An Analysis of Quantization Noise in AY Modulation
and its Application to Parallel AY, Modulation

Thesis by
Tan Galton

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California
1992

(Defended April 3, 1992)



il

Acknowledgment

In many ways, this acknowledgment is the hardest part of the thesis to write. As
time goes by my work will become dated, but what I have gained from my family,
friends, and colleagues will remain. Largely by the examples and efforts of those

around me, I have grown intellectually and as a person.

I have been extremely fortunate to have had Edward Posner for my advisor. In
addition to having extraordinary insights into both science and people, he is one of
the kindest people I know. Although one of the most productive members of the
Caltech faculty, he seems constantly to be going out of his way for the benefit of
those around him. He generously provided me with the resources necessary for my
work yet gave me true academic freedom. He not only permitted, but encouraged
me to control the direction of my work. Nevertheless, his door was always open to
me and I greatly enjoyed his astute perceptions and wisdom. It is unlikely that I

shall ever again be quite so free in the pursuit of my research.

Professor Joel Franklin has also profoundly enriched my experience at Caltech.
At a time when I was thinking of returning to industry without pursuing my PhD,
he steered me toward working for Edward Posner. Without his encouragement and
guidance, it is likely that I would not have stayed at Caltech. He has been a great

teacher, advisor, and friend to me.

Similarly, I have benefited greatly from my association with Professor P. P.
Vaidyanathan. Throughout my years at Caltech, he has taught me both in and out
of the classroom. By his actions, he has set many standards that I will try to follow
in my own career. If I can one day teach and perform research at anywhere near

his level of quality, then I shall be in very good shape indeed.

I'am also grateful to John Miller and Bhusan Gupta. From the beginning, John



iii
has patiently listened to every baked and half-baked research idea that I have come
up with on the way to this thesis. He has often saved me from wasting time on
bad ideas by pointing out flaws, yet has always been a source of encouragement.
Bhusan, has similarly provided me with excellent feedback regarding my work. He
has implemented a VLSI prototype based on the work in this thesis and has taught
me much about the field of analog IC design.

Most of all, I am grateful to my wife, Kerry. Although she has often wondered
what I find so interesting about my work, she has never questioned my desire to
pursue it. She has been a constant source of encouragement and support. She
has shared my frustrations as if they were her own and has been the champion of
my successes. Without her, my stay at Caltech would have been considerably less
enjoyable. More importantly, the happiness that she and my baby daughter, Riley,

give me puts everything that I do into perspective.



v

Preface

This thesis is a collection of three papers that are intended for separate publi-
cation in various IEEFE journals. Although the papers are self-contained, they are
closely related in that they all deal with a class of analog-to-digital conversion sys-
tems known as AY modulators. The first two papers provide general analyses of
existing AY modulator architectures and the third paper applies the results to de-
velop a new A/D converter architecture consisting of AX modulators that operate
in parallel.

The papers assume some knowledge of AY modulators. All of the necessary
information can be found in Owersampling Delta-Sigma Data Converters Theory,
Design and Simulation, Edited by J.C. Candy, G.C. Temes, New York, IEEE Press,
1992. In particular, the tutorial introduction paper makes for easy reading and

presents most of the necessary background.



Abstract

The trend toward digital signal processing in communication systems has re-
sulted in a large demand for fast, accurate analog-to-digital (A/D) converters, and
advances in VLSI technology have made AY modulator based A/D converters at-
tractive solutions. However, because they are non-linear systems, they have proven
difficult to analyze. Rigorous analyses have been previously performed only for a
small number of artificial input sequences and then only for the simplest of A¥ mod-
ulator architectures. This thesis consists of three self-contained papers addressing
these and related problems. The first two papers extend the repertoire of tractable
input sequences for most of the known AY modulator architectures. The third pa-
per applies the results from the first two papers to develop a scalable architecture

for parallel AY Modulation.

The first paper concentrates on the first-order AY¥ modulator and develops rig-
orous results for a large class of input sequences. Under the assumptions that some
circuit noise is present and that the input sequence does not cause overload, a sim-
ple autocorrelation expression is developed that is only locally dependent upon the

input sequence. Ergodic properties are derived and various examples are presented.

In the second paper, a rigorous analysis of the granular quantization noise in
a general class of AY modulators is developed. Again under the assumption that
some circuit noise is present, the joint statistics of the granular quantization noise
sequences are determined and the sequences are shown to be correlation ergodic.
The exact results developed for the granular quantization noise are shown to ap-
proximately hold for the overall quantization noise if the quantizers in the AX

modulator overload occasionally.

The third paper develops a scalable A/D converter architecture consisting of
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multiple AY modulators. By combining M AY modulator based A/D converters,
each with an oversampling ratio of N, an effective oversampling ratio of approx-
imately NM is achieved with only an M-fold increase in the quantization noise
power. In particular, the special case of N = 1 allows for full-rate analog to digi-
tal conversion. Unlike most other approaches to trading modulator complexity for
accuracy, the system retains the robustness of the individual AY modulators to

circuit imperfections.
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1
Granular Quantization Noise in the First-Order AY Modulator

Ian Galton

Abstract— AY modulators are attractive candidates for oversampling analog-to-digital (A/D)
converters because they are amenable to VLSI implementation and have low component sensitiv-
ity. However, because they are nonlinear systems, they have proven difficult to analyze. Rigorous
analyses have been performed only for a small number of artificial input sequences such as constant,
sinusoidal, and Gaussian white noise input sequences [1]-[5]. By allowing for the inevitable pres-
ence of small amounts of noise in the AX modulator circuitry, a general framework is developed
which extends the repertoire of tractable input sequences to general stochastic sequences in addition
to handling many input sequences for which results have been previously presented. Under the
assumptions that some circuit noise is present and that the input sequence does not cause over-
load, a simple autocorrelation expression is developed that is only locally dependent upon the input

sequence. Ergodic properties are derived and various examples are presented.

I. Introduction

The first-order AY modulator [6] is the simplest of a class of systems generally
referred to as AY modulators that employ sampled-data filters and coarse quantizers
within feedback loops. They are widely used in high-precision oversampling A/D
converters because they are well-suited to VLSI implementation and tend to be
robust with respect to nonideal components. Accordingly they have received much
attention from both academic and industrial researchers. Nevertheless, most of the
previously published rigorous theoretical analyses of AY modulators apply only to a

small set of input sequences. In the current work, we concentrate on the first-order

The author is with the Electrical Engineering Department, California Institute of Technology,
116-81, Pasadena, CA 91125; email address: galton@systems.caltech.edu
This work was supported by a grant from Pacific Bell.
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Figure 1: a) The first order AY modulator. b) An equivalent form of the system with the quantizer
represented as an additive quantization noise source. ¢) An equivalent form of the system showing
the different filters that act on the input and quantization noise sequences, respectively.

AY, modulator and provide rigorous results for a large class of input sequences.
The first-order AY modulator consists of a sampled-data integrator, a uniform
midrise quantizer [7], and a negative feedback loop surrounding the integrator and
quantizer as shown in Figure la. The system operates on a sampled-data input,
z(n), and produces a quantized output, y(n). The quantizer can be interpreted as
an additive quantization noise source as depicted in Figure 1b. A straightforward
linear systems analysis shows that the input sequence sees the one-sample delay
S(z) = 271 while the quantization noise sequence sees the highpass filter N(z) =

~1. Thus, as shown in Figure lc, the output consists of two components: a

1—-2
component corresponding to the input sequence and a component corresponding to
the quantization noise sequence.

Note that N(z) is a highpass filter with a zero at zero frequency. This causes the
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Figure 2: A AY modulator based oversampling A/D converter.

spectral energy of the quantization error at the output of the AY modulator to be
weighted toward the high frequency end of the spectrum for most input sequences
[8]. It is this property of the AX modulator that makes it useful in oversampling
A/D converters.

An oversampling A /D converter consists of a AX modulator followed by a low-
pass decimation filter as shown in Figure 2. The input to the AY modulator, z(n),
is obtained by sampling a bandlimited analog signal at a rate N f where N is a pos-
itive integer and f is the Nyquist rate. Therefore, the spectrum of z(n) is nonzero
only on (—%, %) where 27 corresponds to the sampling rate. Provided N is suffi-
ciently large, the spectral energy of the quantization error will fall mostly outside
of (— %, %). The lowpass filter, removes the out-of-band quantization noise and the
decimator reduces the output sequence to the Nyquist rate.

Although conceptually simple, the system has proven difficult to analyze because
of the nonlinearity introduced by the quantizer. As will be shown, the quantization
noise has a complicated structure that is globally dependent upon the input se-
quence. If two input sequences differ at just one sample time, say n = ng, then the
corresponding quantization noise sequences will appear very different for all n > ng.

The quantizer imposes the following nonlinearity on its input:

AI_%J +%— if —y<Lz<y;
qz)=qy- % if © > ; (1)

-+ % ifzx < —;
where v is usually an integer multiple of A. When the input to the quantizer has

absolute value greater than 7 the quantizer is said to overload. It is desirable to
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avoid the overload condition because the resulting distortion tends to be severe
and difficult to characterize [1]-[5], [9], [10]. Most of the existing AY modulator
analyses including ours assume that the overload condition is avoided. Since the
quantizer will not overload provided the AY, modulator input sequence is bounded
in absolute value by y— 4 [5], this is not an unreasonable assumption. Furthermore,
simulations show that if the overload condition occurs but does so only rarely then
the performance of the AX modulator is not significantly degraded [11]. We can
therefore expect any exact results obtained under the no-overload assumption to

approximately hold if the overload condition has a low frequency of occurrence.

Even under the no-overload restriction, the system does not yield to a straight-
forward analysis. Most analyses rely on approximations [6], [8], [12], or apply only
to specific input sequences such as constant [1],[2], sinusoidal [3], or Gaussian white

noise sequences [4].

In the current work, we develop rigorous results by assuming that the input se-
quence contains an additive independent identically distributed (iid) random com-
ponent. The assumption is not very restrictive because the random component can
have an arbitrarily small variance. Moreover, since thermal noise in the analog
front-end of the AY modulator can be modeled as an iid random sequence, the
assumption is reasonable in practice. The approach has the benefit that it can be
applied to a large class of input sequences. We develop a simple expression for
the autocorrelation of the quantization error, R..(n,p), and prove that the error
is correlation ergodic. The autocorrelation expression is convenient because it is
only locally dependent on the input sequence. This property makes tractable many
desired input sequences that can not be handled using previously presented the-
ory such as the class of arbitrary stochastic sequences respecting the no-overload

constraint.

In Section II, we derive the theory outlined above and in Section III we apply



x(n) n g . H(z) r(n)

o

Figure 3: A first-order AY modulator followed by the filter H(z).

it to specific input sequences. By considering constant and sinusoidal inputs, the
theory is shown to contain many of the existing results concerning the first-order
AY modulator as special cases, although new observations are also presented. In
particular, for a sinusoidal input we develop a closed-form expression for the quasi-
stationary autocorrelation of the quantization error. Additional classes of sequences,
which heretofore have not been rigorously analyzed in conjunction with the AY
modulator, are then considered. We also present simulation results to support our

theoretical analysis.

I1. Theoretical Analysis

Instead of considering the AY¥ modulator in isolation, our system of study will
be the AY modulator followed by a causal, stable, linear time-invariant digital filter
with transfer function H(z) and impulse response h(n) as shown in Figure 3. The
reason for not considering the AY modulator in isolation is that in practice it is
almost always followed by a filter and, as we will show, the statistics of the output
are dependent upon the filter. Since we could choose H(z) = 1, the isolated AX

modulator is a special case of our system

We will distinguish between the quantization noise sequence, €(n), and the quan-
tization error sequence, e(n). As shown in Figure 1b, the quantization noise se-
quence is the difference between the output and the input of the quantizer. It is the
noise injected into the system by the quantizer. The quantization error sequence is
the component of the output of the system in Figure 3 corresponding to the quan-

tization noise. As mentioned above, the A¥ modulator subjects the quantization
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noise sequence to the filter N(z) = 1 —z~L. Thus the quantization error sequence is
equivalent to the output of the filter (1—2z~1)H(z) when driven by the quantization
noise sequence. From the argument leading to Figure lc, it follows that we can

write the output of the system in Figure 3 as
r(n) = w(n) + e(n), (2)

where w(n) can be interpreted as the response of the filter z7'H(z) to the input
sequence, z(n).
As alluded to above, we will assume that the input sequence seen by the AY

modulator consists of a desired input sequence, x4(n), plus an input noise sequence,

{nn}:
z(n) = z4(n) + Mn. (3)

We require that the 7, are independent and identically distributed with a distribu-
tion that has a density. The desired input sequence is the sampled-data signal that
is to be converted into a digital sequence by the A¥Y modulator (e.g., the music
signal, the video signal, etc.), and the input noise sequence is an unrelated sequence
that is assumed to be present in the analog front-end of the AY modulator. The
assumption is realistic in practice because thermal noise which is ubiquitous in ana-
log circuitry can be accurately modeled as an iid random sequence in sampled data

systems.

An Ezxpression For The Quantization Error Sequence

In the calculations to follow, we will consider the AY modulator to have been
“turned on” at a specific time in the past. For all n < a we will take the input
sequence and all storage elements in the AY modulator and filter to be zero. In
some cases we will consider the system in the limit as a — —oo. This corresponds

to a system that has been running since the beginning of time.
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Gray [5] has shown that the quantization noise sequence can be written as

e(n)=%—A<i—§[w(n—z)+%]> (4

1=1

—

provided n > a.! For convenience, we will take e(n) = 0 whenever n < a.
Since H (%) is causal, its impulse response, h(n), is zero for all n < 0. Therefore,

for n > a we can write the quantization error sequence as

o.e]

e(n) =Y [h(k) = h(k = D]e(n ~ k). (5)

k=0

Again, for convenience, we will take e(n) = 0 whenever n < a. Combining these
two equations gives

n—a—1 n—k—a
=2 Y B - he-D)(x 3 bla-k-0+3]).  ©

=1

Although (6) is an exact formula for the quantization error sequence, it does not
give great insight into the long-term behavior of the quantization error sequence.
In particular, the specific quantization error sequence obtained for a given input
sequence is globally dependent upon each value of the input sequence. For example,
consider two input sequences, z1(n) and z9(n), which are identical except for their

first value at time n = a. That is, suppose
T (’n’)v if n # a,
rolnj) =
z1(n)+ B, ifn=a;
for some nonzero # € R (such that the no-overload condition is maintained). Then
the quantization error sequence associated with z1(n) is

n—a—1 n—k—a
am) =8 3 (18 =ik = 1] (5 3 [erln— k=) + 4] ).
k=0

=1

while the quantization error sequence associated with zo(n) is

n—a—1 n—k—a
ean)=A S [h(k) — h(k - 1) <ﬁ% 1S [o(n-k—i)+ %—}>

k=0 1=1

f The angle brackets denote the fractional part operator. This operator is defined as:
(z) =z — |z] for all z € R.
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Because of the presence of (3, each term of the first sum in the equation for ey(n)
differs in a complicated fashion from the corresponding term in ej(n); the two

quantization error sequences typically look very different.

Quantization Noise Statistics

Chou and Gray [13] have investigated the statistics of the quantization noise
sequence of the first-order AY modulator under the assumptions that overload is
avoided and that the input sequence consists of a deterministic sequence plus a a so-
called dither sequence that is iid with a density. Mathematically the dither sequence
assumption is equivalent to (3); our input noise sequence plays the role of the dither
sequence. The reason that we do not refer to the input noise sequence as a dither
sequence is that the term dither is usually applied to sequences that are intentionally
introduced. From a practical point of view, we are making the opposite assumption.
We consider the presence of the input noise sequence to be an inevitable result of
the AY modulator having an analog front-end. The practical consequence of our
distinction is that the results presented in this paper hold regardless of whether a
dither sequence is intentionally added. Nevertheless, the results presented by Chou
and Gray can be applied directly to our system.

In particular, they proved that the quantization noise sequence converges in
distribution to a random variable that is uniformly distributed on (—%, 4] and is
independent of the desired input sequence. In order to extend their work, it is
convenient to begin by stating this result in a slightly different form. We do this in

the following lemma.

