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Abstract

Theaganeraliza,tion capability of feedforward multilayer neural networks is investigated
from two aspects: the theoretical aspect and the algorithmic aspect.

In the theoretical part, a general relation is derived between the so-called VC-
dimension and the statistical lower epsilon-capacity, and then applied to two cases.
First, as a general constructive approach, it is used to evaluate a lower bound of the
VC-dimension of two layer networks with binary weights and integer thresholds. Sec-
ond, how the sample complexity may vary with respect to distributions is investigated
through analyzing a particular network which separates two binary clusters. Bounds
for the capacity of two layer networks with binary weights and integer thresholds are
also obtained.

In the algorithmic part, a network reduction algorithm is developed to study gener-
alization in learning analog mappings. It is applied to control a two-link manipulator
to draw characters. The network addition-deletion algorithm is described to find an
appropriate network structure during learning. It is used to study the effect of sizes of
networks on generalization, and applied to various classification problems including

hand written digits recognition.
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Chapter 1

Introduction

Artificial neural networks consist of nonlinear threshold units connected with one
another through interconnections called weights. A special type of neural network,
feedforward multilayer neural networks, are of particular interest in this thesis, since it
has been shown that with enough resources (units) they are capable of approximating

any nonlinear mapping [8] [2].

Neural network models of computation are suitable for those problems which can
not be solved by a well-defined formula or algorithm, due to the learning capability
of neural networks. A commonly used learning model is learning from examples, or
specifically, supervised learning. In a setting of supervised learning, what is usually
available is a training set, which consists of a finite number of desired input-outout
pairs. A neural network model can be developed by modifying its parameters so that
it can absorb some useful information about an unknown environment. However, a
network thus obtained is not guaranteed to be able to approximate the true underlying
mapping, since it is possible for a resulting network to simply behave like a look-up

table, which can remember training samples perfectly, but fail to respond well to
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new samples belonging to the same problem but which it has never seen before.
Therefore, to make neural networks useful models of information processing, it is

crucial to investigate the problem of generalization.

Loosely speaking, generalization can be identified as the ability of networks to
have persistent performance on unseen inputs. Rigorously, it can be defined in a
probabilistic setting using the so-called PAC learning model which was introduced
into the machine learning community by Valliant [4], and into the neural network
community by Baum and Hassler [1]. This theory answers two questions: a) whether
generalizé,tion is possible, b) when it can happen. According to this theory, a sin-
gle quantity called the VC-dimension [5], which is a distribution-free and network
parameter-independent, can be used to characterize the generalizing capability of a
class of networks with the same structure. There are, however, two of the questions
given below which the existing theory has not been able to answer yet, and which are

of interest for this thesis.

1) How does generalization relate to memorization, where the memorizing capa-

bility of a network is characterized by its information capacity [10] [8]?
3) How can one find networks that generalize well?

To contribute answers to these questions, the work presented in this thesis in-
vestigates generalization from two aspects: the theoretical aspect in the first three

chapters, and the computational aspect in the Chapters 5 and 6.

The theoretical results focus on the VC-dimension, the statistical information ca-
pacity and their relations, to investigate how degrees of freedom of networks relate to
generalization. Specifically, in Chapter 2 a general relationship is developed for feed-

forward multilayer networks in general, which bridges together the VC-dimension, a
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distribution and network independent quantity, with the statistical epsilon-capacity
[7], which depends on the distribution of samples and choices of weights. The re-
lationship indicates that generalization happens after memorization, and provides a
general constructive methodology for finding a lower bound for the VC-dimension
of a class of networks of interest in general. It is applied to find a lower bound on
the VC-dimension of two layer networks with binary weights and integer thresholds.
In Chapter 3, as another application of this general relation, how the sample bound
for generalization varies with respect to distributions is studied through analyzing a
specific network which classifies samples belonging to two binary clusters. Chapter 4

contributes to evaluations of the capacity of two layer networks with binary weights

and integer thresholds.

The algorithmic part concentrates on the development of learning algorithms
which can actually find networks that generalize well. Guidelines for these algorithms
are provided by the implications of the theoretical results, which suggest that in order
to obtain an optimal network that can approximate the underlying mapping, it is
necessary to search for an appropriate network structure during training. Particularly,
in Chapter 5, a network reduction algorithm and its modified versions are developed to
deal with learning analog mappings. The algorithm is applied to training a network to
control a two-link manipulator which draws characters. A network addition-deletion
algorithm is developed in Chapter 6, which allows the search of network structures in a
general fashion by finding number of layers, number of units on each layer and possible
local connectivity patterns. Generalization in terms of learning binary mappings
is investigated in this chapter by applying the algorithm on various classification

problems including hand written character recognitions.

Finally, the conclusion summarizes the results and states some open problems



and possible future directions.
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Chapter 2

The VC-Dimension vs. The
Statistical Capacity of Multilayer

Networks with Binary Weights

2.1 Introduction

The information capacity and the VC-dimension are two important quantities that
characterize multilayer feedforward neural networks. The former characterizes their
memorization capability, while the latter represents the sample complexity needed
for generalization. Although intuitively they seem to be interrelated, the precise rela-
tionships are basically unknown. Discovering those relationships is of importance for
obtaining a better understanding of the fundamental properties of multilayer networks

in learning and generalization.

In this work we show that the VC-dimension of feedforward multilayer neural

networks, which is a quantity independent of the distribution of the samples as well
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as choices of network parameters, can be lower bounded (in order) by a distribution
and network dependent quantity, the statistical lower epsilon-capacity C;-, when the
samples are drawn from two classes: €;(+1) and Qz(——l). The only requirement on
the distribution from which samples are drawn is that the optimal classification error
achievable, the Bayes error P, is greater than zero. Then we will show that the

VC-dimension d and the statistical lower epsilon-capacity C; are related by
C; < Ad, (2.1)

where € = P,, — € for 0 < € < P,;ore = P, —€ for 0 < € < P,.. Here
P,, represents the optimal error rate achievable on the class of classifiers considered.
It is obvious that P., > P,.. The relation given in equation (2.1) is non-trivial
if P, >0, P., < € or P,, < € so that €, the error tolerance, is a non-negative
quantity. Ad is called the universal sample bound for generalization, where A <
Ej—f:—i is a positive constant. That is, when the sample complexity exceeds Ad,
all the networks of the same architecture for all distributions of the samples can
generalize with almost probability 1 for d large. A special case of interest, in which
P = %, corresponds to random assignments of samples. In this case, the class
conditional distributions of the samples completely overlap with each other. Then
C: characterizes the memorizing capability of networks. Therefore, the relationship
in equation (2.1) relates the sample complexity that is necessary for generalization
with three things: the random lower epsilon-capacity of a network, which indicates
that generalization happens after memorization; the statistical lower epsilon-capacity

of the optimal classifier in a class\({f classifiers; and the Baysian classifier, which

implies the importance of appropriate choices of network structures.

Although the VC-dimension is a key parameter in generalization, there exists

no systematic way of finding it. The relationship we have obtained, however, brings
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concomitantly a constructive method of finding a lower bound for the VC-dimension
of multilayer networks. That is, if the weights of a network are properly constructed
using random samples drawn from a chosen distribution, the statistical lower epsilon-
capacity can be evaluated and then utilized as a lower bound for the VC-dimension.
In this paper we will show how this constructive approach contributes to finding a
lower bound of the VC-dimension of two layer (N — 2L — 1) networks with binary
interconnections, where V and L are the number of input and hidden units respec-

tively.

It has been shown by Baum and Haussler [1] that the VC-dimension d,, for
two layer (N — L — 1) feedforward networks with analog weights satisfies the relation
O(W) < dyr < O(WinL), where W is the total number of weights and L is the number
of hidden units. Discrete weights, however, are of primary interest for hardware
implementations. Furthermore , the number of bits needed to describe weight values
is one of the important quantities to characterize network complexity. Although
such networks with discrete weights have been implemented successfully in hardware
and various simulations have been done, very few fheoreticé,l results exist so far
concerning the generalization of multilayer networks with discrete weights. In what
follows we show that the general relationship between the VC-dimension and the
statistical lower epsilon-capacity can be applied to show that a lower bound for the
VC-dimension of (N — 2L — 1) networks with binary weights is O(;2r). Since it can
be easily shown that the VC-dimension d is upper-bounded by O(W), d, satisfies
the relation O(£5) < dy < O(W).
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2.2 A Relationship Between the VC-Dimension and the Statistical

Capacity
2.2.1 The Statistical Lower Epsilon-Capacity C_

The concept of the statistical lower epsilon-capacity was introduced by McEliece et
al. [10] for the Hopfield associative memory. It was later extended to the concept of
the epsilon-capacity by Venkatesh and Psaltis [15] who considered a single threshold
element in which an epsilon fraction of samples were allowed to be classified incor-
rectly. For multilayer feedforward networks, the statistical lower epsilon-capacity is

defined similarly as follows.

Definition 2.1 Consider a network s whose weights are constructed from M random
samples belonging to two classes. Let #(s) = %, where Z is the total number of
samples classified incorrectly by the network s. Let the random variable #(s) is the

training error rate. Let

P.(M) = Pr(#(s) < ¢€), (2.2)
where 0 < € < 1. Then the statistical lower epsilon-capacity C: is the mazimum M

such that P,(M) > 1 — 1, where ) can be arbitrarily small for sufficiently large N.

2.2.2 The VC-Inequality and A Universal Bound for Generalization

Consider a class S of feedforward networks with a fixed structure which consist of
threshold elements and one output unit. Then the Vapnik-Chervonenkis inequality

[11] can be expressed as
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12
£ M

Pr(sup | #(s) — Po(z|s) |> €) < 4®(2M,d)e~ 7, (2.3)
seS

where ®(2M,d) = iXd:l (2?’!), d is the VC-dimension of S, and s is one network in S.
P.(z|s) is the true };robability of incorrect classification of a new sample = by the
network s. #(s), which is an estimator of P.(z|s), is the ratio between the number of
samples classified incorrectly by s to the total M samples drawn independently from

some distribution. Since ®(2M,d) = 2?M for 2M < d; and ®(2M,d) < 1.5£%)-¢i for
2M > d [13], we have

IWﬁ@N@—A@@ﬁ»bSMMﬂ¢a, (2.4)
where
12
h(2M;d, €) ; if either 2M < d, or 6!22_’{[16—5 % > 1 for 2M > d,
3ay€ ) = 2

a2M)d M .
6%6 s ; otherwise.

In the following theorem we will show that 2(2M;d,¢') has one sharp transition
point occurring at O(d) for large d. When the number of samples M exceeds this
critical point, A(2M;d, €) is almost zero. That is, | #(s) — Pe(z|s) |< € with almost

probability one, for all s € S, which represents the occurrence of generalization.

Theorem 2.1 For large d

=1, if M < Ad
h(2M;d,¢)
< Be™, if M > Ad

where the constant A > % satisfies the equation
72

In(24) +1 — %A =0, (2.5)

B~ 1& and o ~ yIn2A.

&
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Proof:

a). For 2M < d, h(2M;d,€') = 1, since ®(2M,d) = eM™* which is bigger than

12

e~ for € > 0.

b). For 2M > d and d large, by Stirling’s formula, we have d! ~ v/2re—?d?+3,

Then
1. 5(22/{ )* M -~ \}_25_; edo(Mide") (2.6)

where
‘g(M; d,e)=InM —Ind +1+ In2 — e';]i\l. (2.7)

Let My, = A’'d and insert it into equation (2.7), where A’ is a constant. We then

obtain

f(A) = g(Mo;d,€)
12 A1
= ImA'+1+1n2— <A

8 b

(2.8)

for A" > -;- Since d is assumed large, we show in what follows, that for A’ > A, where
A > % is the unique root of f(A’) = 0, that f(A’) is negative. That is, e9(Moid<’)

decreases exponentially in d.

The uniqueness of the root in (3,+00) for f(A’) = 0 is true since f(A’) is

convex and has a unique maximum f(Z%r) = In(2%), where f(A’) — —oco when
A" —> +oo and f(3) =1~ 12, which is greater than zero. It is easy to check

that this root is in (ﬂ;?- lzz-g—f;?-) For any given v > 0 small, when M = (1 + v)Ad

~ e with a = ﬂﬁ — In(1 + «), which is approximately

equal to yinA > 0. Then for M > (1 + 7)Ad, h(2M; d,€') < Be=*¢, where B =~

W

Q.E.D

Since the VC-inequality holds for all sample distributions and all the networks of
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the same structure, we call this sharp transition point Ad the universal sample bound

for generalization.

2.2.3 A Relationship between The VC-Dimension and C~

To relate the VC-dimension, which is a distribution-free and network-parameter-
independent quantity, with the statistical lower epsilon-capacity which depends on
the distribution of samples and weights, we take two major steps shown in the theo-
rem below. One is to focus on a special distribution; another is to consider a specific
network. Then the relation can be drawn through a connection between the two sharp
transitions characterized by the statistical lower epsilon-capacity and the universal

sample bound for generalization.

Theorem 2.2 Let samples belonging to two classes Qy(+1) and Qy(—1) be drawn
independently from some distribution. The only requirement on the distributions con-
sidered is that the Bayes error Py, satisfies 0 < Py, < 3. Let S be a class of feedforward
multilayer networks with a fized structure consisting of threshold elements and s, be
one network in S, where the weights of sy are constructed from M (training) samples

drawn from one distribution as specified above. For a given distribution, let P., be the

optimal error rate achievable on S and P, be the Bayes error rate. Then

Pr(#(s1) < Peo — € ) < h(2M;d, €'), (2.9)
and
Pr(#(s;) < P — € ) < h(2M;d, '), (2.10)

where 7(sy) is equal to the training error rate of s1. (It is also called the resubstitution
error estimator in the pattern recognition literature.) These relations are nontrivial

if Poo > €, Pye > €and € > 0 small.
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Proof:

Since the VC-inequality holds for all distributions of samples, it is certainly valid
for the class of distributions with Py > 0. Then for one distribution in this class, we

have, for any given € > 0 and all the networks in .S,

Pr(sgg | #(s) — Po(z]s) |> €) < h(2M; d, €). (2.11)
Furthermore, for any particular s; € S,

| #(s1) — Pe(z]s1) | < sup | #(s) = Fe(zls) |, (2.12)

so that
Pr(| #(s1) — Pe(z]s1) |> €) < Pr(sup | #(s) — P.(z]s) |> €). (2.13)
€S
It is noted that s; is constructed using M samples and #(s;) is the error estimator

evaluated using the same sample set.

The event | #(s1) — Pe(z|s1) |> € occurs when one of the following cases is true:

#(s1) < Pe(z|s1) — € or #(s1) > Pe(z|s1) 4+ €. Since these two events are exclusive,

we have
Pr(| #(s1) = Pe(zls1) [> €) = Pr(#(s1) < Pu(zls1) — €)
+ Pr(#(sy) > Pu(z|s1) + €). (2.14)
Then
Pr(#(s1) < Pe(a]s1) — €) < Pr(| #(s1) — Pe(a]s1) |> €). (2.15)

Furthermore, the relation Pe(z|s;) > P., > P is always true since P,, is the
optimal probability of error achievable on S and P, is the Bayes error rate which is

optimal for all classifiers for the given distribution. Therefore

Pr(#(s1) < Poo —€) < Pr(#(s1) < Pu(z|s1) = €)

< h(2M;d,é), (2.16)
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and

Pr(#(s1) < P —€) < Pr(#(s1) < Pu(z|s1) — €)

< h(2M;d,é), (2.17)

where h(2M; d,€) is given in Theorem 2.1, and d is the VC-dimension.

Q.ED.

Since Pr(#(s;) < Pye — €) has the same form as given by equation (2.2) in defin-
ing the statistical lower epsilon-capacity, Theorem 2.2 suggests that the statistical
lower epsilon-capacity and the VC-dimension can be quantitatively related through

a relation shown in the theorem below.

Theorem 2.3 Asymptotically (for a large network such that M and d as functions
of the network size are also large), the lower epsilon-capacity C- of a network s, is

a lower bound for the VC-Dimension. Specifically,

C; < Ad, (2.18)

128in

where Ad is the universal sample bound given in Theorem 2.1 for A < , € =

!
€

Po—€ for0<e¢ <P, ore=P,—¢ for0 <€ < P,. That is, C; is at most of

the same order as d.

Proof:

Assume C; > Ad, where either ¢ = P, — € or ¢ = P, — €. Then by the
definition of the lower epsilon-capacity, either Pr(#(s;) < P.,—¢€') > 1—5 or Pr(#(s;) <
Py,e—¢€') > 1—n, where n is sufficiently small when the size of the network is sufficiently
large. However, from equation (2.4), we have either Pr(#(s;) < P, — €/) < 5 or
Pr(#(s1) < Py — €) < n, where n < O(e~*%) which is small when M > Ad. Then a

contradiction occurs. Therefore, we must have C < Ad.
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Q.E.D.

To interpret this relation, let us examine the range of € and € in equation (2.18).
Since €, which is initially given in inequality (2.3), represents the generalization error
between the training error rate and the true probability of error, it is usually quite
small. For most of practical problems, P, is small also. If the structure of the
class of networks is properly chosen so that P., & P, then ¢ = P,, — ¢ will be a
small quantity. Although the epsilon-capacity is a valid quantity depending on M
for any network in the class, for M sufficiently large, the meaningful networks to
be considered through this relation is only a small subset in the class whose true
probability of error is close to P.,. That is, this small subset contains only those

networks which can approximate the best classifier contained in this class.

