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Abstract

A method is developed to test delay-insensitive circuits, using the single stuck-at
fault model. These circuits are synthesized from a high-level specification. Since
the circuits are hazard-free by construction, there is no test for hazards in the
circuit. Most faults cause the circuit to halt during test, since they cause an
acknowledgement not to occur when it should. There are stuck-at faults that do
not cause the circuit to halt under any condition. These are stimulating faults;
they cause a premature firing of a production rule. For such a stimulating fault to
be testable, the premature firing has to be propagated to a primary output. If this
is not guaranteed to occur, then one or more test points have to be added to the
circuit. Any stuck-at fault is testable, with the possible addition of test points.
For combinational delay-insensitive circuits, finding test vectors is reduced to the
same problem as for synchronous combinational logic. For sequential circuits, the
synthesis method is used to find a test for each fault efficiently, to find the location
of the test points, and to find a test that detects all faults in a circuit.

The number of test points needed to fully test the circuit is very low, and the
size of the additional testing circuitry is small. A test derived with a simple
transformation of the handshaking expansion yields high fault coverage. Adding

tests for the remaining faults results in a small complete test for the circuit.
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CHAPTER 1

Introduction

Delay is preferable to error

— Thomas Jefferson

In this thesis, I develop a method to test delay-insensitive circuits that have been
synthesized from a high-level specification. The fault model is the single stuck-at
fault model. A test is derived from the high-level specification of the circuit. Most,
but not all, faults cause the circuit to halt during test. For faults that are not
guaranteed to be detected by the environment, one or more test points have to be
added. The number of test points needed to fully test the circuit is typically small,
as is the added testing circuitry. Deriving a test from the high-level specification
yields high fault coverage.

Most VLSI circuits currently produced are synchronous circuits; a central clock
provides a synchronization mechanism for the computation performed in a system.
As the feature size of circuits decreases, the complexity and speed increases. It is
becoming difficult to translate this into improved performance. Since each clock
pulse has to be distributed over the entire circuit, clock skew is a major obstacle
to shortening of the clock cycle.

A way to avoid problems with clocks is to design circuits without clocks — asyn-

chronous circuits. Few asynchronous circuits have been designed, since the design
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process was not well understood. It was felt that these circuits are necessarily too
big and too slow — if one can even overcome the problem of hazards and critical
races.

Alain Martin has constructed a simple and powerful method for the design of
delay-insensitive circuits [46, 47]. This type of circuit is a subclass of asynchronous
circuits, where propagation delays in wires and gates are assumed to be arbitrary
and unbounded (but finite). The delay-insensitive circuits are synthesized from
a high-level specification. The specification is proven correct, whereupon a series
of semantics-preserving operations are performed, to obtain a delay-insensitive
circuit. The resulting circuits are free of hazards, since the synthesis method
guarantees the absence of hazards, by construction.

At Caltech, we have designed and fabricated a number of delay-insensitive cir-
cuits, including a stack, a mutual exclusion circuit, a multiplier, a router, and a
microprocessor [42, 50, 51]. These circuits have been reasonably fast, very robust
to variations in temperature, voltage, and fabrication parameters, and have been
fully functional on “first silicon”.

We have shown that it is possible to design delay-insensitive circuits; that it is
possible to design them reliably; and that delay-insensitive circuits can be used
for a wide range of applications. A subsequent problem is to show that they can
be tested. In this thesis, I investigate how to test delay-insensitive circuits using
the stuck-at fault model.

The stuck-at fault model is a widely used model to derive tests for VLSI cir-
cuits. Many methods are known to generate minimal tests efficiently for testing
synchronous circuits; efforts to adapt these methods to delay-insensitive circuits
have not been very successful. I think this is, again, because the discipline of de-
signing delay-insensitive circuits was not well understood, and because most prior

efforts consisted of adapting methods for testing synchronous circuits to asyn-
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chronous ones. Since the workings of a delay-insensitive circuit — and the methods
to derive it — are so different from synchronous circuits, I believe that a different
paradigm is needed for the test generation problem for delay-insensitive circuits.
Rather than adapt any method for synchronous circuits, I investigate the testing
problem based on the synthesis method with which the circuit was generated.

A traditional concern regarding testing of delay-insensitive circuits is the dif-
ficulty of testing for hazards and critical races. In order for a hazard to occur,
there are constraints on some delays in the circuits; these delays vary with volt-
age, temperature, and fabrication variances. Moreover, when a hazard occurs in
an internal node, it has to be propagated to a primary output, so that the result
can be observed. This is exceedingly difficult.

I believe that the testing stage is the wrong level at which to analyze hazards. It
is possible to design circuits that are hazard-free, using Martin’s synthesis method.
Such circuits function correctly regardless of voltage, temperature, and fabrication
variances.

The traditional model for synchronous circuits is that of combinational logic to
which clocked latches are added to provide feedback; the traditional method to test
these circuits is to add test circuitry to the latches, so that the resulting circuit
is feedback-free. The emphasis in testing synchronous circuits is on generating
efficient tests to test combinational logic.

A similar approach has been proposed for delay-insensitive circuits [33, 61], but
is impractical. The ratio of combinational gates to state-holding gates is much
smaller than for synchronous circuits; to add test circuitry for each state-holding
element in a delay-insensitive circuit is prohibitively expensive. Instead I analyze
the circuit as is, and add test circuitry as necessary. The emphasis therefore is on
testing sequential circuits.