Lemma 1: Foreachr=1,2,..., let
r
U, = <ur +Zcm>,
=1

where {y,} is any deterministic sequence, c is any real number, and {7;} is a se-
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quence of independent, identically distributed random variables whose distribution
has a density. Then as » — oo, U, converges in distribution to a random variable

U that is uniformly distributed on [0,1).

Proof: The proof is essentially the same as that presented in [13].
]

The following lemma generalizes this result to stochastic sequences {u,}.

Lemma 2: Let {U,}, ¢, and {7;} be as defined in the hypothesis of Lemma 1. Let
{pr} be any stochastic sequence that is independent of {n;}. Then as r — oo, U,

converges in distribution to a random variable U that is uniformly distributed on

[0,1).

Proof: The moments of U, are defined as E(U), for n = 1,2,.... Because the
support of U, is restricted to [0,1), each moment exists and has absolute value
less than or equal to one. Thus, the distribution of U, is uniquely determined by
its moments and it is sufficient to show that the moments of U, converge to the
corresponding moments of U as 7 — oo.!

Since the sequences {7y} and {y;} are independent, for any integer n we can

write
E(U7) =E[ E (UF)].
{m}
By Lemma 1,
E (U') — E(U") (7
{me}

as 7 — 00. However, in order to be sure that
E(U;) = E(U")
as r — oo we must show that the convergence in (7) is uniform with respect to the

variables {ug}.

t See, for example, Theorems 30.1 and 30.2 in [14].
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Note that U, only depends on u,, the 7! element in the sequence {px}. More-

over, E (U) is a continuous function of u,. Therefore, sup E (U?) is achieved
{m} {2} e}
by some value of u,. It follows that there exists a sequence {4} } such that

sup| E (U) —E(U™)
{pe} e}

E U,’«l) _, —EU")
{nk}( st

Since the convergence in Lemma 1 holds for any deterministic sequence {uy;}, it
must hold for the particular sequence {4 }. Thus
lim sup| E (U;) —E({U")|=0
"0 (i} e}
which implies that the convergence in (7) is uniform with respect to {ux}.
n
In accordance with the usual definitions, we will take the mean and autocorre-

lation of the quantization noise sequence to be

Mc(n) = lim E[e(n)},

a——0o0

and

Ree(n,p) = lim E[e(n)e(n +p)],

a—>—00
respectively. We will take the cross correlation of the quantization noise sequence

and the desired input sequence to be

Ryye(n,p) = lim E[zq(n)e(n +p)].

a4——00

We will take the mean, autocorrelation, and cross correlation of the quantization
error sequence, namely Me(n), Ree(n,p), and Ry .(n,p), to be analogously defined.

The following theorem is an extension of a result proven by Chou and Gray.
They proved the result under the restriction that the desired input sequence is
deterministic. The current result holds for deterministic and stochastic desired

input sequences.
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Theorem 3: For deterministic or stochastic desired input sequences, M(n) and

R ,e(n, p) are zero. Consequently, M.(n) and R, (n,p) are also zero.

Proof: If M.(n) and Rg.(n,p) are zero, then by the linearity of H(z) it follows
that Me(n) and Rge(n,p) are zero. Therefore it is sufficient to show that M(n)
and R; (n,p) are zero.

From (4) for each n > a we can write €(n) = 4 — AU,_, where U,,_, corresponds

to U, in Lemma 1 with ¢ = 1 and

r

1 .
Uy = XZ[md(n —1) + %‘}
=1
From Lemma 2,
lim E(U,) = §, (8)

which implies that M.(n) = 0. Moreover, (8) holds regardless of the value taken on
by z4(n). Hence,
lim Bfsa(n)Us] = b E[za(n),

which implies that R, (n,p) = 0.
|

Assuming for now that autocorrelation functions for e(n) and w(n) exist, The- -
orem 3 in conjunction with (2) implies that the autocorrelation of the output of the

systems of Figure 3 can be written as

Rrr(”yP) = wa(n,p) + Ree(n,p).

Therefore, the significance of Theorem 3 is that the autocorrelation of the quan-
tization error sequence, if it exists, characterizes the second order statistics of the
quantization error.

The following theorem shows that R..(n,p) indeed exists and provides a conve-

nient expression for its evaluation.
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Theorem 4: The autocorrelation of the quantization noise sequence can be written

as
Ree(n,p) = Ele(n,n + p)], (9)
where )
(A if n = m;
n—1 2
. 2 .
cwm = H2 (s SO )] -4t tnsm g
m—1 2
He-a(3E k) +a)] - 8% itn<m
\ =n
Consequently, the autocorrelation of the quantization error sequence can be written
as
Ree(n,p) = > [1(0) = (G = D] [a(R) = h(k = 1)] Ree(n = k,n+ p — ). (11)
J=0 k=0
Proof: As in the proof of Theorem 3, write €(n) = & — AU,_,. Then,
AZ AZ AZ
E[e(n)e(n +p)] = _4— - TE( n— a) - “‘_E( n+p-—a) +A E(Un aUn+p a)

From Lemma 2, it follows that

A2
lim E[e(n)e(n +p)] = -t A? lim E(U, —aUn+tp—a)-

a—r—00 a—r—0o0

Therefore, to prove (9) it is sufficient to show that

1
lim E(Un-aUn+p-a) = 17 E[s(n,n +p)] + . (12)

a——0o0

If p =0, (12) holds as a direct consequence of Lemma 2. Therefore, it is sufficient
to prove that (12) holds for p > 1.

The fractional part operator has the property that for any =,y € R, (x+y)=
({(x) +y). It follows that for p > 1

Un+p—a=< n—at+ & Z n+z)+ >
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Therefore, by Lemma 2
p—1
lim E(Un-—oUnyp-a) = E I:U<U + % Z [z(n + 1) + 2] >] , (13)
a——0oQ =0
where U is uniformly distributed on [0,1). The expectation on the right side of
(13) can be evaluated in closed form. However, the algebra is messy so it has been

relegated to the appendix as Lemma Al. Applying Lemma Al to (13) for p > 1

gives
p—1 2 p—1

Jim B(Un-oUntp-a) = %+%E<%:Z[w(n+i)+%]> —%E<%Z[m(n+i)+%]>‘
i=0 i=0

This can be rearranged as (12) so the proof of (9) is complete.

Combining (5) and the autocorrelation definition gives

Ree(nyntp) =3 3 [h)=h(i=D)] [s(k)=h(k=1)] lim E[e(n—j)e(n-+p=F)],
7=0 k=0

which is equivalent to (11). The term by term multiplication of the series for e¢(n)
and e(n + p) and the interchange of the limit and the sums are justified because the
impulse response, h(n), is absolutely summable (because H(z) is stable). Hence,
(11) is a direct consequence of (9) and the stability of the filter.
n

Several observations can be made regarding (9). Note that &(n,m) is formally
a constant offset plus the squared quantization error of a uniform midrise quantizer
operating upon a finite partial sum of the input sequence. Thus the quantization
error autocorrelation is the weighted sum of the mean squared errors of multiple
uniform quantizers operating on various partial sums of the input sequence.

Another observation which we anticipated in the introduction is that the quan-
tization error autocorrelation is only locally dependent upon the input sequence.
That is, for a given p, the dependence of R..(n,p) upon the set of input values
{z(k) : k < n — N} can be made arbitrarily small by increasing N. This is a con-

sequence of the impulse response of the filter, h(n), being absolutely summable. If
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H(z) is an FIR filter, then the stronger assertion can be made that R..(n,p) is only
dependent upon a finite number of values from the input sequence for a given p.
Suppose we were given M systems all operating on the same desired input se-
quence at the same time. Each system would produce a quantization error sequence
ei(n) that would differ from the other quantization error sequences because of the

random variables 7,,. In this case, by the law of large numbers,
1 M-1
— D ei(n)ei(n +p) & Ree(n,n + p) (14)
1=0

provided M is large (and a < n).

If Theorem 4 were useful only to the extent that we could predict the average
behavior of many identical systems per (14), it would be of limited use. It is more
often the case in practice that we are interested in the long-term time-average
behavior of e(n)e(n + p). The question therefore arises as to what bearing the
conditional autocorrelation has on the time-average behavior of e(n)e(n + p).

Such relationships between time and ensemble averages are usually referred to
as ergodic properties [15], [16]. The following theorem and corollary present ergodic

results which greatly extend the utility of the Theorem 4.

Theorem 5: The following equations

' 1 N-1
A}gnoo N 2 e(n) =0 (15)
and
1 N-1
Jim =S za(n)e(n +p) =0 (16)

hold in probability. Moreover, whenever one of the limits exist,

1 N-1 1 N~-1
dim = T;) e(n)e(n+p) = lim > Ree(n,p) (17)

n=0

holds in probability. In particular the limits exist if the desired input sequence is

quasi-stationary.



15
Proof: As in Theorem 3, we begin by writing e(n) = 4 — AUp—,. The proof of
Lemma 2 indicates that

uniformly with respect to the variables {ur} as r — oo. Applying Lemma A2
(presented in the appendix) with U, — i playing the role of X,, indicates that as

N —

n=0

in probability. Therefore, (15) holds in probability. The argument that (16) holds

in probability is almost identical.
To show that (17) holds in probability provided either limit exists, it is sufficient

to show that

1 N-1
lim — Z [e(r)e(n + p) — Ree(n,p)] =0 (18)
holds in probability. Without loss of generality, we will assume that a = 0 and
that p > 0. Then, e(n) = 4 — AU, and a sufficient condition for (18) to hold in

probability is that both
N

—

e
¥ 2 [Un—4] =0 (19)
n=0
and
1= 1
5 2 [UnUnip = 25 Ree(n.p) = 4] = 0 (20)

n=0

hold in probability. But we have already shown that (19) holds in probability so we
can conclude that (18) holds in probability if (20) holds in probability.
Define
1
Xy = UnUn+p - "A_Q'Ree(nap) - 41'

The proof of Theorem 4 can be slightly modified to show that for any positive
integer j

E (Xx —0 (21)
{Wn:”>j}



16

as k — oo regardless of the desired input sequence or the values taken on by the
variables {no,...7n;}. As above, we would like to apply Lemma A2 and conclude
that (20) holds in probability. To do this, we must show that the convergence in (21)
is uniform with respect to the variables {79, ...n;} and the desired input sequence,
zq(n). This is equivalent to showing that the convergence is uniform with respect
to the variables {p,} as defined in Theorem 1.

By the definition of uniform convergence, it is sufficient to show that the se-

quence

{r} = {?B% [ B (X)) k=01, + (22)

converges to zero as k — oo. We will do this by showing that the p+1 subsequences
of {r;} defined as {r,(cm)} = {Tkp+1)+m : £ =0,1,...}, 0 < m < p, each converge to
zero as k — oo. Since these sequences together contain the elements of {r}, this is
equivalent to showing that {r;} converges.

By the definition of Uy, it follows that, for a given k and p, E (X%) only
depends on the uy and pyq,. Moreover, it is a continuous function ({)Tfhicg:sjé variables.

Hence,

E (Xk) =sup| E (Xp)
{mm:in>s} Br=apptrp=0 {pn} [{nn:n>j} ]

for some constants o and 3. Consequently, for each m there exists a particular

sequence { u,(zm)} such that

Tl(cm) = E (Xk(p+1)+m)

{(1nin>5}) {n}={u{™}

Since { E }(X k(p+1)+m) — 0 for every sequence {x,} it must converge to zero for
Nnin>j

the particular sequence { ,uslm)}. Hence, for each 0 < m < p, r,(cm) — 0 as k — oo.
This completes the proof that (17) holds in probability provided either limit exists.

If the desired input sequence is quasi-stationary then the quantization noise
sequence is also quasi-stationary [13] and so the limit on the right side of (17)

exists. In this case, since (18) holds in probability, (17) must hold in probability.
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Corollary 6: The following equations

1 N-1
dim nz=o e(n) =0 (23)
and
1 N-1
Jim_ 57 2 sulme(n+7) =0 (24)

hold in probability. Moreover, whenever one of the limits exist,
1 N1 1 N-1
lim i E e(n)e(n+p) = lim i Z Rec(n,p) (25)
n=0

N—oco N-—-oo
n=0

holds in probability. In particular the limits exist if the desired input sequence is

quasi-stationary.

Proof: Each equation follows formally by expanding e(n) with (5) and applying
Theorem 5. In each case, the various limits and sums can be interchanged because
the impulse response of H(z) is absolutely summable.

L]

There are various ergodic theorems that have been or can be applied to the first-
order AY modulator for specific classes of input sequences [16]-[19]. However, the
published ergodic theorems do not apply to the class of input sequences considered
in the current work. As an example of why it is necessary to consider whether the
quantization noise has ergodic properties, suppose that the input sequence z(n) is
a random variable uniformly distributed on (—21—n, Zln] forn =1,2,.... In this case,
it is easy to verify that ergodic results such as those presented in the Theorem 5 do
not hold.

We now develop procedures for applying the theory presented thus far to arbi-

trary input sequences. Recall that our theory requires the input sequence to contain
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the random variables, n,. Therefore, even if the desired input sequence is deter-
ministic, the actual input sequence is stochastic. As argued in the introduction,
this assumption is realistic in practice. However, many of the existing results for
the AY modulator are in terms of purely deterministic signals. So that we can
later compare our theory to existing work, we first develop a systematic approach
to annexing the deterministic case into our theory. We then consider the more im-
portant class of arbitrary stochastic input sequences with known statistics. Finally,
we present a procedure for obtaining approximate results when the statistics of the
desired input sequence are not fully known. To avoid cluttering the development,

specific examples are deferred to the next section.

Deterministic Input Sequences
Most of the treatments concerning deterministic input sequences involve the
evaluation of the quasi-stationary autocorrelation R.(p). In this case,

R.(p) = lim N—Z TH—]))]

N—-oo

since the input sequence does not contain a random component (see [5] and [20] for
a discussion of quasi-stationary processes).

To circumvent the restriction that the input sequence contain the random vari-
ables, 7,, we take the limiting case as the distribution function of the 7, approaches
a unit step function at the origin (i.e., as the 7, converge in distribution to a random

variable that is zero with probability one). From Theorem 5 and the definition of

R(p),

R (p) = lim — Z Rec(n,p) (26)

Nooo N
in probability. Consider a sequence of probability distribution functions {Py(z)}
such that

1 ifx>0;
hm Pi(z) = {0 0therw1se
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Let Rec(n,p) | Pu(2) be the value of R..(n,p) corresponding to 7, with distribution

function Pr(z). From (9) and (10), we have

if p=20;

n+p—1 2 ) i
5 - A<§ + + :L'd(’/?,)>jl — &7 ifp>0; (27)

kl_lfgo Bee(n,p) Ple) < [ 1=n X
n—1
a-a(3+1 S aam)] -4t o <o
L 1=n+p
Define
R N-1
Be(p) = lim = > lim Ree(n.p)| pq
n=0
Applying (27) gives
A2 V-l . n+t|p|-1 2
. . 2
Re(p) = lim o nZ—O [% - <§ x ; $d(2)>} — - (28)

Care must be taken to properly interpret R;(p). It is tempting to consider it to
be the autocorrelation of the deterministic input signal, z4(n), without any contri-
bution from the n,. As we shall see, in some cases this interpretation is valid and in
other cases it is not. In general, what can be said is that given a deterministic input
signal, for any ¢ > 0 there is an uncountable infinity of deterministic signals each
of which has a mean squared difference from the original signal of less than € and a
quasi-stationary autocorrelation equal to R. (p). In cases where R(p) = ]/%E(p), the
existence of the limit in (27) implies that the ideal result for the purely deterministic
input sequence is approximately valid if some noise is present. It becomes increas-
ingly accurate as the noise level is reduced. Of course, this can be determined from
simulations and observations of actual systems, but the argument above provides a
theoretical basis for the behavior. In cases where R.(p) # ﬁe(p), we should be wary
of applying the deterministic analysis to a physical A¥ modulator implementation.
By adding the slightest amount of noise per (3), the resulting autocorrelation will
equal ﬁe(p) in probability. In this sense, the purely deterministic result is not a

physically stable solution.
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Stochastic Input Sequences

In conjunction with existing results concerning uniform quantizers, our theory
can be used to handle stochastic desired input sequence respecting the no-overload
constraint. The first task is to evaluate the autocorrelation function, Re.(n,p), of

the quantization error sequence.