For a special case in which samples are assigned randomly to two classes with

equal probability, we have a result stated in Corollary 2.1.

Corollary 2.1 Let samples be drawn independently from some distribution and then
assigned randomly to two classes 1(+1) and Q2(—1) with equal probability. This
is equivalent to the case that the two class conditional distributions have complete
overlap with one another. That is, Pr(z | Q) = Pr(z | Q;). Then the Bayes error is

%. Using the same notation as in the above theorem, we have

Ci_. < Ad. (2.19)

Although the distributions specified here give an uninteresting case for classi-
fication purposes, we will see later that the random statistical epsilon-capacity in

inequality (2.19) can be used to characterize the memorizing capability of networks,
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and to formulate a constructive approach to find a lower bound for the VC-dimension.

2.3 A Lower Bound of the VC-Dimension of Two Layer Networks with

Binary Weights

2.3.1 A Constructive Methodology

One of the applications of this relation is that it provides a general constructive
approach to find a lower bound for the VC-dimension for a class of networks. Specifi-
cally, using the relationship given in equation (2.19), the procedures can be described

as follows.
1). Select a distribution.

2). Draw samples independently from the chosen distribution, and then assign

them randomly to two classes.

3). Evaluate the lower epsilon-capacity and then use it as a lower bound for the

VC-dimension.

In this section we give an example that demonstrates how this general approach
can be applied to find a lower bound for the VC-dimension. Specifically, a statistical
approach is used to find a lower bound for the lower epsilon-capacity of a two-layer

network with binary weights as a lower bound for the corresponding VC-dimension.

2.3.2 Construction of The Network

The construction we consider is motivated by the one used by Baum in finding the
capacity for two layer networks with analog weights. Such a network whose weights
and thresholds required arbitrary accuracy can dichotomize any assignment of NL

samples in general position in N dimensional space, which gives a lower bound for the
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VC-dimension for such networks with real weights. Although this particular network
will fail if the accuracy of the weights and the thresholds is reduced, the idea of using

the grandmother-cell type of network can be adopted to construct our network.

We consider a two layer binary network with 2L hidden threshold units and one

output threshold unit as shown in Figure 2.1.

The weights at the second layer are fixed and equal to +1 and —1 alternately. The
hidden units are allowed to have integer thresholds in [—N, N}, and the threshold for
the output unit is zero. The weights at the first layer are constructed from random
samples as described as follows. Let X{™ = (z{™,....2{™) be a N dimensional
random vector, where mfzm Vs are independent random variables taking (+1) and (—1)
with equal probability %, 0LI<L,and0<m <M.

Consider the lth pair of hidden units. The weights at the first layer for this
pair of hidden units are equal and constructed using M samples which are assigned
randomly to the same class. Let w; denote the weight from the 7th input to these

two hidden units

M
wy = sgn(ey Y 2V), (2.20)

m=1
where sgn(z) = 1if £ > 0, and —1 otherwise. o;’s , 1 <[ < L, are independent
random variables which take on two values +1 or —1 with equal probability. They

represent the assignments of the LM samples into two classes £4(+1) and Q,(-1).

The thresholds for these two units are different and are given as

iy = o I_(l F k)\/-f:\/'%_l, (221)

where t;4+ correspond to the thresholds for the units with weight +1 and —1 at the
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Figure 2.1: Two layer networks with binary weights and integer thresholds
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Figure 2.2: Two Parallel Hyperplanes Formed by One Pair of Hidden Units.

second layer respectively. Since the samples, which are independent and equally
probable binary random variables, are randomly assigned to two classes, the Bayes

error is -;— in this case.

Before we go into the rigorous analysis to find a lower epsilon-capacity, we first
explain how the constructed network roughly works. Consider a set of given samples
and assignments. As shown in Figure 2.2, each pair of hidden units forms two parallel
hyperplanes separated by the two thresholds. When oy = 1, this pair will have a
presynaptic input 42 to the output unit for the samples stored in this pair which fall
in between the planes represented by “+”s in the figure, since they lie on the positive
sides of both planes. The other pairs of hidden units will have the presynaptic inputs

approximately 0 to the output unit to most of these samples which are not stored in
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those pairs represented by “-”s in the figure, and thus will most likely fall outside of
those pairs of parallel planes. When a; = —1, a similar outcome will occur except
+2 will be replaced by —2. When the samples are random, with a certain probability
they will fall either between a pair of parallel hyperplanes or outside. That is why we

need to go through such a statistical analysis.

2.3.3 Probability of Error for One Sample

As the first step in evaluating the epsilon-capacity, we compute P,;, which is the prob-
ability of incorrect classification of one random sample stored. By the construction
of the network, the total presynaptic input to the output unit due to the j-th pair
of hidden units, which is the difference between the outputs of two threshold hidden
units, can have two possible values +2 or 0 for oq = 1. For oy = —1, this pair can take
the values —2 or 0. Since a; is random and can take 1 and .—1 with equal probability,
each pair can take three possible values (4+2), (—2) and 0, for 1 <! < L. Without loss
of generality, we now consider the case that -‘1(1) is fed through the network and o, is
given to be 1. Let y{") denote the output of the network. Then P.; = Pr(ay? < 0).
If y%l) =0, y%l) is assigned to either class 1 or class 2 with equal probability -;- Let
351) be the presynaptic input to the output unit due to the /th pair of hidden units.
And let ng ) and n® be the number of +2’s and —2’s of the presynaptic inputs of the

output units given by the pairs with 2 <[ < L. Then

1
Pa = Pl = 1)+ 1P =0
= Pr(sgl) =2)Pr(n® —n{) > 2) + Pr(sV = 0) Pr(n®" — M > 1)
+ %Pr(sgl) =2) Pr(n(_l) - ns_l) = 1)

+ %Pr(s?’ =0)Pr(n® — 'Y = 0). (2.22)
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To obtain an explicit expression for P.;, we need to evaluate each individual term in

the above equation.

The presynaptic input to the two hidden units in the first pair equals

Zwlz IBh .

(2.23)

Since different terms in the summation (2.23) are independent, by the large

deviation theorem [4], for N sufficiently large, with | ¢4 — Ez§l) |< O(N%) and

| - — E2 |< O(N?), we have
Pr(s" =2) = Pr(typ <2V <t)

Nl
)

= 1-2Q(-k
NI
Pr(st” = 0) = 2Q(=ky/52),
where N’ = 2N and Q(—z) = \/—f_” e du.

Similarly we can obtain for 2 <1< L

Pr(s(l) 2) = Pr(t1_<zl < t14)
- a-a-myfY) - ara+ iy,

Pr(s,(l) =-2) = Pr(sl(l) = -2y = —1)Pr(ey = —-1)

= Pr(s®M =2),

Pr(s) =0)=1-Q(- (1—L)\/7)+Q( (1+k) %).

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

Let ngl) denote the number of pairs which have zero presynaptic inputs to the

output neuron. Then due to the mutual independence of sl(l) for 2 <1< L, the event.
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(n‘()l) = ko,n(_l) = kl,ng_l) = k,) has a multinomial distribution, i.e.
Pr(n{" = ko,n® = &y, n) = ky)

(L —1)!
kolkey ]

where ko, k; and k, are non-negative integers, and we can choose ! = 2 without

Prio(s) = 0)Pri (s{) = —2)Pr2(s{) = 2), (2.29)

L—oo

loss of generality. For M < N, L sufficiently large and LPr(sl(l) =2) == ¢, for
2 <1 < L, where cis a constant, the multinomial distribution can be approximated

by the Multiple Poisson distribution [4]. That is,
\ M(F1+k2)

A (2.30)

Pr(n(_l) = kl,nfﬂ) = k2) =e?

where 0 < k < 1, and

r=E DoY) g+ i/ (231)

When L is sufficiently large

L'I‘;—lJ /\2k
1 1 -
Pl =) = S o
~ e P (2)), (2.32)

1552 y2k41
Pr(n® =n{ +1) = 2 >

= Rk + 1)
~ e P(2)), (2.33)
since
[es) /\2k
—_— =" n ) .
,;,k!(k+n)! L.(2)) (2.34)

where I, (z) = i7" J,(iz) for = being a real variable and J,,(z) the nth order Bessel

function.
Because
1
Pr(n® -al) >2) = Sl - Pr(n® = n{) = 2Pr(n® —n{ = 1)], (2.35)

Pr(n® —n > 1) = -;-[1 — Pr(n® =), (2.36)
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plugging equations (2.36) (2.35) (2.28) (2.26) into the equation (4.3), we can obtain

P, = —;— —-= Pr(n(l) = n(l)) Pr(n(l) = n(l) +1)

+ Q(—k&)[Pr(n(_l) =n{ +1) + Pr(n® = n)). (2.37)

When A is large, we have the approximation [5]

62/\

VAT

Using this result in equation (2.37), we have

I,(2) ~ (2.38)

Pa=5——7=+2(- k\/- )= \/—) (2.39)
where A = ED[Q(—(1 - k)\/_N_') —Q(-(1 +k)\/W and 0 < k < 1.

We will show in the next section how P.; can be used in evaluating the lower

epsilon-capacity.
2.4 Probability of Error for All Samples Stored

Let

Z Z I(Alm)’ (2'40)

l—lm—

where I(A) = 1 if event A occurs, and I(A) = 0 otherwise. A;,, represents the event
that the mth sample stored at the {th pair is classified incorrectly. X (™ is classified
incorrectly with probability P, if a;yl( ) < 0; and with probability 1 if y(m) 0.
Then 7, used as before, is a random variable representing the training error rate.
To evaluate the statistical epsilon-capacity for this network, we need to consider the
probability Pr(# < €) for € = % — €, which is the probability that no more than

(- ¢ )LM out of LM samples stored are classified incorrectly. Let
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1 L
Z;, = —> Zmi, 241
L \/f; Ml (2.41)

M
where Zpy = b= 3 Y™ for K™ = 1(I(Aim) — Pa), 0 = Pa(l — Pa). Then
m=1
Pr(Y < eLM) = Pr(Z;, < é/LM), where ¢ = 2(3 — ¢ — P,). To find a lower
epsilon-capacity, we need to use a large-deviation theorem to evaluate the probability
Pr(Zy < é/LM). Since for any | € [1,L], Zpy is a summation of M dependent
random variables, we first show in the following lemma that the joint distributions of
the dependent random varibles {I(A;»)} for m € [1, M] can be approximated by the

products of individual distributions plus a term which is negligible.

Lemma 2.1 When M ~ O(£) and L, N large (L and N — o0), we have

P(lal) = Pr(I(Alml) = le(Almz) = 1)

1
= P%+ O(W), (2.42)

P(l?]-’l) = Pr(I(AIm1) = 17I(A1m2) = I,I(Alma) = 1)

1
Pa+ O(32) (2.43)

i

P(L 1, 1,1) Pr(I(Alm1) = 1’I(A1m2) = 17](A17n3) = l’I(Alnu) = 1)
1

M?

= PiL40(=—), (2.44)

where P,y = Pr(I(Ajm,) =1), 1 <I< L, 1 <m; < M and m; # m; fori # j and i,

Jj€l,...,4].

The proof is given in the appendix to this chapter.
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Using the results given by this lemma, we now show that Zp is asymptotically

normal with mean zero and standard deviation 1.

Lemma 2.2 For M ~ O(%) and N, L large such that X goes to a constant when N
and L — o0, Zp, ~ N(0,1), where A = EZ0[Q(~(1 — k)/37) — Q(—(1 + k)/E)].
Equivalently, '

E(e?r) = ¢’ (1 + 1), (2.45)

where 1 ~ 0(7%) — 0 when N, L — oo.

Proof:

First, as shown in the proof of Lemma 2.1, the Zpp’s, 1 <1 < L, are a mutu-
ally independent and identically distributed triangular array of exchangeable random
variables. The Y}(m)’s, for 1 < m < M, however, are dependent. To show that the
Zy is asymptotically normal, it suffices to show that E(Z};) are bounded when L,

N — +oo and M ~ O(;2%). Without loss of generality, we let I = 1 and then obtain

1
E(Zyy) = Amz + (4T1 — 6T)M + T, M + O(57), (2.46)
where
3 2 2
Auz = BT Y®) + 6E(V ] [v{?]") — 121y + 11T, (247)
T, = B YA, (2.48)
T, = By rY). (2.49)

Using the results in equation (2.42), equation (2.43) and equation (2.44) in Lemma 2.1,

we can obtain

1
I =1 —2Pa)P(1,1,1) + (5P — 2Pa)P(1,1) + (P} — 3P3)]

i
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1
- oih, (2.50)
T, = %[p(1,1,1,1)—4P(1,1,1)P51+6P(1,1)P31—3Pe41]
1
- oLy, (2.51)

Then for L and N — oo, and M ~ O(:2%), E(Zyn*) ~ O(1). The Gaussian hy-
pothesis is satisfied. That is, E(e*?%) = e’ (1 + 7), where n ~ O(Vlf) — 0 when N,

L — oo.
Q.E.D.

The Gaussian approximation obtained here leads to our main theorem.

Theorem 2.4 Let é = (3 — ¢ — P;). For M = (lfzk)zN , € > 0 small
7 7(In L lininL)
and any vy > 0 arbitrarily small, we have Pr(Z > é/LM) ~ (1 — 1), where n' ~
O(zﬁv) — 0 for N,L — oo, and o > 1. That is, a lower bound C'_Z'_E, for the
2

epsilon-capacity C;_ (C'l_l_cl < Ci_.s) can be obtained as
2 2 2

o- (1-k)’NL

3= 7(Ind/me’ — 3IninlL)
M (2.52)
rind/me’L’

where € > 0 small, and 0 < k < 1.

Proof:
The technique used here is motivated by that in [12].

By the Markov inequality, for any v > 0 and any non-negative random variable
Y,
E(Y
Pe(y > v) < 2. (2.53)
v
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(1-k)’N
n(ind/me'* —%InlnL) ’

It is easy to check from equations (2.31) (2.39) that when M =
A — L for L — oo, and é & ¢’ > 0., where 0 = O(1) for A big So for our case,

Y = €% and v = VM, Then using the result in Lemma 2.2, we can get

Pr(Z > eV LM) Pr(eZt > VLM)

—ré\/-m_E(erZL)

IA

infe
r>0

s —ré&/LM r?
1+ n)irzlge e

IA

«/IM )2 _2Lm
2 ry

il

. (r-
(L+mn)infe

2
(L+m)e e
2rm

= (L+n)e &>

- 0 : (2.54)

when L and N — oc.
’”?2
Then Pr(Z, < &/LM) ~ 1 — 1/, where o’ ~ O(e” 4:5M). Therefore, we obtain a

e’

lower bound Cl'ie, for the lower epsilon-capacity C;— :
2

c- (1—k)°NL
1 _ s = 12
: m(In™Z— L — LinlnL)
w
O(;—=)- (2.55)

QE.D

To verify the theoretical result obtained in euqation (2.55), Monte Carlo simu-
lations have been done to estimate the probability Pr(# < €) as a function of M,
where € = % — €. In the simulation, we chose N =400, L = 500, k¥ = .4 and ¢ = .1.
The resulting histogram plotted in Fig. 2.3 shows that the estimated Pr(# < ¢) = 1

for M < 22, that is, LM < 11000, where the points are the simulated probabili-
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ties averaged over 5 runs. Using the expression given in equation (2.55), we have a
calculated lower bound C;_J for the lower epsilon-capacity, C%‘L.I ~ 8600. That is,
when M =~ 17.2, Pr(# < ¢€) should be approximafely 1. This agrees well with the

simulations.

2.5 An Upper Bound

Since the total number of possible mappings of two layer (N —2L — 1) networks with
binary weights and integer thresholds ranging in [N, N] is bounded by 2W+I1og2N
the VC-dimension d, is upper bounded by W + Llog 2N, which is in the order of W.

Then d, < O(W). By combining both the upper and lower bounds, we have

w
—) < dpy < . .
O(lnL) <dy < O(W) (2.56)
2.6 Discussion of the Methodology

How good is this general methodology for use in practice?

In the first place it is very general. That is, it can be applied for any feedfor-
ward network structure with one threshold unit at the output layer. Secondly, it
is a constructive method- one can actually store random samples according to the
construction of the network. How tight the resulting lower bound is usually depends
on how good the construction of the network is and whether rigorous analysis can
be carried out for the particular network considered. It should be noted that any

analysis in evaluating the lower epsilon-capacity is usually quite complicated.

Specifically, to comment on the application of this general methodology in this
paper, we mention independent work by Littlestone [9]. In his work he showed that
the VC-dimension of so-called DNF expressions with N variables and K term was

on the order of KN. Since any DNF expression can be implemented by a two layer
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network of threshold units with binary weights and integer thresholds for hidden and

the output units, which essentially implements “and” and “or” gates for the VC-
dimension of the corresponding two-layer (N — K — 1) nets with binary weights and
integer thresholds is also O(K N), which is O(W), W being the number of weights of
the networks. This result is tighter than ours by a factor of InL. We believe that this
InL factor is due to the limitations of the grandmother-cell type of networks used in
our construction. However, since our analysis for the lower bound is constructive, it
provides an explicit way to actually store random samples in the weights. On another
occasion [7]where we have applied the constructive approach to a single neuron with
discrete weights, we can show that this method is able to find a lower bound which

is of the same order as the upper bound for the VC-dimension.