The fault model I use is the single stuck-at fault model. In this model, a faulty



4

circuit has one fault; an input or an output of a gate is either permanently at a high
voltage (stuck-at-1), or at a low voltage (stuck-at-0). The stuck-at fault model
is not a realistic model of actual faults in a circuit. It is widely used, however,
since it is conceptually simple, and since there is a strong correlation between
faulty circuits and circuits that are rejected with a test for stuck-at faults [5]. A
discussion of the accuracy of the stuck-at fault model is beyond the scope of this
thesis.

It is of great value in the fault analysis that each delay-insensitive circuit is
synthesized from a high-level specification. It is possible to analyze a circuit from
just the gate-level specification; the search for test vectors is greatly facilitated
if the specification of the circuit is known. For example, the instruction fetch
process of the asynchronous microprocessor [51] consists of an if-statement with
two cases. A test derived from the specification, consisting of executing each case
of the if-statement once, detects 93 of 100 stuck-at faults in the circuit. Deriving
the same test from just the gate-level specification of the circuit is vastly more
difficult. I use the handshaking expansion as the specification of the circuit. This
notation describes the sequence of actions on variables in the specification.

Some authors claim that for a delay-insensitive circuit any stuck-at fault causes
the circuit to halt [7]. Consequently, it is not necessary to test a delay-insensitive
circuit, since even a faulty circuit will never exhibit faulty behavior, and no test
circuitry needs to be added to the circuit. I show that this is not the case for the
general stuck-at fault model; some faults on inputs of gates never cause the circuit
to halt. It is therefore necessary to test delay-insensitive circuits, and for some

circuits test points need to be added to make them fully testable [52].
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1. Organization of the Thesis

In the next chapter, I outline the synthesis method for delay-insensitive circuits.
The high-level description language is akin to Hoare’s CSP (Communicating Se-
quential Processes). I describe the four-phase handshaking protocol with which
processes communicate, and the resulting handshaking expansion, which is the no-
tation from which tests are derived. The circuit itself is described in the form of
a production rule set.

Chapter 3 is a description of the general problem of testing delay-insensitive
circuits. I discuss the delay assumptions; I describe the two types of stuck-at
faults, the inhibiting fault and the stimulating fault; I show that for each fault
there is a state in the handshaking expansion where the fault causes a production
rule to be inhibited or to fire prematurely; I derive conditions under which a fault
inhibits a production rule, or causes a premature firing that is detected by the
environment. From these conditions follow a series of simple theorems with which
the testability of most faults in a circuit is trivially shown.

Chapter 4 concerns testing of datapaths. A delay-insensitive datapath differs
from synchronous combinational logic, since it has state-holding elements; also, it
is not implemented as a network of standard gates (AND, OR, inverter), but rather
with fewer, more complex gates. The problem is the generation of a reasonably
small test set with which to test all testable faults. I show that such a delay-
insensitive circuit can be transformed into a circuit with only combinational gates;
a test that detects all testable faults for this new circuit will also detect all testable
faults in the delay-insensitive circuit, with one exception. I show that the D-
algorithm can be adapted for use in delay-insensitive circuits.

In chapter 5 I explore some testing issues that are more technology-dependent,
such as the initialization of the circuit, and faults causing interfering production

rules. I also derive a design for test circuitry. This design does not use a clock,
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but it is necessarily not fully delay-insensitive.

Finally, chapter 6 describes heuristics on how to derive a small test set from
the test vectors for each individual fault. I describe a refinement of the stuck-at
fault model, a model with stuck-on and stuck-open faults, and explain how to test
circuits under this new model.

In appendix A are algorithms to test delay-insensitive circuits. Appendix B is

an introduction to circuit testing.

2. A Note on Notation

In the abstract reasoning about circuits, a low voltage is called 0 or false, and a
high voltage 1 or true. The delay-insensitive circuit synthesis method is described
entirely using false and true. I have followed this convention as much as possible.
All boolean conditions are expressed with “A” and “V”, rather than “.” and “+”.

If I were consistent, I would call the different faults stuck-at-false and stuck-at-
true; instead, I have used the standard terms stuck-at-0 and stuck-at-1. For the
description of the D-algorithm and the adaptation for delay-insensitive circuits I
have also used 0 and 1 (in addition to X, D, and D), because these notations are
well-known.

In boolean expressions, A has higher binding power than V.

Throughout the thesis, I refer to circuits as delay-insensitive. For such circuits,
delays (both for gates and for wires) are assumed to be unbounded (but finite)
and arbitrary. An exception is the isochronic fork, for which the delays in all
branches of the fork are assumed to be roughly the same. Such an assumption is
necessary to be able to construct any interesting circuit. Because of the isochronic

fork assumption, this class of circuits is sometimes called quasi-delay-insensitive.



CHAPTER 2

Synthesis of Delay-Insensitive Circuits

La chose tmportante, c’est la théorie, qui est mind-blowing. Et
st j’at raison, ma théorie va produire un crisis en world thinking et,
avec luck, un Priz Nobel. Cela sera beau, n’est-ce pas?

—DMiles Kington, L’Origine des Species, Dans une Version Com-

plétement Modernisée

1. Introduction

In this chapter I explain parts of the high-level synthesis method for delay-
insensitive circuits that was developed by Martin [41, 42, 44, 45, 46, 47]. The
high-level specification for circuits is in a language that is based on Hoare’s CSP
(Communicating Sequential Processes) [31]. There are several other high-level
synthesis methods [17, 55, 70].

The organization of this chapter is as follows. I define gates and circuits; I
explain the constructs of the high-level specification language, and the steps of the
synthesis method that lead to a delay-insensitive circuit. The first step is at the
program level, namely a decomposition of processes into smaller subprocesses. The
next step is the generation of a four-phase handshaking expansion that establishes

a communication protocol between processes. For communications where no data
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are sent (synchronization channels) this is a straightforward transformation. For
communication channels, where data are sent, I list several ways to encode data
values into bits for use in delay-insensitive circuits. The third step is to transform
the handshaking expansion so that each state is unique. This is done by reshuffling
of actions and by the addition of state variables. The final transformation is from
a handshaking expansion, where each state is unique, to a production rule set.

