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Abstract

We develop analytical methods for studying particle paths in a class of three-dimensional
incompressible fluid flows. We study three-dimensional volume preserving vector fields
that are invariant under the action of a one-parameter symmetry group whose infinitesi-
mal generator is autonomous and volume preserving. We show that there exists a coordi-
nate system in which the vector field assumes a simple form. In particular, the evolution
. of tWo of the coordinates is governed by a time-dependent, one-degree-of-freedom Hamil-
tonian system with the evolution of the remaining coordinate being governed by a first-
order differential equation that depends only on the other two coordinates and time. The
new coordinates depend only on the symmetry group of the vector field. Therefore they
are field independént. The coordinate transformation is constructive. If the vector field
is time independent, then it posseses an integral of motion. Moreover, we show that the
system can be further reduced to action-angle-angle coordinates. These are analogous
to the familiar action-angle variables from Hamiltonian mechanics and are quite useful
for perturbative studies of the class of sytems we consider. All of the above is useful in
framing a perturbative setting for analyses of chaotic, volume-preserving vector fields. In
particular, explicit expressions for the transformation to action-angle-angle coordinates
is given. This leads to the proof of a KAM-type theorem for volume-preserving vector
fields admitting a volume-preserving group of symmetries using the KAM-type result for
three-dimensional maps. The proof of the persistence of finite cylinders,Arelevant in fluid
‘dynamical applications is provided. Alsb, a Melnikov-type theory is developed, allowing
for the prediction of parameter values for which the vector field possesses chaotic be-
havior.We discuss the integrability of the class of flows considered, and draw an analogy

- with Clebsch variables in fluid mechanics.



Recently there has been a lot of numerical and experimental work on three dimen-
sional, volume-preservihg,-chaotic fluid flows. The above theory can explain qualitative,
'geomef;r’ic, features observed in these flows. But, the quantities of interest in those in-
vestigations are often of statistical nature. Furthermore, in most of these investigations,

the flows considered are non-ergodic, with a rich structure of the phase space.

The theory of statistical properties of dynamical systems developed in this thesis is
based on the Birkhoff’s ergodic theorem, ergodic partition, and methods of probability
theory. It is shown that, in the case when the system is not ergodic, the only quantities
necessary to describe the limiting behavior (when the time or the number of iterations
— 00) behavior of these systems are the time averages. Using this observation, neces-
sary and sufficient condition are derived for the ubiquitous #2 asymptotic behavior of the
dispersion. A link is obtained between probability distributions of sum functions and
the ergodic partition, which is used to explain the phenomenon of patchiness in fluid
flows. The problem of first passage times is analyzed, and some conjectures inspired by
numerical experiments proved. The theory is developed for both maps and flows, and

" has applications in a variety of problems related to the statistical description of chaotic
motion in physical systems. Two specific applications are diffusion in two-dimensional,
area-preserving maps, and shear dispersion in fluid flows. An obvious question arising
from this part of the work was: how can one calculate the ergodic partition, which is an
important ingredient of the statistical part of the theory. In ergodic theory, two ways
of presentation of the ergodic partition exist. These two approaches can be successfully
joined to provide a simple constructive algorithm for the construction of the ergodic
partition. The ergodic partition of the compact metric space A, under the dynamics
of a continuous automorphism 7', is shown to be the product of measurable partitions
of the space induced by the time averages of a dense, countable subset of the set of all
continuous functions on A. As a consequence of this, closed ergodic components are
shown to be uniquely ergodic. Also, a connection can be made between the ergodic par-
titions induced by the time averages of measurable, bounded functions, and the ergodic
partition; Besides giving a method of constructing the ergodic partition, this work might

‘give rise to numerical algorithms for computation of the ergodic partition.

All of the above theory is applied to the ideal, incompressible fluid flow induced by

a helical vortex filament in an axisymmetric time-dependent strain field. It is shown
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that the helical filament stays helical for all times. Using symmetry concepts we trans-
form the velocity field to a particularly simple form that is convenient for the use of
.perturbation methods. We analyze bifurcations and the structure of partide paths in
the unperturbed velocity field (no stfajn). The underlying geometrical structures in the
unpei‘turbed problem are cylinders and two dimensional separatrices. Away from sep-
aratrices we transform the system into coordinates that enable us to use KAM theory
to show the persistence of infinite cylinders in the perturbed flow. Further, we ana-
lyze the unperturbed motion on separating manifolds, and present a three-dimensional
Melnikov theory for the analysis of the motion near the separatrices under perturba-
tion. We use this andlysis to propose that chaoticity of the motion provides a physical
mechanism for the Ranque effect for swirling flows in pipes. Finally, we analyse the
problem of shear dispersion of passive scalars in our flow. A natural question related
to the above considerations of statistics of deterministic dynamical systems is how do
they affect the statistical properties of the system when noise is added. This leads to
a study of the convection-diffusion equation. We establish conditions for the mazimal,
- Pe? behavior of the effective diffusivity in time periodic incompressible velocity fields
for both the Pe — oo and Pe — 0 limits. Using ergodic theory, these conditions can
be interpreted in terms of the Lagrangian time averages of the velocity. We reinterpret
the maximal effective diffusivity conditions in terms of a Poincaré map of a velocity
field. The connection between the Pe? asymptotic behavior of the effective diffusivity
and t? asymptotic dispersion of the nondiffusive tracer is established. Several examples
are analyzed: we relate the existence of the accelerator modes in a flow with Pe? effec-
tive diffusivity, and show how maximal effective diffusivity can appear as a result of a
time-dependent perturbation of a steady cellular velocity field. Also, three-dimensional,
symmetric, time-dependent duct velocity fields are analyzed, and the mechanism for ef-
fective diffusivity with Peclet number depéndence different from Pe? in time-dependent

flows is established, thus generalizing the Taylor-Aris dispersion theory.
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Chaptér 1

Introduction

Each chapter.of the thesis has a specific introduction to a subject matter treated in it,

with the discussion of previous work provided. In this, general, introduction we shall
attempt to give a birds eye view on the thesis, with particular attention to connections

~ between the chapters.

The work on this thesis project started off as aﬁ attempt to generalize some of the con-
cepts déveloped over the years for the analysis of two-dimensional, area-preserving maps
and two—dimensioﬁal, time-dependent flows to three-dimensional, volume-preserving
maps and three-dimensional, volume~preserving, time-independent and time-dependent
flows, with a view‘towards applications in fluid dynamics. In particular, two-dimensional
area preserving maps and flows have a symplectic structure, which allows for the use of
standard tools of Hamiltonian mechanics: action-angle coordinates, Melnikov theory and
KAM theory. In a three-dimensional, volume-preserving setting, there is generally no
general Hamiltonian structure (where we used general in the sense: one and the same
structure for any volume-preserving flow or map that we pick). Therefore, one has to
look at the speciﬁcs of volume-preserving dynamics. This has been done, for flows, in

Chapter 2. of this thesis, which is based on the article which appeared in the Journal



of Nonlinear Science [17]. Previous studies of volume-preserving dynamics concentrated
most‘ly'pn stéady fluid ﬁows ([2], [10], and the réferences in Chapter 2) Notably, all
of these‘studies.deal with flows thch are not solutions of a Navier-Stokes equation,
but are Stqkes flows, or solutions of linearized steady Rayleigh-Bénard convection. The

nondimensionalized Navier-Stokes equation, in the vorticity formulation reads

ow 1
= + [v,w] = an, (1.0.1)

where [v,w] is the Lie Bracket of the velocity v and vorticity w, and Re = ViI/v, with V
being the characteristic velocity and ! the characteristic lengthscale. Arnold [1] proved

that steady Euler flows, governed by
[v,w] =0, (1.0.2)

: are typically integrable. In this sense, chaoticity in three-dimensional flows is typically
induced by the viscosity and time-dependence. Suppose v is steady. Then, away from the
boundaries we might expand the velocity field as vE + #-vP, where vF satisfies (1.0.2).
Therefore, in the regime in which the Reynolds number is not small, the splitting of
separaﬁng manifolds which causes chaos should be of the order 1/ Re (this can be shown
using Melnikov theory). | An argument similar to this has been advanced, with details
provided, in [11]. Therefore, in this hypothetic setting, time dependence is the only effect

which can induce chaotic behavior on spatial scales larger than O(1/Re).

The above discussion can justify our concentration in Chapter 2 on the analysis of
three-dimensional, time-dependent perturbations of steady vector fields, as our applica-
tions are mostly to fluid dynamics. Moreover, the evolution equations for magnetohy-

drodynamic and rotational fluid dynamic flows accept similar formulation.

Further relation to needs of specific fluid dynamical problems in Chapter 2 lies in our



treatment of action-angle type variables and KAM-type theory for volume preserving
- vector fields. Discussions of action-angle variables nad KAM-type thebries typically
feature invariant tori as underlying geometrical structures. But, it is often the case
in fluid dynamica.l problems that the underlying structures are cylinders ([6], [3]). In
Chapter 2 we develbp action-angle type coordinates for three-dimensional flows which
are defined both in the case when the underlying geometrical structures are cylinders
and tori. We also prove a result on the persistence of finite cylinders, based on the KAM

theorem for the persistence of invariant tori.

All of the examples provided in Chapter 2 are fluid dynamical, and, to the best of our
knowledge, new. The first two of these were obtained by searching for polynomial vector
fields whose vorticity generates a symmetry group (i.e., by solving for the coeflicients of

‘a poiynomial vector field in the Lie bracket equation (1.0.2)). The third example is a

superposition of Hill’s spherical vortex and a line vortex at the z axis.

Three-dimensional flows in which the prominent geometrical structures are invariant
cylinders, the geometry of which was studied in Chapter 2, initiated studies of statistical
properties of such flows leading to the results presented in Chapter 3, which is based
on an articie submitted to Physica D. The basic sources for numerical and experimental
data on these flows are [3], [5] and [6]. It turned out that the mathematical framework
developed in order to understand the phenomena of dispersion, particle distributions and
first passage times accepts a generalization to a wide class of dynamical systems with an
invariant ineasure. It also appeared that two-dimensional, spatially periodic flows and
maps can be treated with the tools developed in Chapter 3. Two different applications of
Vthese are given in [18], [19]. These papers discuss the infinite-time asymptotics of disper-

sion in nonergodic flows and maps. Part of the formalism based on the methods of the



probabﬂity theory, used to develop expressions for finite-time particle distributions, and
ﬁnite—léngth first passage times developed in Chapter 3 still awaits applic;ztions. One of
tile important concepts used for the analysis of statistical properties of nonergodic maps
and flows is that of the ergodic partition. Proofs of ergodicbpartition theorems existing
in the literature do not provide a simple (and possibly numerically implementable) algo-
rithm for constructing the ergodic parﬁtion. We give such a proof in Chapter 4, which
is based on an article submitted to Ergodic Theory and Dynamicai Systems. Chapter
5 contains applications of the theofy developed in Chapters 2-4 to a flow induced by a

helical vortex filament in an axially symmetric strain field.

Having developed the statistical theory for maps and flows, a natural question which
arises is: what happens if we include some type of noise in our description of a physical
"system. Again motivated by fluid mechanics, the answer to this question in the context
of the space and time periodic flows, and three-dimensional flows discussed in Chapter

2, is provided in Chapter 6.
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Chapter 2

On the integrability and
perturbation of
three-dimensional vector fields
with symmetry

2.1 Introduction

For two-dimensional, incompressible time-periodic fluid flows the equations for fluid par-

ticle paths are given by

L w
& ay(fc,y,t),
.- 9
y - az(xay’t)a

whére (2, y,t) is the stream function periodic in ¢. From the dynamical systems view-
point, these are Hamilton’s equations where ¥(z,y,t) is the Hamiltonian function and
the phase space of this dynamical system is actually the physical space where the fluid
flows. | Through time periodicity the study of these equations can be reduced to the

study of a two-dimensional symplectic Poincaré map and once the problem has been



cast in .this sefting a variety of téchniques and ideas from dynamical systems theory can
. be applied for the purpose of studying fluid transport and mixing issﬁes.‘ For example,
 KAM tor_i represent barriers to fluid transport and mixing, chaotic dyhamics s;hould act
" to enhance mixing, and invariant manifolds, such as the stable and unstable manifolds
of hyperboﬁc periodic points, are manifested as “organized structures” in the fluid flow.
See Ottino [1989] and volume 3 (1991), number 5 of the Physics of Fluids A for recent

reviews.

Over the past 10 years there has been much work in the fluid mechanics community
in applying tliese types of dynamical systems techniques to the study of fluid transport
and mixing. However, most of the theoretical work has been in situations where the
study of the flow kinematics is reduced to the study of a two-dimensional symplectic
map.

The purpose of this chapter is to develop a framework and analytical methods for
studying fluid particle paths and global structures in a class of three-dimensional, time-
dependent flows. Global perturbation methods, such as KAM methods, Melnikov’s
method, and averaging techniques rely on a coordinate description of the underlying
unperturbed phase space structure for their development. In particular, KAM theory
uses action-angle variables, Melnikov’s method uses “homoclinic coordinates,” and av-
eraging methods use coordinates that decompose the motion into “fast” and “slow”
mqtions. Finding such coordinates in the two-dimensional case is particularly easy as all
trajectories are given by the level sets of the Hamiltonian (streamfunction), for steady
flows. However for three-dimensional flows the lack of a canonical Hamiltonian structure
poses some difficulties in developing similar analytical techniques. In the past few years

there has been some work dealing with Hamiltonian formulations for three-dimensional,



autonomous, divergéncleree vector fields by Cary and Littlejohn [1982] and Janaki and
- Ghosh [1987]. The work of Cary and Littlejohn is the most complete work along these
lines. St'a,rting froﬁx a variational principle for divergence-free vector fields, ﬁnder the
condition that the vector field does not vanish at any point, they are able to transform
the system‘into a noncanonical Hamiltonian form where the reduced system is a one-
degree-of-freedom Hamiltonian system in noncanonical coordinates. The transformation
to noncanonical Hamiltonian form is dependent upon the nature of the specific vector
field. Our work differs from that of Cary and Littlejohn in that our coordinate trans-
formations depend only on the symmetry of the vector field, not its specific analytical

form. Moreover, the vector field being transformed need not be autonomous.

The main purpose behind developing coordinates that reveal the global structure of
‘the vector field is to develop analytical methods for studying transport issues. There has
been recent work along these lines by MacKay [1992] who introduces the idea of surfaces
of locally minimal fluz and the skeleton for three dimensional volume preserving vector
fields. Feingold, Kadanoff and Piro [1988)] perform a numerical study of a model three-
dimensional volume preserving map that highly suggests the presence of two-dimensional
“KAM-like” tori. Recently there has been much theoretical work along these lines which

we discuss in Section 5.

In this chapter we begin in Section 2 by developing coordinates for describing the
velocity field that facilitates global analyses similar to those in the two-dimensional
setting. In particular, we consider three-dimensional fluid flows that are invariant under
the action of a spatial volume-preserving symmetry group. We show that the velocity
field can be transformed to the form where two components have the canonical form of a

one-degree-of-freedom Hamiltonian system and the third component depends only on the
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first two yaria;bles. Hence the velbcity field is integrable in the sense that equations for
- the particle trajectories can be obtained by quadrature. Under certain nbn—degeneracy
aSsthptions in Section 3 we show that the vector field can be further transformed to
action-angle-angle variables. In Section 4 we discuss the relationship of our work with
the work of Arnold on the topology of steady, volume-preserving vector fields as well as
the relationship with a description of Euler flows in terms of Clebsch variables. In Section
5 we show how the action-angle-angle representation can be used to apply new “KAM-
like” results for volumé preserving maps and in Section 6 we show how our coordinates
allow for the use of a generalized type of Melnikov method for three-dimensional flows.

In Section 7 we give three examples that illustrate our methods.

2.2 Coordinates for three-dimensional, time-dependent
vector fields with symmetry

2.2.1 General background from Lie group theory

In this section we Vprove the main result. First, we begin with some definitions and
establish some notation. We will not state the necessary definitions and results from Lie
group theory in their full generality (e.g., in multi-dimensions or for Lie groups acting on
general manifolds), rather we will state them in a form that is appropriate for the fluid
mechanical context that is our main interest. For more background the reader should

consult Olver [1986] or Bluman and Kumei [1989].

Definition 2.2.1 (One-Parameter Lie Group) Let U C R® be an open set and con-

sider the mappings

(z,1) — g(z,t;N), (z,) e U xR
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which depend on a parameter A € I C R, where T is an interval in R. We assume
. that ¢(A,8) defines a law of composition for any two parameters A, § € I. Then we say
that this family of mappings forms a one-parameter Lie group acting on U x IR if the

following properties hold:

1. For each parameter A € T the mappings are one-to-one and onto U xIR. Moreover,
the mdppings are infinitely differentiable with respect to (z,t) € U and analytic in

rAel.

2. I, with the law of composition ¢, forms a group. Moreover, ¢(),6) is an analytic
function of A € T and § € I. Without loss of generality we can assume that T

contains the origin and that A\ = 0 corresponds to the identity element, e, in this

group.

3. (z,t) = g(z,t;¢).

4. If (4tY) = g(a%1% A% and (2%,1?) = g(z',t;Al) then (2%,1?) =
9(2°, 1% ¢(A%, A1)).

We will often denote one-parameter Lie groups generally by the symbol G.

The infinitesimal generator of the action of a one-parameter Lie group plays an important

role in many computations related to symmetry issues.

Definition 2.2.2 (Infinitesimal Generator) Let G be a one-parameter Lie group

acting on U X IR. The infinitesimal generator of the action of G is the vector field

= 9 9
W= Z&(m’t)a_:vg + é4($st)a

i=1
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where -

0g4(z, 1 ;\) :

dgi(z,t; A)
a)\ A=0-

FJ) |A=0,' 9i=13"'s37 54(:1:,t)=

&z, t) =
Our main interest is in discussing one parameter groups of symmetries of first-order
ordiﬁary differential equations, henceforth referred to as “ODE’s”. Thus our notation
(z,t)is suggestive of the dependent (“space”) variable and independent (“time”) variable
of an ordinary differential equation. Indeed, we will want to discuss the situation where
the Lie group acts only on the space variables. In this case one can easily rewrite

definitions 2.2.1 and 2.2.2 with the ¢ variable eliminated.

Now we are ready to define the notion of a symmetry of a system of ODE’s.

Definition 2.2.3 (Symmetries of a System of ODE’s) Let G be a one-parameter
Lie group acting on U X R and let & = F(z,t) , z € U, t € R be a system of ordinary
differential equations. We say that this system admits a one-parameter group of symme-
tries G if and only if whenever ¢(t) is a solution then so is g(p(t),t; A), where g(z,t,))
is any element of G. We will call G a spatial symmetry group if itv acts only on the

dependent variables and its infinitesimal generator is an autonomous vector field on R3.

Functions that are invariant with respect to the group action play an important role

in our analysis. We now define this notion.

Definition 2.2.4 (Functionally Independent Invariants) Suppose we are given a
one-pdmmeter Lie group G acting on U X R. A scalar-valued function f is said to be an

“invariant of the groupaﬁtion if and only if f(g(z,t; X)) = f(z,t), VA€ I,V (z,t) € UXIR.
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A set of functions f;,i = 1,2,3, are called functionally independent invariants of G in
someV C UXIR if and only if their (3x4) Jacobian matriz has mazimal rank everywhere

mn V

Given a function f(z, t) we can determine whether or not it is invariant under the group
G by computing its derivative with respect to the infinitesimal generator of the group.

This is known as the Lie derivative and is given by

Lu (f@0) = D65L @0+ 6500 = Hoet oo (221)

=1
If Lw (f(z,t)) = 0 then f(z,t) is an invariant. Moreover, it can be be proven that if
W/(z,) # 0, then in some neighborhood of the point (z,%) there exist three functionally

_independent invariants for the group G (see Olver [1986], Theorem 2.17, pg. 88).
With this background we can now state a general result from Olver [1986] that we

will use in the proof of our main result in this section.

Theorem 2.2.1 Let

‘ dm,-

o = filzn22,23,1), i=1,---,3, (2.2.2)

be a first-order system of ordinary differential equations. Suppose further that (2.2.2)
admits a one-parameter group of symmetries, G, with the parameter A. Then there ezists

a local change of variables, defined near (z,t) such that w|(z 1) # 0, given by

T, = ni(ylay%yf‘hs)a ’1:21,"',3,

~
i

w(yla Y2, Y3, 3)9 (2.2.3)
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such that in coordinates (2.2.3) the system (2.2.2) becomes

dy; ; .
% = gi(yl’ y2s3)7 =1, "'13' ’ (2'2'4)

Furthermore, vy, y2, s form a complete set of functionally independent invariants of G

which satisfy

Lw(?h) = 07 i=172’

Lw(s) = 0, (2.2.5)

end y3 satisfies
Lw(ys) = 1. (2.2.6)
Proof: See Olver [1986], Theorem 2.66, page 158. ‘ u]

If G is a spatial symmetry group, then we have the following result.

Lemma 2.2.1 Suppose G from the above proposition is a spatial symmetry group. Then

we can take s = 1, and y;, © = 1,...,3 independent of time.

Proof: Since we are assuming that G is a spatial symmetry group the {-component of the
inﬁnitesimal generator of the action of G is zero. Therefore the function # is an invariant

for the action of the symmetry group and we can take s = ¢.
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Further, the infinitesimal genérator of the action of GG, w, is an autonomous vector

. field on IR3. Therefore the solutions to the following equations

Lw(y:)

Lw(?lS)

!
L
~

I
“I—‘
N

i
—

(2.2.7)

are independent of time. Since the solutions to these equations give the required coor-

dinate change, the lemma is proven. O

2.2.2 Volume-preserving vector fields and spatial, volume-preserving
symmetry groups

Since our main interest is incompressible fluid mechanics we will be interested in volume-
preserving vector fields. Along these lines, most applications will be concerned with
spatial symmetry groups; henceforth we will restrict ourselves to this situation. We

begin with some definitions.

Definition 2.2.5 (Volume-Preserving Systems of ODE’s) Let

doi

dt = ,'(:171,2)2,:1:3,1‘), i - 1, Tty 3’ (2.2-8)

be a system of ordinary differential equations on U x IR. We call (2.2.8) a volume-

preserving system f end only if it satisfies

2. 8f;
51-:..0.

=1

Next we define what we mean by a volume-preserving spatial symmetry group.
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" Definition 2.2.6 (Volume-Préserving Spatial Symmetry Group) Let G be a one
parameler spatial symmetry group dcting on U C R3. We call G a volume-preserving

spatial symmetry group if and only if the components of the infinitesimal generator of its

action satisfy

In finding the symmetry group of a specific vector field, the following lemma is quite

useful.

Lemma 2.2.2 Neccessary and sufficient conditions for a vector field w = (q',7% 1)

to be the infinitesimal generator for the action of a volume-preserving, spatial symmetry

group of a vector field v = (£}, £2%,€3) are

ow

o =%
[v,w] = 0,
V-w = 0,

(2.2.9)

where [v,w] denotes the Lie bracket of vector fields v, w defined in coordinates by

5 . .
an agz
[v,w]i = ;{ﬁ”@ — 7 5.7}

Proof: This is an easy calculation which stems from the general theorem on infinitesimal

generators of symmetry groups for systems of differential equations and the definition of
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the infinitesimal generator of a sﬁatial, volume-preserving symmetry group. The general

- theorem is given in e.g., Olver [1986]. ' ‘ a

The following theorem is the main result of this section:

Theorem 2.2.2 Let

% = f;(ml,mg,wg,t), 1= 1, . ',3, (2.2.10)

be a volume-preserving system of ordinary differential equations. Suppose further that
(2.2.10) admits a one-parameter spatial volume-preserving symmetry group, G. Then

there ezists a local change of variables

I = ¢¢'(2‘1,Z‘2, 23)’ 1= 17 "t '73’ (2.2.11)

such that in variables (2.2.11) the system (2.2.10) becomes

dﬂ _ aH(zl, 225 t)
dt - 822 ’
dzy _aH(zl,zz,t)
dit - 621 ’
% = kg(zl, 22, t). (2212)

where z; and z; are functionally independent invariants of G. Further, if (2.2.12) is

autonomous, H is a first integral.

Proof:  Applying Theorem 2.2.1 and Lemma 2.2.1 , there exists a transformation of

coordinates in which (2.2.10) takes the form
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dy; '
— = k t
dt 1('&11,3/2, )7
dyy
gL = 1
di k2(y17 Y2, )a
d
ij = ks(y1,92,0)- (2.2.13)
" Next we show that
dy _
di = kl(ylv y?at)a
dy
— = k i
dt 2(y11 Y2, )a
(2.2.14)
can be written in the form
dyn _ 10K(y1,1,1)
dt J 6y2 ’
dy; 1 0K(y1,92,1)
- 7 o0 . (2.2.15)

for some function K(y;,y2,t) where J is the Jacobian of the transformation z; =

ni(yh Y2, Z/s)-

In order for there to exist a function K(y;,yz,t) such that

oK

— = Jk,

0y2 !
K :

_6__ = —Jks,

on
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it is necessary and sufficient for the second partial derivatives of K (y1, y2,t) to be equal

. (provided the domain is contracible in IR?). This condition is equivalent to

0Jky + 0Jky

= 0. 2.2.16
on Y2 ( )

In order to show that (2.2.16) holds we will use the fact that the symmetry group is

volume preserving. Since the original vector field (2.2.10) is volume preserving we have

3
0f:
2 3, = O (2.2.17)
In the transformed coordinates (2.2.17) is expressed as
1 23: Ok _ 0 (2.2.18)
J P ayz - M odes

where J denotes the Jacobian of the transformation z; = 7;(y1,¥2,y3). (Note: the
passage from (2.2.17) to (2.2.18) is a lengthy calculation that can be found in e.g.,

Wrede [1963].) Thus, in order to show that (2.2.16) holds it suffices to show that

8T _,

0y3

since k3 does not depend on y3 so that dk3/0ys = 0. In order to show this recall that by
assumption the infinitesimal generator of the action of G is volume-preserving so that

we have

3 .
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From Theorem 2.2.1 we know that & = €2 = 0 and & = 1, so we immediately obtain

aJ |

— =0. : 2.2.20

s (2.2.20)
Thus (2.2.14) can be written in the form of (2.2.15).

For the final step of the proof we show that (2.2.15) can be written in the following

Hamiltonian form

dzy _ 0H(z1,2,1)

dt - 6::2 ’

(l.22 _ OH(zl, z2, t)

=2 = ) (2.2.21)

We will show that the transformation of coordinates (recall form (2.2.20) that J does

not depend on y3)

2 = / J(y1,y2)dy1,
22 = U2
23 = Y3, (2.2.22)
takes the system
dﬂ - laI((ylv Y2, t)
dt J 0y
dy, _ _10K(y1,921)
dt J 0n
dys

"Ei‘ ’ = kB(yl’ Y2, t) (2'223)
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~ to the form (2.2.12). ,

This construction is an explicit implementation of Darboux’s theorem (see Abraham

and Marsden [1978], Arnold [1978], Olver [1986]). Let H(z1,22,t) = K(y1(z1, 22), 22,1)

and we will calculate 3; and %, in the new coordinates

easier.

Using the chain rule, we obtain

s 10K __10H0x __0H
2= = J6y1 - J3z1 6y1 - azl

where we have used (2.2.22) from which follows _3_2_,_ =J.

Now we calculate Z;. Using the chain rule, we obtain

0z . 0z .

. 1 621 0K 10z 0K BK
z1 = '67:‘/1 +

0z i le 0K
dy2 =7 By: Oy,

J 0y2 0 31/2

Moreover, we have

0H 0K Lo 0y 0K
622 622 322 ayl

Now from (2.2.22) we have gk = 352 so that if we show

then it follows that

. We begin with 2, since it is

(2.2.24)

(2.2.25)

(2.2.26)

(2.2.27)
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- The Jacobian of the transformation y; = yi(21, 22, z3) defined in (2.2.22) is given by

Bzy Bz B ,
%5 Oy g J 3= [J(y, )y 0

a i) dz: _

BE -0 1 o] eam
a dz Oz,

S Tus  Ous 0 0 1

and the inverse of these two matrices is easily calculated to be

) ) 2]
21 22 23 1 —%IJ(yl7y2)dyl 0
1
o f2) 2]
% e o |=7| 0 J 0. (2.2.29)
a a o
o o o 0 0 1

From (2.2.29) and (2.2.22) we have

8?]1 1 0 / 10z

_—= ——— dy, = ——=—.
Hence the theorem is proved. O
Remarks:

1. An important point‘ is that the coordinates in which the vector field takes the form
(2.2.12) do not depend on the explicit form of the original vector field. Rather,

they depend only on the volume-preserving spatial symmetry group.

2. An obvious question is “given a vector field, how do we know that it is invariant
under a volume-preserving symmetry group”? In many cases a knowledege of the
physical geometry and boundary conditions, as well as inspection of the system
of ODE’S, often can be used to reveal the symmetries. One can also find an in-

finitesimal generdtor of the volume preserving, spatial symmetry group by using
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~ requirements on the infinitesimal generator spelled out in Lemma 2.2.2. In partic-
ular, an arbitrary vector field w can be substituted in (2.2.9) which then become

equations for components of w.

3. Transformation z; = ¢;(21, 22, 23) is volume preserving, i.e., its Jacobian is 1.
2.3 Action-angle-angle variables

Action-Angle variables have played an important role in the development of perturbation
methods for the study of near-integrable Hamiltonian systems. In particular, the KAM
theorem as well as the Nekhoroshev theorem are both proven in a context where the
unperturbed system is expressed in action-angle variables. Action-Angle variables have
the virtue of rendering certain geometric features of the system transparent (e.g., the
foliation of the phase space by invariant tori) as well as providing a natural decomposition
of the dynamics into “fast” and “slow” time scales. We refer the reader to Arnold et
al. [1988] for many examples of the analytical and geometrical virtues of action-angle

variables.

The construction of action-angle variables uses the symplectic structure of the system.
Nevertheless, in this section we show how one can take the volume-preserving system of
the equations given in Theorem 2.2.2 and further transform the system into coordinates

that have many of the virtues of standard action-angle variables.

We assume that we are dealing with autonomous vector fields so that (2.2.12) takes

the following form:

dzy _ 0H(z,2)
dt E ’
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dﬁ _ _OH(Zl,Zg)
dt - 32‘1 ’
-(-l‘_’-'t‘i = ks(z1, 2). ~ (2.3.30)

' Since the z; and z9 components of the vector field do not depend on 23 we can consider

transforming this two-dimensional vector field into the standard action-angle variables.

Assumption. There is some subset of z; — 2, plane, denoted D, in which the level sets

H(z,22) = h are closed curves.

If this assumption holds, then it is well known from classical mechanics (see, e.g.,

Arnold [1978]) that there is a transformation
(z21,22) — (1,0)
satisfying the following properties.

1. I = I(h),i.e., I is constant on the closed orbits.
2. szh d9 - 27\-.

3. 0=0(1)

The action variable is given by (see e.g., Wiggins [1990] or Arnold [1978])

1
I= 5}' [ ngzl, (2331)
while the aigle variable reads
i 0= ==y 2.3.32
= m-)' ) ( 3. )

where 'T(H ) is a period on the orbit on z; — 2, plane (which is a level set of H), and ¢

denotes the time alongr‘the orbit measured from a certain point on the orbit.
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We assume that this action-angle transformation on the z; — 2o component of (2.3.30)

- has been carried out so that these equations subsequently take the form

I = o,
6 = o),
23 = ha(l,0), ' (2.3.33)

where hg(I', 0) = kg(zl(l, 9), ZQ(I, 0))

The following theorem gives the construction of action-angle-angle variables.