2.7 Conclusion

We have drawn a general relationship between the VC-dimension and the statistical
lower epsilon-capacity. It provides a new view on the sample complexity for general-
ization. Specifically, its implications to learning and generalization can be summarized

as follows.

1) For random assignments of the samples (P, = 1), since the statistical lower
epsilon-capacity charaterizes the memorizing capability of networks and it is upper
bounded by the universal sample bound for generalization, the relationship confirms

that generalization occurs after memorization.

2) For cases where the Bayes error is smaller than %, the relationship indicates
that an appropriate choice of a network structure is very important. If a network
structure is properly chosen so that the optimal achievable error rate P., is close

to the Bayes error P, than the optimal network in this class is the one which has
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the largest lower epsilon-capacity. Since a suitable structure can hardly be chosen
a priori due to a lack of knowledge about the underlying distribution, searching for
network structures as well as weight values becomes necessary. Similar idea has been
addressed by Devroye [3] in pattern recognition and by Vapnik [13] for structural
minimization. It has also been used as guidelines in learning algorithms for finding a

structure for multilayer networks during training[2] [6][14].

This relationship also brings a general constructive methodology of finding a lower
bound for the VC-dimension of networks. We have applied this relation to obtain a
lower bound for the VC-dimension of two layer networks with binary interconnections.
We have shown that the VC-dimension d; of two layer networks with binary weights,
integer thresholds for the hidden units and zero threshold for the output unit satisfies
the relation O(7%) < dy < O(W). This result demonstrates the capability of the

networks in learning and generalization and gives strong theoretical support to the

usage of multilayer networks with binary interconnections.
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Appendix

Proof of Lemma 2.1:

We first state the fact that I(A;,)’s are identically distributed exchangeable
random variables for a given [ € [1,...,L] and all m € [1,..., M]. Then without loss
of generality, we can take ! = 1 and m; = ¢ for ¢ = 1,2,3,4. Then for given ; = 1
(for a; = —1, the result will be the same), we have

P(1,1) = 2Pr(s§1) = 2,352) =0|lag=1)r+ Pr(sgl) = 2,3&2) =2y =1)f;
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+ Pr(s? =0,5? =00y =1)f, (2.57)
where
fi = Pr(n® =) > 2)Pr(n® —n® > 1)
+ ;Pr(n(l) ng) =1)Pr(n® - ng?) >1)
+ ; Pr(n(l) g_l) >2) Pr(n(_z) — nﬂ?) =0)
+ iPr(n(l) n® = 1) Pr(n® — n@ = 0), (2.58)

fo = Pr(n(_l) - ng) > 2) Pr(n(_z) - nf) > 2)
1
+ 2x -2—Pr(n9) - nf:) =1) Pr(n(_z) - nf) > 2)
1
+ 5 Pr(nl W n® = 1) Pr(n® — @ =1), (2.59)

fs

Pr(n") — ng) > 1)Pr(n(_2) - ng?) >1)
1
+ 2X EPr(n(_l) ~n¥ =0)Pr(n® —nl? > 1)
+ -}iPr(n(_l) —n® = 0) Pr(n® — @ = 0). (2.60)

Here the same notations are used as in Section 2.4. To find the joint distribution of

( ) and 3(2) it suffices to find the joint distribution of z( ) and zfz). Now

M) a [
2 = Zwli 2
) TE T L

Since all the terms in the summation are mutually independent, we see by the mul-

tivariant central limit theorem, that for N large

(—= f Y lez))~N(u,ﬂ,1,1,p) (2.61)

where N(u,p,1,1,p) is the joint distribution of two normal random variables with
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the same mean y, unit variance and correlation coefficient p, where

_ 2N
I M

_ 2
P = oM

N(0,0,1,1, p), however, can be expanded as [6]:

+°0r

N(0,0,1,1,p) = y) + Z—TT (z)7(y),

'r—l

22

where 7.(z) = (—£) f(z) and f(z) = 71276‘7.

Using such an expansion to evaluate P(1, 1), we can obtain
P(1,1) = P4 +261f1 + Baofo + Bafa,

since

P = Prz(sgl) =2|lay=1)fa+ Pr2(s§1) =0|ay=1)fs

+ 2Pt =2 = D)Pr(sY = 0] oy = )£

The term 3, B, and (5 are evaluated as follows. Let

_ /k\/f%'h?‘- df (z)

o2
k +\/_d£13

~ —I;:\/r(é1 + &) *%275},
T VM
-k §N+
I, / M

N \/’(51 +52)

5L

,/\/W+-\72. dz

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

where 6; and §, are two small constants in (—1,1) such that (1 — k)\/g 7]%4- + 7‘% and

(1+ k)\/%_ % + % equal to integers respectively. Then
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Ar = p(hl)+0(p")

= 0(p?). | (2.67)

Similarly, we can obtain that 8 = O(p?) and B3 = O(p?).

Then

1
P(1,1)=P% + O(M—z-) (2.68)
Using similar derivations and the expansions

N(0,0,0,1,1,1,p) = f(z1)f(22)f(2s)
400 400 +o0 r

LEDIPIDD

- mlnl 1

m+n +a_ ror=1

———Tr_o(%1)Tr—m(Z2)Tr-n(3), (2.69)

N(0,0,0,0,1,1,1,1,p) = (:cl) (z2)f(z3) f(z4)
400400400400 400 400

DD DD MIY By ey

k+l +m +n +o +p _rr-

k' l'm'n‘o‘p' Tr—n— o—p(xl )Tr—l—m—p (1"2 )Tr—k—m—o (m3)Tr—k—I—(LZ:IZQ)

we can obtain

P(1,1,1) = P3 + 0(M2) (2.71)

P(1,1,1,1) = P53 + O(W)' (2.72)
where the same notations are used as before for f(z) and 7,(z)’s.

Q.E.D.



37

Chapter 3

Is The VC Sample Bound Tight?

- A Case Study

3.1 Introduction

Since the universal sample bound for generalization is a distribution and network in-
dependent quantity, it is essentially the worst case bound. Therefore, it is natural to
ask the question: whether this bound is tight for distribution dependent cases? That
is, for what kind of distributions and networks, the sample complexity for general-
ization is in the order of the VC-dimension; and when the sample complexity can be
smaller? Although these questions have not been answered yet in general, two exam-
ples given in this chapter, which consider a particular distribution and a particular
network, demonstrate that the sample complexity needed for generalization indeed
changes in terms of distributions. Specifically, we show that the sample complexity
for generalization is in the order of the VC-dimension in one case, and smaller than

the VC-dimension by a log factor in another.



38
8.2 Distribution of the Samples: Binary Clusters

The distribution of the samples we consider can be specified as follows.

Let fi; and iz be two N-dimensional binary vectors, where il = [1,...,1] and
fa = —ji;. Let {Xl(m)} and {X{™} be two sets of N-dimensional random vectors, for
m € [1, M]. All elements a:;:n) of the random binary vectors are mutually independent,

where

(m) _ (=1 with probability p,

.Tj’ =

-—(—l)j with probability (1 — p),

for 0 <p < %,7€[l,N] and j = 1,2. Then the two sets of random vectors form
two binary clusters centered at f; and [;. The closer the p to %, the smaller the
separation between the two clusters. When p = %, two clusters completely overlap

with one another.

3.3 Construction of the Network

The network considered is a linear network (a single neuron) whose weights are
M
w; = e 3 (2 — o) (3.1)
) Mm=1 1z 2 D

where ¢ € [1, N].

For 0 < p < %, it is easy to check that this network is asymptotically optimal
since w; — w,; when M — +oo for all i € [1, N], where w,;’s are the weights of the

Baysian classifier

Woi = H15 — K2

= 2 (3.2)
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3.4 Definition of Generalization

Let Z(M) = 221\:41[1 (Aim) + I(Azm)], where I(A;y,) is the indicator function and A;,

is the event t;a—,—t the m-th stored sample associated with the j-th cluster is classified

incorrectly by the network for m € [1, M] and § = 1,2. Then # = %1%2 represents the

training error rate. According to our classification rule, the m-th stored sample from
(m)

the j-th cluster is classified incorrectly if the presynaptic input y;" of the neuron has

the opposite sign as its label for yJ(-m) # 0; and y](-m) is assigned to be either +1 or —1
(m) =0.

with probability % if y;

For the convenience of analysis, generalization defined here is slightly different
from that in the previous chapter. Instead of using the true probability of error of
the network, the Bayes error, Py, which is the limit of the true probability of error

of the network when M — oo, is used for comparison with the training error. That

is, the probability Pr(| # — P, |> €) is used to evaluate generalization.

Definition 3.1 For a given € > 0 small, generalization happens with probability 1 —n
if the probability Pr(| # — Py |> €) = 5. When 5 is very small, generalization occurs
almost surely. Then the sample complezity for generalization can be identified as a
number My, which is an increasing function of N, such that for the given € > 0,

Pr(| # — P |> €) < 5 when M > My, where n — 0 when N — oo.

3.5 Evaluation of the Sample Complexity for Generalization

To investigate how the sample complexity for generalization changes with respect to
the distribution, we vary the parameter p, which represents the amount of separation

between the two clusters, and study the following two cases.



40
3.5.1 Casel

. 2ind
For this case, p =1 — \/=&=.

Utilizing a similar derivation to that given in Chapter 2, the probability Pr(]

7 — Pye |> €) can be expressed as
Pr(| # — Py |> €) = Pr(# < Pye — €) + Pr(f > Py +¢). (3.3)

1
For N large, it is easy to show that P, = ¢ when p = % — \/E%Tﬁ, using the large

deviation theorem [4]. Then
Pr(| # — P |= €) = Pr(7 = 0) + Pr(# > 2PR,), (3.4)
where Pr(# = 0) is the probability that all samples are classified correctly.

To find the sample complexity for generalization, two steps need to be taken.
First, the capacity must be evaluated from the probability Pr(# = 0). Then the
probability Pr(# > 2P,) must be shown to be always negligible. Therefore, the
capacity obtained will then equal the sample complexity for generalization for this

network.

Evaluation of The Capacity

Definition 3.2 The epsilon-capacity for the network considered is defined to be the
sharp transition point C of the probability Pr(7 < €') such that for M < (1 — 4)C,
Pr(# <€) >1—n; and Pr(f <€) <n for M > (1 ++)C, where € is the given small
positive number, and 7 — 0 when N — oco. Here we assume this sharp transition

point exists and is unique, which is usually the case for a single neuron.

To evaluate the capacity from the probability Pr(# = 0) (a special case for ¢ = 0),
the probability of error of one sample and the joint probability of error of two samples

are first calculated and then used to bound the probability Pr(# = 0).
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a) Probability of Error for a Single Sample

Let P.; be the probability of incorrect classification of one sample stored. Let
y(m) be the presynaptic input of the neuron when a stored sample X ](m) is fed through,

where j € [1,2] and m € [1, M]. Because y( )’s are exchangeable random variables,

without loss of generality, we take j = 1 and m = 1. Then

(1) ad (1)
viao = szf”u

— (m) (mh (1)
- Xy 22 L z zxg, )l (35)
Since all the terms in the above summation over 7 are mutually independent, by the
large-deviation theorem [4], for N large and | &= — N(1 — 2p)? |< O(N3)
Py = Pr(y” <0)

= Q(-p), | (3.6)

where

1 N 1
= \/—”2M +4lnP (3.7)

o= E(!Al))

= N +4ln1

i 7. +o(1), (3-8)

2
o = E@M) - E*(yM)

N 1
= — +8ln— +0(1), (3.9)

M Pbe

and Q(—z) = \/-—f_z e du.

It is easy to check that P,; < Py, for all M, and P,y — P,. when M — 400 due

to the asymptotic optimality of the network.
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b) Joint Probability of Error for Two Samples

Let P(1,1) be the joint probability of incorrect classifications of any two stored
samples X}:nl) and X}?Q) for ji, j2 € [1,2] and my, my € [1, M] . Again, we can pick
J1=1,732=1,m =1 and my = 2 without loss of generality. Then we have

7 S A 2

y? | = | 2

Applying the multivariate central limit theorem to the mutually independent two-
dimensional random vectors in the summation, we have
P(l, 1) = PI‘(I(All) = l,I(Alz) = 1)

—b—p

~ //f(x,y)dxdy, (3.10)

—00—00

where /1 is given in equation (3.8), f(z,y) is the joint normal distribution N(0,0,1,1, p),
and p is the correlation coefficient between y{l) and y?) which satisfies

1 4 1
a7 T vnps

= . 3.11
1+l (3:11)
FOI‘ M < 21—N1—,
" Poe
1 4lnPi
pr oM + T (3.12)
Using the expansion given in [6], we can obtain
N 1
1 = Q*(—j - —). .

¢) The Capacity

Although the probability Pr(# = 0) can be shown to have an approximately
Poisson distribution when M ~ O(%) using a similar technique to that in Chapter
3, a simpler approach is used here to estimate Pr(# = 0) and to find the capacity. .

Specifically, a theorem in [3] is given below and used to bound this probability.
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Theorem 3.1 Let X be a k-dimensional random variable and Dy, ...,

measurable subsets of the real line. Then

Q%
1-— <Plﬂt_ X,eD} <1l — ———r,
Ql [ 1{ }] Ql + 2Q2
where Q; = EPr(X € D;) and Qy = ZZPr(X € D;, X; € D;).
1=25=1
Applying this theorem to our case, we have
Q1 = 2M P,
Q2= M(2M —1)P(1,1).
Then
AM? P2

1—2MP, <Pr(f=0)<1~

9MP, + 2M(2M — 1)P(1,1)’

Dy, be Borel-

(3.14)

(3.15)

(3.16)

By setting the lower and upper bounds in this inequality to be 1 —n and » respec-

tively with > 0 arbitrarily small, the capacity can be obtained through Theorem 3.2.

Theorem 3.2 For large N, the capacity of the network satisfies

N

C~ PN

Proof:
a). A lower bound for the capacity C.

Let 2M = alnP - Then

R 1
iL= E\/ InP,.N + 4lnPbe

(3.17)

(3.18)
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2
OMP,; ~ j%e-%
~ O(N'%), (3.19)

which goes to 0 when a > 4 and N — +oco. That is, when 2M < m%m’ 1-2MP,; ~

1. By the definition of the capacity C, we have

N
C=-Nga N <& (3.20)

where v > 0 arbitrarily small.

b). An upper bound for the capacity C.

Using the expansion given by equation (4.66), the upper bound in the inequal-
ity (3.16) satisfies

1 4M?*P2
2MP, +2M(2M - 1)P(1,1)
4M*P3
1- e . : 3.21
4M2Pe21 +2M(Pel —P312+%6_”’2)+0(1) ( )
Let 2M = W}%' The similar derivations show that 1 — 2MP61+2§WM(2};§1_1)P(1’1) ~ 7

when b < Zl_i—y')" where  — 0 for N — 400 and v > 0 arbitrarily small. By the

definition of the capacity C, we have

N

C<(1 +‘y)——-—-41nPb N

(3.22)

Combining equation (3.20) and equation (3.22) and utilizing the assumption for the

. o, . . _ N
uniqueness of the sharp transition point, we have C = TN

3.5.2 The Sample Complexity for Generalization

As aforementioned, to show that the sample complexity for generalization equals the
capacity ﬁ}l;i,_N’ we now only need to show that Pr(? > 2P,.) < n, where  — 0
when N — co. We will show below that this is indeed true if we assume again that

Pr(# < €') has at most one sharp transition point for a given ¢ > 0.
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Theorem 3.3 0 < Pr(# > 2P,.) < 7, where n — 0 when N — +oco and M is an

increasing function of N, assuming that Pr(# < €') has at most one sharp transition

point for a given 0 < € < 1.

Proof:

Assume that Pr(# < 2P,) does have one sharp transition occurring at My, where

M, is large. Then for M = M, fixed,

P, = Ef
1
= /xf(:c)dr
0
= / zd Pr(F < z) (3.23)
01
= / [1 - Pr(f < z)]dz (3.24)
(;Pbc—A 2Py.+A
= / [1 - Pr(f < z)]dr + / [1 - Pr(7 < z)]dz
0 2Pp.—A
+ [ [1=Pr( < 2)de, (3.25)
2Ppe+A

where f(#) is the density of #, and A is a small positive quantity. Equation (3.24) is
obtained through integration by parts in equation (3.23). Then the three integrals in
equation (3.25) can be evaluated one by one using the sharp transition property of

the capacity point.