As is evident from Theorem 4 and the observations following it, to evaluate this
expression we must evaluate the mean squared quantization error corresponding to
various quantized partial sums of the input sequence. It is in solving this part of the
problem that we benefit from existing results concerning uniform quantizers. If the
resulting expression for Rce(n,p) is not dependent upon n, then the quantization
error sequence is wide-sense stationary and we are done. Otherwise, we may perform
a time-average of R.(n,p) to obtain the quasi-stationary autocorrelation function.
In either case, Corollary 6 ensures that the resulting function, if it exists, converges
to the time-average of e(n)e(n + p) in probability.

For a given input sequence, the success of our approach depends upon evalu-
ating the mean squared quantization error of partial sums of the input sequence.
Fortunately, considerable attention has been devoted to analyzing the effect of uni-
form quantization upon stochastic sequences [5], [21]-[24]. In particular, Sripad and
Snyder [24] have derived an exact expression for the probability density function of
a quantized sequence. If the statistics of z(n) are known, then, using Sripad and
Snyder’s expression, Ree(n,p) can be evaluated easily. In particular, if the filter
has length M and we know all 2M and lower joint probability distribution func-
tions of the input sequence, we can calculate the mean squared quantization error,
02 = Ree(n,0). If we know the 2M + N and lower joint probability distribution
functions of the input sequence, we can calculate R.(n,p) for all [p| < N. As will
be demonstrated in the next section, the first step is to apply Sripad and Snyder’s

expression to calculate the probability distributions of the quantized partial sums.
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It is then straightforward to evaluate R..(n,p).

Approximate Analysis

Sometimes the statistics of the input sequence are not known or are only par-
tially known. For many such input sequences, our theory gives rise to approximate
analyses. As with deterministic and stochastic input sequences, we benefit from
having reduced the problem to one of evaluating the mean squared error of a uni-
form quantizer operating on partial sums of the input sequence.

If the input to a uniform midrise quantizer is sufficiently “busy” or “active” on a
scale that is larger than the quantization step size, A, it is common to approximate
the quantization noise as uniformly distributed on [—4,%) [5], [21]-[24]. In many
cases, the partial sums of such a sequence also satisfy this property. Indeed, even
if the individual members of the sequence do not satisfy the property, it is possible
partial sums of several members do satisfy the property.

Note that (10) is an offset plus the squared quantization error of a partial sum
of the desired input sequence. If all the partial sums are busy in the sense described

above, it follows that
{ %27 if p = 0;
0, otherwise.

In this case, it follows from (11) that

Ree(n,p) ~ 2| (h(n) % h(=n))(p) = (h(n) * b(=n)) (p + 1)].

In a AY modulator based oversampling A/D converter, it is not likely that the
individual members of the desired input sequence are busy on a scale that is larger
than A. However, the desired input sequence might be busy on a smaller scale.
In this case, sequences of partial sums containing many terms might be busy on a
scale that is larger than A. Thus, if we know only enough of the low order statistics

of the desired input sequence to evaluate (10) for all the cases where the uniform
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quantization noise approximation is not valid, we can obtain an good approximation
to Ree(n,p).
Of course, the accuracy of the uniform quantization noise approximation is
highly dependent upon the nature of the input sequence and must be assessed on
an individual basis. Fortunately, there exists a large body of work addressing issues

of applicability and accuracy associated with the approximation.

III. Application to Specific Input Sequences

Constant-Amplitude Input Sequences

Although constant-amplitude input sequences have been considered by several
people, Gray [2] was the first person to perform an exact analysis. With A =1 and
for an input sequence z(n) = x, where « is an irrational number bounded in absolute
value by —%, he showed that the quantization error sequence has a quasi-stationary

autocorrelation given by

Re(p) = & = Hp(3 +2)) (1 = (p(3 + 2))). (29)
An equivalent result can be obtained from our theory. From (28), for any
z€(~%1%)
2
Be(p) _Nh_r,noomz[ < +x)>] B
= % - Kol +2) (1= (o3 +2))

which agrees with (29). Therefore, provided z is irrational, R¢(p) = Re(p).

The form of ﬁe(p) is not dependent on whether = is rational or irrational.
However, (29) does not hold for rational  [2]. It follows that R(p) # Re(p) if
x is rational. Since it is not possible to generate a perfectly constant rational
voltage, there is little practical significance to this discrepancy. Adding the slightest
amount of noise to a rational constant input in accordance with (3) causes the quasi-

stationary autocorrelation to equal ﬁe(p) with probability one. Hence, the purely
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deterministic result is not a physically stable solution in the case of a rational

constant input.

Sinusotdal Input Sequences

Because the AY. modulator is not a linear system, its overall performance can not
be characterized solely with respect to sinusoidal inputs. Nevertheless, sinusoidal
inputs are often used to test and partially characterize A/D converters. Therefore,
sinusoidal input sequences have received considerable attention in the AY¥ modulator
literature. Gray, Chou, and Wong [3] were the first people to perform an exact
analysis. As in the constant-input case, they showed that the quantization noise
sequence is quasi-stationary and derived an exact expression for the quasi-stationary
autocorrelation function. Unlike the constant input case their expression is not in
closed-form. In contrast, our theory does yield a closed-form result.

Suppose zg(n) = Acosnwg where |A| < v — 4. From (28), we have

N-1 P n+|p|—1 2
~ L p BN
Re(p) J\}l_glooﬁr;)l%*A 2—|—~}§ lz—; A cos iwy ] £°.
After some trigonometric manipulation, this becomes
- N-1 2
Re(p) = A}l_{ﬂoo oN Z [% — A<-&—{B(w0,p) sinfwon + 8(wo, p)] + p_ZA_}>] _ 2A_42’
n=0
where
sin (wolp|/2)
B - 77
(wo,P) (0/2) (30)
and

0(w0,p) = §(Ip| ~ Dwo - -

Note that for each even p, ﬁe(p) is equal to a constant plus the average squared
error of a quantizer operating on a sinusoid. Similarly, for each odd p it is equal to a

constant plus the average squared error of a quantizer operating on a sinusoid offset

by 4. Closed-form expressions for these quantities have been derived by Clavier,
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Panter, and Grieg [25] and reformulated by Gray [5]. Our theory has thus reduced
the problem to one that can be solved by applying results from another problem
that has a known solution.

When wg/27 is an irrational number, we can apply the results to obtain

¢ A2 N
12 p - 07
ﬁe(p) = ¢ Az{(R — %_)2 + %2 % i [2ksin—1(%)+2 (2—k2]} p even;
At .
\ Az{Sz +o-%-2 P [(2k+1>sin*1(’“ici)+z Cz—(k+%)2]} p odd;

where ( = +B(wo,p), R = [(], and S = [{ + }] (when comparing these results to
those in [5], note that various algebraic errors have been corrected). Similar results
apply to the less important case in which wg/27 is a rational number.

Although not an intuitive result, the expression for Ee(p) is certainly a closed-
form expression and is simple to evaluate. From (30) it follows that B(wg,p) < |p]
for all wp. Thus, each sum has at most £ 4 1 terms. Since the autocorrelation is
most interesting for values of p near the origin and since A is most often unity, the
sums rarely involve many terms.

Once again, it is interesting to answer the question of whether ﬁe(p) and R(p)
are equal. Because the expression for R.(p) is a double infinite summation of Bessel
functions, a quantitative comparison of the two functions for all values of p is
difficult. A simpler approach is to compare the functions when p = 0. In this

case,

2 =
R.(0) = ?2 A2§(W;ZP(—1)ZJ0(27FZC/Sin(w0/2)),

-~ 2
whereas R.(0) = %. Clearly, the two expressions are not equal. A similar but
more involved analysis shows that they are not equal for any finite values of p. As
in the case of rational constant inputs, that R.(p) and f?e(p) differ indicates that

the purely deterministic result is not a physically stable solution. For example,
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the slightest amount of noise added according to (3) causes the second term in the

expression for R.(0) to vanish in probability.

A Simple Class of Stochastic Input Sequences

In the following, we will assume that the variance of the input noise sequence is
so small that we can ignore its effect when evaluating (9). This is not a necessary
assumption, but it makes the calculations simpler. In an actual AY modulator,
the assumption is equivalent to assuming that the circuit noise floor is significantly
below the quantization noise floor.

As a first test of our theory for stochastic input sequences, suppose that z4(n) is

a sequence of independent random variables with characteristic functions satisfying:

@, ,m)(27n/A) =0

Td

for all n # 0. For example, a sequence satisfies this property if each member has
a mean of @, and is uniformly distributed on [3, — £,08, + &) (respecting the
no-overload constraint). Such a sequence might be created by adding a stochas-
tic dither sequence, d,, satisfying the characteristic function equation above, to a
deterministic sequence, G,.

Since the members of the sequence are independent, adding them together cor-
responds to multiplying their characteristic functions. Hence, any partial sum of

the form
n—1

t=m

[

]

has a characteristic function satisfying ®g, . (27n/A) = 0 for all n # 0. This is a
necessary and sufficient condition for the error produced by quantizing S, ,, to be
uniformly distributed [24],[26]. Applying this result to evaluate (10) gives

A ifn=m;
[e(n,m)] = _
0 ifns#m.

f

E
{za(k)}
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For the case of a AY modulator with a one-bit quantizer (i.e., the case of y =1
and A = 1), Chou and Gray [13] have presented an equivalent result. They pointed
out that the result is of limited use because in order to satisfy the no-overload
constraint, the input sequence must have zero mean (i.e., 5, = 0 must hold for all
n). However, if a multibit quantizer is used, the restriction (when each member of
the input sequence is uniformly distributed on [, — &, 8, + %)) is that they have
means satisfying —y + A < B, < v — A for all n. Since A = 2v/(2% — 1), where
R is the number of quantizer bits, this is frequently not a severe restriction. For
example, if an 8 bit quantizer with v = { is used in the AY modulator then the
allowed range of the input sequence means is [—4 + 5=, 5 — 5i=] which is 99.6% of

the full dynamic range of the input.

Gaussian Input Sequences

As outlined in the previous section, the general procedure for determining
R..(n,p) involves calculating the mean-squared quantization error of various partial
sums of the input sequence. In the example just considered, this was particularly
simple because all the partial sums had uniformly distributed quantization error.
For arbitrary non-stationary stochastic input sequences, the method is still straight-
forward, but the calculations can be tedious because each partial sum may have a
different distribution. In such cases, the calculations are most easily performed

using a computer.

To illustrate the general method but nevertheless obtain results that can be ver-
ified by hand, we consider the case of a stationary Gaussian desired input sequence.
Because all partial sums of such sequences have Gaussian distributions, we need not
explicitly determine the distribution of each partial sum so the tedium mentioned

above is avoided.

The specifics of the example are as follows. Let z4(n) be a stationary Gaussian
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Figure 3: The autocorrelation function as predicted by theory and as obtained by simulation. In
this example, M = 16, ¢> = 0.05, and @ = —0.8. Each point of the simulation was generated by
averaging two-million consecutive points of the form e(n)e(n + p).

sequence with autocorrelation R, .,(p) = o2alPl where o? is the variance of the
sequence and |a| < 1. Let the AY modulator have ¥ = co and A = 1, and let H(z)
have the form: H(z) = F?(z), where

It is necessary to have v = oo so that the overload condition is avoided. If v were
finite, the AY modulator would be sure to overload sooner or later because Gaussian
distributions do not have finite support. However, the example can be applied as
a good approximation when 7 is finite provided v > ¢% because in such cases the

overload condition is rare.
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x10- Autocorrelations Predicted Using Partial Statistics
6 T T T T T T
sle o All Statistics |
1 X ® + Tenth and Lower Order Statistics
4l X °¢ x Fifth and Lower Order Statistics
X
Xe
3- b 8
B 8
o, X
5 1k (4] i
X
8
0 § x;z;é55;ﬁuuDnln:ln'--nnon-;nnnnna::—
1 2 X ; 9 ?
-1 X -
] XXEQQ
B xXg?
_2 — ﬁ X X o,p -~
$0e0°
_3 L L £ L 1 L
0 10 20 30 40 50 60
Index

Figure 4: The theoretically predicted autocorrelation function of Figure 3 and approximations to
it as predicted by the theory when only tenth and lower order and fifth and lower order statistics
are known.

Using the easily derived fact that each partial sum, Sy, of N consecutive samples

of the desired input sequence has a Gaussian distribution with variance

s oN(a—-a)—2a" +2
N =9 2—q—al ’

it is straightforward to evaluate (10) using standard techniques (see, e.g., [24]).
Figure 3 shows sixty-four points of the autocorrelation so calculated for the case of
M = 16, 02 = 0.05, and o = —0.8. The figure also shows the autocorrelation as
found by computer simulation.

As shown in the previous section, if the statistics of the desired input sequence

are only partially known, it is often possible to obtain approximate results. We
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illustrate this by applying the approximation to the previous example.

For arbitrary stochastic desired input sequences, in order to calculate Re.(n,p)
using Theorem 4, it is necessary to know all |p| and lower order statistics of the
desired input sequence. For example, if we only know the fifth and lower order
statistics, we can only calculate Re.(n,p) when |p| < 5. In this case, to apply
the approximation of the previous section, we would set Rc(n,p) = 0 whenever
|p| > 5. Although we know all the statistics of the Gaussian desired input sequence
considered in the previous example, we can nevertheless apply the approximation

and compare the approximate results to the exact result.

Figure 4 shows the results of the approximation for the cases where Rc(n,p)
is only calculated for |p| < 5 and for |p| < 10. The curves are labeled in terms of
the order of statistics that would generally be required to obtain the corresponding
approximations if the input sequence were not Gaussian. The approximation is

quite good in both cases.

IV. Conclusion

We have presented a unified approach to analyzing the quantization error of the
first-order AY¥ modulator. The approach handles many of the previously analyzed
input sequences in addition to a large class of new input sequences. By averag-
ing over the arbitrarily small amount of circuit noise assumed to be present at the
analog input to the AY modulator we have derived a simple expression for the auto-
correlation of the quantization error. Each term in the expression is formally equal
to the quantization error of a non-overloaded uniform quantizer operating upon a
finite partial sum of consecutive input sequence samples. Hence, existing results
concerning uniform quantizers are directly applicable in evaluating the autocorre-
lation expression for specific input sequences. In particular, if the statistics of the

desired input sequence are known, then the autocorrelation can be calculated using
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standard techniques. If only partial statistics are known, an approximate result can
be obtained. The theory is also applicable to deterministic input sequences and has
been applied to obtain a new closed-form result for sinusoidal input sequences. We
have presented ergodic results which assert that under mild conditions the autocor-
relation equals the time-average autocorrelation in probability. We have applied the
theory to various input sequences, some of which have been previously considered
and some of which are new. Simulation results have been presented that closely

support the theory.

Appendix: Supporting Lemmas

Lemma Al: Let a be a random variable that is uniformly distributed on [0,1).

Then for any z,y € R,

E((e+z){a+y) =1+ 3((z—y)’ - (z-y)).

67

Proof: We will prove the lemma in two steps. In the first step we derive the

relation

E((a+a)a+y)) =+ (@) - )" - () - W), (31)

In the second step we show the surprising result that given u,v € R,
2
((u+v) = () =|(u +0) = (u)] = (v)* = (v). (32)

The lemma follows by combining (31) and (32) with u =y and v =z — y.

To prove (31) we proceed as follows. By the properties of the fractional part
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operator,
1
B((e+ oo +1) = [ (a+aaty)do
1
= [ e+ @)a+ w)do
= /OU1 (a + (x)) (a + <y>)da
+ [ @ max{{e), ()} - 1) (o + min{(e), (5)}) do

1

1
+/ (a+ (@) — 1) (@ + (5) — 1) ey,

2
where u; = min{l — (z),1 — (y)} and v = max{l — (z),1 — (y)}. Expressing the

integrands in terms of w; and uy gives
uy
E((a-{—m)(a—i—y)) = / (a —u1 + 1)(a — ug + l)da
o 0

+[Lu2(a—u1)(a—uQ+1)da

1

+L1(a—u1)(a~uz)da.

