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ABSTRACT

A modification to the traditional bead-spring model of polymers is proposed,
which properly accounts for the full hydrodynamic interactions between the beads.
The new model uses the Stokesian dynamics simulation technique to calculate
far-field, many-body effects as well as near-field lubrication and excluded-volume
effects. No preaveraging of the interactions is required. In addition to the xF,
“spring” contribution to the stress, the Stokesian dynamics model calculates hy-

drodynamic and direct Brownian contributions to the stress.

Orientations and stresses obtained from the Stokesian dynamics dumbbell were
compared to predictions of the Rouse dumbbell (no hydrodynamic interaction) and
the Zimm dumbbell (Rotne-Prager hydrodynamic interaction). Infinite-dilution
behaviors were examined in steady, simple shear and oscillatory shear flows. In
steady shear the Stokesian dynamics model provides no improvement over the
Zimm model. Both give qualitatively similar results for shear and normal stresses.
The hydrodynamic stress is constant and equal to the Einstein viscosity contri-
bution from each bead. The Brownian stress is negligible. The analysis reveals
how hydrodynamic interaction causes shear thinning. The interaction between the
beads tilts the dumbbell towards the shear axis, reducing the xF contribution to the
shear stress. The oscillatory-shear results are similar to the steady-shear results,
except that the hydrodynamic stress results in a non-zero high-frequency viscosity.
Hydrodynamic and Brownian stresses will provide greater contributions to the rhe-
ology of multibead chains, in which many-body effects are more important. This

is true of both steady shear and oscillatory shear.

Simulations of non-dilute suspensions of Stokesian dynamics dumbbells were
compared with results for suspensions of spheres at the same volume fractions.

The xF stress reaches a maximum at a bead volume fraction of 0.15, above which



hydrodynamic forces dominate the solution rheology. The interparticle forces have
little effect on the magnitudes of the hydrodynamic and Brownian stresses. The
interparticle forces become very dependent upon initial configuration at high vol-
ume fractions. It is hypothesized that there exists a critical volume fraction, above
which the polymer distribution function will always be dependent upon the initial

configuration and the shear history.
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1. INTRODUCTION

The past quarter century has seen a striking increase in the use of plastics
in our society. While consumer products such as cooking utensils, chairs and
appliances were once constructed with wood, metal or ceramic, today they are
constructed primarily from polymeric materials. Unfortunately, our understanding
of polymers has not grown with our production of them. Their enormous molecu-
lar weights and twisted or branched structures lead to non-Newtonian rheological
behavior, and the study of non-Newtonian fluids is a science still in its infancy.
Polymer solutions and melts exhibit such unusual properties as shear-dependent
viscosity and normal-stress differences. For these reasons a better understanding of
polymer flow behavior would be of immense use in industry. Polymer production
requires that the polymer be pumped, stirred, extruded, etc., and the present level
of understanding makes the design of these processes difficult. A better under-
standing also would be appreciated from a purely scientific point of view, since it

could provide insight into the nature of non-Newtonian flow in general.

This study suggests an improvement that can be made in the modeling of poly-
mers. Because a polymer is made up of hundreds or even thousands of monomers,
often it is not practical to examine each monomer and each bond in detail. For
this reason a simplified micromechanical model often is used. The most popular
_choice is the bead—spring model, in which the polymer molecule is represented by
a collection of beads connected by “springs.” The bead-spring model will be used
in this analysis. The aspect of polymer behavior addressed in this study is the
relative importance of excluded-volume effects, hydrodynamic effects, and inter-
particle (“spring”) and Brownian forces on the rheological behavior of a polymer
in solution during flow. Particular attention is paid to an improved method of

determining hydrodynamic interaction within the polymer. This is accomplished



through dynamic simulation of a single polymer chain in a viscous, incompress-
ible solvent subjected to either steady or oscillatory shear flow. Three different
models will be used to describe the polymer molecule — — the Rouse model, the
Zimm model, and the new Stokesian dynamics model. The Rouse model provides
analytical, theoretical predictions, while the Zimm and Stokesian dynamics models
provide results through numerical simulations on computer. An analysis of the re-
sulting microstructures will be used to determine the viscosities predicted by each
model. The Rouse and Zimm models calculate only the interparticle-force contri-
bution to the stress. The Stokesian dynamics model provides the hydrodynamic
and direct Brownian contributions to the stress, in addition to the interparticle-
force contribution. Except for a few comparisons under oscillatory shear, the study
is restricted to comparison of the 2 bead — 1 spring (dumbbell) versions of each
model. Section 2.1 gives a brief history of the evolution of the treatment of hy-
drodynamic interaction in dilute-solution polymer theory, outlining the landmark
work of Rouse, Zimm, Kirkwood and Riseman, and also recent work by (")ttinger.
The approximations used and resulting limitations are examined. Section 2.2 dis-
cusses Stokesian dynamics, a simulation method that allows, for the first time,
accurate consideration of the full hydrodynamics problem. General aspects of the
method are discussed, as well as the details of calculating the hydrodynamic inter-
action. The averaging methods with which macroscopic properties are extracted
from the microscale results are explained. Section 3 discusses the equilibrium state
for the models and also discusses the two flows that were examined, along with
more detailed theory particular to each case. Section 4 compares the results of the
Stokesian dynamics simulations to the results of the Zimm-model simulations and
the predictions of the Rouse model discussed in §3. Particular attention is paid
to finding ranges of flow parameters in which particular contributions to the stress
are dominant, and when certain contributions may be neglected. Hydrodynamic

interaction induces shear-thinning behavior in the polymer models by changing the



microstructural orientation of the polymer. At higher shear rates this orientational
change reduces the polymer contribution to the stress. In oscillatory shear, the
more complete hydrodynamical description of the Stokesian dynamics model has
the opposite effect. Inclusion of the hydrodynamic stress leads to a prediction of a

non-zero high-frequency viscosity, which is absent in the Rouse and Zimm models.

Section 5 presents some preliminary results for suspensions of Stokesian dy-
namics dumbbells at concentrations above infinite dilution, subjected to steady
shear flow. These results are obtained through the use of a fixed volume contain-
ing 20 dumbbells, periodically replicated throughout space. Just as the isolated-
dumbbell results are used to gain insight into infinitely-dilute polymer solutions,
these “suspensions” of dumbbells provide insight into the behavior of non-dilute
solutions of polymers. The non-dilute results are compared to the infinitely dilute,
or single-chain, Stokesian dynamics results of §4. A very brief overview of the
changes to the simulation (e.g., application of periodic boundaries) is presented. It
is found that the contribution to the stress from the interparticle springlike forces
reaches a maximum at a dumbbell volume fraction of about 0.15, above which the
rheology of the solution is dominated by hydrodynamic forces. This contradicts
experimental results (e.g. Ferry, 1980) that indicate concentrated-solution rheol-
ogy is dominated by the interparticle forces. This indicates a shortcoming in the
dumbbell model: it cannot address the multiple length scales that are important
in non-dilute solutions. The results are also compared with the results of Phung
(1991) for suspensions of spheres not connected by interparticle forces. The pres-
ence of the interparticle forces has little effect on the shear-rate dependence of the
hydrodynamic and Brownian stresses. An argument is made for the existance of
a critical concentration, ¢*, above which the distribution of the polymer chains as

time ¢ — oo will be dependent upon the initial configuration and flow history.

Aside from its prediction of a non-zero high-frequency viscosity, the Stoke-

sian dynamics model has no advantages over the Zimm model for the dumbbell



case. The more accurate hydrodynamic interactions in the Stokesian dynamics
model produce an orientational distribution that is nearly identical to the much
simpler Rotne-Prager interaction in the Zimm model. The calculations of the hy-
drodynamic and Brownian stresses are time-consuming, and these stresses turn
out to be, respectively, essentially constant and negligibly small. The study of the
Stokesian dynamics dumbbell does point out two improvements to be made to the
bead-spring model. First, since the hydrodynamic stress is nearly constant, it can
be superposed to the Rouse or Zimm results. This gives both these models the cor-
rect high-frequency behavior without altering the qualitative features of the low-
and moderate-frequency regimes. Second, the zero Brownian-stress contribution
points to an improvement that can be made to the traditional bead-spring model
stress calculation. In the classic bead-spring model, no consideration is given to
the angular distribution of the end-to-end vector of the dumbbell. As is known
from the theory of rodlike polymers, the entropy associated with the orientational

distribution of the end-to-end vector can generate a large contribution to the stress.

While it provides no advantages in the infinitely-dilute dumbbell case, the
Stokesian dynamics model offers distinct advantages in studies of multibead chains
and studies of concentrated polymer solutions. Unlike the dumbbell case, many-
body effects are important in these cases, and 2-body hydrodynamic-interaction
descriptions such as Rotne-Prager cannot capture the physics of many-bead ar-
rangements. Excluded-volume effects also become important, particularly in the
concentrated-solution case. Stokesian dynamics, with its complete evaluation of
the excluded-volume constraint, is a powerful tool for concentrated-solution anal-
ysis. Models that lack excluded volume are missing a major force affecting the

rheology of concentrated solutions.

Although this study examines properties only for uniform molecular-weight
distributions, the method is not restricted to this. Stokesian dynamics can address

polydispersity as well.



2. BACKGROUND

2.1 Treatment of Hydrodynamic Interaction in Dilute Polymer Theory

The two most familiar names in the field of polymer modeling are Rouse and
Zimm. Both used the bead—spring model as the basis for their studies, but differed
in one very important area — — hydrodynamic interaction. Rouse did not consider
any interaction, while Zimm was the first investigator to include hydrodynamic
interactions in the bead-spring model. Zimm’s additions were based on the work
of Kirkwood and Riseman (1948), which involved “preaveraging” the interactions
based on the equilibrium, Gaussian distribution of configurations. Although the
work of Kirkwood and Riseman actually preceded the work of Rouse, Rouse did not
include their results in his development, so it is more logical to open this section
with a discussion of Rouse’s work. Rouse and Zimm are not the only ones who used
the bead-spring model (see Bird et al. (1987) for an in-depth listing), but over
time their names and their treatments of hydrodynamic interaction have become
associated with the model. Recently (")ttinger has developed a new approach to the
averaging process that is not restricted to the equilibrium distribution. Ottinger
also was the first to propose a method capable of introducing fluctuations in the in-
teractions away from their averaged values. The advantages of Stokesian dynamics

over each method will be discussed.

Rouse (1956) first proposed use of the bead—spring model. He did not use this
expression, but rather spoke of “submolecules” within the polymer molecule — -
groups of monomers sufficiently large so that the end-to-end separation of the sub-
molecules obeyed a Gaussian distribution function. The only interaction between
the polymer and fluid occurred at the junctions of these submolecules. Rouse as-
sumed that these junctions (which would become known as “beads”) experienced

drag from the surrounding fluid, but did not disturb the fluid themselves. The



junctions did not interact hydrodynamically with one another, nor did they con-
tribute any hydrodynamic stress to the solution. Thus, Rouse’s model could more
appropriately be called a point-spring model, with the points providing no dis-
turbance in the fluid. The model had M submolecules and M — 1 submolecule
junctions. The configuration of the model was given by the M end-to-end vectors

describing each submolecule.

Rouse considered the polymer’s addition to the stress in a solution undergoing
an oscillatory shear. He calculated the stress by considering the change in the
free energy of the system caused by the thermodynamic Brownian forces acting to
move the configuration of the submolecules back to its equilibrium distribution.
This argument is equivalent to saying that the submolecule acts as an entropic
spring. It can be shown (Bird et al. 1987) that if it is assumed that the monomer
units along the polymer backbone can be described by a random walk, then the

force F between two points in the polymer chain is given by

3kT

F(r) = s —DE"

(2.1)

where k is Boltzmann’s constant, T is the absolute temperature, Ng is the number
of steps between the two points, [ is the size of the random step, and r is the vector
separation of the two points. This describes the two points as being connected by a
Hookean spring with spring constant K = 3kT/(Ns — 1)I2. This argument is valid
only near equilibrium and for large Ng, and it ignores excluded-volume effects and

other interactions, but it is a useful first approximation.

Using this description, and assuming a shear flow u, = 4y, Rouse’s equations
of motion for the submolecules in the x, y and z directions are
u; =u; — B(KA) -x, (2.2a)
u, = —B(KA) -y, (2.20)
u, = —B(KA) -z, (2.2¢)



where u; is an M vector specifying the z velocity of each submolecule, ¥ is the rate
of strain, ul® is an M vector of the fluid velocity at each submolecule’s midpoint,
B is the mobility of the ends of the submolecules (a constant, averaged over all
submolecules in the solution), and x, y and z are M vectors specifying the positions
of the submolecules. A is an M x M tensor that computes the sum of adjacent
connector vectors to bead 2 and sets the magnitude and direction of the resulting
“spring” forces,

2 ifli—j|=0;

Aij=1{ =1 ifli—j|=1; (2.3)

0  otherwise.

Rouse did a normal mode analysis, which required the introduction of a matrix

transformation to normal coordinates, R, which would decouple the spring forces,
R7'-A-R=A=),6p (nosum on p), (2.4)
where A, is the pth eigenvalue of the set of M eigenvalues of A,

Ap = 4sin? (%) . (2.5)

Rouse was thereby able to relate these eigenvalues to the spectrum of modes or

relaxation times of the polymer. These results are given in §3.3.

While Rouse’s theory gave good agreement for the viscoelastic functions in
oscillatory shear (§3.2), it still had some obvious shortcomings. It predicted that
the viscosity and normal-stress differences in steady shear would all be independent
of shear rate, in conflict with experimental evidence that showed most polymer
solutions exhibited shear thinning. The intrinsic viscosity of a polymer, [n]o, is
defined as

(m —ns) (2.6)

[7lo = lim ===,

where [n]o is the intrinsic viscosity at zero shear rate, ¢ is the concentration, n

is the solution viscosity and 7, is the pure-solvent viscosity. Earlier works by



Staudinger (1932), Kuhn (1932), Huggins (1939) and Kramers (1946), using models
that incorporated the same physics as the Rouse model, had concluded that it

should be proportional to the polymer’s molecular weight,
[7]o = CWY, (2.7)

where W is the molecular weight of the polymer, C is a constant characteristic of
the particular polymer-solvent pair, and the exponent ¢ should equal one. When
experiments showed that ¢ did not equal one, instead falling in the range of 0.5
to 0.8 (Bird et al. 1987), the models used in the derivation of (2.6) (similar to
the Rouse model) were examined more closely. This examination revealed that the
models made no allowance for the effect of the presence of the molecule on the flow
field. Although each junction or bead in the models experienced a drag from the
fluid moving past it, the complementary effect — — the disturbance of the flow field
by the bead — — was not accounted for. Since it is well known that this disturbance
decays as 1/r, this was a critical aspect to overlook, especially since many flow
situations will bring the beads in the model close together. The magnitude of this
omission is revealed by consideration of a set of spheres, initially in a line, falling
through an unbounded, viscous fluid. With no hydrodynamic interactions, the
spheres will remain in a line. With hydrodynamic interactions, the spheres near
the center of the arrangement will fall more rapidly, leaving the end spheres behind

(Durlofsky et al. 1987).

In their paper, Kirkwood and Riseman (1948) introduced a method for calcu-
| lating hydrodynamic interactions within the polymer models. Kirkwood and Rise-
man did not use the bead—spring model, instead exdmining a more molecularly
based bead-rod model with fixed angles between successive rods. Nonetheless,

their analysis of the hydrodynamics applies equally well to the bead—spring model.