Let My = My(€’) where ¢ = 2P,., which indicates that the epsilon-capacity
My is a function of the variable €. We first assert that My(€') is a non-decreasing
function of €. This can be seen easily since Pr(# < 2P,.) < Pr(+ < 2P,, + A) and

Pr(7 < 2P.) 21—, Pr(f < 2P+ A) > 1 — 9, for M = My, where n — 0 when
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N — oo. Then the third integral can be obtained
1
1-Pr(f<z)lde = (1-2P.—A)
2Pbe+A
= 7", (3.26)

where n' and 5" are negligible when N is large. The second integral is easy to find

2Py.+A
1 —Pr(f < z)ldz = A, (3.27)
2P,.—A

where A’ < 2A. To evaluate the first integral, we assume wﬁ-‘—ll exists and non-zero
at ¢ = 2P,.; then % > 0 at € = 2P, due to the non-decreasing property we have
just shown. Taking the first two terms in the Taylor expansion of My(2P,.—A) around
point 2P, we can obtain that the sharp transition point for Pr(# < 2P,, — A) equals
to Mo(2Pye—A) & Mo(2P,.)(1—7"), where 4/ ~ AMJ’E,‘—'! at € = 2P,,, which is greater
than zero according to the assumptions. Then Mo(2Ps) & Mo(2P, — A)(1+4+'). By
the definition of the epsilon-capacity, Pr(# < 2P, — A) < 5 for M = My. Therefore,

7 [1 = Pr(# < 2)ldz = (2Ppe — A)(1 —ny), (3.28)

where 7, is negligible when N is large. Putting equations (3.26) (3.27) and (3.28)

into equation (3.25), we have, for A sufficiently small,
P, ~1-2P,. (3.29)

Because it is easy to verify that P,; < P, for any finite but big M, P,; < P,, and
P; ~ (1 —2P,,) need to be satisfied simultaneously. P,., however, has been assumed
to be small. We can then assume that P, < %. Therefore, both P,; < % and P,; > %
have to hold, which is impossible. Then there must exist no sharp transition point
for Pr(# < 2P,) at all. Since Pr(# = 0) < Pr(# < 2P,.), and it has been shown
that Pr(7 = 0) ~ 1 when M < C and Pr(# = 0) ~ 0 otherwise, we must have

Pr(# <2P,.) = 1 for all M. That is, Pr(? > 2P;,) ~ 0.
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Q.E.D

Then the sample complexity for generalization for this network equals to its

capacity, ﬁﬁ. This quantity is smaller than the VC-dimension of a single threshold

element, which is N, by a factor of InN.

Monte Carlo simulations for Pr(| # — P, |> P.) are given in Fig. 3.1 to compare
with the theoretical result. For N = 400 and P, = .1, the estimated sample com-
plexity, which is obtained through the simulated probability Pr(| # — Py, |> Py.) over
20 runs, is approximately equal to 27; the capacity estimated from equation (4.2) is
about 33. Fig. 3.2 gives the Monte Carlo simulation over 20 runs for Pr(# > 2P.)
using the same parameters. It shows that Pr(# > 2P,.) = 0, which is consistent with

the result given by Theorem 3.3.

3.5.3 Case 2

For this case, p = 3. It is easily to see that P, = 1. That is, the two clusters

completely overlap with one another.
Since any network with asymptotic error rate % is now asymptotically optimal,
a slightly different construction of the weights of a neuron is used to facilitate the

analysis. Specifically, we have
1 M m)_(m

w; = == (a™a{M + o™ z{™M), (3.30)

2M =,
where a§~m)’s are mutually independent binary random variables taking +1 and —1
with equal probability 7, m € [1, M] and i € [1,..., N]. The ag-m)’s are also mutually

independent of the samples.

By the relation between the epsilon-capacity and the VC-dimension derived in

Chapter 2, if the epsilon-capacity obtained from the probability Pr(# < -;- —€)is
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Figure 3.1: Monte Carlo simulation for the probability Pr(| # — P, |> Pi.). The

horizontal axis: %4-, the vertical axis: Pr(| # — Py |> Ppe).
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Figure 3.2: Monte Carlo simulation for the probability Pr(# > 2P,.). The horizontal

axis: 271\‘,’1-, the vertical axis: Pr(# > 25,.).
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in the order of the VC-dimension, which equals N for a single neuron, the sample
complexity for generalization is also in the order of the VC-dimension, where ¢ > 0

small. In what follows, we show that the epsilon-capacity is indeed O(N).

Evaluation of The Capacity

Using a similar approach as in case 1, the probability of incorrect classification of one

N
e aa

Due to the mutual independence of the random variables I(A;,,) for j € [1,2]

sample stored can be easily obtained as

and m € [1, M], we can obtain

%—c')2M

Pr(? < % —)= 3 (2:24) P1(1 = Py)EM-m), (3.32)

m=0

By the law of large numbers, when M is large corresponding to N large, | ( % —€ -

P1)2M |< O(y/Pu(1 — Py)2M), so that
“ 1 ’ ~ m(%—ﬁ’—Psl) \/
PI‘(TS 5—6) ~ Q[ \/Pel(l— 51) ] Q[ m]
V2M(3 — € — Py)
~ Q
[ /Pa(l = Puy)

] (3.33)

‘Pel)

To find an M such that Q[—vﬁl ~ 1, we let Q(7P%(;C—P3— (1—-7n)

and § — € — P,y = A(M), where A(M) > o(33), where 0 < a < 1 5 (we take a = 1
here), and 7 — 0 when N — +co0. Expanding Q(\/—?(:(%;;L“)) at the origin, we can
obtain for € small

N
3¢ 21 (e — A(M))?
N

re’?

(3.34)
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The Monte Carlo simulations for Pr(| # — Py |> ¢€) over 20 runs is shown in
Fig. 3.3, where P,, = %, ¢ = .1, and N = 64. The number of samples needed for
generalization from the simulation is about 1019; the epsilon-capacity estimated from

equation (3.34) is 1024.

Then the epsilon-capacity is O(NN), which is on the order of the VC-dimension N
for a single threshold element. By definition, the sample complexity for generalization
for this network, which is no smaller than its epsilon-capacity, is therefore also on the

order of the VC-dimension.

3.6 Conclusion

Case 1 and Case 2 demonstrate that the sample complexity of generalization for the
particular network of linear threshold elements and the specific distribution are either

on the order of the VC-dimension or smaller by a factor of InN.
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Figure 3.3: Monte Carlo simulation for the probability Pr(] # — P, |> ¢€). The
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horizontal axis: <7, the vertical axis: Pr(| # — Py [> €).
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Chapter 4

Storage Capacity of Two-Layer

Networks with Binary Weights

4.1 Introduction

The information capacity is one of the most important quantities for multilayer feed-
forward networks, since it characterizes the sample complexity that is needed for
generalization. For two layer (N — L — 1) feedforward networks with real weights,
it has been shown by Baum [3] that the capacity C satisfies the relation O(W) <
C < O(WinL), where W is the total number of weights, L is the number of hidden
units, and N is the input dimension. Although in practical hardware implementa-
tions only networks with discrete weights are of prime interest, few theoretical results
exist regarding multilayer networks of this kind. The work presented here, which is
an extension of our earlier work [7], tends to fill this gap and to provide a theoretical

basis for using two layer networks with binary weights.

Upper and lower bounds for the capacity of two-layer (N — 2L — 1) threshold
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networks, which have binary weights, integer thresholds for the hidden units and
zero threshold for the output unit, will be established by the following steps. The
statistical capacity of a specifically constructed network is first evaluated using a
statistical approach and then used as a lower bound for the capacity C in general.
Specifically, the capacity C is shown to be O(HWW)’ where W is the total number of
weights of the network. An upper bound is then obtained through a simple counting

argument, and shown to be O(W). Therefore, we have O({5;) < C < O(W).

4.2 Evaluation of the Lower Bound

4.2.1 Construction of the Network

Motivated by the idea which employs the grandmother-cell type of networks used
by Baum in [3], our network, given in Fig. 4.1, is constructed by grouping the
2L hidden units in L pairs. The fwo weights between each pair and the output
unit are chosen to be +1 and —1. The hidden units are allowed to have integer
thresholds in the range [~C'N,C’N] and the threshold for the output unit is zero,
where C’ = max|1, (1 + k)a\/g] with o2 being the variance of the input samples and

0<k<l.

Without loss of generality, we assume that among total LM + L, M samples; LM
of them, denoted as a sample set {Xr}, are assigned to class 1 and have labels 1,
while Ly M of them, denoted as {X[,5} assigned to class 2 and have labels 0. Here
L, M are large, and L > L, > 0.

The weights wy;’s at the first layer for the I-th pair of hidden units (1<I<L

and 1 < < N) are equal and constructed using M out of LM samples assigned to
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Figure 4.1: Two layer networks with binary weights and integer thresholds
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class 1. Specifically,
; = sgn(z ™), (4.1)

where sgn(z) = 1 if 2 > 0, and —1 otherwise; and 1 < 7 < N. x,(:")’s are the

elements of the N- d1rnens1onal random vector X{™ = (:c,({n ). , T N)) which are drawn
independently from a continuous distribution &(z) that has a compact support in =
and symmetric about the origin. Fz = 0 and Ez? = ¢? are also satisfied here. Also

the two thresholds for the two hidden units in this pair are given as

e = (15 k)aﬁf—ﬂ—ﬂ, (4.2

where the subscripts + and — correspond to the units with weight +1 and —1 at the

second layer respectively.

Each pair of hidden units constructed can then be viewed as two random parallel
hyperplanes. If neither M nor the separation between the two random hyperplanes
are too large, these random hyperplanes can separate samples belonging to different
classes with high probability by having the samples in {Xas} fall in between these
parallel hyperplanes, while the samples {Xr,as} fall outside. The maximum num-
ber of samples whose arbitrary assignments to two classes can be dichotomized by
the network with probability almost 1 is defined to be the capacity of the network.

Precisely, the capacity of the network can be defined as follows.

Definition 4.1 Let Y be the number of incorrectly classified samples out of total
LM + LyM samples by the constructed network. Suppose the probability Pr(Y = 0),
as a function of M, has a sharp transition point Co, so that for any~y > 0 arbitrarily
small, when (L + Ly)M < (1 —~)Co, Pr(Y =0) > 1 — 5, and when (L + Ly)M >
(14 7)Co, Pr(Y = 0) < n, where n — 0 when N,L — oco. Then we call Cy the

capacity of this network.
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In what follows, we will evaluate the probability Pr(Y = 0) first, then find its unique

sharp transition point, which is the capacity Cy for this constructed network.

4.2.2 Probability of Error for a Single Sample

As the first step to evaluate Cy, we compute P.; which is the probability of incorrect
classification of a single random sample stored. Let y,(m) denote the output of the
network when the m-th sample X ,(m) stored in the /-th pair is fed through the network,
where 1 <1< L and 1 <m < M. Without loss of generality, we can let m = [ = 1.
Since the labels for the stored samples are all (+1), we say that an error occurs
if ygl) = 0. Then the probability of error for classifying one stored sample can be
expressed as P,; = Pr(ygl) =0).

By the construction of the network, the presynaptic input of any pair to the
output unit, which is the difference between the outputs of the two threshold hidden

units, can only take two possible values: 2 and 0. Let sl(l) be the presynaptic input

L
of the l-th pair of hidden units to the output unit, and let S = Zs,(l). Then
=2
Pa = Pr(yi” =0)
= Pr(sgl) =0,5M = 0)
L
= Pr(sgl) =0)]] Pr(sl(l) = 0). (4.3)
1=2
Here the multiplication of the probabilities is due to the mutual independence of 31(1)
(1 € 1< L) which is easy to verify.
The presynaptic input z;;() to the two units at the first pair is
1) _ 5, (D)
211 = zwliwu ’ (4.4)
i=1

where the general notation z,]-(m) (1 <l5Lj<Land1l < m < M) denotes the

presynaptic input to the hidden units at the I-th pair when the m-th sample X J(m)
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stored at the j-th pair is fed through the net. Since different terms in summation (4.4)

are independent, by the large-deviation theorem [4], for N large and | t;x — E2{}) |<

O(N?), we have
Pr(s =0) = Pr(z¥ > ¢,_ )+ Pr(z) < ty4)
= 2q(-ky/ X, 45)

N’)
M
where N’ = 2N and Q(—z) = "'flz_; f__:oe—Tuzdu. The evaluation of the equation (4.5)

Pr(s{) =2) =1 -2Q(—k (4.6)

is given in Appendix A.

Similarly, we can obtain, for 2 <I< L

Pr(s(l) 2) = Pr(t_ < 211 < t1+)
NI
= Q(-(1- k)\/ ) - Q-1 +) i) (4.7)
N’ N’
Pr(sV =0)=1-Q(-(1 - k),/ﬁ) +Q(=(1 + k) 37)- (4.8)
Plugging equations (4.5), (4.8) into equation (4.3), we can obtain
N [N n Y
P =2Q(=k\/ 31 = Q=1 = k)3 + Q=L+ k)37 . (4.9)
4.2.3 Probability of Error for All Samples together
Let
Y=Y 14, (4.10)
with
-5 I = 0), (4.11)
I=1m=1
and
LM

Y= Y I(y;=0), (4.12)
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where I(A) = 1 if event A occurs, and I(A) = 0 otherwise. y; is the output of
the network when the j-th sample in set {X},a} is fed through the network, where
J € [1,L;M]. Then Y; and Y, are random variables representing the number of
incorrectly classified samples in {Xa} and {Xr,ar} respectively. Likewise, Y is the
total number of incorrectly classified samples. To evaluate the capacity Cp for this
network, we need to consider the probability Pr(Y = 0), which is the probability
that all samples are classified correctly. In the theorem below, we will first show that

Pr(Y = 0) = Pr(Y1 = 0) Pr(Y, = 0).
Theorem 4.1 Y, and Y, are independent, and
Pr(Y = 0) = Pr(Y; = 0) Pr(Y; = 0). (4.13)

Furthermore, the I(y; = 0)’s in equation (4.12) are mutually independent, i.e.
LL,M

Pr(¥; = 0) = [1- Q(~(1 - m/% FQU-O BT - (1)

The proof of the theorem is given in Appendix B.

Then what left is to find Pr(Y; = 0). The difficulty in doing that is that the
terms in the summation (4.11) are dependent random variables. By means of a
theorem given by Stein, we will show that Pr(Y; = 0) has approximately an Poisson

distribution under certain conditions.

Theorem 4.2 (Stein [7])

Let
N
Z =) I, (4.15)
n=1
where I,,’s are Bernoulli random variables taking values 1 or 0 and EI, = P,. Let

k=1,.. N. Define
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N
Z =Y I, (4.16)
n=1
such that the distribution of Z, is the same as the conditional distribution of Z given
Ik = 1. Then
N ’
[Pr(Z = K) — PA(K)| < min(A™1,1)Y PE|Z — Z, + 1], (4.17)

k=1

where Py\(K) = e“’\%, and A\=EZ.

Appendix C gives the proof of the theorem.

Roughly speaking, this theorem says that the random variable Z has an ap-
proximately Poisson distribution if the distribution of Z is nearly the same as its

conditional distribution given I = 1.

In our problem, in order to show the distribution of ¥;, can be approximated by
Poisson distribution, we define a random variable Y; as follows. Let [; = T (y,(m) =0)

for1 <i<IM,1<I<Landl1<m< M. Then

LM
Y=Y L. (4.18)
=1
Define
Y, =1+ 1, (4.19)
i2k

where k € [1,..., LM], and
I; ifI; =1andi#k;
1 ifl=1and:=k.
Then the distribution of Y}, is the same as the conditional distribution of ¥; given

I, = 1. Therefore,

LM
. ,Pr(Yi = 0) - P/\l (O)I < Inin(/\l_l, I)ZPkE,Yl - Y;c, + 1|7 (4'20)

k=1
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where Py, (0) = e, and A\; = EY = LM P.; with Pel given in equation (4.3). Then

the theorem below gives the condition for the Poisson hypothesis.

: 3K2N’ KN’ 1-k)°N’
Theorem 4.3 When M < mm[4(1nL+1nN)’ SR ( ZIn)L , we have

Pr(Y; =0) ~e™, (4.21)
where \y = LMP., and0 < k < 1.

The proof is given in Appendix D. Combining equation (4.21) and equation (4.14),

we have

LL,M
Pr(Y =0) =~ e™[1 — Q(—(1 — k)\/%) +Q(-(1 + k)\/%)] : (4.22)

The Poisson hypothesis guarantees that Pr(Y; = 0) is a monotonic function of
M. Pr(Y; = 0) is monotonic also. Then a unique critical point exists for Pr(Y = 0),

which leads to the results stated in Theorem 4.4.

Theorem 4.4 Assuming that L;Lﬂ > nnn[z(ln’fﬁ;m, 2(1$LIL_LIZ):~JI\:N)]' Then for any
given v > 0 arbitrarily small,
@) When Ly = 0, M = (1 — ) gty s
b) When Ly > 0, M = min[(1 — 7) zpies, (1~ ) gpltlil o,
Pr(Y =0) ~1—n, where L > L, >0, andn~0((L—JbF)—+0 when N,L — oo

and o > 0, then we have

(L + Lg)M (4.23)

Ol (4.24)

where W is the total number of weights of the network.

Appendix E provides the proof for this theorem.
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Fig. 4.2 gives both the probability obtained in equation (4.22) and the Monte

Carlo simulations which evaluate this probability at different values of M over six
runs shown by the triangular markers. The solid curve corresponds to the probability
obtained in equation (4.22). In the simulations, the samples are drawn from the
uniform distribution in [—a,a], where a = (%)% N = 2500, L =50, k = .5. It

demonstrates that the theoretical result is in a good agreement with the simulations.

4.2.4 A Lower Bound for the Capacity of Two Layer (N — 2L — 1)
Networks With Binary Weights

Let C be the capacity of a class of two layer (N —2L— 1) networks with binary weights
and integer thresholds for the hidden units and zero threshold for the output unit. A
lower bound of C is defined to be the number of samples in general position whose
arbitrarily assignments to two classes can be dichotomized by at least one network in

this class with probability almost 1.