2

Expanding the integrands and collecting terms gives
1
E({a+z){a+y)) = / (a2 — aquy — aug + uug)da
[¢4
0 w
- / (a - ul)da
0

up
—I—/ (a+1—us)da.
0
Evaluating the integrals, collecting terms, and expanding u; and uy gives
E({e+o)(e+y)) =3+ jur — juz + H(ur — up)”

2 .
=5+ 4({®) - )" — ymax{(z), ()} + $ min{(z), ()}
from which (31) follows.
It remains to prove (32). Because (u+v) = ((u)+v), without loss of generality

we can assume u € [0,1). For convenience, define,

Flo,u) = ((w+) = (u) =] (u +v) — ().
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Choose any v € R. Then there exists some integer P such that v € [P,P + 1).
Hence we must have either v+ u € [P,P+1) or v+ u € [P+ 1, P +2). In the first

case,
fw,u)=(u+v—-P—-u)?—|ud+v—P—u

=(v~P)*~ (v~ P)

= (v)? - (o).

In the second case,
fou) = (ut+v—(P+1)—u)’ — Jutv—(P+1) -1yl
=~ 20(P+1)+(P+1) = (P+1)+v
=(-P)’~(v-P)

- (o) - ().
Hence, f(v,u) = (v)2 — (v) for all u,v € R.

n
Lemma A2: For each k¥ = 0,1,..., let X; be a deterministic function of the
two random sequences {xo, ..., x%} and {no,...,n%}, where the 7, are independent

random variables that are independent of the x,. Suppose that the distribution
of each X}, has its support restricted to [—3, 5] where 8 € R, and that for each

non-negative integer j, as k — oo
E (Xk) - 0
{nn:n>j}
uniformly with respect to the variables {no,...,n;} and {x0,x1,..-}. Then

1N—l
NZX,L——»O

n=0

in probability as N — oo.

Proof: Define the random variable, Sy, as

1 N-1
n=0
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For each € > 0, Chebyshev’s inequality [14] gives

SQ
Prob{|Sy| > €} < E(EZN)' (33)
By the linearity of the expectation operator,
1 N-1N-1
B(S¥) = 77 B(X; XE). (34)
7=0 k=0

Since the 7,, are independent and X; is independent of the variables {n, : n > j},
for each k > j we can write
E(X;Xy) =E[X; E_(Xp)].
{nnin>j}
Since

E (X3)—0
{nnn>5}

uniformly as k — oo, it follows that E(X;X;) — 0 as |k — j| — co. In particular,
this means that there exists a positive integer M such that

3

|B(X;Xy)| < 7 whenever  |j — k| > M. (35)

Since the support of each X} is restricted to [—f3, (], even when |j — k| < M it

follows that
|B(X;X3)| < % (36)

Choose

e

Dividing the terms on the right side of (34) into two groups corresponding to |j—k| <
M and |j — k| > M and applying the upper bounds (36) and (35), respectively with
N > N’ gives E(5%) < €3. From (33), it follows that for each N > N’

Prob{|SN] > e} <e€

This implies that Sy — 0 in probability as N — oo.
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Granular Quantization Noise in a Class of AY Modulators

Tan Galton

Abstract— The trend toward digital signal processing in communication systems has resulted in
alarge demand for fast accurate analog-to-digital (A/D) converters and advances in VLSI technology
have made AY modulator based A/D converters attractive solutions. However, rigorous theoretical
analyses have only been performed for the simplest AX modulator architectures. Existing analyses of
more complicated AL modulators usually rely on approximations and computer simulations. In this
paper, a rigorous analysis of the granular quantization noise in a general class of AY modulators
is developed. Under the assumption that some circuit noise is present, the joint statistics of the
granular quantization noise sequences are determined and the sequences are shown to be correlation
ergodic. The exact results developed for the granular quantization noise are shown to approximately

hold for the overall quantization noise if the quantizers in the AX modulator overload occasionally.

I. Introduction

Although AY modulator based A/D converters employ complicated digital cir-
cuitry, they require minimal analog circuitry and can generally be implemented
without the trimmed components and precise reference voltages required in other
types of A/D converters. Accordingly, they are well suited to implementation us-
ing fine-line VLSI processes optimized for high-speed digital applications. With the
growing demand for highly accurate A/D converters and recent advances in VLSI
technology, AY¥ modulators have received considerable attention from both indus-

trial and academic researchers [1] [2].

Many AY modulator variations have been developed [3]. Most operate on a

The author is with the Electrical Engineering Department, California Institute of Technology,
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Figure 1: A AY modulator based oversampling A/D converter.

sampled-data input signal z(n) and produce a quantized sampled-data output sig-
nal y(n). A typical AX modulator architecture consists of linear combinations of
sampled-data filters and coarse quantizers surrounded by feedback loops. Usually,
the idea is to highpass filter the additive noise sequences introduced by the quan-

tizers while simply delaying or lowpass filtering the input sequence.

A AY modulator based oversampling A /D converter consists of a AY, modula-
tor, a lowpass filter, and an N-sample decimator as shown in Figure 1. Typically,
z(n) corresponds to a continuous-time bandlimited signal that has been sampled
at N times the Nyquist rate causing the spectrum of z(n) to be nonzero only on
[— %> ¥]- Since the AY modulator highpass filters the quantization noise sequences,
for large N most of the spectral energy of the quantization error at the AY mod-
ulator output falls outside of [—%, ] and can in principle be removed without
distorting the input sequence by subsequent lowpass filtering. The decimator re-

duces the filtered output sequence to the Nyquist rate.

The filters applied to input sequence and to the quantization noise sequences
by a given AY modulator can generally be determined using linear systems theory.
However, quantization is a nonlinear process that destroys information so charac-
terizing the quantization noise sequences has proven difficult. Most of the existing
theoretical results assume that the quantizers in the A¥ modulator do not overload.
The results generally fall into three categories: 1) approximate characterizations, 2)
rigorous characterizations for specific deterministic input sequences, and 3) rigorous

characterizations for input sequences that contain an independent identically dis-
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tributed (iid) random component but are otherwise arbitrary. In the first category,
the most common approach is to assume that the quantization noise is white. While
the approach can be applied to any input sequence and any AX modulator, it does
not always provide accurate results [4]. Results in the second category are inter-
esting but are limited to first-order AY¥ modulators and cascades of first-order AY
modulators operating on simple input sequences such as constants and sinusoids
[4]. In the third category, various results have been developed for the first-order AY
modulator [5] [6] and cascades of first-order AX modulators [5]. The approach has
the benefit that it can be used to obtain rigorous results for a large class of input
sequences [6]. The amplitude of the iid random component can be arbitrarily small,
so the assumption tends not to be restrictive in practice [6]. For example, thermal
noise at the analog input of a AY modulator can be modeled as an iid random

sequence.

The current work extends the earlier results that characterize quantization noise
for input sequences containing an iid random component. In particular, results are
developed for a generic A¥Y modulator of which most of the previously published
AY modulators are special cases. The statistics of the quantization noise sequences
are evaluated and the various second-order correlations are shown to be ergodic.
In addition to generalizing the earlier work to a larger class of AY modulators,
the current work weakens the previous assumptions made about the iid random
component of the input sequence, and does not require that the quantizers never

overload.

The remainder of the paper is divided into four main sections. The generic AY
modulator is developed in Section II. In Section III, a granular quantization noise
sequence expression is derived. In Section IV the statistics of the granular quantiza-
tion noise sequences are determined and the second-order correlations are deduced

and shown to be ergodic. In Section V it is shown that if the quantizers overload
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relatively infrequently then the results of the previous section are approximately

valid if applied to the overall quantization noise sequences.

II. A Generic AY modulator

Three common AY modulators are shown in Figure 2. The first-order AY maqd-
ulator shown in Figure 2a consists of a sampled-data integrator, a uniform midrise
quantizer, and a negative feedback path. Figure 2b shows a second-order double-loop
AY modulator that differs from the first-order A¥Y modulator in that it contains a
second integrator and feedback loop. A third-order cascaded AYX modulator is shown
in Figure 2c. It is a cascade of the other two AY modulators followed by a digital
filter U(z).

Most of the published AY modulator variations, including those shown in Fig-
ure 2, can be represented, from a signal processing point of view, as special cases of
the generic AY modulator shown in Figure 3. The system consists of a linear time
invariant (LTT) digital system, T(z), followed by a bank of quantizers followed by
another LTI digital system, U(z). A feedback path joins the output of the quantizer
bank to the input of T(z).

In analyzing the generic AY modulator, we will make use of the matriz transfer
functions of T(z) and U(z). The behavior of any multi-input multi-output LTI
system can be represented mathematically by a matrix transfer function [7]. For
example, T(z) can be represented as a K x (K 4 1) matrix of z-transforms T (),
1<j<K,1<k<K-+1. For agiven j and k, T} () is the transfer function of

the system joining the &t input node to the 7 output node. If we define
ri(n) s1(n)
rr(n) sk(n)

where ri(n) and s(n) are the sequences denoted in Figure 3, and define R(z) and

S(z) to be the vectors obtained by z-transforming the elements of r(n) and s(n),
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Figure 2: a) The first-order AL modulator. b) The second-order double-loop AY modulator. c¢) A
cascade AY modulator that consists of a second-order double-loop AY modulator and a first-order

AY. modulator.
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Figure 3: A generic AY modulator architecture.
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respectively, then R(z) is related to S(z) as R(z) = T(z)S(z). Similarly, U(z)
can be represented by a 1 X K vector of z-transforms Ug(z), 1 < k£ < K. Thus,
Y (z) = U(2)S(z) where Y(z) is the z-transform of y(n) in Figure 3.
It will be useful to partition T(z) into a K X1 vector, F(z), and a K x K maitrix,
G(z):

Fl(z) G1’1(Z) Gl,K(z)
Fz)=] and  G(z) = ; :
Fg(2) Grai(z) ... Grr(z)

where Fi.(z) = Ty1(2) and Gjx(2) = T} g+1(2). Therefore,

T(z) = [F(z) | G(z)} .

We will denote the impulse responses (i.e., the inverse z-transforms) of Fy(z) and
G;jr(z) as fr(n) and g;x(n), respectively.

We can interpret the bank of quantizers as a single vector quantization device
operating on the vector r(n) and producing the vector s(n). With ¢z(-) denoting
the functional operation of the k** quantizer in Figure 3, define the vector-valued

vector function q(-) as

q(")
)= :
qx (")

With these definitions, we can rearrange the generic AY modulator as shown in
Figure 4. The scalar input sequence is converted into a vector by F(z). The vector
is added to the vector output of G(z) and then quantized. The quantized vector
is converted into the scalar output by U(z) and also applied to the input of G(z).
The system is equivalent to that of Figure 3 in the sense that z(n), y(n), r(n) and
s(n) are the same in both systems.

The results developed in this paper are applicable to any AY modulator that

can be written in the form of Figure 3 or, equivalently, Figure 4, and that satisfies

the following conditions.
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x(n) r(n) s(n)

| F(2) Pyl g > U() ¥

G(2) (e

Figure 4: A rearrangement of the generic AY modulator that is equivalent to the generic AY
modulator in terms of its input-output relationship and the signals seen by its quantizers.

Condition 1: The quantizers q1,...,q; are uniform midrize quantizers with step
sizes Aq,...,Ak, and no-overload ranges (—v1,71],--.,(=7K,vx], where for each

k, v is an integer multiple of Ag.

Condition 2: For each k, the impulse response fi.(n) does not converge to zero as
n — oo and for each j # k, the difference -Al;fk(n) - A%-fj (n) does not converge to

Zero as n — o0.

Condition 3: For each j, k, the impulse response g; (n) only takes on values that

are integer multiples of A;/Ag.

For some of the results we will also assume that the AY modulator satisfies the

following condition:

Condition 4: For each k and each p # 0, the difference fr(n) — fr(n + p) does not

converge to zero as n — 00.

Most of the common AY¥ modulator variations satisfy Conditions 1-3. With
the notable exception of AY modulators that contain a first-order AY modulator
operating directly on the input sequence (e.g., as shown in Figure 2a), most also
satisfy Condition 4. Throughout the paper, we will tacitly assume that the AY
modulator satisfies Conditions 1-3. However, all results that specifically assume
Condition 4 will be so noted. In cases where Condition 4 is not satisfied because
the AY modulator contains a first-order AY modulator, applicable results that are

analogous to those that assume Condition 4 in this paper have been developed in
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[6].

Each of the AY modulators shown in Figure 2 are special cases of the generic
A3 modulator. Each satisfies Conditions 1-3 and those in Figures 2b and 2c¢ also
satisfy Condition 4. The transfer functions T(z), F(z), and G(z) can be written for
each of the three A¥Y modulators by inspection. In the case of the first-order AX

modulator of Figure 2a, we have

F(z) and G(z) = (1)

1 -1

11

In the case of the second-order AY modulator shown in Figure 1b, we have

-1 -2 —1
T(z) = [1fz—1 "(1_Zz~1)2 - 12_zz~1] )

271 272 221
= = - - . 2
F(z) T and G(z) A= 17 1-7 (2)
Finally, in the case of the cascaded AY modulator shown in Figure 2c, we have
2—21 2 - 2_21 2 2Z“ll O
_ (1-z"1) (1~-z—1) 1-z~
T(Z) I 1 z72 + 2:71 2t ’
2(1-z"1)8 2 (1-z~1)2 1—z—1 1—z—1
22 _ 272 _ 2271 0
Fiz)=| 07 | and Gz)=| -7 1=+ I G
1 2% 1_ 2 + 2z __Z
2(1—2"1)3 2(1—2"1)2 T 121 1—z—1

For the first two of these examples, it is easy to verify that U(z) = 1. In the third
example, U(z) is the, as yet unspecified, system shown in Figure 2c.

We can interpret the vector quantizer in Figure 4 as a device that adds the
vector €(n) = s(n) — r(n) to its input as shown in Figure 5a. We will refer to e(n)
as the quantization noise vector. For each k, 1 < k < K, €;(n), the k* element of
e(n), is the quantization noise introduced by the k£*® quantizer.

‘Through straightforward matrix manipulations, the system can be rearranged

as shown in Figure 5b where

S(2) = U(2) (I~ G(2)) 'F(2), (4)
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g(n)
x(n) r(n) s(n) y(n)
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@
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> S(z) -+
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Figure 5: a) The system of Figure 4 with the quantizer bank replaced with the equivalent additive
noise source. b) An equivalent form of the system showing the different filters that act on the input
and quantization noise, respectively.

and

N(2) = U(z)(I- G(2)) 7", (5)

Note that S(z) is a scalar transfer function, whereas N(z) is a 1 x K vector of
transfer functions, Ng(z).

The input sequence to the AY modulator sees the filter S(z) while the quan-
tization noise sequences see the filter N(z). Therefore, we will refer to S(z) as the
signal filter and to N(z) as the noise filter. In most AY modulators, T(z) and U(z)
are chosen such that S(z) is a pure delay while N(z) is a highpass filter.

For example, from (1) it is easy to verify that the signal and noise filters for
the first-order AX modulator of Figure 2a are S(z) = 2z~ and N(2) = 1 — 271,
respectively. Similarly, from (2) the signal and noise filters for the second-order AY

modulator of Figure 2b are S(z) = 272 and N(2) = (1—2"1)2, respectively. Finally,
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if we choose

U(z) = [2—1 (1+@1-2"1%) 201- z——l)z]

then from (3) it can be verified that the signal and noise filters for the cascaded AX

-3

modulator of Figure 2¢ are S(z) = 27~ and

N(z)=[0 (1-2z71)3],

respectively.

Up to this point, we have simply defined the generic A¥Y modulator and have
applied some basic linear systems theory. Therefore, while the material presented
thus far has not previously appeared in the literature in a unified form, neither is it
fundamentally new. For example, the signal and noise filters associated with the AX
modulators of Figure 2 are well known [3]. However, in the remainder of the paper,
we will use the generic AY modulator framework as a starting point to generalize
previous results and develop new results regarding the statistics and ergodicity of

the quantization noise introduced by the bank of quantizers.