In addition to these steps of the synthesis method, I explain how a delay-
insensitive circuit operates as a series of actions, where each action is acknowledged
with the next action. For actions that are not acknowledged, the assumption that
all delays are arbitrary and unbounded has to be restricted. I introduce isochronic
forks as a way to insure correctness of circuits for which some actions are not

acknowledged.

2. Gates and Circuits
A circuit is a network of gates that interacts with its environment.

DEFINITION 2.1 (GATE). A gate is a circuit element with one or more inputs,
and one output. It is described as a pair of production rules
B, — 27
By — zl,
where B, and By are boolean expressions on the inputs of the gate (known as
guards), and z is the output. If condition B, holds, output z becomes true (denoted

z1), and if condition By holds, output z becomes false (denoted z]).

An execution of a production rule is called a firing. If 21 (2 |) fires in a state
where -z (z) holds, then the firing is effective, otherwise it is vacuous. Unless

otherwise noted, I shall only consider effective firings in the sequel.
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FIGURE 2.1. Schematic representation of AND gate and C-element
A two-input AND gate with inputs e and b and output z has production rules:

a AN b — 27
—a V —b — z].
A Muller C-element [57, 58] with inputs a and b and output z has production

rules:
a AN b — 27

—a A b — z].
See figure 2.1.
The guards of the production rules of a gate have to be mutually exclusive.
Otherwise it is possible that both production rules can fire at the same time. In

an actual implementation this causes a short circuit.

DEFINITION 2.2 (NON-INTERFERENCE). For a gate with production rules
B, — 27
Bd - Z l7

condition B, V =By has to hold at any time. This is known as non-interference.

Note that =B, V — B, is not necessarily a tautology. For instance an SR flip-flop
with output ¢ has production rules
s — qT
r — ql.
This flip-flop has to be used in such a way that s and r are not both true at the

same time.
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primary inputs primary outputs

FIGURE 2.2. A circuit and its environment
If B, = —B,, then the gate is a combinational gate. All other gates are state-

holding elements. Examples of combinational gates are the AND gate, the OR
gate, the XOR (exclusive-or) gate, and the inverter. The C-element and the SR

flip-flop are both state-holding elements.

DEFINITION 2.3 (CIRCUIT). A circuit is an interconnection of gates, interact-
ing with its environment. FEach input of a gate is either connected to the output
of another gate, or to the environment. An output of a gate may be connected to

any number of inputs of other gates, and to the environment.

An input of a gate that is connected to the environment is a primary input; an
output of a gate that is connected to the environment is a primary output. An
output (of a gate) that is input to more than one gate is said to fork, as in the
implementation there is a forking wire.

The environment of a circuit is also a circuit. The primary inputs of the envi-
ronment of circuit C' are the primary outputs of C; the primary outputs of the
environment are the primary inputs of C (figure 2.2). The environment changes
its primary outputs in such a way that circuit C' operates according to specifica-
tion. The environment never malfunctions. For most circuits, I shall not give an

explicit description of the environment as a set of gates; rather, there is a spec-
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combinational
logic

ol

clock

FIGURE 2.3. A synchronous sequential circuit, with clocked state-

holding elements

ification of the environment, relating the primary outputs to the primary inputs
of the environment. I assume that there is a gate-level implementation of such a
specification.

A circuit can be represented as a directed graph G, where each node is a gate.
If the output of gate gq is an input to gate gy, then there is an arc from node gy
to node g;. If the graph representation is acyclic, then the circuit is feedback-free.

For synchronous (or clocked) circuits each state-holding element is a clocked
memory element. See figure 2.3. Operation of a synchronous circuit is as follows.
During each cycle, the value of the output of each memory element is set, and the
environment sets the primary inputs. The circuit fires production rules until there

are no more effective firings. Then the values of the primary outputs are sent to
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the environment, and the value of the output of each memory element is set to the
value of its input. A convenient way to describe a synchronous sequential circuit
is as a finite-state machine (FSM) [30, 38].

For asynchronous (or delay-insensitive) circuits there is no clocking mechanism
to distinguish between cycles. Operation is as follows. Given the value of the
output of each gate, and the value of each primary input, repeatedly fire any
production rule that can fire. The primary inputs may be changed as long as the
handshaking protocol is obeyed. For correct operation, each production rule has

to be stable.

DEFINITION 2.4 (STABILITY). Production rule B, — z7 is stable if, whenever
B,A—z holds, B, remains true until 27 has fired, that is, until z is true. Similarly
for z].

A common restriction on the usage of an asynchronous circuit is that it can only
be used in Fundamental Mode, that is, a primary input may only change value if
there is no production rule in the circuit that can fire [57]. All delay-insensitive
circuits in this thesis operate correctly even when a primary input changes value
concurrently with the firing of a production rule in the circuit, as long as stability

of each production rule is guaranteed.

3. The High-Level Specification

The high-level specification, from which a delay-insensitive circuit is synthesized,
is based on Hoare’s CSP [31]. A program consists of one or more concurrent
processes. Each process itself is described with a sequential program. There are no
shared variables. Instead, processes communicate values via channels. Channels
are also used as a means of synchronization between processes. A channel connects

two processes, and a communication on a channel is slackless [32].
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FIGURE 2.4. Channel (X,Y) between processes P and @
Let (X,Y) be a channel between processes P and Q). See figure 2.4. In process P,

X is known as a port. Since the communication is slackless, at any time the number
of completed X actions in P is the same as the number of completed Y actions in
Q. If process P attempts to do a communication X, while process ) cannot do a
communication Y, then process P is suspended until () does a communication Y.
Both X and Y then complete at the same time. As a progress condition, X and
Y cannot both be suspended at the same time.