In our construction in Section 4.2.1, a specified continuous distribution from
which samples are drawn ensures that these samples are in general position with
probability 1. Since the network constructed is able to implement, with probability
almost 1, any dichotomy of the samples up to the capacity Cp, Cp can be used as
a lower bound for the capacity C of the class of networks of the same structure by

definition. That is, Cy < C.

4.3 Evaluation of an Upper Bound

An upper bound for the capacity C is defined to be the number of samples whose ar-
bitrary assignments can be implemented by any network in the class with probability

almost zero. This will happen when the total number of possible binary mappings
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generated by the networks is smaller than all possible dichotomies of the samples.
The total number of binary mappings the networks can possibly generate, however,
is no larger than 2W+2L1gC"2N_ Thep (1 + 7)(W+ 2Llog2C'N) is an upper bound
for the capacity C. This is on the order of W when N and L are large, where v > 0
arbitrarily small. Therefore C < O(W) is obtained.

4.4 Conclusion

Combining both lower and upper bounds, we have

O(Tn%) <Cc<omw). (4.25)

Compared with the capacity of two layer networks with real weights, the results
here show that reducing the accuracy of the weights to just two bits leads to a loss
of capacity at most only a factor of InW. This gives strong theoretical support
to the notion that multilayer networks with binary interconnections are capable of
implementing complex functions. This InW factor difference between the lower and
upper bounds, however, may be due to the limitations of the grandmother-cell type
of networks we use. A tighter lower bound could perhaps be obtained if a better

construction of a network could be found.
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Appendix A: Evaluation of the Equation (4.5)

Ezﬁ) = NEwuwgll)
+ o0
Ewllmgll) = / mﬂ)E(wn | wgll))h(wﬁ))dwﬁ)
M
= /erE(sgn(:c + ng’ln)) | z)h(z)dz
z m=2

(4.26)

~ /x el - 2@(_m)]h(x)dx

[ 2
- \/;%a, (4.28)

where D is the compact support of z. Equation (4.26) is obtained due to the fact
M M

that for M large, Pr( 3 x§’1") > —z) and Pr( X° :1:?1”) < —z) can be approximated by
m=2 m=2

1-— Q(—VU;—_I);) and Q(_V(T.;—_l);) respectively. Moreover, when M > max | z |,

. . . T ~ 1 -z
which is true since z has compact support, Q(—-—(\/ﬁ) Ay vy through
the Taylor expansion. Then equation (4.28) is obtained. Therefore, we have that
(1)

the mean equals to Ny/-3;0. Similarly, we can show that the variance of 2{V is

approximately v No. Then the result in equation (4.5) is obtained.

Appendix B: Proof of Theorem 4.2 [2]

Proof:

For any bounded ~: Zt — R,
%[PkE(h(Z +1)) — E(I:h(2))]

k=1

E(AR(Z +1) - Zh(Z))

N
= Y RIE(W(Z +1)) — E(h(Z | I = 1))]

k=1

= fjpkE(h(Z +1) — h(Z})).
k=1
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For any integers ¢,j > 0 we have

| h(2) = R(5) IS] i =5 | Ak

where

Ak =sup | h(j + 1) —h(j) | .
j20

Hence

EQORZ +1) - Zh(Z)) < fjpkE | (Z +1) - k(Z,) |

N
< SSRE|Z-2Z,+1| Ak

k=1

Let g be defined recursively by
9(0) =0,

Ag(7 +1) —79(j) = I(7 € A) — Pr(U, € 4),

where A C Z* and U, is the Poisson random variable with mean A = EZ. In Lemma

4 [1] it is proved that

sup | g(j) |< min(1,1.4A7%),
J

Ag=sup | g(j +1) = g(j) IS A7 (1 — e™) < min(1,A7).
1z

Thus

|Pr(Z € A) —Pr(Ux € A)| = |E(Mg(Z + 1? — Z9(2))|

N
< min(1,A"Y)Y"RE|Z - Z, + 1],

k=1

proving the assertion.
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Appendix C: Proof of Theorem 4.1

Proof:
First, we show that Y; and Y; are independent.

Consider the presynaptic inputs of the first pair of hidden units to the output unit
when the samples X{™ ¢ {Xcm} and X; € {Xp,m} are fed through the network.

Without loss of the generality, we can choose Il = m = j = 1. Then we have

N
zﬁ) = Zwuwﬁ), (4.29)
=1
and
. N
#Y = > wity, (4.30)
=1

where z,;’s are the elements of X; for ¢ € [I, N ]. Since the terms with different
subscripts ¢ are independent, which is easy to check, we first show the independence of
the two terms with the same subscript 7 in the above two summations. Let u = wlixﬁ)

and v = wy;2y; for ¢ € [1, N]. Then for any a,b € (—o0,+o0),

Pr(u < a,v < b) Pr(u < a,v < b|wy; = 1)Pr(wy; = 1)

+ Pr(u<a,v<b|wy;=~1)Pr(w; = —1), (4.31)
= Pr(u<a|wy=1)Pr(zy; < b)Pr(wy; = 1)

+ Pr(u<a|wy=—-1)Pr(zy; > —b) Pr(wy; = —1) (4.32)
= -21-[Pr(u <a|wy;=1)+Pr(u <a|w;=-1)]

x Pr(zy; < b). (4.33)
Here equation (4.32) is obtained from equation (4.31) due to the independence of the

samples; while equation (4.33) is derived from equation (4.32) since Pr(wy; = 1) =

Pr(wy; = -1) = -12-, z1; is independent of wy; and zy; is symmetrically distributed
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around the origin, i.e. Pr(zy; < b) = Pr(z1; > —b). On the other hand,

Pr(u < a)Pr(v<b) = [Pr(u<a|wy=1)Pr(wy = 1)
+ Pr(u> —a | wy = —1) Pr(wy; = —1)]
X [Pr(ey; < b) Pr(wy = 1)
+ Pr(ew > —b) Pr(wy = —1)], (4.34)
- %Pr(zli < B)[Pr(u < a|wy =1)

+ Pr(u> —a|wy; =-1). (4.35)

Therefore, Pr(u < a,v < b) = Pr(u < a) Pr(v < b), i.e. v and v are independent.

This approach can be extended to all N variables in summation 4.29 and 4.30
to show the mutual independence of all terms. Then zﬁ) and éﬁ) are independent.
Similarly, we can show the independence for the other pairs of hidden units. Therefore,
I(y™) and I (v;) are independent. The mutual independence of I(y™) and I (y;)
forall € [1,L], m € [1,M] and j € [1, L;M] can be shown using a similar approach

extended to multiple variables. Then Y; and Y, can be shown to be independent.

Similarly, we can show that I(y;)’s for j € [1, L;M] are also mutually indepen-

dent. Then

Pr(Y, =0) = Pr?M(I(y, =0))
LL,M
= [1-Q(-(1- k)\/-‘]-v;) +Q(-(1+ k)\/%)] . (4.36)

Q.E.D.
Appendix D: Proof of Theorem 4.3

Proof:
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Due to the symmetry of I’s (1< i< LM), E |Y1-Y/'+1|[=E |Yi - Y} +1|

for all k£ € [1,..., LM]. Then

LM
min(A 71, 1) Y PElY: — Yy + 1] = min(A, )EY; - Y, +1].

k=1

(4.37)

By Jensen’s inequality, E|Y; —Y; +1| < \/E(Yl -Y, + 1)2. To show that the Poisson

hypothesis holds, it suffices to find a condition on M such that

min(Ay, )V E(Y; — Y + 1)

is asymptotically small for N, L large, where A\, = LM P.;. Using the basic relations
g

ELI, = ELE(;|L)

= PyPr(l;=1]|1 =1,2#1),

’

E]iIil = EI,E(I, | Il,I,')
Pela
and for (j # 1)

ELI

)

= ELE( | L,I;)

= PaPr(l;=1|6LH=1,1;=1),
we can then obtain
E(Yi—Y, +1)" = aL?M? + bLM? + cLM + dM® + eM + f,
where

a = P(z,y)+ P(z,y | z) - 2P(z)P(z | y,2)
b = P(mawl)—P(x,y)+2(:an|$,)+P($’$’Iy)

—3P(z,y | z) — 2P(z)P(z | z',y) — 2P(zx)P(y | z,2")

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)
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+6P(z)P(z | y,2) — 2P(z)P(z | y, ') (4.43)
¢ = P(z)— P(z,y) —2P(e,y | &) + P(z | y) — P(z,z’ | y)

—2P(z,y) + 2P(z)P(z | z',y) + 2P(z)P(y | z,z")

—2P(z) + 2P(z)P(z | , y) (4.44)
d = —2P(z,y|2)+2P(z,y | 2) — 2P(2)P(z | ', 2")

+2P(z)P(z | 2',y) + 2P(z)P(y | z,z)

—4P(2)P(z | y,2) + 2P(z)P(z | ,y) (4.45)
e = —3P(z,z |y)+2P(z,y|z)+ P(z,z |y)

+6P(2)P(z | 2,2") ~ 2P(z,2) — 2P(2)P(z | z',y)

+2P($7y) ——2P(:I})P(y I xaml) - 2P($)P(.’E I :E,’y) (446)
f = —P(z|y)+2P(z,z" |y)+2P(z,a) + 2P(z)
—2P(z)P(z | z',z"), (4.47)

where z, ', 2",y and z represent the random events as follows.

v Iy =0)=1
@ Iy =0)=1
2" o Iy =0)=1

c I(y™ =0)=1
y ¢ (y12 )
z I(yl(am) =0)=1
P(.’l)) . Pel7

for Iy # Iy # I3, my # my # mg, all I's € [1,...,L] and m’s € [1,..., M]. That

. I} " . .
is, (z,y,2) and (z,z ,z ) represent the occurrences of classification errors for three

samples stored at three different pairs and the same pair respectively.

To find the joint distributions in the above equations, let us first consider P(z, z').
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Due to the symmetry of the random variables, we take m; = I; = 1 and my = 2.

Then

P(z,a’) = Pr(I(s” =0)=1,I(3P =0)=1)

= Pr(sgl) =0,s? = 0)
- - (2L-2)
< n-eea-iMrocara®y L

This equation is obtained due to the fact only the presynaptic inputs of the first pair

to the output unit are dependent.

Let z,(]m ) be the presynaptic input to the threshold units at the /-th pair for the

stored sample X (m) being fed through. Then
j

N

=1

It is easy to show that z,(Jm 1) and z,(;" 2) are mutually independent for all I # j, where

my # my. Forl=j

A | & (e
= > wy
i ) T

Since all the terms in the summation are mutually independent, by the multivariate

central limit theorem, for N large

I my) 1 (m
(™ i) ~ N 0%, 0%, ), (4:50)

where N ,02,0%, p) represents the joint distribution of two gaussian random vari-
sy pyo™, P g

ables with the same mean p, variance o2 and correlation coefficient p, where

[N’
K M i
(m1

with N’ = %rﬂ It can be shown in a similar fashion that 2 ) and zJ(-;nz)

are also

jointly normal except that the correlation coefficient p equals #
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N(0,0,1,1, p), however, can be expanded as [6]:

+o00 r
N(0,0,1,1,p) = f(x)f(y)-i-z (@) (y), (4.51)
where 7,(z) = (—£) f(z) and f(z) = —e 7. Then
Pr(sgl) =0, .s?’ =0) = Pr(zﬂ) <tg, zg) <ty)+ 2Pr(zﬁ) <ty, zl(f) >t_)
+ Pr(zﬁ) >1_, 21(3) >t_)
= 4Q*(—po) + 20> F"*(1to) + o(p?), (4.52)

where po = k\/%. Then

P(z,z') [4Q*(~po) + 20> F*(p0) + 0(p?)]

2L-2
< n-e-0-by ¥ rocarnfDy L s

When M < il_kaﬂ such that

P e .S

is satisfied where ' — 0 when N, L — oo, we have

(4.54)

P(z,2") = 4Q*(~po) + 20" F* (o) + 0(p?). (4.55)

Similarly the joint distribution of the three gaussian random variables can be
expressed as

N(0,0,0,1,1,1, pyo, P13, P23) = f(wl)f($2)f(w3)
IR IXE P12P13P23
LD IPID e mewn

mnlol Trn(T1)Tro(Z2) Tr o (23)-

m+n +o_ r,r=1

(4.56)

Using this expansion and the similar derivations as before, we can obtain

P(z,y,2) ~ 8Q%(—po) + 69 f* (o) Q(—pro) + o(p?). (4.57)
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For M large (p small), we have

a =~ p?3f" (o). (4.58)

The other coeflicients in Equation (4.41) can be found similarly. Then for L, N large
and M ~ O(m]%),

al?M? + bL*’M + cLM + dM?* + eM =~ al’M?, (4.59)
for Q). (4.60)
Therefore, the bound B for Inequality (4.17) satisfies

B = min(A, DEIY; - Y] +1|

< min(Ay, DVE(Y; — Yy +1)2

~ min(\;,1)\/al2M? + . (4.61)

. InL 1
Case 1: = > 5.

For this case, aL?M? > f for M ~ O(;%;). Then, when

BN (1-k)>2N
2inL + InN’ 2InL

min(\y, 1)val?MZ F J ~ v/al*M — 0 as N — 400, where the E=2°N 4o is the

2inL

M < min|

I, (4.62)

condition for the equation (4.54) to be satisfied.

. dn 1
Case 2: %% < 3.

Then either aL?M? < f or O(aL*M?) = O(f) for M ~ O(:25). Therefore,

when

3k2N’ (1—k)°N’
4(InL + InN)’  2InL
min(Ay, 1)v/aL?M? + f ~ O(f) — 0 as N — +oco. Combining conditions in equa-

tion (4.62) and equation (4.63), we have that when

BN 3k2N (1—k)°N'
2lnL + InN’4(InL + InN)’  2InL

M < min] ], (4.63)

M < min| I, (4.64)
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the Poisson hypothesis is satisfied.

Q.E.D.
Appendix E: Proof of Theorem 4.4

Proof:
Let Pr(Y =) = 1 — 5. Then we must have

e~tMPea — 1 _ g, (4.65)

LLoM
1-e-0-ty ) socaemfTn T ion e

both satisfied simultaneously, where n,7; and 7, — 0 when N,L — oo. Equa-

and

tion (4.65) is satisfied if

k2N’
 —. .
= 2(InL 4+ InN) (467)
Also, equation (4.66) holds for Ly > 0 (for L, = 0, we have 5, = 0) when
(1 —k)°N'
< . .
M < 2(InLL; + InN) (4.68)

If we consider both cases as well as the assumption M < %, we can find that

the unique sharp transition point for Pr(Y = 0) occurs at
. k2N (1-k)°N’ . .
mln[Z(lnL+lnN)’ 2(InLL2+InN)]’ if0 <Ly <L

k2NI . _
2(InL+inN)> if L2 = 0.

M =

That is,

Co = (L+L,)M
w

O(W))

(4.69)
where W is the total number of weights of the network.

Q.E.D.
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Chapter 5

Network Reduction Algorithm

5.1 Introduction

In this chapter, a special kind of generalization is investigated which deals with learn-
ing of a smooth analog mapping from a set of discrete samples. This includes the
important class of pattern association problems that originate from a natural set-
ting, and hence are subject to continuous constraints, for example, interpolation of
a smooth surface from a set of discrete visual inputs [6], and training of a robot
arm moving along a specific trajectory in a smooth fashion. For this broad class of
problems, the problem of generalization reduces to that of finding a network with a
response function that interpolates smoothly between the training samples and which
has a sufficiently low mean square error on the test samples. If the set of training
samples contains enough information for the problem, the theoretical result given re-
cently by Barron [1] guarantees that the smallest network which has reasonably good
performance on the training set is the one which learns the mapping approximately.
Furthermore, if some a priori knowledge is available about a problem, it can be used

as a constraint which will help the learning [1]. In our learning algorithm, these two
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ideas are incorporated into a smoothness constraint.

One way of obtaining a network with a smooth response function is to add a
measure of smoothness to the standard BEP error function as a perturbation. For
example, one might average an absolute measure of the local curvature of the response
function over the expected distribution of network inputs. As this requires integrating
over a fine mesh embedded in the input space, more computation may be required
than is practical. Instead, we will follow a more intuitive path. In particular we will
modify the standard BEP learning rule in such a way as to (i) reduce the number
of hidden units iﬁ the network, and (¢7) minimize the magnitudes of the network
weights. As it tends to overconstrain the network, the first objective parallels that
of the structural risk minimization, where small networks generalize better [11]. The
second objective is designed to avoid unnecessarily abrupt ‘transit.ions in the response
function. This follows from observing that the gradient of the sigmoidal function
f(@*Z — 6) with respect to the input vector, Z, is proportional to the weight vector,
w. Effectively, it also reduces the degrees of freedom of a network assuming the

number of degrees of freedom is proportional to the magnitude of weights.