Theorem 2.3.1 Suppose ; # 0 in (2.3.33). The transformation of variables
: (Iv 07 23) - (I’ ¢1, ¢2) deﬁned by

I =1
¢1 = 01
B Py L)
¢ = z3+ / (D do,
where
2 hS(Ia 9)
Azz = ———df

then brings the system (2.3.33) to the form
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b o= D),

b

Q(I), L (2334)

~where I € R, ¢ € ST, and ¢, € S' orIR. Furthermore, the transformation is volume-

preserving.

Proof: Note first that the transformation is well-defined for both z3 defined on IR!
(when the invariant manifolds are cylinders) and z3 defined on S' (when the invariant
manifolds are tori), as the appropriate points are identified. The rest of the proof involves

straightforward calculations. Clearly, Az; is a function of I only so that

1

0= (1),
A2'3 AZ3 AZ3

q.52 = z3+ —9 - ——/h3(I O)dt —'0 = —Ql(I) QQ(I)’
as claimed. It follows immediately that ¢, is an angular variable and that the nature
of ¢, depends on z3. If 23 is an angular variable, then so is ¢y; if 23 € IR, then so

is ¢. Further, a direct computation shows that the Jacobian of the transformation

(1,8,23) — (I, ¢1,02) is 1. O

This theorem shows that the phase space of a three-dimensional, volume preserving,
time-independent flow that satisfies the above assumptions is naturally foliated into two-
dimensional tori or cylinders. If one removes the requirement that the flow is invariant
under a dne-parameter spatial volume preserving symmetry group then the situation is
‘not $0 simple, evén if a system posseses an integral of motion, as the following theorem

of Kolmogorov describes.
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Theorem 2.3.2 Consider a thrée-dimensz'onal, volume-preserving autonomous vector
. field, & = f(z), = € U C IR3, having an integral F(z). Let M, = {z|F(z) = c}. Further,
assume tﬁat the vector field does not vanish on M.. Then if M, is compact and connected

we have

1. M, is diffeomorphic to a 2-torus.

2. One can find angular coordinates ¢y, ¢ on M, such that the vector field restricted

to M. can be expressed as

Y - S
ho= ®(¢1,92)
¢y = P2

®(¢1’ d)?) ’

where py, po are constants and ®(¢y, ¢2) is a smooth positive 2x-periodic function

n ¢1 and ¢2.

Proof: See Kolmogorov [1953], also, an outline of the proof can be found in Arnold et

al. [1988). | | | a]
2.4 Symmetry and integrability of three-dimensional vec-
tor fields; Euler flows

2.4.1 Symmetry and integrability of three-dimensional volume-
preserving vector fields

In the previous section we showed that under certain assumptions a three-dimensional

vector field which admits a spatial volume-preserving symmetry group posseses invariant
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manifolds which are tori or cyliﬁders. This is analogous to the more familiar results
- for integrable canonical Hamiltonian systems where the fact that the vector field has
in‘vaﬁant ‘manifo‘lds of certain typé is a purely gemetrical fact related to commutation
relations'between the Hamiltonian vector field and the infinitesimal generator of its
symmetry groups arising from the integrals. Along these lines for three-dimensional

vector fields, Arnold [1965] proved the following fundamental result.

Theorem 2.4.1 Consider an analytic autonomous volume-preserving vector field v in
a domain D - IR bounded by a compact analytic surface, that admits a spatial,volume
preserving symmelry group with infinitesimal generator w. Further suppose that v and
w are not everywhere collinear in the given domain. Then the domain D C R3 is
partitioned in a finite number of cells and each of the cells is fibered either into tori or
‘into annula. On an invariant torus, trajectories are either all closed or all dense. On a

cylinder, all trajectories are closed.

Proof: See Arnold [1965]. a

2.4.2 Euler flows

Arnold used Theorem (2.4.1) to show that a steady analytic Euler velocity field (i.e.,
an autonomous solution of Eulers equations of motion for an inviscid incompressible
fluid) which is not everywhere collinear with its associated vorticity field in a certain
analytic dbmain of IR® admits invariant manifolds which are tori or annula. This result
uses crucially the fact .that the vorticity w associated with a steady Euler flow v is an
infinitesimal generator of a volume-preserving spatial symmetry group of v. This can

easily be seen by noting that
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ow

w -
[v,w] = 0,
Viw = 0

and recalling Lemma 2.2.2.

This observation brings up a relationship between our methods and a transformation
which has been known in fluid mechanics for quite some time, the Clebsch transformation,
which we briefly describe. It is well-known that since the vorticity field w is volume-

preserving we can express it locally as

w=Vfx Vg, (2.4.35)

where f and g are some functions on IR3. Furthermore, it can be shown then that f and

g satisfy

f' _ a)‘(.ﬁ)gat)

= ———ag R
. _0AM/f.9:1)
g = . E)f L)

(2.4.36)
for some scalar valued function A, of f and g (see e.g., Truesdell [1954],7pg. 190, Serrin
[1959]).

Ndw we show how f and g¢ aré related to our work. Notice that from (2.4.35) f and

g satisfy
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L(f) = (VfxVg)-Vi=0,

L,(g) = (VfxVg)-Vg=0.

It follows from these equations that f and g are functionally independent invariants of
a symmetry group of v generated by w (see Section 2). Therefore, we can take f and ¢

as the new variables, and find a third function h which satisfies
L,(h)=(VfxVg) - Vh=1.

Thus an Euler flow can be written in the form (2.2.12). We will use this procedure in

two examples on Euler flows in Section 7.

The derivation of (2.4.36) uses the fact that w is the curl of v. In the proof of
Theorem (2.2.2) we used only the relations (2.2.9) describing the relationship between
a vector field and the infinitesimal generator of its volume-preserving spatial symmetry

group. In particular, we did not require that the infinitesimal generator be the vorticity

field.

2.5 “KAM-Like” theory for three-dimensional, volume-
preserving, vector fields

For two-dimensional, time-periodic flows the KAM theorem (see e.g., Arnold [1978],
[1988]) plays an important kinematical role. Namely, it provides sufficient conditions
for the existence of invariant circles for the associated two—dim’ensional Poincaré map of

the two-dimensional, time-periodic flow. These invariant circles are significant because
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~ they act as Barriers to transporf. As such, they arevalso a central component of the
- regular regions in flows. 'Hénce, an understanding of how KAM tori arise i§ an important
elem‘ent'i}n understanding mixing and transport issues in two-dimensional, time-periodic
flows. Many examples of this, both theoretical and experimental, can be found in Ottino

[1989].

The method of the proof of KAM theorem can not be used immediately to prove
"KAM?”-type theorem in “odd-dimensional” settings for important technical reasons, of
which a succint description can be found in de la Llave [1992]. Nevertheless, in the past
two years some important advances have been made concerning “KAM-like” theories
for volume-preserving maps by Cheng and Sun [1990], de la Llave and Delshams [1990],
Xia [1992], and Herman [1991]. In this section we>want to show how the coordinates

. that we developed put us in the framework where we can use these new methods to
study perturbations of the integrable three-dimensional vector fields that we have thus

far considered. We will first consider the case of time-dependent perturbations.

Consider a time-periodic, volume-preserving perturbation to the vector field (2.3.34)

that takes the following general form

j = €FO(I1 ¢17 ¢2= t)

é1

il

QI(I) + GFl(I, é1, ¢2’t)

b2 = Q(I)+ eFo(I, ¢1, 2, 1) , (2.5.37)

where we now assume that both ¢y and ¢, are angular variables, € is the (small) pertur-

bation parameter, and the functions F;, ¢ = 0,1, 2, are periodic in ¢ with period T = %f

We will derive an approximate form for a three-dimensional Poincaré map of this system
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~ essentially using the approach from Wiggins [1990] pp. 129-132. Using regular pertur-
_ bation theory, the solutions of (2.5.37) are O(€) close to the unperturbed solutions on

time scales of O(1). Hence we have the following expansions of the solutions of (2.5.37)

It) = I°+ eI'(t) + O()
$i(t) = 1+ NI+ egi(t) + O(¢?)
51 = B+ QI + ehl(t) + O() (2.5.38)

where I'(t), ¢1(t), and #i(2) satisfy the following first variational equation
1 2

i 0o 00\ /I Fo(I°, u(I°)t + ¢, Qa(1%)t + 63, 1)

S =] BFI% 0 0 || ¢l [+]| AUOUION+ 62, Q1) + 63,1)

é 21 0 0/ \ ¢} F(I°, (1%t + 61, Qa(I°)t + ¢5,1)
(2.5.39)

Because our coordinates put the vector field in such a simple form, this equation can
be easily sqlved, which we postpone for the moment. Instead, recall that our goal is
to comnstruct a thfee—diménsional Poincaré map. More precisely, we are interested in
constructing a map that takes the variables I¢, ¢{, and ¢5 to their value after flowing

along the solution trajectories of (2.5.37) for time 7. This map is simply given by

Pe = (I(0), ¢1(0), 95(0)) = (I(T), #1(T), ¢5(T)) »

(1°,¢9,49) — (I° + eI, ) + ©(I°)T + €8}(T), 3 + Q(IO)T + 63(T)) + O(€?),
o (2.5.40)

where we have used (2.5.38) and taken the following initial conditions
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1l
>

I5(0)
F0) = &,
50) = 4.

Now expressions for I 1(T),q’){(T),'and #3(T) can readily be obtained by solving

(2.5.39):

INT) = [T Fo(I% Qu(I0) + 49, (1)t + 63, t)dt = Fo(I°, 69, 42),
SHT) = G li=po J5 Jg FolI° Qu(I°)E + 69, Qa(I°)E + 63, €)dEdt

+ Jo Fy(1% Qu(I0)t + 69, Qa(I0)t + ¢9, t)dt = Fi(I°, 49, 49), (2.5.41)
SYT) = S 1=ro [T Jo Fo(1% Qu(I°)E + 9, Qa(I0)E + 49, £)dedt

+ JT Fa(1%, (1) + 62, (I + 68, )dt = Fo(1°, 62, 69).

Substituting these expressions into (2.5.40) and dropping the superscripts on the vari-

ables gives the following final form for the Poincaré map:

I — T+eFo(I,61,62) + O(),

o = oo B (g, 00) 4 0@,
¢ — dot 27?927(” + eFa(1, 61, 62) + O(E). (2.5.42)

2

where we have used T = <.

This map is exactly in the form where the new “KAM-like” theorems for perturba-

“tions of three-dimensiona.l volume-preserving maps can be applied. By translation and
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rescaling we can take the domain of I to be the interval Z =[1,2] . We can also assume
: 21r9—1:§ﬂ = I without loss of generality. Further, we require Q5(I) > ¢; > 0 on Z. The
theorem/requires that the vector fields be real analytic on the domain of interest with

analyticity holding on the extension to the following complex domain

Do(®) = {|{Im ¢1| < 7o, |Im ¢o| < 7o, |I—&|< s, @€I}

Under the above assumptions we have the following theorem

Theorem 2.5.1 (Cheng and Sun, 1990) There ezists a positive €y, which depends

on Do(D), such that if 0 < € < €o the mapping (2.5.42) admits a family of invariant tor:

given by

I = w(éa Caa’)a
$ = 5 + u(f)(s (b),
¢2 = f + v(fa Cs"b)$ ‘ i (2543)

with u,v,w real analytic functions of period 2r in the compler domain |Im¢| <

7'0/23 II’ITL ¢2| S 7'0/2,

Moreover, the mapping restricted to the persisting perturbed tori (2.5.43) can be para-

metrically written as

£ — £+,

21 (D)
W

¢ —» ¢+ + (@, €), (2.5.44)
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where ¢1(&, €) 1s a function depehdz'ng on the perturbations Fy(I, $y,4;), i = 0,1,2, and

: ql(d},O) =0.

In fact, there is - a Cantor set S(¢) C [1,2], depending on the perturbations
ﬁ;‘([,.(ﬁ],QSz), i = 0,1,2, such that for each & € S(e) there is a corresponding invari-
ant torus of the form (2.5.43). Furthermore, the measure of the set S(¢) tends to 1 as

€ — 0.

Despite the similarities kwith the standard KAM theorem for area-preserving twist
maps, this regult is quite different and may ultimately yield fundamentally new effects
for three-dimensional, time-periodic flows. For example, in standard KAM theory for
area-preserving twist maps the invariant circles that survive are those that have strongly
irrational (Diophantine) rotation numbers. Hence, regardless of the specific form of the
'perturbation, if the perturbation is sufficiently small we know which invariant circles will

persist.

In three-dimensional volume-preserving maps circumstances are different. From the
currently available proofs we are not able to predict whether certain torus will persist
the perturbation, even if it satisfies Diophantine conditions. The only claim we can make
is that there will be a sef of invariant tori of positive measure for the perturbed map.
In this situation generally any invariant torus disintegrates as the perturbation changes
with new tori (having new frequencies) created near the locations of the disintegrated

invariant tori.

For time-independent perturbations, we can take time-one Poincaré map derived in
the same spirit as the one for the time-dependent case, and make the same conclusions on
the issue of persisting tori. Note, though, that this conclusion is nontrivial, as opposed

to the case of time-independent perturbations of one degree of freedom Hamiltonian
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systems.

Suppose now that the map (2.5.42) is defined on I x $* x IR, so that the invariant
stfuctureévin the. unperturbed «proi)lem are cylinders. We show in what follows that
if we resti‘ict our velocity field to some finite distance from the origin, and consider a
perturbed system in that, restricted domain, under the same conditions as the ones in
the theorem .of Cheng and Sun, there is a set of a positive measure of finite invariant

cylinders for the perturbed system. To show this we shall need the following Lemma:

Lemma 2.5._1 Assume f is a C™ smooth function defined on some finite subinterval of
R, [-1,1]. Suppose Iy > I. Then there is an estension of f to R, denoted f such that f

is an smooth function on R and periodic with period 21;. Further, f = f on [-1,1].

Proof: First consider the extension for z C IR, z < 0. As f is C" we have its derivatives

at z = =1, f'(1), f'(=1), ..., f#)(=1). Now define f on [~l;, ~{] to be
F=f=D 4 F(=De + ot fOa".

Now we turn to the interval [/,/1]. As we want to ultimately extend f to IR, we need to

match its derivatives at {; with those already obtained at —I;. So, we define f on [,0]

to be
f = pol(f)i- By + pol(f), - By,.
Where
pol(fi = f(I)+ f(De+ ...+ FOD)a,
pol(fl, = f(=h)+ f'(=h)z+ ...+ fO(=l)z",

(2.5.45)
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and By, By, are smooth (all derivatives exist) functions such that

1 ifl<e <4 b
BI= . 111
0 ifl+32~ <z

and -

1 iflh>z> -4t

B"“{ 0 iflh—ad>g
The proof that such functions exist can be found e.g., in Guillemin-Pollack [1974]. Let

further f = f on [~1,1].

It is now clear from the construction of f that it can be smoothly periodically ex-

tended to IR and that it satisfies all of the claims of the Lemma. O

Now consider the map (2.5.42). It is defined on I x S X IR. We restrict its definition
to I x S x [-{,1]. Then, as a result of the Lemma 2.5.1 we can extend the system to
IXS'XTR by extending Fo(I, ¢y, ¢2), Fi(I, ¢1, d2) and Fy(I, ¢y, ¢2) periodically to R. As
the map is now periodic both in ¢; and ¢, theorems on the preservation on tori in action-
angle-angle setting apply (note: we need the perturbation functions to be at least C¢,
see Xia [1991]). So, there is a set of positive measure of invariant tori for the perturbed
system; Now restricting to our original system, defined on I'x S 1x[-1,1], we see that each
preserved torus in’the extended system corresponds to a preserved cylinder in the original
one. Thus we proved that there is a set of positive measure of finite cylinders persisting
the perturbation for any cutoff distance in ¢; from the origin. Note that for any cutoff
distance [, in general we might have different tori persisting. This is the consequence of
the fact that three-dimensional KAM-type theory can not predict exactly which torus
will persist, independéntly of the perturbation. As we change the perturbation functions

in our construction, the set of cylinders persisting the perturbation might be different.

The above deVelopéd theory, has an immediate application in fluid mechanics to
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three-dimensional, time'—dependeht perturbations of the so-called duct flows (see e.g.,
- Franjione and Ottino [1991]). In a real fluid mechanical situations, the cylinders involved

are always finite, so the above presented result is good enough.

2.6 Melnikov’s method for perturbations of integrable,
three-dimensional volume-preserving vector fields

In this section we want to give a version of Melnikov’s method that applies to perturba-

tions of autonomous vector fields of the form of (2.2.12), i.e.,

dzy _ OH(x,2)

a 822 + €F1(2'1,Z2, 23, t)a

d22 _ BH(ZI, 22)

di = 621 +€F2(Z]_,22,Z3, t)}

dZ3

il k3(21, 22) + €F3(21, 22, 23, 1) (2.6.46)

where we assume that the perturbation is periodic in ¢ with period T = %” The standard
Melnikov method has been applied by many authors to the study of fluid particle dynam-
ics in time-periodic perturbations of two-dimensional steady fluid flows, see Rom-Kedar
et al. [1990] and Camaséa and Wiggins [1991] for two specific examples. This method
is one of the few methods that enable one to rigorously prove the existence of chaotic
dynamics in a specific system as well as obtain an estimate on the size of certain chaotic
regions in the flow; it also enables one to obtain an approximate analytical form for the
flux across homoclinic‘a,nd heteroclinic tangles that are created by time-periodic pertur-
bation of separatrices in the steady flow. Melnikov’s method is an example of a global,
geometrical perturbation method that uses explicit knowledge of the invariant manifold

structure of the unperturbed vector field to develop perturbation methods to determine
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how these invafiant manifolds “bréak up” under the inﬂﬁence of the perturbation. Thus
having appropriate cobrdinates for describing the unperturbed system‘is crucial for the
succes._sy of the method. It turns out that the coordinates developed in Section 2-are ideal
for this purpose. In fact, in these coordinates for the case where z3 € S* the appropriate
Melnikov méthod is a speciai case of a method previously developed in Wiggins [1988]
(more precisgly, in the terminology of this reference, it corresponds to system I with
n=1,m=0,and! = 1). In‘the case where z3 € IR! one must requiré the perturbation
to be uniformly bounded in z3, in which case an identical derivation for the Melnikov
function goes through. In this section we describe these Melnikov methods. We do not

go into proofs of all the details, for this we refer the reader to Wiggins [1988].
2.6.1 Analytical and geometrical structure of the unperturbed system

The unperturbed system is obtained from (2.6.46) by setting ¢ = 0

_(_l_f_l_ _ 3H(z1, 22)

dt 0z ’

dzy _  0H(z,2)

dt - 821 ’

d

R (2.6.47)

The z; — 23 component of (2.6.47) decouples from the z3 component and thus we can
discuss the structure of the phase plane associated with the z; — 25 component of (2.6.47),
the trajectories of which are given by H(z2;, z2) = constant. From this we can easily build

up a picture of the global dynamics of the full three-dimensional unperturbed system.

Assumption. At (z1,20) = (2},2}) the z; — 22 component of (2.6.47) has a hyper-

bolic fixed point that is connected to itself by a homoclinic orbit (2}(t),z%(¢)), i.e.,
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limi oo (4 (1), Z4()) = (2, 2)-

From this assumption it follows that the set

Mo = {(zl,zz,zs) |2y =20 20 = zg} (2.6.48)

is a one-dimensional, normally hyperbolic invariant manifold. Suspending the system
over IR? x S1, Mg becomes normally hyperbolic, invariant two-torus in the case when
the symmetry group is S, and a cylinder when the symmetry group is IR. Normal
hyperbolicity 'is a technical property that means that, under the linearized dynamics,
expansion and contraction rates transverse to the manifold dominate those tangent to
the manifold (formal definitions and examples can’be found in Wiggins [1988]). The
‘ sigm'ﬁca,nce of this property is that normally hyperbolic invariant manifolds, along with
their stable and unstable manifolds, persist under perturbation. Note that if z3 € §1 Mg
is topologically a circle and if 23 € IR, or some subinterval of IR, the M is topologically
a curve. Technica,l'problems arise in the issue of the persistence of normally hyperbolic
invariant manifolds which are not contained in some compact subdomain of the set on
which the vector field is defined. This is treated in Kopell [1985]. The dynamics on My

are described by the following equation

dz
—(i-t§ = k3(2{", Zg') (2.6.49)

having the solution

23(t) = k(2R 2t + 25, (2.6.50)
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I ks(zh,z%) = 0 then Mg consists entirely of fixed points. In this case, even though
the manifold will persist under perturbation, the dynamics on the manifold will almost
surely be dramatically altered under the perturbation. In the case where z3 € S, Mg

is a periodic orbit, or circle of fixed points if kg(z{‘, zé‘) = 0.

It also follows from our assumption on the z; — 2, component of (2.6.47) that My
has two-dimensional stable and unstable manifolds, denoted W*(M,g) and W*(My),
respectively, that coincide along a two-dimensional homoclinic manifold, denoted T*,

given as follows:

| {(zl, 20,23) | 21 = 2 (t), 20 = 25(t), —0 < t < +oo} . (2.6.51)

For € = 0 T'* forms a barrier to transport of the fluid as it is an invariant manifold
that separates the space into two disjoint pieces. Moreover, such integrable homoclinic
structures are often the key feature in the creation of chaotic dynamics under non-

integrable perturbations.

2.6.2 The perturbed system and the Melnikov function

Let us consider thé systelﬁ (2.6.47) suspended over R? x §* (i-e., include the time as a
dynamical variable). Mg in the unperturbed problem is then a: two-torus or a cylinder.
As previously mentioned, Mg along with its stable and unstable manifolds persist under
perturbation, denoted M., W*(M.) and W*(M,), respectively. However, it now may
be the case that W*(M,) and W*(M,) do not coincide as three-dimensional surfaces
and thus create a_bari'ier to the transport of flnid. Indeed, we would expect this to be
the case since it is not the typical case for two three-dimensional surfaces to concide in a

four-dimensional space. A generalization of Melnikov’s method will provide us with an
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analytical tool for determining certain geometrical properties of W*(M,) and W*(M,).

The Melnikov function (up to a nonzero normalization factor) is the ﬁi'st-qrder term
of an expansion. in €.of the distance between W*(M,) and W*(M,). Following the
arguments in Wiggins [1988], for systems of the type described in this section it is given

by

M(to, 2303 60) = S5 { BE (A (1), AP (1), 24(2), 24(8),wt + who + do)
(2.6.52)
+ 3 (2 (0), A () Fal (1), 4 (1), 24(0), wt + wio + do) }

where

z(t) = /Oﬂ*fo ka(2{(s), 23(s))ds + z30.

The parameter ¢ correspond to the phase of the periodic time-dependence of the per-
turbation and when considering the Poincaré map it can be regarded as the parameter
defining the Poincaré section. In this context tg and z3p can be viewed as parameters
describing points on W*(M,) and W*(M,), restricted to the three-dimensional Poincaré

IM_

. . . oM
section. Points (%o, 730) at which - and Baag

are not both zero (“simple zeros”) cor-
respond to transversal intersections of W?(M.) and W*(M.) O(¢) close to the point

(z{‘(—to)u Zé‘(—to), Z30) on Ih,

2.6.83 Chaos

In the familiar case of time-periodic perturbations of two-dimensional steady flows,
transversal intersections of stable and unstable manifolds of an hyperbolic fixed point
may give rise to chaotic dynamics. This may also be true in three-dimensions, however

there are also more possibilities, depending on the nature of z3 as well as the dynamics on
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M.. Below, we describe some poésible cases. Qur discussion will be in the context of the
- Poincaré map of (2.6.46) which can be derived similarly to the one discussed in Section
3. We consider the three-dimensional map (21(0), 22(0), 23(0)) — (Zl(T),ZQ(T),Z:g(T)).
For this three- dimensional map M. is manifested as a one-dimensional invariant curve,

denoted M., having two-dimensional stable and unstable manifolds, denoted W* (.A/ZE)

and W*(M,).

1. |z3 € S'.| In this case M, is an invariant circle (1-torus) and simple zeros of the

Melnikov function correspond to transverse homoclinic orbits to a normally hyper-
bolic invariant 1-torus. In this case theorems in Wiggins [1988] (Theorem 3.4.1)
and Beigie et al. [1991a,b] imply that chaotic dynamics occurs in the sense that
near the homoclinic orbits there exists an invariant Cantor set of curves on which
the dynamics is topologically conjugate to a Bernoulli shift. The fiuid dynamical
significance of this type of chaos has not been studied. In the fluid dynamical con-
text, this case is important for studies of e.g., three-dimensional, time-dependent

perturbations of steady axisymmetric swirling vortex rings.

2. |23 € R, ka(z}, 2%) # 0.] This is a situation that has received very little investiga-

tion mathematically, and none fluid mechanically. Generally speaking, homoclinic
orbits give rise to chaotic dynamics when the invariant sét to which the orbits are
homoclinic is bounded. This allows one to relate the strong stretching and con-
traction that occurs near the hyperbolic invariant set to the global folding process
associated with the homoclinic orbits in such a way that regions can be found which
stretch, fold, and map back over themselves. In such a situation the Conley-Moser
conditions (Moser [1973]), or certain generalizations of these conditions (Wiggins

[1988)]), may be applied to prove the existence of chaotic dynamics. If the invariant
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set to which the orbits are homoclinic is unbounded, then there may be no recur-
rence, i.e., an individual orbit may not approach itself during its evolution in time.
In particular, for our example, the dynamics on M ¢ are described by the following

- 1-dimensional map
23 z3 + ka(2t, 22T + O(e).

Hence orbits on ./‘75 are unbounded. Nevertheless, one cannot rule out “infinite
time” chaos wiﬁhout a detailed study. Moreover, transient chaos is a very likely
possibility; such situations have also not been studied from the point of view of
fluid mechanics. This case applies to e.g., three-dimensional, time-dependent per-

turbations of steady flows in helical pipes with helical symmetry.

z3 € R, k3(zF,z8) = 0.| In this case it may be possible to find recurrent motions,

in particular periodic orbits, on M.. The dynamics on M, is described by the

following nonautonomous ordinary differential equations

ng,(zf, zé’, 23,1) + 0(62),

Z3
i = 1,

(2.6.53)

which is in the standard form for applying the method of averaging (sece, e.g.,

Wiggins [1990]). We cousider the associated averaged equation

23 = eFy(2), 2, z3), (2.6.54)

where
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_ ' 1 /T
F;;(zi‘,zg,zg,) = T/o Fg(z{‘,zg,zg,,t)dt.

" It follows from the averaging theorem that hyperbolic fixed points of (2.6.54),
denoted z3 = Z3, correspond to periodic orbits (with périod T) of (2.6.53). These, in
turn, correspond to hyperbolic fixed points of the associated Poincaré map. In this
case, simple zeros in #o of the Melnikov function (2.6.52), with z3¢ fixed at 230 = Z30,
correspond to orbits homoclinic to a hyperbolic fixed point. In this case the Smale-
Birkhoff theorem applies so that we can conclude the existence of chaotic dynamics.
If (2.6.54) has no fixed points then the disussion from case 2 applies. The fluid
mechanical application in this case are clear: three-dimensional time-dependent
perturbations of two-dimensional steady flows (in which case k3(zy, z2) = 0 for all

z1,22) .

2.6.4 Autonomous systems

Suppose that the perturbations are autonomous, but break the volume-preserving sym-

metry. Then the perturbed system has the form

dzy _ 0H(z,2)

dt - 322 + GFl(Z]_,Zg, 23);

Cl22 _ BH(ZI,Z2)

il s + eFp(21, 22, 23),

dzs

-;i—t- = k3(2’1,22) + EF3(21,22,23). (2655)

The development of the Melnikov theory goes through identically as before, except that

the Melnikov fanction (2.6.52) in this case does not depend on ¢q.
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We next discuss how chaos arises in such systems along the lines of the discussion
- above. The possible fluid mechanical applications are the same as in the time-dependent

case,.wit'h the exception that the perturbed flows are also steady.

1. |23 € SY, ka(2l,28) #0.| In this case M, is a periodic orbit and simple zeros of

the Melnikov function correspond to transverse homoclinic orbits to a hyperbolic
periodic orbit. In this case the standard Smale-Birkhoff homoclinic theorem applies
so that we can conclude that we have “Smale horseshoe” type chaos. That is, near
the homoclinic orbits ther exists an invariant Cantor set on which the dynamics is

topologically conjugate to a Bernoulli shift.

2. |23 € R, k3(z}, 24) # 0.|In this case the discussion for the nonautonomous case still

holds.

3. |z3 € R or z3 € §%, k3(zh, 28) = 0. This case requires some slight modifications.

In this case the dynamics on M, is described by the following one-dimensional,

autonomous ordinary differential equation

23 = eF3(2h, 28, 23) + O(). (2.6.56)

Since (2.6.56) is autonomous, we need not apply the method of averaging. Hy-
perbolic fixed points of (2.6.56), denoted 239 = Z39, correspond to hyperbolic fixed
points of (2.6.55). In this case, a zero of the Melnikov function (2.6.52), with 230
fixed at z3g = Z3g, correspond to Qrbits homoclinic to a hyperbolic fixed point of
an autonomous ordinary differential equation. For this situation different mecha-

nisms for chaos are possible; in particular the “Silnikov mechanisms” and “Lorenz

mechanisms” as described in Wiggins [1990]. (Note: there is a technical problem
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with this sitnation that is easily handled. Namely, once z3 is fixed at the value
corresponding to a hyperbolic fixed point on M, then the Melnikov function is
just' a number. Recall that it is just the leading order term in the expénsion of
the distance between the stable and unstable manifolds of M,. In order to show
that the leading order term dominates the expression for the distance an argument
using the implicit function theorem is required. This is the reason why one needs
“simple” zeros in #g or zz. This problem can be remedied if there are external
parameter(s) in the system; in this case one need only require that the derivative
with respect to an external parameter of the Melnikov function at its zero is not

zero. More background on this issue can be found in Wiggins [1988].)
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2.7 vExampl‘es

In this section we illustrate the techniques with three examples.
2.7.1 Example 1. Euler flow with two-dimensional elliptic vortex lines

Consider the following velocity field, v:

2 R
dt - 1
d:E2 _
a -
d:l);g,
e baz? 4 czl — 2az3,
(2.7.57)
where a, b and ¢ are arbitrary coefficients.
The vorticity field of (2.7.57) is given by
w = (2¢zy, —2bz4,0). (2.7.58)
It is easy to check that v and w satisfy
[v,w]=0. (2.7.59)

Moreover, both v and w are autonomous and divergence free, therefore

e v is an Euler flow

e w is an infinitesimal generator of a volume-preserving, spatial symmetry group for

V.
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We want to find two functionally independent invariants for w. These invariants

- satisfy

of  9f of _
War G + wy, - + Wgy os 0, (2.7.60)

where (wg,, Wy, ,ws;) = (2cx2,—2bz1,0). The classical theory of such equations shows
(e.g., Olver [1986]) that the general solution of (2.7.60) can be found by integrating the

corresponding system of equations

dﬂ?l _ Wy
dzy ~ wg,’
dzy  wy
dzy  wa,

(2.7.61)
where we assumed wz, # 0.