Consider a single bead from the Rouse model or the Kirkwood-and-Riseman

model, translating in a Newtonian fluid because of an imposed force. If the bead



were isolated, then the force F exerted on the bead is related to the bead’s velocity,
u’, by the Stokes drag law,
F = 6rnsaAu (2.8)

where a is the bead radius, Au = U*® — u® and U is the undisturbed fluid
velocity at infinity evaluated at the bead center. The motion of the bead disturbs
the flow field, and the disturbance alters the flow field at a vector distance r by an

amount u , which, to leading order in bead size, is given by

u = 875737' [(I + g) + (g)z (%I B %)] Fo (2:9¢)

=J-F+O(;1§), (2.9%)

where I is the unit tensor, r = |r| and J = [I 4 rr/r?]/(8nn,r), the Oseen tensor.
Now, if there is a second bead at r, it will feel the velocity disturbance u', and the
Au in Eq.(2.8) for this second bead becomes Au = U*® — u® + u'. Kirkwood and

Riseman made the simplification that
u=JF |, (2.10)

i.e., that the O(1/r®) term is negligible. This approximation is justified if the
beads are widely separated, so 1/r® is small. This is the same as assuming the
disturbance is a point disturbance, so a in Equation (2.94) is taken to be zero
and the fact that the size of the bead is non-zero is ignored. Since in general the
beads are not required to be far apart, and in fact certain flow conditions will bring
them close together, the validity of this assumption is questionable, and for very
close separations the Oseen tensor leads to negative diffusivities. Furthermore,
Kirkwood and Riseman found it necessary to average these approximated hydro-
dynamic interactions in order to solve the equations of motion for their model.
They “preaveraged” the interactions; i.e., they used an Oseen tensor averaged over

the equilibrium distribution function, given by
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(Theq = /J\Ifeqdr : (2.11q)
1,1

= 67%(;]1;), (2.110)

= . ; (2.11¢)

(67°)% nsb(lj — k[)?

where ¥., represents the equilibrium distribution function for the polymer model,
(1/rjk) is the average separation of beads j and k, and b is the rod length. This
simplification, later used by Zimm and most other researchers, sets some terms
to zero that in actuality are non-zero, leading to qualitatively improper results
and incorrect physics. It also ignores fluctuations of the interactions. This fur-
ther reduces the ability with which this method can accurately capture the true

hydrodynamic interactions of the polymer.

Zimm (1956) attempted to improve Rouse’s model by introducing hydrody-
namic interaction between the beads. Zimm’s springs were identical to Rouse’s,
but instead of assuming that the beads moved with the local fluid velocity, Zimm
followed Kirkwood and Riseman in assuming that the beads produced a point-force
disturbance in the fluid. Like Rouse, however, Zimm used the bead-spring model
rather than the bead-rod model. Zimm used a pairwise sum to calculate the dis-
turbed fluid velocity at any point in the fluid. The disturbance u; at the location
of bead j is given by

uj =uj+ Y (Tjk)eaFi, (2.12)

%k
where u; is the undisturbed fluid velocity at bead j, (Jjk)eq is the equilibrium-
averaged Oseen interaction, and F} is the point-force disturbance of the k** bead.
Since Zimm did not consider any hydrodynamic contributions to the stress, and
his beads had no finite size, his model could more appropriately be called a point-

force—spring model. This addition of point-force interaction leads to the equations
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of motion for the spring segments

u, =u;’°—~BH-(KA)-x—DH-%ln¢, (2.13q)
u, = —BH-(KA)-y— DH- % In, (2.135)
u,=—BH-(KA)-z—- DH - %Ind), (2.13¢)

differing from Rouse’s equations of motion, Egs.(2.2), by the additions of the dif-
fusivity D = kT B, the bead probability-distribution function 9, and the hydrody-
namic mobility matrix H,

1 if ¢ = j;
H; = o ) 2.14
= { bt tin) (219

The solution of Zimm’s equation of motion, Eq. (2.13), again required the solution

of an eigenvalue problem, this time
R H-A-R=A= )6, (nosumon p), (2.15)

which is considerably more complex than Rouse’s eigenvalue problem, Eq.(2.4).
Zimm determined that in the case of large M, the components of the eigenvectors
from (2.15) may be represented by a continuous function a(r), and the eigenvalues

A are found by solution of the equation

—M?

1
o' (r) +h/ a"(s)(|r—s|)"Fds = < ))\a(r), (2.16)
-1
subject to the boundary condition for free ends,

o (£1) = 0. (2.17)

The predictions of the Zimm model based on these preaveraged time constants are

given in §3.3.
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The quantity % in Eq.(2.16) is known as the hydrodynamic-interaction param-

eter, and is defined by
h= M

Sl S (2.18)
(1273)2 bn,

where ( is the drag coefficient of a single bead and b is the RMS extension of a
single spring. Using the Kirkwood-and-Riseman ¢ value of 67n,a from Eq.(2.8),

h= <3—A£>_% . (2.19)

Assuming a Boltzmann distribution for the spring extension, P(r) = e_%Krz, then

b= (3kT/K)'/?, and

this becomes

MK\ ?

h is a ratio of the hydrodynamic forces to the spring forces. When h = 0, the
spring forces dominat?, giving back the Rouse solution. This is often called the
“free-draining” case, since it assumes that the fluid moves past each bead as though
that bead were alone in the fluid; no consideration is given to the restriction of low

that is due to nearby beads. As » — oo, hydrodynamic forces dominate.

The M-dependence of h often is removed by defining a new parameter

.k K \?
h _M%‘<?ﬁ> a ; (2.21)

h*, though dimensionless, is not a traditional dimensionless number. Its value

ranges from 0 to & 0.5, not co. This is seen by taking Eq.(2.19) and dividing by
M2, giving

h*

3 [

N’
N
o) Q

(2.224)

&

I

, (2.220)
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which shows that A* may be thought of as a ratio of the bead size to the bead
separation. At contact b = 2a; thus 2* must be less than 0.5. Because this study
involves relatively small numbers of segments per chain, A* will be used in all

subsequent references as the hydrodynamic-interaction parameter.

Although Zimm did consider hydrodynamics in his model, it is important to
note two major limitations to his analysis. First, the beads were treated only as
point forces. No consideration was given to finite size of the polymer. Second and
more importantly, the hydrodynamics were examined only insofar as they affected
the configuration of the model, not as to how they might affect the stress in the
fluid, and then only for equilibrium or preaveraged configurations. The hydrody-
namic interactions influenced the bead separations, thus changing the extensions
of the spring. It was through the changes in spring extensions and the resultant
changes in the magnitude of the spring contribution to the stress that the inclu-
sion of hydrodynamics caused the Zimm results to differ from those of Rouse. The
interparticle spring-force contribution was still the only polymer contribution to
the stress — — no hydrodynamic, excluded-volume or direct Brownian stresses were
calculated. Section 4 presents results that suggest that the hydrodynamic stress

dominates the polymer rheology during high-frequency, oscillatory shear.

By basing their calculation on equilibrium configurations and interactions,
both Rouse and Zimm were restricted to calculations of equilibrium and near-
equilibrium properties (Pe =~ 0). In recent yedrs Ottinger (1985;1986a,b;1987;1989)
has done extensive work on improving the description of hydrodynamic interactions
in bead-spring models to loosen this restriction. Initially, he introduced the concept
of “consistently averaged” interactions, which can be described roughly as an iter-
ative approach to the Zimm interactions. In his development, Ottinger describes
the behavior of the polymer through a diffusion equation for the configurational

distribution function,
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%

S = f,(T), K,r, ). (2:23)

éttinger does not average J based on ¥.,. Instead, he proposes a distribution ¢’

and averages J over zb/,

(J) = /Jz/)'dr, (2.24)

then solves (2.23) using (J). If the final ¢ does not match the initial ', an
improved estimate of ¢ is made. This iteration is continued until a suitable level
of convergence is obtained, resulting in 1)(x) and (J(x)). The consistently averaged

approach is not limited to low Pe; it can be used to examine high Pe behavior.

Although the concept of consistently averaged hydrodynamic interactions re-
moved the restriction to near-equilibrium behavior, it still ignored fluctuations in
hydrodynamic interactions about the mean, which are known to have an important
influence on polymer rheology (Fixman 1981 ; Zylka and Ottinger, 1989). Ottinger
proposed that this problem be addressed by assuming a priori that the polymer .
distribution function 3 was always Gaussian. This allowed him to solve for P
without having to perform any averaging of J. As with the consistently averaged
method, the Gaussian approximation can be used for high Pe. Ottinger found
the agreement between numerical simulation and the Gaussian-approximation pre-
dictions of the stress to be excellent. Nonetheless, it is unclear what biases may
be introduced by imposing a form on 3. With Stokesian dynamics, no & prior:
decisions about the form of the % need be made. The interactions of all the forces
at each time step sets the polymer configuration; fluctuations in the hydrodynamic
interactions occur based on the calculated forces acting on these configurations.
The only restriction is that sufficient initial configurations are chosen and simula-
tion runs are long enough that the data do indeed give an accurate representation
of the actual distribution. In addition, Ottinger still does not calculate any direct

hydrodynamic contributions to the stress. As in Zimm’s model, the interactions
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between the beads alter the distribution function of the beads, thereby changing
the spring contribution to the stress. This interparticle stress remains the only

stress calculated.

It should be noted that there are interaction descriptions other than the Oseen
tensor, which may be used in all of the models discussed above. (In fact, for
numerical simulations the Oseen tensor usually cannot be used, because it gives
negative mobilities when the separation r is less than 1.5a.) For instance, the effect

of the finite size of the bead is approximated by the Rotne-Prager tensor,

(e e (o P T

© 8mn,r
LEIG- o+ £ (r < 2a).
But the application of this tensor and others based on the Oseen tensor still have
some major shortcomings. First, the implementations of these tensors have not
accounted for so-called reflected disturbances. As explained above, the effect of
bead 1 on the u™ flow field at bead j is calculated as though bead i were moving

. But u® will be altered by the reflected disturbance of u;, and so

at velocity u
on. Previous implementations have also assumed that the disturbances are pairwise
additive, simply summing up the effects of the interaction as though each pair were
alone in the fluid. This can lead to aphysical behavior, such as bead-bead overlap
(Durlofsky et al. 1987). Stokesian dynamics accounts for the reflections and also
calculates many-body effects accurately — — the pairwise-additivity assumption need
not be invoked. In addition, most analyses do not address excluded-volume effects.
These effects, when examined, usually are treated as a change in the distribution
function, expanding the polymer. While this gives more realistic values for the
end-to-end distance and radius of gyration, it does nothing to describe the physical

problems involved in trying to move one portion of the polymer past another por-

tion. Stokesian dynamics automatically accounts for excluded volume, preventing
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bead-bead overlap, and also accounts for the frictional hindrances through lubri-
cation forces. Finally, the Oseen-like tensors become mathematically much more
difficult if the beads are not of equal size. When the a; are not equal, then 1) terms
of the form M/( must be expanded as 1/{; +1/(2 + ... + 1/(m, and 2) terms of
the form 1/{; — 1/(; no longer cancel, and must be carried ﬁhrough while solving
the problem. Although this study involves beads of equal size, this is not a restric-
tion of the method. The extension of Stokesian dynamics to unequal bead sizes is

straightforward, requiring only minor changes.

Many improvements on the description of the interparticle force as a Hookean
spring are also possible, the most common being the Finitely Extensible Non-linear

Elastic (FENE) spring force,

K

F(r)= mr,

(2.26)
(r = |r|), which is Hookean for small r but has a maximum extension of rq. Stoke-
sian dynamics is easily adaptable to this or to other spring potentials. Nonetheless,
the Hookean spring is the most popular choice for interparticle potentials in poly-
mer modeling because of its mathematical simplicity, and it is the potential used

for this study.

Most previous work in polymer modeling has been based on the number of
segments in the model, M. Since Stokesian dynamics was originally developed for
the analysis of the rheology of suspensions of rigid particles, it is more convenient
for this study to consider the number of beads in the model, N = M + 1. All

subsequent formulae will be in terms of N.
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2.2 Stokesian Dynamics Model

This section summarizes Stokesian dynamics, a method that is able to assess
accurately the full hydrodynamics in the bead-spring model. The microstructural
mechanics of the method will be discussed, explaining how the hydrodynamics is
accounted for, and then the calculation of the macroscopic stress is explained. A

more in-depth discussion may be found in Brady and Bossis (1988).

2.9.1 Microstructural mechanics

Consider N rigid particles suspended in an incompressible, Newtonian fluid of
viscosity, ns, and density, p. The motion of the fluid is governed by the Navier-
Stokes equations, and the particle motion is described by the coupled N -body

Langevin equation, which can be written

dU

where m is a generalized mass/moment of inertia matrix of dimension 6N x 6N, U
1s the particle translational /rotational velocity vector of dimension 6N, and the 6 N
force/torque vectors, F, represent: 1) the deterministic non-hydrodynamic forces,
F!P which may be interparticle and/or external; 2) the hydrodynamic forces, F¥,
exerted on the particles because of their motion relative to the fluid; and 3) the
stochastic forces, FB, that give rise to Brownian motion. This simply states that

the time rate-of-change of the momentum equals the sum of the forces.
The Reynolds number for this system undergoing shear is

22
Re = ”g“ : (2.28)
8

where 7 is the magnitude of the shear rate and a is the characteristic size of the
particles. If Re — 0, then the left side of (2.27) drops out, leaving the sum of the

forces equal to zero.
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For polymer models FZ% represents the force that is due to the connectors
between the beads, excluded-volume forces, and any external force, such as gravity.
The hydrodynamic force/torque exerted on the particles in a solution undergoing

a bulk linear shear flow is
F7 = Rpy - (U-U*)4Rpg : E® (2.29)

(see Brenner and O’Neill 1972; Kim and MifHlin 1985; Bossis and Brady 1984). U
is the imposed flow at infinity evaluated at the particle centers; i.e., UL = Q°
for rotation and UZ® = E*® . x, for translation, where x, is the position vector of
the a'* particle. E® and Q% are the symmetric (and traceless from continuity)
and antisymmetric parts of the the velocity-gradient tensor, respectively. Both are
constants in space, but may be arbitrary functions of time. Rpy(x) and Rpg(x)
are resistance matrices that give the hydrodynamic force/torque on the particles
that is due to their motion relative to the fluid (Rpy(x)) and due to the imposed
shear flow (Rrg(x)). These matrices depend only upon the configuration of the
particles when the Reynolds number is vanishingly small. The 6N vector x repre-
sents the generalized configuration vector specifying the location and orientation
of all N particles, and U is the particles’ translational /rotational velocity vector.
Note that the subscripts on the matrices indicate the coupling between the kine-
matic and dynamic quantities. The stochastic or Brownian force arises from the

thermal fluctuations in the fluid and is characterized by

(FBYy=0  and  (FB(O)FB(t)) = 2kTRryé(t), (2.30)

where §(t) is the delta function, and the angle brackets denote an ensemble average.
The amplitude of the correlation between the Brownian forces at time 0 and time
t results from the fluctuation-dissipation theorem for the N-body system. The
fluctuating forces can be considered instantaneous for the time scales of interest

to us, which are much longer than the molecular time scale (~ 10713s). The
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Langevin equation, which includes this formulation of the Brownian forces, is valid
provided the configuration of the particles does not change significantly during the
time required for the particle’s momentum to relax after a Brownian impulse. This
condition is generally satisfied, and indeed, dynamic light-scattering experiments
detect only motion that occurs over times large compared to this relaxation time.
(The reader is referred to discussions by Hinch 1975; Batchelor 1976; Ermak and
McCammon 1978; Russel 1981; and Rallison and Hinch 1986, for further discussion
of the stochastic problem.)

