv| X)P(X)

Equation 2.15 P(X|v)= P0)
v

9
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where X is the class label, v is the feature, P(X]v) is the posterior probability, P(X) is the
prior probability of X, and P(v|X) is the likelihood of v given X. In this thesis X is
interpreted as the reach direction, and v as the neural signals. Bayesian classification is

based on the principle,

Equation 2.16 X =arg max{P(X | v)},
X

the estimated class or reach direction X 1is the one that maximizes the posterior

probability P(X]v).

Since the conditional probability p(v|X) must be estimated, this thesis estimates the
conditional densities using the Parzen window method [Parzen 1965]. The Parzen
window approach applies Gaussian kernels to the observed data and returns density
estimation in the form of the normalized sum of Gaussians centered at each data point.

We can write the resulting density function as

N(‘
POIX =)= Y 6,0,

¢ i=1
where G(v, o) is a Gaussian kernel with standard deviation o, and N, is the total number
of trials in class X.. Clearly p(v|X=c) is a density function because it integrates to 1 over
all values of v. Therefore, we can use the Parzen window approximation in place of the
true conditional density functions (which is unavailable) to estimate the mutual

information. The choice of ¢ controls the smoothness of the probability density.
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A special case of the classification problems is the binary classification problem.
Because of its simplicity, many well-established theories of pattern recognition are built
upon the binary classification problem. Let the two classes be X;=1 and X,;=0. The

Bayesian classification rule can be defined as

Equation 2.17

. 1 ifP(X=1|v)>1/2
g (x)= , .
0  otherwise

Interestingly this simple classification rule turns out be the optimal binary classifier.
Define the classification error E as

E=P(X # X)

Equation 2.18 = ZP()N( =X |V)P(v)

Theorem 2.1: [Devroye 1998] Let the Bayesian classification error be £* That is, E* is

the error in the estimate produced by Equation 2.16, then E~ < E for all E.

The above theorem shows that the Bayesian classifier minimizes the classification error
amongst all binary classifiers. This thesis thus uses Bayesian classifier as the principal

classification strategy.
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Chapter 3 Characterizing spike train processes using
Haar wavelet packet

3.1 Introduction

A sequence of spikes forms a spike train, which is often modeled as a random process [F.
Rieke 1997]. It is the most widely used data type in the neuroscience community.
Problems, such as neural encoding and decoding given spikes, have been studied
extensively [Gabbiani and Koch 1998, Rieke 1997, Victor 1997, Strong 1998, Johnson
1996, 2001]. However, the precise characteristics of this random process are still an open
question.  Researchers have proposed different models to capture the statistical
characteristics of spike trains while the debate over the correctness of rate coding or
temporal coding of spike trains has been on going for some years [Johnson 1996, 2001,
Reich 2000, Steveninck, 2002]. Here rate coding refers to the assumption that
information is only conveyed in the firing rate of the spike train, and time coding refers to
the assumption that precise timing of the spikes also codes information. Schemes that

better characterize the firing process will help to understand the underlying neural code.

Often, the statistical behavior of a spike train is modeled as a homogeneous or
inhomogeneous Poisson process. A homogeneous Poisson process is completely
quantified by its mean firing rate, 4, which is equivalent to the number of spikes observed
in a fixed time period [Abbott 1994, Zhang 1998, Brown 1998]. Several approaches to
characterize a Poisson process have been proposed. The simplest approach is based on
counting the number of spikes in a window of length T, as the probability of observing n

spikes in the window is
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Ur)
n!

p(n) =

Thus, for a homogeneous Poisson process the mean and variance of the spike counts up
to time 7 are both A7. The ratio of the variance to the mean is termed the Fano factor. A
unit value of this factor can indicate the presence of a Poisson process [Rieke 1997].
However, the Fano factor only focuses on the first two moments of a spike train’s
statistical characterization, while discarding the remaining higher ones. One can also
measure the coefficient of variation (COV)), which is the ratio of the standard deviation to
the mean of the inter-spike intervals [Gabbiani and Koch 1998]. In the case of a Poisson
process, the COV is 1, which exemplifies one of the properties of a Poisson process: the
inter-spike intervals are exponentially distributed. However, using the COV as a measure
discards the possibility of discovering any possible patterns embedded in the spike trains
[Gabbiani and Koch 1998]. Another approach is to project the auto-correlation function
of a spike train onto a Fourier basis, and examine the resulting power spectral function
[Gabbiani and Koch 1998]. For a Poisson process, the power spectrum should be flat
everywhere except at the origin. Yet, the use of the auto-correlation function assumes by
default that the underlying spike generation process is stationary. When this assumption
is violated, blindly applying the power spectrum may produce artifacts in the frequency
domain [Mallat 1999]. The method described in this chapter can be applied to mildly

nonstationary signals.