The solutions to (2.7.60) are then given by the functions y;(z1, 22, z3), y2(21, T2, 23)

which satisfy

(21, z2,23) c1,
y?(wla T2, :1:3) = €2,

(2.7.62)

where ¢y, ¢, are the constants of integration for (2.7.61). Note that here we use the
same notation for new coordinates as in the proof of the Theorem (2.2.2). In particular,
Y1, Y2, y3 denote the coordinates in which the infinitesimal generator of the symmetry

group is rectified.
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For simplicity we will assume ¢ = 1 /2,b=1,a = 1/2. In that case, the equations

. corresponding to (2.7.61) are

dzi _ %
d:Bg - 22,‘17
dzs _
d.’L'g

Integrating these gives /2% + 222 = cl,z3 = ¢2. Therefore,

h o= z2 + 222,

Y2 = Z3.

To find y3 we need to solve

9 L, 9L, 2
Wz 6.7:1 +wz'2 81?2 +w1:3 61132 = 1,

or, in our case

The solution to this equation is found to be f = (1/ V2) arctan(ﬁ%l), S0

\/51‘1 )
T2

1
= —=arctan
Y3 ‘/5 | (

The velocity field in new coordinates is now given by
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dyl _ 1
a2
dy: _ 15
dt - 2y1 y2’
dys

7 0.

We can calculate the Jacobian of the transformation z; = z;(y1, 2, y3),2 = 1,.

| Figure 2.1: Phase portrait of the Hamiltonian part of (2.7.64).

Y1, and write (2.7.63) as

dn 1 0K(y, )
dt n Oy
dy _ _10K(y1,m)
dt nn On
s _

dt

(2.7.63)

..,3to be
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where K = —y#/8 + y» y?/2 is an integral of motion for (2.7.63). Making a further
- transformation (21, 22, 23) = (y3/2, ykg;, ¥3), which corresponds to (2.2.22) in the proof of

the Thed:em (2.2.2), our system takes the form

dZ] — lz —_ 6H!21 v22!

& - 2”71 = 85}; ’

d gz 2 )

—d-ytz- = Zl -_— 22 = —_ 8212 2 N (2.7-64)
dya = 0.

dt ?

where H(zl,' 23) = 2129 — 23 /2 (see figure (2.1)). In x coordinates H = —(z3 +22%)?/8 +
z3(z3 + 222)/2. 1t is clear from this that the velocity field (2.7.57) represents the flow of
an inviscid fluid around an elliptical paraboloid given by (23 + 2z%)/4 — z3 = 0. We see
that the transformation to symmetry coordinates simplifies the vector field significantly.
In particular, in the new, symmetry coordinates the vector field is linear, two of its

components form a decoupled Hamiltonian system, and one of the components is zero.

Note that ys3 in this example is defined on §'. This is a consequence of the fact that

the group acting on the flow is §!. We now give an example where the group acting on

the flow is R'.

2.7.2 Example 2. Euler flow with two-dimensional hyperbolic vortex
lines

Consider the velocity field

dzy
dt

de

—_— = aZy+ az
dt 1 2y

dmg
e ba? ~ bal ~ 2az3.

= azy+ az,
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The vorticity field associated with this velocity field is given by

w = (—2()2}2, —2b2!1,0).

This flow is also a steady Euler flow, as can be verified by direct calculation. We assume
that b = 1/2,a = 1. It is easy to see that the vortex lines are hyperbolas described by

the equations

2
T{— T3 = c3,

Hence, functionally independent invariants y; and y, are given by

2
n = Ty Iy,

Y2 = Z3,

(we could have obtained these through the same formal procedure as in Example 1., in
particular solving the analogues of (2.7.61)). Also, using the same methods as in the
Example 1. we can find 3°:

-1 I
= —tanh™! =,
Y3 23

In the y1, y2, ¥3 coordinates the \)elocity field is given by

dyy |
—_— = 2
l’ 1 Y1,
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a1,
F7 2?/1 Y2,
dys

= = -1,

di

(2.7.65)

We can immediatelly recognize that it has the following form

dy _ oA

dt dyy’
dya _ _0H
dt - 3y1’
dys _

dt L

where

H= —yf/4 + 2y1y2 = —(a:f - x§)2/4 + 2(3:% - m%)xg,.

The major difference between this example and Example 1. is that in this example
y3 is defined on IR! which.is a consequence of the fact that the symmetry group is R.
Note that this flow describes a flow in a wedge which is three dimensional, although the
wedge bounded by {(z1,z3,z3)|z1 = T3, €2 > 0} U {(21, 22, 23)|T1 = —22, @2 > 0} is

two-dimensional.
2.7.3 Example 3. Action-angle-angle coordinates

Consider the following flow:

dz, 9 z9
—= = 3T —2c———7
dt : :c% + w% ’
dzs zy

— = 2237 20—
7t 322 + e L
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— = 1-2zi4+2}) 22

In cylindrical coordinates the flow is given by

LA
¢~ 7
‘ -(fl—i = 1-27%2- 2%,
g 25
T

(2.7.66)

where ¢ is an arbitrary constant. In a fluid mechanical context, ¢/2 is the circulation.
The flow (2.7.66) is a superposition of a well-known Hill’s spherical vortex with a line
vortex on the z axis, which induces a swirl velocity 6 = 2¢/7?. That the superposition
of these two flows is possible comes from the following argument: The vorticity equation

in Cartesian components is given by

Ow; Ow; Ov;

B g, e, =

where v; is the i-th component of the velocity vector v, and w; is the i-th component

of the vorticity w = V x v. Suppose that v consists of the superposition of two vector

fields, each of which satisfies the vorticity equation:

v=v1+v2.

Then the vorticity equation for v reads

2
Ow} +6w F o+ 2)(‘3((.0 + w?)

ot Oz;

8(1) + v?)

]

= (w] +w?) =0,
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and upon rearranging

dw! 1aw 00} BWr | L0080 AW L0l | 0wl 80
o U0, e, T ot T 0, it s, “idm;, Viow, “igm,

Assuming steadyness, and using the fact that both vector fields satisfy the vorticity

equation, their sum will satisfy the vorticity equation if

Vi’ = v W],
where [-, -] denotes the Lie bracket of two vector fields. This has been already known
to Truesdell [11], without a Lie bracket interpretation. Let the Hill’s spherical vortex
be denoted by a superscript 1, and the flow induced by a line vortex at z axis by a
superscript 2. Now, the flow induced by the line vortex at the z axis is irrotational, so
w? = 0 except at the z axis. Further, it is easy to check that v? and w! commute. The
fact that the line vortex is singular at the z axis is largely irrelevant for the dynamics,
as the z axis is invariant for both flows. The new flow can be termed “swirling Hill’s
vortex.” So, (2.7.66) satisfies Euler’s equations of motion for an inviscid incompressible
fluid everywhere except on the z axis, where the swirl velocity becomes infinite. Note
that we use r, z, @ instead of ¥y, ¥, y3 as notation for the ” symmetry” coordinates in this
example. We transform the first two components of (2.7.66) into canonical Hamiltonian
“form, by letting R = 72/2 (this is another example of the transformation (2.2.22)). The

system (2.7.66) then becomes

dR

Ti_t- = 2RZ,

dz 2
5 = 1-4R — z*,
@ _ <

d¢ R’
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(2.7.67)
with the R — z components having the form
dR _ 0H(R,z)
dt 0z
dz 0H(R,z)
a OR
(2.7.68)

where H (R, z)‘ = Rz? — R+ 2R? is the Hamiltonian. Following the ﬁrocedure in section
2. we will first transform (2.7.68) to action angle variables (I,¢1), and then derive
the second angle variable, ¢,. It is easy to check that (2.7.68) satisfies the assumption
from the section 2. In particular, there is an elliptic fixed point at z = 0,R = 1/4
surrounded by a family of periodic solutions. There are two more fixed poins for (2.7.68),
at R = 0,zk = %1, which are hyperbolic. The integral H takes the values between 0
and —1/8 with the first value corresponds to the separatrices connecting the hyperbolic
points, which are given by {(R,z)|R=0,-1< 2 < 1}U{(R,2)]2R+22=1}. H = -1/8
corresponds to the elliptic fixed point (see figure (2.2) ).\The action variable is given by

(see (2.3.31))

;= L / 2dR
27 JH=const.

2 Rma.r
= — d
27[' '/R'min i R’

(2.7.69)

where R,in, Rmar denote the values of R where a level set of H intersects R axis. These

can easily be computed and found to be

Ropin = i(l - VI+8H),
1
Rz = Z(l"i‘ V1+8H)



Figure 2.2: Phase portrait of (2.7.68).

(In passing from the first to the second form of the integral in (2.7.69) we used the

reflectional symmetry of the level sets of H around z = 0. From the expression for the

_ 2
.= :i:\/-I-I—--*-—ER——g-}i-. (2.7.70)

H + R —2R* = 2(Rmaz — R)(R = Rpnin). (2.7.71)

Hamiltonian function we have
We also have the equation

Using (2.7.70) and (2.7.71), (2.7.69) becomes

Rmaz — 2
;= L / JHETR-2R
T Ruyin R

_@/Rm" \/(Rma.r - R)(R - Rmzn)dR
T R ’

Rupin

(2.7.72)

The integral in (2.7.72) can be evaluated in terms of elliptic integrals as found e.g. in
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Gradshteyn/Ryzhik [1980]. So,

. f — LV e [_ ( ’ Rmzn ) QRmtnF( mzn ]

Qf 360~ 2Rmm1f(p)]

(2.7.73)

whére F(¢,p), E(¢,p) are elliptic integrals of the first and second kind, respectively,
K(p), E(p) are the associated complete elliptic integrals, Rp,in,Rmqz are as defined above,

and
Rmin

=4/1- .
P Romaz

The first angle variable, ¢, is given by (cf. (2.3.32))

2
b = mt, (2.7.74)

where ¢ is the time measured from some reference point on the orbit (in our case the
point (Rpin,0)), and T(H) is the period of the orbit corresponding to the level set of
H in the R — z plane. We then must first calculate the period T on the orbits in R — =
plane which is given by

T(H) =2 / Fimes dR (2.7.75)

mln

From (2.7.67),(2.7.70),(2.7.71), (2.7.75) we obtain

L /Rmaz 1 dR

\/5 Rnin \/R(Rma:v - R)(R - Rmin) ’
\/5 (1 Rmu:z: - Rmin)

B V Rmaz‘ 2 ’ Rmal‘

2
\ / o K(p).

CT(H)

(2.7.76)
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To éomplete the calculation for ¢; we need the time . We have to distinguish between

the cases z > 0 and z < 0. In particular, for z > 0

R dR
t,50 = /Rmin f'a

'275 ./ min R(Rma:r - R) R~ Rmin).

We can integrate the last expression to obtain

t.no = 1 F(arcsin Rinas(R = Ronin) p).
=0 = vV Q.Rmax R(Rmam - Rman)

In the case when z < 0 we have

N

Ruin R Rnax R
I
2 R,,m R
T(H) Rmas dR
2 2{ / VR(Rmaz — R)(R — Ruin)

Rmaz R R 4R
tz<0 - / —-—+

So,

—_— T(H) 2\/5 . Rma;r; - .R
tz(O - 2 + v Rmaz F(arCSln Rma.z‘ - Rmin ’ p)

Thus we have completed the calculation of all terms needed in (2.7.74). We now turn to
the calculation of ¢3. Using Theorem (2.3.1) from section 2. ¢, (in the notation of this

section) is given by

o hs(I, 41) é1)

D B iy, (2.7.77)

' YA/
¢2=0+—2——¢1-/
T 0

where

2 ha(l, ¢1)
Ab = / oD 2aldy 01) 4

Fortunately, we do not have to find the inverse of the transformation I = I(R,z2),¢1 =

#1(R, =) in order to calculate the neccessary terms in (2.7.77), as we can replace the
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infegratibn on ¢; with the integration on ¢ and, in turn, integration on R. Thus

Rmaz §

/ )
ml'l R

9% [Rmas 1

\/— Rmin \/RS(Rmaz‘ - R)(R Rmm)

A6

which can be evaluated as

A = C\/_ 7" Rios — Rmin)
Rmm vV Rpex Reoe
V2

—-——--——-———-——E .
cRminVRmar (p)

Next we calculate

1 hg(I, 1)
- A o

for the cases z > 0 and z < 0. Wé have, for 2z > 0

. R 1
Jonp = —= dR
> 92 JRmin VR (Romaz — R)E — Romin)

Thus we obtain

c ‘ . Rmaz(R - Rmin)
50 = e ,p).
J >0 RminV 2Rma:z: (aICSln \/R(Rmaz - Rmin) p)

Siinilarly,

JZ<0 Ao Rmzn V mﬂ-l‘ [E(aICSIn Rfa::z ;ﬁzn ’ ) \/(Rmaz R;Z(R Rmm')

Thus we calculated all the terms neccessary for the completition of the transformation

to action-angle-angle coordinates:
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1.4 Ql

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02

Figure 2.3: Frequency ;.

The frequencies, ; and {2, are given by (cf. section 2. and figures (2.3),(2.4),(2.5))

2r V2R ez

M(HJT)) = T(H)~  K(p)
MW(H(I)) = Ql(Hg(,{))Ag - R:ing)zp)'

Now I is a monotone function of H (see figure (2.6)) so, for a particular analytic pertur-
bation, having frequencies expressed as functions of H, we can check the nondegeneracy

condition required for the validity of the KAM-type theorem stated in Section 4.

2.8 Conclusions

In this chapter we developed necessary dynamical systems tools for the analysis of
three-dimensional, nonautonomous or autonomous vector fields which admit a volume-
preserving spatial symmetry group. We proved that such flows admit a very simple

coordinate representation. That representation allowed us to develop action-angle-angle
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sof €2,
25
20
15

10

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02
H

Figure 2.4: Frequency ).

Q]/Ql

-0.12 -0.1 -0.08 -0.06 -0.04 -0.02

Figure 2.5: Frequency ratio.

variables and appropriate homoclinic coordinates, which gave rise to development of
KAM-type theory and Melnikov theory, respectively. The range of applicability of these

methods is quite large: it is clear from section 4 that Euler flows always possess such
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125 -0.12 -0.115 -0.11 -0.105

Figure 2.6: Action variable I as a function of the integral of motion, H.

a symmetry. By a direct analogy, steady magnetohydrodynamic flows in frozen-field
approximation always have a magnetic field as an infinitesimal generator of a volume-
presérving symmetry group. Through the geometry of the problem, it is often easy to
conclude that a certain flow has a symmetry: such is the case, for example for flows in
non-straight pipes, where the symmetry group is usually the translation along the axis
of the pipe. That symmetry is clearly volume-preserving. In fluid mechanics, flows of
the form (2.2.12) are called regular duct flows. Franjione and Ottino [1991] proved the
linearity of stretching for such flows. There are recent experiments on chaotic three-
) dimensional flows performed by Kusch and Ottino [1991], in which one of the examples
(the EHAM flow) is amenable to the type of the analysis we are proposing. In particular,
the chaoticity of the motion is due to the time dependence of a cross-sectional flow, and
it may be assumed that there is a translational symmetry in the direction of the z axis.
Modifications of such flows, such as the ones shown in Figure 21 of Kusch and Ottino

[1991] should also admit our analysis. The KAM-type theory developed in section 5 can
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. be used to e);plajn\the persisténce of invariant cylinders in these experiments. Melnikov
methoﬂ developed in section 6 can serve as a basis for the development of lobe dynamics
-~ in three-dimensional flows, along the same lines as for two-dimensional flows, as presented
in Rom-Kedar et al. [1990]. The transport problems in chaotic three-dimensional fluid
flows can thus be assesed and some of the issues of transport, raised by the previously

mentioned experiments, resolved.

We also explained the geometrical meaning of so-called Clebsch variables, thus ex-
plaining why there is a Hamiltonian structure for a Euler flow when represented in those

variables.

Let us Iﬁention here that the local reduction procedure developed here admits a
geometrical generalization in the spirit of symplectic reduction for Hamiltonian sys-
tems (Marsden-Weinstein [1972]). Also, instead of restricting our attention to three-
dimensional systems, we can consider n-dimensional flows preserving some n-form. By
performing reduction (i.e., transformation of coordinates analogous to the one presented
in this chapter forvthe three-dimensional case) we end up with an n — 1 dimensional
system preserving an n — 1 form. Clearly, we cannot claim in general the Hamiltonian

structure of the resulting n — 1 dimensional system, as » — 1 can be odd.
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Chapter 3

Birkhoff’s ergodic theorem and
statistical properties of
dynamical systems

3.1 Introduction

One of the most famous results in ergodic theory is Birkhoff’s ergodic theorem (B.E.T.).
It plays a major role in the theory presented in this chapter. Thus we begin by stating

this theorem.

Theorem 3.1.1 Let (A, A, p) be a probability space with the and T : A — A a measure-
preserving map (discrete time) , or T' a one-parameter group of measure preserving

automorphisms of A (continuous time). Then,

1. If f is an integrable function on A, the set © C A on which the limit

. N : .
fH(z) = Jim - X(:) foT (:1:) discrete time, (3.1.1)

or,
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1 T
f*(m):qlim T/ foT'(z)dt  continuous time, (3.1.2)
—00 0
exists is of measure 1.

2 The function f* is integrable and »
/ frdp = / fdp. (3.1.3)
A A .

3. f* is.an invariant function under T, i.e.,

ff(Tz) = f*(z) discrete time,

or

f*(T*z) = f*(z) continuous time.

In the last 20 years vigorous research on the properties of so-called chaotic dynamical
systems has taken place with the involvement of physicists, engineers and mathemati-
cians. These investigations have usually concentrated on low-dimensional dynamical
- systems that exhibit both regular and chaotic behaviour. The rapid advance and avail-
ability of computing power has greatly facilitated studies of the global analysis of low
) dimensional dynamical systems as well as studies of the statistical properties of large
ensembles of orbits. In this chapter we hope to show that Birkhoff’s ergodic theorem
can play a major role in proving numerically inspired conjectures about the statistical

properties of dynamical systems.

Besides B.E.T.; another important concept in our work is the ergodic partition of the

phase space (for the formal definition, see section 2). From a pure mathematicians point
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. of iriew, Hamiltonian systems are typically non-ergodic. This has been proved, using

the KAM theory, by Markus and Meyer [M-M]. From a statistical physicists point of

" . view (Palmer [Pal]), “broken ergodicity” (or non-ergodicity) is a general phenomenon.

Numerical studies of large numbers of coupled symplectic maps and nonlinear large
Hamiltonian systems show regimes in which non-ergodicity is apparent (Livi et al. [L-
P-R-S-V], [L-P-R-V], Falcioni et al. [F-M-V]). Numerous studies of area preserving
mdps show tlia,t examples of mixed regular and stochastic behaviour are abundant. It
is interestihg then to ask whether the phase space can be partitioned into invariant
components, such that on each of those components, the dynamical system is ergodic.
‘This question has been answered positively in the works of von Neumann [N] and Rokhlin
[R], who introduced the notion of the ergodic partition. In more recent work (Palmer
[Pal]) on broken ergodicity in statistical mechanical systems arising in condensed matter
physics, a similar idea has been put forward, and the statistical mechanical formalism

for non-ergodic systems (or, those with several ergodic components) has been developed.

We will show that B.E.T., coupled with the notion of the ergodic partition of the
phase space, (see Section 2), and different methods from probability theory are very
useful tools for proving numerically or experimentally obtained conjectures about the
statistical properties of deterministic dynamical systems. To justify this, let us mention
some of the numerical and experimental works that have either motivated developments

- in this chapter, or can be analysed by the methods developed herein.

One statistical property often considered in numerical studies of chaotic transport
is the mean square displacement D(?) at time ¢ of trajectories or orbits of a dynamical
system. The dynamical system may be either a map (in which case ¢ is discrete) or a

flow. Typically, one tries to determine the positive exponent 7 in the following expression
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 such that the indicated asymptotic limit is obtained, and is nonzero:

lim D(t).
t—oo {7V

If~ = 1 then the behavior is referred to as diffusive and if ¥ # 1 then the term anomalous

diffusion is used.

In early studies of two-dimensional, area-preserving maps, it had been observed that

the diffusion coefficient, defined as

diverges in the presence of so-called “accelerator modes.” In particular, Cary and Meiss
[C-M] observed that D diverges for a certain regime of the “sawtooth map,” but a

quantity that they refer to as the “streaming coefficient,” S, defined by

§ = 1im 28, (3.1.4)

t—oo 12

converges. Let us consider the issue of “diffusion” in maps more generally and describe

"a general mathematical framework.
Ezample 1.1 (Diffusion in Maps)

Let us consider a tWo-dimensional, area-preserving, discrete dynamical system, or
map, 7', defined on some domain D which is either the torus, the finite cylinder, or some

compact invariant subset of IR?, having the following form:

Ti41 = &y +f1(zi7 3/:‘),



T4

Yir1 = ¥ + fo(@i, vi)-

(3.1.5)

The z, component of the point (zn,yn) is written as

n—1 n—1
To =20+ Y fi(zi,u) = 2o+ D f1 0 T (20, %0)-
=0 =0

Let p(zo, yo) be some initial distribution of points such that its integral over the domain

is equal to 1. Then

(zn — zo) /1;(-%(970’ Yo) — £0)P(Zo, Yo)dTodyo

n—1
= /D (Z fr o T(2o, yo)) P20, Yo))dzodyo

- (3.1.6)

denotes the mean value of z at the n — th iteration. The mean square displacement

associated with the z coordinate is defined as

D(n) /;[xn — 20 — (25, — 20)]*P(20, Yo)dzodyo

n=1
= /;)[E f10T(z0,%0)

=0
n-1

~(>_ fi 0 T*(z0, 0)))I*P(20, y0)dzodyo.- (3.1.7)
=0

We want to motivate a general structure for these diffusion or dispersion problems.

Define the sum function F™ on the domain D as follows

n~-1

F"=3" fioT"

1=0
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It should be clear. that

. D . 1 n m
im 200 _ gy L | L™ (@0, 90) = (F (20, 90))]*P(%0, yo)dz0dyo-

n—oo 1Y n—oo 1Y

Thus the asymptotic behavior of the diffusion of the z component of the orbits of this

map is equivalent to asymptotic behavior of the diffusion of this particular sum function.

" In section 2 we develop some general results concerning the dispersion of sum func-
tions usingvthe B. E. T. and the ergodic partition. Qur results provide rigorous conditions
under which the “streaming coefficient” § exists, with 0 < § < co. We show that non-

~ergodicity is a fundamental characteristic involving the #? asymptotic behavior of D(t).

The asymptotic behavior of ‘D(t) is also an important quantity in fluid mechanics.
The study of this can also often be cast into the form of a study of continuous time sum

functions as the following example shows.
Ezample 1.2( Dispersion in Fluids)

Consider a velocity field, a solution of the Navier-Stokes equation, having the follow-

ing form

0H (z,y,t)

— 5, (3.1.8)
. _0H(z,y,1)
y - 613 ’ (3.1.9)
z = fi(z,y,1). (3.1.10)

There are two reasons for considei‘ing this particular mathematical form for the velocity

field—one mathematical and the other physical. Mathematically, it can be shown that
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any diveréenc_e-free vectof ﬁeld on IR? that admits a spatial volume-preserving symmetry
group can be transformed to this form (see chapter 2 or Mezi¢ and Wiggins [M-W1]).
PhySiéally, velocity fields of this form arise when studying flows in pipes or ducts (see,
e.g., Jones and Young [J-Y] and Khakar et al. [K-F-0]). The spatial volume-preserving
symmetry arises as a result of a “preferred direction of flow” along the axial direction
of the pipe or duct. In terms of our coordinates, £ — y denote coordinates for the cross-
section of the‘ pipe or duct and 2z denotes the axial coordinate. A physical problem of

interest in this setting involves the axial dispersion of a passive tracer placed in the flow.

The study of this problem is facilitated by the particular form of the velocity field that
‘we are considering. The dynamics of the z and y variables decouples from the dynamics
of the z variable. In turn, the behaviour of z is dependent only on the dynamics of z

and y, thus we have, from (3.1.10)

. . ) ) o
z(t, 05 Yo, 20, tO) = Z fg(:l:(t,mo, yOat0)7 y(t’ Lo, yO’tO)’t)dt + 20, (31-11)
. 0

where

(z(t, 2o, Yo, o), y(, Zo, Yo, to), 2(¢, To, Yo, 20, %0))

are the solutions of (3.1.8)-(3.1.10), with initial conditions

z(t0, 2o, Yo, t0) = o,
y(to, Zo, Yo, t0) = Yo,
2(to, o, Y0, 20,t0) = =zo.
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(3.1.12)

Suppose we are given some distribution of initial conditions p(zo, Yo, z0,%) which
giyes_ us the denéity of particles at (zo, Yo, zoj at time to, such that p(zo, yo, 20,%0) is
integl‘able with a finite integral. Assume the considered particles are passive, i.e., they
are advected together with the flow. The problem of shear dispersion consists of studying
the statistical behaviour of such an ensemble of particles. Assume further that the
time-dependence in (3.1.8)-(3.1.10) is such that H and f3 are 27-periodic in ¢, and
(3.1.8),(3.1.9) are"deﬁned on the closure of some bounded, open subset of R?. We first
suspend the system (3.1.8)-(3.1.10) over A x § 1. by introducing the new time variable,

T = t. Then we can introduce the renormalized density p(zo, yo, 20, t0), by

1
P T e Pizodyodzodto

>
.

We have

.’l}, aH($7 y’T)

= 35 , (3.1.13)
y o _9H(z,y7)
y = o (3.1.14)
¢ = 1, (3.1.15)
7 = fi(z,y,1), | (3.1.16)

where the prime denotes the derivative with respect to 7. From (3.1.11), we obtain
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2(T, Zo, Yo, 20,t0) = 20 +/(; f3(z(%, zo, Yo, t0), y(7, To, Yo, t0), T + to)d7. (3.1.17)

Note that A.x S! is a compact metric space, and that (3.1.13)-(3.1.15) induces a one-

parameter group 77 of diffeomorphisms on it, defined by

Tq_-(m07 Yo, tO) = ((l:(f, Zg, Yo, tO)’ y(?7 Zg, Yo, t0)7 T+ tO)'

Moreover, 77 is a measure-preserving group of transformations, as the system (3.1.13)-

- (3.1.14) is divergence free. The dispersion in z is given by

D(T) = / (Z(T7 Zo, Y0, 20, tO) - 20— (Z(Ta Z9, Yo, 20, tO) e ZO>)2 p(w07 Yo, <0, tO)dﬂa
AxIR xS
where
() = / ()p(wﬂa Yo, <0, tG)dﬂv
AxRxS?
and
dy = dzodyodzodty.
However, from (3.1.17), we see that

T T\\2
lim D(r) = lim fo]RxSl (F" —(F")) Pdl‘,

T—00 TY T—00 ™

where

FTE/ a0 T di.
1]
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Thus the ‘a,sympto‘tic properties of the dispersion in z can be studied using continuous

time sum function F7.

‘The work of Jones and Young [J-Y] on shear dispersion and anomalous diffusion by
chaotic advection motivated much of the work in this chapter. The physical phenomenon
under’study in their work was the flow of a viscous fluid through twisted pipes. The
flow is symme_;tric (in the sense of the above example), so the distance that the passive
tracer particle travels along the axis of the pipe depends only on the dynamics in the
cross section of the pipe. In What Jones and Young refer to as the mized regime (which
is the case when the motion in the cross section is non- ergodic) they find that the
particle dispersion in the axial direction asymptotically (for large times t) behaves as
t2. 12 dispersion has also been observed in other fluid dynamical studies, in a different
physical contexts. Weiss and Knobloch [W-K] observe D(t) ~ ¢} in a study of trans-
port by modulated traveling waves, and explain it by the fact that there is a shear in
the mean flow. Pasmanter [Pasl] finds ¢? dispersion in the shallow tidal flows study,
pointing out that it is due to the difference in the long time drift of particles in different
regions. These physical explanations are made mathematically precise in Theorem 3.2.1.
Ridderinkhof and Zimmerman [R-Z] find ¢? behaviour in the same context as Pasmanter
- transport in shallow tidal seas !. Aranson et al. [A-E-R-T] in their numerical study
of the impurity transport in parametrically excited capillary ripples observe that “the

-diffusién law ... apparently has the form (r?) ~ #7, ... at all ¢”, where r is the dis-
tance frorﬁ some origin of coordinates, and ¢ is an integer. Thus, it is not only that
the dispersion (r?) asymptotically behaves like ¢2, but also higher order moments show

similar regularity. In connection with this observation, see the remarks after the proof

'¢*, @ = 1.5 and 1.7 behaviour for the dispersion that they get in some cases is probably due to the
fact that those are really finite-time results - the time at which they stop the calculation is only 10 times

bigger than the period in a cell.
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of the Thebrém 3.2.1. Neishtacit et al. [N-C-C] analyze the mean square displacement of
charged particles moving at an angle to the magnetic field in the field of a wave packet.
" Their numerical study reveals what they call a free flight law, i.e., the mean square
particle displacement increases proportionally to the square of the time. Wagenhuber et
al. [W-G-N-0] performed a study of the motion of ballistic electrons in lateral surface
superlaftices, and found approximately t* behaviour for dispersion (note that this work
is somewhat d;fferent from the rest of the above, as the motion of the single particle is

considered, as opposed to the motion of an ensemble of particles).

Our results depend, through the B.E.T. on the fact that the dynamical system pre-
seTves a measure i. The measure does not necessarily have to be smooth. Now, every
continuous dynamical system preserves some measure (see Mafie [M]). The problem is
that the invariant measure is not necessarily the one with respect to which we would like
to calculate the dispersion. In all of the above mentioned works, the dynamical systems
under consideration preserves a smooth measure. As fhe dispersion is usually calculated
with respect to a measure which is absolutely continuous with respect to the smooth
invariant measure, in those cases our results are easily applied. But, caution must be
exercised when applying the results of this chapter to systems which do not preserve

| a smooth invariant measure. Exampies where t? dispersion is found, but the dynami-
cal systems do not neccessarily preserve a smooth invariant measure, are Crisanti et al.
-[C-F-P-V] , Wang et al. [W-B-S], [W-M-M-S], Tio et al. [T-G-L] (all on the passive
advection‘of particles suspended in a fluid, with the density of the fluid different from
the density of particles), Geisel et al. [G-N-Z] (diffusion in Josephson Junctions), Artuso
et al. [A-C-L] (1-D maps), Aronson et al. [A-R-T] (p#ssive scalar transport in the field of

two orthogonal standing inertial waves in a rotating fluid, and the spiral wave motion in

a nonequilibrium medium, modeled by a space-time periodic, two-dimensional, reversible
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Velbcity ﬁeld). Our methods can be applied to explain their result, provided the time
averages of certain functions exist almost everywhere, with respect to some appropriate

measure (in other words some form of a problem-specific B.E.T. is needed).

It is interesting to mention that ¢? dispersion appears in T.J. Day’s [D1], [D2] exper-

imental measurments of the dispersion of fluid particles in natural channels.