The evolution equation for the particles is obtained by following Ermak and
McCammon (1978) and integrating the Langevin equation over a time step At that
is large compared with the Brownian relaxation time, but small compared with the
time over which the configuration changes. A second integration in time produces

the evolution equation for the particle positions and orientations with an error of

O(At?):
Ax =Pe{U® + Ry}, - [Rrg : E® + (%) 'FIP]}At
+ V- Rz At 4+ X(Ab), (2.31a)

where

(X)=0 and (X(At) X(At)) = 2Rz} At. (2.315)

Ax is the vector representing the change in position and orientation of every par-
ticle during the time step At. X(At) is the random displacement that is due to
Brownian motion, which has a zero mean and a covariance given by the inverse of
the resistance matrix. The vector x has been non-dimensionalized by the particle
size a, the time by the diffusive time scale a®/Dy (Dy = kT/6mnsa is the diffu-
sion coefficient of a single, isolated Brownian particle), the shear force by 6xn,%
(7 = |E*°| is the magnitude of the shear rate), and the interparticle and/or exter-
nal forces by |FIP|. 4* = 6mn,a?4/|FIP| is the non-dimensional shear rate that

gives the relative importance of the shear flow and the imposed interparticle and /or
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external forces. For problems where the shear flow is more important than the im-
posed forces, Pe = ya/Dy (= 67nsa®y/kT) is the relevant Péclet number, which

measures the relative importance of the shear flow and Brownian motion.

For this study, the relevant interparticle forces F/¥ are the spring forces con-

. a?K\ ?

h= <7rkT>

K*\*
S(%) .

where K has been made non-dimensional by kT'/a?. Hence, h* is varied in this

necting the beads. From §2.1,

study by changing K*. This non-dimensionalization is appropriate because the
Hookean description of the interparticle springs was developed based upon the

Brownian motion of the monomers joining two points in the real polymer (Bird et

al. 1987). Since F/P = K,

|F'P| = Ka, (K dimensional)
I *
= {akT, (K™ non — dimensional) (2.33)

and it follows that

¥ = 6mn.a’y/ (

= 6mn,a*y/kT/K*,
_ Pe
= 2

K*kT)

(2.34)

Therefore, given the above choice of non-dimensionalization for K, the interpar-
ticle spring forces and the Brownian forces should be scaled identically. This is
appropriate for low Pe, where the spring forces balance the Brownian forces. For
high Pe, where shear forces dominate, the spring forces balance the hydrodynamic

forces. This has the effect of dividing 4* by Pe.
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2.2.2 Hydrodynamic interactions

Consider the problem of determining the motion of particles subject to a con-
stant body force, such as the buoyancy force. The motion of the particles in Stokes

flow can be calculated from
U-U*® = M-F, (2.35)

where U is the translational-angular velocity vector, F is the total force-torque
vector ( FIP+FH+F2 ) both of which are dimensioned 6N, and M is the 6N x 6N
mobility matrix. The mobility matrix depends on the instantaneous configuration
of the particles only, not on their velocities. The mobility matrix is symmetric,
as can be shown from the reciprocal theorem, and positive-definite, because of
the dissipative nature of the system. Since there is no general solution to the
N-body Stokes equation, an approximation for M must be developed. Durlofsky
et al. (1987) developed an excellent approximation to the true mobility matrix,
which preserves the dominant multibody interactions and lubrication forces among
an arbitrary number of spheres. This section is a brief description of how the
Stokesian dynamics simulation approximates the exact mobility matrix for a finite

number of spheres.

The goal is to generate an approximate N-particle mobility matrix, M, that
relates the particles’ translational and rotational velocities to the forces and torques
imposed on them. The development begins with the exact integral representation
of the velocity field in Stokes flow, in conjunction with Faxén’s laws; the force
density on the surface of each particle is expanded in a series of moments about
the center of each particle. The monopole, or zeroth moment of the force density,
corresponds to the total force on the particle, F;. The dipole, or first moment of
the force density, has both symmetric and antisymmetric parts: the antisymmetric

part is the total torque, L, and the symmetric part is known as the stresslet,
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S. The multipole expansion can be truncated at any order, depending on the
level of accuracy desired, but to include the effects of lubrication, all moments
are necessary. Since the effects of lubrication will be included in the resistance
formulation, the expansion is truncated after the first moment, except for two
higher-order, multipole contributions that result from the finite size of the particles.
A more complete derivation that explicitly considers the quadrupole contribution
to the mobility matrix can be found in Brady et al. (1987). Recall that the Oseen
tensor considers only point forces. The Rotne-Prager description is identical to

using only the zeroth moment in Stokesian dynamics.

The accuracy of the mobility matrix can be increased by including the stresslet
interactions. This is necessary for problems where there is an imposed linear shear

field. The grand mobility matrix, M, which includes the stresslet interactions, is

(U_“E?ooo> =M- (g) (2.36)

Myr Mys
M= . 2.37
<MEF MES) ( )

formed as follows:

with M partitioned as

The grand mobility matrix, M, is written as an 11N x 11N matrix. The 6N x 5N
matrix Myg relates the velocities and the stresslets, the 5N x 6 N matrix M EF
relates the rate of strain and forces, and the 5N x 5N matrix Mg relates the
-rate of strain and the stresslets. In addition, E® and S are written in a compact
form, which takes advantage of the fact the stresslets are traceless and symmetric.
This is done so that M is not singular and therefore may be inverted (see below).
To include higher-order multipole moments, extend the vector on the right-hand
side of Equation (2.36) by including the irreducible (quadrupole, octopole, etc.)
moments, and extend the kinematical vector on the left-hand side with zeros, since

all higher-order velocity gradients must be zero. As constructed, M, Myr and
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MEs are all symmetric and positive-definite like M. Details of the construction of

these matrices can be found in Durlofsky et al. 1987.

In Stokesian dynamics, these matrices are far-field approximations to the pair-
wise hydrodynamic interactions between spherical particles. Consider the small (as
opposed to grand) mobility matrix, My, and neglect the stresslets for a moment.
Solving Equation (2.35) for the sphere velocities would sum only the pairwise in-
teractions between spheres. If the spheres are moved, given these velocities, the
spheres would overlap since the far-field approximations to the sphere interactions
do not include the strong lubrication interactions that would prevent this overlap.
To include these lubrication interactions, first invert Myp. The invert, M{]};, is
the far-field approximation to the resistance matrix R defined by the inverse of
Equation (2.35),

F=R-(U-U*). (2.38)

More importantly, this invert is a true many-body approximation of R. Upon
inversion, the reflections among all elements — — point force, finite-size effects,
stresslet interactions, etc. — — and between all spheres are summed. The proof of

this is in Durlofsky et al. 1987.

The invert, My}, is still only a far-field approximation to the true resistance
matrix. Lubrication effects would occur only if all multipole moments were included
in the mobility matrix. These important near-field interactions are added to the
resistance formulation in a pairwise fashion. To each element of the M {,}; the exact
two-sphere resistance interactions are added. This additional two-body resistance
matrix is known as Rg,. However, ME}; already contains the far-field part of
the two-sphere interactions. These far-field interactions, denoted by RS, must be

subtracted from Ry;. The approximation to the exact resistance matrix is then

R ~ Myp + Ras — R3S, (2.39)
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In an actual simulation, the equation set in Equation (2.38) is solved for the trans-
lational and rotational velocities of the spheres. This calculation of R using only
the My portion of the mobility matrix (i.e., only the forces and torques) is known

as the FT method.

When there is no imposed linear shear flow, Durlofsky et al. (1987) have
shown that the FT method gives accurate results. The accuracy of the results
can be improved by including the effect of induced stresslets when forming the

grand mobility matrix, M. The invert of the grand mobility matrix is the grand

(g) =R- (U_"EE:O), (2.40)

resistance matrix R:

where R is partitioned as
R=(RE e ) (2.41)

The effect of the induced stresslets is obvious when one realizes that Rpy # M{]}?

The approximation for the true resistance matrix is now
R ~ Rry + Ro; — R3}. (2.42)

This is the FTS formulation. Note that inverting the larger grand mobility matrix

is approximately 6.25 [( 11)3] times slower than inverting the small mobility matrix.

The results of these methods, when applied to several known cases involv-
ing the interactions among a finite number of spheres, compare excellently with
reported results (cf. Durlofsky et al. 1987). The procedure reproduces both the
proper near-field lubrication forces and the dominant, many-body interactions that

occur among a finite number of spheres subject to imposed forces.
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2.2.8 Viscosity calculation

This section considers calculation of the bulk viscosity of a polymer solution,
which can be determined from the corresponding averaged expressions of the mi-
croscale results. Most of the general formulae for the viscosity (and other macro-
scopic properties) have been derived by Batchelor (1970,1972,1976,1977). Except
for the spring contribution to the stress, all involve averages of the hydrodynamic-

interaction tensors.

For rheology, the symmetric part of the bulk deviatoric stress, known as the

bulk stress, (X), is required. This is defined as
N
() =1.T. + 29,E> + 7{(8”’) + (ST + (SB)}. (2.43)

LT. stands for an isotropic term, which is of no interest since the fluid is incom-
pressible. 2n,E* is the contribution to the stress from the Newtonian solvent.
This leaves three contributions from the polymer molecule, corresponding exactly
to the forces in (2.27): 1) an “elastic” stress that is due to the interparticle forces,
(STP); 2) a mechanical or contact stress transmitted by the fluid that is due to the
shear flow and the motions induced by F/¥ (SH); and 3) a direct contribution

from the Brownian motion, (SB). The particle contributions to the bulk stress are

given by
(STPy = —(xF1P), (2.44a)
(87 = —(Rsy - (U - U®) — Rgg : E®), (2.44b)
(SB) = —kT(V - (Rsv - RE)). (2.44c¢)

Rsy(x) and Rsg(x) are configuration-dependent, resistance matrices, similar to
Rry and Rrg, relating the particle “stresslet,” S, to the particle velocities (Rsy)
and to the imposed rate of strain (Rgsg). The particle velocities to be used in
Equation (2.44b) are those coming from the deterministic displacements in Equa-

tion (2.31a); i.e., U= U® = R;. - [¥*Rpg : E® + FIP|At.



26

To understand the way in which the configuration of the dumbbell affects
SI?, consider two dumbbells in a shear flow, as shown in Figure (2.1). The second
dumbbell has the same angular orientation as the first, but with a greater extension.

From Equation (2.444), the Sii term, for example, is given by
SI¥ = —zF[*. (2.45)

Since both z and F, yI P are greater for the second dumbbell than for the first, the
greater extension of the second dumbbell results in a larger contribution to the
stress. The same analysis holds for any two polymer configurations and for any

element of STP,

The physical, rather than mathematical, origins of the three different stresses
are as follows: (STF) — The springs connecting the beads have elastic energy, which
manifests itself as tension along the length of the polymer. At equilibrium, the
polymer has an isotropic distribution, so this tension does not contribute to the
deviatoric stress in the fluid. It influences only the isotropic pressure in the fluid,
the osmotic pressure. A macroscopic flow can induce anisotropy in the polymer
distribution, in which case the tension along the polymer increases the measurable
(deviatoric) stress in the fluid. (S#) — The polymer molecule is dynamically differ-
ent from the fluid surrounding it. When subjected to a local strain, the polymer
does not deform as a fluid element would; the fluid must expend extra energy to
move past the polymer, which increases the stress in the fluid. (SB) - At equilib-
rium, the Brownian forces act on the polymer in a balanced manner (on average),
so the net effect is zero. When the polymer moves away from equilibrium, the
Brownian forces act to move it back to its equilibrium distribution. The imposed
flow must do extra work against this tendency toward equilibrium, and this extra

work increases the stress in the fluid.

The Stokesian dynamics results for (S7¥), (S#) | and (SP) are compared to

the Rouse and Zimm results for (S¥) in §4.
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2.8 Zimm Model

This section gives a short description of the development of the Zimm model.
It follows exactly the development of the Stokesian dynamics model, so that dif-
ferences between the two models can be easily seen. The same forces are present,

and Re is still assumed to be small, so the governing equation remains
FP L FHE L FB =0 (2.46)

Unlike the Stokesian dynamics model, F/¥ F# and F? are 3N vectors, not 6N.
This is because the Zimm beads are points, so that there are no rotational degrees
of freedom. While F/¥ is otherwise identical to the Stokesian dynamics description,

F¥ and F? are much simpler:
Ff = _Rpy-(U-U™), (2.47)
and

(FBYy=0 and (FBO)FB(t)) = 2kTRpyé(2). (2.48)

The primary simplification in (2.47) and (2.48) is that Rpy = My} exactly,
where My is simply the far-field mobility matrix formed from the two-body in-
teraction description of the Rotne-Prager tensor, Eq. (2.25). There are no torques,
no stresslets, no many-body effects and no lubrication forces. This results in an

evolution equation for the particle positions .
Ax = Pe{U* + Myr - (¥*)'F/ P} At 4+ X(At), (2.490)

where

(X)=0 and (X(At) X(At)) = 2MypA¢. (2.495)

Note that V- R;b = V- Myr is zero for the Zimm model using the Rotne-Prager

hydrodynamic interaction.
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STP for the Zimm model is calculated the same as in the Stokesian dynamics
model, Eq. (2.44a). S¥ and SP are not present in the Zimm model. This is
because S¥ and S® are finite-size, O(a®) effects. Since the Zimm beads have no

finite size, S¥ and S® are zero.

The primary computational savings with the Zimm model result from using
3N vectors and matrices instead of the 6N and 11N vectors and matrices required
by the Stokesian dynamics model. These simplifications result from (1) discarding
rotational degrees of freedom, and (2) neglecting any rate-of-strain effects (the
imposed shear flow appears only in the U contribution). Although R;%J = Myr
so that no matrix inversion is required in the Zimm simulations, the square root
of Myp still must be calculated for the Brownian-displacement term, and this is

computationally just as costly as a matrix inversion.
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AP AN IP
Sxy = XFy > Sxy = XFy

Figure (2.1)

Two dumbbells in a shear flow with the same
angular orientation but different extensions. The
dumbbell with the larger extension makes a
greater contribution to the stress.
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3. FLOWS STUDIED

3.1 Equilibrium

Before one can interpret the behavior of the models under flow, the equilibrium
states must be well understood. The equilibrium state means that the Péclet num-
ber goes to zero, so the hydrodynamic forces play no role. For the 2-bead dumbbell

model, the starting point is the standard conservation equation for particle pairs,

—Q(-;—Zz +V.-UyP, -V -M; - [VVo + kTVIn PP, = 0. (3.1)
In (3.1), P, is the pair-distribution function, P, = Pye~V(1:2)/*¥T  where V is the
2-body, interparticle potential and P, is the normalization constant. U, is the
relative velocity of two particles coming from an imposed flow, and M, is the
hydrodynamic-mobility tensor for the relative motion of two particles (i.e., Myr
for two particles). For the bead-spring model, VV; = —FIP where FI? is the
interparticle force (including both spring and hard-sphere forces). For the Rouse
and Zimm models, the “beads” have no excluded volume, so the Hookean spring
connecting the beads gives

F/P = _Kr (3.2)

for all r, where K is the Hookean spring constant. This results in a distribution

function

2

PY(r) = Ppe~ 2 K7, (3.3)

Hence the Rouse model and the Zimm model are identical at equilibrium; the
inclusion of hydrodynamic interaction has no significance at zero Pe.