This intuitive approach was partially inspired by an algorithm designed to reduce
the number of weights in a network during the training phase [9]. Here, one auxiliary
term, 3°;,0(w;), was added to the standard BEP error function, the summation being
performed over all of the weights and thresholds in the network. The terms of the
summation, o(w) = w?/(1 + w?), measure the magnitudes of the weights relative
to unity. Thus, this summation is a rough measure of the number of “significant”
weights in the network; adding it to the error function biases the algorithm towards
architectures that use the least number of significant weights. The combined energy

function is then minimized by steepest descent. After a certain training criterion is
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reached, weights with magnitudes falling below a critical threshold can be removed
from the network by clamping their values to zero. Although this algorithm reduces
the number of weights, it does not effectively redﬁce the number of hidden units,
as architectures with fewer hidden units, but the same number of weights, are not
favored. For this reason, we add two terms to the BEP learning rule. The first is
designed to remove as many hidden units as possible, while maintaining an acceptable
level of error in the response function over the training data. For this to succeed, the
units must be operating near their transition regime. The second term is designed to

satisfy this requirement by minimizing the magnitudes of the weights.

These modifications to BEP are detailed in Section 2. Two modified versions of
this algorithm are also given in the same section, which include (1) a method that
first adds units at the hidden layer to build up a crude architecture, then deletes
unnecessary units using the original algorithm, and (2) an incremental learning rule
which gradually expands the training set as the network learns until it covers all
the samples needed to be learned. In Section 3, we present the results of several
numerical simulations that demonstrate the effectiveness of the algorithm derived. In
the first set of simulations we show that a network, beginning with a large number of
hidden units, can be reduced in size to one having a response function that smoothly
interpolates between the training data points. In the second set, we construct training
data from a network with an “unknown” number of hidden units, and show that the
algorithm can be used to infer the architecture of the unknown network with a high
probability. In Section 4, two modified versions of the learning algorithm are applied
to a real world problem: training a network to control a two-link manipulator to draw
characters. Finally, in Section 5, we conclude this chapter by stating some important

issues in generalization for learning analog mappings.
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5.2 The Learning Algorithm

5.2.1 The Network Reduction Algorithm

First, we consider the problem of training a feedforward network having a single
input unit, one layer of N hidden sigmoidal units, and a single linear output unit, to
smoothly interpolate between the M ordered pairs, {(z™,y") : 7 = 1,...,. M }, of a
given training set. (Here, y™ is the desired output value when the network input is

set to z7.)

We assume that the number of hidden units has been initially estimated to be
larger than necessary, and the network architecture, which is the number of units
at the hidden layer, does not change during learning. Let wy; and w,; denote the
input and output weights of the i-th hidden unit, and 6; its threshold value. The
response function of the network then has the form g(z; @, 5) = g:lwg,- flwyiz — 6;),
where, for notational convenience, we let @ = (wyy, ..., wyy, wy, _ ,wan ), and 6=
(01,...,0n)". The sigmoidal function is usually taken to be a modified hyperbolic
tangent, i.e, f(z) = 1/(1 + e=*). Under BEP, one attempts to find weight and

threshold values that minimize the standard error function,

- M o 2
eo(@,0) = Y [g(=";@,0) —y] (5.1)

=1

by gradient descent [10] [12].

For the architecture described above, we define a hidden unit to be significant if
it is coupled to both the input and output units with weights of a significantly large

magnitude, i.e, greater than one. Thus, the quantity,
S,' = 0’(11)1,')0'(’1,021'), (52)

can be viewed as a measure of the significance of the i-th hidden unit, where, as
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before, o(w) = w?/(1 + w?). Following the first objective of the previous section,

we desire to favor those architectures that require the fewest number of significant

hidden units.

If the given training set does not fully constrain the given network architecture,
then there is, in general, a degenerate set of solutions over which eo(5, 5) is acceptably

small. Following our first objective, we add a term proportional to

N i1-1

ea(@) = 33 55, (5.3)

i=1 j=1

to the standard error function. This biases the algorithm toward those solutions that
require the fewest number of significant hidden units. From its definition, &; achieves
a minimum value of zero if no more than one hidden unit has a non-zero significance,
and approaches its upper bound of N(N — 1)/2 as the magnitudes of all weights
increase without bound. After applying the gradient descent algorithm, we obtain

the learning rule

n n O0co , o 85
wji+1 = wy "’78 > ( 9 ) - ) (5-4)
]1
e =
n+l no_ 0/ ~n pgn
0; 0; ”‘—‘aa,- (o™, ™), (5.5)

where 7 and A are learning rate parameters, and j € [1,2]. Note that the last term in
equation (5.4) couples the dynamics of the weights so that, for example, increasing
the significance of the k-th hidden unit increases the decay rate of every weight
associated with the other hidden units. Also note that this term is proportional to
o'(wj;) = 2w /(1 + wf-,-)z, which becomes insignificant for large enough | wj; |. This
will help stabilize the dominant weights, but will also, in part, necessitate the second

objective stated in the previous section.

Because of possible conflicts between the two gradients in Equation (5.4), spurious

equilibria may exist. It is thus helpful to include the auxiliary term only after the
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network has learned the training set to a sufficient degree. Consequently, we let
A = Meo) = doexp(—Peo), where B~ defines a characteristic standard error: the
value of €9 below which the auxiliary term comes into play. Note that the resulting
learning rule no longer follows the direction of steepest descent of the combined error

function; however, the desired objective is ultimately obtained.

We attain our second objective of reducing the weight magnitudes by subtract-
ing an amount proportional to tanh(w;) from the right-hand side of Equation (5.4).
Although other choices are possible, this one has shown to be effective in practice.
Unlike the weight reduction scheme [9] discussed in the introduction, our method
preferentially reduces the larger weights in the network. We also apply this term to
the threshold’s update rule, because, in our examples of interest, we are interested in

the region of input space around the origin.

We thus obtain the network reduction algorithm

Oce o Oe
AR S O (@™, 0") — (o) — n
w] W] nawﬁ (o™, 0™) /\awﬁ(w ) — ptanh(w};), (5.6)
et = g — f,g_‘;Q(w", ™) — ptanh(6). (5.7)

As before, we gate the influence of the new term on how well the network is learning
the training set. In this case, it appears helpful to reduce this term gradually with

time. In particular, we let p = pg | £o(@", 8*) — eo(@™), §n-1) |.

Once an acceptable level of performance is reached, any weight with magnitude
below a certain level is removed from the network. When a hidden unit is connected
to the rest of the network with only “removed” weights, then the unit is discarded.

Thus, as is desired, the number of hidden units is reduced.

Finally, we mention that this algorithm can be extended to other architectures.
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For example, for a network having K inputs and L 6utputs, one may let
K L
Si =3 > o(wiki)o(wia), (5.8)
k=1l=1
where, wyy; is the value of the weight connecting the k-th input to the -th hidden
unit, and wyy, is that of the weight connecting the i-th hidden unit with the I-th

output.

5.2.2 Modification 1 (Algo-al) of the Network Reduction Algorithm:

Adding Units

One of the disadvantages of the network reduction algorithm is that the tuning of
the weights takes a long time, especially when the initial network is much larger
than necessary. Therefore, it is natural to first find a crude architecture by gradually
adding neurons at the second layer, then using the network reduction algorithm to
delete unnecessary units. Specifically, the modified algorithm which incorporates the

adding rule can be described as follows.

a). An initial network, which has for instance one unit at the hidden layer, is

chosen, and trained until a local minimum is reached.
b). A new hidden unit is added and trained while the old one is frozen.

c¢) The old unit is released and trained simultaneously with the new one until a

new local minimum is reached.

This adding process continues until the mean square error on the training set
reaches a desired value. Then the network is tuned to a possibly smaller size using
the network reduction algorithm. In Section 4 this modified version of the algorithm
is applied to training a network to control a robot arm to draw characters, and demon-

strate that it is more efficient in finding networks that have better generalization than
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the networks obtained using a fixed architecture.

Modification 2 (Algo-i2) of the Network Reduction Algorithm:

Incremental Learning

One of the difficulties in learning is that training gets longer and longer when a prob-
lem becomes more and more complex. For example, when a network is trained to
control a robot arm traveling along a single trajectory, training may still be manage-
able. However, if the training needs to be done in the whole input space, the training
task may be too complicated and time-consuming to tackle. One Way to deal with this
problem is to partition the original task into manageable sub-tasks. If learning one
sub-task helps to learn the others, the overall task can be gradually accomplished by
training sub-networks one at a time for the sub-tasks and frequently reviewing what
has been learned. Based on this idea, a learning scheme called incremental learning

is derived as follows.
Let {Xi,..., Xz} be a training set which contains k subset s Xj, ..., and X.

a) The algorithm Algo-al is used to learn the first subset X; until a desired

performance is achieved and the first subnetwork N; is obtained.

b) N is frozen and the step a) is repeated on the second sub-training set X, until

the second sub-network NV, is obtained.

¢) N; and N, are trained simultaneously using the original network reduction
algorithm on X; and X, to prevent the network from forgetting X; and enhance the

learning the union of the two sub-training sets.

The procedure is repeated until the whole training set X is learned and the size

of the overall network is small.
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Whether this method facilitates the learning of a complicated task usually de-

pends on the nature of the problem and the way of partitioning it. In Section 4, we
will show that it is feasible to use incremental learning to train a network to draw

characters anywhere horizontally in the space.
5.3 Simulation Results for the Network Reduction Algorithm

5.3.1 Learning a Smooth Function

In the first simulation, the network reduction algorithm is used to reduce the number
of hidden units and results in a smooth response function. The training set of the first
run consists of 9 equally spaced data points taken from the graph of the function.
$(z) = e @1* 4 =@+ Gver the domain [—2,2]. We begin with the network
described in Section 2.1, with N = 20; the 40 weights and 20 thresholds are randomly
initialized from a uniform distribution over the interval [—25,25]. With learning
parameters set to n = 5 x 1073, 8 = 0.1, Ao = 6.5 x 1073, and g = 5 x 10~%, the
network is trained by applying the learning rules in equation (5.6) and (5.7). After
the value of ¢; falls below the value 0.05, any weight with a magnitude less than 0.1
is set to zero. The resulting network uses only 5 of the 20 available hidden units. At
this point, the nominal increase in gq resulting from eliminating the weaker weights
is corrected by training the reduced network with the standard BEP algorithm for a

few additional iterations.

In Figure 5.1, the response function of the network obtained by this procedure is
compared against one obtained by BEP (i.e, A\g = o = 0) with the same initial condi-
tions. Note that the response function obtained by the network reduction algorithm
smoothly interpolates between the 9 training points and possesses the same number

of local extrema as ¢(z). This cannot be said for the response function generated
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by BEP, which oscillates wildly with minimum and maximum values —17.5 and 10.9

over the input domain, [-3, 3].

A more quantitative comparison can be made by averaging the root-mean-square

(RMS) deviation between each response function and ¢(z) over the interval [—2,2],

i.e,

pry

erars = 51 [ 0@ 8,8) - ()", a2

(Note that erass is a random variable, as the particular determination of the response
function, g, depends on the initial values of the weights and thresholds, which are
set at random.) For this instance of the network reduction algorithm, we obtain
erms = 1.15 x 1072, while for BEP, egyrs = 1.71. In the figure, the solid curve
indicates the output response of the network with 1 input, 20 hidden units, and 1
output, trained by the network reduction algorithm on the 9 training points indicated
by circular markers. The broken curve indicates a response function obtained by
training the same network with the same data using BEP. The dotted curve indicates

the graph of ¢(z) from which the training points were selected

If the algorithm does yield a network that generalizes well, then the size of the
network should not depend critically on the number of training samples used. This
necessarily assumes that the data in each set faithfully represents the significant
features of the training problem. Therefore, in a second run, the network is trained
with the same initial state, but with a training set containing 17 equally spaced
samples taken from the graph of the same function. Again the algorithm reduces the
network to 5 significant hidden units, with epprs = 8.81 X 1073, Training the network
under BEP with this data yields a network with egas = 4.73 x 1072, The response

functions of these two networks are displayed in Figure 5.2. At the left end of the
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Figure 5.1: Learning a smooth function with 9 samples
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Hidden Units (n) | Frequency (v,.) | E(erums | 1)
2 22 0.0275
9 0.0263
4 6 0.0405
) 6 0.0401
6 3 0.0656
7 4 0.0700

Table 5.1: Simulation results for the “inverse network” problem. Out of a total of
50 runs, the center column shows the number of times a network with n significant
hidden units was obtained. The right column equals the average of egarg — computed

over the interval [-2,2] — over the v, runs ending with n significant hidden units.

displayed interval, the network response obtained from BEP (the broken curve) drops

off scale to —5. At the right end, it quickly climbs to 20, and then saturates.

5.3.2 Learning a Target Network

Next, we explore an “inverse network” problem: to what extent can one use this
algorithm to infer the architecture of a feedforward neural network from only a finite
sample of its response function? A network containing one input, a layer of two
hidden units, and a single linear output is chosen, and a training set of 17 sample
points from its response function is generated. Then, an ensemble of 50 new networks,
each containing 10 hidden units, is trained on the data set with the network reduction

algorithm. The results of these 50 simulations are summarized in Table 5.1.

Note that twenty-two times out of fifty the algorithm finds a network of minimal

size. It is encouraging that the response functions with the least average RMS error,
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measured over the interval [—2,2], come from networks having two or three hidden
neurons. In Figure 5.3, we show how the response functions of the network regress
towards that of the “concealed” network as the number of hidden units used decreases.
Response functions obtained for the “inverse network” problem are displayed as solid
curves, that of the “concealed” network, as a dotted curve, and the training points
as circular markers. Graphs (a) — (c) reflect the median outcomes — the networks
resulting in the median values of egars — for the sets of trials resulting in n = 2, 4,
and 7 significant hidden units, respectively. Graph (d) reflects the median outcome
of ten trials using BEP, all of which resulted in 10 significant hidden units. Values
of €pys were computed over the input interval [—2,2]; for the response functions
displayed in graphs (a) — (d), erms equals 2.87 x 1072, 3.35 x 102, 4.49 x 10-2,
and 0.291 respectively. For comparison, ten networks trained by BEP alone yielded
an average RMS error of 0.461 without any apparent reduction in the number of

significant hidden units.

5.3.3 Discussions

In the above we have shown that by adding suitably chosen terms to the BEP learning
rule, desirable global properties in the network’s response function can be obtained.
In particular, the BEP algorithm was tailored to prefer networks having smoother
response functions. From the simulations, it is apparent that this behavior is at-
tained at the cost of a slower convergence rate. In the first simulation, where é(z)
was approximated using a nine-point training set, 50,000 iterations were required by
the network reduction algorithm, but only 300 were required by BEP. This discrep-
ancy was however reduced when the networks were trained from the 17 point set: the
network reduction algorithm needed 650,000 iterations, and BEP 150,000. Approxi-

mately one-half of the fifty “inverse network” simulations required more than 800,000
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iterations, which is larger than the 400,000 iterations typically needed to train a net-
work using BEP with ten hidden units, with the same 17 samples drawn from the
“concealed” network. It should be noted that in thé above examples we choose initial
weights with fairly large magnitudes over the interval [—25,25] to ensure that the
number of degrees of freedom of the networks approximately equals the number of
weights. When the weights are initially small, that is, the effective degrees of freedom
of a network are smaller than the total number of weights, the convergence rate can
be greatly accelerated and the resulting network may generalize well to a certain de-
gree. However, in the examples given in Section 4, we will show that small networks,
which are capable of learning the training set, usually have better performance in

generalization than large networks in learning analog mappings.

5.4 Application of the Algorithm in Control

In this section two modified versions of the original network reduction algorithm
are applied to train a network to control a two-link manipulator drawing charac-
ters. Through this application, properties of small and larger networks are further
investigated to gain a better understanding of generalization for analog mappings.
The incremental learning rule is also applied which shows that it does facilitate the

training task for the problem we consider.

Most of the simulations described in this chapter are done using the feedforward
learning mechanism. Details on the feedback learning scheme, which is more practical

in real situations, can be found in [3].

5.4.1 Feedforward Learning Mechanism

The feedforward learning mechanism is shown in Figure 5.4. For this case, the
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training is identified as the off-line training compared with the feedback learning
system that does training on-line. In order to do off-line training, it is assumed
that some desired input-output pairs of a “plant” are known and form a stationary
training set. Training is accomplished when the mean square error on the training set
is sufficiently small. Although this type of feedforward learning system is not feasible
in real situations due to the lack of desired outputs of the unknown plant, it can be
used when some a priori knowledge is available and used as a crude off-line training
set before more accurate training- feedback learning takes place. Besides, it is easier
to investigate generalizing capability of networks using such a simple system, since
the ability of the resulting network in generalization can be identified as to how well

it learns the analog mapping characterized by the discrete training samples.
a) A Two-Link Manipulator

In this application, the plant is a two link manipulator shown in F igure 5.5.
The Newton-Euler equation [5] that describes its dynamics is given in the following

expressions:

.

M) = | 2malily cos(8:) + mil? + mal? + mul2 mulyl, cos(b;) + mal2 |,
m21112 COS(02) + mzlg | mzl%

—mgll lz sin(02)922 - 2m21112 sin(02)9152

m21112 sin(02)0.12

malzg cos(6; + 03) 4+ mylyg cos(6y) + mylig cos(6,)

malag cos(6; + 6;)
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Bounding Box for 7
Unshifted Characters

Figure 5.5: Two-Link Manipulator

where M is the mass matrix, v is the vector of centrifugal and Coriolis terms, and g
is the vector of gravitational terms; §* = (6;,02), and 7% = (74, 7). The equations are
used to simulate the plant in our computer experiments with the following parameters:

mq = 2kg, I} = 2m, my; = 1 kg, I = 1m, and g = 10mm/s2.