: Apaft from the ¢? dispersion, here are some other numerical findings that the results
in this chapter can explain: Pasmanter [Pas2] observed the “patchy” structure of the
concentration of particles transported by shallow tidal flows. Khakhar et al. [K-F-O] in
their study of chaotic mixing find that the so-called isoresidence times sets (each fluid
particle in éuch a set spends the same time in the mixer before exiting) portrait looks
similar to the phase portrait, and the more so the longer the mixer. Also, they observed

multi-peaked distributions of first passage times.

We present a general theory for dealing with problems of the above sort based on
the B.E.T., the concept of the ergodic partition, and the tools and analogies with the
probability theory. Our méthods will be centered around the analysis of either discrete
or continuous time sum functions and general initial distributions defined by integrable
functions on the phase space. It turns out that many of above presented problems can
be cast in a; form which requires the statistical analysis of sum functions. Moreover, the

relation between sum functions and the B. E. T. should be clear. If

F"-—.zn:foTi,

i=0
denotes a discrete time sum function, where f is some integrable function on the phase

space and T is the map generating the dynamics, then the time averages of such functions
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2 exactly the quantities considered in the B. E. T.

In section 2, we set up our framework and show that the condition under which
t2'kdispersion can be expected is, loosely, that the initial distribution is not entirely
contained in one of the sets on which the time average of f is constant. Through the
use of the ergodic partition, we replace the time averages by the spatial averages. In
section 3, we notice an analogy with probability theory and, thus, obtain results about
pro‘bability distributions of sum functions and show how the ergodic partition affects
their properties. In section 4, we analyse the problem of first passage times. We obtain
an exact analytic expression for finite times, using a novel approach. We also analyze

the problem of isoresidence set asymptotics.

In section 5, we reformulate the theory for dynamical systems with continuous time.
Wiener’s local ergodic theorem is used to obtain a result analogous to a known result

from turbulent dispersion theory, namely, that the initial dispersion behaves like 2.
3.2 Dispersion of sum functions

In many numerical studies of area-preserving maps, one often sees regions of phase space
occupied by regular motions (periodic orbits, KAM curves) interspersed with regions
in which the motions are apparently irregular (irregular regions being defined loosely
as the ones in which there exist orbits that are “space-filling”). The latter regions are
often called ergodic, aithough typically ergodicity is not proven. Statistical properties
of the map are then studied numerically. A particular statistical property that is often
investigated is the dispersion, D(n), which measures the average square separation of

points, on the n-th iteration of the map.

In this section we study the dispersion of sum functions for n-dimensional, measure-
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preéerving maps with arbitrary initial distributions of points. We show that asymptoti-

cally the dispersion is proportional to n? for all maps that are not ergodic on the whole

T phase space, with certain exceptions, related to the initial distributions, to be presented

in deta.il below. In the course of these investigations we formalize the idea of regular
and irregular regions using the notion of the ergodic partition of the phase space. The
role of the ergodic partition in this section is to allow us to calculate certain constants
through spatiell averages instead of time averages, resembling thus the procedure used in

statistical mechanics. We will also use the ergodic partition in later sections where we

analyze other statistical properties.

3.2.1 The quadratic dispersion of sum functions

We shall analyze a discrete dynamical system (A, yu,T) generated by an automorphism
T : A — A, defined on a compact metric space A. We assume that p is a o-additive,
complete measure and defined on the Borel o-algebra A, with p(A) = 1. We denote

points in A by z, and the n — th iterate of T by T™.

Consider a measurable, bounded function f : A — IR. We define the function F™ on

A by

F“:En:fo:rf,

=0
where we>put T%: = z. Clearly, F" is measurable and bounded on A. We will refer to

F™ as a sum function.

We shall be interested in statistical properties of sum functions. Consider the en-
semble of initial conditions in A given by an initial distribution p, where p is a positive

integrable function on A such that
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A

We define the mean value of a sum function, (F™) to be

(Fy = /A Frpdp. (3.2.18)

This quantity exists as p is integrable, and F™” is bounded. Also, we define the dispersion

of a sum function as

D(n) = o*(n) = /A (F™ — (F))?pdp, (3.2.19)

where o is the standard deviation. The integral (3.2.19) exists by a similar argument

as for (3.2.18). Our goal in this subsection is to deduce asymptotic properties (when

n — 00) of D(n).

We denote the spatial average of f over A by f:

f= Lfdu, (3.2.20)

and we denote the time average of f on a trajectory of T passing through z by f*(z):

n—1

f*(z) = lim -71; ; f(T'z), z€ A, neN. (3.2.21)

The subsets of A on which the time averages of a bounded, integrable function f are

constant will play an important role in our theory. These will be denoted by



85

B. ={z € A[f*(z) = c,ce R}.

Let us denote by ¥ the set of all pointsin A such that f* exists, and by X its complement.
Ye ié, by the AB.E.T., of measure zero. Clearly, A = (U,B;)UX°. Thus the sets B, together
with ¢ form a partition, £f, of A (for this and the following terminology, see Rokhlin
[R] or Cornfeld, Sinéi, and Fomin [C-S-F)). It is a stationary partition, as each set in £
is, again by B.E.T., invariant under T. &; is actually a measurable partition, as we will
see in the next subsection. We shall use the notion of a partition heavily later, but we
do not need any of its specific properties at this stage. So, we postpone a more detailed

discussion for the next subsection. We can state the following theorem:

Theorem 3.2.1 Consider a dynamical system (A, p,T), a bounded, measurable function
f: A —= 1R, and an initial distribution p, all defined as above. Suppose that there is no

c € R such that p(supp(p)\B.) = 0. Then, we have

lim D(?) =a < 00,
n—+00 7
where ‘
2
a= [ |5 [ rodu] pin, (3.2.22)
A A

and a > 0. Conversely, if 0 < a < oo, then p(supp(p)\B.) # 0,Vc € R.

Proof: From the definition of the dispersion of sum functions given in (3.2.19), we have

D(n) = o%(n) = /A (F™ — (F™))?pdp. (3.2.23)

By B.E.T.
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Il
E.

1< ;
lim —- T
i, 22 () = lim =

il
-
*
~~

8
:—/

(3.2.24)

exists on ¥ C A, pu(X)=1. By boundedness of f on ¥ C A,

n—1

F@) = |lim Y f(T)]
=0

n

1t :
lim — z | f(Tz)|
=0

IN

n—oo q, £

< G,

(3.2.25)

where C € IR* is such that |f(z)| < C throughout A. Now we are set up to calculate

lim,— D(n)/n%. We have

D(r)

2= [ - e
1 PR ;
- /A(Ei;f” ~ LT T pd

(3.2.26)

By boundedness of f and positiveness of p,

A

n n 2 bn n
(RLrom -G Erem) o < (GLreTIHIGE oT

i=0 =0 =0 =0

IN

(C+ C/ pdp)’p = 4C?p, (3.2.27)
A
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forl‘every n. Now, 4C?p is an integrable function on A, therefore we can use Lebesgue’s

bounded convergence theorem in the following computations to obtain

. D(n . Fm Fm
lm B2 = tim [ (-
= /hm(——(—))zpdﬂ
An—TO0T M
= [ im Z— (1im Zyy2pa
- A n-l—-ylgo n n—-r-ngo n p 'u
- / (f* = (/")) 2pdp
A
< /4C2pd#
A
< oo, (3.2.28)

where we used (3.2.25) in the last line.

What is left to prove is @ > 0. We summarize the necessary argument in the following

lemma:

Lemma 3.2.1

/A [f "o /Af *”d"r?’dﬂ =0 < p(supp(p)\B:) =0,

for some (unique) ¢ € R.

. Proof: Suppose p(supp(p)\B.) = 0 for some fixed c. Then

L[f*—Lf*pdﬂ]zpdu»=

2
* *n(z)d dp.
/suPP(P) [f /;upp(z’)f o) l{‘ i
(3.2.29)
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Bﬁt, as sAupp(p) C B, except for a set of measure zero and f* = ¢ on B,, the right-hand

side is zero. |
'-Conversely, suppose
2
[ 7= [ rpau] vau=o.
A A

Note that the integrand is positive. Then, for almost every z € A either

p(z) =0, (3.2.30)

so z ¢ supp(p), or
| f(=)- /A [ (z)p(z)dp = 0. (3.2.31)

Let ¢ = [, f*pdu. Clearly, the set of all points for which (3.2.31) is satisfied is a subset
of B.. But, from (3.2.30) and (3.2.31) it is clear that supp(p) C B, except for the subset

of supp(p) of measure zero. Thus we are done with the proof of the lemma. O

The above lemma completes the proof, as we easily conclude that ¢ > 0, and the last

statement of the theorem also follows from it. 0

Let us make several remarks about this theorem.

Remarks:

e Note that if T is ergodic, then, as is easily seen from (3.2.22), @ = 0 for any initial
distributién p. As far as nonergodic automorphisms on A are concerned, the above
theorem gives a complete description of their asymptotic dispersive properties with
respect to any bounded, measurable function. [, except for the case of “biased”
initial distributions, i.e., distributions whose support is almost entirely contained

in one of the sets on which the time average of f is constant.
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"o The i-th order mozﬁent of F", defined by

Mim)= [ ("~ (F")ypd,

can be calculated in the same manner as above, with

lim M%)

=a; < 00,
n—oo nt

where

w=[|r-] f*pdﬂ]ipdu-

Note that for all even moments we can claim a; # 0 iff the support of p is not
contained in one of B’s (the same as for D(n)). For odd moments, though, it is

not so. This is the consequence of the fact that we used the positivity of

2
[f* - / f*pdu] P,
A
in the proof of the Lemma 3.2.1.

¢ The converse part of the theorem allows us to check the ergodicity of T: if the initial
distribution p is homogeneous, i.e., p(z) = 1, Vz € A, and for some measurable,

bounded f, a > 0, then T is not ergodic on A.
3.2.2 Ergodic partition and dispersion

In this subsection we show that it is possible to compute statistical properties (like

the dispersion) of sum functions F" without calculating the time average of a function f
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under the dynamics of T. Along the way, we will be able to make some precise statements
about the usual intuitive notion of a partition of phase space into regular and irregular

regions.

To start with the analysis of a general automorphism 7', let us consider more closely
the notion of a partition of the space A. We assume that A is Lebesgue space (note
that every compact, metric space with the measure p defined on a Borel g-algebra is
Lebésgue). Suppose there exists a partition of 4, call it £ (i.e., x is a collection of disjoint
sets C, where 3 is element éf some index set I, such that A = UgCp). We shall call any
union of elements of £ a £-set. Consider now the space A/¢ with the projection mapping
7 : A — A/€ which maps a point z in A to the set Cp for which z € Cg. Suppose that
the partition £ is measurable, i.e., there exists a countable system of &-sets, A, such that
for any Cp,,Cp, there exists D € A such that Cg, € D,Cp, € D°. It can be shown that
if the partition £ is measurable, A/ is a Lebesgue measure space, with a measure g,

defined by

pe(E) = p(r~H(E)), (3.2.32)

where E C A/€. The notion of a measurable partition is important, as the property of
~ measurability of a partition is necessary and sufficient for the existence of a canonical

system of measures, {ic, }, such that

1. pe, is a Lebesgue measure for almost every Cp € £

2. If B C A is measurable, then B N Cp is measurable for almost every Cg € &,

pcg(B N Cp) is a measurable function of Cg, and

w(B)= [ noy(B N Co)de.
A€
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' Gettihg kb.ack to our i)rol;lem, we would like to find a measurable partition § such
that in does not depend on a particular function f defined on a phase space (i.e., depends
only on the dynamics of T), and still is in a certain (precise) sense a “basis” through
which any partition can be obtained. A first guess on the structure of £ is that it is a
partition into orbits of 7', but the resulting partition turns out not to be measurable in
general. Nevertheless, Rokhlin [R] has shown that if we take the measurable hull of the

partition into orbits, we obtain a measurable stationary partition { with elements Cpg,

which we éhall call ergodic components, such that

e There exists a system of canonical invariant ergodic measures, {uc,}.

e T is partitioned in components T¢, such that each Tg, is an automorphism on Cpg,

for a.e. Cp.

o Forae. Cp €&, Tg, is an ergodic automorphism.

This partition of A is referred to as the ergodic partition. Every pc, is a probabilistic
measure on Cg. It has been shown (see chapter 4 or Mezi¢ and Wiggins [M-W2]) that
the ergodic partition of automorphisms of compact, metric spaces can be obtained as
the product of a countable number of measurable partitions of A. The product of two
partitions is the collection of sets formed by the pairwise intersection of sets from two
) partifions (this is easily extended to n C N partitions, and to the case of a countable
infinity of partitions). Each of the partitions in the product is a partition of A into sets
on which the time averages of a function f in C(A), the set of all continuous functions on
A, are constant. We call such a partition the partition {; induced by f. The countable
number of partitions is obtained from a dense, countable subset S of the set C(A).

This theorem shows the connection between the ergodic partition £ of the phase space
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of a particular automorphism, and the partitions £; induced by the time averages of
continuous functions on A. Actually, one can deduce the link between the partitions
induced by the time averages of bounded, measurable functions on A, and the ergodic

partition, which we shall need in later sections:

Proposition 3.2.1 Let a set Bé be a union of all elements Cg of £ such that

d =c.
Lﬁfcﬁ HCg c

Then p((B, — B.) U (B, — B.)) = 0, where B, is as defined before.
Proof: See chapter 4 or Mezi¢ and Wiggins [M-W2]. O

This proposition tells us that if we consider a partition of the phase space into sets on
which the time average of a measurable, bounded function f is constant, each set in the
partition £; will be, up to a measure zero set, union of elements of the ergodiyc partition.

In particular, £ can serve as a “basis” for a partition £ for arbitrary measurable, bounded

f.

We shall show two applications of the ergodic partition in this subsection. The first of
them is the replacement of the time averages with spatial averages on ergodic components

in the expression (3.2.22). We start with the following Lemma:

" Lemma 3.2.2 Let A, T be as above and f an integrable function on A. Then

/A fdp = /A P [ /C ; fcﬂducﬁ] dp, (3.2.33)

where fc, is a restriction of f to the ergodic component Cg, and p¢ is defined in (3.2.32).
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Pfo,of: Let f=xs, whére }(B is a characteristic function of an arbitrary measurable
set B. Then (3.2.33) reduces to a property 2. of a measurable partition given above.
In the case of a general integrable f, we use the standard argument that any integrable
function is just a limit of an infinite sequence of simple functions (i.e., those p-measurable
functions which admit only a countable number of distinct values), and each element of

a sequence is a countable linear combination of characteristic functions. O

Proposition 3.2.2 Let A, T and f be as in the Theorem 3.2.1. Then

2
= f _— f 7 d = d
a /A p [fc,a /M/5 JesPog ﬂ&] Pogdisg

2
A d] 5o dy,
'/;[f03 -/M prpCﬁ H° pCﬁ K

(3.2.34)

where fcﬁ, Doy are the spatial averages of the restriction of f,p, respectively, to ergodic

components.

Proof: As f* is measurable and bounded, from the Lemma (3.2.2), we have

*d:/ / duc. | dye.
/A [ pdp A/e[ . fospes ,uoﬁ] e

Now, using the fact that T, is ergodic on Cg, we have

~ for a.e. Cp, where the spatial average is taken with respect to uc,. So,
*pd ] ; / duc,| d

/Af pdp " fe, [ CﬁIDCﬁ Hcp] He
Joape,dp

/A je 1 CPCP 3

o o du.
/Afcﬁpc,,ﬂ

(3.2.35)
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where in the last equality we used the fact that pc, is a probabilistic measure on Cg,

and Lemma 3.2.2. Now,

« = [[r-] f“pdﬂrpdu

= /A :f*- /A fcﬁﬁcﬁdurpdﬂ

= /A :fcﬁ— /A fcﬁz'»c,,dﬂrpdu
IR JouBoudn] Fogine

A[pr—LfCﬁﬁCﬁdﬂ]zf)chp.

(3.2.36)

This completes the proof. O

This result allows for an economization of the procedure of calculating the coefficient
a, as it is not necessary to know time averages for a specific function f: it is enough to
calculate the ergodic partition and invariant measures once. Then, the coefficients a for
any prescribed function are easily computable from the expression (3.2.34). Admittedly,
the ergodic partition is not trivial to find, except in some simple cases (see e.g., Halmos
[H]). The proof of the existence of the ergodic partition given in chapter 4 and Mezic
and Wiggins [M-W2] might help in that context, as the ergodic partition is constructed
through a simple algorithm. Also, an interesting consequence of the above result is that
- if we replaced f and p with f—cﬂ, Pcg, the dispersion would have the same asymptotic

behaviour when n — .

Another application of the notion of the ergodic partition is the large ergodic com-

ponent case. In particular, we have the following

Proposition 3.2.3 Assume that there is Cf@“rge € £ such that pg(Cg"ge) =1-—¢, where
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€ << 1. Further, assume p = 1. Then we have a = O(¢).

Proof: First note that Clﬁ‘"g ¢ is measurable, as every element of the ergodic partition is.

For the mean value we have

/:4 fCﬁdﬂ
- /C:aa'g‘ foﬁdﬂ + ~/A/C,laa'9e fcﬁ dps.
= '/(;garge fclaargedllz + 0(6)

= fcl;,-gc + O(E).

Now,
_ _ 2
= - d ] d
a /A [fc‘i /A fegdp| dp
2
= f - f arge 0 d
L I:fCﬁ fC; ge + (6)] H
_ _ 2
= .‘/;‘l;rgc [fcﬂ - fClparge + 0(6)] dﬂ + O(G)
(3.2.37)

From the last expression, as (1) terms cancel out, we have the required result. 0

Note that the ergodic partition in the above proof was used essentially to precisely
- determine what we mean by the large ergodic component, and to assure that that set is
measuralsle. The computational part of the proof could have been done with expressions
involving time averages of f. The above proposition also clarifies the validity of the
conjecture made by Jonés and Young [J-Y] that the dispersion in what they call the
‘mized regime (which is the one in which ergodic components of positive measure coexist

with the islands of regular motion) is proportional to the measure of the set in which the
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dynamics is regular. We showed that this is going to be strictly true only in the large

ergodic component limit.
3.3 Asymptotics of distribution functions

In the first section we analyzed one interesting statistical property of the automorphism
T, namély the dispersion of sﬁm functions. But, much more can be said about the
: statistical properties of T, using the probability theory formalism combined with the
notion of the ergodic partition, as it will be shown in this section. In particular, we
again consider the sum functions, and we shall be interested in the function W" : IR — R
defined by

W"(y) = P{z € A|F"(z) < y}, (3.3.38)
where P is a probability measure on A defined by
P(B) = /B pdp, (3.3.39)
for any measurable set B..

Note that W™ is non-decreasing and continuous from the right. Further, we have

lim W"(y) = 0, and (3.3.40)
Yy——00
lim Wh(y) = 1. (3.3.41)

_ Therefore, in the terminology of the probability theory, W"(y) is the distribution function
for the random vaﬂable F™ on A (see Doob [D]). It would be useful to obtain an explicit
expression for it. This can be done by pushing further the observed relationship of our
problem with the probability theory formalism. Let us define a probability measure on
R, Py~ by

Pyn(I) = /I dW™(y), (3.3.42)
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where the integral in (3.3.42) is a Lebesgue-Stieltjes integral.

Using Levy’s inversion formula (see e.g. [Sa]), we obtain

CWrh(y) + W) W) + W ()

2 ~ 2
_ o [7 exp(—ipy2) — exp(—ipy1)
= vlg{.lo . omip ®(p)dp
_ .U [ exp(—ipy2) — exp(—ipy1) R
= Jim /_U/A 2mip exp(ipF"(z))dPdp, (3.3.43)

where
W"(y~) = lirr(1’ W"(y—e€), €>0.

If both y; and y; are points of continuity, then

W"(y2) = W"(y1) = — lim / / exp(=ipys) — exp(=ipy:) exp(ipF"(z))dPdp.
v—=o0 J_, JA

2Tip
(3.3.44)
In the case when y is a point of continuity, by (3.3.44) and (3.3.40) we have -
Wo(y)=— lim lim / / exp(Zipy) = eXP(ZIPY1) o o ;o Fm())dPdp.  (3.3.45)
y1—+—ocov—00 f_,, [4 271'Zp

(3.3.45) is an explicit formula for the distribution function W".

3.3.1 The renormalized distribution function and Birkhoff’s ergodic
theorem

For every point z € ¥ for which |f*(z)| > 0, |F"(z)| is going to become large when n is
; sufficiently big. For simi)licity, assume |f*(z)| > 6 > 0, Vz € X. Then, for any y. € R
there exists n., such that ¥Yn > n., W"(y) is zero for all y such that |y| < y.. Moreover,
it is clear from the definition of W™, that it asymptotically approaches the distribution

given by

. 0 < 00
w <y>={1 ) s oo
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"To gét a better grasp on what is happening to the distribution W”, one can trans-
form the origin to f* - n and rescale with the “appropriate lengthscale.” We take the
“appropriate lengthscale” to be the variance 0. Let us assume that the conditions for

Theorem 3.2.1 are satisfied. Then we introduce the coordinate transformation on IR by

_y—f-n
z =
o
Now note that
W™(y) = P{ze€AlF"(z)<y}

= P{z € AF'(z)<oz+ f*-n}

= P{ze A|£_£§l;—__.f__ﬂ <z}
I Gnz). (3.3.46)
Note also that, by the B.E.T, f* = f, so
G"(z)=P{z € A|-F—L%Ilﬂ <z} (3.3.47)

We shall call the above defined distribution G™ the renormalized distribution. As opposed
to W™, it has very interesting asymptotic properties. To investigate the asymptotic

properties of G™ when n — 0o, we first observe the following:
- Lemma 3.3.1 f* is a measurable, bounded function on X.

Proof: f* is measurable, as it is integrable by B.E.T. We already showed in Theorem

3.2.1 that f* is bounded, so the proof is complete. O

By the Lemma 3.3.1, in the language of the probability theory, (f*(z) — f)/+/a is a

random variable on A, and (F™(z)— f-n)/c is a sequence of random variables converging
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to it pointwise almost evefywhere. The distribution function of (f*(z)— f)/+/a, denoted
by G, is defined as

G®(z)=P{z € Alf*(f/)_ ! <z} (3.3.48)

Then, we can use the following well-known theorem from the probability theory:

Theorem 3.3.1 G" converges to G* in the sense of distributions, i.e.,
lim G"(z) = G=(2), ¥z € C(G*),

where C(G*) is the set of all points of continuity of G®. Also [C(G™)]° is at most a

.countable set of points.

Proof: See e.g., Sarapa [Sa], pg 320. ]

Now that we established the usefulness of studying G°°, we state some of its prop-
erties. We can establish an explicit expression for G, through the same procedure we

used at the beginning of this section for W". We obtain

G=(z) + G°°(Z')

-t [ ) o P,

(3.3.49)

Note that the limiting distribution again depends only on the time averages of f. We
could follow the same procedure as in the Section 1 and obtain G*° in terms of spatial
averages. More interesting is the following theorem, in which we make a connection

between G and the partition ;:
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Theorem 3.3.2 There ezists co such that G®(z) =0 Vz < —co and G® =1 Vz > co.
Moreover, let ¢ = \/az + f. Then z is a point of discontinuity of G*® if and only if

P(B,) > 0.

Proof: The Aﬁrst statement follows immediatelly from the boundedness of f*. For the

second part, note that

: G°°(z)‘— G®(z") = P{ze€ AILT/)E——i <z}-P{ze Alﬁ%:i <z}
= P{z€ ./1|f--m—§—f/)a;)tT =z}
= P(B.). (3.3.50)

Now suppose that G has a point of discontinuity at 2. As we know that G* is contin-
uous from the right, G*(z) — G*®(z~) > 0 => P(B.) > 0. The converse proceeds in the

same manner. a

The nature of G is quite clear from the above results: its support is contained in a
compact set, it is a function continuous from the right, such that it has at most a count-
able infinity of points of discontinuity. Further, its points of discontinuity correspond to
the sets of positive measure in the partition {;. For initial distributions such that the
measure g is absolutely continuous with respect to P, the ergodic partition { plays a

major role:

Proposition 3.3.1 Suppose p is an initial distribution such that p is absolutely contin-
uous with respect to P, and C is an element of £ such that u(C) > 0, and f*|¢ = c.

Then z = (c — f)/\/a is an point of discontinuity of G™.

Proof: Recall from the Proposition 3.2.1 that p ((B. — BL) U (B, — B.)) = 0. So, if any

of the elements of £ whose union (mod 0 set) is B, has the positive measure with respect
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to u, then B, has pbsitive measure with respect to p.

By the absolute continuity of 4 with respect to P, u(B:) > 0 = P(Bc) > 0, as
suppose ;t(B;) > 0 and P(B.) = 0. By the definition of the absolute continuity, P(B.) =

0= /L(Bc)‘# 0, so we are done by contradiction.

Now, as P(B.) > 0, we can use Theorem 3.3.2 to conclude the proof. o

Proposition 3.3.1 tells us that, given any bounded, measurable function f, the points
of discontinuity of the limiting renormalized distribution G* will be determined by the

elements of the ergodic partition which have positive measure.

3.3.2 “Patchiness” in fluid flows and distribution functions

Pasmanter [Pasl], [Pas3] has studied mechanisms that give rise to the variability of
.dispersion processes in the ocean. A particularly important phenomenon to which he
referred is known as “patchiness,” i.e., a situation where parts of a distribution of passive
tracer may disperse at different speeds compared to its surroundings. We want to show
that the mathematical framework developed in this section can be useful for studying

this phenomenon. We will illustrate this with an example.

Consider a (steady) convection cell whose horizontal length is much larger than its
height and where the convection cells are aligned along the y-axis (figure 3.1). In this
situation the flow is essentially two-dimensional and, assuming stress-free boundary con-

ditions and single-mode convection, an explicit form of the velocity field is given by (see

Chandrasekhar [C2])

8.
I

A . d
-——-klr-'cos(wz) sin(kz) = —a—f(w, z), (3.3.51)
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. ) Y
2 = Asin(7z)cos(kz) = %(z, z), ‘ (3.3.52)

“where gb(a;, z) = 4 sin(kz) sin(jrz),'A is the maximum vertical velocity in the -ﬂow, k=
ZZ (A the waveléngth associated with the cell pattern), and the length measures have
been non—dimenéionalized so that the top is 2z = 1 and the bottom z = 0. This flow
has a countable‘inﬁnity of hyperbolic fixed points on the upper boundary at (z,z) =
(jkl, 1),7=0,£1,4£2,.. . and a countable infinity of hyperbolic fixed points on the lower
boundary at (z,z) = (ﬂ, 0),7 =0,+1,%2,.... Fixed points with the same z coordinate
are connected by a heteroclinic orbit. The result is an infinite number of cells, and we

will be concerned with the transport of a passive tracer (say, dye) from cell-to-cell.

z
|__ Lz

e 4

Figure 3.1: Streamlines for the steady, cellular flow.

In the absence of molecular diffusion transport between cells cannot occur. How-
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ever, if the témperature difference between the top and bottom of the convection cell
. is increased, an additional time—peribdic instability occurs, resulting in a'time-periodic
veloéity field (Clever and Busse [C-B], Bolton et al. [B-B-C]). In this situatioﬁ complex
“and chaotic fluid particle motions can occur. This has been studied in Camassa and

Wiggins [C'-W].

Solomon and Gollub [S-G] introduced the following model of this so called even

oscillatory roll instability:

T = —-Aii cos(mz)[sin(kz) + €k cos 0(t) cos(kz)] = —%—?(z, z,0(t)), (3.3.53)
: = Asin(rz)[cos(kz) — ek cos0(t) sin(kz)] = -g—f(z, z,0(1)), (3.3.54)
b = w, (3.3.55)

-where ¢(z,z,0(t)) = £ sin(kz) sin(rz) + € cos 8(t) cos(kz) sin(7z), 8(t) = wt, w is a posi-
tive number (hence the flow is time periodic), and € ~ (R—Rc)%, where R is the Rayleigh
number and R, its critical value at which the time-periodic instability occurs. The pros
and cons of this model are discussed in Solomon and Gollub [S-G] énd the following

discussion will be 'based on the fluid particle paths generated by this model.

In the cell-to-cell transport problem the time average along particle trajectories of
the z-component of velocity is a useful quantity. Thus the appropriate sum function

cofresponds to the displacement in the z direction, and it is given by

rt
0

2(t) - 2(0) = / (—%cos(wz(t))[sin(kz(t))+ek cos(wt)cos(km(t))]) i,

where (z(t), 2(t)) denotes a trajectory.
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In order td illustrate the “patéhiness” effect we numerically determine the distribution
. of average z-components of velocity for fluid particle trajectories in 6ne ‘cell. In figure
3:2 We plot contours corresponding to initial points of trajectories that have the same
| average z-velocity which we obtained by numerically computing these time averages for

a uniform grid of 1600 points for on a time interval of 5000 periods.

w=4.2 Number of panticles=40x40=1600, uniform grid
e=04 Time=5000 periods
z A=1.0 . Timestep=0.001 X
k=20 = o.180744
= o0.169231
k- 0.148718
B 0.128205
0.107602
0.087179
0.066666
= 0.046153
Bl 0.025641
0.005128
595

0.75

0.50

0.25

0.25 0.50 0.75 1.00 1.25 1.50

Figure 3.2: Contours corrésponding to points having the same average z-component of
velocity.

Regions' of nonzero average z velocity correspond to “accelerator modes” and these
are the points that participate in cell-to-cell transport. In figure 3.3 we plot a histogram
of this data, i.e., we plot the number of points corresponding to a given “bin width” of

average z velocity, where the bin width is 0.002.