For the Stokesian dynamics model, the beads are actual hard spheres of radius

a. When connected by Hookean springs, this produces an interparticle force of
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FIP = {ir E: g ;Z; (3.4)
This description of the interparticle force results in a distribution function identical
in form to the Rouse and Zimm distributions, but with a different normalization
constant Fy, since the Stokesian dynamics model has a probability density equal to
zero for r < 2. Graphs of Eq. (3.5) for the Rouse/Zimm (simple spring) potential
and for the Stokesian dynamics (hard-sphere/spring) potential are shown in Figure
(3.1) for K = 0.19635 (this K will give an h* = 0.25 in flow). Figure (3.2) shows

the same potentials angularly averaged over all space; i.e., they show Q3(r), where
Q5(r) = 4nr? PY(r). (3.5)

Note that the Stokesian dynamics Q3(r) is zero up to r = 2, and then immediately
jumps to a non-zero value. Although each model is most likely to be found at its
shortest extension (r = 0 for Rouse and Zimm), when this is integrated over all
space, the probability of finding the Rouse and Zimm models at contact is zero.
Since the Stokesian dynamics beads have finite size, the probability of their actually

touching one another is non-zero.

The Q3(r) representation will be used in all subsequent discussions, since it
shows the actual distribution of extensions r in three dimensions, which is useful in
the analysis of the xF contributions to the stress. When the polymer is subjected
to a flow, the distribution P, is no longer isotropic, and the more general form for

the angularly averaged radial distribution is

27 T
Q2(r) = r? /(; /0 Py(r, ¢,0)sin 6d6dé. (3.6)

Although not used in this study, the application of other spring potentials
is straightforward. A general rule is that non-linear potentials are trivial for use
in simulations, but difficult in preaveraging or other direct, analytical solution

methods.
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3.2 Steady Simple Shear

The behaviors of the Rouse, Zimm and Stokesian dynamics models were com-
pared for steady, simple shear flow, u, = %y, as shown in Figure (3.3). The models
were examined for differences in their orientational distributions and their shear
viscosities as a function of Pe. While no analytical solutions exist for the Zimm
or Stokesian dynamics models, the distribution function for the Rouse dumbbell is
known exactly for arbitrary, time-dependent flow. This distribution function, Pf,

is given by (Bird et al. 1987):

PR - 27\{1:T)3/2 K -1,
2 (I‘,t) = W@.’L‘p —2kT(a . I'I') s (37)

where

a(t)=6— X}E /_oo exp(—(t —t')/ Ak ) ¥ (¢, ")dt’, (3.8)

’)/[0] =§— B, (3.9)

and B is the Finger strain tensor. For steady, simple shear flow, Eq.(3.7) becomes

3\ 1/2
PQR(r;Pe,K)z—l-(K ) X

a3 \ 873
1., 1 Pe 1 [ Pe\?
exrp [——2-.[\ 7‘2 (1 - 5?7‘17“” -+ E (f) ryry>] . (310)

Thus, for a given Pe and K, the orientational distribution of the Rouse dumbbell
is known exactly. From this the mean stress predicted by the model (S/¥) can be

calculated by
(STP(Pe, K)) = / STP(r)PE(r; Pe, K)dr. (3.11)
0

Recall that the Rouse model generates only S’¥; S# and SZ are both zero. The
results for the Rouse model are compared to the Zimm and Stokesian dynamics

model results in §4.2 .
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3.8 Oscillatory Simple Shear

If a polymer solution is subjected to an oscillatory strain,
7(t) = 7 sinwt, (3.12)

where (¢) is the strain, 4% is the maximum amplitude of the strain and w is the
frequency of the oscillation, then the stress will also oscillate. If 40 is small enough
so that the viscoelastic response is linear, then the stress will oscillate with the
same period as the imposed strain, but will be out of phase with it, as shown in
Figure (3.4). In this regime of linear, viscoelastic behavior, the measured shear
stress Sy may be decomposed into two parts, one part in phase with the imposed

strain and one part out of phase,
Szy = %G sinwt + G coswt). (3.13)

The coefficient of the term in phase with the strain, G, represents the elastic nature
and is called the storage modulus, while the coefficient of the out-of-phase term,
G", describes the dissipative nature and is called the loss modulus. Together, these

two terms form the complex modulus G*,
G=G -iG". (3.14)

For a pure, Newtonian fluid of viscosity u, @ =0, and G" = wp. In the limit of

infinite dilution, the quantities of interest are the intrinsic storage and loss moduli,

’

, . G
(¢ =lm = (3.150)
6] = lim (ﬁ—‘c—“’-"—) (3.155)

(For experimental data, these quantities are reduced by temperature and molecular

weight M to give

[G'lr = -[%Tﬂ , (3.164)
[G'r = (h : (3.165)
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where R is the universal gas constant.)

For an infinitely dilute solution of a polymer, monodisperse in molecular

weight, the Rouse theory predicts (Ferry 1980)

2

-1 2.2

Gle=> —2_ (3.170)
= 1+ w27}
(G'1r = 3w (3.17b)
p=1 1+wirp -
where the 7, are the time constants for the model,
b¢ (3.18)

T kT il [pr/2N]

where b is the RMS extension of the springs and ( is the drag coefficient for a single
bead. As noted in §2.1, the preaveraged Zimm model does not result in a closed-
form equation for the 7,. However, the spectrum of 7, for large N was calculated by
Zimm, and these results are shown in Figure (3.5) along with the Rouse predictions.
The plots show that there are three frequency regimes for the models. At low
frequencies both models show G proportional to w? and G proportional to w.
At high frequencies the slopes of G’ and G" become identical, but because of the
inclusion of hydrodynamic interaction, the limiting slope is different in each model:
1/2 for Rouse and 2/3 for Zimm. Lastly, there is a transition region between the

low-frequency and high-frequency limits.

These equations are strictly valid only for large N. If 7,=n—; makes a non-
negligible contribution to the total sum, then N is too small and the results will
describe unrealistic behavior because of the artificially low number of segments in
the model — — the model does not have sufficient degrees of freedom to react to high-
frequency disturbances. As expected, the theory breaks down at progressively lower

values of w as N is reduced. This effect is shown in Figure (3.6), where (3.174,b)
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are plotted for the Rouse model for N = 100,10 and 2. Obviously, the dumbbell
model is inadequate to describe the high-frequency behavior of dilute polymer
solutions. Nonetheless, a comparison between the predictions of the models can

provide insight into fundamental differences between them, as shown in §4.3 .

Examining the viscoelastic behavior from an analysis of the modulus involves
relating the stress to the strain. This analysis is based on the elastic or solidlike
nature of the solution. From a fluid-mechanics point of view, favoring the fluidlike
nature, the response can be expressed as a dynamic viscosity, n*, which relates the

stress to the rate of strain 4(t). Differentiation of (3.11) gives
¥(t) = wy® coswt, (3.19q)

= 4% coswt. (3.19%)

Again, if 4° is small enough so that the viscoelastic response is linear, the measured

stress may be decomposed into
Sey =4° (7]’ coswt + 17” sin wt) . (3.20)

The coefficient of the term in-phase with the strain rate, n', is the loss or dissipative
portion, while the coefficient of the out-of-phase term, ", is the storage or elastic

portion. Together, these two terms form the complex viscosity n*,

nt=n —in . (3.21)

For a pure Newtonian fluid 77" = 0 and 17' is simply the Newtonian viscosity u.

Comparisons of (3.13) and (3.20) show

G
n = Tu- ’ (3.220,)
w G
SO
Nt =——G . (3.23)
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Thus n* and G* are related by a phase change and a factor of w. There are also

intrinsic viscosity components corresponding to the intrinsic moduli:

n_ (= n.)
= lim ~— T/ 3.24
[77 ] c1—>0 nscC ’ ( (l)
h']=lim —~:77 - (3.24b)

Since most experimental data are reported in terms of G' and G, most of the
simulation data in §4.3 are in terms of these quantities. 77' and n” are used during
the discussion of the high-frequency viscosity and for comparing the magnitudes of
different contributions to the stress, where the fact that n* is always O(1) makes

comparisons over a range of frequency easier.

3.4 Data Collection

Data for the Stokesian dynamics model and the Zimm model were collected
from simulation runs on two computer systems: a SUN Microsystems SPARC
4/360, with a speed of 2 MFLOPS, and an IBM RISC/6000 model 530, with a
speed of 20 MFLOPS. In all cases, the quantities of interest were the configura-
tional distribution function of the dumbbell Qs (r, #,8) (defined in §3.1) and the
stress contributions (S'F),(S#), and (S®), from §2.2.3 (Eqs. (2.42 a,b,¢)). The
-configuration distribution of the end-to-end vector r was stored as a histogram in
T, ¢, and 6, as noted in §3.1 . The definition of these coordinates relative to the
imposed shear flow is shown in Figure (3.7). For r < 10, where the probability
density is the highest, the grid size is 0.1 . For r > 10, the grid size is 0.5 . The
grid size was 27 /100 for both ¢ and 6. As shown in Fig. (3.7), a ¢ value in the
range 7 < ¢ < 2 is indistinguishable from ¢ in the range 0 < ¢ < =; the only

change is the direction of the vector r. Hence, it is necessary to store configuration
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data only for 0 < ¢ < w. Similarly, only data for 0 < § < 7/2 were stored by the

simulations.

Equilibrium runs were performed for two reasons. First, the equilibrium state
is the only state for which the behavior of all of the models is known analyti-
cally. The angular distribution is isotropic, and the extensional distribution is a
Boltzmann distribution as seen in Eq.(3.5). The models may be compared to the
analytical predictions to provide a check on the accuracy of the simulations. Sec-
ond, because of this analytic comparison, it is possible to determine the order of
magnitude of data required for good statistics from the models. The objective is to
find the minimum number of data that still give good predictions of the orientation
and the stress for the models. Section 4.1 shows that O(10°) data are required for

suitably accurate results. The data requirements for the Zimm model are similar.

To obtain data for the Stokesian dynamics model in steady shear, the simula-
tions were run for 4,400, 000 time steps, discarding the initial 400,000 steps. Data
for the configurational distribution and the stress were collected at each time step.
From the stress data the material functions for shear flow were calculated. These
material functions are: the shear viscosity n.(ﬁ); the first normal-stress coefficient

U1 (¥); and the second normal-stress coefficient ¥3(%). These quantities are defined

n(9) = <S;”>, (3.25)
Uy (4) = E’f’”—v}gg"’—) (3.26)
() = S =S (3.27)

Szy, Szz, etc., are the appropriate elements of either S, S# S8 or any com-
bination of the three. The results were normalized so that plotting them versus

Pe is identical to plotting them versus 4. Since it was determined that 10 data
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points were required for a good estimation of the configuration and thereby the
stress contributions, the stress data were broken down into four samples, each rep-
resenting an average over 1,000,000 time steps. These four samples were used to
generate the mean and standard deviation for each run. Data collection for the
behavior in steady shear of the Zimm model was identical, except for the length
of the runs. The duration of each Zimm run was 22,000,000 time steps, with the
initial 2,000,000 being discarded. These data provided 20 sample averages of the
stress predicted by the model.

For oscillatory shear flow, the stress in the fluid is given in §3.3 as

Spy =4° (77' coswt+1n sinwt) , (3.28)

where again S,, may be the zy element of S’ S# SB or any combination. The
components of the complex viscosity, 77' and 77”, may be separated by orthogonal
integration over a cycle of the imposed, oscillating shear flow. For 77,, integration

with the cosine function gives:

2x 2%
/ Szycoswtdt = / 7° (77, cos wt + 77” sinwt) cos wtdt
0 0
_

n

o (3.29)
S0
2%
"= 27 8, coswidt (3.30)
7 Yo Jo i ' '
Similarly, 17” is given by
2
"= |7 8, sinwtdt (3.31)
n = T . .
Y Jo !

The simulations were run for several cycles of the oscillation. To obtain the compo-

nents of the complex viscosity for an integral multiple of the cycle period, N (27 /w),
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the appropriate integrals are

2N ~x
1 w «
n = —N707/o Szy coswitdt, (3.32)
and
2N =«
" w w .
n = Noow |, Szy sinwtdt. (3.33)

For the simulations of dumbbells, the Stokesian dynamics simulations were run
for 180 cycles, discarding the first 20 cycles. This was repeated for 10 different
initial conditions, resulting in 1,000,000 data points for the orientation and the
stresses. The Zimm simulations were run for 1100 cycles, discarding the initial
100 cycles, producing 6,000,000 data points. For the more time-consuming 10-
bead simulations, the Stokesian dynamics data were collected over three cycles,
the Zimm data over ten cycles. 10 sets of initial conditions were examined in each

case.
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Figure (3.1)

Comparison of equilibrium radial distribution functions
for dumbbell end-to-end vectors of Rouse/Zimm model (no
excluded volume) and Stokesian dynamics model (with
excluded volume). The spring constant K=0.19635 .
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Figure (3.2)

Comparison of angularly averaged equilibrium
radial distribution functions for dumbbell end-
to-end vectors of Rouse/Zimm model (no excluded
volume) and Stokesian dynamics model (with
excluded volume). The spring constant K=0.19635 .
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Figure (3.3)

Coordinates for steady shear flow.
Y is the imposed rate of strain.
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Time

Figure (3.4)

Phase relationship between stress and strain
for a dilute polymer solution undergoing
low-amplitude oscillatory shear flow.
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Figure (3.5)

Components of the complex modulus
for the Rouse model and the preaveraged
Zimm model, for large N.
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-==: 2 beads
.............. 10 beads
- 100 beads

Figure (3.6)

Components of the complex modulus of the
Rouse model as a function of number of beads N.
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Figure (3.7)

Coordinate system for storing
configurational distribution of
dumbbell end-to-end vector r.
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4. INFINITE DILUTION RESULTS

4.1 Equilibrium

An analysis of data from simulations of the Zimm and Stokesian dynamics
models at equilibrium reveals the amount of data required in order to generate
good statistics. There must be sufficient data to determine both the distribution
of extensions, Q2(r), and also the angular distribution at a given r. Although
no meaningful stress measurements can be made at equilibrium, that does not
mean that the accuracy of the stress cannot be estimated. The stress predicted by
each model is completely dependent upon the the distribution of configurations. If
the configurational distribution is accurate, the stress calculations based on that

configuration must also be accurate.