ITI. An Expression For The Granular Quantization Noise

Throughout the remainder of the paper, we will consider the AY modulator to
have been “turned on” at a specific time in the past which we will denote as a.
For all n < a we will take the input sequence and all storage elements in the AY
modulator to be zero. Whenever we consider quantization error sequences, we will
tacitly take them to be zero for all n < a. In some cases we will consider the system
in the limit as @ — —oo. This corresponds to a system that has been running since
the beginning of time.

At this point it is convenient to differentiate between granular quantization
noise, and overload quantization noise. If the input to a quantizer at time 7 is within

the no-overload range of the quantizer, the quantization noise at time n is defined
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to be granular quantization noise. If the input exceeds the limits of the no-overload
range, the quantization noise at time n is said to contain overload quantization
noise.

Any uniform quantizer with a finite no-overload range is functionally equivalent
to the cascade of a non-overloadable quantizer (i.e., a quantizer with an infinite
no-overload range) followed by an amplitude limiter. For example, in the generic
AY modulator, we can think of q; as the cascade of a non-overloadable uniform
midrise quantizer Qg, with step size Ay, followed by an amplitude limiter Lj. For
each input z, the output of the amplitude limiter would be

z R if £ € (=, Wel;
Li(z) =< —m+ 3 if o < —w;
Ve — %& if x > 7.

With this view-point, the granular quantization noise is introduced by the non-
overloadable quantizer and the overload quantization noise is introduced by the
amplitude limiter. Figure 6a shows a version of the generic AY modulator where
the bank of quantizers, q, has been replaced by the equivalent cascade of non-
overloadable quantizers Q, and amplitude limiters L.

Let us define the granular and overload quantization noise vectors as

€q (n) €0, (1)
eg(n) = : and €o(n) = : ,

€95 (1) €ox (1)
respectively, where for each k, ¢, (n) is the difference between the output and the
input of the non-overloadable quantizer Q, and €,, (n) is the difference between the
output and the input of the amplitude limiter L. Therefore, the overall quantization
noise vector is €(n) = €;(n) + €,(n).
Since Qy, is a non-overloadable uniform midrise quantizer with step size Ay, the

granular quantization noise introduced by q; can be written as

o) = 5 = (B, (6)
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x(n) | F(2) r(n) 0 = L s(n) > U ¥(n)
G(z) 1=
(®)

X F(2) Q = L B v —2
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A2 A2
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Figure 6: a) The system of Figure 4 with the quantizer bank replaced with the equivalent cascade
of non-overloadable quantizers and amplitude limiters. b) An equivalent form of the system in which
A/2 has been effectively added and subtracted from the system. c¢) An equivalent form of the system
in which the non-overloadable quantizers have been moved to the left of the feedback loop.

The problem with (6) is that the relationship between rx(n) and z(n) is not yet

clear. In order to make use of (6) we must rewrite it in terms of the input sequence
It is convenient to redraw Figure 6a such that the bank of non-overloadable

quantizers is not contained within a feedback loop. To do this, we proceed as follows.

Define the vector A as

Ay

A= :

Ag

The system shown in Figure 6b is equivalent to that of Figure 6a because % has
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been effectively added and subtracted from the system. Because the quantizers are
midrise quantizers, s(n) + —%— is a vector whose k! element is an integer multiple
of Ay for each index k and each time n. By Condition 3, the output of G(z) also
has this property. Since the quantization noise introduced by a non-overloadable
uniform quantizer is unaffected if its input changes by integer multiples of its step
size, the quantization noise produced by Q is independent of the feedback loop in
Figure 6b. For this reason, we can move Q to the left of the feedback loop to obtain
an equivalent system as shown in Figure 6c.

From Figure 6c it is straightforward to rewrite (6) as

Ak 1 n—a K
€g(n) = =~ — Ak<'A_]; > [fk(m)fv(n —m)+ > Algk,l(m)] > (7)
=1

m=0

As a consequence of Condition 3, the second sum in (7) only takes on values that
are integer multiples of Ay /2.

Equation (7) is a generalization of the quantization noise expression for the first-
order AY modulator found by Gray [4]. It is the starting point for the statistical

analysis of the quantization noise performed in the remainder of the paper.

IV. Granular Quantization Noise Statistics
In this section we consider the statistics of the granular quantization noise in-
troduced by the quantizers in the generic A¥Y modulator. Of course, the notion of
statistical behavior requires that underlying events be random and we have not as
yet placed any such requirements upon the input sequence. We therefore assume

the input sequence to be of the following form:
z(n) = z4(n) 4 7n, (8)

where z4(n) is a bounded stochastic or deterministic sequence and {7, } is a sequence
of independent identically distributed (iid) random variables that are independent

of z4(n) and whose distribution is not a lattice distribution [8]. We will refer to z4(n)
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as the desired input sequence and to {n,} as the input noise sequence. The desired
input sequence is the sampled data signal that is to be converted into a digital
sequence by the AY modulator (e.g., the music signal, the video signal, etc.), and
the input noise sequence is an unrelated sequence that is assumed to be present in
the analog input circuitry. For example, the input noise sequence might correspond
to thermal noise which is ubiquitous in analog circuitry and in sampled-data systems

can be modeled accurately as an iid random sequence.

Throughout this section we will consider only granular quantization noise €,4(n).
If the quantizers never overload, then €,(n) = 0, and the results of this section
directly apply to the overall quantization noise e(n). However, we do not require that
the quantizers never overload. Indeed, in the next section we suppose the quantizers
do overload and show that if the overload times are relatively infrequent, then the
results presented in this section for granular quantization noise are approximations

when applied to the overall quantization noise.

Theorem 1: For each k,1 <k < K,

kth

(i) The quantization error of the k** quantizer, e, (n), converges in distribution

as a — —oo to a random variable € (n) that is uniformly distributed on

(_%7%&]

(i) For each j # k, €y, (n) and €, (n) are independent.

(iif) Provided Condition 4 is satisfied, for each p # 0, €y, (n) and €, (N +p) are

independent.

(iv) Each member of the desired input sequence, z4(n), is independent of €y, (1)

Proof: For each j # k, from (7) we can write ¢,,(n) = —A—zl — AjUp—q and €4, (n) =

%& — AgVy—q where U,_q and V;,—, are random variables satisfying the hypothesis
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of Lemma Al."! From Lemma Al, as a — —o0 €g;(n) and €4, (n) converge in
distribution to equ(n) = %i ~ AU and € (n) = %k — AV where U and V are
independent random variables that are uniformly distributed on [0, 1). Hence, e'gj (n)
and e’gk (n) are uniformly distributed on (—%, %1] and (—%’i, %&}, respectively, and
are independent. This proves parts (i) and (ii).

The proof of part (ii) is similar to that of part (ii). The proof of part (iv) is a
direct consequence of Lemma A2.
]

In accordance with the usual definitions, we will take the mean of the quanti-

kth

zation noise from the quantizer to be

lim Eleg, (n)],

a——0o0

the autocorrelation of the quantization noise from the k™ quantizer to be

Reyk‘—gk (n,p) = a_lir_{loo E [Egk (n)eg, (n + p)} ;
the cross correlation of the quantization noise from the j* and & quantizers to be

Reyiey (n,p) = lim Eleg;(n)eg,(n+p)],

a—r—0o0

and the cross correlation of the quantization noise from the k™" quantizer and the

desired input sequence to be

Rayey, (n.p) = lim_E[ra(n)ey,(n +p)].

— 00

The following corollary is an immediate consequence of Theorem 1 and the fact

that for each k and n, €, (n) is bounded.

Corollary 2: The mean of each granular quantization noise sequence is zero for

all integers n. The cross-correlations, ngjeyk (n,p) with j # k, and R, acq, (Mo D), are

f Lemmas A1, A2, A3, and A4 are presented in the appendix.
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both zero for all integers n and p. Moreover, provided Condition 4 is satisfied, the

autocorrelation Re, ¢, (n,p) is not a function of n and can be written ast

AZ
Rﬁgkegk (p) = 6P1_2k

By virtue of (4) and (5) we can consider the output of the AY modulator to be
y(n) = w(n) + e(n) where w(n) is a filtered version of z(n) and e(n) is a filtered
version of the quantization noise. Suppose the quantizers never overload and that
the AY modulator satisfies Condition 4. Then, since the granular quantization noise
sequences are white and independent of each other we can write the power spectral

density of e(n) as
K

Jw A% Jw 2
See(e’) = 3 X Ne(e”)[",
k=0
where Ni(z) is the k" element of N(z) in (5). Suppose further that the desired input
sequence is wide-sense stationary or, more generally, quasi-stationary [9]. Then,
because the desired input sequence and the granular quantization noise sequences

are independent, we have
Syu(€7%) = Seyay(679)|S(e7)|” + Seele™).

Thus, Theorem 1 and Corollary 2 provide a simple means of evaluating the
statistical performance of the A¥Y modulator with respect to granular quantization
noise. The question arises as to whether analogous assertions can be made regarding
the distribution of values taken on by a single instance of the granular quantization

noise vector. For example, in a AY modulator satisfying Condition 4 do €y, (n) and

f The function 8, is the Kronecker Delta defined as

s.o={1 if p=0;
? 0 otherwise.
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€g(n + 1) for n = a,a +1,... take on values that are independent and uniformly
distributed? Simulations such as that shown in Figure 7, and theoretical results
[10] [11] [12] indicate that for specific cases the question may be answered in the
affirmative. Nevertheless, general results analogous to Theorem 1 that relate to the
time distributions of the granular quantization noise vector are not known to the au-
thor. We can, however, prove that the statistical averages in Corollary 2 converge in
probability to the corresponding time averages. In particular, the following theorem
establishes that for each j, k, and p the time averages of ¢4, (n), x4(n)eg, (n+p) and
€g;(n)€g,(n + p) converge in probability to the corresponding statistical averages.
Since each of the terms are bounded, convergence in probability implies convergence
in the mean [8]. Sequences whose time-average correlations converge in some sense
to the corresponding statistical correlations are usually referred to as correlation
ergodic. Therefore, the theorem asserts that the granular quantization noise vector

is correlation ergodic.

Theorem 3: As N — oo,

1 N-1
3 eqln) =0 )
n=0
and
1 N-1
N Z zq(n)eg (n+p) — 0 (10)
n=0

in probability. Moreover, provided Condition 4 is satisfied,

1 N-1

N Z €g;(1)€g, (1 + p) = Rey e, (P) (11)
n=0

in probability as N — oc.

Proof: Because the proofs of (9), (10), and (11) are similar, we will only state the
proof of (10).

For each n = 0,1,..., let X;, = z4(n — p)eg, (n). Then, it is sufficient to show
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Figure 7: The density of values taken on by €(n) and e(n + 1), » = 0,1,..., in a non-overloading
second-order double-loop AY modulator. The desired input sequence was a unit-amplitude sinusoid,
the input noise sequence had a variance of 107°, and the quantizer had unity step-size. The density
is plotted on the interval [—2, 2]

that

1 N-1

~ > Xn—0 12

n=0

holds in probability. As in the proof of Theorem 1, we can write €4, (n) = %“— -
ArUp—q. Lemma A3 implies that for each j > a

E Un—a _)%'

{mmn>j}

uniformly with respect to the variables 74,7441, ... ,7;-1 and with respect to the de-

sired input sequence z4(n) as n — oco. Equivalently, since the desired input sequence

is independent of the input noise sequence,

E Xnl —0
{Wn-"Zj}
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uniformly with respect to these variables as n — oco. Hence, Lemma A4 implies that
(12) holds in probability.

V. The Effect of Quantizer Overload

As discussed in Section III, the quantization noise vector is made up of granular

and overload quantization noise vectors:

€(n) = e4(n) + e(n).

Generally, overload quantization noise is highly correlated to the input sequence,
is difficult to characterize mathematically, and tends to spoil the performance of
AY, modulators [13]. In practical AY modulators, it is often best to choose the
no-overload ranges of the quantizers so as to avoid overload altogether. However, in
some practical systems, it is convenient to use coarse quantizers that occasionally
overload. For example, the second-order AY modulator of Figure 2b is often used
with a one-bit quantizer. In this configuration, input sequences that overload the AY
modulator can be found with arbitrarily small maximum amplitude. Even so, for
many applications the system achieves acceptable performance because the overload

condition is rare for small amplitude input sequences.

In cases where the quantizers overload, the results of the previous section still
apply to the granular quantization noise, but do not provide insight into the behavior
of overload quantization noise. Figure 8 shows the simulated density of values taken
on by the quantization noise terms e(n) and e(n+1), n = 0,1, ..., for a second-order
double-loop AY modulator that occasionally overloads. The simulation parameters
were the same as those of Figure 7 except that an overloadable quantizer was used.

In comparing the two figures, we see that overload complicates the structure of the
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Figure 8: The density of values taken on by e(n) and e(n + 1), n = 0,1,..., in an overloading
second-order double-loop AY modulator. The desired input sequence was a unit-amplitude sinusoid,
the input noise sequence had a variance of 107°, and the quantizer had unity step-size. The density
is plotted on the interval [~2, 2]2.

joint distribution. Nevertheless, it is evident that in this case,

1 N-1
N Z e(n)e(n+1) =0
n=0

for large N.

This approximate behavior is characteristic of AY modulators in which over-
load has a low frequency of occurrence. As can be deduced from Figure 6¢c, the
overload noise €,(n) originates in the bank of limiters, L, and is subjected to the
noise filter N(z). In many systems, including all those in Figure 2, the noise filter
has a finite impulse response. In such cases, if the quantizers overload infrequently

the overall quantization error, e(n), would only infrequently be a function of over-
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load quantization noise. In this sense, the results of the previous section would be
approximately valid as written. In other words, the effects of quantizer overload are

not catastrophic provided the times at which the quantizers overload are infrequent.

VI. Conclusion

We have defined and analyzed a generic AX modulator architecture. The results
provide a unified framework for analyzing a large class of AY modulators because
most of the known AY modulators are special cases of the generic system. Assuming
that a small amount of circuit noise is present in the analog front end of the AY
modulator, we have performed a statistical analysis of the granular quantization
noise for arbitrary input sequences. In particular, we have shown that in most AY
modulators with orders greater than one, each quantization noise sequence converges
in distribution to a sequence of random variables that are uniformly distributed
and independent of each other and the input sequence as the run-time increases
to infinity. This behavior is markedly different from that of the first-order AY
modulator as developed in [6]. We have also shown that the granular quantization
noise is correlation ergodic. Unlike most other theoretical treatments, we do not

require that the quantizers never overload.

Appendix: Supporting Lemmas

Lemma Al: For each p =0,1,..., let
P P
Up = <up + ZCkﬂk> and V= <Vp + denk>,
k=0 k=0
where {7;} is a sequence of independent, identically distributed random variables
whose distribution is not a lattice distribution, {c;} and {dj} are any real sequences
that do not converge to zero and whose difference does not converge to zero, and

{#p} and {v,} are any two sequences of random variables each of which is indepen-
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dent of every 7. Then as p — oo, Up and V, converge in distribution to random

variables U and V' that are each uniformly distributed on [0, 1) and are independent.

Proof: For each p=0,1,..., let

P
Xp = pp + Z CETlk-
k=0
Then Up = (Xp). Let @,(t) be the characteristic function of each 7, and let ®,, (t)

be the characteristic function of ;. Since the 7, are independent of each other and

of each p,, we can write
P

O, (t) = @, (1) [] @nlert).
k=0
All characteristic functions are one at ¢ = 0, and less than or equal to one for

t # 0. However, since the distribution of the 7z is not a lattice distribution, we are

assured that ®,(t) is strictly less than one for all ¢ # 0., Therefore,

{1, if t = 0;

lim ®x,(t) = 0, otherwise.

p—x

(13)

Let Px, be the probability measure of X,. Given A C R, let

Puy(d) =% PXP((AO[O,l))-I—k).
k==

By the definition of the fractional part operator, it follows that P X,) must equal the
probability measure of (Xp,) for every set on which the sum converges. But by the
countable additivity of Py, and the fact that if A is measurable so is Ure_ o ((A N
[0,1)) + k), the sum converges for all sets on which Py, is defined. Therefore Py
is the probability measure of (Xp,).