R. Pasmanter in [Pas1],[Pas3] observed that the dispersion of fluid particles in laminar
incompressible flows exhibits the phenomenon of “patchiness.” It has been observed in
those works that fluid particles in incompressible laminar flows under study tend to

disperse in “patches,” with different patches having different average velocities. Here
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Figure 3.3: The distribution of the average z-component of velocity.

we explain this phenomenon in terms of the properties of a distribution G proved in
Athis section. As every time-periodic flow on R? can be reduced to the Poincare map,
we assume that has been done with the flow (3.3.53),(3.3.54),(3.3.55). The function
f(z,y) = z(t) — 2(0) is then a “jump” in the direction of z, defined on the finite cylinder
[0,2] x S, and depending on the initial positions of the particle on the annulus. We can
now define “patches” rigorously as sets of positive measure P in the phase space on which
f has a constant fime'avérage. Through the Theorem 3.3.2 we can then conclude that
“patches” correspond to the points of discontinuity of G*°. Also, Theorem 3.3.1 tells us
that there is at most uncountably many patches. The measure of the phase space is finite.
Therefore, in the case where there really are uncountably many patches, their size must
go to zero if we order them with respect to their measure. So, there are either a finite
‘number of patches, or there is an uncoﬁntable number of them, but also uncountably
many of them are of smaller measure than any prescribed number. In the figure 2, the

“patches” are represented by the darkest and brightest spots on the phase space. We
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could also deﬁne “patchines” as the regime in which more than one “patch” exists. Non-
. ergodicity then appears as a necessary condition for “patchiness.” Namely, if the flow is
ergodic’, 'there is only one “patc ,” represented as one and only point of discoﬁtinuity in
G*. Also, using Proposition 3.3.1 in the context of fluid flows we find that if the flow
(or its Poiﬁcaré map) is such that it has an ergodic component of a positive measure,
and if the initial distribution is such that the measure P of that component is also of
positive measure (this is what the absolute continuity of y with res;pect to P assures),

then the flow will be “patchy” i.e., G will have a point of discontinuity.
3.4 First passage times

In this section we shall analyse the following problem: we are given a set A, automor-
.phism 7 and a function f on A, all defined as in previous sections. We ask: what is the

measure with respect to P of a set D,,, defined by
D,={z € A||F(z)|<IVi<nand |F'(z)| >I}. (3.4.56)

Let the function E' : N — R be given by E'(n) = P(D,). Determination of E'(n)
is called the problem of first passage times. We shall first give an explicit expression
for E'(n) using the connection between Dirichlet’s discontinuous integral (see e.g., [C]),
and the characteristic functions of certain sets on A. Later on we shall investigate some

asymptotic properties of renormalized first passage times.
3.4.1 Dirichlet’s discontinuous integral and characteristic functions

Consider a function é defined by

(o, m) = %/w sin(pap) exp(ipw)dp, (3.4.57)

—00
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where ¢ = \/;1. It can be shown that

1 —a<w<a ‘
da,@m)=14 1/2 w=—aorwmw=a , : ~ (3.4.58)
-0 otherwise

see Gradshteyn-Rhyzhik [G-R], pg 414. 6 is usually called Dirichlet’s discontinuous
integral. Define a function Kp, by
‘ n-1 .
Kp,(z) = (1-§(1, F*(z)) [] 601, F'(z)).
t=1

We have the following proposition:

Proposition 3.4.1 Assume that P, defined in (3.3.39), is a complete measure on A.

Suppose P({z||Fi(z)|=1})=0, Vi€ N. Then

f Kp,pdp = / XD, Pdp,
A _ A

where xp, is the characteristic function of the set D, defined in (3.4.56).

Proof: From the definition of §, (3.4.58), we have
n—-1 .
[ Koupdi = [ (1= 80, F*@)) [T 601, Fi(a)pan
. =1

= P({z€A||Fi(z)|<IVi<nand |F'(z)|>1})

+Z§ 3 P{z € A||F*(z)| =1 for 1<k<i,

i=1 J1<72<...<3

and |F¥(2)| < I Vk # j1,..disn ,
and |F"(z)| > 1 if n# ji,--Ji }), (3.4.59)
where j1,72,...,0; € (1,2,...,71) for every ¢. Now each of the sets whose measure with

respect to P appears in the sum 37 ;. <. <j;» is a subset of of the set {z||F™(z)| = I}

for some m € (1,2,...,n). But, by assumption, these are sets of measure zero with
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respect to P. As P is a complete measure, each of the summands in 3°; «;, <. «j; is zero.

- Therefore,

' / Kp,pdpy = P({z € A | |[Fi(z)| <1 Vi < nand |F*(z)| >1})
JA

= [ xo.pdu. (3.4.60)

It is easy now to obtain E'(n), if we keep the assumptions from the Proposition 3.4.1.
Observe that

n—1

E'(n) = P(Dw) = [ xp.p(@)du= [ (1-80,F"(2)) I] 6. Fa)ple)dn. (3:461)

Thus, we have an explicit expression for first passage times distribution, E'(n), in terms

of f and T, which are known. Note that in the case of positive f, (3.4.61) reduces to

EY(n) = / (1 = 61, F*())6(1, F*~\(2))p(z)dp, (3.4.62)
. A
as in that case F*"1 <] = Fi<IVi<n-1.

In the case that the condition P({z||F*(z)| = [}) =0, Vi€ N seems too stringent

to the reader, the following proposition addresses this issue:

Proposition 3.4.2 Let I, € RR. Then, Ve >0, 3 € [, — €/2,1, + €/2], such that

P({z||Fi(z)| = })= 0, VieN.

Proof: Fix l,, and suppose the statement of the Proposition is false. Then there exists

an € such that for every I € [l, — €/2,1, + €/2], there exists an n such that

P({=]|F*(2)| = 1}) > 0.
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Assign such an n(l) to each  in [l, — €/2,1, + €/2]. There must be an m € N such
. that the set [, of I € [I, — €/2,1, + €/2] such that n(l) = m is not finite or countably
'inﬁnvite’.' To prove .that, suppose that all such sets are either countable or ﬁn;te. Then,
Up — €/2,1, + €/2] = Upln, where n(l,) = m is a countable union of countable or
finite sets,( therefore it is countable (Munkres [Mu], Theorem 7.4). Thus we obtain a

contradiction.

Now we know that there is an m such that the set [, is not countable. For each! € [,,,
P({z||F™(z)| = I}) > 0. But, each such [ corresponds to the point of discontinuity of
W™ and we know that the set of points of discontinuity of W™ is at most countable

(Sarapa, Proposition 9.2 pg. 257). Therefore, by contradiction we are done. O

From the above proposition, we see that in every, arbitrary small neighborhood of {,

“there is an [, such that for I the first passage times distribution E'(n) is given by (3.4.61)

3.4.2 'Renormalized first passage times

A physically important liIﬁit of the distribution of first passage times is that when the
interval [ — oo. For simplicity we shall consider the case when |f*(z)| > 6§ > 0, Vz € X.
Now, cleaﬂy, E'(n) is (again as in the case of W” when n — oo) rather boring when
[ — oo: number of iterations, for any point of ¥, needed to escape [—1,!] interval goes to
infinity. To get a hold on asymptotic properties of first passage times distribution, we
need to do certain rescaling, just as in the case of W" in the previous section. A natural

“timescale” for n is I/ f* = I/ f. Let N(z,1) be the first passage time for the point z, i.e.,

N(z,l)=n€ N||Fi(z)|<IVi<nand |[F*(z)|>L
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So, N is a function N : Ax R — R. Consider the renormalized function

No(a,0) = M

~ We have the following proposition:

Proposition 3.4.3

f
f*(=)

llim N.(z,l)=

a.e. in Y.

Proof: We need to show that for any sequence {l;}, such that I; — oo when i — oo, for

every € > 0 there exists I such that
f

i > I = |N(z,l;) - @)

| < e

So, pick such a sequence, {l;}, and e. Let ¢ € ¥. Note that we can always find

(2(z, N(z,1;)) such that
FN@1)(2) + Go(2, N(2, 1)) = I, (3.4.63)

where (3(z, N(z,1;)) is defined by the above équation. ¢2(z, N(z,1;)) is bounded for

every 7 € N, and every z € 3, as
FN(:L',i;)—l(w) < lz' < FN(J:,I.‘)(:B),

SOV
Ga(z, N(2,1:)) < max f(z).

Now, by the B.E.T.,

- FNEN)(2) = N(z,0) f* + Gz, N(z, 1)),
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for every z € X, where

lim SN =

Let
C(IE, N(z’li)) = Cl(z’ N(wali)) + C2(z7 N(‘T’ li))'
Now, for every é > 0, we can choose I such that

{(z, N(z,1:))

| N(z,l;)

| <6, (3.4.64)

for every ¢ > I. Choose

—G(f*)2
f+ef
(3.4.63), (3.4.64) and (3.4.65) now can be used to show that

6 < min(| f*|, ). (3.4.65)

I — IN(malz)f__ f |
l; f*(z)
| N(z,l)f I
N(z,L)f* + ((z,N(z,k;)) f*(z)
(jz,N!z,l;“f“ .
= | Meh) |
(f)2 + S5
I—ié——!
(f*)2_6f*
< € (3466)

[N (z,0;) —

f*(=)

A

for every i > I. The above argument is valid for every z € £. As X° is of measure zero,

we are domne. O

Note that uniform convergence in ¥ can actually be proved, if ¥ is closed, by taking
6 in (3.4.64) to be
. . ' ( f*)?
= f+elf

5 < mm(mm|f l, m ( I)) (3.4.67)
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3.4.3  The nature of iso-residence time sets in mixing devices

Consider the following divergence free (incompressible) three-dimensional velocity field

&t = u(z,y,t),
y = ’U(x’ y’ t)’
z = w(z,y,t),

(3.4.68)

where z € IR is unbounded, but (z,y) € A, where A is a compact subset of IR2. Just like

in the introduction, we shall assume that the time dependence is periodic.

Recalling the discussion in the introduction, statistical properties of the motion in

the direction of z can be analyzed using the sum-function formalism.

In the context of pipe‘or duct flows it is natural to think of an experiment where
an initial distribution of points are placed in a cross section z = 2y and allowed to
evolve under the flow. The following question then arises. At a fized point z = 29+ L
’downst'rean’z, what is the nature of the points in the initial distribution that pass this point
at the same time? Moreover, how are these points related to the particle dynamics in
the cross section? One can study fluid particle trajectories through a two-dimensional
Poincaré map. The proposition (3.4.3) has an important consequence: the first passage
times for big [ are approximately constant on the elements of the measurable partition
5. This type of behaviour has been observed in some numerical studies of the so-
called exit age distributions in the types of mixing devices used in chemical engineering

‘applications (sée Khakhar et al. [K-F-O]. Namely, as noted in the introduction, in that
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work it. has béen foﬁnd that the “isoresidence time sets” exhibited a strong resemblance
- to the Poincaré sections, and the more so the longer the pipe. Let f(z,y) be the jump
in the z direction in one step of the Poincaré map of (3.4.68) (note the abuse of a
notation: z in the preceding section was a point in the phase space, while z,y here are
the cqordiﬁates in the cross section of the pipe). Now the “isoresidence time sets” from
that example can be precisely defined as the sets on which N,(z,y,l) is constant. We
saw from the (3.4.3) that these sets coincide with {s-sets in the Hmit when [ goes to
infinity, i.e., in the 1ohg pipe limit. As f*(z,y) is constant on the orbits, every ;-set
is composed of orbits. In other words, we proved that the “isoresidence time sets” in
the large ! limit are composed of the orbits of the Poincaré map, which explains the

observation in [K-F-O].

3.5 Dynamical systems with continuous time

3.5.1 Dispersion of sum functions

In this section we extend most of our results to continuous time dynamical systems.

By a continuous time dynamical system we mean a one-parameter group of measure
preserving automorphisms {7}, where ¢ € IR, of the compact, metric phase space A.
We assume that A is endowed with a complete, probabilistic measure y, as in the first
section. We assume that a standard Lebesgue measure ¢ (a slight abuse of notation, as
t also denotes the parameter of a group, but hopefully understandible) is given on IR,
and the measure on A x R is a product measure v = y X t. We shall need the following

facts:

Lemma 3.5.1 Assume that f is an bounded, measurable function on A, and T > 0.

Then [ f(T'z)dt, ezists. Further, [ f(T'z)dt = Sy 9(T"z), where g(T"z) =
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fol f(Tta:)dt, aﬁd g(z) is an integfable function on A.

~ Proof: This follows immediately by the boundedness and measurability of f, and com-

_pactness cjf A ' O

Now we can define the notion of a sum function. Let f be a measurable, bounded

function on f: A — IR. The sum function, F” is defined by
Fr= / foTidi. (3.5.69)
0

As f is bounded and measurable, F'™ is bounded and measurable a.e. for every 7 > 0.

We require p to be integrable, and

/pdp: 1.
A

We can define the mean value of a sum function,

(F) = /A Fpdp, (3.5.70)

and a dispersion, D(r)

D(r) = o*(r) = /A (F" = (F7))’pdp, (3.5.71)

(3.5.70) and (3.5.71) exist by the same argument as in the discrete case. The spatial

average of f is still defined by (3.2.20). The time average is given by

£(@) = Jim = [ pr (e,

T—oo T

and it exists, a.e. in A by the B.E.T. for continuous-time dynamical systems (see Krengel
[K]). We denote the set.on which f*(z) exists by £. So, we can again define the partition
&y of the phase space A induced by the time average f*. The elements of {; are the sets
B, = {m € Alf*(:c) = c,c € IR}, and the set £°. Now we state and prove the analogue

of Theorem 3.2.1 for dynamical systems with continuous time:
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Theorem 3.5.1 Consider a one parameter group of measure preserving automorphisms,
- {T*} on A, a bounded, measurable function f : A — R, and an initial distribution p, all

deﬁﬁed as above. Suppose that there is no ¢ € R such that p(supp(p)\B.) = 0. Then,

we have
lim D(;r) =a < o0,
T—00 T
- where
2
a= / [f* —/ f"‘pdu] pdy, (3.5.72)
A A

and a > 0. Conversely, if 0 < a < o0, then p(supp(p)\B.) # 0,Vc € R.

Proof: We only need to do the necessary steps to bring the expression D(7)/r? in
the form in which Lebesgue’s bounded convergence theorem is applicable. From the
definition of D(7), we have

D(r)

T2

[ = (i
A T T

1 /7 1 /7
A(;A foTtdt—(;_-/o f o Ttdt))*pdp.

(3.5.73)
Using Lemma 3.5.1, we obtain
D(r) _Y 1S L IR a, L[ ¢ L[ £ 1032
= [GReeT -G R oy [ rott- (2 [ o b
(3.5.74)

where n is chosen such that n < 7 < n + 1. Now, if for any sequence {7,} such that

Tn, — 00 When n — o0,

D
lim —(%2 =aq,
n—oo TS

then lim, ., 27(-21)- = a. Choose such a sequence. We have

. D(m) , 1! R :
m ——== = lim — oTt — (— oT*
A(Tn ;g (Tn ;}g )

n—00 1-1% n—00
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T

++ foT"dt— (— / " foTtdt)) pdy.

’n, n n

(3.5.75)

Now, by the Lebesgue’s bounded convergence theorem, the integral in (3.5.75) converges

to

(lim —ZgoT‘—(hm —EgoTz

A 00 T,

1—0
1
+ lim i f o T'dt — ( lim — f o Ttdt))?pdp.
=0 Ty Jn 0 Tp Jn
(3.5.76)
Noting that
1= i ¢
nlerolo}—ggoT _'r—>oo1'/ foTtdt,
where they exist, we have
D(T) * * 2
tim 2= [ - [ roau] s
The rest of the proof is exactly the same as in the discrete case. o

We now know that for all groups of automorphisms {7} and initial distributions p
satisfying ;L(supp(p)\Bc) = 0, for very long times 7, D(7) ~ 72, and we were able to
calculate the constant a from the time averages. Sometimes it is important to know
what is the behaviour of D(r) for initial times, 7 << 1. It is well-known in the theory of
turbulent dispersion that Dyy,s(7) ~ 72 for 7 << 1, where Dyyr(7) is the mean square
distance of particles at time 7 in a turbulent fluid flow (see Batchelor and Townsend
[B-T]). We now provide a proof of the corresponding fact in our context, using Wiener’s

local ergodic theorem.

Theorem 3.5.2 Define the sets C. as follows:

Ce={z € Alf(z)=c,ce R}.
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Consider a one parameter group of automorphisms, {T*} on A, a function f : A - R,
and an initial distribution p, all defined as above. Suppose that there is no ¢ € R such

‘that p(supp(p)\C;) = 0. Then, we have

lim &;) =a< 00,
70 T
where
2
o= / [f - / fpd,u] pdp, (3.5.77)
A A
and a > 0.

Proof: The proof of this theorem essentially follows the proofs of Theorem 3.3.2, and
Theorem 3.2.1. One necessary change in the line of the proof of the Theorem 3.3.2 is

the replacement of the B.E.T. with the Wiener local ergodic theorem, which states

lim= [ f(Tt2)dt = f(z),
0

e—0 €

(see Wiener [Wil]). ' o

The ergodic partition theory goes through in the continuous time setting in ex-
~actly the same manner as in the discrete time systems (see Rokhlin [R]). In particular,
Lemma 3.2.2, Proposition 3.2.2, Proposition 3.2.3, and Proposition 3.2.1 all have their

continuous-time analogues.

3.5.2 Other statistical properties

We can use the probability theory formalism in the analysis of dynamical systems with
‘continuous time, too. The only difference will appear in the treatment of limits, but the
type of argument used in the subsection 5.1 for the proof of Theorem 3.5.1 (arbitrary

sequence argument) will serve to transfer the problem to discrete-time setting.
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Let us first consider the distribution function W7 : R — IR defined by
W(y) = P{z € A|F"(z) < y}.  (3.5.78)

As we just replaced n with 7 in (3.3.38), it is easy to see that all of the properties of W™
hold for W7. In particular, we can obtain an explicit expression for W7 in exactly the

same way as for W™.

Assuming again, for simplicity, | f*(z)| > 6§ > 0, Vz € ¥, we can introduce the change

of coordinates

y—f-1

Zz = —

g

k)

for the same reasons as in the discrete-time case. The renormalized distribution G7 is
given by

(= Preal@LT oy (35.19)

and G* is defined in exactly the same way as in the discrete-time case, with the definition

of f* being appropriately changed:
G®(z)= P{z € A]-f—(f% < z}. (3.5.80)

The analogue of thé Theorem 3.3.1 needs a little work.

Theorem 3.5.3 G™ converges to G* in the sense of distributions, i.e.,
lim G7(z) = G=(2), Vz€C(G),

where C(G*°) is the set of all points of continuity of G®. Also [C(G®)]¢ is at most a

countable set of points.

Proof: We only need to note that for each sequence {7;} such that r; — oo when i — oo,

a sequence of functions (F7(z)— f- n)/o is a sequence of random variables converging to
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" (f*(z) ~ f)/a pointwise almost everywhere. Note that the domain of convergence does
. not depend on a particular sequence 7; - it is always ¥. This means thé,t,‘in the sense of

distributions, G converges to G°. As {r;} is arbitrary, G™ converges to G at z. O

Now, as proofs of the Theorem 3.3.2 and the Proposition 3.3.1 do not involve a
limiting process, kand the notion of ergodic partition goes through, their statements are
the same in the continuous-tirﬁe case. FSO, the points of discontinuity of G* are again
connected, in the same way as in the Theorem 3.3.2 and the Proposition 3.3.1, with the

elements of partitions £ or {; of nonzero measure.

The analysis of first passage time in 3.1 cannot be extended to a continuous-time
case. The reason is that we used Dirichlet’s discontinuous integral at each step of the
iteration to decide whether a particular point is inside or outside the interval [, ], or

“exactly at [ or —I. Now, in the case of the continuous time, obviously, we cannot do
that. What we can do, though, is state the analogue of the Proposition 3.4.3. We again

have the restriction |f*(z)| > § > 0, Vz € . Define the first passage time, ©(z,!) by
O(z,l)=1 e R| |F'(z)|<IVF < 7and |F(z)>L
Let thek renormaliéed first passage time be deﬁﬁed by
| 0.(z,l) = iml’i)-z

Now we have

Proposition 3.5.1

I
f*(2)

[lim 0,(z,l)=

a.e. in A.

Proof: The proof proceeds in the same manner as the proof of the Proposition 3.4.3. O
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3.6 Conclusions

Let us now summarize, and discuss certain restrictions of this theory and possible im-
provemehts. Fii‘stly, let us discuss thé requirements of the boﬁndedness of the functions
we consider, and the ‘compa,ctness of A. Note that we were working with a class of
bounded measurable functions throughout the chapter. The boundedness served us in
showing that the statistical properties, like the mean value and the dispersion, exist, and
in providing different estimates. We used compactness only to assure that the ergodic
partition can be obtained as the product of the partitions induced by the time averages
of continuous functions on A. Furthermore, this fact (proved in chapter 4 and Mezi¢
and Wiggins [M-W2]) was used in in the chapter only in the connection between the er-
gbdic partition and the partition induced by the time averages of bounded, measurable
" functions (through the Proposition 3.2.1). For all other results it is enough that A is a
probability space (and thus of finite measure). Note that in the case when space A has
infinite measure, and a measure-preserving map T is such that there is no T-invariant
subset of finite measure, fhe theory developed here is vacuous: in that case the time
average of any integrable function is zero almost everywhere (see Rudolph [Ru]). Obvi-
ously, if there exists an invariant subset for T, which is of finite measure, we can restrict
consideration to that subset and apply our theory. On the other hand, our results really
depend only on the existence of time averages. There might be some nonintegrable func-
tion for which the time averages on a support of the initial distribution exist, in which

case the whole theory goes through.

In this chapter, we have taken the point of view which in the fluid dynamical literature
is often called Lagrangian: we give some initial condition, and then consider its dynamics

under the mapping 7. The point samples values of the function f during its motion,
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and we can show some of the stétistical properties of this process. Let us take another
- point of view, called Eulerian in the fluid dynamical context. We caﬂ iméging having a
probé at a position z in the space’ A. Let the initial distribution of some scalar-valued
quantity be called fo. Suppose that we are interested in how is this initial distribution
transporte(i by T. In the space of bounded, measurable fﬁnctions, Imeasure-preserving

transformation 7" induces the Koopman operator U defined by
Uf=foT.

Let f(z,i) be the value of the scalar field at = at time i. Then, f(z,i) = fo(T 'z).
Consider the time average f*(z) of the scalar field at z as sampled by the probe:
1& 1 & ;
£@) = 3 L) = 5 (T = (5) ()
‘Now, (f3) (z) = f§(z) (see e.g., Maiie [M]), and the considerations in the sections on
distributions, can be applied to deduce the properties of distributions of time averages
of passive scalars. In particular, the time average of a passive scalar quantity is constant
on the elements of £7,. In connection with this observation, suppose that A is the closure
of an open subset of R™. As is well known, the evolution of the passive scalar function
flz,t)z € A, te ']R, in the case of a continouus flow on A generated by a vector field
v, is governed by
of

5tV V=0 (3.6.81)

T hﬁs, in the case of a continuous flow, the above considerations allow us to analyze
statistical properties of (3.6.81). Besides the well-known application to non-diffusive
transport of particle concentration and temperature, (3.6.81) is, as shown recently by
Pasmanter [Pas2], related to some types of Schrodinger equation. Of course, the question

of how the ergodic properties of v affect the asymptotic behaviour of the convection-
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" diffusion equation

U yv.vi=vars, (3.6.82)

ébpears ﬁost naturally here. We pursue this study in chapter 6.

Finally, let us discuss the relationship of this theory to the theory of strictly stationary
stochastic processes. As is well-known, every measure-preserving point transformation
T on A defines a class of strictly statioﬁary stochastic processes through the Koopman
operator defined above (see e.g., Doob [D]). In particular, let f be a function on A
or a random variable, in probability theory terminology. Then f, = foT". {f.}
is is a strictly stationary stochastic process. More interestingly, there is the following
partial converse: Let {f,} be a strictly stationary stochastic process. Then there is a
measure-preserving set transformation 7 such that f; = fo o T%. It is not hard to realize
that all the theorems we have developed are true in the context of Ineasure-preserving
set transformations instead of measure-preserving point transformations. In particular,
there is a version of the B.E.T. for measure-preserving set transformations (see Doob
[D]). Note also that all analogies with probability theory that we used (e.g., in section
3) stem from the above explained connection between dynamical systems theory and

stochastic processes. Important early work using this connection was done by Sinai

[S1],[S2],[S3].
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Chapter 4

A new characterization of the
ergodic partition

4.1 Introduction

. The notion of the ergodic partition ! of automorphisms of Lebesgue spaces originates in
the works of von Neumann [7], Halmos [3], [4], and Rokhlin [9]. More modern presenta-
tions of the ergodic partition can be found in Denker et al. [2], Maiié [5] or Rudolph [11].
It has been shown in chapter 3 and Mezi¢ and Wiggins [6] that the ergodic partition
can play a role in the analysis of certain statistical properties of non-ergodic measure-
preserving dynamijcal systems. In the same work, another type of partition of the space
A was shown to be important: namely, the partition into sets on which the time averages
of bounded, measurable functions are constant. In this chapter we connect these two
types of partitions by showing how the ergodic partition can be constructed from the
measurable partitions induced by the time averages of continuous functions. This ap-

proach provides a constructive way of forming the ergodic partition and, potentially, this

!Note that the term ergodic decomposition is used usually when the decomposed (or partitioned)
object is a measure. In this work we are mainly concerned with the partition of the space A into disjoint
ergodic components (or ergodic fibres; as in Denker et al. [2] ). As this is more of a topological subject
matter, the term partition would be more appropriate.
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can lead to numeriéal algorithmé for constructing ergodic partitions. Qur construction
- of the ergodic partition uses the product operation on the space of measurable partitions.
The ergodic partitionkturns out to be just the product of measurable partitioﬁs induced
by the time averages of functions which are elements of a countable, dense subset of
the space of continuous functions on the phase space. Our approach provides an easy
way of characterizing uniquely ergodic components. In particular, it is shown that if C
is an closed ergodic component, then C is uniquely ergodic. Also, we make connection
between the partitions induced by the time averages of measurable, bounded functions,

and the ergodic partition.

This work can, in a certain sense, be regarded as a bridge between the two different
approaches to the presentation of the ergodic partition: that of Mafié [5] (which is based
on the work of Denker et al. [2]), and Rokhlin [9]. Rokhlin’s work is based on the
notion of measurable partitions. He develops his theory around the ergodic theory of
functions on L?(A). The space A is required to be a Lebesgue measure space. He is
interested in how the space A splits into ergodic components under the dynamics of 7.
The ergodic partition is shown to be the measurable hull of the decomposition of the
phase space into orbits of T Maiié’s approach usés the Riesz representation theorem on a
compact, metric space A. His work is more directed towards understanding the interplay
between invariant and ergodic measures on A (as, it seems, is common in modern ergodic
theory). He (as well as Denker et al.) does not use the Lebesgue structure of the space.
Wé show that it is fruitful (with an view towards the applications to the theory of chaotic

dynamical systems) to join these two approaches.
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4.2 Set up and definitions

Let (A,p) be a compact metric space, such that u is a complete measure defined on a
Borel ka-aﬂgebra. A, andb T a measure-preserving continuous aufomorphism on A. A thus
has the structure of a ‘Lebesgue measure space (see Denker et al. [2]). We denote the
spacé of all integrable functions on A by L!(A), the set of all real continuous functions
on A by CO'(A), and a dense countable subset of C%(A) by S. Following the definitions

in Rokhlin [9]2, we have the following:

Definition 4.2.1 (Partition, Measurable Partition) A family ¢ of disjoint sets C,,
(o element of some, arbitrary, indez set) whose union is all of A is called a partition of
A. We call C, an element of (. Unions of elements of { are called (-sets. A partition is
- called measurable if there ezists a countable family A of measurable sets {D,-} such that
every D; is a union of elements of ( , and for every pair C1,Cy of elements of ( there

exists D; € A such that C; C Dy, C2 C D¢, We call A a basis for the partition (.

We shall omit the index from the notation for the element of the partition, where that
does not cause coxifusion. A partition (; is said to be finer than a partition (; if every

component of (; is a (;-set.

Given a partition ¢ of A, and a set A/( whose elements are the elements of the
partition, we can define a projection map 7 : A — A/(, by the rule 7(z) = Cy, Where
z € Cy. It can be shown (Rokhlin [8]) that the space A/( is a Lebesgue measure
space, with the measure p¢(C) = p(r~1(C)), for any (-set C. We now define a product

operation on the set of measurable partitions of A.

2Note that our definition of A is somewhat different from Rokhlin’s, but it is easily seen that they
are equivalent. Also, note that both in Maiié [5], and in Denker et al. [2] the index set in Definition 4.2.1
is allowed to be at most countable.
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Definition 4;2.2 (Product) Let (1 and (2 be two measurable partitions. Denote the
- element of (; by Cy and the element of (; by Cy. Let { be the family of all sets of the
form '

C=Cln02.

Then we call the measurable partition { a product of (; and (2, and write

(= Cl\/C2-

For a finite or countable product, we may write

(= \n/ (i, n finite or oo

=1

meaning
¢=aVe- V.
in the case of finite n, and »

(=0V G VG

in the case n = oo.

Finite and countable products of measurable paititions are measurable partitions them-
selves, so the product operation is well-defined (see Rokhlin [8], pg 33). Now we turn to

the proof of the main theorem.
4.3 Proof of the theorem
We start with the following definitions:

Definition 4.3.1 (Stationary partition, Ergodic partition) . A measurable parti-

tion ( is called stationary if every element of { 1is invariant under T. The stationary
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partition ¢ is called ergodic if, for‘ almost every (with respect to p¢ ) element C of (, there
. is an invariant measure uc on C such that the restriction of T to C, denoted T is an
ergodz’c automorphism on C, with respect to some probability measure uc on C, and, for

every f € L1(A),

[ fiu= [ | [ loduc] duc. (43.1)

where f|c denotes the restriction of f to the ergodic component C.

We shall call the function f* the time average of a function f under 7T if
17l '
£()= Jim, o 3 AT (@)
Aalmost everywhere (a.e.) with respect to p. Note that by Birkhoff’s pointwise ergodic
theorem, f* exists for every function f € L(A), except, possibly, on a set of measure
zero. Denote by ¥ the set of all z € A such that f* exists for every f € C°(A), and by
X(f) the set of all z € A such that f* exists for a particular f € C°(A). The following
lemma appears as a statement in the course of the proof of the Theorem 6.1, chapter 2 in

Maiié [5], with just a hint for the proof provided. We include the proof for completeness:

Lemma 4.3.1
= nfGSE(f)7

where S is some dense, countable subset of C°(A).

Proof: We need to prove ¥ C NsesX(f) rand NsesX(f) C X. Clearly, if some z is in X,
it is in NyesX(f). So, we need to prove that for every z € A such that f*(z) exists for

every f € 8, (’fv’)'* exists for every f' € CO(A).
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Now for e{fery f! there exists, by denseness of S a sequence of functions {f,} in S
. such that lim,—, fn = f’ in the norm on C?, given by ||f|| = maxc4 |f(z)|. Consider

lim;_, e aj, where

n—l
o = |im I3 5e) - i 13 pri)
=0 =0
- ,}Lrg%(i(fJ, T @Y.

(4.3.2)

If we can prove that lim;_,, a; = 0, and lim;_,, f exists, than (f')* exists and is equal
to lim;_, o ¥, as

a; = fi(z) - lim —Zf(T’( )-

=0
To prove lim;_,o, a; = 0, consider
1t i
= —(Q_(fi = )T (2)))
i=0

If we show

lim aj, =0,
J—00
n—00

we are done. To do this, by Courant [1], pg. 101, we need only to show that Ve > 0,
there exists N such that Vj,n > N,
I_(E(fa FUTH ()] < e
=0

We know that, V6 > 0, there exists J such that Vj > J,
max |(f; = f)(z)] < &.

Thus, choose €. Pick & < €. Choose N = J. Then,Vn e N,j > J,

n-1 1 n—1

l-(Z(fJ iy (T’(m)))l < == T E))

=0 1=0



Therefore, limj_,oo a; = 0.
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< vmaxl(f; = £)@))
én
= %

Now we prove that lim;_,o f; exists. Pick € > 0. We show that there exists J such

that 71,52 > J = |

T (z) -

exists. Pick 6 > 0. As {f;} converges to f' 3L | I > L = maxze4 |f; —

means that V [;,l; > L

e Wum

f12|

IN

IN

Now choose § = €/2 and J = L. Then

7 (2)]

15 (2) -

IN

IN

IA

> (z)] < €, which implies that the limit of the sequence

f'| < 6. This
max |f, = f' = (fi = Il
max |fi, - 1+ max |fi, — fl
26.
(4.3.4)
n—l )
| Jim = S°( — )T @)
=0
n—l
T}_’_{& ; Z l(f.n sz (Tz(z))l
1
Jim = (n max|fs, ~ fal )
2on _
n
(4.3.5)

for every jq,ja > J. Therefore, the limit limj,o0 f (z) exists, and the proof is complete.