Figure (4.1) presents Q3(r) for the Stokesian dynamics model vs. the analytic
prediction of Eq.(3.7) for 10° and 10° time steps. While 10° data points produce
a poor description of the radial distribution, Q3(r) is well described with 10% data
points. At equilibrium, there is no angular dependence, so for any extension r
the distribution in ¢ and 6 should be a spherical shell. The ¢ dependence of the
distribution at § = 7 /2 is shown for r = 3 (Figure (4.2)) and r = 6 (Figure (4.3))
for 10° and 10° data points. Both distributions should be circular. Similar results
were obtained for the Zimm Model. These plots show that 10° data are inade-
quate to give reasonable estimates of the models’ behavior. From this analysis
it was determined that O(10°) time steps were the minimum required to obtain
reliable predictions of the orientation, and hence the stress, from the Stokesian
dynamics and Zimm models. An increased amount of data would, of course, fur-
ther improve the models’ predictions, but computer-speed limitations made longer
analyses unreasonable considering the wide range of flow parameters that were to

be examined.
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An additional equilibrium result arises from the inclusion of excluded volume.
This is of interest in the analysis of oscillatory-shear data, where it presents some
important considerations when comparing results for different values of N. As
noted in §2.1, h* may be thought of as a ratio of the size of the beads to the bead
separation, as well as a ratio of hydrodynamic forces to spring forces. Previous
studies have used the RMS spring-extension b as given by the Gaussian-distribution

value,
3ET ?
bGauss = ( K— ) . (41)

While this is appropriate in a 8 solvent, where by definition excluded-volume effects
are not present, non-d solvents demand that the effect of excluded volume on the
value of b be considered. Table (4.1) lists b for various spring constants K for
both Gaussian dumbbells and excluded-volume dumbbells. Although shown only
for N = 2, this has implications for larger values of N. The differences between
the two methods can be as great as 25%. This is an important consideration when
trying to compare results for different values of N. Plotting results for a spectrum
of N requires some type of renormalization, and these renormalizations usually
involve the mean spring-extension b. Changing the magnitude of b changes the
frequency at which the chain no longer experiences intrachain motion, and this is
the transition frequency for G' and G. Thus, if the Gaussian predictions of b
are used for chains with excluded volume, th¢ data will be normalized improperly.
This could lead to spurious peaks or dips in the moduli curves, which in turn would
lead to invalid conclusions. Appendix A shows the effect of excluded volume on the
complex moduli predicted by the dumbbell model, using preaveraged hydrodynamic

interaction.
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4.2 Steady Simple Shear

One important aspect of the behavior of dilute polymer solutions is that they
generally exhibit shear thinning. As noted in §2.1, the Rouse model does not pre-
dict shear thinning, in fact giving a constant viscosity no matter what the shear
rate. The preaveraged Zimm model also gives a shear-rate independent viscos-
ity. However, when the Zimm model is evaluated without preaveraging of the
hydrodynamic interactions, it does exhibit shear thinning, as does the Stokesian
dynamics model. This behavior is shown in Figures (4.4) and (4.5) for A* = 0.15
and h* = 0.25, respectively. Since the preaveraged Zimm model does not shear
thin, while the non-preaveraged Zimm model does, the decrease in viscosity must
be a function of the variation in hydrodynamic interaction at different shear rates.
This is noted in Ottinger (1989). While this conclusion is obvious, since the vari-
ation in hydrodynamic interaction is the only difference between the preaveraged
and non-preaveraged Zimm models, the mechanism by which these variations cause
that change has not been addressed. The results presented below reveal how the
hydrodynamic interactions modify the microstructure of the polymer in solution,

and how this change causes the shear thinning.

To observe the nature of this change in the microstructure, it is convenient to
examine the orientational distribution of the models in two ways: first, by exam-
ining their angularly averaged spring extensions Q2(r); second, by selecting fixed
values of r and examining the angular-probability distributions at these extensions.
These two analyses reveal the mechanism by which hydrodynamic interactions

cause shear thinning.

Figures (4.6) - (4.8) show Q»(r) for the Rouse, Zimm and Stokesian dynamics
models for Pe = 0.1,1 and 10, respectively. The hydrodynamic-interaction pa-
rameter h* = 0.25 . Both the Zimm and the Stokesian dynamics models show a

slightly greater extension than the Rouse model for all values of Pe, resulting in
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higher viscosities in each case (cf. Fig. (4.5)). Unlike the equilibrium plot, the
Stokesian dynamics model shows an additional peak right at » = 2. This is an
excluded-volume effect. The beads in each model are pushed together along the
compressional axis of the shear flow. The Rouse and Zimm models allow the bead
separation to become arbitrarily small. The Stokesian dynamics beads, however,
come into contact at r = 2 and can come no closer. The touching beads continue
to rotate until they reach the extensional portion of the flow, and this extra time

in contact provides the peak in the distribution at r = 2.

While the Rouse distribution remains peaked at approximately r = 3, the
Zimm and Stokesian dynamics distributions move toward larger r as Pe increases
beyond 0.1 . This indicates an increase in the mean tension in the spring as the
shear rate increases, which would seem to indicate shear thickening in the Zimm
and Stokesian dynamics models (because of an increased xF stress contribution),
not shear thinning. The resolution to this apparent contradiction lies in the ac-

companying change in the angular-distribution function as Pe increases.

Figures (4.9) - (4.17) show cross sections of the the angular distributions of
the Rouse, Zimm and Stokesian dynamics models in the x-y plane (§ = 7/2 in
spherical coordinates.) Graphs for r values from 2 to 10, and Pe from 0.01 to
10, are presented. h* = 0.25. For Pe = 0.01, the distribution cross sections are
essentially identical, and only slightly disturbed from the circular cross section
indicative of the equilibrium distribution. At Pe = 0.1, the distributions show
an increased relative density along the extensional axis of the shear flow at larger
r, but the distributions are still similar for the three models, consistent with the

steady viscosities predicted by each model up to Pe = 0.1.

The microstructural origin of shear thinning in the Zimm and Stokesian dy-
namics models becomes apparent from the relative distributions at Pe = 1. While

similar in shape, the Zimm and Stokesian dynamics distributions differ from the
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Rouse in that they are tilted more toward the z-axis. Recall that the particular
element of the xF matrix that is relevant to a shearing measurement is the zF,
component, as was shown in Figure (2.1). Although the mean value of z increases
as Pe increases, the accompanying tilt toward the z-axis means that the F, y COmMpO-
nent of force is reduced, and this reduction is sufficient to produce a net decrease in
the product zFy; hence, the measured viscosity decreases. The graphs for Pe = 10
show a continuation of this trend. At higher Pe the behavior is similar, but since
even the Rouse distribution approaches the z-axis as Pe increases, the effect be-
comes progressively smaller. As Pe — oo, the Zimm model predictions approach
the Rouse value. At large Pe the model is highly extended most of the time, so the
assumption that the two beads do not interact hydrodynamically is valid, and the
viscosity predictions reach the non-interacting limit. Although the reported results
for the Zimm model actually go below the Rouse prediction, the Rouse limit is
still within the statistical error of the simulation runs. In addition, the reported
results are the actual results for the simulations using a dimensionless time step
At = 0.01 . It is known that the use of a finite step size can introduce a bias into
the simulation results (Zylka and C")ttinger 1989). Repeating the simulation results
for a few other size At’s and extrapolating the results to At = 0 should bring
the numerical values up to the Rouse limit. This has not been done because the
focus of this analysis has been to determine the relative magnitudes of the stress
predictions of the models and the effect of the microstructure on the stress, not to
obtain “exact” numerical values for their predictions. In any event, the reported

results for the Zimm model are within 3% of the expected high Pe limit.

The Stokesian dynamics model also approaches the high Pe Rouse limit, but
always predicts a slightly higher viscosity than the Zimm or the Rouse models. This
appears to be a result of the finite bead size, as shown in Figure (4.15) for r = 2 and
Pe = 10. When the beads are brought close together along the compressional axis

of the flow, the Rouse and Zimm models allow arbitrarily small spring extensions,
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and therefore ST¥ = 0. The Stokesian dynamics model has a minimum spring
extension of r = 2, so it still predicts a non-zero S{F. A particularly striking
effect of the excluded volume is that for larger Pe, the angular distribution of the
Stokesian dynamics model for r = 2 is greatest along the compressional axis of
flow. The beads are forced together and stay together along the compressional
side. As soon as the dumbbell rotates to the extensional side of flow, the beads
are quickly pulled apart, resulting in a lower probability density on that side of
the distribution. The Rouse and Zimm models quickly move past r = 2 on the

compressional side, so their distributions favor the extensional region.

The way that hydrodynamic interaction causes the distribution to shift toward
the z-axis can be seen most easily by considering just the Rouse model and the
Stokesian dynamics model. Figures (4.18) and (4.19) display the relative trajecto-
ries of two force-free particles (i.e., no connecting spring) in simple shear flow based
on the Rouse interaction and the Stokesian dynamics interaction, respectively. Fig-
ure (4.19) is part of the family of curves for two interacting spheres first shown in
Lin et al. (1970) and Batchelor and Green (1972), and is reproduced exactly by

Stokesian dynamics.

The trajectories are shown as “snapshots” of the center of particle 2 relative to
a coordinate system fixed at the center of particle 1. These trajectories are shown
for Pe = oo, but they have implications for finite Pe as well. The Rouse model has
no interaction or excluded volume, so the two “point particles” simply move as fluid
elements. If the difference in the initial y components is small, the particles move
past one another more slowly, but the trajectories remain undisturbed, straight

lines.

The trajectories for the Stokesian dynamics interaction are quite different.
The hydrodynamics actually produces a series of closed trajectories; no interpar-

ticle spring force is required — - the hydrodynamic interaction between the two
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spheres is sufficient to keep the two spheres rotating around one another. The
time-interval plotting of particle 2’s center shows that most of the time on these
closed curves is spent close to the z-axis. Although the introduction of Brown-
ian motion and interparticle forces alters these trajectories, the strength of the
hydrodynamics is still sufficient to shift the angular distributions of the dumbbell
models towards the z-axis. Furthermore, these closed trajectories extend along
the z-axis to infinity, reflecting the extremely long-ranged nature of hydrodynamic
interaction. These hydrodynamic forces effectively “pull” the Zimm and Stokesian
dynamics distributions toward the z-axis, reducing their viscosity contributions.

The magnitude of this “pull” grows with Pe.

Although the shear-flow example is a useful demonstration for Stokesian dy-
namics, it fails for the Zimm model. This is a consequence of using the Rotne-
Prager approximation. Unlike the Stokesian dynamics description, which intro-
duces a velocity disturbance that is due to the finite size of the particle in any flow
with straining character, the Rotne-Prager tensor describes a velocity disturbance
resulting from a point force in the fluid. The “finite-size” effect it gives is only a
change in the velocity disturbance at small separations. If there is no force acting
on the particle, there is no disturbance, so the trajectories in simple shear flow
of two particles interacting by Rotne-Prager are the same as no interaction — —
straight lines. Nonetheless, when Brownian forces and spring forces are included,
the beads in the Zimm model will be experiencing constant velocity disturbances,
the Rotne-Prager approximation will react to these disturbances, and the long-
range nature of the hydrodynamic interaction will still move the model toward the

axis of shear.

The discussion up to this point has considered only the S'¥ contribution to the
viscosity, ignoring the S and S# contributions provided by Stokesian dynamics.
This is because these contributions are essentially constant for all values of Pe and

h* examined. Figures (4.20) and (4.21) show the Brownian-stress contribution SB
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and the spring contribution SI¥ for h* = 0.15 and h* = 0.25, respectively. These
plots show that S? is completely negligible except at Pe < 0.1, and even then it
is very small. It seems unusual that S® never makes a substantial contribution to
the stress because S& is the sole contributor to the stress in the theory of rod-like
polymers. Like the traditional flexible-polymer theory, the rigid-polymer theory
does not consider hydrodynamic stresses. Rigid-polymer models have no interpar-
ticle forces, so S’ = 0. The only contribution to the stress in rodlike polymers
arises from the change in entropy of the rod orientation. Since the dumbbells in
this study show a definite bias toward the z-axis in their orientation, it seems that
the Stokesian dynamics model should reflect this in the Brownian-stress contri-
bution. The absence of SB seems to be due to the way the Stokesian dynamics
model calculates this stress. It is based only on the beads in the model — — no
consideration is given to the connection between the beads. Since most of the time
spent near the z-axis is in an extended state, the beads are far apart, and the
Brownian-stress contribution from the beads is small. This is true even at Pe = 1,
where the hydrodynamic forces are not yet dominant over the Brownian forces.
Note that this is not a weakness in the Stokesian dynamics model, but is a result
of the original formulation of the bead-spring model. To improve upon fhis, all
flexible-polymer models, including the Stokesian dynamics model, could include a
term for the Brownian stress of the end-to-end vector. This term would be similar

in form to the SZ term for rigid-polymer models.

Figures (4.22) and (4.23) display the hydrodynamic contribution to the stress,
SH | along with S?% for the two h*’s examined. The value of S¥ is nearly constant
for both h*’s and the entire range of Pe. This hydrodynamic-stress contribution
is due entirely to the far-field hydrodynamics. The near-field lubrication effects,
while having a major impact on the orientational distribution of the Stokesian
dynamics model through the excluded-volume effect, provide stresses two to three

orders of magnitude smaller than the far-field stresses. Furthermore, this far-field
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contribution is insensitive to the separation between the two beads. It is well
described by the so-called Einstein viscosity or Einstein stress, S¥. This is the

stress contributed to a fluid by a single, isolated, rigid sphere, and is given by

SE = 23—077773a3. (4.2)

For each polymer chain, the total Einstein-stress contribution to the viscosity, S¥,

is the sum of the Einstein stress on each bead,

N

SE = ZSEI

=1

= NSFT, ' (4.3)

since the beads are identical. The Einstein-stress prediction and the SH predicted
by the Stokesian dynamics models are shown as a function of Pe in Figure (4.24),
for the case h* = 0.25. The differences between the two are negligible. While this
might seem to indicate that the amount of time the particles spend near contact
(where lubrication forces will be dominant) is a negligible portion of the total time,
the true cause is probably more subtle. The lubrication stresses are generated not
just because two beads are near contact, but because they are in relative motion
near contact. For the infinitely dilute dumbbell, when the two beads are near
contact, it is more favorable for them to rotate as a unit than to move relative to
one another. This motion would produce no lubrication stress, just the Einstein
viscosity contribution. A bead-spring model of more than two beads, where many-
body effects would be important, would likely restrict the rotation of connecting
beads as a unit, forcing relative motion and thus producing lubrication stresses.
Hence the dumbbell model, which is generally regarded as being an adequate model
for steady-shear analysis, may be inadequate as far as hydrodynamic-stress contri-
butions are concerned. This explanation for the negligible lubrication stresses is
supported in the oscillatory-shear results, where the stress at high frequencies ex-

ceeds the Einstein prediction. It is also supported by the non-dilute results, where
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high concentration causes stress growth. Another way of considering the onset of
the additional hydrodynamic stress (i.e., above S¥) is to think in terms of a “lo-
cal” concentration of beads. In the dumbbell case, where the local concentration is
always small, S¥ is an adequate description. In multibead chains and concentrated
solutions, the local concentration is often high, and the full hydrodynamics must

be examined.

A second aspect of shear rate dependence in polymer rheology involves the
first normal-stress difference, defined in Eq. (3.26). Once again, the Rouse model
predicts that the first normal-stress difference will be independent of shear rate.
Experimental results show that the stress difference will decrease with increasing
shear rate. As with the viscosity, this shear-thinning behavior is not captured
by the preaveraged Zimm model, but it is reproduced by Ottinger’s consistently
averaged and Gaussian-approximation models (1989) as well as by the dynamical
Zimm and Stokesian dynamics models. This behavior is shown in Figures (4.25)
and (4.26) for A* = 0.15 and 0.25, respectively, for the Rouse, Zimm and Stokesian
dynamics models. As with the viscosity, the thinning of each model displays the
same general curve shape, but the excluded volume in the Stokesian dynamics
model always keeps the magnitude slightly above the Zimm prediction. Unlike
the viscosity, however, the total contribution to the Stokesian dynamics normal-
stress difference is almost entirely due to the SI¥ contribution. The hydrodynamic
stress makes a contribution only at very low shear rates, and then only a small
amount. While the finite size of the Stokesian dynamics beads induced a shear-
stress contribution when subjected to a straining flow, there is no corresponding
normal-stress contribution. This may not be the case in a multibead chain or in a
concentrated solution, where many-body effects become significant. The Brownian-
stress contribution is negligible over the entire range of plotted shear rates. (At
very small Pe — — less than 0.1 — — the Brownian stress makes a non-negligible

contribution, but the fluctuations are so large at low Pe that it is not possible to
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get good predictions of the stress difference.)

The cause of this shear thinning of the normal-stress difference is identical to
that of the viscosity. At low shear rates, the greater extensions of the models cause
the normal-stress to be larger than in the non-interacting Rouse case. As the shear
rate increases, the configurations approach the Rouse predictions, so at high Pe all

of the models are similar.