When a network is trained to approximate an inverse plant, a set of M desired
inputs 0, 8, § and outputs 7 is used, which are obtained using the Newton-Euler
equation with time step A; = 0.1. Specifically, in our simulations, those training

samples are associated with a particular trajectory for drawing a character.
b) Feedback Control Mechanism

Once the off-line training is done, the resulting network is connected in the feed-

back control system in Figure 5.6 to test whether desired characters can indeed be



96

Y

TWO-LINK MANIPULATOR

NETWORK

I

Figure 5.6: Feedback control mechanism for testing.

drawn by the robot arm. The feedback loop is necessary for correcting numerical

€ITors.

5.4.2 Drawing Charaters Within the Window

We first train a network for drawing a letter “P” inside the square window shown in
Figure 5.5. The training set contains a 100 input-output pairs which are the given 4,

8, § and the desired 7. The details for obtaining the training samples from a character

drawn on the screen are described in [2].

The goal for this experiment is two-fold: 1) to find out how each individual
resulting network generalizes when drawing other letters on which the network has
not been trained, as well as translated versions of the trained P; 2) to study how the

performance of networks in generalization varies in terms of their sizes.
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The algorithm Algo-al is first used to find appropriate number of hidden units

for this problem. Networks with 3 hidden units are obtained 8 times in 10 simulations
using different random initial conditions. Moreover, networks of fixed structures with
different hidden units were also trained 10 times using BEP, each starting with dif-
ferent random initial weights. All these networks are then tested on drawing different
letters. Figure 5.7 gives the letters drawn by one of the resulting networks trained
with the algorithm Algo-al and training letter P, where the dotted and the solid
characters are drawn by the teacher and by the network respectively. The character

P is the trained pattern, and the rest of characters are untrained.

Table 5.2 summarizes the performance of all these networks. The second column
in the table indicates sizes of networks as well as the training method. There are 10
networks for each kind trained with BEP, and 8 networks obtained using the Algo-
al. Number of Failures indicates the number of networks in each class which fail
to draw the character. MSE is the mean square error between a desired trajectory
and an actual trajectory averaged over those networks which succeed in drawing the
character. “*” indicates that it is impossible to compute the MSE due to too many

failures.

The results given in this table indicates that the small networks obtained using
our algorithm and the networks with only a few hidden units trained with BEP can
all generalize well in terms of drawing not only the trained letter P but also other
letters which they have never seen before. The large networks (the networks with 20
hidden units), although they have learned the discrete training samples, they fail to

generalize in terms of drawing the whole letter P as well as the other letters.

To explore further the maximum generalization achievable by the networks using

our algorithm and how the size of a network affects its performance in generalization,
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Character Drawn | Hidden Units (Training Method) | Number of Failures | MSE
P(trained) 3 (Algo-al) 0 005
2 (BEP) 0 .004
6 (BEP) 2 011
10 (BEP) 0 046
20 (BEP) 9 *
M 3 (Algo-al) 0 .005
2 (BEP) 0 003
6 (BEP) 2 010
10 (BEP) 0 .009
20 {BEP) 7 *
Circle 3 (Algo-al) 0 004
2 (BEP) 0 002
6 (BEP) 0 010
10 (BEP) 1 011
20 (BEP) 7 *
Line 3 (Algo-al) 0 .004
2 (BEP) 0 .003
6 (BEP) 2 012
10 (BEP) 1 013
20 (BEP) 6 *

Table 5.2: Simulation and test results for drawing characters, trained and untrained.
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the networks are tested on shifted, rotated and scaled versions of the trained P.
Results are given in Table 5.3, where dx and dy are the shifts in x and y respectively;
0 is the rotation angle, and “scale” is the scaling factor. The rest of the notation is
the same as in Table 5.2. These results demonstrate that small networks generalize

much better than large networks in drawing the translated versions of the trained P.

Since it is still hard to discriminate, through the results in Table 5.3, between
the performance of the networks obtained through our algorithm and small networks
(with 2 hidden units, for instance), trained with BEP, more rotated versions were

tested on these two types of networks, and the results shown in Table 5.4.

These results suggest that although both types of networks are pretty small, the
networks obtained through our algorithm have better tolerance to the rotation of the

trained pattern than the networks trained with a fixed architecture using BEP.

5.4.3 Drawing Characters Outside the Window

Although training a network to draw a letter within the window is tractable, training
a network to draw the same letter with shifts anywhere in a much larger window
can be a formidable task. However, the results in Table 5.3 indicates that training
a network with a letter at one position may help to learn its shifted version since
the network does generalize to some degree to the shifted letters . Therefore, the
incremental learning technique (Algo-i2) is used to train a network drawing the letter

P with any horizontal shift in the region.

Specifically, our overall training set consists of 5 subsets of the training samples .
with 100 each drawing according to the trajectories corresponding to 5 horizontally
shifted P’s. The first subnetwork is obtained by the algorithm Algo-al on the first

subset corresponding to the P without any shift. Then the other 4 letters are learned
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dx | dy | @ (degree) | Scale | Hidden Units (Training Method) | Number of Failure | MSE
00 0 9 3 (Algo-al) 1 .009
2 (BEP) 0 006
3 (BEP) 4 009
6 (BEP) 7 011
10 (BEP) 5 046
20 (BEP) 10 *
0o 100 1.0 3( Algo-al) 0 0.007
2 (BEP) 3 0.050
3 (BEP) 3 0.164
6 (BEP) 5 0.155
10 (BEP) 5 0.215
-31-1 0 1.0 3 (Algo-al) 1 .007
2 (BEP) 0 008
3 (BEP) 1 021
6 (BEP) 2 068
10 (BEP) 3 073
20 (BEP) 10 *

Table 5.3: Test results for the shifted, rotated and scaled P.
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¢ (degree) | Hidden Units (Training Method) | Number of Failures | MSE
5.0 3 (Algo-al) 0 .006
2 (BEP) 0 .006
8.0 3 (Algo-al) 0 .00608
2 (BEP) 1 031
10 3 (Algo-al) 0 .009
2 (BEP) 3 050
12 3 (Algo-al) 2 .061
2 (BEP) 3 075
15 3 (Algo-al) 4 .064
2 (BEP) 10 *

using the incremental learning rule. The resulting network, which ends up with 8
hidden units, was tested on drawing 5 letter M’s with different horizontal shifts from

the trained P. Figure 5.8 gives the shifted P’s trained and the shifted M’s tested

Table 5.4: Simulation results for the rotated P

drawn by the network.

The algorithm Algo-al was also used on the entire training set with 500 samples,
but the training was unable to finish within tolerable time. However, more simulations
are needed to make careful comparisons between incremental learning and conven-

tional learning as to learning time, performance of generalization and complexity of

networks.
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5.5 Conclusion

In this chapter, we have developed a learning algorithm which implements the smooth-
ness constraint by minimizing the degrees of freedom of a network as well as the
magnitude of weights. We have applied this algorithm as well as modified versions to

learning analog mappings.

We have found that for learning analog mappings, if a training set contains suf-
ficient information for the problem, a as small as possible network obtained from our
algorithm usually has a superior performance in generalization over large networks as
well as over other small networks with a similar number of hidden units but trained

with BEP.

One of the disadvantages of this algorithm, however, is that the parameters in the
algorithm for the penalty terms affect the size of a resulting network and have to be
chosen empirically. This is also an intrinsic disadvantage of any similar optimization
approach using regularizers. Besides, the training time is somewhat long, especially
when an initial network is started out much larger than necessary. Adding hidden
units speeds up the training significantly. But since the units can only be added at
the second layer, a more general architecture, such as a three-layer architecture and

local connectivity patterns, are unable to be explored in this same way in this same

way.
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Chapter 6

Network Addition-Deletion

Algorithm

6.1 Introduction

In this chapter, a learning algorithm is developed that allows us to find a suitable
network structure in a general fashion in terms of number of layers, number of units in
each layer and possible local connectivity patterns. The learning algorithm is then ap-

plied to investigate how the size of a network affects its performance in generalization
for binary mappings only.

There are two questions often encountered in training of feedforward multilayer
neural networks for generalization.

1) How many degrees of freedom does a network need to absorb the information
in the training set?

2) How can one find a network architecture (in terms of connectivity patterns,
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neurons in each layer and number of layers) which is appropriate for the problem when

no information other than the training set is available for choosing the structure?

For binary mappings, the VC-inequality[10] provides a guideline for the first ques-
tion. That is, generalization is achieved (the true error rate is bounded by twice the
training error rate €¢) when the relationship M ~ O(%) is satisfied, where M is the
number of training samples and d is the VC-dimension which is directly related to
the degrees of freedom in the network. Roughly speaking, for a fully trained feedfor-
ward multilayer neural network, therefore W, which is the number of independently
modifiable weights, can be used as a crude measure for the VC-dimension. Then
M ~ O %) provides a measure for generalization. According to this theory, small

networks (W small) generalize better than large networks.

Several learning algorithms have been developed to address the second question.
Roughly they can be divided into two categories: structure minimization through
weight deletion and structure growth by adding resources. Most of the algorithms
that use weight deletions are done through solving a regularization problem. That is,
a network with a fixed structure is used and an extra term is added as a regularizer to
the original energy function in a setting of supervised learning. Such a term usually
measures the complexity of the network [7] [2] and constrains the network to learn
the training samples using as few degrees of freedom as possible. Although these
methods have been shown to be capable of ﬁnding networks which generalize well,
they require either a very slow tuning of weights from a fixed network architecture or a
lot of prior knowledge in the network design. On the other hand, learning algorithms
for network structure growth [5] [6] [14] add neurons and layers during the learning
phase, and this does not require a fixed structure to be prespecified. However, since

these algorithms usually control additions of resources by trying to learn the training
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set as well as possible, overfitting may occur instead of generalization, in fact, the

opposite of generalization.

The learning algorithm we present in this chapter combines both structure mini-
mization and growth and tries to circumvent their individual drawbacks. Specifically,

the algorithm has three salient features.
First, it tries to find a network as small as possible to learn the training samples.

Second, an architecture of such a small network is searched for through two learn-
ing phases: an adding phase and a deleting phase, while the network is learning the
given input-output associations using gradient descent. The adding phase builds up a
crude structure by filling the connections and neurons at a large “virtual” multilayer
network with a maximum L layers possible. The deleting phase refines the structure
by trimming off unnecessary connections. The adding and deleting are done based on
probability rules and sensitivity measures such that only those connections which are
most effective in reducing the error are preserved. This method provides an effective
way to search for network structures in a general framework without specifying a

fixed structure a priori.

Third, two criteria are used for two different versions of the algorithm to control
the switching between the two learning phases and the termination of learning. The
first criterioncriterion, drawn from the VC-inequality, is M ~ O(%), where M is
the total number of training samples, W the number of weights of the network and
€ the training error rate. This criterion can estimate generalization performance of
the network without a test set. The second criterion is based on the generalization
error evaluated on line through a validation set. That is, the error on the validation
set is evaluated during the training process to provide an estimator for the true

generalization error. Since such an estimator is distribution-dependent, it is more
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accurate than the VC criterion which gives a worst case bound. The chapter is
organized as follows. Section 2 gives the definitions for the sensitivity measures used
in addition and deletion. Section 3 explains two versions of the algorithm and presents
simulation results to show their effectiveness. In Section 4, the performance of large
and small networks on generalization is further investigated through an example. The

conclusion will summarize the results and state some related issues.

6.2 Learning Algorithm

Let us choose L to be the maximum number of layers for a virtual feedforward mul-
tilayer networks with n(l) units at layer [ , where 0 <[ < L. Here n(0) and n(L) are
fixed and the remaining n(l) are adaptable. The transfer function of all the neurons

is the sigmoid function f(z) = tanh(z).

Let the energy function used for training be the usual quadratic function, i.e.,
— s 2
E=Yla-il,

where the ’s and #;’s denote the sth actual and desired outputs of the network

respectively. The modification of the weights is done using gradient descent, e.g.,

OF

D) o e
Aw(i,j, 1) TG D)
where w(3, j,{) denotes the connection from unit ¢ at the (I — 1)-th layer to unit j at

the [-th layerfor 1 <:<n(l—-1),1<j<n(l),and 1 <I< L.

The training starts by modifying the weights of an initial network, for instance
n(0)-1-1,...-n(L) network, which has 1 unit in each hidden layers and the fixed n(0)
and n(L) units in the input and output layers respectively. When a local minimum is

reached, candidate units at layer [ (1 <1 < L —1) are evaluated for possible addition.
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6.2.1 Adding Phase

To add resources, we define the sensitivity measures and the probabilistic rules as

follows.

Let n(l) + 1 be a candidate unit at layer { where 1 <I< L —1.

Definition 6.1 The sensitivity Si; of connection w(i,n(l)+1,1) of the candidate unit

at layer 1 is:
OF ]2
ow(i,n(l)+1,1)"’

S =1 (6.1)

for1 <i<n(l-1).

Definition 6.2 The sensitivity S; of candidate unit n(l) + 1 at layer 1 is

n(i-1)

Si= > S (6.2)

i=1

Definition 6.3 The probability that the candidate unit at layer | gets chosen is

Pr (a unit at layer | is chosen) = L—f’——

Sm
1

— (6.3)
Definition 6.4 The probability that the connection w(i,n(l)+1,1) gets chosen given

the candidate unit n(l) + 1 is selected is

Pr(w(¢,n(l) + 1,1) is chosen given the I-th layer selected) = %, (6.4)
!

for1 <i<n(l-1).

One complete adding phase is done as follows. Each incoming connection of a
candidate unit is initially set to be zero while its outgoing connections are picked to
be small random numbers. Then the sensitivity of each incoming weight is evaluated

and the sensitivity of each candidate unit is obtained by summing up the sensitivities
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over all its incoming weights through equation (6.1). The probability rule defined
in equation (6.3) is used to select a unit. Specifically, if a number generated ran-
domly from a uniform distribution on (0,1) exceeds the probability calculated from
equation (6.3), the candidate unit n(l) + 1 is selected. Once a unit is chosen, we
apply the same procedure to choose connections for this unit using the probability
defined in equation (6.4). Then the weights associated with the newly added unit are
adapted while the old ones are kept frozen. After that, all the weights are trained

simultaneously until a new local minimum is reached.

6.2.2 Deleting Phase

The goal of the deletion is to remove those connections that cause the least error
increase. Two schemes have been investigated. In the first approach, the deleting
phase is considered to be an inverse process to the adding. phase, and an insensitivity
measure for each weight is used as a criterion for its possible deletion. Specifically,
the average insensitivity 1.5(z, j, ) of weight w(s, j,[) is defined as follows for 1 < ¢ <

n(l—1),1<j<n(l)and1 <1< L:

Definition 6.5 The insensitivity of the weight w(i,7,1) is
1

) 6.5
15 (52E)! )
Tt=1 Bw(i,gl)/y

I15(i,5,1) =

where t represents the t-th iteration for w(i,j,1) and T is the total number of times

the connection w(i, j,l) has been modified since it was generated.

Weights with big insensitivities get deleted. This approach, motivated by a
method used in [8], is easy to use since it does not cost significantly extra com-
putation to evaluate the insensitivity. However, since the average insensitivity does

not always indicate the importance of a weight, a wrong deletion may occur. There-
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fore, another deleting method based on exhaustive search has also been examined.

Specifically, this scheme is defined as follows.

Definition 6.6

Set w(t,5,1) =0 if E(w(i,j,1) =0) = (kmin)#oE(w(k, m,n) = 0), (6.6)

where 1 <i <n(l—1),1 <5< n() and1 <1< L. Here E(w(k,m,n) = 0) is the

error obtained when the weight w(k, m,n) is set to zero.

Using this method, each weight is set to zero consecutively and the corresponding
error is computed and stored. The weight which causes the smallest error increase
gets deleted. This approach always decides correctly which weight should be removed.
The computational complexity is polynomial in W (~ O(W?3)) since computing the
corresponding errors for all nonzero weights costs about MW? multiplications and

M ~ O(%). However, this can still be quite time consuming in practice if M is large.

Two versions of the addition-deletion algorithm are given below, based on two

different criteria, to control the addition and deletion phases and the termination of

learning.

6.2.3 The First Version of the Algorithm: Al-ve

a) The Criterion : M ~ O(¥%)

A network learns a problem if the training error rate is as low as possible and
the performance between the training and true error rates is consistent. The consis-
tency can be accomplished if the number of training samples loaded, M, sufficiently
exceeds the VC-dimension. Specifically, if any network in a class of networks with
VC-dimension d can classify a fraction 1 — € of the training samples, then with good

confidence (when the number of samples is large), its true probability of error will
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be no bigger than 2¢ if the relationship M ~ C% is satisfied, where C is a constant.

For our case, we choose W as an estimator of d. Then the algorithm based on this

criterion can be described as follows:
b) The Algorithm: Al-vc

1) Pick an initial error rate €, and a constant C. Ideally we would like to pick
€o equal to the Bayes error. However, since we do not know what the Bayes error is,

€o is chosen according to the performance we only hope to achieve.

2) Add resources to the initial network during learning until the network achieves

the error rate ¢. If now M > C’g— is satisfied, then stop.

3) Otherwise turn to the deleting phase and compute the error rate on the training
samples whenever deletions of connections are about to occur. Stop when the relation
M ~ CY¥ is satisfied. This new error rate € at the stopping point will be bigger than

€o. If € is sufficiently low, stop.