O
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Now we have d se‘t kE such that the time ‘averagesv of all continuous functions on A
. exist on ‘E. '¥¢ is of measure zero, as by Birkhoff’s Ergodic Theorem, each X(f)° is of
measure zero, and thus ¥° is a countable union of measure zero sets, which is again of
measure zero. Thus, ¥ is a Lebesgue measure space. The proof of the following lemma
stems from one of the remarks in Rokhlin [8]. The lemma shows that the time averages

of measurable, bounded functions induce measurable partitions on X.

Lemma 4.3.2 Let f be a measurable, bounded function on X. The family of sets
Ca, o € R such that C, = (f*)"'(a) is a measurable, stationary partition of L. We

denote this partition by (y and call it the partition induced by f.

Proof: As F, = %E:‘____Ol f(T%(z)) is a measurable function on A, and lim,—c F, = f*,
o ié a measurable function, too. The fact that (; is a measurable partition follows by
taking As to be the collection of preimages under f* of open intervals with rational
endpoints in R. As f* is measurable, each (f*)~![a,b] is measurable. Sets of this type,
where a and b are rational, clearly separate sets of the form (f*)~!{c}, ¢ € R. The
fact that the partition is stationary follows immediately from the definition of the time

average of f. : , o

Note that every continuous function on A is measurable and bounded. Now we can

prove our main theorem:

Theorem 4.3.1 Let

Ce = \/Cf

: fes
be a measureble partition on ¥. Then (. together with X¢ is an ergodic partition of A

with respect to T
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Proof:  Let C be an element of (.. Define a bounded linear functional Lc on C°(A)|c
- by

n-1
| Le(f) = nlLrlgo% ;} f(T'(z)), wherez e C

L¢ is well-defined by Lemma 4.3.1. Now by the Riesz representation theorem, there

exists a measure pc on A, such that

Lo(f) = [ fdue.
Moreover, for the function f = 1 we have Lg(f) = 1. This implies that
pe(4) = 1.

Note that uc is invariant under 7. To prove this, we have for every continuous f,

/AfoT duc = Lo(f o T) = Lo(f) = /Afdpo. (4.3.6)

Note that for the above operation we needed continuity of 7. As continuous functions

are dense in L', yc is invariant under 7.

Now we show that uc is a probability measure on C. We can find a sequence of

compact sets C7, subsets of C°, such that

csceic ...,

and
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pe(Co\ Uzt C5) = 0. R % %))

Further, we can show that for every CZ, uc(C<) = 0. To do this, note that, by Urysohn’s
Lemma, for every CZ there is a continuous function f, equal to one on C¢, and equal to

zero outside of C7 . Clearly, as Cf’s are subsets of C°, f, = 0 on C. Therefore,
I‘C(C;) < /Afnd/tc = Le(fa) = 0= pe(CE) = 0.
As the measure of a union of the countable number of sets of measure zero is zero,
Ho(Un31 C2) = 0. (4.3.8)

Therefore, by (4.3.7) and (4.3.8), puc(C°) = 0, and we are done with the proof of the

fact that pc is a probability measure on C.

We have shown that pc is a probability measure when restricted to C. Let us show
that it is an ergodic measure on C. Observe that the set of all restrictions of functions in
CP%(A) to C, denoted C%(A)|¢ forms a dense set in the set of all integrable (with respect
to pc) functions on C. To show this, note that Cy(A) is dense in L!(A). Let f be an
element of L!'(C). Consider its extension to all of A, f, such that f = fon C and f =0

elsewhere. As

[ Fiue = [ sduc,

exists, f € L'(A). Therefore, there is a sequence of functions in C°(A), {f.} converging

to f. But then the corresponding sequence of restrictions, {fnlc} converges to f.

Now, for every f € C°(A)|c we have

L(f) = /C fduc = f*(=). (4.3.9)
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Recalling (Méﬁé [5] Proposition ‘2.2) that if (4.3.9) holds for a dense subset of L!(C),

- then T is ergodic, this éompletes the proof that uc is an ergodic measure, for every C.

What is left is to show that equality (4.3.1) holds. We need the following two lemmas:

Lemma 4.3.3 Let B={z € Alz € C = Jo fduc = f*(z)}, where f is a measurable,

bounded function on A. Then p(B) = 1.

Proof: This follows using Lemma 6.2. in chapter 2 of Maiié [5], by observing that u is

an invariant measure, and [, fduc = [ fduc, as we have shown that pc(C)=1. O

Lemma 4.3.4 Let f € LY(A). Then

Afdﬂ=L[L flcduc} dp. (4.3.10)

Proof: This follows from the Theorem 6.4, Chapter 2 in Maifié [5], using Lemma 4.3.3.

a

Now we complete the proof of the theorem. From Rokhlin [8], as (. is an measurable

decomposition, there exists a canonical system of measures {uc}, such that

/Afdﬂ = /A/C [/C f[cd,uc] du¢ = /A/( [‘/; f|cd,uc] dye, (4.3.11)

which is unique (mod 0). So, we are done with the proof of the theorem. O

4.4 Some consequences

As we already mentioned, our interest in the problem of ergodic partitioning of the phase

space stems from the fact that the ergodic partition plays a major role in the statistical



140

analysis of non-ergodic systems. Rokhlin [9] already characterized the ergodic partition
. as the finest of all stationary partitions. Note that every partition ¢ 1, induced by some
bOllI-lded,v measurable f is a stationary partition, by Birkhoff’s ergodic theorem. The

following proposition provides a link between (; and (:

Proposition 4.4.1 Let B, = {z € A|f*(z) = ¢} be the components of (s, and B.. a

union of all elements C of (. such that

/ fedpe = c.
c

Then p((B. — B.)U (B, — B.)) =0, i.e. every B, is a (.-set (mod 0).

Proof: Let Z = {z € A| fcﬂ fesdpc, # f*(z)}. From Lemma 4.3.3, we have pu(Z) = 0.
Now, set of all z in B/, such that f*(z) is not equal to the spatial average over the ergodic
-component associated with z (which is ¢) has y-measure zero, as that set is just a subset
of a y-measure zero set, and p is complete. This means that p(B.\B.;) = 0. By almost

the same argument, almost every point in B, is in B, so u(B.\B.) =0 O

Another interesting consequence of our main theorem (or rather, the method of the

proof of our main theorem) is the following:
Proposition 4.4.2 Let C € (. be closed. Then it is uniquely ergodic.

Proof: First observe that the restrictions of all functions continuous on A are continuous
functions on C. By Tietze’s extension theorem, as C is compact, the converse is also true:
any continuous fimctiqn f on C admits an extension g which is a continuous function
g:A— R, and g|c - f. Therefore, by‘ the definition of C, and the Lemma 4.3.1, for
each continuous f : C — R, f*(z) = const., Yz € C. As T is continuous on C, by the

Theorem 9.2, in chapter 2 of Maiié [5], it is uniquely ergodic. a
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4.5 An example

Consider the automorphism of the two-dimensional torus given by

r — I+4+w,
y — .

(4.5.12)

It is clear that the solutions are given by z; = 2o + wJ, ¥n = yo. Consider the countable
family of harmonic (complex) functions on the torus, H(my, mg) = exp(i(miz + may)),
where ¢ denotes the imaginary number, and m;,my € Z For the time averages of
harmonic functions, we have
Y ) i L '{5 : :
m1,mz) = lim — > exp(i(my(zo + wj) + mayo))

n—1

. .1 . .
= exp(i(mizo + mago)) lim — Y exp(imywy).
i=o

(4.5.13)

The limit in the above expression is 0 for all m, ms, except for m; = 0, when its value

is 1. Therefore,

H*(0,m3) = exp(imayg)-

Note that the time averages of H(0,m2) are constant on the sets C = {(z,y) € T?2|yo =
const.}. As rational linear combinations of harmonic functions form a countable dense
subset of a set of all real integrable functions on T2, it is clear from the above calculation,

and the Theorem 4.3.1 that the sets C defined above are the ergodic components.
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Chapter 5

Maximal effective diffusivity for
time periodic incompressible

fluid flows

5.1 Introduction

In this chapter we study effective diffusivity for time periodic velocity fields. Most of
our work deals with spatially periodic, two-dimensional velocity fields. However, we
also consider the effective diffusivity for three-dimensional velocity fields admitting a
volume-preserving symmetry (sée chapter 2). Our approach combines recently developed
methods for the analysis-of the statistical properties of nondiffusive motion of a passive

tracer (chapter 3 and [17]) with homogenization theory ([3], [9])-

Most previous rigorous studies of the effective diffusivity for laminar, deterministic
velocity fields have been focused on steady two-dimensional, spatially periodic velocity
fields. This case already exhibits a variety of interesting behavior. To emphasize sim-
ilarities and diﬂ‘erencés between our aﬁalysis and the analysis in the steady case, we
first need to define some terminology. We call (in the spirit of Khinchin’s [11] statis-

‘tical mechanics terminology) a velocity field ergodic in a certain direction if the time
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~ average aloné the Lagrangian tréjectories of the velocity component in that direction is
- constant almost everywhere on the’basic cell defined by the spatial periods. _Note that
‘the velo4c'ity cori‘lponent in a certain direction is a function on a domain on which the
velocity field is defined. In the dynamical systems literature, ergodicity of a velocity field
means thaf all integrable functions have Lagrangian time averages which are constant
almost everywhere. Thus, ergodicity is sufficient but not necessary for ergodicity in a
certain direction. It was shown in [9], [14] that, provided certain technical conditions are
satisfied, the effective diffusivity behaves like Pe? in the large Peclet number Pe limit
for steady spatially periodic flows. Using our results in section 3.1, we can conclude
that velocity‘ﬁelds that are nonergodic in a certain direction give rise to Pe? behavior
of the effective diffusivity in that direction, in the limits Pe — oo, Pe — 0. Also, the
dependence of the effective diffusivity in a certain direction on the Peclet number in
* the large Pe limit is different from Pe? if the velocity field is ergodic in that direction.
In particular, nonergodicity in a certain direction is equivalent to conditions for Pe?
effective diffusivity in previously mentioned works. It is quite straightforward to derive
conditions for Pe? behavior of effective diffusivity in time-periodic flows, but it is not
clear how these conditions, analogous to the ones for steady flows derived in [9], [14],
could be used for analysié of specific unsteady flows. The new condition of non-ergodicity
in a certain direction allows us to analyze effective diffusivity in specific time-periodic
velpcity fields and time-periodic velocity fields with specific kinematical properties, as it

is done in section 4.

The addition of time periodicity brings in a qualitatively new feature: the motion
of the passive, nondiffusive tracer can be chaotic (for a precise meaning and examples
see [25]). There have been many studies of the motion of a nondiffusive passive scalar

in spatially and time-periodic velocity fields recently (see the references in [17]). These
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studies are m(r)stly‘ﬁumerical. What is typiédlly observed is that the motion of a particle
. can be either chaotic or regular, depending on initial conditions. Thus, some particles
»visitvkl'a;r‘ge pOrtiqns of the physical space without diffusion being present, while others
- move along regular trajectories, much as in the steady case. Much attention has been
devoted toqthe determination of the large time asymptotic behavior of the dispersion in
certain directions for an ensemble of nondiffusive particles, which is often shown to be
proportional to the square of time (ballistic behavior), as opposed to the diffusive case
where the dependence on time is linear. It is shown ;igorously in this chapter, based
on the arguments in chapter 3 (see also [17] and [18]) that the ballistic behavior of the
dispersion in a certain direction is a consequence of the non-ergodicity of the velocity
component in that direction. Thus, a clear analogy arises between the above conditions
for the Pe? behavior of the effective diffusivity in the steady case, and the conditions
‘for t? behavior of the nondiffusive dispersion. We exploit that analogy in our study of
effective diffusivity in time-periodic velocity fields. Our results show that, as soon as
we include diffusive effects in the description of motion, the fact that the nondiffusive
motion is chaotic does not necessarily change the dependence of the effective diffusivity
on the Peclet number. Just as in the steady case, it is the ergodicity in a certain direction

of the nondiffusive motion that determines the effective diffusivity.

The amount of previous work on effective diffusivity in time-periodic velocity fields
is not large, although there is a significant number of natural phenomena which can
ber modeled by a coﬁvection—diffusion equation with time-periodic coefficients (for a list
of these natural phenomena, see [6], [7]). Dill and Brenner studied effective diffusivity
in tim‘e-peﬁodic flows both in spatially periodic [7]) and Taylor dispersion [6] settings,
using the moments method. A specific class of velocity fields that they analyze is, in

our terminology, ergodic in all directions, and thus does not have Pe? enhancement of
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maximal diffuéivity, although an‘enhancement’ exists. In these works, references to prior
. work on effective diffusivity in time-periodic velocity fields are listed. Fannjiang and
»Papani’c'o‘laou [9] devgloped variational principles which determine effective‘diﬁ'usivity
for both steady and time-periodic flows. We use their variational principle for time-
periodic ﬁbws in section 3.1. Their Theorem 8.16 on flows which are nonballistic in a
certain direction is a special case of our result on flows which are ergodic in a certain

direction.

This chapter is organized as follows: in section 2 we introduce concepts and methods
from homogenization theory that are required to describe the effective equation of motion
of a passive scalar, and the expression for the effective diffusivity. In section 3 we derive
conditions for Pe? behavior of the effective diffusivity in a particular direction in terms of
~the Lagrangian time average of the velocity field component in that direction. We make
the above described connection with the nondiffusive motion. We also show how these
results can be applied when one considers the associated i’oincaré map of the velocity
field. In section 4 we discuss several examples of velocity fields for which the derived
conditions for the Pe? behavior of the effective diffusivity are applied. At the end of this
section we discuss the sqcalled duct velocity ﬁélds, which are three-dimensional velocity
fields admitting a volume-preserving symmetry. We study the effective diffusivity for
these velocity fields, thus generalizing the standard Taylor-Aris dispersion theory for

unidirectional steady shear velocity fields.
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52 Horhogénization'of the convection-diffusion equation

' 5.2.1 Definitions and notation

The convection-diffusion equation

dc

5 + v(x,t)- Ve = DAc, (5.2.1)
describes the conservation of a passive tracer in a moving fluid. In the above equation,
¢(x,1) is a scalar field (eg, temperature or concentration), v(x,t) is an incompressible
velocity field obtained by solving the Navier-Stokes equation, and D is a constant de-
pending on physical properties of a passive tracer. In what follows, we shall assume that
v(x,1) is periodic in time with the period 7 = 27 /w. With the exception of the example
on duct velocity fields in Section 4, v(x,t) will be assumed to be a spatially periodic,

 two-dimensional vector field. In that case, X = (z,y), and the period in the direction of
z and y is denoted by [ (for simplicity, we assume a square cell). Because of the spatial
and temporal periodicity, we can suspend the vector field v(x,t) over A = T? x §1,
where T'? denotes a 2-torus, and §! a circle. This can be done by redefining v(x,t) to
be a three-dimensional velocity field with a component in the direction of time being

constant. For example, if v(x,1) is given by

t = u(z,y,t),

:.') = 'U($1 y’t)1

then the suspended, three-dimensional velocity field is

dz
ds

dy
d_s ’U({B, Y, t),

’u’(m’ y’ t)’



149

dt
ds

- where s is a new “time-like” variable. Thus, the phase space on which we analyze
properties of v(x,t) is A. We assume that v(x,t) is Lipschitz continuous on A. Note
that v(x,t) is immediately bounded and integrable on A. The average of any object

defined on this phase space is denoted by (-)

{-) = -121—7_ ‘[' Ll /Ol(-)a':cdydr.

The average over the unit cell be will be denoted by (-),,

() = '113'[)’ _[)l(-)da?dy-

" The time average of any integrable function f on A under the flow ¢' : A — A generated

on A by v(x,t) is given by
f* 1 i 1 /1 f f( t)) 17, |
(X, ) = Tun T Jo ((b X, 3

where (x,t) denotes a point on A. When we use the term “time average” in this chapter,

it will always mean the time average along a Lagrangian particle trajectory.

The reader will notice that we use the term “velocity field” where a fluid dynam-
ics term would be “flow,” e.g., “duct velocity fields” instead of “duct flows.” This is
introduced in order to preserve the precise meaning of the term “flow” customary in

dynamical systeins literature.

We shall often state that some statement is valid “almost everywhere” on A. This
is a.lwé,ys meant in the sense of measure theory. A measure on A is a function from a

certain subset A of all sets on A to R, which assigns to each set in .A a number in IR.
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In our case, for any B € A, ;L(B) reads

IS
B) = — [ dzdydt
n(B) perwy,

- where the integration is meant in the Lebesgue sense. p is a positive function on A, i.e.,
[L(B)‘ >0 for evéry B € A. Also, p is a probability measure, i.e., u(A) = 1. Now, the
validity of the statement “almost everywhere” on A will always mean that the measure
of the set in A on which that statement is not valid is zero, or, eqﬁivalently, that the
measure of the set on which the statement is valid is 1. Thus, A and the set on which

that statement is valid are the same, in the sense of measure theory.

5.2.2 Homogenization

In this section, we introduce the necessary results from homogenization theory that we

shall use in our analysis. General references are [3] and [9].

The velocity field can be decomposed into its average and fluctuating parts as
v(x,t) = (v) + v/(x,1).

Since v/(x, t) is a zero-mean, spatio-temporally periodic vector field, there exists a skew-
symmetric, spatio-temporally periodic matrix

0 H
H=| (5.2.2)
-H 0

such that v/ = V - H (see [9]). Equation (5.2.1) can then be written as

g_;. +{v)-Ve=V. A(x,t)Ve. (5.2.3)

In the‘ above equation A = (DI — H), where I is the identity operator. We assume that

" the spatial size of the domain in IR? on which the velocity field is defined is characterized
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by a constant' L, while a time-scale for the observation of the flow is given by T. Let
& =71/T,6 =1/L,and 6 = /62 4 6%. Let us rescale time and spatial scales as (x,t) —
(x/&,'t‘/éz). Thus, (5.2.3) becomes

de | 51 - x t
5 + 67 {v)- Ve =V A( 55 )Ve. (5.24)

It can be shown, using homogenization theory for parabolic differential operators (see
e.g., [3]) that, on large temporal and spatial scales, i.e., when é — 0, and with the initial
condition ¢(x,0) = co(x) varying on large spatial scales compared with the velocity field,

¢(x,t) converges weakly in L? to &x,t), where € satisfies

g—i +(v) - V& = DAG, (5.2.5)

(for details of a procedure leading to (5.2.5), see {16]). In (5.2.5), D is the constant

‘eﬁectz’ve diffusivity tensor given by
D=(DI-H+(DI-H)Vy), (5.2.6)
with the spatially and temporally periodic vector field X‘satisfying the cell equation
9 +({v} + v')-Vx=-DAx = -V (5.2.7)
ot ' )

In [7] an equation analogous to (5.2.7) was developed. In that work, x is denoted by B
and called the B-field.

Equation (5.2.7) is the basis for our analysis of the relationship between the effective
diffusivity and ergodicity of the flow generated by the vector field v(x,t) on A. We shall
restrict our attention to the symmetricApart of the effective diffusivity tensor (5.2.6).
This restriction is common in the literature (see e.g., [14], [13]), and also there is a large

class of velocity fields for which it can be proven that D actually is symmetric (see [9]).
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For a discussion of velocity fields having nonsymmetric effective diffusivity tensors, see

-[12]. The symmetric part of D is giv’en by

Dgym = D(I +(Vx-Vx)). (5.2.8)

It is convenient for analysis to put the cell equation (5.2.7) in integral form. First

notice that the effective diffusivity in the direction of a unit vector e is given by

Dsyme-e = D(1 +(Vx®-Vx®)), (5.2.9)

where x® = x - e. Let us introduce the operator I' = VA™1V. Then it is easy to show

that, in the direction of e, (5.2.7) becomes

19

(D-TA™ = -

FA™' (v)-V-THI')Vx® =TH -e. (5.2.10)

5.3 Ergodic theory and effective diffusivity

5.3.1 Conditions for the maximal effective diffusivity

In the previous section, we derived the equation that needs to be solved in order to
obtain the effective diffusivity for a time-periodic, spatially periodic velocity field in
the direction of the unit Qector e. Following [14] we call the effective diffusivity in the
direction of e mazimal if
1
De-e~ ik
In this section we shall be interested in determining the conditions on a time periodic,

spatially periodic velocity field in order that it has a maximal enhanced diffusivity.

Let us define a new operator G as

G= —I‘A‘I% ~TA™!{v)-V - THT.
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The operator G is compact (seé [9]), and it is clearly related to the purely convective

- part of (5.2.1). Equation (5.2.10) now becomes
(DI — G)Vx® = TH -e. (5.3.11)

Let H be the Hilbert space of all square-integrable, curl-free, time periodic, spatially

periodic, zero mean vector fields. More precisely
H={FelL?A)|F=Vffe H(A)}

So, for any function f in the Sobolev space H'(A) of émll square integrable functions on
A with square integrable distributional derivatives, its generalized derivative V f is in
H. Let us decompose H as H = N @ ML, where A is the null space of G, and ML its
complement in H. Now, using the same type of calculations as in the demonstration of
" Lemmas 8.2 and 8.4 in [9] (in particular, using a variational principle for time-periodic

velocity fields developed there), we can conclude that
1
De-e ~ D D — 0 if and only if TH - e has a non-zero component in V.

Note that exactly the same result is obtained by using the formalism developed in [1],

[2], based on the Stieltjes integral representation for the effective diffusivity.

In what follows, we shall interpret the condition
I'H e has a non-zero component in M (5.3.12)

in terms of the time average, (v'-e)*, of the function v’-e, which is just the time average

of the velocity in the direction of e. We assume (v'-e)* € H1(A).

First, note that for (5.3.12) to be satisfied, A/ has to be non-empty. It is not hard to

‘show (cf. Section 8.2 of [9]) that this means that there must exist a nontrivial (i.e., f is
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not a constant almost everywheré) f € HY(A) such that f is constant on orbits. This

- means that such an f satisfies

%% +v(x,1)-Vf=0, ‘ (5.3.13)

in a generalized sense.

Second, let M be the Hilbert space of functions f € L!(A) such that f = g* for some
g € L'(A). It is clear that the space of all functions in H'(A) which are constant on

orbits is a subset of M. For T’'H - e to have a component in NV, we need
(TH-e)-Vf) # 0
for some f € H'(A). Integrating by parts, we get

(fv'-e) # 0 for some f € H'(A). (5.3.14)

Now we show that (5.3.13) and (5.3.14) are satisfied if and only if the time average
of v-eis not a constant almost everywhere on A. As ({v)-e)* is a constant, it is enough
to show that (5.3.13) and (5.3.14) are satisfied if and only if (v/- e)* is not a constant

almost everywhere on A.

Suppose first

(v'-e)* is not a constant almost everywhere. (5.3.15)

Then, take f = (v’ -e)*. By Birkhoff’s ergodic theorem, (v’ - e)* satisfies (5.3.13).
For (5.3.14) let us first note that the projection operator Il : L' — M, which takes every
function in L! to its time average, is ofthogonal ([15]). Then, we have the following

calculation:

((v' ce)v-e) = ((v-e)((v'-e)* +2))
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= ((v-or)) |
40, - (5.3.16)

~ where z = v/ -e — (V' - e)* is a function in M*.

To prove the converse, assume there exists some, nontrivial, f in H! which is constant

on orbits such that

| (v-e) # 0.
Then, as (v’) = 0, .
(=)' -e) = (fv'-e) # 0.
Note that (f — (f)) € M. Now suppose (v’ -e)* = ¢, ¢ € R almost everywhere. Then,

v/.e=c+ z where z = v/ - e — (V' - €)* is a function in M<, so
((F = {MNe+2)

e{(f = (N +AF = {D2)
c{(f={M=0

(f={NV'-e)

and we are done by contradiction.

Thus, we have proved that the maximal enhanced diffusivity in a certain direction
will exist if and only if the time average of the velocity in that direction is not a constant
almost everywhere. Following Khinchin [11] we call functions whose time average under
the velocity ﬁeld v is»constant almost everywhere ergodic functions. Thus, the effective

_diffusivity in a certain direction e is not maximal, i.e.,

1
De-e<<5 as D — 0,
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if and only if v-eis an ergodicl function, or as defined in the introduction, if v is not
ergodic in the direction of e. Theorem 8.16 in ([9]) is a special case of the “if” part of
this Statgme'nt.

In the convection-diffusion equation (5.2.1) there exists only one nondimensional
parameter, the Peclet number Pe = VI/D, where V is the maximal velocity on A.

Letting (z,y,t) — (z/l,y/1,tV/l), we obtain the nondimensional equation

dc

1
Y + v(x,t)- Ve = -ﬁéc. (5.3.17)

Now we see that all the above analysis comes through for equation (5.3.17). In particular,
the above conclusions are valid in the limit Pe — oo. In terms of the Peclet number, we
have

De-e
~ Pe? as Pe — 0.

The point of writing (5.2.1) in the form (5.3.17) here is twofold: firstly, we do not have
to decrease molecular diffusivity, which is awkward experimentally, but we can increase
the velocity or spé,tial scale to achieve maximal enhanced diffusivity. Secondly, in what
follows we analyse the limit Pe — 0: to achieve that limit, it is more natural to let U or

[ go to zero, rather than let D — oo.

In particular, suppose again that I'H - € has a non-zero component in A/. We can
decompose Vx© into the components in A and Nt as Vx® = Vx% + Vx%... The

effective diffusivity tensor becomes
Dsyme ce=D + D (VX?V : VX?V‘) + D<VX§f-L : VX?VJ'> )

From (5.3.11), using the fact that Vx§/ is in the null space of G, it satisfies

L

5: VX% + TH-ex = 0. (5.3.18)
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Clearly,

(VxS - VxS) = P2 (TH -ey -TH -ey) = cPe?,
where ¢ = (TH -ep-TH - ey). This derivation does not depend on the value of Pe.
Now, agai{n‘from (5.2.10),

1

52 VXL + GG + TH -eyu = 0. (5.3.19)

For small Pe, solving (5.3.19) for Vx§,, gives
VX% = Pe(I— PeG)'TH - ey1 = O(Pe).
Therefore, if 'H - e has a non-zero component in N,

De -
e e~P€2 as Pe — 0.

For an equivalent result in the steady case, and numerical simulation of some interesting
crossover phenomena between small Pe and large Pe limits of Pe? behavior of the
effective diffusivity divided by the molecular diffusivity, see [14]. In fact, all the results

in this subsection carry over to the steady case.

5.3.2 Connection to nondiffusive motion

In the previous section we concluded that, for v(x,t) to have maximal effective diffusivity

in the direction e in the limit D — 0 (or Pe — 00), it is necessary and sufficient that
(v-e)” is not a constant almost everywhere. (5.3.20)

~As the Peclet number measures the ratio between convective and diffusive effects, convec-
tive motion dominates in that limit. It is natural to ask what (if anything) the condition

(5.3.20) means in the case of nondiffusive motion. Statistical properties of the motion
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of a nondiffusive passive scalar have been investigated in chapter 3 with an additional
. application to dispersion in fluid velocity fields provided in [18]. We shall now establish,
as a vcoréllary of that work, the meaning of (5.3.20) for the nondiffusive case.
The mqtion of nondiffusive passive scalar in a two dimensional, time periodic and spa-

tially periodic incompressible fluid velocity field is governed by the ordinary differential

equations

a.: - u($7 y’ t)’
g = o(z,y,t).

(5.3.21)

Let us assume that at ¢ = 0, tracer particles are uniformly distributed over the unit cell.

. The nondiffusive dispersion in the direction of e, denoted by DZ(?):

Di(t) = ([(x-e-xo-e)—((x-e=xo-e}),]?) ,
- <[/0tv(x(ﬂ,t-) ‘e di- </Ot v(x(D),])-e dt'>s]2> .

s

(5.3.22)
Dividing (5.3.22) 'By 12 and letting ¢ — oo, we obtain
= Jim (7 [ vx0.D-e = (5 [ vix®D-e ) 7)
= ((v-er ~ (v,
= | (5.3.23)

The passage from the first to the second line is justified using boundedness and integra-

bility of v -e and Lebesgues bounded convergence theorem. The existence of the infinite
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time limit is I;rove(i as follows: {r(x,t) induces a flow on A, as discussed in section 2.
- Thus, by Birkhoff’s ergodic theorem, the time average of v - e exists almost everywhere
on A We need to show that it exists almost everywhere on the basic cell, v?hich is a
* cross-section 1 =‘0 of A. To prove this, suppose there exists a set of positive measure B,
u(B) > 0, Where p(B) = [gdzdy on the basic cell such that the time average of v -e
does not exjst. By the volume preservation of the flow on A, the set B’ which consists of
trajectories emanating from‘ B is of positive measure on A. Then by Birkhoff’s ergodic
theorem the time average of v - e does not exist anywhere on B’. Thus we are done by

contradiction.

Using the positivity of the integrand in a, we conclude that @ = 0 if and only if (v-e)*
is constant almost everywhere (see chapter 3). As a < oo by the boundedness of v we

‘reach the following conclusion:

De-e

~ Pe? as Pe — oo if and only if D2(t) ~ 12 as t — oo.

Thus, the Pe? behavior of the effective diffusivity is a consequence of the fact that the
diffusing particle visits regions in the phase space where the convective motion takes
place with different average velocities. In a purely convective case, there is a linear
growth of the separation of particles starting in regions with different average velocities
and quadratic growth of the dispersion of such particles. This physical mechanism for

Pe? behavior of the effective diffusivity in the steady case was proposed in [13].

5.3.3 Formulation of the results in the context of Poincaré maps

In the past'10 years the techniques and approach of dynamical systems theory have been
applied to many issues associated with fluid transport and mixing. In this setting much

of the analysis has been carried out using the Poincaré map associated with the time
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periodic velocity field. We now discuss a relationship between the ergodic properties
-of the velocity field v(x,t) needed in the analysis of the effective diffusivity, and the

associated Poincaré map P.

"The Poincaré map of a time-periodic, spatially periodic flow on A induced by v(x, )

is a map P : T2 — T? defined by
P(EO3 yO) = (:E(Ta Zo, Yo, 0)3 ZI(T, Za, Yo, 0))1
where (z(t, zo, Y0, 0), y(%, Zo, Yo, 0)) is the solution of (5.3.21) with initial conditions

27(0, Zo, Yo, 0)

Zo,

y(07 o, Yo, 0) Yo-

The time average fp of any function f € L!(T?) under P is given by
1 n—1 .
f2x) = lim 25 f(P(x).
) =0
Let us define a jump function j: T? — R as
i) = [ v6x, 0

It is not hard to show that (j-e)p = 7(v - e)*. Therefore, we have that, in terms of the

Poincaré map P, (5.3.20) becomes

(j - e)p is not a constant almost everywhere. (5.3.24)
5.4 Some examples

In this section we apply the conditions for the maximal effective diffusivity to a number

of specific velocity fields, or velocity fields posessing some specific dynamical property.
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In particular, We diséuss the relationship of the so-called “accelerator modes” in Poincaré
- maps to the maximal enhanced diffusivity. We analyze small, time-periodic perturba-
tions'ofa.steady‘cellu-la{r velocity field, which can produce a discontinuous tr#nsition in
“the effective diffusivity coefficient. A velocity field which exhibits such a discontinuous
transition ié an example due to Zeldovich, which we discuss in terms of the concepts in-
troduced apre. The analysis in previous sections can be extended to three-dimensional,

time-periodic duct velocity fields, the study of which closes this section.