Experimental evidence, as well as Ottinger’s Gaussian approximation, predicts
that the second normal-stress difference, Eq.(3.27), should be small and negative.
The amount of data collected for this study was insufficient to make this determi-
nation, but a larger amount of data would certainly find this prediction to be true.
Again, the origin would be found to be in a change in the orientational distribution.
As noted above, the hydrodynamics causes a shift in the distribution toward the
z-axis, and thus a reduction both in the y component of the end-to-end vector and
in the F component of the interparticle force. Since this would cause Syy = yFy
to be reduced, the net effect on Syy —S:; (and thus ¥3) would be to drive it to be

negative.

For the Stokesian dynamics model in low-Pe, steady, simple shear flow, an or-
dinary differential equation may be solved for the exact departure from equilibrium
of the distribution function. Unfortunately, the resolution of the present simula-
tion for low-Pe flows was not sufficient to detect the predicted disturbance to the
distribution function. The development and solution of this differential equation

‘are presented in Appendix A.

4.8 Oscillatory Simple Shear

The standard comparison for oscillatory shear is with the preaveraged Zimm

model. Prior studies usually have compared with Zimm’s original preaveraged
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results for the Oseen tensor, regardless of the actual interaction tensor used, as-
suming that the differences would be small. This is unnecessary, since it is simple
actually to calculate the preaveraged time constants for a chain of N beads in-
teracting via an arbitrary hydrodynamic-interaction tensor, so long as N is “not
too large.” All that is required is to solve for the eigenvalues of an N x N matrix,
for which there are available several efficient, computer software packages. Fur-
thermore, there is no reason not to find the eigenvalues for the actual interaction
— — particularly when a simulation is being used that requires finding the square
root of a 3N X 3N matrix at every time step. The eigenvalue solution for the
preaveraged time constants need be done only once. The solution for these time
constants, however, shows that the supposed similarity between the Oseen and the
Rotne-Prager time constants is justified. Nonetheless, it may not be true for all
hydrodynamic-interaction representations, and certainly is not true where excluded
volume is concerned. The details of the solution for the time constants involving

an arbitrary interaction tensor are presented in Appendix B.

The Rouse and Zimm theories for oscillatory shear flow both were developed
for the case of Pe — 0. Unfortunately, the simulation results become increasingly
poor at small Pe, since the increased strength of the Brownian forces requires
unreasonably long simulation runs to obtain reliable predictions of the moduli.
Pe = 0.1 was selected as a reasonable compromise between the two considerations.

Some results are also presented for Pe = 0.63.

Unlike the steady-shear case, observations of Q,(r) or the angular distributions
are not helpful for the analysis of the polymer behavior in oscillatory flow. Again,
this is due to the difficulty in observing the small departures from equilibrium at
low Pe. All of the Q,(r) data are nearly identical to the equilibrium Q3(r), and

the angular-distribution plots are all essentially circular.

Figures (4.27) and (4.28) show G’ and G, respectively, for the Zimm, Stoke-
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sian dynamics, and the preaveraged-Zimm dumbbells with Rotne-Prager interac-
tion, for Pe = 0.1 and h* = 0.25 . The simulation results lie slightly above the
preaveraged results. In the Stokesian dynamics model this is because the excluded
volume increases S, as shown in Figure (4.29), for Pe = 0.63 at a frequency
of 0.063. This is a direct result of the excluded volume forcing the RMS spring-
extension b to increase from the Gaussian value, hence increasing the average ten-
sion in the spring. As suggested in the equilibrium state, this increase in b is small
for small values of A* but increases as h* increases. The Zimm model has no ex-
cluded volume, but the description of the hydrodynamic interaction changes when
r < 2. The dumbbell spends more time in this range of extension than in the
steady shear case, so the “excluded-volume” effect of the Rotne-Prager description
becomes apparent. The preaveraging apparently does not fully reflect the impact
of this near-contact region. Figures (4.30) and (4.31) show the moduli for chains
of 10 beads with 2* = 0.15 and Pe = 0.63. The increase in the moduli above the

preaveraged predictions is even greater than in the dumbbell case, again because

of the excluded volume effects.

Although the increases in the moduli are due to the increased spring exten-
sions, from another point of view this implies that the frequencies these data are
plotted against should be normalized differently. As noted in §4.1, care must be
taken when plotting data from models that include excluded volume. All non-
dimensionalizations of w to this point have been done using the diffusive time
a?/D,, regardless of b. Taking the Stokesian dynamics dumbbell data and ad-
justing the frequencies by the bes 401, /bGauss ratio for A* = 0.25 from Table (4.1)
shift the data toward the preaveraged-Zimm results. However, as shown in Figure
(4.32) for G, the change does not account for the full difference, proving that the
higher moduli predicted by Stokesian dynamics is not due simply to a difference in

normalization.

For Pe = 0.63, the Brownian contribution is found to be about two orders
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of magnitude smaller than the interparticle or the hydrodynamic contributions to
the stress, as shown in Figures (4.33) and (4.34) for a 10-bead chain. Even at very
high values of A*, the Brownian stress is negligible (Figure (4.35)). Obviously, as
Pe decreases, the relative magnitude of the Brownian contribution must increase.
This is shown in Figure (4.36) for Pe = 0.1 . The Brownian stress now appears
to be closer to perhaps 5 — 10 % of the total stress for large h* — — larger, but
probably still not worth the extra computational effort. While this small SZ is in
part due to the fact that this analysis does not use Pe — 0, it must also be due
to the neglected entropic contribution from the orientational distribution of the
end-to-end vector. As was discussed in the steady-shear results, some allowance
should be made for the entropy that is due to the orientation of this vector, as is

done in the theory of rigid polymers.

The remaining stress contribution arises from the hydrodynamic interaction
between the beads and the solvent. As shown in Figures (4.29) and (4.32), the SIP
contribution to G decays to zero, while the addition of S¥ causes it to grow with
a slope of 1. This corresponds to a complex viscosity n*, which has a non-zero,
limiting value at high frequency. Figure (4.37) plots n ,the viscous or dissipative
portion of the viscosity, for the Rouse model and the preaveraged Zimm model
for large N. Both of them predict that n will decay to zero as w — oo. This is
equivalent to saying that at high frequency a dilute polymer solution will have the
same viscosity as the pure solvent. Experimentally this is known to be false; at high
frequency the polymer gives a constant, non-zero addition to the solvent viscosity.
Figure (4.38) presents the Stokesian dynamics results for ', both with and without
the hydrodynamic-stress contribution. It shows clearly not only that 7’ is going to
a constant value greater than zero, but also that this high-frequency contribution
is due entirely to the hydrodynamic stress. This is the reason that Rouse, Zimm
and other prior modeling of flexible polymers have not been able to capture the

proper high-frequency behavior. None have included the hydrodynamic stress in
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their analyses, and the Stokesian dynamics model shows that this is the sole cause

of the high-frequency behavior.

As in the steady-shear case, the hydrodynamic-stress contribution is well de-
scribed by the Einstein viscosity. It can be seen from Figure (4.39) that for a chain
of 10 beads connected by a weak spring (h* = 0.15), S¥ is almost identical to
the total hydrodynamic viscosity calculated by Stokesian dynamics. This is ex-
pected, since a weak spring means the average spacing between adjacent beads is
large, and thus lubrication and other finite-size effects are not as important. For
a stronger spring (h* = 0.25, Figure (4.40)), the total hydrodynamic stress in the
10-bead chain is still well described by S¥ for low frequencies, but for w equal
to unity and larger, the full viscosity is 5 — 10 % larger than S¥; the stronger
spring is pulling the beads closer together, so finite-size effects are beginning to
have a greater influence. The deviation from S¥ at higher frequencies appears
because the rapid variation in the velocity gradient makes relative motion at close
separations more likely. As discussed in §4.2, it is this relative motion that is the
primary source of the hydrodynamic stress. In a chain of 10 beads, adjacent beads
cannot simply rotate as though they were dumbbells. The “local” bead concen-
tration is high enough to contribute additional hydrodynamic stress. Figure (4.41)
shows that the dumbbell, even at very high frequencies, does not predict S¥ to
be significantly larger than S¥. As with steady shear, more beads in the model,
or a non-dilute concentration, would make relative motions among the beads more
prevalent, further increasing Sf. Forcing the beads closer together will eventually
generate lubrication-stress contributions, even for the infinitely dilute dumbbell.
Figure (4.42) shows the changes in the stress calculated with Stokesian dynamics
as h* increases for the dumbbell model (S¥ is, of course, invariant with respect
to h*). Even for the low frequency of w = 0.0628 shown, strong springs cause
a 5 — 10 % increase above S¥. Higher frequencies will result in an even greater

enhancement of S¥.
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Spring Gaussian | Interaction | Excluded | Ratio
constant Extension | Parameter | Volume of b's
H b h* b
0.071 6.51 0.15 6.63 0.99
0.196 3.91 0.25 4.19 0.93
0.385 2.79 0.35 3.24 0.86
0.750 2.00 0.49 2.68 0.75
Table (4.1)

Comparison of RMS spring extensions of dumbbells connected by
Hookean springs with and without excluded volume.
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Figure (4.1)

Comparison between simulation and theory for
angularly averaged equilibrium radial distribution
function of Stokesian dynamics dumbbell end-to-end
vector. The spring constant K=0.19635 .
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Comparison between simulation and theory for angular distribution
of dumbbell end-to-end vector at equilibrium for an extension of r=3
and h*=0.25 . Figure (a) shows the coordinate system for P,

relative to the imposed shear flow in Figure (b).
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Comparison between simulation and theory for
angular distribution of dumbbell end-to-end
vector at equilibrium for an extension of r=6.
(h*=0.25)
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Comparison between simulation results and
various approximate analytical solutions for
the shear-rate dependence of the
interparticle-force contribution to the viscosity.
(N=2; h*=0.15)
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Angularly averaged radial distribution
functions of Rouse, Zimm and Stokesian
dynamics dumbbells for Pe=0.1 and h*=0.25 .
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Angularly averaged radial distribution
functions of Rouse, Zimm and Stokesian
dynamics dumbbells for Pe=1 and h*=0.25 .



35x10° —

Q,(r)

70

Figure (4.8)

Angularly averaged radial distribution
functions of Rouse, Zimm and Stokesian
dynamics dumbbells for Pe=10 and h*=0.25 .
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Figure (4.9)

Angular distribution functions of Rouse,
Zimm and Stokesian dynamics dumbbells
at an extension of r=2. Pe=0.01 and h*=0.25 .
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Angular distribution functions of Rouse,
Zimm and Stokesian dynamics dumbbells
at an extension of r=2. Pe=0.1 and h*=0.25 .
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Angular distribution functions of Rouse,
Zimm and Stokesian dynamics dumbbells
at an extension of r=5. Pe=0.1 and h*=0.25 .
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Figure (4.12)

Angular distribution functions of Rouse,
Zimm and Stokesian dynamics dumbbells
at an extension of r=2. Pe=1 and h*=0.25 .
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Figure (4.13)

Angular distribution functions of Rouse,
Zimm and Stokesian dynamics dumbbells
at an extension of r=5. Pe=1 and h*=0.25 .
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Angular distribution functions of Rouse,
Zimm and Stokesian dynamics dumbbells

at an extension of r=10. Pe=1 and h*=0.25 .
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Angular distribution functions of Rouse,
Zimm and Stokesian dynamics dumbbells

at an extension of r=2. Pe=10 and h*=0.25 .
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Angular distribution functions of Rouse,
Zimm and Stokesian dynamics dumbbells
at an extension of r=5. Pe=10 and h*=0.25.
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Angular distribution functions of Rouse,
Zimm and Stokesian dynamics dumbbells
at an extension of r=10. Pe=10 and h*=0.25 .
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Relative trajectories for
two "spheres” in shear flow with
no hydrodynamic interaction.
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Relative trajectories of
two spheres in shear flow with
complete hydrodynamic interaction.
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Figure (4.20)

Relative magnitudes of the interparticle-
force contribution to the stress and the
Brownian-force contribution to the stress
as a function of Pe for h*=0.15 .
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Relative magnitudes of the interparticle-
force contribution to the stress and the
Brownian-force contribution to the stress
as a function of Pe for h*=0.25 .
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Comparison of hydrodynamic and
interparticle contributions to the stress
for the Stokesian dynamics dumbbell.

h*=0.15
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Comparison of hydrodynamic and
interparticle contributions to the stress
for the Stokesian dynamics dumbbell.
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Comparison between the Stokesian dynamics
result and the Einstein prediction for the
hydrodynamic stress as a function of Pe with
h*=0.25 . The results for h*=0.15 are similar.
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Figure (4.25)

Comparison between simulation results and various
approximate analytical solutions for the shear-rate
dependence of the first normal-stress difference.
(h*=0.15)
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Comparison between Rouse model and
simulation results for the shear-rate
dependence of the first normal-stress difference.
(h*=0.25)
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Comparison between theory and simulation of the
frequency dependence of the storage modulus.
Pe = 0.1 and h* = 0.25 .
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Comparison between theory and simulation of the
frequency dependence of the loss modulus. Note that
with the inclusion of the hydrodynamic stress, the
loss modulus goes to a slope of 1 at high frequency.
Pe =0.1 and h*=0.25.




G"

91

0.20
—— ROUSE G"
) -O- sDG" (SIP contribution
1 only)
0.15 -
0.10
0.05 -
0.00 —
l T I | I
0.1 0.2 0.3 0.4 0.5
h*

Figure (4.29)

Effect of excluded volume on the storage modulus
of the dumbbell polymer model, plotted as a
function of the hydrodynamic-interaction
parameter. ®=0.0628 and Pe=0.628 .
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Figure (4.30)

Comparison between theory and simulation of
the frequency dependence of the storage modulus
for chains of 10 beads. Pe=0.628 and h*=0.15 .
The decrease in the Stokesian dynamics result at high
frequencies is a result of the relatively high Peclet number.
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Figure (4.31)

Comparison between theory and simulation of the frequency
dependence of the loss modulus for a chain of 10 beads. Note that
with the inclusion of the hydrodynamic stress, the loss modulus
goes to a slope of 1 at high frequency. Pe = 0.628 and h* = 0.15 .
The high-frequency increase in the xF contribution from Stokesian
dynamics is a result of the relatively high Peclet number.
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Figure (4.32)

Effect on loss modulus of renormalizing the frequency
to account for the excluded-volume effect on the rest
length of the connector spring. Pe = 0.1 and h* =0.25 .
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Figure (4.33)

Relative magnitude of the Brownian
contribution to the complex viscosity for
a 10-bead chain. Pe=0.628 and h*=0.15.
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Figure (4.34)

Relative magnitude of the Brownian
contribution to the complex viscosity for
a 10-bead chain. Pe=0.628 and h*=0.25.
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Figure (4.35)

Relative magnitude of the Brownian contribution
to the complex viscosity of the Stokesian dynamics
dumbbell as a function of the interaction parameter.
Pe=0.628 and ®=0.0628 .
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Relative magnitude of the Brownian contribution to the
stress as a function of the interaction parameter for the
Stokesian dynamics dumbbell. Pe=0.10 and ©=0.0628 .
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Dissipative component of the complex viscosity
predicted by the Rouse model for large N.

The predictions of the Zimm model are similar.
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Figure (4.38)

Dissipative component of the complex
viscosity predicted by the Stokesian
dynamics dumbbell model for h*=0.25 .
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Figure (4.39)

Comparison between the Einstein viscosity prediction
and the hydrodynamic contribution to the stress calculated
by the Stokesian dynamics model for a chain of 10 beads.

Pe=0.628 and h*=0.15 .
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Figure (4.40)

Comparison between the Einstein viscosity prediction
and the hydrodynamic contribution to the stress calculated
by the Stokesian dynamics model for a chain of 10 beads.