In a digital circuit, each variable is either at a high voltage or at a low voltage.
Therefore all variables in the language are boolean variables. It is sometimes
advantageous to abbreviate a vector of boolean values with a single identifier, for
instance when describing arithmetic operations. It is necessary to describe how
each integer value is mapped onto a boolean vector. In section 5 I describe some

of the systematic mappings from integers to booleans for delay-insensitive circuits.

3.1. Language Constructs. The constructs in the high-level specification
are:

e Parallel composition for processes. The parallel execution of processes P
and @ is denoted “P||Q”. Parallel composition is associative and commu-
tative.

e Sequential composition of statements S and T is denoted “S;T”. Sequential

composition is associative.
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e Parallel composition of atomic statements s and ¢ is denoted “s,t”. Parallel
composition is associative and commutative.

e Assignment statement. The assignment operator is “:=”. For a boolean
variable b the assignment to true is abbreviated to b1 and the assignment
to false is abbreviated to b .

e Selection. The selection command consists of a number of guards (boolean

expressions on the variables in the program), Gg,G1,... ,Ga-1, and an

equal number of program parts, So, S1,... , Sn—1, denoted
[GQ - S()|G1 — Sl| .o IGn—l —r Sn—l]'

A program part S; is executed for which G; evaluates to true. If more than
one guard is true, a nondeterministic choice is made; if no guard evaluates
to true, then the process is suspended until a gnard is true.

o Repetition. The repetition command also consists of a number of guards

and an equal number of program parts, and is denoted
*[GO - SQlGl — 511 cee \Gn—-l - Sn—1]~

As long as there is a guard that evaluates to true, a program part S;
is executed for which G; is true. If no guard holds, then the repetition
terminates.

e Send and receive on a port. Let process P have a port X. Sending the value
of s on port X is denoted X!s, and X7t denotes a receiving communication
on port X whereby the value received is stored in ?.

e Probed communication [43]. Let (X,Y’) be a channel between processes P
and Q. For process P, the probe of X (denoted X) is a boolean condition

that holds when process @ is suspended on a communication Y.

In addition, the only form of recursion in the language is tail recursion.
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There are a few abbreviations for constructs. The program part *[true — 5],
for indefinite repetition of statement S, is abbreviated to %[S], and the program
part [G — skip] (where a process waits for condition G to hold) is abbreviated to
[G]. A frequently used notation is *[[Gy — Sp|G1 — S1]}: wait until either Gy or
(G holds, then execute an 5; for which G; holds, and repeat the program part.

Some channels are used solely to synchronize two processes. For process P with
a port X of such a synchronization channel a communication is simply written
“X”. Since no data are transmitted, there is no difference between a send and a

receive action for a synchronization channel.

3.2. Examples of Programs. A buffer is a FIFO queue. It consists of a
number of processes. Each process has two ports, L to a channel connecting the
process to its left neighbor, and R to a channel connecting it to its right neighbor.
The buffer repeatedly communicates to its left neighbor, then communicates to its
right neighbor. If each channel is a synchronization channel then a program for a

buffer process is
%[ L; R].
If the buffer sends and receives values, there is one variable, z:
*[L7z; Rlz|.
As an example of a probed communication, a buffer that sends the value stored
to its right neighbor before it receives a new value has program:
*[[L — Rlz,L7z]].

3.3. Program Decomposition. At the program level, it is often advanta-
geous to split a large process up into two or more smaller processes. A number of
channels are introduced to connect these subprocesses, while the existing channels

to other processes remain the same.
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Process decomposition is done using the
Decomposition Rule: A process, P, containing an arbitrary program part, S5, is
semantically equivalent to two processes, P1 and P2, where P1 is derived from P
by replacing S with a communication action, C, on the newly introduced channel
(C, D) between P1 and P2, and P2 is the process x[[D — S; D]] [47].

If a process is decomposed into several processes using the decomposition rule,
then these subprocesses are never active concurrently. Therefore the subprocesses

may use shared variables.

4. The Handshaking Expansion

The next step in the synthesis of a delay-insensitive circuit from a high-level
specification is the transformation from a program to a handshaking expansion. In
the handshaking expansion, the communications with neighboring processes are
specified by actions on ports, using the handshaking variables.

Let (X,Y") be a synchronization channel connecting processes P and Q. Port X
in P consists of two variables, output zo and input x7, and port Y in @) consists
of output yo and input yi. The channel connects the ports with two (directed)
wires, from zo to yi, and from yo to zi.

The implementation of a communication on the channel is asymmetric. One
port initiates the communication (it sends a “request”), and the other reacts (it
sends an “acknowledgement”). The first is known as the active port, the latter
as the passive port. Without loss of generality, assume that X is active, and
Y passive. Then each communication X in the program is implemented as the
sequence

zoT; [zi); zo |; [~zd],

and each communication Y in the program is implemented as the sequence

[yi]; yoT; [~yil;yol .
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Initially all variables of the channel are false. Process P initiates the communi-
cation by raising zo. After Q has detected this (when yi is true), it acknowledges
by raising yo. Then process P resets zo to false, after which process () resets yo
to false. This communication protocol is known as a four-phase handshake.

Notice that there is no concurrency between the processes while a synchroniza-
tion on the channel is executed. The sequence of events during a communication
is:

zoT; [yil; yol; [zi]; wo |; [-yil; yo |; [-ai].