5.4.1 Accelerator modes

In the dynamical systems literature an accelerator mode is an invariant region surround-
ing an elliptic fixed point p of the map P, such that all initial conditions in that invariant
region have the same, nonzero time average of the jump function j- e in some direction
e. Physically, particles starting in the region called accelerator mode move to infinity

with the same average speed, while their mutual distance stays bounded.

Let us be more precise about the above definition of an accelerator mode in the case
when P is a Poincaré map derived from a time periodic, spatially periodic v(x,t). Let p
be an elliptic ﬁxedrvpoint for P. Let (j-e)(p) # O, for some e. Then, using the fact that
v(x,t) is Lipschitz continuous, and the result proven in [19] for a general continuous area
préserving map P, we deduce that there is an invariant region D, of a positive measure,

around p such that

(-e)p(p)=(U-e)p(p)=(-e)p) VP € D.

This means that all the particles starting in D have the same time average of the jump
in the direction of e, and that time average is equal to the value of j- e at p, which is

not zerc. Therefore, D is an accelerator mode.
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We shall show that, assuming the existence of an elliptic fixed point p such that

(J - €)(p) # 0 (so, as argued above, an accelerator mode exists), and assuming that

(G-e)), # (- e)p), | (5.4.25)

the velocity field v(x,t) posesses a maximal effective diffusivity in the direction of e. By

Birkhbff ’s ergodic theorem

((-e)), =(G-e)p),-
Thus, using the condition (5.4.25), there must be a region E in T2/ D of positive measure
such that (j-e)p # (j-€)(p) in E. Therefore, (j-e)p is not a constant almost everywhere.

So, by the condition (5.3.24) there is a maximal enhanced diffusivity in the direction of

e. Note that (5.4.25) is easily checked if v is explicitly given:

(G-e))y=7((v-e)).

In chapter 3 and [17] Mezi¢ and Wiggins numerical evidence was presented that showed
that the conditions above are satisfied for certain parameter values in a model of
Rayleigh-Benard convection. Additional numerical evidence, for a different model of
the same problem, is presented in [22]. These authors also make a connection between
the acceleré,tor mode islands and lobe-dynamics, as developed in [23]. Karney et al. in
[10] used heuristic methods to derive the above result for the special case in which P is
the standard map.

5.4.2 Small, time periodic perturbations of a steady cellular velocity

field

In this subéection’ we analyze time-dependent perturbations of a class of velocity fields
which kare usually‘called cellular. These are spatially periodic velocity fields for which

the streamlines z = nl and y = ml, m,n € N separate cells inside which the velocity
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field is composed of closed streamlines surrounding an elliptic fixed point (see figure
- (5.1). A particular example of such,a velocity field, shown in figure 1, is given by the
Streavmflinction

¥ = sin(27z)sin(27y).

It is a well-known result (see [9] and the references therein) that for such a velocity field

o /| \J

\

&
i

~=-0.2 o 0.2 0.4

Figure 5.1: Cellular flow.

De-e
~ vV Pe as Pe — oo.

We now show how a discontinuous change of the dependence of the effective diffusivity
on the Peclet number can appear if we perturb v(x) by a time-dependent perturbation.
Such a time-dependent perturbation can appear if, by increasing the Rayleigh number,

the velocity field undergoes a Hopf bifurcation.
| - Let

v(x,t) = v(x) + evP(x,1)
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where the dependence of v”(x,t)‘ on time is periodic, and € is a small parameter. Also,
- assume v(x) is cellular, and satisfies the assumptions above. Let P be the Poincaré

map associated with v(x, t). By Moser’s version of the KAM theorem (see [21]) we know
- that, for small enough ¢, and under nondegeneracy, “twist” condition, there are invariant

circles surrounding the elliptic fixed point. Assume
(vP(x,t)-e) #0, ) (5.4.26)

for some e. Pick one of the invariant circles surrounding the elliptic fixed point, and

denote the region that it surrounds by D. Then,
G-e)p =0,

for all points inside D, as suppose that (j-e)p # 0 for some point. Then that point can
‘not stay inside a bounded region for all times, which gives us a contradiction. But then,
there must be a region E of a positive measure in 72/D such that (j-e)p # 0 in E.

Because, suppose this is not true. By Birkhoff’s ergodic theorem,

(-e), =(G-e)p)s-

Then by condition (5.4.26) and the fact that (v(x)), = 0, ((j-e)p), # 0, and (j-€)}
must be different from zero on a set of positive measure in T2/ D. This means that (j-e)}
is not a constant almost everywhere, and so, by (5.3.24)

De-e

~ Pe? as Pe — . (5.4.27)

Note that at € = 0 the effective diffusivity in the large Peclet number limit exhibits the

transition from +/Pe behavior to Pe? behavior.

| According to the above result, a log(De-e/D) — Pe diagram should have a disconti-

nuity at the Peclet number corresponding to € = 0. It would be interesting to provide a
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‘numerical or experimental evidence for this situation. A model velocity field is easy to

-construct: let
v(x,t) = (siny + €(sin® ysin® wt), cos z + €(sin’ z sin® wt).

This velocity field is tWo—dimensional, spatially and time periodic perturbation of a
cellular velocity field, satisfying (5.4.26). The time scales for integration of (5.2.1) such

that the scaling in (5.4.27) is obtained should typically be very long (O(1/¢)) for € small.

5.4.3 Zeldovich’s example

In ([28]) Zeldovich considers the following velocity field:
v(x,t) = (2v cos ky coswt, 0), - (5.4.28)

where v,k and w are constants. This velocity field is in the form appropriate for the

analysis developed above. Zeldovich finds for the effective diffusivity in the direction of

Z:

De, - e, v2k?
—p Pt o)

(5.4.29)
Because of the simplicity of the velocity field (5.4.28), the above result for the effective
diffusivity is exact,v Note‘that for w = O, (5428) is a shear velocity field, with a time
average of the velocity in the direction of z clearly not a constant almost everywhere.

Therefore, by the results in the subsection 3.2, Dg_~ t? when t — oo and so, a priori

De, -e 1
== = o = ~ Pe? as Pe — .

D D

Consider the w # 0 case. We can solve (5.4.28) exactly:

y(&) = 3o,

¢
z(t) = =zo+ / 2v cos kyo cos widl.
_ 0
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The time average of the velocity in the direction of z for any particle is zero. Therefore,

- we know

De, - e,

D <-b-~Pe2asPe—-}oo.,

'Indeed, from the exact formula (5.4.29) we see that there is no enhancement of the
effective diffusivity in the case w # 0. There is again a discontinuous transition in the

behavior of the effective diffusivity at w = 0, where Pe? dependence is changed to Pe°.

It is seen that our methods provide an elegant way of deriving a priori scalings of the
effective diffusivity (a priori in the sense that we only have to compute the time averages

of the velocity field, without having to analyze the convection-diffusion equation).

Zeldovich’s example is a shear velocity field with bounded velocity. The question
arises: what would happen in a linear shear velocity field, of the type v(x) = (ky,0).
It is well-known that motion of a passive tracer is not diffusive in this example. In
particular, the size of the cloud of tracer particles grows like #3. No homogenization in
the above presented sense is possible. This example establishes the optimality of the
condition that the velocity be bounded. The boundedness of the velocity is a technical
condition needed both in studies of nondiffusive and diffusive motions (see [4], chapter

3 and [17)).

5.4.4 Duct velocity fields

As a final example, we analyse the fluid mechanically important class of three-
dimensional velocity fields called duct velocity fields v(x,t), where x = (z,y,2) now,

of the form

_ 0¢¥(z,y,1)
Ve = ay )
_9¢(z,y,1)

v, = )

Oz
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v, = f(@ )

(5.4.30)

(see [8] for examples of steady duct .velocity fields). In chapter 2 we have proved that
any incompressible veloéity field admitting a volume-preserving symmetry can be trans-
formed to the above form. In ‘particular, every Euler velocity field admits a volume-
preserving symmetry, which is generated by the vorticity field. We shall assume that
the z — y components of (5.4.30) satisfy the conditions on two-dimensional velocity fields
imposed in previous sections, but the analysis can be extended to velocity fields which
are bounded, but not periodic in z and y. We shall refer to the 2 — y components of

(5.4.30) as the cross-section.

We are interested in finding the effective diffusivity in the direction of z,

Dgyme. -e, = D(1 + (Vx® - Vx®)), (5.4.31)

and x®: satisfies

oxe-
ot

+((v) + v)-Vx® — DAX® = —V'-e, = v, (5.4.32)

where (-) still denotes an average over A, and fluctuating quantities are denoted by (-)'.
(5.4.32) is of the same form as (5.2.7), and it is easily seen that the condition for maximal

diffusivity in the direction of z reads
(v;)" is not a constant almost everywhere, (5.4.33)

where * denotes the time average under the flow on A generated by the suspension of

the T—y components of (5.4.30) over A. In terms of the Poincaré map, (5.4.33) becomes

(j.)" is not a constant almost everywhere, (5.4.34)
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~where j, denotes a distance in z that a particle traverses during one period of the velocity

-field.

Now we can discuss the difference between steady velocity fields of the form (5.4.30),
with f(z,y) = ¥(z,y), discussed in [14], and time-periodic velocity fields. In particular,

it was concluded in [14] that steady velocity fields of the type

v (6111;?3/)’ —a”’g?”),w(z,y))

always have maximal enhanced diffusivity in the direction of 2z, under the assumption
that the mean value of the spatially periodic part is zero. In terms of (5.4.33) the maximal
effective diffusivity in this case can be understood through the fact that ¢ partitions the
cross section (z — y) of the duct velocity field into streamlines (i.e., the  — y components
of the velocity field are integrable), and the time average of v, = 1 is not the same on
all streamlines (in a measure-theoretic sense). In the time-dependent case this does not
have to be so. If the cross section is ergodic, then the diffusivity in the direction of z is
not maximal. Now, a typical scenario for fluid velocity fields is the following: a steady
duct velocity field undergoes a Hopf bifurcation, and the resulting velocity field has the

form
v(z,y,t) = v(z,y)+ evP(z,y,1),

where € is a small parameter. The cross section of the unperturbed duct velocity field
v(z,y) might possess some separating streamlines (see figure (5.1)). Under the time-
dependent- perturbations these streamlines can break. It is widely believed that there
is a neighborhood of these streamlines for small ¢ such that the perturbed cross section
is ergodic in that neighborhood (this has been proven for some very simple cases, see
[26], [27]) ‘But, as the whole cross section is not ergodic, the effective diffusivity in

the direction of z is still maximal, i.e., D,yme, - e, ~ Pe?. As the strength of the
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perturbatjon, € is increésed, a lzirger portion of A might become ergodic, ultimately
‘leading to the ergodicity on the whole A. At that point the effective diffusivity in the
direct’ionypf z is not maximal. So, the time dependence of the cross éectiona;l velocity
field providés a mechanism for the transition in the behavior of the effective diffusivity
for duct velbcity fields which have cross-sectional velocity field with zero mean. This was

not possible in the steady velocity fields of the type considered in [14].

5.5 Conclusions

We have provided tools for the study of maximal effective diffusivity in two-dimensional,
time and space-periodic flows, and in three-dimensional, time dependent flows admitting
a volume-preserving symmetry. Of course, the analysis of maximal effective diffusivity
in three-dimensional, space and time periodic flows can be done along the same lines.
But, there is much less knowledge of a kinematical structure for three-dimensional maps
and ﬂowé, then for two-dimensional ones. Our study could be extended to more general
time dependences upon establishment of the relevant homogenization theory (however,
see [3] for a “weak” homogenization theorem for flows with the almost periodic time

dependence).

It would be interesting to provide numerical or experimental evidence for the “phase

transition” phenomena predicted in section 4.
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Chapter 6

Chaotic transport and dispersion
near a helical vortex filament in
a time-periodic strain rate field

6.1 Introduction

In the past years there has been much work in applying concepts of dynamical systems
theory to fluid transport and mixing issues. The reason for this is as follows. For
two-dimensional, incompressible time-periodic fluid flows the equations for fluid particle

paths are given by

- %
- ay (‘T? y7t)?

oY
_a_z(mv Y, t)v

.
i

where t(z,y,t) is the stream function, which we will consider to be periodic in ¢. From
the dynamical systems viewpoint, these are Hamilton’s equations where ¥(z, y,t) is the
Hamiltonian function and the phase space of this dynamical system is actually the phys-

ical space where the fluid flows. Through time periodicity the study of these equations
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can be reducéd to i:he study of ﬁ two-dimensional area preserving Poincaré map and
- once the problem has been cast in this setting a variety of techniques and ideas from
dynainicél sy'stems theory can be'applied for the purpose of _studyiﬁg fluid transport
and mixing issues. For example, KAM tori represent barriers to fluid transport and
mixing, chéotic dynamics should act to enhance mixing, and invariant manifolds, such
as the stable and unstable manifolds of hyperbolic periodic points, are manifested as
“organized structures” in the fluid flow. See Ottino [15] and volume 3 (1991), number 5

of the Physics of Fluids A for recent reviews.

Because of the analogy with two-dimensional area preserving maps described above,
most of the theoretical work has been in the context of two dimensional time periodic
flows, or for three-dimensional flows that have some property that allows a reduction to a
two-dimensional area preserving map. For example, the ABC flow is a three-dimensional

steady Euler flow that has received much attention in recent years (see, e.g., Dombre et

al. [9]).

In recent years there has been some progress in extending the dynamical systems
approach to flows With more general time dependence and to three dimensions. Beigie et
al. [5], [6] have developed methods for studying transport and mixing in quasiperiodically
time dependent flows. MacKay [11] and Mezi¢ and Wiggins [12] (or chapter 2 of this
thesis) have developed methods for studying transport and mixing in certain classes of

three-dimensional flows.

In this chapter we present a study of convective transport in a three-dimensional
time periodic flow from the point of view of dynamical systems theory. In particular, we
study the flow induced by a helical vortex filament in an axisymmetric time-dependent

strain field. The dynamics of vortex filaments in three-dimensional flows is an area of
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» continuing activity with many oi)en problems remaining. We want to emphasize that
the purpose of this chaptér is not to develop models for the dynamics of vortex ﬁlaments.
Rathér, We wish to take a specific fnodel that is physically realistic in certain situations,
and StUdy the fluid particle kinematics and transport properties resulting from the flow
induced by the vortex filament. Therefore, we will not present a literature survey of
the various theories of the dynamics of vortex filaments. Rather, we will only describe
results that are relevant for our particular model, as well as discussions of its validity.
We refer the reader td the recent monograph of Saffman [16] for general background on

the dynamics of vortex filaments.

This chapter is organized as follows. In section 2 we derive the velocity field induced
by a helical vortex filament in a time periodic, axisymmetric strain rate field, under
.certain assumptions based on the structure of the vortex core and the self-induced motion
of the helix. The axisymmetric strain rate field is considered as a perturbatioﬁ of the
flow induced by the helix. We then transform the flow into a special system of “helical
coordinates” based on the symmetries of the unperturbed flow. These coordinates play
an important role in our analysis of global kinematics and transport. In section 3 we
analyze the structﬁre of the unperturbed flow énd use this as a framework to analyze
the structure of the perturbed flow in section 4. For the perturbed flow we show the
existence of invariant two-dimensional helical cylinders in the flow that act as barriers to
the transport of fluid, as well as the existence of regions of chaotic fluid particle motions.
In the same section we discuss a mechanism for the Ranque effect which appears in
swirling flows in pipes (increase of the temperature of certain regions and decrease of the
temperature in others) provided by the chaoticity of the motion. In section 5 we discuss

shear dispersion of an ensemble of perfect tracer.
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6.2 The velocity field of a helical vortex filament in an
- axisymmetric time-periodic strain rate field

In this Sféction we will derive an approximate expression for the velocity field induced
by a helical vortex filament in an axisymmetric time-periodic strain rate field. The
derivation involves several steps, and will be broken down and distributed through several

subsections.
6.2.1 The velocity field induced by a helical vortex filament

Consider a vorticity distribution along a space curve that is given parametrically by
x'(¢,t) = (2/(4, 1),y (¢, 1), 2'(#,1)), where ¢ denotes the parameter along the curve at
each instant of time. The time dependence of x'(¢#,1) comes from the fact that the vortex
- filament may move in time. The velocity induced by this vorticity distribution is given

by the Biot-Savart integral as follows (see Batchelor [4])

L/ s(x, ¢,t) X dx(91)

dé
= do, (6.2.1)

u(x,t) = — (%, 6.9)

where o denotes the space curve or filament under consideration, and T is the circulation

of the vortex filament.

Let us consider the situation of a helical vortex filament fired in space, i.e., it does

not move in time. The filament is represented parametrically in Cartesian coordinates

as

' = agcoso,

Y = agsing,



7 = k0¢7
(6.2.2)
or, in cylindrical coordinates
r = ag, : (6.2.3)
¢ = o, (6.2.4)
2 = koo, (6.2.5)

where aq is the radius of the cylinder circumscribed by the helix and 27k is the pitch

of the helix.

Hardin [10] was the first to derive the velocity field for this situation, although he
followed a procedure that is slightly different, but equivalent, to that described above.
Rather than evaluate the Biot-Savart integrals directly he derived a vector velocity po-

tential

Ax, ) = —L/ ﬁﬂ—dqﬁ (6.2.6)
’ dr Jo s(x,¢) -

whose curl gives the velocity field. In cylindrical coordinates, the components of the

velocity potential are given by

[ agsin(f — @)
‘A . agcos( — @) | do
| ‘ ko

T ~oo (r% + ad — 2agrcos(6 — ¢) + (z — kod)?)1/2" (6.2.7)

A
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Hardin evaluated these integrals and used the results to construct the following velocity

- field

: ' . T ' '
i§s(a0, ko, 7,0,2) = —73 S mK’(mao/ko)ly(mr/ ko) sin(m(® — z/ko)),
0 m=1
AN F ao ’
08s(ao, ko, 7,0,2) = pry = mz_:l mK,,(mag/ko)Im(mr/ky) cos(m(8 — z/ko)),
58(ao, ko, 7,68,2) = L _Lao s Z mK,,(mao/ko)Im(mr ko) cos(m(0 — z/ko))
BS ‘Ov IR " 91k 7l'k2 m m 3
(6.2.8)
for the region r < ag, and
F8 (ag, ko, 7,0, 2) = i 90 S i (mr ko) LLa (mao/ ko) sin(m(® — =/ko)),
m=1
T T agp ’
0% (ao, ko, 7,0,2) = = + ko 12 mzﬂ mK ., (mr[ko)l,,(mao/ko) cos(m(0 — z/kq)),
%% (ag, ko, 7,0,2) = —F—@ mK ,(mr/ko)I, (mag/ko) cos(m(8 — z/ko))).
0 m=1
(6.2.9)

for the region r >'a0 In these expressions K,,, I,, denote m-th order modified Bessel
functions of the second kmd , with K, I,, denoting their derivatives with respect to the

argument. Different expressions for the velocity field in the two regions in IR? arise due

to the fact that IR® — « is not simply connected.

However, this velocity field is not physically realistic. This is because the helical
vortex filament will not remain fixed in space.‘ Rather, the filament experiences a self-
induced velbcity. If one uses this velocity field to calculate the self-induced velocity, one
obtains an infinite velocity, i.e., the velocity field is singular on the helix. However, if we

consider a helix with nonzero thickness, it is known that under this self-induced velocity
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“the helix remains a helix and convects in the direction of the z axis with constant speed

-and rotates at a constant angular velocity about the z axis ([8], [14]).

With these features in mind, we now describe our model of the velocity field due to
a helical vortex filament. Let Vr denote the translational velocity of the helix in the
direction of the z axis and let Q denote the rotational velocity about the z axis. We then

transform to a frame moving with the helix as follows

(6.2.10)

In this frame the helix is fixed. Therefore, as an approximate velocity field, in this

moving frame we use the velocity field obtained by Hardin. Thus, we have

sin,out . sinout

T = 755 (ao, ke, 7,0,2),
Yn,out _ pin,out

0 = 055" (ao,ko,r,0,2)— R,
Fmovt = 2™ (ao, ko, 7,0, 2) — V.

(6.2.11)

Now we must find V7 and 2.



181

The self-induced velocity of .the helical vortex filament-the local induction

- approximation

.‘The‘simp"lest theory describing the self-induced motion of a vortex filament is the so-
called local induction az‘)pro:vimatz'ony developed by da Rios [8]. In this approximation the

velocity of the helix is given by

r 1
Vhel = K,'E(hl E)b’

where k is the curvature, § is the core radius and b is the unit binormal vector. This
expression is valid up to O(1) terms in § (the most precise derivation of this is given in

da Rios [8]). Letting

1.1
7= Z(hl 3)’

we have

Vhel = —K b.
e 1r7

In Fig. 6.1 we show the coordinate systems and geometry for the velocity of the he-
lical vortex filament. From the geometry in Fig. 6.1, we see that the rotational and

translational velocities are given, respectively, as

» T
VR = |Vha|cosB = —kycosf,
T
. r .
Vr = |Vpalsing = —k7sinf,

(6.2.12)
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where (3 is the pitch angle of the helix, defined by

tanf = —. : (6.2.13)

> e

The angular velocity of the helix, € is then given by

Figure 6.1: Geometry and coordinate systems associated with the helix.

Q= -Vgfa= —gw. (6.2.14)

a

Using trigonometric identities and the expression for the curvature of the helix in

terms of the helix parameters given by
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a . .
K = a?_*._k2’ - (6-2-15)

from (6.2.12), (6.2.13), (6.2.14), and (6.2.15) we deduce that

ve = L@

T = P+ kepre
T k

Q ‘;7('a2+k2)3/2‘

(6.2.16)

Note that we have dropped the subscript “0” from the notation for the helix parameters
ag and kq. This is because the helix may vary in time, without affecting the application

of the local induction approximation.

6.2.2 The motion of the helical vortex filament in an axisymmetric
time-periodic strain rate field

We now consider the helical vortex filament embedded in an axisymmetric time-periodic

strain rate field expressed in cylindrical coordinates as follows

Tstr = €TcCOsSwi,
ostr = 0,
Zstr = —2ezcoswt.

(6.2.17)

It is well-known (see, e.g., Batchelor [4]) that the total velocity field can be expressed

as a superposition of the vortical and potential velocity fields. However, first we need
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to address the issue of whether or not the helical vortex filament remains a helix in this

- axisymmetric time—perio‘dic strain rate field.

The equations for the motion of particles under the influence of the axisymmetric

strain rate field on the vortex filament are given by

7 = e cos(wt),
¢ = Q(t),
¥ = Vp(t) - 2e2 cos(wt).

(6.2.18)

Vr(t) and Q(t) are given by the local induction approximation expression in (6.2.16)
where the parameters a and & may vary in time under the action of the axisymmetric
strain rate field, and the relationship between the helix parameters and the Cartesian
coordinates is given in (6.2.5). We will not write this latter relationship out explicitly as
it will not be needed in our arguments. From the solution of these equations we want to
argue that if the filament is a helix at ¢ = 0, then it remains a helix for all later times,
though the pabrameters'ollc the helix my change in time. Hence, we seek a solution of
these equations with initial conditions r'(t = 0) = ag,8'(t = 0) = ¢, 2/(t = 0) = koo (i.e.,
at ¢ = 0 the vortex filament is a helical curve defined by (6.2.2). The solution is easily

fopind to be

r(t) = 'aoexp(isin(wt))v

9/(45’ ) = ¢+ /ot Q(s)ds,
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Z(pt) = gxp(—Q:—J sin(wt))(koo + /Ot Vr(s) exp(25 sin(ws)ds).

~ (6.2.19)

Ttis clear that equations (6.2.19) represent a helical vortex filament where the parameters

of the helix vary periodically in time as follows,

a=ap exp(i— sin(wt)),

k = ko exp(——25 sin(wt)).
6.2.3 The complete velocity field

Assembling the pieces from the previous subsections, we now can write down the velocity
field of a helical vortex filament in the axisymmetric time-periodic strain rate field given

by (6.2.17). First, we need to make some preliminary coordinate transformations. Let

hH

/ “0(s)ds,
0
L = exp(—?i—sin(wt))l)tVﬂs)exp(?i—sin(ws)ds.

(6.2.20)

As in (6.2.10) we make a time-dependent change of coordinates
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z — z+4+1I.

~ (6.2.21)
Note that
L = Q@),
t
I, = Vp(t) — 2ecos(wt) exp(—2£ sin(wt))/ Vr(s) exp(2£—sin(ws)ds.
v 0
(6.2.22)

The helix is given parametrically by ' = a,0' = k¢ + I1,2' = k¢ + I. Using (6.2.21),
(6.2.11), (6.2.22), and the expression for the strain rate field in cylindrical coordinates
(6.2.17), the velocity field induced by a helical vortex filament embedded in a three-

dimensional, axisymmetric time-periodic strain field is given as follows

fin,out —- fgéout(a, k’ 7, 9, z) + er COS(wt),
Ve'in,out — o'iél.,gout(a’ k, r 07 z) - Q(t),

: ét'n,out = égt.,gout (a’ k’ T, a9, Z) - Vr — 2¢z cos(wt).

(6.2.23)

Note that the frame in which (6.2.23) is valid is the one in which the helical curve has

oscillating parameters a and k, but it does not translate or rotate.

By another change of coordinates, we can simplify the velocity field further. Let

T - rexp(—e— sin(wt)),
) w
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2
z — zexp(——E sin(wt)).
: w

- (6.2.24)
Then
sin,out - € . A . in,out € . 2¢ |,
7 = exp(—; sin(wt))rgy " (a, k, rexp(; sin(wt)), 0, zexp(—; sin(wt))).
.. y S 2
ginout = gimevt(q k. rexp(-f: sin(wt)), , zexp(—f sin(wt))) - Q(2),
sin,oul 2e -in,out € . 2e
' = exp(—sin(wt))zgy ™" (a,k, rexp(; sin(wt)), 6, zexp(—: sin(wt)))
w
- exp(z—f- sin(wt))Vr(t).
w
(6.2.25)
Next we nondimensionalize (6.2.25). Let
z=Zko, r= Rag, t— taoiigw, € — eaOI;‘OW, w — waokow' (6.2.26)

We will continue to denote derivatives with respect to the dimensionless time 7 with

overdots. We introduce the following nondimensional parameter

A=—== ﬂexp(3£sin(<.:.'1f)). (6.2.27)
ko 3}

e

Using (6.2.8) and (6.2.9), the velocity field (6.2.25) in nondimensional coordinates be-

comes

R™ = [ASm(R.0-Z,))] exp(i sin(wt)),
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N S U € .
0" = [+ EC0 - 23] exa( S sin(e)),

o B A, €
7 = [—"/m +5- A*Cin(J,0 - Z, '\):I éXP(; sin(wt)),
| (6.2.28)
Raut = [’\Sout(Ra 60— Za ’\)] exp(i Sin(wt))a

éout — [ A + 1 +i
' = Paeaepr T T Re

Cout( R, »67 - Z, /\)] exp(-‘% sin(wt)),

. A3 €
out _  |__ A2 _ € .
zZ = [ 7(1 SO ACout(R,0 - Z, /\)] exp(w sin(wt)),

(6.2.29)

‘where
Cin(R,0— Z,)) = i mK,, (Am)I,,(RAm) cos(m(8 — Z)),
Sin(R,0~Z,)) = imK:ﬂ(,\m)L’n(R)\m) sin(m(8 — Z)), (6.2.30)

and
Cout(R,0—Z,)) = i m K (RAm)I, (Am) cos(m(8 — Z)),
ml
Sout(R,0—Z,\) = f:l mK, (RAm)L, (Am)sin(m(§ — Z)).  (6.2.31)

6.2.4 Validity of the approximations

In the derivation of the velocity field we used the Localized Induction Approximation

(LIA) twice: to approximate the velocity of the helical vortex filament and to derive
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the _equationsx of motion of the helical vortex filament in the external stain rate field
given in (6.2.17). The equations of motion of an arbitrary vortex filament'in an external
fpotentikal flow Im ght be seriously affected by the use of LIA. For a helicél vorte)‘( filament,
though, this is not the case. The only component of velocity besides the binormal one
is a component in the direction of the tangent vector. So, the same derivation of the
motion of the vortex filament goes through, with only the éxpressions for time dependent
radius and & changing. Starting the derivation of the equations of ﬁotion of the vortex

filament from the expfession for the velocity of the type

x=£kb+ f(k,T)t + v,

oﬁe finds out that these new equations still admit the same solution (oscillating helix)
‘when the perturbation velocity v is a strain rate field. As we are interested in the
qualitative, kinematic description of the motion of fluid particles, and not in a precise
description of the motion of a helical vortex filament, we proceed by analyzing the flow

obtained above.

6.2.5 Coordinates that exploit the syrmmetry of the flow

In Mezi¢ and Wiggins [12] (or chapter 2 of this thesis) it was shown that a three-
dimensional divergence-free velocity field admitting a volume-preserving, spatial sym-

metry group can be transformed to the following form

0H(z,y,1)

Jy ’

. 3H($7yat)
=
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é' = f(z,y,t).

- (6.2.32)

In the case of a steady velocity field, the function H is an integral of motion. It was also
shown that sufficient and necessary conditions for a velocity field v to admit a volume-

preserving spatial symmetry group are that the infinitesimal generator of the action of

the symmetry group, w satisfies

ow

o =
[v,w] = 0,
V-w = 0,

(6.2.33)

where [v,w] is a Lie bracket of vector fields (for more background on this issue, see
Mezié¢ and Wiggins [12] ) or chapter 2 of this thesis. Coordinates of this type are very
nice because the velocity field assumes the form of an “almost Hamiltonian” dynamical
system. We want to show that the velocity field we have derived can be transformed

into this form since it will greatly facilitate the global analysis of transport properties.

Let the candidate for the action of the symmetry group of (6.2.28), (6.2.29) be

R — R,
0 — 64,
Z — I+

(6.2.34)
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Its i‘nﬁnitesim.al generator, a veétor field in R3, is given in (R,0,Z) coordinates by
w = (0,1,1). A straightforward calculation shows that the velocity field (6.2.28), (6.2.29)
and w cbmmute. (iv.e.,_ their Lie bracket is zero). Further, w is steady and divergence
free, therefore (6.2.34) is a spatial, volume-preserving symmetry group for the velocity

field (6.2.28), (6.2.29).

To transform the velocity field into the form (6.2.32), we follow the procedure de-
scribed in chapter 2. To obtain the first two coordinates, in which the system is of Hamil-
tonian form, we first need to find two integrals of motion for w. These are easily found
to be R and ¢ = 6 — Z. We choose the third coordinate to be ¥ = 0+ a2Z/k% = 6+ Z/\}
instead of Z, which we would do in following the procedure in chapter 2, as it simplifies
the velocity field induced by the helical vortex filament, in the sense that the velocity
of the helix in the ¢ = 0 case has a contribution only in the direction of ¢. Finally,

to achieve a canonical Hamiltonian form in two of the variables, we introduce the new

variable J = R?/2.