This chapter introduces a new method to characterize spike trains based on wavelet
analysis. Particularly, it examines the projection of spike train ensembles onto a Haar

wavelet packet basis. If the spike generating process is stochastic by nature, the
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coefficients obtained by projecting ensembles of the spike trains onto the wavelet packets
are random variables themselves. The statistical properties of the projection coefficients
shed light on the statistical nature of the spike train. This thesis shows that the
distribution of the projection coefficients for both homogeneous and inhomogeneous
Poisson processes can be well characterized. Using hypothesis testing on the coefficient
statistics, one can determine if a spike train is well characterized as a homogeneous or
inhomogeneous Poisson process. If the spike train is not deemed to be a Poisson process,
then this method also suggests the degree of non-Poisson-ness, and also highlights the
spike train’s characteristic time scales at which the spike train exhibits non-Poisson
behavior. To help visualize the degree of non-Poissonness at different scale, the Poisson
scale-gram is introduced. Taken together, these analyses provide guidance for further

investigations of a neural process in the case that it is significantly non-Poisson.

Furthermore, the characteristics of a spike train have important implications in the neural
decoding context. Decoding is the task of inferring external stimulus or behavioral
parameters given neural activities, or more precisely the spike trains in this thesis. If a
spike train is indeed Poisson by nature, then the stochastic properties of a Poisson process
suggests that mean firing rate is the only feature that carries information about the
stimulus parameter [Ross 1994], in which case decoding based on the mean firing rate
captures all the essential information content in the spike trains. On the other hand, if the
spike trains are not Poisson, then special treatment has to be applied in order to extract
the informative features embedded in the spike trains. Chapter 3 investigates the

decoding problem and the feature extraction approach in depth.
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Generally, wavelet-based analysis is more suitable than Fourier analysis when dealing
with non-stationarity and specifically locally stationary processes [Mallat, 1998]. Power
spectrum based characterization method often encounters Gibbs phenomenon in which
local discontinuity of the signal produces bleeding of power into the higher frequency
domain, thus creating artifacts in the spectral-gram [Mallat 1999]. By using wavelet-
based methods, the spike train characterization technique presented here overcomes some
of the disadvantages of the methods reviewed above. Moreover, the multi-resolution
analysis feature of wavelets provides additional versatility in handling possible patterns
embedded in the spike trains. In this chapter, a wavelet basis consisting of the Haar
wavelet packet, which is an extension of the Haar wavelet [Wickerhauser 1994, Mallat
1999, Percival and Walden 2000], is the basis of the computational test. Some of the
Haar wavelet packet’s special properties, such as compactness and biologically intuitive
interpretations of the projection coefficients (see Section 2.2), make it an ideal candidate
for decomposing spike trains. Note that others have explored the possibility of using
wavelet packets as a mean of processing spike data [Kralik 2001, Oweiss 2001, 2002].
Yet, the work in this thesis appears to be the first to use wavelet methods for formal

characterization of spike trains.

This chapter is organized as follows. Section 2 analyzes the distribution of the wavelet
packet projection coefficients. Particular emphasis is placed on the special cases of
homogenous and inhomogeneous Poisson processes. In the case of the homogeneous

process, the probabilities of the projection coefficients are obtained analytically. Finally,
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in Section 4 we integrate these ideas into a methodology that characterizes spike train
modeled as stochastic point processes. Several examples illustrate the main points in

Section 5.

3.2 Statistics of projection coefficients

Chapter 2 reviewed the concepts underlying the construction of Haar wavelet packets,
and introduced the projection coefficients arising from a binary spike train. This section
investigates the statistics of these coefficients when the given firing process is a
homogeneous or inhomogeneous Poisson process. Using a hypothesis testing
methodology based on a y’-statistic applied to the coefficient distributions, one can then
check if a given spike train is statistically close to a Poisson process by comparing the
statistics of the projected data against the formulas derived below. This hypothesis

testing approach is developed in the next section.