The characteristic function of (Xp) is

®<Xp>(t) = / ejtzP(Xp)(d(t)

-0

1 0
[ S pyen

0 k=—co

f See, for example, Problem 26.1 in [8].
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Hence, for all integers m.,

1 oo
P x,)(27mm) :/0 Z ef27rm(x+k)PXp(dac+k)

k=—c0

_ / M Py (i)

-0
= ®x, (2mm).
From (13) this implies
. _J1 ifm=0
plinélo ®y, (2mm) = { 0, if m is a nonzero integer. (14)

Define @ (t) as

Dy (t) = e”jt/z———————SiI;(/tQ/Q).

Then

lim @y, (27m) = &y (2mm).
p—00

Taking the inverse Fourier transform of ®y(¢) shows it to be the characteristic
function of a random variable U that is uniformly distributed on [0,1). Moreover,
by definition the support of U, is restricted to [0,1). Therefore ®y(t) and ®y, ()
are uniquely determined by their samples at t = 27rm, m = 0,+1,....}

A necessary and sufficient condition for U, to converge in distribution to U
is that @y, (t) converge to ®y(t) for each ¢ € R.} Therefore, by the argument
above, any subsequence of {Up,} that converges in distribution at all must converge
in distribution to U. Since the sequence of probability measures associated with
{Up} is tight (a consequence of the sequence having bounded support) it follows
that there exists a subsequence of {U,} that converges in distribution to U which
further implies that U, converges in distribution to U.

It remains to show that U and V are independent. By the definition of the

fractional part operator, for each z,y € R, we have (z +y) = ((z) + y). Therefore,

t See, for example, Theorem XIX.6.1 in [14].
See, for example, Theorem 26.3 in [8].
i See, for example, Theorem 25.10 and its corollary in [8].
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we can rewrite U, as

P
Up= <Vp +pp —vpt Z(Ck - dk)ﬂk>-
k=0

For each p, define the random variable W), to be U, under the constraint that V, = «
where « is any constant on [0,1). That is, let W, = U, | Vy=a

By the same argument used to show that U, converges in distribution to U,
it follows that W), converges in distribution to a random variable W that is uni-
formly distributed on [0,1). But the distribution of each W), is, by definition, the
conditional distribution of U, given that V}, = a. Therefore, the distribution of W is
the conditional distribution of U given that V = «. Since U and W have the same
distribution, it follows that U and V are independent.
n

The first part of the previous lemma is an extension of a result proven by
Chou and Gray [5]. They proved that U, converges in distribution to U under the
restrictions that ¢ = 1 for all k, that the 7, are iid with distributions having

densities, and that the u; are deterministic.

Lemma A2: Let U be as in Lemma A1, and let X be any random variable that

is independent of each 7. Then X and U are independent.

Proof: The proof is almost identical to the portion of the proof of Lemma A1 that
shows U and V are independent.

Lemma A3: Let U, and V), be as defined in Lemma A1l. Then, as p — oo
E Uy — &, 15
{nn:nzm[ W= 15)

and

U?] -1
{nn:n20}[ p] & (16)
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where the convergence is uniform with respect to ug, 1, .... Moreover, as p — o
E |UV,| — 1 17
{nn:nzo}[ ? p] v ")
where the convergence is uniform with respect to ug, 1,... and vg,vq,....

Proof: By definition, U, and V, have bounded support. Hence Ug can be consid-
ered a bounded continuous function of U, and U,V, can be considered a bounded
continuous function of Uy, and V. It follows from Lemma Al that as p — ool
E |Up = E|U],
By U] = ELU]

U2 — UZ’
AR

and

E [U,V,] —E[UV].
By [OpV] —~ BIUV]

Since U is uniformly distributed on [0,1), it is easy to verify that E[U] = i and
E[U?] = 1. Since U and V are independent, E[UV] =1
It remains to show that the convergence in (15), (16), and (17) is uniform. Since
the proofs of the three cases are similar, we will only prove that the convergence in
(17) is uniform.
Note that for each integer p > 0, { E>0} [UpV},] is a function of only the pt®
nin>

members of the sequences {uy} and {v4}. Since it is a bounded piecewise continuous

function of y;, and v), there exist sequences {4} } and {v}} such that for every p > 0

— —_, !
Hp=Hp,Vp=Vp

{Hk!}7{uk} {nnnzo}[ p p] 4

E UV,
By [UPV2)

ST

Since (17) holds for all sequences {y} and {v;}, it must hold for the specific

sequences {4 } and {v} }. Therefore,

U,V,] -1
{%520}[ Vo] — 4

lim sup =0

P70 fp v}

f See, for example, Theorem 29.1 in [8].
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which implies that the convergence in (17) is uniform with respect to {yt} and {v}.

n
Lemma A4: For each £ = 0,1,..., let X} be a deterministic function of the
two random sequences {Xxo, ..., Xk} and {no,..., 7}, where the 7, are independent

random variables that are independent of the y,. Suppose that the distribution
of each X}, has its support restricted to [—(, 5] where § € R, and that for each

non-negative integer j, as k — oo

E (X)) —0
{mnin>j5}

uniformly with respect to the variables {no,...,n;} and {xo0,x1,-..}. Then

1N—1

n=0

in probability as NV — oo.

Proof: This lemma corresponds to Lemma A2 in [6]. See [6] for the proof.
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Parallel AY Modulation

Tan Galton

Abstract— Although AY modulators are popular candidates for low to moderate rate analog to
digital converters, the requirement that their inputs be oversampled has discouraged their application
to higher rate converters. Even in current applications, their accuracy is limited by the maximum
available oversampling ratio. An approach to relaxing the oversampling requirement through parallel
AY modulation is presented. By combining M AY modulators, each with an oversampliné ratio of
N, an effective oversampling ratio of approximately NM is achieved with only an M-fold increase
in the quantization noise power. In particular, the special case of N = 1 allows for full-rate analog
to digital conversion. The individual AY modulators can be any from a large class of popular AT
modulators. Unlike most other approaches to trading modulator complexity for accuracy, the system

retains the robustness of the individual AY modulators to circuit imperfections.

1. Introduction

Primarily because of advances in VLSI technology, AX modulator based A/D
converters have become popular in applications requiring high precision. Although
they employ complicated digital circuitry, their relatively simple analog circuitry
tends to be robust with respect to component inaccuracies and noise [1]. They gen-
erally do not require the trimmed components or precise reference voltages necessary
in conventional A/D converters. Since fine-line VLSI technology is more amenable
to high density, high-speed digital circuitry than to accurate analog circuitry, AY

modulator based converters are attractive candidates for VLSI implementation.

There are many types of AX modulators. From a signal processing point of

The author is with the Electrical Engineering Department, California Institute of Technology,
116-81, Pasadena, CA 91125; email address: galton@systems.caltech.edu
This work was supported by a grant from Pacific Bell.
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x(n) y(n)

1 (n) 8;(n)

T(z) U(2)

1% (n) sx(n)

Figure 1: A generic AY modulator architecture.

view, most can be represented as special cases of the generic AY modulator shown
in Figure 1 [2]. The system operates on a sampled-data input sequence, z(n), and
produces a quantized sampled-data output sequence, y(n). It consists of a linear
time-invariant (LTI) digital system, T(z), followed by a bank of quantizers followed
by another LTI digital system, U(z). A feedback path joins the output of the quan-
tizer bank to the input of T(z). In an actual implementation, T(z) would be a
sampled-data analog circuit, the bank of quantizers would be a bank of low resolu-
tion A/D converters, U(z) would be a digital circuit, and the feedback path would
contain a bank of digital-to-analog (D/A) converters'.

A AY modulator based oversampling A/D converter consists of a AY mod-
ulator, a lowpass filter, and an N-sample decimator as shown in Figure 2. The
filler and decimator are together referred to as a decimation filter. Typically, the
sampled-data input sequence corresponds to a continuous-time signal sampled at a
rate N f, where N is a positive integer referred to as the oversampling ratio and f is

the Nyquist rate. This ensures that the spectrum of the input sequence is restricted

t Unfortunately, the term digital is not applied consistently throughout the literature. In
signal processing literature a digital filier is a sampled data system whereas in the VLSI literature
a digital circust is a circuit in which voltage levels are assumed to have discrete values.
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T ar o] e oo |—%

Figure 2: A conventional AY modulator based A/D converter with an oversampling ratio of V.

to (=%, #)- The decimation filter reduces the rate of the output sequence to f.

The main idea behind all the AY modulator variations is simple. As shown in
[2], the output of any AY modulator that fits the paradigm of Figure 1 is the sum
of two components. The first component is a filtered version of the input sequence
and the second component is a filtered version of the quantization noise sequences
introduced by the quantizers. In most cases, the filter applied to the input sequence
is just an L-sample delay while those applied to the quantization noise sequences
are highpass filters. If the input sequence occupies the portion of the spectrum
below the passbands of the filters applied to the quantization noise, the output
of the AY modulator can be lowpass filtered to remove much of the remaining
quantization noise without greatly distorting the input sequence component. It is
for this reason that AY modulators find application in oversampled A /D converters.
Oversampling ensures that the input sequence occupies only a low frequency portion
of the spectrum, and decimation filtering removes the out-of-band quantization noise

and reduces the output sample rate to the Nyquist rate.

The oversampling requirement is the essential drawback of AY modulator based
converters; the circuitry must be designed to operate at a significantly higher rate
than the system produces output samples. The greater the required accuracy of
the A/D converted sequence, the larger the necessary oversampling ratio. Hence,
accuracy is limited by circuit speed.

The proliferation of AY modulator architectures is a result of the continuing

search for systems that require smaller oversampling ratios for a given level of
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accuracy. Most of the research has emphasized designing the filters and topology of
the AY modulator to increase the frequency band over which the quantization noise
is. attenuated. Because of the non-linearity introduced by the quantizers and the
requirement that the topology of the system be amenable to VLST implementation,
this has proven to be a difficult problem. In particular, it is difficult to choose the
architecture so as to minimize the required oversampling ratio while maintaining

stability and a high tolerance to circuit imperfections.

We propose an alternative approach in which multiple AY modulator based
converters are operated in parallel in such a way that an effective oversampling ratio
is achieved that is significantly higher than the actual oversampling ratio. We call the
architecture the IIAY modulator (the IT is a mnemonic for “parallel”). The primary
advantage of the IIAY modulator is that it combines M AY. modulator based
converters with an oversampling ratio of V and achieves an accuracy commensurate
with an oversampling ratio of approximately N M aside from an M-fold increase in
the quantization noise power. For example, second-order AY modulators provide
approximately 2.5 bits of accuracy for every doubling of the oversampling ratio,
N [3]. Hence, for every doubling of M, the IIAY modulator would provide an
additional 2 bits of accuracy (the M-fold increase in quantization noise power is
responsible for the .5 bit difference between the two values). Another advantage of
the IIAY modulator is that it retains the robustness properties of the individual
AY modulators.

In the special case of N = 1, the IIAYX modulator operates as a full-rate A/D
converter; the input sample rate equals the output sample rate. The only other
known practical A/D converter architecture with this property is the flash con-
verter [4]. As will be demonstrated with simulations, the full-rate IIAY modulator

compares favorably with the flash converter.

The chief drawback of the IIAY modulator is that it requires a large amount



x(n)

Figure 3: The IIAY modulator architecture.

of digital processing. The oversampling converter on each channel typically requires
a filter of length N(2M — 1). Although the filters are simple integer FIR filters in
which explicit multiplications can be avoided, they are likely to occupy most of the

circuit space required by the IIAY modulator.

II. Architecture

The IIAY modulator architecture is shown in Figure 3. It consists of M channels
that operate on the sampled-data input sequence in parallel. Each contains two
binary multipliers capable of multiplying their inputs by plus or minus one and a
AY, modulator based oversampling A/D converter. The r*® channel multiplies the
sampled-data input sequence by the internally generated sequence u,(n), performs
an oversampled A/D conversion of the product, and multiplies the resulting digital
sequence by the internally generated sequence v,(n). The output sequence is the

digital sum of the output sequences from all the channels.

The sequences u,(n) and v.(n), 0 < r < M — 1, are referred to as Hadamard
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modulation sequences and the process of multiplying by a Hadamard modulation
sequence is referred to as Hadamard modulation. Each sequence is derived from an

M x M Hadamard matrix, H.T If m(j, k), 0 < j, k < M —1, is the element on the

7% row and k** column of H, then u,(n) and v,(n) are defined as follows:
-1
ur(n) = m(r, [B————l_—]%—J mod M), (1)
and
vp(n) = m(r,n mod M), (2)

where L is the signal delay of the AY modulators.} Figure 4 shows a legal set of
Hadamard modulation sequences for the case of M = 4, N = 3, and L = 1. Since
Hadamard matrices of a given size are not unique, other legal Hadamard modulation
sequences exist.

Since Hadamard matrices consist solely of plus and minus ones, the Hadamard
modulation sequences also consist solely of plus and minus ones. Hence, the multi-
pliers need only pass or invert the sign of their input depending upon whether the
current value of the modulation sequence is one or minus one, respectively. For the
first multiplier on each channel, this requires the capability of analog sign inversion,
and for the second multiplier it requires the capability of digital sign inversion. In-
deed, the reason for using Hadamard modulation is that it simplifies the design of
the multipliers. Although modulation sequences generated from any unitary matrix
will work in the IIAY modulator framework, Hadamard sequences are the only such
sequences consisting exclusively of plus and minus ones.

The use of Hadamard modulation, however, imposes a restriction on the number

of channels, M. Specifically, M must be chosen such that there exists an M x M

f A Hadamard matrix, H, consists exclusively of plus and minus ones and has the property
that H"H = M1 where I is the identity matrix [5]
! The brackets: | |, denote the floor function. For each = € R, |z| equals the greatest integer

less than or equal to . For example, |3.2] = 3, and |-3.2] = 4.
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Example Hadamard Modulation Sequences for M=4, N=3, and L=1

~1

1 ] S O g o o g oo <o
-1 ] & & g oo o g
1 o] ) o & & o] o o) [}
-1 g oo <o o o o
1 ] ) ) S0 o &
-1 @] & <& o] <o ) ]

Figure 4: Example Hadamard modulation sequences for the IIAY modulator with M = 4, N = 3,
and L = 1. The diamonds correspond to u,(n) and the squares correspond to v, (n). The graphs are
plotted against time; the tick marks represent input sequence sample times. Each graph corresponds
to one channel.

Hadamard matrix. A sufficient condition for this to occur is that M be a non-
negative power of two. Several simple circuits for generating Hadamard modulation
sequences when M is any non-negative power of two have been presented [6]-[9].
Hadamard matrices also exist for which M is not a power of two. A necessary
condition is that M be a multiple of four [5]. Indeed, Hadamard matrices for every
multiple of four less than 428 are known and mathematicians have conjectured (but
not proven) that such matrices exist for all multiples of four.

The A/D converter on each channel consists of a AY modulator, a lowpass dig-
ital filter, and an N-sample decimator. The implementation of the A/D converters
is the central design problem associated with the IIAY modulator. One question
that must be answered is what type of AY modulator should be used. The answer

depends in large measure on the application and is not greatly influenced by the use
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of the IIAY modulator framework. However, for the sake of analysis we will place
some restrictions on the class of AY modulators to be considered in the remain-
der of the paper. Specifically, we will assume that for each j,k, 1 < j, &k < K: 1)
the ktt quantizer is a uniform midrise quantizer with step-size A and no-overload
range [—7k,Vk), 2) the impulse response joining z(n) to ri(n) does not converge to
zero, 3) the impulse response joining z;(n) to r¢(n) is a sequence of integer multi-
ples of Ap/A;, and 4) the equivalent filter applied to the input sequence is just an
L-sample delay. Most of the commonly used AY modulators satisfy these require-
ments in principle although, in practice, leaky summing nodes and filter gain errors
can give rise to systems that slightly violate the assumptions. Nevertheless, we will
show that the theoretical results are approximately valid when the AY modulators
suffer from such imperfections. We also impose the restriction that if different types
of AY¥ modulators are used in the same IIAY, modulator, they must have the same

signal delay, L.