Performing these transformations of coordinates, we have

Jiw = 'A\/2—JS§n(m,T/),A)] exp(gsin(wt))

AL L+ 2J 72
Vit 2J

(1- exp(% sin(wt))) + 2—1,\ exp(% sin(wt))

"/}in = _%’\ +7
R
Mo
1 — 2J exp( £ sin(wt))
2J

Cz'n(\/Q_Ja "»bs ’\)jl eXp(i Sin(wt))')

Cin(\/2—ja "/)1 )‘)] exp(i Sin(wt))s

(6.2.35)
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| Joww = A\/_Sout(\/— J, 9, )\)] exp(— sm(wt))
.. , A 14222 € .
‘ wqut = L4}\J + 7\/1_*_—/\2 2] out(\/__v ")b’ ’\):l exp(; sm(wt)),
. A
| Dot = W(l exp( sm(wt))) + — 4,\J
+1 -2J exI;J £ sin(wt)) m(\/— T v, /\)] exp(— sin(wt)).

For later geometrical interpretation it is important to note that

(J,%,9) € Rt x §* x RR.

As discussed above, the J — % components of the velocity induced by the helical

vortex filament can be written in the form

a-H‘ITL out (J ’(/)’t 6)

M BH‘m ou
'»bin,out = t(J ¢at G)s

Jin,aut

(6.2.36)

where

€ . 1 A
H,'n(J, 1ﬁ,t;€) = exp(; 81n(wt))(§)\J - 7_1—\/_-}-_—T—2-J
-a2J f K. (Am)L, (V2JAm) cos(my))),  (6.2.37)

m=1
Hour(J,,t5¢) = exp(—sm(wt))(——ln\/_J_ 'y\/_
4)\\/2_] Z mK, (V2J m)I, (Am) cos(me)).  (6.2.38)

m=1
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Thus, the velocity field for € small can be Taylor expanded as

- 0H m ou a'Hzln ou
Jinow = —= Mot gy 4 2t 5,1 4 00,
‘ 7 | ' a 'zon ou Hzln oU
Yinour = ——22Z(J, ) — e (], 9,8) + O(),
'&in,out = 'm. out(J '¢) + 6h"m out(J’ 'lb’ t) + 0(6 )’ (6239)
where
z'n aut('] ¢) - "1 out(J’ 'd)’ t; 0)’ zn out('] "p’ t) ’lﬂ ot (J ¢7 t; 0)’
and
1 1-2J —
q' —_— C'
h.m(J, '(,b) 4A0J + 27 zn,out( 2']’ "/)7 )‘O)a
1 1-2J
Row(Js¥) = 3=+ —57Cim out(V2T, 1, Do),

RL.(J,0,t) = a ([ m(l exp( sm(wt)))+ exp(—— sin(wt))

1-2J eXI;S%E- Sll'l(Wt))Cin(m, R A)] exp(—- SiIl(Wt))) |c=0’
Maldbt) = o ([ (1715)“37‘2(1 exp( T sin(@)) + 757
1-2J e)q;s% sm(wt))cin(\/Q—J, W, )\)} exp(‘; sin(wt))) |e=o-
(6.2.40)

We remark that all higher order terms in € of the Taylor expansion of the velocity field

are functions only of J, 1, and .
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6.3 Anaiysis of the unperturbed velocity field: the geom-
etry of invariant surfaces and particle paths.

For this discussibn we will work in the R,v,9 coordinates. The expression for the
velocity field in these coordinates can be obtained from (6.2.28) and (6.2.29), where
¥ = 0 + a2Z/k3. This coordinate system is nonorthogonal except at R = 1. The

coordinate system is depicted in Fig 6.2.

8=0 . 8=2n

Figure 6.2: ¢ — ¥ coordinate system.

We first consider the velocity field for R < 1. This velocity field for € = 0 is given by

(note that A = A for € = 0)

R = Aszn(R7¢aA)
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1 ' A 1+ R2)2

v = 2’\ + 7(1,+ A2)1/2 T2 Cin(R, 1, A),
. : — PR2 .

2X R?

“where the function Cin(R, %, A) is defined in (6.2.30). Since the ¥ component decouples
from the R — ¢ components (as a result of the helical symmetry), we can analyze sepa-
- rately the particle trajectories of the velocity field associated with the R —1 components,

and then use this information to build up the complete picture in three dimensions.
6.3.1 Analysis of the R—1 component of the unperturbed velocity field

We first consider the existence of fixed points and their bifurcations. Since the R —
© component of the unperturbed velocity field is a one-degree-of-freedom Hamiltonian
_system, this basic informaton will enable us to easily infer the nature of the global orbit
structure. Using a combination of Fourier analysis and numerical analysis one can argue
that R = 0 is possible only for y = Qor ¢y = 7 (details of this analysis are presented in
Appendix 1). This gives us the following condition that must be satisfied by fixed points

in the R — 1 plane:

. 1 A 14 RZ)X?
¢_—2A+7(1+)‘2)1/2+ 7 Cin(R,0 or m,A) = 0.

Using the following properties of Bessel functions

Kn(z) > 0,
I.(z) > 0,

K (z) < 0,



196

I,ln(a:) > 0, for every z, m, (6.3.42)

~ one can argue that at ¥ = 0 Cin < 0, and therefore that —1/2 4 v//(1 + X2) must be
bigger than zero in order for ¥ = 0. This gives the following conditions on the parameters

in order to have fixed points at ¢ = 0

A< /(292 -1

Next we consider fixed points with ¢ = 7. Using the fact that the coefficients in the
Fourier series for for C;, are monotonically increasing, and (6.3.42), we conclude that
for ¢ = © we have C;;, > 0. Therefore in order to have fixed points at ¢ = © we have

the following condition on the parameters

1 A
—=A —_— < 0= 2> /(27)2 - 1.
AT A V(27)

However, these conditions do not tell us the exact number of fixed points. For this we
have had to numerically solve (6.3.1). We have solved for the roots of this equation for
the parameter ranges A € [0.2,10], v € [2,15] wifh increments in each parameter of 0.01.
The results are presented in Fig. 6.3. In this figure we show two curves, denoted C1, and
C2, on which Hamiltonian saddle-node bifurcations of fixed points occur as indicated.
The possible phase portraits are also indicated in this figure. These follow very naturally
froﬁ the Hamiltonian structure of the R — 1 component of the vector field once the fixed

points and their stability are known.

| Carrying out the same kind of analysis for the part R > 1,(J > 1/2), we find that

there are no additional bifurcations. For the outer velocity field the fixed points can
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15.0 -

v
125 J

c1 T

100 |

75

sof ¥=(1/2)(1422)(172)

25

No fixed points.

Figure 6.3: Trajectories of the R — ¢ component of the unperturbed velocity field in
different regions of the A — 4 parameter plane.

exist only for ¥ = 7, as
1 A
+9
42J V14 A2

Therefore Couz(R,’zp, A) must be less than zero in order that zeros are possible, but this

> 0.

is the case for ¥ = w. Thus we see that the R — ¢ component of the velocity field,
depending on the parameters A and +, has elliptic and hyperbolic fixed points, periodic

orbits, and homoclinic orbits connecting the hyperbolic fixed points.

Before leaving this secion it is instructive to consider two limiting cases. In the limit
A — 0 we have the case of a straight vortex filament, for which the phase portrait consists
of circular closed orbits in the R — % plane, i.e., there are no fixed points. In the limit

X — oo we have a densely wound helix, or a cylinder whose surface is a vortex surface,
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corresponding to a jet-of infinite velocity.

6.3.2 Geometry of invariant surfaces and particle paths in three di-
mensions

We have seen that in the R — % phase plane (or J — ¢ phase plane) we have fixed points

(both hyperbolic and elliptic), periodic o;‘bits, and homoclinic orbits, or separatrices, that

connect hyperbolic fixed points and separate regions of qualitatively different periodic

orbits. Our coordinates allow a simple interpretation of these structures in terms of

invariant surfaces for the full three-dimensional low. We summarize these results in the

following table.

Orbit in the Corresponding Orbit
R- ¢ Phase Plane or Invariant Surface
for the 3-d Flow in
R- ¥ - 9 coordinates,
? € R!

elliptic fixed point elliptic, unbounded
invariant curve

hyperbolic fixed point | hyperbolic, unbounded
invariant curve

periodic orbit invariant 2-cylinder
homoclinic orbit 2-dimensional
separatrices

Now we want to determine the nature of fluid particle trajectories on these invariant

manifolds, which can be characterized entirely in terms of the sign of J. We examine
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each invariant manifold individually.
Invariant curves

Consider a fixed point (Jy, ;) for the J — ¢ components of the velocity field. For
19(J 7+%7) # 0 invariant manifolds in three dimensions are unbounded invariant curves
on which the magnitude of the J component of trajectories increases without bound.

However, if 9 = 0 then these are invariant curves of fixed points.

Invariant cylinders

The trajectories on these invariant manifolds can be most easily studied by using the
J — ¢ — 9 coordinates given in (6.2.39). In these coordinates the J — 1) component is
' Haxﬁiltonian. As aresult of this, in a region where the level curves of the Hamiltonian are
closed, i.e., they are periodic orbits, we can transform the J — 9 system to action-angle
coordinates I ,¢1 (see Wiggins [17] or Arnold [2]). From the fluid dynamical context,
these are just the Vfamiliar streamline coordinates. The action-angle transformation is

given explicitly by

1
= — d 3.
= fH=hJ ¥, (6.3.43)
while the angle variable is given by
2T
= ——i 3.

where T'(H) is the period on the closed orbit in the J — ¢ plane (which is a level set of

- H), and ¢ denotes the time of flight along the orbit measured from a reference point on
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the orbit. This transformation satisfies the following properties.

1. I= I(h), i.e.,'I is constant on the closed orbits.
2. fH:h d¢1 = 27.

3. ¢ = ().

We assume that the action-angle transformation on the J — % component of the velocity

field has been carried out so that the velocity field now takes the form

I = o,
C.bl = QI(I)a
19 = h(Ia ¢1)

It was shown in chapter 2 that the following additional transformation

=0+ o= i /—"’—91(1) doy,

where

_ 2 h(11¢1)
M_/O o

transforms the velocity field into the following form

(6.3.45)
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b

= Ql(I),
$ = ),  (Iéié) € R* x ' xR, ' (6.3.46)
where
AD
Q= %Ql(I).

In these coordinates we can easily determine the nature of the fluid particle trajectories

on these two-dimensional invariant manifolds.

If Q2 = 0 then the trajectories are closed orbits. For Q; # 0 the magnitude of the ¢,

component of the trajectories increases without bound.

In the original coordinates these two types of behaviour are determined by the in-
crease in ¥ coordinate when the particle encircles a closed orbit in J — % plane once.
If this increase is positive, the particle will for large times tend to 9 = +o0, while if
it is negative, the particle will ultimately tend to 9 = —oco. In the figure (6.4) we
present a numerical calculation of the curve on which the velocify in the direction of ¥
vanishes. This curve is denoted by C on the figure. Note from the expression for the
velocity field that C is independent of 4. The phase portrait in the ﬁguré (6.4) is that for
A=3.0,y=6.0. Computé,tions are done with 23 terms of the Fourier series for Ciy out-
Outside of C 9 > 0, so for any cylinder entirely contained in that region AJ > 0. For
such cylinders, particles tend to ¥ = 400 as time goes to infinity. As our analysis is done
in the frame moving together with the helix, physically ¥ > 0 means that the particles
on these cylinders move faster than the helix itself at all times. For some other values

of parameters (e.g., A = 6.0) 9 is uniformly bigger than zero.
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0.26

0.00

-0.25

L i . .
-0.25 0.00 0.26 0.50
Jcosy

Figure 6.4: Curve on which J vanishes

Two-dimensional separatrices

We recall the general form of the unperturbed equations for particle paths in the J —¢—9

coordinates

I =550,
) — 25 (] ), (6.3.47)
9 = h(J,9),

where the‘ explici‘p form of the unperturbed Hamiltonian H(J, ) and the general form

of h3(J, 1) can be obtained from (6.2:39). Trajectories in the two dimensional separatri-

ces are forward and backwards asymptotic to the normally hyperbolic invariant curve,
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denoted I'g, defined By

To={(J;¥,9)|J = J* ¢ = y" d e R'},

where (J",%") denotes the hyperbolic fixed point of the J — 1) component of the velocity
field. If we denote the homoclinic trajectory of the J — 1) component of the velocity field

by J"(t),¥"(t). Then the orbits on the homoclinic manifold are given by

(J*(t - to), Y™(t — o), /t t R(J*(E = t0), ¥™(f = t0))di.

When ¢ — +00 we have

(Jh(t — t0), ¥(t = t0), /t t h(JM(E = to), ¥ - to))df) - (J",d)", d(to0) — 0(0)),
(6.3.48)

where we have used the fact that
I(E = to) = R(JH({E = to), ¥™(E - to)).
We define the phase shift of trajectories in the two-dimensional separatrice as follows

(oo}

AD = 9(+00) — H(—o00) = / R(J*(F), w"(3))di. (6.3.49)

There are two distinct cases to consider that give rise to qualitatively different dy-

namics: h(J*,¥") # 0 and h(J",¢") = 0.

(BT, ") £ 0
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" In this case we see from (6.3.49) that the phase shift of trajectories in the two-
dimensional separatrices is infinite. This indicates that the ¥ components of tra-

jectpries approach +oo when ¢ — +o0 if

h(J", ) > 0,

and they approach +oo when ¢ — Foo if

h(J", M) < 0.

h(J", %"y = 0

In this case the phase shift of a trajectory is finite, since the function under the
integral sign in (6.3.49) decreases exponentially when ¢ — oo. Therefore, if AY # 0,
every fixed point is conected to some other fixed point on I'g through a heteroclinic
orBit. If the phase shift is zero, every fixed point on I'g is connected to itself by a

homoclinic orbit.

6.4 Geometry and dynamics of invariant manifolds and
particle paths for the perturbed velocity field

We will refer to the velocity field induced by the helical vortex filament as the un-
perturbed velocity field. In the analysis of the kinematics of the unperturbed velocity
field induced by the helical vortex filament, we have shown that the flow is foliated by
two dimensional invariant surfaces or manifolds, apart from isolated elliptic and hyper-
i)olic one—dimensiénal invariant manifolds. These two-dimensional invariant manifclds

are essentialy of two types: one-parameter families of invariant cylinders and manifolds



205

- homoclinic toknormvémllvy hyperbolié invariant curves. When the velocity field ivs perturbed
- and the amplitude of the perturbation € is small, for each of these ihvariant manifolds
there i's’ a’global peftu;‘bation tkheor'y. allowing us to analyze the effect of the per-turbation
on these‘inva,riant manifolds. In the case of cylinders, the special form of the velocity
field in thé J — 3 — 9 coordinates allows us to use the classical KAM theory to show
that certain types of invariant cylinders persist under the perturbation. In the case of
homoclinic manifolds the perturbative theory is a Melnikov-type the.ory as developed in
Wiggins [18] and chapter 2 (or Mezi¢ and Wiggins [12]).

6.4.1 The persistence of two-dimensional invariant cylinders : KAM
theory

Sinqe the velocity field is periodic in ¢, we will study the fluid particle kinematics in
“the perturbed velocity field by studying the associated three-dimensional Poincaré map.
Moreover, in studying the persistence of the cylinders the coordinates developed in chap-
ter 2 (oi‘ Mezi¢ and Wiggins [12]) and discussed in Sect. 6.3.2 are most appropriate.
Applying this coordinate transformation to the perturbed vector field given in (6.2.39)

transforms the perturbed velocity field to the following form

i eFo(1, é1,t) + O(€2),

¢ = )+ R, ¢1,1) + O(),

¢ = () + eFa(I, ¢1,1) + O(%), (6.4.50)

where the O(€?) are functions only of I, ¢;, and ¢. Explicit formulae for the functions
Fi(I, ¢y,t) are given in Appendix 2. The velocity field is periodic in ¢ with period T’ = 2—‘:’-

In chapter 2 (or Mezi¢ and Wiggins [12]) the Poincaré map associated with (6.4.50) is
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constructed explicitly using regulér perturbation theory and is shown to have the form

I — I+ebo(I, 1)+ O(),
Q1(17)

0 (I)

& = G +2m + R (1, 61) + O(?),

¢ — 2t Fo(1,¢1) + O(e?), (6.4.51)

where explicit formulae for f’,(I ,¢1) in terms of F;(I, ¢1,1) are given in Appendix 2. The
important point in our discusion now is the form of (6.4.51). In particular, the I — ¢
component of (6.4.51) decouples from the ¢ component. The I — ¢; component has
the form of a two-dimensional area-preserving twist map, to which the standard KAM
theory can be applied to determine the existence of invariant circles in the I — ¢, plane.
In the full three-dimensional space these are then interpreted as invariant cylinders.

6.4.2 The effect of the perturbation on the two-dlmensmnal homoclinic
manifold: Melnikov’s method

From the general persistence theory for normally hyperbolic invariant manifolds, the
normally hyperbolic invariant curve and its twd-dimensional stable and unstable mani-
folds persist under perturbation. However, the stable and unstable manifolds need not
coincide. Indeed, they may intersect in an extremely complicated fashion and give rise
to chaotic fluid particle motions. A Melnikov type method is described in chapter 2
(or‘ Mezié¢ and Wiggins [12]) for measuring the distance between these manifolds. The

Melnikov function in this case is given by
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M (10,965 60) = 22 (2 (1), 40t + o)
- (6.4.52)
+ L (M0, WM O), 0t + ) )

where

(0= [ 6,9 + 90

and it does not depend on ‘190. We can-not calculate the Melnikov function explicitly
because even the homoclinic trajectory in the unpertﬁrbed case is known only numer-
ically. But, using the symmetry properties of the velocity field and the perturbation
with respect to ¢ = 0, we obtain the following form for the Melnikov function, choosing
o = 0:

M(t9) = F(Xo,7,w) cos(witp), (6.4.53)

(see Appendix 3).

So, for a particular value of parameters of the problem for which F()\g,v,w) # 0, the
Melnikov function will have an infinite number of zeros which corespond to infinity of

points at which thé unstable and stable manifolds of the hyperbolic fixed point intersect

transversally.

6.4.3 Poincaré maps

Wé calculated Poincaré maps for our flow using the velocity field (6.2.39) expressed in
terms of Fourier series. This posed a difﬁculty'a,round R =1 as the terms in the Fourier
series Convérge very slowly. Therefore, in a typical calculation we used 11 terms of Fourier
series When a point was such that R < 0.9 or R > 1.1, and 23 terms otherwise. This

caused the calculation time to be excessive. For that reason, we present Poincaré maps
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only for two sefs of paramefers. Still, these Poincaré maps are quite representative, as
they correspond to two different phase portraits of the unperturbed moﬁon‘ presented in
the bifurcation djagram.. In each of the two Poincaré maps, the largest éhaotic éones are
around the place where in the unperturbed phase portraits separatrices existed. This

occurs because of the breakup of separatrices analyzed above.

Figure (6.5) represents a Poincaré map of the flow for A = 3.0,7 = 6.0,¢ = 0.5,w =
10.0. We used such a large w, as it reduced the time of computation. A and + are for this
case in the zone II in the unperturbed bifurcation diagram. The largest chaotic zone is
aruond the unperturbed separatrices, whose breakup for small € can be predicted using

the above described Melnikov theory.

Jainwy

L - A .
-0.25 ©.00 0.25 0.50
Jcos ¥

Figure 6.5: Poincaré map for the perturbed flow. A = 3.0,y = 6.0,¢ = 0.5,w = 10.0

The Poincaré map for the other value of parameters, A = 6.0,7 = 2.0,e = 0.1,w = 4.0
(A and v are for this case in the zone III in the unperturbed bifurcation diagram) is

presented in figure ??7. In that Poincaré map we see that there is a large chaotic region
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around. the place where there were separatrices in the unperturbed phase portrait. That

. part of the plot is actually produced by a single particle starting at J = 0.93,% = 9 = 0.0.
6.5 Shear dispersion

In this section we want to consider the dispersion of a distribution of perfect tracer par-
ticles in the ¥ direction. The work in chzipter 3 of this thesis (or Mezi¢ and Wiggins [12],
[13]) gives necessary and sufficient conditions for the dispersion to grow asymptotically
in time like 2. We will show how these conditions may be obtained in this flow. The
geometrical vstructure of the flow developed thus far will play an important role in these

considerations.

For ease of reference, we rewrite the velocity field given in (6.2.39),

¥ aHzOn ou aHzl'n ou
Jin,out = t(J "/)) +e—r— t(J ¢’ 9) + 0(62)
] a m ou Hzln ou
'l;bin,out = t(J '¢’) t(J 1% 0) + 0(62)1
"91"'1,0’1“3 = 'm out(J w) + ehzn out(J7 '(/)’ 0) + 0(62)?
f = w, (6.5.54)

where we have rewritten (6.2.39) as a time independent velocity field in one higher
dimension by including the phase of the time periodic strain field (6) explicity as a
debendent variable. (J,%,9,w) € A x R X §! denotes the domain of (6.5.54), where
A is a subset of IR x S'. Up to this point, it has not been necessary for us to place
any restrictions on the flow domain. However, some restriction on the domain of the
J— éompone_nt of the flow will be important for dispersion. ¢;(J,,0) denote the flow

generated by the J — 1,/)— w component of (6.5.54).
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We rewrite the ¥ component of (6.5.54) in integral equation form as follows

90~ 00) = [ (R ons + bl + OED) (8100, 0,

or, for notational convenience (for which we also drop the subscripts “in, out”)

9(0) = 9(0) = [ 9(8.(3, 9, dr.

The mean square displacement or dispersion of the ¥ component of (6.5.54) of an en-

semble of points in the flow is given by

- Dy(t) = ((9(2) = 9(0) = (B(t) — 9(0)))*),

where the average indicated by the angle brackets is given by

= [ OB 0du,
Ax St
p(J, 1, 0) denotes the initial distribution of points (assumed to be bounded and integrable
on A X S§') and di denotes the measure of “volume element” on A x S!.

We are interested in determining the asymptotic behavior of the dispersion. This can

be deduced from the following calculations:

v t t . 2
tim 28 =t (3 [ 560w 00 = 3 [ 960000,

—_

t—oo t

. ((lim 1 /0 "3 (600,15, 0)) dr — (Jim % /0 iz?(qbf(J,tb,()))dr))z),

(W, 0) - (" (w0) ) =
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The mathematical Iﬁanipula,tions in these calculations are justified as follows:

1. The passage from the first to the second line is justified by the fact that the function

| 9 is Bounded andb integrable on A x S1. This will be frue if A is a bounded subset
of R X S that is also an invariant subset for the J — ¢ component of (6.5.54). For

¢ sufficiently small such an invariant subset A can always be found as a result of

the pefsisfence of KAM tori, which form the boundary of invariant sets. In the
original z — y — z physical coordinates these give rise to infinitely long helically

twisted cylinders.

2. In the second line the limit

lim — tﬂ(qsf(J, b, 0))dr = 9*(J, ¥, 0)

t—oo 1 Jg

exists for all points in A x S! by Birkhoff’s ergodic theorem (see [1]), with the
poséz’ble ezception of a set of p-measure zero. Birkhoff’s ergodic theorem applies
since the flow is incompressible and A is bounded. This limit is the time average of
the function 9 along the fluid particle trajectory that starts at the point (J,,8).
Moreover, Birkhoff’s ergodic theorem also guarantees that this limit is integrable.
This, together with the boundedness of 9, implies that the quantity e defined above
is finite, and if it is nonzero, we can conclude that the dispersion of the ensemble

of particles in the 9 direction behaves asymptotically like 2.

The nature of the coefficient a gives some insight into the dynamical mechanism
giving rise to t? dispersion. It is easy to see that since the expression inside the angle
brackets defining a is nonnegative, a = 0 if and only if 9 = (19”‘) on the support of p,

i.e., on the set of pointé for which p(J,,80) is nonzero, with the possible exclusion of
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sets of measufe zero. HoWever, (19*) is a constant. Therefore, we can make the following
- conclusion. Let C C A x §! denote the support of p(J,,8). Then, if 9*(J, ¥, 0) is
not Constant a.lmosf everywhere on C, Dy(t) ~ t2 ast — oco. Now a,ssumé that the
flow due to the J — 9 — @ component of (6.5.54) restricted to A x S! is ergodic. Then
I* = (19*) = (19) almost everywhere. Therefore, a = 0. Hence, a necessary condition for

¢2 dispersion is the non-ergodicity of the flow.
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6.6 ;App‘endix 1

In this appendix we show the details of the analysis of the fixed points of the unperturbed
“velocity field. We shall present the analysis only for the case R < 1, but the analysis for
R > 1 follows a similar route. The velocity field for R < 1 is given by

R = ASi(R,¥,))
1 A 1+ R2)\2

Y= _§A+7(1+ )\2)1/2 + R2 Cin(R7 ¢’ ’\)’
. 1 1-R?
71 = ﬁ + Tcm(Rv ¢1 ’\)

(6.6.55)

As this velocity field involves functions Sin and Cj, which are represented in terms of
Fourier series, it is not completely amenable to analytic analysis. Still, something can be

~said about the behaviour of Cin and S;,. Let us first note that we shall use the following

conjecture:

Conjecture 6.6.1 The sequence of coefficients in Fourier series of Ciy, , {am}, where
tm = mK,,(Am) In(RAm),
is monoton’z’cally strictly increasing, i.e.,
Doy = 8py1 — 0y >0, Vm € N.
The sequence of coefficients in Fourier series of Si,, {bm}, where
bm = mK, (Am)I, (RAm),
1s strictly convez, i.e.,

A2b,, = biy = 2oy + bmyz > 0, Vm € N. (6.6.56)
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We checked this only numerically,‘ by calculating the fuﬁction's N, , A?b,,. The conjec-
-ture appears to be true for 0.2 < A < 10 which is also the range in which we studied
'bifuréatidns num%ariéally, We shall continue the analysis under the assumption that the
'conjecturé’ holds. Using Abel’s transformation familiar from the analysis of Fourier se-
ries, and thé above conjecture, one can show that S;, has only two zeros at ¥ = 0 and
? = 7 (the fact that the zeros are there is obvious from the Fourier representation of
Sin, but the fact that these are the only ones is not). Our proof follows that given by [3]

in the similar context. We shall need the following well-known lemma:

Lemma 6.6.1 (Abel’s Transformation)

n n—1
o ukve = D (uk — w1 ) Vi + un Vi,
k=0 k=0

where

Vo = ivk.

k=0

Proof: This is just an easy rearangement of terms which can be checked by direct

computation. ‘ 0

Theorem 6.6.1 Suppose

[oo]
Zaj sin jz,

i=1

Is a Fourier series for a function f(z). Suppose further that a; — 0 as j — oo and that

the sequence a; is strictly convez, i.e.,
A2aj = a; — 2aj41 + aj42 > 0, Vi.

Then f(z) >0 for0< z <7 and f(z) <0 form < z < 2m.
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Proof: Let

. n ‘
Sa(z) = Zaj sin jz.
, S , i=1
Using Abel’s transformation, we obtain
n—1 . ~
Sn = Z(ak - ak+l)Dk + anDn7
k=0

where Dy is a conjugate Dirichlet kernel of order k. Using Abel’s transformation once

again, we obtain

n—2 k on—l
Sn =Y (Dar— Dary1) Y Di+ Dan_y Y Di+ a, D,
k=0 i=0 =0

where Aa; = a; — aj;;. Note that

. 1 k.
Kk—ngi,

is usually called the conjugate Fejér kernel. Using this, we have

Sp = ni?(Azak)(k + 1)f(k + Aap—1nKpq + apDn.
© k=0

Since ay, is convex, nAa, — 0 as n — oo (see [3], pg. 5). Also, by assumption a, — 0 as
n — oo. Using this and expressions for K ; and D;, the last two terms go to zero when
n — 00, except poésibly at z = 0. Therefore

00

Sn=Y_(A%ar)(k + 1) K.
k=0

But AZay is strictly positive by assumption, and Kj(z) > 0for 0 < z < 7, Kx(z) < 0

for # < z < 27 so we are done. : 0

The conjecture (6.6.1) was used because it is much easier numerically to check for

the requirements on a,, and b, given in (6.6.1), then to compute zeros numerically.
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6.7 App'end»ix- 2

- Here we give the formulae for F; a.nd F; needed in section 4.1

o= 5 5’;"““ 0= G
P %f’; '"°“‘(J $ot) - % 5’}"“0 $,1),
B o= Yooy B0 Dm0y 1 ()
(6.7.57)
Further, we have
Fo(I°, 43, 69) = fg Fo(I°, Qu(I%)t + 9, Qa(1°)t + 63, t)dt,
Fi(1° 69, ¢9) = B li=ro Jg Jo Fo1% @u(I°)€ + 49, Qa(I°)€ + ¢3, €)dEdt
+ ST R0, (IOt + ¢9, Qa(I0) + 3, t)dt. (6.7.58)

Fy(1°,¢9,¢%) = B2/ 1opo fo Jo Fo(I%, u(I°)E + 69, Qa(I0)E + 63, )dédt
+ f(;r F2(IOV’ Ql(Io)t + ¢(1)’ 92(]0)t + ¢gat)dt‘

(see chapter 2).
6.8 Appendix 3

In this appendix we show how the expression for the Melnikov function accepts the form
(6.4.53). This is due to the reflectional symmetry of the Hamiltonian part of the flow in

J — 1 coordinates. Recall that the Melnikov function is given by

M(t0) = 132 (2 2 (J4(0), wh(2)) 0t + wio)

(6.8.59)

aH BH

+2fa ((Jh(t)ﬂ/lh(t)),wt+wto))
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where the expressions for the partial derivatives of Hamiltonian functions are given in

2.5. From the expressions for the unperturbed J and % components of the velocity,
(J°(0), ¥°() = (J°(=1), —9°(-1)), (6.8.60)

where the superscript ”0” denotes the unperturbed orbit. We can expand (6.2.35) for
small €, up to O(¢) terms. Then, the only time-dependent term in the above expression

for the Melnikov function is
sin(wt + wtg) = sinwt cos wip + coswi sinwig.

Also, note that §;, is odd in v, while Cj,, even in ¢. Now, using these observations and
(6.8.60), we find that, in the O)(e) expression for J, all of the terms multiplying sinwt,
.and the unperturbed terms are odd in t. Moreover, analogous terms in 1/) are even in
t. This means that the part of the Melnikov function multiplying sinwty is zero, and
therefore the Melnikov function is of the form F()\g,7,w)coswty. Actually, the Melnikov

function can be explicitly written as

M(te) = coswio /_ :° (,\0[ 2J’°(t)S,~n(J"(t),1/;"(t),,\o)] (6.8.61)
| " 3h 37(A3= o) | 633
{—E—J - :J—;-I_—g + jo_cm(‘]h(t)’ ¢h(t)7 Ao)+

h 2 .
3/\0(1;J3(Jt)(t)/\0) aac;‘n (Jh(t), wh(t)’ ,\0)]

h 2
+ [—%/\o + WC‘MJ (1), v (t), ,\0)]

VORS00, 20

3208 .
+TOW(Jh(t)’ Ph(t), ,\O)D sinwtdt.