An alternative implementation for the active port is as a lazy-active port [11, 47],
where the final wait-action is postponed until the next communication on the
channel:

X = [~z zol; [zi];zo] .

4.1. The Probe. If process P initiates a communication X, and ¢ does not
immediately acknowledge with a communication Y, then P is sﬁspended. Process
Q detects that P is suspended when yi holds. Therefore an implementation of ¥

is the condition y:. If a port is probed, it must be implemented as a passive port.

4.2. Two-Phase Handshaking. In the four-phase handshaking expansion
above, the final two actions in both X and Y are not necessary to achieve a syn-
chronization between processes. These resetting actions can be useful, however,
since they insure that for each communication the initial state of all variables is
false.

It is possible to expand the odd-numbered communications as
X = zoT;[zi]
Y = [yi]; yoT,
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FIGURE 2.5. Buffer process with left and right ports

and the even-numbered communications as
X = zol; [~z
Y = [yil;yol -
This is known, for obvious reasons, as a two-phase handshake.
In the sequel I assume that the communication protocol is a four-phase hand-

shake. The testing results are the same for each type of handshaking protocol.
4.3. Examples.

EXAMPLE 2.1. For the buffer process x|L; R], with L and R synchronization
channels, let L be a passive, and R an active port. Port L has variables lo and i,
port R has variables ro and ri. See figure 2.5. The handshaking expansion for this
buffer is:

#[[t]; Lo 1; [HEd]; Lo Ly ro s [rils ro I [-rd]].
EXAMPLE 2.2. For the process *[[L — R; L]| port L is probed, and therefore has

to be a passive port. If R is an active port the handshaking expansion is:
#[[li — rol;[ri];rol; [-ril;loT; [Hli]; o l].
5. The Handshaking Expansion for Communication Channels

To implement a communication channel (which can transmit data values), more

than two wires are needed. Data values are transmitted using communication
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channels by raising one or more wires of the channel. For instance, consider a
one-bit wide data channel A that is implemented with two wires, a0 and al, in
one direction, and one acknowledgment wire in the other. To transmit value “0”
over channel A, wire a0 is raised, and to transmit value “1” wire al is raised.

For any test that detects all stuck-at faults, every wire in the circuit has to be
raised at least once. Therefore both a0 and al have to be raised during such a
test (but not simultaneously). An equivalent formulation is to require that a “0”
and a “1” be sent over channel A during the test. For an arbitrary communication
channel a set of data values has to be sent such that each wire of the channel is

raised at least once. I call such a set a complete set:

DEFINITION 2.5 (COMPLETE SET OF DATA VALUES). Let A be a communica-
tion channel, where each value is encoded on N wires, and let S be the set of values
that can be sent over channel A. Let w;(s) be the value of the jth wire in the en-

coding of 5. Set S, is called a complete set of data values if
Vo<j<nIses. 1 w;(s).
For the one-bit wide channel above S = S, = {0,1}. In general, the smallest
complete set of data values for a communication channel is much smaller than the

set of all values that can be sent over that channel. I examine a few standard ways

to encode data values.

5.1. Dual-rail Encoding. For the dual-rail encoding scheme two wires are
used for each bit in the binary representation of a number. If the jth bit is 0, wire
27 is raised, if it is 1, then wire 2j + 1 is raised. For N-bit numbers the channel
consists of 2N data wires. With S = {0,1,...,2¥ — 1} a complete set of data
values is {0,2" —1}. Anotheris {2™—1,2¥ —2™} for N > m. Dual-rail encoding

is a widely used coding scheme.
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EXAMPLE 2.3. For a four-bit wide dual-rail encoded channel eight wires are
used. If codewords are represented in the form of a string, then 0 might be encoded
as 01010101, 1 as 01010110, etc. There are 16 different codewords, but a minimal
complete set of data values has only two codewords, for ezample S, = {0,15}, cor-
responding to codewords 01010101 and 10101010, or S, = {5,10}, corresponding
to codewords 01100110 and 10011001.

5.2. One-hot Encoding. If one wire is used per data value that can be trans-
mitted, then the values are said to be one-hot encoded. The only complete set of
data values is the set of all data values (S, = S). One-hot coding is only practical

for narrow channels.

EXAMPLE 2.4. For a four-bit wide one-hot encoded channel sixteen wires are
necessary, as there are sizteen different codewords. For instance 0 is encoded as
0000000000000001, 1 as 0000000000000010, etc. The complete set of data values
is {0,1,...,15}.

5.3. k-out-of-N Encoding. The one-hot encoding scheme is a special case of
so-called k-out-of-N codes [71]. To transmit a value over an N-bit wide channel,
k wires are raised. A complete set of data values has at least [N/k]| elements.
Another special case is an N-out-of-2N code, where N wires are raised out of
a total of 2N wires. A minimal complete set of data values has at least two
elements, for instance the value corresponding to raising the first /N wires and the

value corresponding to raising the remaining N wires.

EXAMPLE 2.5. To encode four-bit values on seven wires a 2-out-of-7 code might
be used. This code has 21 possible codewords: {0000011,0000101,...,1100000}.
Another encoding uses siz wires, with a 3-out-of-6 code. It has 20 different code-
words: {000111,001011,001101,...,111000}. A complete set of data values to be

sent over the channel depends on the mapping of values to codewords (there are
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more codewords than values to be encoded). For a 2-out-of-7 code a complete set of
data values might be {0000011,0001100,0110000,1100000}, and for a 3-out-of-6
code {000111,111000}.