3.2.1 Homogeneous Poisson Process

For simplicity, let us first analyze the case of a homogeneous Poisson process with a

constant firing rate A. Poisson processes have three relevant properties:

P1.Each non-overlapping time increment of a Poisson process is independent and
identically distributed with the probability, P(.) of a spike occurring in the interval
[t,t+At] given by

P(N,,, —N, =1)~ AAt,

t+At

where N(1) is the counting process that counts the number of spikes up to time .
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P2. When conditioned on a fixed number of spikes, a Poisson process uniformly
distributes all the spikes in a window of length T. We can formulate this
mathematically as

At
P(z'<z<z’+At|N=1)=7,
i.e. given that only 1 spike occurs somewhere in a window of length T, the

probability of observing that spike in a any interval of length A¢ is %

P3. The probability of observing n spikes in a window of length 7" given the firing rate

Als

Ty

P(n) = " e
Now we derive the probability distributions of wavelet packet coefficients generated by
the projection of an ensemble of spike trains that arises from a homogeneous Poisson
process with fixed firing rate A onto the Haar wavelet packet. First, notice that the
resulting projection coefficients are integer valued because the Haar wavelet packets are
functions that assume the value -1 and 1 only; and the spike trains are similarly binary
valued. Also, recall from Equation 2.2 that the integrals of wavelet packet functions at all
scales are 0. This symmetry of the wavelet packet, when coupled with property P2,
implies that when a single spike is projected onto the support of a wavelet packet
function, the probabilities of the resulting coefficient being 1 or -1 are the same, namely

. Based on this observation, we can write the conditional probabilities of the projection

coefficients as follows: given N spikes in a window of length 7,

1Y'(N
Pv=N-2n|N)= 5 , n=01..,N
n
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where P(v=k|N) is the probability that coefficient v takes the integer value £ when N

spikes occur in the support of the wavelet packet function associated with coefficient v.

In addition, we can write

P(v)=2 P(v,N)=) P(v| N)P(N),

where P(N) is the probability of finding N spikes in the time interval of length T,
expressed by property P3. Thus, the probability of observing a projection coefficient of

integer value 7 is

Equation 3.1 Plv=n)= z
N=0

Y 2N \arv
— e 7, ifniseven
2) \N+n/2)2N)!

Equation 3.2 P(v=n)

>

N=0

2N 2N 2N
(%) N+ n+1}é€v)'eﬂ, if n is odd.
> !

The above analysis offers the theoretical distributions for wavelet packet coefficients that
result from an ensemble of spike trains arising from a given a homogeneous Poisson
process with constant firing rate A. In practice, spike trains are sampled discretely. Let
the finest sampling resolution be 67. For such discretely sampled data, the probability
distributions given above become approximations that only work well when the finest
sampling period, o7, is sufficiently small as compared to the length of the sampling
window T. In other words, property P2 is approximated in practice because the
probability distribution of N spikes conditioned on N is only uniform when o7 is
infinitesimally small, which is not possible in actual applications. To better understand
this subtlety, consider the simple case where two spikes are to be placed in a sampling

window that is subdivided into two sampling periods, A¢, and A¢,. If one spike is placed
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in the interval A7, with probability '2, then the second spike has to reside in Az, with

probability 1. Therefore, we see that the approximation breaks down in this case. In the
next section, where the more general case of inhomogeneous Poisson processes are
considered, I propose a computational approach that approximates those probabilities so
that they are not susceptible to discretization errors. In addition, the computational
approach can be generalized to inhomogeneous Poisson processes. The theoretical
derivations of this section provide a standard against which we can check our

computational theory in the simple case of a purely homogeneous Poisson process.

3.2.2 Inhomogeneous Poisson Process

An inhomogeneous Poisson process is a Poisson process with a variable firing rate A(t).
Even though it’s not stationary like a homogeneous Poisson process, it retains the same
memoryless property, P2, namely that disjoint increments of an inhomogeneous Poisson

process are independent.

Due to the variable firing rate, the approach outlined in the previous section becomes
unfeasible for inhomogeneous Poisson processes because the probability of observing n
spikes in an interval of duration T is now a combinatorial problem that depends on the
cardinality of the different firing rates present in this interval. Fortunately, a simpler
alternative to the computation of the coefficient distributions exists by utilizing the
Pyramid Algorithm and the memory-less property of an inhomogeneous Poisson process.