Pe=0.628 and h*=0.25 .
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Figure (4.41)

Frequency dependence of the hydrodynamic
stress predicted by the Stokesian dynamics
dumbbell for h* = 0.25.
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Comparison between Einstein viscosity and
hydrodynamic stress predicted by the Stokesian
dynamics dumbbell as a function of interaction

parameter for Pe=0.628 and w=0.0628
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5. NON-DILUTE RESULTS

5.1 Modeling of Non-dilute Solutions of Polymers

Simulations of non-dilute solutions of polymers were performed by placing 20
Stokesian dynamics bead-spring dumbbells into a cubic cell, and periodically repli-
cating this volume throughout space. The concentration of the polymer solution
was defined as the volume fraction of the beads in the control volume. The cal-
culation of the interparticle forces was identical to the infinitely dilute case. The
long-range hydrodynamic interactions between the periodically replicated beads of
the dumbbells are summed using the renormalization method of O’Brien (1979)
together with the Ewald summation technique. The details of the simulation are
otherwise identical to the description in §2.2. An in-depth discussion of the model-

ing of suspensions using Stokesian dynamics may be found in Brady et al. (1988).

Unlike the infinitely dilute case, where the solvent viscosity differered from
the pure-solvent viscosity by only a differential amount, a non-negligible viscosity
contribution may be calculated from the non-dilute results. This is related to the
stress contributions by the Einstein relation |

"77‘el=1+y‘11

Ns

=1+-§—¢{(SIP)+(SH)+(SB)}, (5.1)

where 7, is the contribution to the viscosity from the polymer and ¢ is the volume

fraction of the beads in the solution.

The model solutions were subjected to an imposed, steady, simple shear flow
for a period of 100,000 time steps. The first 20,000 time steps were discarded, and

analyses of the configuration and of the stress were performed using the remaining
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80,000 time steps. Because of increased computational difficulties associated with
the concentrated solutions, the time step was 1/20 of the time step for the infinitely
dilute analyses (dimensionless At = 0.01 for the infinitely dilute simulations and
At = 0.0005 for the concentrated simulations). Thus, although the unit cells for
the non-dilute solutions contained 20 distinct dumbbells, the 80,000 time steps
actually represent a sampling of phase space only 2% as large as in the infinitely
dilute case, where 4,000,000 data points were generated. For this reason there is a
much higher degree of uncertainty in the analysis of the results for the non-dilute

solutions.

5.2 Steady Simple Shear

Figures (5.1) - (5.7) present Q»(r) for the concentrated solutions of dumbbells
for several volume fractions at Pe = 1 and h* = 0.25. For the very low concen-
trations (¢ < 0.01) the distributions are only slightly disturbed from the infinitely
dilute case. Instead of just one peak beyond contact, there are three, approximately
at r = 4, 8 and 12. Even though the concentrations are very low, the presence of
other dumbbells in the solution has a definite effect. Though the mean separation
of the dumbbells is large, two of them come near contact often enough to perturb
the distribution, effectively placing themselves between one another. At ¢ = 0.2
and above, the effect on the distribution is striking. The peak at contact grows
steadily, reflecting the difficulty of movement among the tightly packed beads. At
¢ = 0.45, the peak at r = 2 rises to a magnitude of 3.2, nearly 30 times the size of
the infinitely dilute peak. This increase in the time spent near contact has a great
impact on the magnitude of the hydrodynamic and Brownian contributions to the

stress.

Figures (5.8) - (5.10) show the angular-distribution function at an extension

of r =5 for ¢ = 0.1, 0.2, and 0.45, respectively. These show that the concentrated
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solutions have a tilt toward the z-axis beyond that of the infinitely dilute case. This
is not surprising, and is a result of the hindered rotation caused by the presence
of other dumbbells. A large extension along the y-axis is not favorable, since it
is likely to interfere with a neighboring dumbbell, as both try to rotate in the
shear flow. As the concentration increases, the tilt toward the axis of shear is more

pronounced. For a given concentration, the tilt is greater for larger values of r.

Figure (5.11) displays the magnitudes of the three contributions to the stress
as a function of concentrations up to ¢ = 0.45 for Pe = 1 and A* = 0.25. SIP
appears to reach a maximum between ¢ = 0.1 and ¢ = 0.2. This shows that
increasing the concentration of dumbbells has two competing effects on their ex-
tensions. Initially, the increased hydrodynamic and excluded-volume interactions
act to pull the beads of the dumbbells apart, increasing the tension in the spring,
and thus increasing STP. As ¢ increases, the extension continues to increase, but
it is offset by the increased tilt toward the z-axis. Finally, at ¢ = 0.45, the beads
become too tightly packed to be extended. They spend most of their time as
nearly touching pairs, unable to be dragged apart despite the large hydrodynamic
drag forces. This is another example of the importance of excluded volume. In a
concentrated suspension of Zimm dumbbells (concentrated in number density, not
volume fraction), there would be no such restriction to movement. The hydrody-
namic drag from the surrounding dumbbells would dominate, and the extensions
become large, as in the infinitely dilute case. At a concentration of ¢ = 0.2, there
is a transition from a regime where S'¥ and S¥ are of the same magnitude to a
hydrodynamically dominated regime. This includes a large increase in the SZ. At
lower concentrations, SB is consistently small relative to S/¥, because conditions
that induce order are accompanied by large extensions of the dumbbells. This
shortcoming in the calculation of SP was discussed in detail in §4.2. At higher
concentrations the dumbbells still become ordered along the shear axis, but now

the separation remains small, so that Brownian stresses calculated based on the
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beads become large. Figure (5.12) shows that the ST¥ contribution to the stress
changes the viscosity more quantitatively than qualitatively. Its biggest effect is
to make the transition from low-¢ viscosity to high-¢ viscosity less smooth. This

dampened effect of S% is a result of the restricted extension discussed above.

STP appears to have a much stronger effect on the shear-rate dependence of the
viscosity of a suspension at a fixed volume fraction. Figure (5.13) displays the stress
contributions for a suspension of dumbbells at a volume fraction of ¢ = 0.316 for
Pe=1, 10, and 100. Figure (5.14) plots the viscosity of the suspension for the same
parameters. Just as in a suspension of spherical particles, SH and S combine
to produce shear thinning first, then shear thickening (e.g., Phung, 1991). The
addition of interparticle forces, though, removes the shear-thickening behavior in

S?P compensates for the increase in S¥,

the examined range of Pe. The decline in
and only shear thinning is present. This, however, is certainly only a temporary
effect. As Pe increases further, SF no longer will make a substantial contribution
to the stress. At Pe = 100, S'¥ already is nearly zero. The hydrodynamic stress,
though, will continue to increase with Pe, so the suspension will again shear thicken.

The inclusion of interparticle forces has delayed the onset of shear thickening, and

has also lessened the extent of shear thinning of the suspension.

It is important to note that the reported dominance of hydrodynamic forces
over interparticle forces is in direct conflict with the observed experimental be-
havior of concentrated polymer solutions. The rheology of concentrated polymer
solutions is better modeled by the Rouse model than by the Zimm model (Ferry,
1980), suggesting that concentrated-polymer rheology is actually dominated by the
interparticle forces. This appears to be a shortcoming of the dumbbell model. Con-
centrated polymer solutions are subject to such multiple-length-scale phenomena
as coiling and chain entanglements. The dumbbell model, with only one length

scale, cannot address such issues.
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As noted in §5.1, the amount of data collected for the solutions of the dumb-
bells is not large enough to justify firm statements about the results. In particular,
it should be noted that all sets of initial configurations for ¢ > 0.1 were chosen
so that each dumbbell’s initial extension was close to 2. The choice of short ex-
tensions, rather than random extensions, was based on the assumption that an
equilibrium distribution would favor shorter extensions, as in the dilute case. To
emphasize the sensitivity to initial conditions, Figure (5.15) presents Q2(r) for
¢ = 0.316 and Pe = 1, based on an initial arrangement of slightly larger initial
extensions than those shown in Figure (5.6). Apparently, several of the dumbbells
became “trapped” at large separations, and were unable to move past the inter-
vening dumbbells within the duration of the simulation. While this had a minimal
effect on S¥ and SB, the effect on STP was tremendous. The increased extension
caused the interparticle stress to rise from 0.50 to 1.87, causing the predicted vis-
cosity of the suspension to jump from 4.13 to 5.93, an increase of over 40%. While
this result is still below the predicted viscosity for ¢ = 0.45, it does illustrate the
importance of obtaining a good sampling of phase space before drawing conclusions.
Nonetheless, this “problem” represents a strength, not a weakness, of the Stokesian
dynamics method. In a concentrated suspension of polymers, chain entanglements
are expected to play a major role in determining the structure, and thus the rheol-
ogy. Models based on far-field hydrodynamics and no excluded volume, such as the
Rouse and Zimm models, cannot capture these steric effects. Stokesian dynamics

can at least begin to address them.

Obviously, the imposed restriction to short extensions in this study is not
necessarily correct. It may be the case that a wider distribution of extensions is
correct, even if some dumbbells remain trapped at larger extensions. There may not
even be a unique “equilibrium” distribution for all concentrations. The “relaxed”
distribution as ¢ — oo could be completely dependent upon the initial configuration

and the shear history. A more in-depth investigation using the Stokesian dynamics
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model should reveal that there is a critical concentration ¢* marking the onset of
this behavior. Below ¢* all samples, regardless of the initial arrangement and shear
history, will come to the same long-time, equilibrium distribution. Above ¢*, the
spring forces acting to pull the dumbbells together will be insufficient to overcome
the tight packing of the intervening beads. The distributions found after allowing
the sample to “sit” for a long time will not be identical, but will be dependent

upon the initial conditions and shear history.

This discussion of ¢* so far has considered the distribution of extensions found
after the simulated suspension is allowed to relax, not subjected to any flow. There
should also be critical concentrations for samples subjected to a shear flow for
long times, i.e., a spectrum of ¢* = ¢*(Pe). For instance, two different samples
that were “locked” into distinct distributions at ¢ > ¢*(0) may reach the same
distribution after long-time exposure to a flow of Pe = 10. This would show that
¢*(10) > ¢*(0). This information would be of use in industry, where the ultimate
distribution of polymers in a material will affect the physical properties of the
material. The knowledge of ¢*(Pe) could help processing to ensure that identical

properties are obtained for all samples.
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Comparison of angularly averaged radial
distribution functions of Stokesian dynamics

dumbbells at infinite dilution and at a volume
fraction ¢ = 10™, Pe=1 and h*=0.25 .
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Comparison of angularly averaged radial
distribution functions of Stokesian dynamics
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fraction ¢ = 10>, Pe=1 and h*=0.25 .
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Comparison of angularly averaged radial
distribution functions of Stokesian dynamics

dumbbells at infinite dilution and at a volume
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114

01574 —— SD ( dilute )
; ;=== SD (¢ = 0.1)
|
| ]
| ]
| ]
Il
— 0.10 —
)
o
0.05 -
0.00
11 14 17 20 23

Figure (5.4)

Comparison of angularly averaged radial
distribution functions of Stokesian dynamics
dumbbells at infinite dilution and at a volume

fraction ¢ =0.1. Pe=1 and h*=0.25 .
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Comparison of angularly averaged radial
distribution functions of Stokesian dynamics
dumbbells at infinite dilution and at a volume

fraction ¢ =0.2. Pe=1 and h*=0.25 .
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Comparison of angularly averaged radial
distribution functions of Stokesian dynamics
dumbbells at infinite dilution and at a volume

fraction ¢ =0.316. Pe=1 and h*=0.25 .
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Comparison of angularly averaged radial
distribution functions of Stokesian dynamics
dumbbells at infinite dilution and at a volume
fraction ¢ = 0.45. Pe=1 and h*=0.25 .
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Comparison between angular distribution
functions of Stokesian dynamics dumbbells
at infinite dilution and at a volume fraction
0=0.1 for an extension r=5. Pe=1 and h*=0.25 .
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Comparison between angular distribution

functions of Stokesian dynamics dumbbells

at infinite dilution and at a volume fraction
¢=0.2 for an extension r=5. Pe=1 and h*=0.25 .
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Comparison between angular distribution
functions of Stokesian dynamics dumbbells
at infinite dilution and at a volume fraction
¢=0.45 for an extension r=5. Pe=1 and h*=0.25 .
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Concentration dependence of the various stress
contributions in a suspension of Stokesian
dynamics dumbbells. Pe=1 and h*=0.25.
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Figure (5.12)

Viscosity as a function of concentration in a suspension
of Stokesian dynamics dumbbells. Pe=1 and h*=0.25.
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Stress contributions as a function of Pe in a
suspension of Stokesian dynamics dumbbells.
The volume fraction is 0.316 and h*=0.25.
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Effect of interparticle forces on the hydrodynamical
contributions to viscosity. The hydrodynamic and
Brownian contributions from the Stokesian dynamics
dumbbells are nearly identical to the results of Phung (1991)
for a suspension of spheres at the same volume fraction.
The volume fraction is 0.316 and h* = 0.25 for the dumbbells.
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radial distribution function for a volume
fraction ¢ = 0.316 . Pe=1 and h*=0.25 .



126

6. CONCLUSIONS

A new method of studying polymer dynamics that intensively calculates the
full hydrodynamics has been compared to existing models. The Stokesian dynamics
bead-spring model was compared to the Rouse and Zimm models for steady and
oscillatory shear, and also compared to éttinger’s Gaussian approximation for

steady shear.

For the dumbbell model of polymers, the Stokesian dynamics‘model provides
no advantages over the dynamical Zimm model or the Gaussian approximation.
It is computationally more expensive, yet gives similar results. Nonetheless, an
analysis of the predictions of the Stokesian dynamics model does suggest several
ways in which the simpler models may be improved. Stokesian dynamics calculates
the full hydrodynamics of the dumbbell, including the hydrodynamic stress, S¥.
Under both the steady shear and the oscillatory shear, S¥ is predicted to be nearly
equal to the Einstein-stress contribution, S¥. This suggests that S¥ may be added
to the results of Zimm and the Gaussian approximations without complicating
their solutions. This is particularly attracti\}e in the case of oscillatory flow. The
Stokesian dynamics results predict that S¥ is the sole contributor to the high-
frequency viscosity addition in a polymer solution. The Rouse and Zimm models

both predict the high-frequency viscosity to be zero.

An analysis of the microstructures of the Rouse, Zimm and Stokesian dynamics
models reveals that shear thinning is the result of a change in orientation. Hydro-
dynamic interaction causes the angular orientation to shift toward the axis of shear.
This tilt increases with Pe. This shift in the orientation reduces the contribution of
the interparticle force to the measured stress. Hence, the viscosity decreases with
increasing shear rate. This shear thinning as the result of change in orientation

suggests a way by which shear thinning may be studied in the Rouse model. The
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increased time spent along the axis of shear by the Zimm and Stokesian dynamics
models suggests behavior that would be expected in a flow with greater extensional
character. In shear flow, rotation balances extension. Analyzing the Rouse model
in a flow where the extensional effect is of greater magnitude than the rotational
effect should mimic the increase in time spent near the shear axis. Studying the
effect of increased extension on the stress predicted by the Rouse model could pro-
vide additional insight into the roles of configuration and extension in the stress

contributions of polymers.

An additional investigation suggested by the orientationally induced shear
thinning involves flow birefringence. As stated in Onuki and Doi (1986), the in-
trinsic birefringence in a polymer solution is proportional to the anisotropy of the
stress tensor. Since the stress tensor is directly dependent upon the polymer orien-
tation, this implies that intrinsic-birefringence measurements will provide informa-
tion about the orientational distribution of a polymer solution subjected to a flow.
Examining intrinsic-birefringence data for dilute polymer solutions over a range
of Pe will provide another point of reference for determining when the Stokesian
dynamics model is an appropriate model and when the Zimm (or another, simpler

model) will suffice.