For other encoding schemes, such as Berger codes [8, 23], it is easy to compute
a minimal complete set of data values. For efficient encoding schemes [59], the
minimal set is small, and its size independent of the size of the channel. For
instance for dual-rail encoding and N-out-of-2N encoding the size of a minimal
complete set of data values is two.

For two-phase handshaking protocols, the encoding for data channels is similar
to the schemes above, except that a wire is raised or lowered only once per com-
munication. In the case of two-phase communications, there are different ways to
interpret the encoded data. As an example, I describe two schemes for dual-rail
encoded data.

Consider a one-bit wide channel, A, with data wires a0 and al. The first scheme
is analogous to the one used for the four-phase protocol. For each “0” sent wire a0
is toggled, and for each “1” sent wire al is toggled. This scheme is conceptually
simple, but has the disadvantage that the values of a0 and al alone are not enough
to decode the value sent. For instance, if a0 and al are both 1, then the last value
sent on channel A is either 0, if a0 was raised last, or 1, if al was raised last.

For the second scheme, the receiving process does not have to store extra infor-
mation to decode the value sent. To send a 0, set a0 to 0, and to send a 1, set
a0 to 1. Furthermore, if a 0 is sent after a 0, or if a 1 is sent after a 1, then al is
toggled. For each value sent, exactly one wire is toggled. The value sent is always
a0.

The complete set of data values in the first scheme is {0, 1}. It is not possible to
compute a complete set of data values for the second scheme, as the order in which

values are sent over the channel is important. The channel is tested by sending
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either a 0 followed by another 0, or by sending a 1 followed by another 1.

6. Reshuffling and State Assignment

The goal of the synthesis method is to derive a delay-insensitive circuit, de-
scribed as a production rule set. The production rule set should be equivalent to
the handshaking expansion, that is, if a production rule can fire in the produc-
tion rule set, then the corresponding transition in the handshaking expansion can
occur, and vice versa. The main difference between the handshaking expansion
and the production rule set is that there is explicit sequencing in the handshak-’
ing expansion (by means of semicolons), whereas the production rules may fire
concurrently.

The task, then, is to remove the sequencing from the handshaking expansion to
obtain an equivalent production rule set. Each state in the handshaking expansion
must be unique. If two states are identical, one or more state variables have to be

introduced.
EXAMPLE 2.6. For the buffer of example 2.2 the handshaking expansion is:
«([li];ro s [ri]s ro | [mril; Lo T; [ld; Do ).

There are two indistinguishable states: the state where transition ro| takes place,
and the state where lo] takes place. With the introduction of a state variable, u,

each state is unique, with the following handshaking expansion:
[[li]; roT; [ri]; w1; [u]; ro |; [ord]; loT; [Hli]; u s [-ul; Lo .
A second method to make each state in a handshaking expansion unique is to
reshuffle actions in the handshaking expansion. For instance, in a buffer with L
and R communications, the actions on port L and the actions on port R may

be interleaved. A requirement is that the actions on each port not violate the
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four-phase handshaking protocol. In addition, for a set of concurrent processes,

reshuffling of actions should not introduce a deadlock.

EXAMPLE 2.7. In the buffer of example 2.1, there are two indistinguishable
states: the initial state, and the state where ro | takes place. If the first three

actions on port R are reshuffled as follows:
x[[l]; lo T; ro 1; [2ld); [ri]; Lo Ly ro | [—ri]],
then each state in the handshaking expansion is unique.

Reshuffling may drastically change the performance of the circuit [11, 13].

7. The Production Rule Set

After the introduction of state variables, and the reshuffling of actions, each
state in the handshaking expansion is unique. It is now rather simple to derive
a production rule set. Let z be a variable in the handshaking expansion, and
consider a transition z 1. There is a boolean expression B on the variables in the
handshaking expansion, such that B only holds in a state where = T occurs. The

production rule

B—z7

can then be added to the production rule set.

The next problem is how to derive condition B. If transition z T is preceded in
the handshaking expansion by a wait action, [z] say, then =T can only fire after 2
has been observed. Hence z has to be included as a term in B. Term z is said to

be included in the production rule by syntactic derivation.
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EXAMPLE 2.8. For the buffer of example 2.2, with the state variable u of exam-
ple 2.6, the production rules from the syntactic derivation are:
li — rol
ul
ro|
lot

(a
lo] .

7T

e
Lol

!

-

Syntactic derivation usually is not sufficient for a correct production rule set.
For instance, in the above example the production rule for [0 T may fire in the
initial state (since all variables are false in the initial state). It is necessary to
strengthen the guards of some production rules to prevent firings that are not in

the specification.

EXAMPLE 2.9. Continuing with the same buffer, the production rules for ro T
and for loT have to be strengthened, as follows:

It AN —u — 7rof
-t A u — loT.

After strengthening some guards, the resulting production rule set yields a cir-
cuit that is equivalent to the handshaking expansion. A final step that can be
done is known as symmetrization. An example of symmetrization is to weaken
one of a pair of production rules, so that the resulting pair is the specification of

a combinational gate, rather than a state-holding element.

EXAMPLE 2.10. To finish the buffer of example 2.6, weaken the production rule

for ro] with —li. This is allowed since it does not cause the production rule to fire
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FIGURE 2.6. Circuit C2, the D-element buffer process

in a state where it could not fire before. The resulting pair of production rules is:

It N —~u — rofl
-li V. u — rol.
This is an AND gate with one inverted input. Weakening the production rule for
lo| also changes the gate with output lo from a state-holding element to an AND
gate with an inverted input:
~ri A u — lof
ri V —u — lol.
Finally, the production rules for u are the specification of a flip-flop. It is possible
to strengthen both production rules so that the resulting pair is the specification of

a C-element:
L AN 1 — uf

=lt A ore — ul.