Recall that an inhomogeneous Poisson process has independent disjoint increments, i.e.,

P(Vo,k’vo,kﬂ) :P(Vo,k)P(Vo,k+1) )
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where,
Equation 3.3 P, =0)= i
Equation 3.4 Py, =) ~1- e A

where that vy is the 0™ level wavelet packet projection of the point process at location £.
It is a random variable indicating whether a spike is present in the K" time increment.
Equation 3.3 is the direct result of property P3, while Equation 3.4 is a reasonable
approximation when the time interval AT is small. Also recall that the Pyramid

Algorithm for the Haar wavelet consists of a low-pass filter {hk} with coefficients {1 1}
and a high-pass filter {gk} with coefficients {1 -1}. Therefore, by applying the pyramid

algorithm to the inhomogeneous Poisson process at the finest scale (j=17), we obtain new

random variables of the form

Vik = Vooua T Voo T
, for k= 1,2,...,5

Vo = Vo2ra1 ~Vook
1,k+5

The following proposition illustrates the independence of these wavelet packet

coefficients.

Proposition 3.1: For a given homogeneous or inhomogeneous Poisson process,
the wavelet packet coefficients contained in any node of the wavelet packet tree,

[=0,.,...,27 —1, are independent. {v i }(”m 12

}(1+1)T/2f
k=1+IT / 2/

namely {vjk k=14IT /27’

is the set of

wavelet packet coefficients in the j scale and /" node of the wavelet packet tree.

Once again, the index j and k are reserved as the scale and location index. T is
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the length of the spike train in multiples of d¢z. And / indexes the nodes at a

particular scale.
The proof of this proposition can be found in Appendix 1.

Based on the structural independence established by Proposition 3.1, the respective

probabilities of the coefficients v; ; then become

Vo,2k

Equation 3.5 P(v,, =v)= me (P, (v=n) ifk<T/2

Equation 3.6 P(Vl,k =)= ZP (n)PVO . (v'+n) otherwise,
n

v0,2k-1

which are the convolutions between the probabilities of the parent random variables vy

and vy .+, a consequence of the above proposition.

The above equations can be extended to the wavelet packet coefficients at any scale. For
consistency we keep the same notation. We define the random variable obtained through

the wavelet packet projection at scale j position k£ as v, . Then by the Pyramid
Algorithm,

Vi =V Vs if k/277 even

Vik =Vie Vi if ﬁ odd
where x is the floor operation that takes x to its nearest integer from below, and &’

indexes the parent nodes of K" node. And the corresponding probabilities can be

described using the convolutions,
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Equation 3.7 P, =v)= ZP(vj_l’k, =mPV, 4, =v—n),if k/ 2" is even
Equation 3.8 P, =v)=Y PV, =m)PW,_ 0y =V +n),if k/2"7 is odd.
n

Thus, the probabilities of the projection coefficients of an inhomogeneous Poisson
process at any scale and position can be calculated using the above equations. Equation

3.3 and Equation 3.4 form the initial conditions for the algorithm.

3.3 A Computational Test for Poisson Processes

Based on the results derived above, this section develops a novel method to characterize
the Poisson-ness of an unknown stochastic point process. If the underlying process is
indeed Poisson, then the method will successfully conclude so; otherwise, it will label the
scales and locations where the given process deviates from a Poisson process. As
discussed below and as shown in the examples, the knowledge of these deviations can be

used to further characterize the spike train process. Following Section 2.2, we assume

that a spike train is described by a 7-dimensional vector S’ = {s;,...,s;_,}, and

; {1 if there exists a spike in [koT ,(k+1)0T]

0 otherwise

where k=0, ...,T-1 and the superscript i indexes the i" observed spike train in an ensemble

of spike trains.

Our approach is based on a classical hypothesis testing paradigm applied to the
coefficient distributions. First, we claim a null hypothesis stating that the given point

process is indeed Poisson. To carry out the hypothesis test, as a first step the rate
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function A4, £=0,...,T-1 must be estimated from the spike train ensembles. Note that the
estimation of A is itself an active research area [Donoho 1994, Kolaczyk 1997, Nowak
1999] This paper adopts the wavelet thresholding method proposed by Donoho to
estimate A(z) from the spike trains. For completeness, the algorithm and its properties are
briefly reviewed. First we average the spike train ensemble over all the realizations i to

obtain a noisy estimation of the rate function at each time step £,

1 &
A =——=)1s,
k MéT,ZI: k

where L is the total number of spike trains of the ensemble. This computation effectively
estimates the firing rate at each sampling interval at length 67. Likewise, the standard

deviation of the rate function at each & can be estimated as

Because of the Central Limit Theorem, A, is asymptotically normally distributed for
each & when L approaches infinity. Therefore, we can scale the noisy rate function at

each time step by the quotient between VL and the estimated standard deviation, oy, to

produce a scaled noisy rate function at each £,

JL

A=A —,

Oy
note that A} is normally distributed with variance 1 at each k£ again because of the
Central Limit Theorem. Now decompose the 7-dimensional vector A;° into wavelet

coefficients, aj, using the Pyramid Algorithm described earlier
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T-1
a, = Awi).
=0