Another question associated with the design of the oversampling A /D converters
is what frequency response should the decimation filter, H(z), have. Again, the
answer is largely dependent upon the application, although the IIAY modulator
framework does impose a restriction upon the length of the filter. Specifically, we
require that the filter have a length no greater than N(2M — 1). In general, H(z)
should be designed as if the AY modulator and the filter were to be used in isolation
with an oversampling ratio of N M. The reason for this filter choice and the length

restriction will become clear from the analysis performed in the next section.

III. Analysis

The idea behind the IIAY modulator is simple. As in conventional AY modu-
lator based converters the goal is to filter out as much of the quantization noise as

possible without significantly distorting the input sequence. As described above, the
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Figure 5: The first-order AY modulator.

AY modulator applies a highpass filter to the quantization noise without changing
the spectral content of the input sequence. In a conventional AY modulator based
converter, the signal and the highpass filtered noise are lowpass decimation filtered
together. In contrast, the IIAY modulator effectively applies a different lowpass
filter to the input sequence than it does to the highpass filtered noise. The input
sequence sees a filter with a wide passband while the highpass filtered noise sees
a filter with a narrow passband. Hence, more of the quantization noise is removed
than in the conventional system.

For example, consider a sixteen channel IIAY modulator employing the single-
loop AY modulator shown in Figure 5 and an oversampling ratio of fifteen. Take the

filters, H(z), to have the triangular impulse response of length N(2M — 1) = 465

given by
s(n+1), i 0<n <23
h(n) =< 53=(464 —n), if 233 < n < 464; (3)
0, otherwise.

From Figure 5 it is easy to verify that each AY modulator filters the quantization
noise by 1— 27!, while subjecting the AY modulator input sequence to only a delay,
z~1. The frequency response of this noise filter is shown as the dashed-dotted curve
in Figure 6. The frequency response of H(z) is shown as the solid curve in Figure 6.
Together, these two filters attenuate the quantization noise on each channel. As
will be shown, aside from adding quantization noise, the overall effect of the IIAY
modulator on the input sequence is to apply a filter, H'(z), with the response shown

as the dashed curve in Figure 6. Because the input sequence is oversampled by a
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Figure 6: Filtering performed by the IIAY modulator. The dashed-dotted curve is filter response
applied to the guantization noise on each channel by the AY modulator. The solid curve is the
filter response applied to the quantization noise on each channel by the decimation filter, H (z). The
dashed curve is the overall filter response applied to the input sequence by the IIAY modulator.

factor of fifteen, its energy is restricted to the frequency band (-1, 1z). This is
sufficiently narrow that H'(z) does not distort the input sequence beyond repair.
Hence, the quantization noise on each channel is highly attenuated, while the input
sequence is preserved.

As we will show, although the outputs of the channels are summed, the quanti-
zatlon noise does not add coherently. In the example above, summing the channels
increases the noise power by a factor of sixteen. This raises the noise floor by about

12dB or, equivalently, two bits of precision are lost. The increase in noise power

is more than made up for by the reduction in quantization noise achieved by each

channel.
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Z—L Z—M +1

x(n) > H(z) —t (N —>———=w(n)

Figure 7: A system equivalent to the IIAY modulator when the quantizers are replaced by identity
operators.

In the example, two results are alluded to: 1) the component of the IIAY mod-
ulator output not corresponding to quantization noise is just the input sequence
passed through a filter, H'(2), with a passband wider than (—%, &), and 2) the
quantization noise from the channels does not add coherently. Our analysis consists

of presenting and proving mathematically precise formulations of these results.

The Filter Applied to The Input Sequence

We first define H'(z) and prove that the overall effect of the IIAY modulator
aside from generating quantization noise is to filter the input sequence by H'(z). The
simplest approach is to analyze a system that is equivalent to the IIAY modulator
except that the quantization noise sequences are all zero. Such a system can be
obtained by simply replacing the quantizers in the IIAY modulator with identity
operators. The following theorem formally states the result. It also indicates that the

impulse response of H'(z) is equal to the center N samples of the impulse response

of H(z).

Theorem 1: The system obtained by replacing the quantizers in the IIAY mod-
ulator with identity operators is equivalent to the system shown in Figure 7. The
impulse response of H'(z) is

1oy — { Mh(n+ NM -~ N), f0<n<N-—1;
fi(n) = { 0, otherwise. (4)
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Figure 8: The 7*" channel of the IIAY modulator with the quantizers replaced by identity operators.

Proof: By definition, each AY modulator in the IIAY modulator reduces to an
L-sample delay when its quantizers are replaced by identity operators. Figure 8
shows the 7** channel of the IIAY modulator with the AY modulator replaced by

an L-sample delay. From the figure and the definition of u,(n), it follows that
N@EM-1)~1

b= S A(k)e(n—L - k)u( [”‘N——l_--"ij)

k=0
Let w'(n) be the output of the system obtained by replacing the quantizers in

the ITAY modulator with identity operators. Applying the N-sample decimator,

Hadamard modulating, and summing the ¢,(n) for 0 <7 < M — 1 gives

M-1
w'(n) =Y te(nN)v,(n)

r=0
B N(@2M-1)-1 M—1 AN —1— k
= kzzo h(k)x(Nn — L — k) TZ:% U’"(n)vT([——T_J)'

Let Mt
I o (), nN -1~k
4 = 3 oo (===

when 0 < k < N(2M —1) — 1 and let A(k) = 0 for all other values of k. Since v,(n)
is defined as the 7! row of an M x M Hadamard matrix repeated periodically, it

follows that

M-1

_ [ M, if mis a multiple of M;
z% vr(n)or(n+m) = { 0, otherwise.

Hence, A(k) must either equal zero or M depending upon the value of k. In the
range 0 < k < N(2M — 1) — 1, we have

<n-1.

oy < PN =1k
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Therefore, A(k) = 0 unless

'-nN—l-—k

N J:”“M’

in which case it equals M. This occurs when NM —~ N < k < NM — 1. It follows

that
NM-1
w'(n)=M > h(k)z(Nn-L-k).
k=NM-N

Applying (4) gives

N-1

w'(n) = W(k)o(N(n—M+1) - L—k).
k=0

By inspection, this is equal to w(n), the output of the system shown in Figure 7.

Independence of the Channels

We now turn to the problem of formulating and proving mathematically precise
versions of the assertion that the quantization noise from the M channels of the
IIAY: modulator does not add coherently. In particular, making two assumptions
about the input sequence, we will show that the statistical and time average cross
correlations of the quantization error sequences produced by different channels of
the IIAY modulator are zero. Hence, the mean squared quantization error of the
ITAY modulator is the sum of the mean squared quantization errors of the individual
channels.

The first of the two assumptions is that analog circuit noise gives rise to an
actual input sequence, z(n), consisting of a desired input sequence, z4(n), plus an
input noise sequence, {7,}, where the 7, are independent identically distributed
(iid) random variables that are independent of z4(n) and whose distribution is not

a so-called lattice distribution [10]:

z(n) = z4(n) + mn. ()
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The desired input sequence is the sampled-data sequence that is to be converted
into a quantized sequence by the IIAY modulator. The 7, sequence arises in the
circuitry of the IIAY modulator and is not related to the desired input sequence.
Although it is assumed to be unavoidable, it can have an arbitrarily small variance.
The assumption is essentially always valid in physical implementations [11], [2].
For example, thermal noise is ubiquitous in analog circuitry and can be modeled

accurately as an iid random sequence in sampled-data systems.

The second assumption is that the input sequence does not overload the AY
modulators. That is, we assume the input sequence is such that the quantizers in
the AY modulators never overload. Although many useful types of AY modulators
do overload during normal operation, it is usually the case that they overload at
only a small percentage of the sample times [3]. In such cases, it has been shown
that the effects of overload on AY modulator performance are not severe [2]. It
follows that in such cases the degradation in performance experienced by the [IAT

modulator should also not be severe.

In the calculations to follow, we consider the IIAY modulator to have been
“turned on” at a specific time in the past. That is, we assume there exists some
integer, a, such that for each n < a, the states of the filters within the IIAY
modulator are all zero. Whenever we consider quantization error sequences, we will
take them to be zero for all n < a. In some cases, we will consider the system in
the limit as @ — —oo. This corresponds to a system that has been running since

the beginning of time.

We will write the component of the output of the IIAY modulator correspond-
ing to quantization noise as e(n) and refer to it as the overall quantization error
sequence. Hence, y(n) = w(n) + e(n). The overall quantization error sequence is
the sum of the quantization error sequences arising on the individual channels. Let

er(n), 0 < r < M — 1, be the quantization error at the output of H(z) on the
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b channel of the IIAY modulator. From Figure 3, the overall quantization error

sequence of the IIAY modulator is
M-1

e(n) = Z vr(n)e (Nn). (6)
r=0
In accordance with the usual definitions, we will take the mean and autocorre-

lation of the overall quantization error sequence to be

M.(n) = lim Ele(n)],

a—r—00

and

Reolnp) = lim_E[e(n)e(n +p)]

respectively. We will take the cross correlation of the overall quantization error

sequence and the desired input sequence to be

Ryge(n,p) = lim Elza(n)e(n +p)].

The following theorem asserts that the overall quantization error is not statis-

tically biased or correlated to the input sequence.
Theorem 2: M.(n) =0 and R, (n,p) =0

Proof: Because of the linearity of the limit and expectation operators,

M-1
a_lirzlooE[e(n)] = Z vp(n) ali_)rgloE[er(Nn)].
r=0

The result follows from application of the corresponding result for AY modulators
proved in [2]. The proof that R, .(n,p) = 0 similarly follows from the corresponding
result for AY modulators proved in [2].
]

Theorem 2 implies that the second order statistics of the overall quantization
error sequence are completely characterized by R..(n,p). Provided the autocorrela-

tions exist,

Ryy(”ap) = Ryw(n,p) + Ree(n,p).
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The following theorem and corollary assert that Re.(n,p) is the sum of the
autocorrelations of the individual channel quantization error sequences. As shown
in [11] and [2], these autocorrelations exist so it follows that Rec(n,p) also exists.
The theorem states that the expectation over the random variables, 7,, of the
product of the quantization error from different channels converges to zero uniformly
with respect to the desired input sequence as the run-time of the IIAY, modulator
increases to infinity. The corollary deduces the form of the overall quantization error

autocorrelation.

Theorem 3: Whenever r # g, for each integer b > a,
E [e(n)eyg(n +p)] —0
{nk:k>b}
uniformly with respect to the desired input sequence, x4(n), and the variables

{nas...,mp} as either n — oo or as b — —oo.

Proof: We will prove the result for b — —oco. The proof for n — oo is similar.

Applying the results presented in [2], for each n > a we can write

K n
er(n) = Z Zgr,k(n - j)er,k(a)j)a (7)

k=0 j=a
where!
1 /Al
sl ) = 5 = {3 Joali = Jonli)a(i) + 50 ) ®)
i=a
Here g, r(n) is an absolutely summable sequence, fri(n) is a sequence that does
not converge to zero, §(j) is a sequence that takes on values of 1 and zero, and L is
the signal delay of the AY modulators in the IIAY modulator.

Because g, (n) is absolutely summable and the €, 1(a, j) terms form a bounded

set, we need only show that the expectation with respect to 7 of the product of any

t The angle brackets denote the fractional part operator. This operator is defined as:
(z) =z — |z] for all z € R.
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term of e,.(n) with any term of e,(m) converges to zero uniformly with respect to
the desired input sequence as a — —oo.

Choose any non-negative integers n,m, k., and kq. For each p = 0,1,..., define

n—L
%= 5= (ot 3 franlo = dutin)

=n-—p
and

m—L
Vo= g= (Bt 2 fusslm— D)

i=m—p
where {ar} and {b;} are any real sequences. In particular, from (8) we could choose

the {ar} and {b;} such that
XP = ET,kr(n - D n)a

and

}/}7 = Eq,kq(m —p7 m)'

Hence, it is sufficient to show that E[X,,Y,] — 0 uniformly with respect to {a;}
and {b} as p — oo.

Recall that the actual input sequence, z(n), is the sum of the desired input
sequence, T4(n), and the input noise sequence, {n,}. By definition, X, and Y, are
piecewise continuous functions of each 7, with range (—4i,1]. Therefore, they are
random variables with distributions supported on (-1, 1].

Applying Lemma A1l (presented in the appendix), it follows that Xp and Y,
converge in distribution to random variables X and Y respectively, where X and Y’
are statistically independent and uniformly distributed on (-1, 3]. Since X, and Y,
are piecewise continuous and bounded, this implies

lim E[X,Y,] = E[XY]

p—co

=0 (9)
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for every choice of the desired input sequence.t
It remains to show that the convergence is uniform with respect to {ar} and
{bx}. By definition, E[X,Y})] is a function of only the pt" members of the sequences
{ar} and {b;}. Since X,Y, is a piecewise continuous function of ap and by, there

exist sequences {a} } and {b}} such that for every p

E[X,Y,] | sup E[X,Yp].

{an}.{bi}
Since (9) holds for all sequences {ay} and {3} it must hold for the specific sequences

—l B o_pl =
ap—ap,bp—bp

{a;} and {b}}. It follows that

lim sup E[X,Y,] =0,
P {ar ), {be}

which implies that the convergence in (9) is uniform with respect to {az} and {b;}.

Corollary 4: The autocorrelation of the overall error sequence, can be written as

M-1

Ree(n,p) = Z vr(n)vr(M)Re,e, (NN, pN),
r=0

where Re,e,.(n,p) is the autocorrelation of e,(n).

Proof: From (6) and the definition of the autocorrelation,

M-1
Beo(n,p) = Y vp(n)vy(n + p)Re,e, (nN, pN)
r=0

M~-1M-1 (10)
+2 2 w(muln+p) lim Ble(N)eq((n+p)N)].
r=0 ¢=0
r#q

Therefore, we need only show that the second sum in (10) is zero. Since the input

noise sequence is independent of the desired input sequence, we can write

Ele(n)er(m)] = @ (k)}{]%)[er (m)]}

f See, for example, Theorem 29.1 of [10].



83

By Theorem 3 the inner expectation converges to zero uniformly as a — —oo. It
follows that lim,_._ E[e;(n)eq(m)] = 0 whenever r # g. Therefore, the second sum
in (10) is zero.
n

Of course, the statistical averages are of little practical use if they do not relate
to the corresponding time averages. Therefore, the next problem is to prove that
the overall quantization error sequence is mean and correlation ergodic. That is, we
wish to establish relationships between time averages of e(n), z4(n)e(n + p), and
e(n)e(n+p) and the functions Me(n), Ry (1), and Ree(n,p), respectively. Note that
we are forced to average Rc.(n,p) over n because, in general, e(n) is not wide-sense

stationary [11].

Theorem 5: The following equations

1 N-1
]\}:l—{[loo N 2 e(n) =0 (11)
and
1 N-1
Aim > zq(n)e(n +p) = (12)

n=

hold in probability. Moreover, whenever one of the limits exist,

1 N-1 1 N-1
lim 5> e(me(ntp) = lim =3 Rec(n.p) (13)

n=0 n=0

holds in probability.

Proof: The proofs that (11) and (12) hold in probability follow directly from (6)

and the corresponding results in [11] and [2] for AY modulators.



From (6) we can write

N-1 N-1M-1

1 1
N ~ e(n)e(n +p) = N nz:% 2 Ur(n)vr(n -|-p)e,, (nN) er((n +p)N)
1 N-1M-1M-1
i or(0)un(n+ Bles () (04 £)N).
n=0 r=0 g¢=0
r#q

(14)
As shown in [11] and [2], whenever either limit exists the following equation

holds in probability:

1 N-1 1 N-1
]\;l—l;noo -]v 2_% er(n)e’"(n +p) - J\;]:—I%noo —]\7 T;) Rerer(n,p).

This with Corollary 4 implies that

1 N-1M-1 1 N-1
]\}Enoo N ngo TZ:;) vp(n)ur(n +per (nN) er((n +p)N) = ]\;Enoo N nzz% Ree(n, p)

holds in probability whenever either limit exists. Therefore, we need only show that

the second term in (14) is zero in probability, or equivalently that

N-1
) 1
Jim ZO er(n)eg(n+p) =0 (15)
holds in probability when r # ¢. But this follows directly from Theorem 3 and
Lemma A2.