The circuit for this buffer is known as a D-element {12, 45]. See figure 2.6.

8. The Role of the Environment

I now investigate the role of the environment of a circuit in the execution of the

handshaking expansion. For the D-element, the initial action of the circuit, after
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it is set to its initial state, is to wait for [z to hold. The environment can hold
the circuit in this state for an indefinite time by holding /7 false. By contrast,
after the environment has set /7 to true, transition ro 7 will follow eventually. The
environment cannot delay roT at that point. In the former case, the circuit is in

a controllable state, whereas in the latter case it is in a transient state.

DEFINITION 2.6 (CONTROLLABLE AND TRANSIENT STATES). Let C be a cir-
cuit implementing a handshaking expansion for a single sequential process. A state
in the handshaking expansion in which no production rule can fire, and the envi-
ronment does not change any primary inputs, is a controllable state. Any other

state is a transient state.

DEFINITION 2.7 (CONTROLLABLE AND TRANSIENT CONDITIONS). LetC be a
circuit implementing a single sequential process, and B a boolean expression on
variables of C. If there is a controllable state for which B holds, then B is a con-

trollable condition. If B holds only in transient states, it is a transient condition.

The disjunction of two controllable conditions is a controllable condition, but
the conjunction of two controllable conditions is not necessarily controllable. The
negation of a transient condition is controllable, if there is at least one controllable
state in the handshaking expansion.

For the D-element, =70 holds in the initial state, and is therefore a controllable
condition. Also, Iz and —u are controllable conditions, as is liA—u, but =roAliA—u
is a transient condition. The reason is that there is a production rule liA—u — 7o

in the circuit.

9. Acknowledgments and Isochronic Forks

In a delay-insensitive circuit there is a strict sequencing of actions. An action

can only take place after the previous action has been completed; it acknowledges
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the completion of the previous action. After the environment changes the value
of some primary inputs, there is a number of transitions in the circuit and some
transitions of primary outputs. The transitions of the primary outputs acknowl-
edge the transitions of the primary inputs. Once the environment observes the
changes of the primary outputs, the necessary changes of the internal variables
are guaranteed to have taken place. Consequently, there is no need to make the

assumption that the circuit operates in Fundamental Mode.

DEFINITION 2.8 (ACKNOWLEDGEMENT). Let C be a circuit, and consider a
gate with input s and output t. If there is a transition t 1, following a transition
sT (sl), in the handshaking ezpansion such that this transition only occurs when

s (—s) holds, then t] acknowledges transition s1 (s|). Likewise for transitiont].

It follows that if s is included in the production rule for ¢ | by syntactic derivation
or strengthening, then there is a transition ¢ in the handshaking expansion that

acknowledges transition s 7.

EXAMPLE 2.11. Consider the following production rules for the D-element:
i A —u — rof
-li V. u — rol.
Since [-ri] precedes transitionro in the handshaking expansion, roT acknowledges
ri|. Condition —u was added to the guard for ro] by strengthening, therefore ro
also acknowledges transition v |. Transition ro | acknowledges transition u |

(syntactic derivation), but not transition li |, since —li does not hold when 7o |
fires.

Each transition of a variable (corresponding to the output of a gate) in a delay-

insensitive circuit, that is not a primary output, is acknowledged with another
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transition. A transition of a variable is not necessarily acknowledged by a transi-
tion of the output of each gate for which the variable is an input.

All delays are assumed to be arbitrary and unbounded. In case a transition of
an input of a gate is not acknowledged with a transition of the output of the gate,
the circuit may malfunction [48]. For instance, if a transition /i | is propagating
much slower to the gate with output ro than to the C-element, then a transition
ro | may occur before transition /¢ | has been observed by the gate with output
ro. For the circuit to operate correctly, the propagation delay of transition /i | to
the gate with output ro must be shorter than the propagation delay of I3 | to the
C-element, plus the propagation delay of a down-transition of the C-element, plus
the propagation delay of transition u | to the gate with output ro.

Because of this delay assumption, the fork of variable l7 is known as an isochronic
fork.  Circuits with isochronic forks are sometimes referred to as quasi-delay-

insensitive circuits [48].

DEFINITION 2.9 (ISOCHRONIC FORK). Let C be a circuit with a variable s that
forks to several gates, including a gate with output t. If there is a transition sT or
s | in the handshaking expansion that is not acknowledged with a transition of t,

then the fork of s is an isochronic fork.

For all isochronic forks a delay assumption has to be made to insure correct-
ness of the circuit. For some, the delay assumption is “one-sided”. For instance,
whereas there is an upper bound on the delay of transition /i | to the gate with
output 7o, no such delay assumption is necessary for the propagation delay of any
transition of /7 to the C-element. I therefore refine the concept of an isochronic

fork, and call the former branch of the fork an isochronic branch.

DEFINITION 2.10 (ISOCHRONIC BRANCH). Let C be a circuit with a variable s

that forks to several gates, including a gate with output t. If there is a transition
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sT or s| in the handshaking expansion that s not acknowledged with a transition

of t, then the branch of s to the gate with output t is an isochronic branch.

In addition to the branch of Iz to the gate with output ro, the D-element also

has an isochronic branch for variable ¢ as input to the gate with output lo.
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CHAPTER 3
A Method to Test Delay-Insensitive Circuits

But there was another source of errors in PETER: unreliable
soldering points which are very difficult to detect because 99.9 percent
of the time they function properly. In the course of time an efficient
method was developed to find them. A fist or hammer was used
and by banging on the racks numerous weak soldering points were
discovered.