The family of wavelet functions, wj of choice here is Daubechie’s 4 wavelet (DB4)
[Percival 2001]. Note other wavelet built for de-noising also works in this context.

Following Donoho (1994), we threshold the wavelet coefficients using a threshold value

o [21og(T') .
T

The thresholding rule is the so-called soft threshold, where the coefficients a;k are

adjusted by the rule

o - sign(ajk)‘ajk —8‘ if ‘ajk‘>£
o otherwise
Finally, we invert the thresholded wavelet coefficients to recover the de-noised rate

function A={4x, k=0, ...,T-1} using the following inversion formula:

A=y ().
Jk

Certainly the robustness of the rate estimation process will affect any further analysis on
the Poisson nature of the spike train. However, as we will see below, the effect of rate
function estimation error vanishes exponentially with respect to the amount of data in this

characterization method.

Given the estimated rate function, the theoretical probabilities of each wavelet packet
coefficient can then be derived, i.e., the distribution of the projection coefficients under
the hypothesis that the process is an inhomogeneous Poisson process with rate function

MY = {2}, k=0,...,T-1. Again, because the rate function A is a 7-dimensional vector



56

with {A!, k=0,...,T-1, the theoretical probabilities of the wavelet packet projection
coefficients are computed as
P'(vy, =0)=e""
P’ Vor =D =1- e M
and

P*(vj’k =v)= ZP*(vﬂl,k. = n)P*(ijjk,+l =v—n)
P (Vj,k = V') = ZP* (V_/+1,k' = n)P* (vj+1,k'+1 =v + n)

The notation P’ represents the theoretical probability distribution given the spike
generation process is indeed Poisson with the above estimated firing rate function, A(%).
Notice that the uncertainty associated with the seed probability P*(vo;{) is

AP ~ o~ x0T ’
where ¢ is proportional to the standard deviation of 4; and to 1/ JL , the cardinality of the
ensemble. The error on the P* therefore is

9

E = e—ﬂ(ﬂ"l _ T

which approaches 0 exponentially fast as the number of available data sets, L increases.
Hence, errors in the estimation error of A; have little effect on the estimated coefficient

probability distributions as L increases.

Meanwhile, one can also compute the respective empirical probabilities of all the wavelet
packet coefficients, P(vy) from the data sets. Under the null hypothesis, the empirical
probabilities will match the hypothesized probabilities; otherwise, they will be

significantly different, indicating that the process is not Poisson. To assess the
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significance of the differences between the coefficient distributions of the idealized
Poisson model and the experimental data, we apply the y’-statistic. The y’ variate is

calculated as following

2 % [P*(ij :V)_P(ij :V)]2
Xy =D, 7o) ,

V=,

where the summation is over all possible values of the random variable v;.. Because the
sample space of vy has cardinality M depending on the scale j, the degree of freedom
(DOF) of the y* variate is M-1. For example, when j = I, M = 3 since v;; can only equal
{0, 1, 2} for the case k=0...T/2-1 and {-1, 0, 1} for the case k = 7/2...T-1. Thus, the
DOF both of cases is 2. Using the y° and DOF pair, we can finally infer a p-value that
signifies the difference between the empirical probability and that coming from the ideal
Poisson process. In this paper, a p-value that is greater than (.95 signals a statistically
significant discrepancy between the two. Note that studies on the y’-statistics suggest the

minimal number of observations required for a reliable test is 20 [Greenwood 1996].

For a true Poisson process, we expect the p-values to remain small for all the wavelet
packet coefficients at any given j and k. However, when the p-values exceed 0.95 at one
or more scales, we can no longer conclude having a Poisson process at hand. To address
this case, we examine the number of wavelet packet coefficients that are significantly
different from its Poisson counterpart. For a fixed scale ;, we first identify all the
wavelet packet coefficients with large p-values. Because the comparison is made against
a process with independent increm