4) If € is unacceptably high, which may be due to over-deletion of connections,
repeat steps 2) and 3). If repeated growth and the deleting phases do not reduce e,

then we accept € as our estimate for the Bayes error.

6.2.4 The Second Version of the Algorithm: Al-vl

a) The Criterion: validation error ¢,

Although the algorithm Al-vc is based on a simple criterion which can estimate
the generalization on line without a test set, it does have disadvantages. Specifically,
there is no systematic way to choose the constant C' for each individual problem, not
to say that the sample complexity needed for generalization can be much smaller than

the VC-dimension for a specific distribution, as was shown in Chapter 3. Therefore, to
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develop a more systematic method to estimate the generalization error, we incorporate

a validation set in training. Specifically, the algorithm Al-vl is given as follows.

b) The Algorithm: Al-vl

In this algorithm, the training which refers to modifications of the weights is done

using a training set, while a validation error is computed using a validation set.

1) Train an initial network and compute the validation error €,; at each iteration

until a local minimum is reached, where two conditions are satisfied: a) The error

17-7’
quantity é; b) The validation error does not change anymore. That is, the change

can hardly change anymore. That is, >~ = (%)2 is small that a given small
g I Wy

of the validation error is smaller than a given small number §. Denote €,(k) as the
validation error when local minimums have been reached the k time. For the initial

network to reach a local minimum the first time, k£ = 1.

2) Go to the adding phase until another local minimum is reached. Then ¢,;(k+1)

is obtained.

If the new validation error €,(k + 1) at the k + 1-th local minimum after the
addition is smaller than the validation error €, (k) at the previous (the k-th) local
minimum before the addition occurs, i.e. €,(k+1) < €,(k), goto 2) until €,)(k+1) ~
(k) for the first time. Then go to 2) again to add one more time. If this cause the
validation error to decrease again, go to 2); otherwise go to 3), since the validation

error indeed can not decrease anymore.

3) Go to the deleting phase until €,; goes up at a local minimum, and record ¢,
as €,;(k’). Then go to the add the resource one more time until a new local minimum

is reached and €,;(k’' + 1) is obtained. If €,4(k'+1) < €,i(’), got to 2); otherwise stop.

At the same time always recored the optimal weights which correspond to the
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Two-layer Three-layer
Target network (with random weights) 15-7-1-1 7-4-3-1
Desired training error rate 10% 5%
Number of training samples 1100 850
Number of test samples 1100 850
Success in finding number of layers 7/10 10/10
Average number of units obtained at layer 1(*) 4.4 3.5
Standard deviation for (¥*) 1.2 0.5
Average number of units obtained at layer 2 (**) 1.3 2.9
Standard deviation for (**) 0.2 0.8
Range of the test error rate 10.9% ~ 16.7% | 4.0% ~ 5.9%

Table 6.1: Simulation results for learning target networks.

smallest €,; so that one can always go back and use the optimal set of weights.

6.3 Simulations

6.3.1 Learning Target Networks

The algorithm Al-vc is used for this problem with the constant C chosen as 1.

In this problem, two random target networks (n(0)=15, n(1)=7, n(2)=1, n(3)=1
and n(0)=7, n(1)=4, n(2)=3, n(3)=1) are used to generate labels for random vec-
tors whose elements are drawn independently with uniform distribution in 15 and 7
dimensional hyperspheres respectively. L, the maximum number of layers possible,
was chosen to be 3. Ten runs using different random initial conditions were carried
out for both cases with initial 15(7)-1-1-1 networks, respectively. After completion of

learning, the performance of the resulting network was tested with new samples from
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the two target networks.

The expected generalization here is twofold. First, the algorithm should be able
to result in networks which have similar structures to those of target networks, espe-
cially to distinguish the 2-layer (15-7-1) from the 3-layer (7-4-3-1) structure. Second,
consistency should be achieved, i.e. the test error rate should be bounded by twice

the training error rate.

The results given in Table 6.1 demonstrate that the algorithm only fails three
out of twenty runs in finding the correct number of layers. Since a small error is
allowed on the training sets, the resulting networks usually have a fewer number of
units than the target networks. The test error, as expected, is well bounded by twice

the training error.

6.3.2 Handwritten Digit Recognition

Although the algorithm Al-vc works well with C = 1 for the previous problem, it
is not clear at all what an appropriate value of C should be chosen for networks
with multiple outputs. Nor is it clear for classification problems using majority rules
(winner-take-all). For instance, as shown later in this section, for the handwritten
digit recognition, if C is still chosen to be 1, the resulting network with 35 connections
will have about a 12% error rate on the test set, which indicates that network is too
small to approximate the mapping. Due to lack of a general way to choose C, a more

general version of the algorithm, the algorithm Al-vl, is used in this section.

In the previous work, LeCun et al.[10] incorporated network designs into a 5 layer
network and obtained good results in handwritten digit recognition. Some other
work [13] [11] suggested that the under-trained large networks with more number

of weights than necessary can also generalize surprisingly well. For our work, we
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Nets E(train) | E(test)/E(reject) | E(test)/ E(reject)
101 —2—0-—3* 2.22 7.27/0 4.77/7.00
101 —5—0—3* 1.20 7.50/0 5.00/8.41
101 -2 —-2—-3* 2.00 8.86/0 5.22/17.0
101-10-2 -3 2.00 7.24/0 5.00/5.91
101-20—-0—3"| 0.89 7.72/0 5.00/10.7
101 —40—-0-3° 1.05 7.72/0 5.00/8.64

Table 6.2: Simulation results for the handwritten digit recognition with and withoyt

rejection.

expect to achieve two things beyond this: 1) obtain an appropriate network structure
for this problem without using any a priori knowledge; 2) compare performance of
small networks with that of large networks in order to understand the generalizing

properties of large networks.

The training set we use contains 450 10 x 10 binary (1,0) images of handwritten
digits: 3’s, 6’s and 8’s obtained from post-office zipcode data. The test set has
440 similar samples. The simulations are usually done twice using different initial

conditions.

Table 6.2 gives results obtained from one set of simulations. In the table, “x1”,
“x2” and “x3” indicate the networks obtained using the algorithm Al-vl with W =
180,240 and 82 respectively, where W is the total number of weights of the network.
The “x” here refers to the networks obtained using BEP along with the validation
set. E(train), E(test) and E(reject) are the training, testing and rejection error rates

(%) respectively.

These results show that the small (two-layer) networks obtained through our
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algorithm Al-vl have comparable test errors to those of the large networks when the
rejection rate is zero. When rejections are allowed with the same test error ~ 5%,
the small (two-layer) networks usually have smaller rejection rates than the larger
networks except for the (101 — 10 — 2 — 3) network. If the network is too small (too
few connections), the (101 — 2 — 2 — 3) net for instance, its performance on the test

samples may deteriorate due to possibly insufficient resources.

To test how these networks generalize to noisy images, the resulting networks
are tested on two types of noisy patterns. First, the 1 — 0 type of noisy pattern is
generated, for which the 1’s in each image are changed to 0 with probability .05. Sec-
ond, patterns with additive white noise are produced by adding a number generated
from the uniform distribution in [0, .5] to each bit. These networks are tested on the
noisy digits generated with and without tolerance for rejections: The results shown
in Table 6.3 demonstrate that small networks with two layers seem to be robust to
the (1 — 0) noise in the inputs, while large networks are more robust to the additive
white noise in the input patterns. In this table, E(1 —0), E(1 — 0 reject), E(w-n) and
E(w-n-reject) represent the test error and rejection rates on digits with the 1 — 0 and

white noise respectively. The rest of the notation follows that in Table 6.2.

From the above results, the advantage of using a 3-layer structure is not so
obvious. This may be due to the simplicity of the problem. Yet one important
feature exhibited by these results is that networks larger than necessary in terms of
number of weights can generalize surprisingly well. The reason from our conjecture is
that for a relatively simple problem where samples belonging to different classes are
well separated, an under-trained large network can also generalize well. This may well
be the case for the digit recognition problem, since in a 100 dimensional space, they

may be well-separated indeed. This conjecture may be further verified by applying
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Nets

E(1 — 0)/E(1 — 0 reject)

E(w-n)/E(w-n-reject)

101 —2—0—3*

8.18/0, 5.00/13.4

16.6/0, 8.18/51.6

101 —5— 0 — 3*2

8.41/0, 5.23/12.3

18.6/0, 5.00/44.8

101 -2-2-3%

11.1/0, 5.23/26.8

20.7/0, 10.0/50.0

101-10-2 -3

9.55/0, 5.00/9.32

13.0/0, 5.23/30.0

101 -20-0-3"

11.4/0, 5.23/19.5

12.7/0, 5.00/25.7

101 — 40 -0 —3"

10.0/0, 5.23/13.9

8.41/0, 5.00/9.32

Table 6.3: Test results on the noisy handwritten digits.

Nets W | C | E(train) | E(test)/E(reject)

101-2-2-3 135 | 1 5.80 12.3/0

101-3-3-3 | 72 | 2 5.00 8.86/0

Table 6.4: Simulation results for the hand written digit recognition using the algo-

rithm Al-vc.
Fisher discriminant [4] in multi-dimensions to the inputs. We shall dwell on this here.

To show that over-constraining a network may end up with poor generalization,
results obtained using the first version of the algorithm Al-vc are given in Table 6.4,
where W represents the total number of weights of the network, and C the constant

in the criterion. .

6.4 A Problem for Which Large Networks Can Not Generalize

6.4.1 Learning a “Critical” Target Perceptron

To investigate why large networks can generalize so well for classification problems

(binary mappings) but not for analog mappings, as shown in Chapter 4, a simple
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example is chosen in which networks of different sizes are trained to learn a target
network which is a single-neuron (15 —1) network with random weights. The training
samples are generated independently from a uniform distribution in [-3,3]. Two
networks (15 — 1 and 15 — 20 — 1) are trained with BEP using 600 training samples,
and then tested on another 1000 randomly drawn samples from the same distribution.
Their training and test error rates are all below 2.5% and 4.2% respectively. However, -
when both networks are tested on 1000 samples which are very close to the original
decision boundary, inputs whose outputs are in the range [—.1,.1] for the sigmoidal
neuron of the random target network, they both make about 50% errors on the test
samples! The reason for this is there are only 0.2% samples in the previously used
1600 samples which are close to the boundary. That is, the randomly drawn samples
from two classes are very well separated. So the resulting small network is actually
tilted away from the original decision boundary while the large one is wiggling around
it.

Therefore, to investigate a case that an under-trained large network can not
generalize well, we use the training and validation sets of the same sizes as before,
but the samples are only the ones close to the boundary (within the [—.1,.1] range)
defined by the target perceptron. Similar training for networks with different sizes is
carried out; and the results are given in Table 6.5, where “x1” and “x” represent the
networks obtained using the algorithm Al-vl with 15 connections and BEP along with
the validation set, respectively. E(train) and E(test) are the training and test error
rates. The networks that are trained all start with very small random initial weights
in the range [—a,a], where a < 107®. Consistent with the perceptron convergence
theorem [4], the addition-deletion algorithm with the initial 15 — 1 network results in

a single neuron which generalizes well. The 15— 2 — 1 network trained with BEP also
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Nets E(train) (%) | E(test) (%)
15 — 1+ 8.70 9.80
15-2-1* 6.89 9.40
15—-10-1* 5.50 53.0

Table 6.5: Simulation results for learning the critical target perceptron.

converges to a network with equivalently the same number of weights as the target
perceptron (some of the weights in the resulting networks are almost zero), although
the loading of the training samples takes quite long. The 15—10—1 network, however,

learns the training samples but completely fails to learning the mapping.

6.5 Conclusion

The algorithm presented in this chapter finds small networks (which according to
Barron [1] requires a small number of training samples) that give good generaliza-
tion. Alternatives are to hand pick the network (LeCun [10]) and still have good
generalization if the choices are good, or else to use large under-trained networks.
The latter still work well because of the Rummelhart argument [15] if the problem
is “simple”. However, if the mapping is complex and requires multiple layers with
specific connectivity patterns, small networks obtained through our algorithm give

better generalization.

We also need to comment here on the relative time it takes to converge the
different algorithms and how we can combine the three methods (1. clever design,
2. undertrained, larger than necessary networks, 3. data-driven architecture design,
such as in our approach). The under-trained large networks usually learn faster than

the small ones, especially for “simple” problems which are commonly encountered in
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classification problems. Moreover, it is preferable to use a two-layer structure instead
of multilayers if it is efficient for implementing the mapping, since learning slows down

significantly when the number of layers is bigger than 2.

In terms of choice of an algorithm, it is certainly best to incorporate clever designs
into a network if some a priori knowledge is available, then to use a data-driven
approach to find the complete network architecture. However, if no a priori knowledge
is available, the network addition-deletion algorithm can always be used to find a good
structure. It seems to be reasonably safe to use under-trained large networks in a lot

of classification problems, if the generalization requirement is not that strict.

Finally, we point out that incorporating a validation set does not guarantee a
completely reliable estimate for the true generalization error. Again, according to the
VC theory [3], the difference between a validation error and the true probability of
error is also roughly bounded by O( Mi,)’ where d is the VC-dimension of the class of
networks and M, is the number of test samples. That is, sufficient validation samples
are needed to obtain a reliable estimate. A large validation set, however, will increaée
the training time. From our experience, if the samples are independently drawn and
not very noisy, it seems to be sufficient to use a small fraction of training samples as

a validation set.
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Chapter 7

Conclusion

In this thesis, the generalization capability of feedforward multilayer neural networks
is investigated analytically and algorithmically. The theoretical results obtained for

generalization can be summarized as follows.

First, a general relationship is developed between the statistical capacity and
the universal sample bound for generalization. It is shown that the universal sample
bound for generalization is lower-bounded by the lower epsilon-capacity of a particular
network for one specific distribution of the samples. This relation associates the VC-
dimension with the Baysian classifier and the optimal classifier in a class of networks
with the same structure. It is not clear yet, however, whether an upper bound in
the order of the upper capacity is also plausible. Moreover, it would be interesting
to investigate whether the Cover type of capacity is also in the order of the VC-
dimension, in order to obtain a complete unifying view of the capacity and the sample

bound for generalization.

As one of its applications, this general relation is used as a constructive approach

to find a lower bound for the VC-dimension of two layer networks with binary weights.



127

It could also be used in a similar fashion in the future to find a lower bound for the
VC-dimension of any networks of interest, such as three-layer networks or two-layer

networks with discrete weights which take K values.

Second, as another application of the general relation, the sample complexity
needed for generalization for a distribution-dependent case is studied through inves-
tigating a single neuron under a specific sample distribution. It is shown that the
sample complexity actually needed for generalization can be much smaller than the
VC-dimension. In general, it would be useful to obtain a sample bound for general-

ization for a class of commonly used distributions.

Third, as an independent chapter, bounds for the capacity of two layer networks
with binary weights are obtained through a statistical approach. The approach can

be extended to evaluate the capacity of other types of networks.

One of the theoretical aspects of generalization which has not been studied yet is
how under-trained large networks generalize. This type of network has demonstrated
many interesting features through our simulations. A valid measure for their effective
degrees of freedom would be a useful first step toward understanding their general-
izing capability. Some other properties of the under-trained large networks such as

robustness to noisy inputs could also be interesting to study.

Guided by our theoretical results, two learning algorithms are developed and
shown to be capable of finding a suitable structure of a network during learning
without any a priori knowledge. These algorithms make it possible to explore how
the size and structure for a network affects its ability to generalize. Specifically,

most of our simulations are focused on comparisons of small with large networks in

generalization.
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The first learning algorithm, the network reduction algorithm, is applied to obtain
networks capable of learning analog mappings. Particularly, through a real applica-
tion, training a network to control a two-link manipulator to draw letters, we find that
learning analog mappings is “difficult”. Moreover, small networks obtained through
this algorithm generalize better than under-trained large networks. That is, for learn-
ing analog mappings, it is preferable to use a network with fewer degrees of freedom

possible, which is the number of modifiable weights.

The second learning algorithm, the network addition-deletion algorithm, pro-
vides a general method for finding a small network with an appropriate structure.
It is used in this thesis to investigate the effect of network size on generalization
for binary mappings, though it is general enough to be used for analog mappings as
well. Through various simulations on classification problems, we find that most of
these problems are “simple”, i.e., the samples belonging to different classes are rea-
sonably well separated. For problems such as handwritten digit recognition, the small
networks obtained through our algorithm perform slightly better than under-trained
large ones. However, for complex binary mappings such as learning the “critical”
perceptron, it is important to use small networks which can learn training samples
in order to achieve good generalization. More simulations are needed to investigate

further the generalizing capability of under-trained large networks.

For the problems we have encountered, the 3-layer structure seems to be imma-
terial, since most of these problems can be solved using a simple two-layer structure.

It could be useful to find types of problems for which more layers are preferable.

In terms of learning time, for relatively simple problems such as handwritten
digit recognition, searching for a small network using our algorithms is more time

consuming than using an under-trained large network. Training usually slows down
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significantly when the number of layers increases. And it seems to be easier for a
three-layer network to get stuck at a local minimum than a two-layer network. More
simulations are needed, however, to carefully compare the learning time. For real ap-
plications, it may be more efficient to incorporate prior knowledge into preprocessing

or network designs and leave the very part that can not be dealt with this way to the

network addition-deletion algorithm.