The Effective Oversampling Ratio

We have shown: 1) that the output of the IIAY modulator consists of an overall
quantization error sequence plus a filtered version of the input sequence, 2) that
the autocorrelation of the overall quantization error sequence is the sum of the
autocorrelations of the quantization error sequences from each channel, and 3) that
the overall quantization error sequence is mean and correlation ergodic. It remains

to explain the claim that the IIAY modulator achieves an effective oversampling
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ratio approximately M times greater than that of its oversampling A /D converters

aside from the M-fold increase in quantization noise power.

Recall that in a conventional AY modulator based converter, for an oversam-
pling ratio of say IV, the lowpass decimation filter must be chosen to remove as
much of the out of band quantization noise as possible under the constraint that
it have a passband of at least (—%, %). If its passband is too narrow, the desired
component of the output, namely the delayed version of the input sequence, is dis-
torted beyond repair. However, the filters H(z) in the oversampling A /D converters
of the IIAY, modulator are not subject to this constraint. Instead, they are sub-
ject to two milder constraints. The first is that they must have a length no greater
than N(2M — 1). The second is that the filter H'(2), whose impulse response is
the center V samples of the impulse response of H(z), must have a passband of at
least (—%, %) The length constraint is not unreasonable for decimation filters in
conventional AY modulator based converters with oversampling ratios of NM [3].

Moreover, it is easy to verify that most such filters satisfy the passband constraint

on H'(z). The filter with the impulse response (3) is one such example.

IV. Sensitivity to Nonidealities

In the analysis of the preceding section, we took the IIAY modulator to con-
sist of ideal components and assumed that the AY modulators never overload. In
practice, however, components are never ideal and the AY, modulators sometimes
do overload. It is important to have an idea how the performance of the IIAY

modulator deteriorates in the face of these nonidealities.

Generally, there are three classes of nonideal component behavior that degrade
the accuracy of the IIAY modulator. One is analog circuit noise. As shown in the
preceding section, some analog circuit noise is actually beneficial because it gives

rise to the channel independence property of Theorem 3. However, excessive cir-
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cuit noise degrades the accuracy of the AY modulators. Another class of nonideal
component behavior increases the quantization error. For example, quantizers with
non-uniform step sizes can increase the overall quantization error. Finally, non-
ideal analog filters can cause the AY modulators to distort the component of the
output not corresponding to quantization error and circuit noise. Although the dis-
tortion can be nonlinear, it can often be accurately modeled as linear distortion [3],
[12]. Therefore, aside from adding quantization and circuit noise, a nonideal AY
modulator applies the filter 2~ % + D(z) to the input sequence where D(z) is an

unintentionally added term that we refer to as the distortion filter.

The IIAY modulator tends to be robust with respect to circuit noise originat-
ing in the analog multipliers and AY modulators and to nonideal components that
increase quantization error. The reason is that the additional error contributed by
each channel tends to either be independent from that of the other channels (as in
the case of thermal noise), or becomes uncorrelated because of the Hadamard mod-
ulation performed prior to summing the channels. Hence, the performance degrada-
tion on each channel adds in power to produce the overall performance degradation.
That is, if P is the power of the error resulting from the nonidealities on the 72

channel, the overall power of the additional error is just Zivial P,.

The behavior of the IIAY modulator with respect to nonideal analog filters
that distort the component of the output not corresponding to circuit noise and
quantization error is more difficult to characterize. For each r, let D,(z) be the
distortion filter applied by the AY modulator on the r® channel. Define eq(n) to
be the component of the IIAY modulator output corresponding to these distortion

filters. Proceeding as in the proof of Theorem 1, we can write

ea(n) =Y x(Nn — L - k)A(n, k), (16)
k=0
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Figure 9: The effect of the distortion filters, D,(z), in the AY modulators.

where
“Swennon- ). o

and (d, xh)(k) is the convolution of the impulse responses of H(z) and D,(z). Since
vp(n) is periodic with period M, it follows that A(n, k) is periodic in n with period
M. Hence, Z(n, k) can be thought of as the impulse response of a linear periodically
time varying filter as shown in Figure 9. In general, the power of the distortion error
depends upon the nature of the distortion filters. For example, from both Figure 9
and (17), it is evident that if D,(z) does not pass significant energy in the passband
of H(z), namely (— w57, #57)> then the power of e;(n) will tend to be low.

It is often the case that the AY modulators will have similar distortion filters.
For example, if the AY modulators contain leaky integrators of the same form and
are otherwise essentially ideal, each will have a distortion filter of the same form. In
the extreme, D;(z) = D(z) for each 0 <7 < M — 1, in which case A(n, k) reduces
to

Z(n,k) _ {é\j[(d*h)(k), fNM -N<kmod NM<NM —-1;

otherwise.
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Figure 10: The quantization error power of the IIAY modulator with a sinusoidal input versus the
frequency of the sine wave. Data for four, sixteen, and sixty-four channel TIAY, modulators each
with an oversampling ratio of nineteen are shown. Second-order double-loop AY. modulators with
four level quantizers and A = 1 are used. The input has an amplitude of 0.5.

Hence, if all the distortion filters are equal, z(n, k), loses its dependence on n
and becomes a linear time invariant filter. In this case, the distortion could be

compensated by digital filtering following the IIAY modulator.

V. Simulations
In this section we present IIAY modulator simulation results. In each simulation,
second-order double-loop AY modulators [3] with four level quantizers for which
A =1 were used. Random numbers of variance 8.3 - 10~ were added to the inputs

to simulate the effect of the 7, in (5).

Figure 10 shows simulations of four, sixteen, and sixty-four channel IIAY mod-
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ulators with oversampling ratios of nineteen and sine wave inputs of amplitude 0.5.
The quantization error power of each IIAY modulator is plotted against the fre-
quency of the sine wave. The frequency range shown is [0, 11“5) which corresponds to
full bandwidth after decimation by nineteen.

We see that the quantization error power is not dependent upon the frequency
of the input. If the IIAY modulator were a linear system, this would fully charac-
terize the mean-squared quantization error performance. However, since the IIAY
modulator is not a linear system, it is possible that the quantization error power
might be different for other types of input sequences. Nevertheless, simulations with
other non-overloading input sequences including finite sums of sinusoids and vari-
ous colored random sequences do not indicate such a dependence. The same results
were obtained for other oversampling ratios including the special case of N = 1.

It is customary to refer to the accuracy of a AY modulator based converter
in terms of the number of bits that a uniform quantizer would require to generate
the same quantization error power [1]. A frequently used formula relating bits of

accuracy to the quantization error power of a non-overloaded uniform quantizer is

,Y2

R = jlogy 352
where R is the number of bits, (-, 7] is the no-overload range of the quantizer, and
o? is the quantization error power [13]. Taking v = 1 and applying this formula to
the simulation results shown in Figure 10 indicates that for an oversampling ratio
of nineteen, accuracies of approximately 13, 17, and 21 bits are achieved by IIAY
modulators with 4, 16, and 64 channels, respectively. Hence, for each doubling of
M, the accuracy of the IIAY modulator is increased by approximately two bits.
Figure 11 shows simulations of four, sixteen, and sixty-four channel full-rate
IIAY modulators operating on a sine wave of fixed frequency, arbitrarily chosen as

w = 3.71. The quantization error power of each IIAY modulator is plotted against

the amplitude of the sine wave. We see that when the amplitude of the input is
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Figure 11: The quantization error power of the full-rate (N = 1) IIAY modulator with a sinusoidal
input versus amplitude of the sine wave. Data for four, sixteen, and sixty-four channel IIAY mod-
ulators are shown. Second-order double-loop AY modulators with four level quantizers and A =1
are used. The input has a frequency of 3.71.

bounded in absolute value by 1, the quantization error power is not a function
of amplitude. However, the quantization error power increases strongly with input
amplitudes greater than 1 as a result of quantizer overload. For AY modulators of
the type simulated, overload occurs at input amplitudes of about 1 [3], so it is not
surprising that this is also the case with the IIAY modulator. Simulations of [IAY
modulators with non-unity oversampling ratios show similar behavior.

Proceeding as above, for non-overloading inputs, accuracies of approximately
2.3, 6.5, and 10.5 bits are achieved by full-rate IIAY modulators with 4,16, and 64
channels, respectively. Again, we see that for each doubling of M, the accuracy of

the IIAY modulator is increased by approximately two bits as predicted by theory.
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VI. Conclusion

A new A/D converter architecture called the IIAY modulator has been pre-
sented. The architecture represents a generalization of conventional AY modulator
based A/D converter architectures. It combines M AY. modulator based converters
operating in parallel and achieves an accuracy equivalent to that which one of the
converters would achieve if operated alone with an oversampling ratio of N M, minus
3 logy M bits. For example, if its component AY modulators provide K additional
bits of accuracy for every doubling of the oversampling ratio, the corresponding
IIAY modulator provides K — { additional bits of accuracy for every doubling of
M. Therefore, the IIAY modulator can be thought of as a device that performs
oversampling in parallel. For a given type of AY modulator, the IIAY modulator
approach allows designers to trade circuit speed against area to achieve the desired
level of A/D conversion accuracy. In particular, for the special case of N = 1 the

IIAY modulator operates as a full-rate A/D converter.

A theoretical analysis has been presented that relates the autocorrelation of
the overall quantization error of the IIAY modulator to the autocorrelations of
the quantization errors of the component AY modulators. Therefore, existing A
modulator theory and experience can be brought to bear on the IIAY modulator.
Although the theoretical results assume ideal operating conditions and components,
a qualitative analysis asserting that the ITAY modulator is robust with respect to
nonideal operating conditions and components has been presented.

Simulations supporting the theoretical analysis have been presented and dis-
cussed. In particular, they show that IIAY modulators using common second-order
double-loop AY, modulators can achieve excellent performance with relatively few
channels. The simulations also indicate that for non-overloading inputs, the accu-

racy of the IIAY, modulator does not depend upon the nature of the input sequence.

While the implementation of robust practical AY modulator based A/D con-
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verters is non-trivial, good solutions exist and the field is rapidly maturing. A
plethora of academic and commercial implementations have been reported [14],
[15]. This progress bodes well for the IIAY modulator because its implementation
requirements are similar. Aside from its AX modulator based converters, the [IAY
modulator consists of components that are well understood and amenable to VLSI
implementation. Moreover, the IIAY modulator is as robust with respect to circuit
nonidealities as are its component AY modulator based converters. The main im-
pediment to the implementation of the IIAY modulator is that it requires a large

amount of digital circuitry.

Appendix: Supporting Lemmas
The following Lemma presents the underlying reason why the quantization error
from the different channels of the IIAY modulator does not add coherently. The
random variables 7, cause the quantization error from the channels to be random
processes that are asymptotically independent. That is, in a IIAY modulator that
has been running since the beginning of time, the random processes corresponding

to the channel quantization error are independent.

Lemma Al: Let U, = ( ISO),UISI),...,UISM_I)), p = 0,1,..., be a sequence of

random variables defined on R* where

b
v = <a,,<p) as hr<k>ur<k>nk>,

k=0
ar(n) is any real sequence, h,(n) is any sequence that does not converge to zero,
ur(n) is as defined in (1), and {7, } is the sequence of iid random variables introduced
in (5). Then U, converges in distribution to a random variable U that is uniformly

distributed on [0,1)™ as p — oo.

Proof: We will prove the result for the case where ur(n) corresponds to N = 1
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and L = 1 in (1). No additional theory is required to prove the general case, but

the notation is more confusing.

Define s, = (sI(,O), . ,sg,M—l))T where
(7 -
sp) = ar(p) + D b (k)un (kg
k=0
Let y, = (yf,o),...,yz(,M_l))T be the vector defined by y, = jl/I—Hsp, where H =

{m;r} is the M x M Hadamard matrix used to generate u,(n).

Since ur(n) = My (n mod M), it follows that

L(p+r)/M]
v =an®)+ Y he(ME A+ )i (18)
k=0

where a/.(p) is a sequence of real numbers. Note that the elements of ¥y each contain
a mutually exclusive subset of the random variables 7,, so they must be statistically

independent. Thus, the M-dimensional probability measure of Yp is
Py, =Py xPgu X xXP -

where the Py(r) are the one-dimensional probability measures associated with the
P
elements of y,,.

We wish to determine the M-dimensional characteristic function of Sp:

g, (t) = ./RM ejt'S"Psp(dsp).

This can be done by considering Py, and performing a change of variables. Let
T : RM — RM be the mapping associated with the matrix H. Then 77! is the
mapping associated with the matrix 3\-1/_,—H It follows that P, = PypT"l. Applying

the change of variables formula from analysis gives!

t- 1%
/RM e’V Py (dsy) :/1;1‘4 e Ye Py (dyp).

t See for example, Theorem 16.12 of [10].
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Hence,

IS oo ' 0 e
Ps,,(t) =/ / e’t Hy”PyéO)(dyz() ))"'Pyz()M—l)(dy](J Y)
-0 —_—0

=@ @(mo-t)-® y_1(mp—_q-t),
Yp Yp

where m, is the rt® column of the Hadamard matrix.

Let ®,(t) be the characteristic function of the random variables 7,. Because the
7n are independent, from (18), the magnitude of the characteristic function of y;f,p )
is

L(p+r)/M]

@@= ] ’@n(thr(Mk-i—r))‘.
k=0

By hypothesis, none of the 7, have lattice distributions. This implies that |®,(t)] < 1
for all t # 0.1 Since h,(n) does not converge to zero, and all characteristic functions

equal 1 at the origin,

lim ¢ y(t) =

p—oo Yp

{ 1, ift=0;
0, otherwise.

Sincem,-t=0forallr, 0 <r<M-1,ifft =0 (because H is invertible), it
follows that

lim &, (t) =

p—oco

{ 1, ift=0;
0, otherwise.

(19)

As shown in [2], for any random variable X the characteristic functions of X

and (X) are equal on the set of points {27m : m = 0, +1, .. .}. That is,
<I>(X>(27rm) = @X(Zwm)

for every integer m. The result can easily be extended to multiple dimensions by
simply modifying the notation in the proof to accommodate the extra dimensions.

The extension implies that

Qy,(2mmo, ..., 2mmy—q) = b, (2mmo, ..., 2wmpr 1)

t See, for example, Problem 26.1 of [10].
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for every set of integers {my,...,my_1}. Consequently, (19) implies that
Jim @, (2rmo, ... 2wy ) = {7 DTo M) =0 (o)
Define Vet
Bult) = ,g i),
Then for every set of integers {my,...,myr—1}
I}Lr{.lo @y, (2mmo,...,2mmy—1) = Sy(2rmo, ..., 2rmpr—1).

Taking the inverse Fourier transform of ®y(t) shows it to be the characteristic
function of U.

By definition, U and U, each have their support restricted to [0, 1) Therefore,
P@y(t) and @y, (t) are each uniquely determined by their samples at all M-tuples
of integers (mg,...,mar—1).

A necessary and sufficient condition for U, to converge in distribution to U
is that ®y,(t) converge to ®y(t) for each t € RM. Therefore, by the argument
above, any subsequence of U, that converges in distribution at all must converge
in distribution to U. Since the sequence of probability measures associated with
{Up} is tight (a consequence of the sequence having bounded support), it follows
that there exists a subsequence of {U,} that converges in distribution to U, which
further implies that U, converges in distribution to U.}

L]
The next Lemma is proven in [11] but is restated here for convenience. It is the

mechanism behind each of the ergodic results in Theorem 5.

Lemma A2: For each £ = 0,1,..., let X; be a deterministic function of the

two random sequences {xo,...,xx} and {no, ..., nx}, where the 7, are independent

f See, for example, Theorem 25.10 and its corollary in [10].
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random variables that are independent of the x,. Suppose that the distribution
of each Xj has its support restricted to [—3, 5] where § € R, and that for each

non-negative integer j, as k — oo

E (Xz)—0
{flnm>j}(

uniformly with respect to the variables {no,...,7;} and {xo, x1,...}. Then

1N—1
—an—eo
Nn=0

in probability as N — oo.
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