The Brownian stress calculated by the Stokesian dynamics model is negligible
for almost all examined flows. Rather than confirming that S? is unimportant,
this points to a shortcoming in the stress calculations of all bead-spring models,
including the present Stokesian dynamics model. None of the models consider the
entropy of the orientation of the interparticle springs. In the theory of rodlike
polymers, the entropy of the rod orientation is the only source of stress. Equal
consideration should be given to the springs in the bead-spring model. To better
see why the Stokesian dynamics formulation does not capture this stress, consider
a concentrated suspension of randomly packed spheres. There is little order in the

system. Now, connect pairs of spheres such that the connecting vectors are nearly
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identical in orientation. The system has become highly ordered, but the Stokesian
dynamics prediction of S? has not changed. The Stokesian dynamics formulation
may be able to capture the contribution to SZ by allowing the beads to rotate only
about the axis of the spring, since this would induce rotational coupling among the

bead pairs.

Despite the numerous improvements in polymer modeling suggested by the
Stokesian dynamics model, it is not an efficient model in the case of a dumb-
bell. The dynamical Zimm model and ()ttinger’s Gaussian approximation give
essentially the same results with much less effort. This is not true for multibead
representations, or for the modeling of concentrated solutions. In both of these
cases the lubrication forces and many-body effects calculated by Stokesian dynam-
ics become important, and are not provided by the other models. Dumbbells often
rotate as a unit, with little relative motion and thus little hydrodynamic stress.
The beads in multibead models, particularly in high-frequency flows, will be forced
to move relative to one another, inducing additional hydrodynamic stress. The
Stokesian dynamics model may also capture some aspects of the so-called “internal
viscosity” of polymers. Internal viscosity refers to a polymer’s resistance to a sud-
den extension. If included in a model, it is in the form of a “dashpot,” or a term
proportional to the rate of extension rather than to the magnitude of the extension.
Lubrication effects from nearly touching beads may provide a similar effect in the
Stokesian dynamics model — — again, an aspect of polymer physics which simpler

models cannot address.

In concentrated solutions these hydrodynamic and excluded-volume effects be-
come even more apparent. At high concentrations, the hydrodynamic and Brown-
ian stresses provided by the Stokesian dynamics model allow analysis of chain
entanglements. This important qualitative aspect of concentrated-solution behav-
ior cannot be addressed by previous dynamical models that do not include these

forces. However, the present results show that even the Stokesian dynamics model
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is not appropriate for concentrated-solution analysis if the simple dumbbell model
is used. Chain entanglement is a multiple-length-scale phenomenon, and the dumb-
bell model is inherently a single-length-scale model. In addition, the concentrated
solutions require long simulation times to ensure that a good sampling of configu-
ration space is obtained, and this preliminary study has not satisfied that criterion.
The results obtained are strongly dependent upon the initial configurations. With-
out examining longer runs it is impossible to state whether this dependence on
initial conditions is real or is a consequence of the short simulation times. It is
anticipated that there exists a critical concentration ¢*, above which the orienta-
tional distribution of the solution as ¢ — oo will always be determined by the initial
arrangement and the shear history. With the rapid increase in speed of modern
computers, the practical use of multibead models to answer such questions is not

far away.
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APPENDIX A

Calculation of preaveraged time constants.

As noted in §2.1, the Oseen tensor is unsuitable for numerical simulations of
polymers because it predicts negative mobilities for small bead separations. For
this reason most studies, including this one, use the Rotne-Prager interaction ten-
sor. For comparison with the preaveraged results, however, prior studies still have
compared to the preaveraged Oseen tensor, assuming that the differences between
Oseen and Rotne-Prager will be small. For the dumbbell case this assumption
is unnecessary, since it is trivial to calculate the preaveraged results for any in-
teraction tensor, as shown below. This development draws upon the the work of

Thurston and Morrison (1969).

From Eq. (2.115), for two beads,

1 1
(J)eq - % ;)»
= CJ' (A.1)

The choice of the hydrodynamic-interaction description does not change (1/r) (an
equilibrium characteristic), but it can change the constant in front. Thus, for a

given hydrodynamic-interaction tensor ¥, the average interaction is

<X>eq = /X\I’eqdra
= Cy. (A.2)

For example, ¥, between the two beads of a Hookean dumbbell with no excluded

volume is given by

KN*? _ipe
\I’]Q = (2—7;> € 3 Kr . (A3)
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It is simple to determine Cy numerically for any ¥, an advantage for such in-
teraction tensors as Rotne-Prager, where the different form of the interaction for
different ranges of r may make analytic solution difficult or impossible. This leads

to a general definition for the off-diagonal elements of the matrix H,

H=(Cy,
= Hy. (A.4)

To solve for the time constant of the dumbbell, the eigenvalues of HA — AT are
required, where A is defined in Eq.(2.3) of §2. For the dumbbell case,

_(1-Hy Hy-1
HA_(HX_1 l—HX)’ (A.5)

SO

_(1—Hy -\ —(1-Hy)
T ) (4.6)

This leads to a relaxation time constant \; for the dumbbell,
A1 =2(1 - Hy). (A.7)

As shown above, Cy is a function of 2*, and thereby a function of the spring
constant K. Thus, the relaxation time for any given x and h* is determined
by calculating Cy and inserting in Eq.(A.7), then using the resulting \; in the
equations for G and G~ given in §3.3.

For a chain of N beads (N > 2), Eq.(A.7) no longer applies, but the eigenvalues
of HA — AI can still be found. If the beads have no excluded volume, then the
distance between bead : and bead j is given by

K \*7? o
R — 3 Kli—jlr
U, (27rli — ]|> e ? . (A.8)
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The components of the complex moduli obtained using both the preaveraged Oseen
tensor and the preaveraged Rotne-Prager tensor are plotted in Figure (A.1) for the
case N = 10. This plot validates the assumption that Oseen and Rotne-Prager
are negligibly different in the preaveraged case. This example may be repeated for
any value of N. The limiting step is the length of time required to solve for the

eigenvalues of the N x N matrix.

Although no analytical equations exist for a chain of N beads with excluded
volume, preaveraged time constants for such a chain may still be calculated. Monte
Carlo simulations can be run for any length of chain, and a numericval equivalent to
Eq.(A.8) can be calculated for ¥.,. This numerical ¥, can then be used to form
the H matrix, and eigenvalues of HA — AI calculated. The limiting step becomes
the length of time required to get a good estimate of ¥, from the Monte Carlo
runs. For the case of N = 2, ¥, = P from Eq.(3.3), §3. Using this distribution
function, A; can be calculated. For the Rotne-Prager interaction, it is found to be
1.440, as compared to 1.336 for the non-excluded-volume case. The components
of the complex moduli for the dumbbell with and without excluded volume, using

the Rotne-Prager interaction, are plotted in Figure (A.2).
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APPENDIX B

Low Péclet departure from equilibrium of P,

for the Stokesian dynamics dumbbell.

The equilibrium radial-distribution function for the Stokesian dynamics dumb-

bell is
Pye— 3K (r > 2a);
P)(r)y={"0 . B.1
2 () { 0 (r < 2a). (B-1)
For the Stokesian dynamics model in low-Péclet, steady, simple shear flow, an
ordinary differential equation may be solved for the exact departure of the radial-
distribution function P, from the equilibrium distribution Pj. Introducing the

disturbance quantity fo, defined by
P, = PJ + Pefs, (B.2)

Eq.(3.1) of §3.1 becomes, to leading order in Pe,

0
—%—V-Dz'sz—V'Dz'(v%)fzZ“V'U2P20, (B3)

where D = kTM is the relative diffusivity. Note that the third term on the left-
hand side of (B.3) arises because the disturbance function f; in (B.2) has been
defined independent of P, as opposed to the f» of Russel and Gast (1986) and
Bossis, Brady and Mathis (1988), which was defined as

Py = P + PePf,. (B.4)

Since FIP for the polymer problem grows rather than decays with r, the introduc-
tion of Eq. (B.4) as the disturbance quantity results in a differential equation with
ill-posed boundary conditions. Hence, (B.2) must be introduced to allow solution

of the problem.
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Because the equilibrium state is isotropic, the non-dimensional, hydrodynamic,

relative diffusivity and velocity can be written as
D;(r) = 2{ftG(r) + (I —r)H(r)}, (B.5)
Us(r) =rt- E® —ri - E¥{ftA(r) + (I — #¥)B(r)}, (B.6)

where E® is the non-dimensional rate-of-strain tensor of the imposed linear shear
flow, and r = r/r. G, H, A, and B are the hydrodynamic-interaction functions
for two particles given by Batchelor (1976). The same expressions are used as in
Bossis, Brady and Mathis (1988). These expressions are given at the end of this
appendix.

From the form of the relative velocity for steady shear flow, fa(r,t) can be

written as

falr,t) = —3 SR B 5, .7

where f(r) satisfies

(e)+ (2-2err)eL

dr dr T T dr
4 26;; 2 " dG 26y
0
= -WP) — &r(l — A), (B.8)
' dr
where
W(r) = —6::(A— B) — r%é : (B.9)

and §;; is the trace of the identity matrix, é;; = 3 for the three-dimensional problem.
Note that this differential equation is substantially different from those of Russel

and Gast; Bossis et al.; and Batchelor because of the change in the definition of f;.

The boundary conditions to be imposed on f are zero distortion at infinity,

f~0 as r— oo, (B.10)
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and no flux at contact,

G(%{-—}—I{rf):O at =2 (B.11)

which uses the fact that A ~ 1 as r — 2. Furthermore, examination of Eq. (B.1)
reveals that not only must f ~ 0 asymptotically, but f must decay exponentially.
Since Py decays exponentially, a slower rate of decay for f would eventually cause
the disturbance to exceed Py, thus violating the initial assumption of a small per-

turbation. Equation (B.7) must be solved numerically. Solution of the equation

follows the procedure of Russel & Gast (1986).

The asymptotic solution of Eq. (B.8) satisfying the boundary conditions as

r — 00 can be written as

f=cafur+cafus + fp, (B.12)

where c; fg; is a homogeneous, asymptotic solution and fp is a particular solution.
One of the homogeneous solutions decays algebraically and is discarded. This

investigation found, as the remaining solutions,

—Llge2 3 -2 3 -3 3 9 —4
=e 3K 14 2 = ST :
fu=e [ +Kr +2KT +(K2+16K r, (B.13)
gk [l 39 (2 a1y
fp = Pye [ 5T 57 41nr (4K + )7 | (B.14)

The integration is started at r = 20 for the homogeneous equation, and the
full equation, with the solutions (B.13) and (B.14), respectively. A fourth-order
predictor-corrector is used with Ar = 10~%. The integration is continued up to
r = 2.0001, at which time the unknown constant in the homogeneous solution is
found by substitution of the combined solution into (B.11). The solutions of (B.13)
and (B.14) for K = 0.19635 are plotted in Figures (B.1) and (B.2), respectively.
The full solution for K = 0.19635 is plotted in Figure (B.3).
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The expressions for G, H, A and B depend upon the value of r. For r > 4,
they are given by

A=5r"%—8r5 25076 (B.154)
6
B %T—S, (B.15b)
1 11
G=1- -;-r_l + 73— -Z5r_4 + ?r"6, (B.15¢)
H=1 1" 5" TS (B.154d)

For 2.01 < r < 4, the functions are given by

2
A= - (z1; — =12) (chi - X1G2) ) (B.164)
4 a a
B = r [(yn — Yia) (chf - chz;) - (yﬁ - y?z) (Yllil - Yllzf)] ; (B.16b)
G = z1, — =1y, (B.16¢)
H =y — vis (B.164d)

where the functions in these equations are either mobility functions (small letters)
or resistance functions (capital letters) for two spheres. The calculation of the
functions is based on the collocation method given by Kim and Mifflin (1985). For

r < 2.01, the following lubrication approximations are used:

A=1-4.148¢ + 3.290¢%/2 (B.17a)
9121 7804

B = 0.406 — 22 — + 0.780 = (B.17b)
In¢ (In~7)

G =26 +1.821In¢ — 4€2, (B.17¢)

H = 0.402 — 2532 (B.17d)

In€¢’

where £ =r — 2.
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Figure (B.1)

Homogeneous solution of Equation (B.8) describing
the low-Pe disturbance to the Stokesian dynamics
dumbbell distribution function in steady shear.
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Figure (B.2)

Particular solution of Equation (B.8) describing
the low-Pe disturbance to the Stokesian dynamics
dumbbell distribution function in steady shear.
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Figure (B.3)

Complete solution of Equation (B.8) describing
the low-Pe disturbance to the Stokesian dynamics
dumbbell distribution function in steady shear.
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APPENDIX C

Calculation of V- R;%] for Brownian motion

V - Rz is needed for the calculation of the Brownian-displacement term in
Stokesian dynamics, Eq.(2.294). R;%] does not exist in analytical form, so the

divergence is calculated using the identity
V-Rpy = Rzl - VRpy : R, (C.1)

or using index notation,

OR;;! _10Rx __
8%{ =—R;} 8:3]1 Ry (C.2)

R Fry also does not exist in a closed form. It must be extracted from

_ aq-1 _(Rru Rrg
R = M + Rlub — (RSU RSE ) ’ (03)

where M is the 11N x 11N grand mobility matrix defined in Eq.(2.36) and Ry =

Rap — RS} from Eq.(2.38). Hence, the solution requires the calculation of
VR =VM™ 4+ VRus, (C.4)

of which the Rry portion is used. However, VM ™! is not known analytically

either, but must be calculated using the identity
VM =M. YM - MY (C.5)

which, using index notation, is

aM:—kl -1 8Mn -
a.’llj = _Mjn _B.I_IEMP’CI (CG)
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Thus, the final result is

_, ORy
~10Ri
— _p-1 J
= —R;; 521
-1 —_ m — —

As it stands, this calculation of 8Ri_jl/8wj is an O(N?®) operation, which is unac-
ceptable. It is broken down into separate operations, none of which are larger than
O(N?). Also note that although ¢, ,k and [ in (C.7) range from 1 — 6N, the use of
M~ in calculating Rpy requires that m and p range from 1 — 11N i.e., the full
FTS mobility matrix must be used.

Start with the M ™! portion. Define vectors A and T and matrix Q as follows:

11 OMop
Ai = R M, axlpMplngll? (C.8)
Qim = RjM;. , (O(N?)) (C.9)
and similarly,
Qip = M R (C.10)
Thus,
A “sz 833[ le (Cll)
Now define
N oM ' 3
£ = 220, (o) ©32)

which gives the final result for the M ™! portion,
Ai = QinTm . (O(N?)) (C.13)
For the R'® portion, define vectors B and P as

aRlub
= — R Ik
B; R” 21

R;, , (C.14)
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and s
ORY>
P; = EJI_RHI ) (O(N3)>
thus,

B;, = —Ri—ijj . (O(N2))

So V- Ri—jl is formed by

OR;} 1B
Oz; =Ait+ b

(C.15)

(C.16)

(C.17)
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APPENDIX D

Calculation of V- (RSU . R;%]) for Brownian Stress

For Brownian stress, V - (RSU . R;.%J) is required, given by

_ O (Rsv)ij ,p- 9 (Rry),
{V-(Rsv-Rpy)}, = e (RFy) ;5 + (Rsv);; —E{']—k, (D.1)

where the 0 (R;%])jk /Ozy term in brackets has already been calculated in Ap-
pendix C. As in Appendix<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>