— N. C. de Troye, From Arra to Apple

1. Introduction

In this chapter I discuss a method to test delay-insensitive circuits. First I
discuss problems associated with testing. In particular the assumption that all
delays are finite but unbounded means that no fault is testable. I therefore have
to make some assumption on propagation delays.

I show that a stuck-at fault in a delay-insensitive circuit may either cause a
production rule to fire when it should not, or not to fire when it should. In the
former case the fault is stimulating, in the latter it is inhibiting. Some faults are
both stimulating and inhibiting. For each inhibiting fault there is a state in the

handshaking expansion where the fault causes a transition not to take place when
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it should; for each stimulating fault there is a state in the handshaking expansion
where the fault causes a tramsition to occur when it should not. The testing
problem is to bring the faulty circuit in such a state, and to propagate the result
to a primary output, which can be observed by the environment. As a larger
example I analyze the faults in a one-bit queue element.

Let a and b be variables in a circuit, where a is an input to the gate with output
b. There is a difference between a fault on variable a, that is a primary input or the
output of a gate, and the input a of the gate with output b. Since a production rule
set typically does not include production rules for forks, this difference is implicit
in a production rule set. When it is not clear from the context which variable is
being discussed, I denote the input a to the gate with output b as a[b].

In a delay-insensitive circuit there are sequences of transitions, where each tran-
sition is acknowledged with the next one. In theorems about faults I frequently
have to refer to a “next” transition. It does not matter whether such an acknowl-
edging transition is an up- or a down-transition. For the sake of clarity I shall
always assume that it is an up-transition.

Finally, most inhibiting faults are detected when a sequence of acknowledge-
ments does not take place. The environment then detects the fault, as there is a
missing transition of a primary output. I have to assume that there is always a
next transition of a primary output in each state of the handshaking expansion.
In other words, either a program is terminating, and ends with a transition of a
primary output, or the program is non-terminating and it is always possible to

have a transition of a primary output later.

2. Problems with the Delay Model

The purpose of testing chips is to separate the fully functional ones from the

faulty ones. The goal is twofold: first, to accept only those chips that have no
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defects, and second, to reject as few as possible (ideally: none) of the chips without
defects. The latter objective is typically the easiest to meet; any non-defective
chip ought to pass any test. It is, however, impossible to guarantee that only non-
defective chips be accepted. Even if we can prove that all faults are detectable by
some test, such a proof is given with the assumption of some fault model. There

can always be faults that cannot be described in the fault model.

DEFINITION 3.1 (TEST). A test for circuit C is a finite sequence of actions by
the environment of C'. An action is either setting the value of a primary input of

C, or observing the value of a primary output of C.

Executing a test consists of setting the primary inputs of the circuit, and ob-
serving the primary outputs. After the correct primary output transitions have
been observed, one has to wait for some time before changing the primary inputs
again; it is possible that there is another transition of a primary output pending,
in a faulty circuit.

I use a straightforward definition of testable faults: a fault is testable if there is

a sequence of inputs to the circuit, such that the fault is guaranteed to be detected.

DEFINITION 3.2 (DETECTED FAULT). Let T be a test for circuit C. Let circuit
C' be the same circuit, but with a single stuck-at fault. If, during execution of test
T, there is a point at which a primary output of C' has a value that cannot occur

at the same point in the test for circuit C, then the fault is detected.

DEFINITION 3.3 (DETECTABLE FAULT). A fault in circuit C is detectable with
test T if the fault is guaranteed to be detected, regardless of the propagation delays

in the circuit.

DEFINITION 3.4 (TESTABLE FAULT). A fault in circuit C is testable if there is

a test that detects the fault.
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For a discussion of these definitions, see appendix B. Unfortunately, with the
model for asynchronous circuits, the definition of a testable fault implies that no
fault is guaranteed to be detected. Recall that for self-timed circuits any gate
delay and wire propagation delay is arbitrary and unbounded.

We test a circuit by setting the value of its inputs, and observing the values of
its outputs. A circuit is faulty when the value of its outputs is not the same as
the value of the outputs for a correct circuit. This can happen when either for the
faulty circuit an output changes value when the correct circuit does not, or when
for the correct circuit an output changes value when the faulty circuit does not.
When there is an unexpected change of an output, then the circuit, obviously, is
a faulty one. But if a change of output value does not take place while a change is
expected, can we conclude that the circuit is faulty? Since wire delays are assumed
to be arbitrary and unbounded, it is possible, at any time, that there will be a
change of the output value some time later. I show in this chapter that there is a
large number of faults in any circuit that lead to the circuit halting in some state.
In an actual test, there is no point in time, at which we can conclude that a circuit
with such a fault is to be rejected.

Likewise, if, in some state, a correct circuit does not change its outputs, then
the observation that a circuit under test, in the same state, does not change its
value either, does not imply that the circuit behaves correctly. It may be the case
that there is a change of an output pending, that is not yet observed because of
the unbounded wire delay.

An even worse scenario is the following: consider a circuit, delete all internal
circuitry, and connect each output pad to a ring oscillator. Assume that each ring
oscillator can be reset so that the outputs in the initial state for both the original
circuit and the one with the ring oscillators are the same. Then no test will

guarantee that the ting oscillators can be distinguished from the original circuit.
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With the delay assumptions made here, there is no test that will accept only
correct circuits, and there is no test that will reject only defective circuits, since the
delay assumptions require that a circuit be observed for an infinite time before any
conclusions can be made. From a theoretical point of view, the testing problem
cannot be solved.

The problems described above are, however, merely theoretical problems. In
any actual test, the difference between any circuit and a ring oscillator will be
immediately obvious from the behavior of the circuits. With modern technologies,
switching times are on the order of nanoseconds, or even picoseconds, and vari-
ations in switching times are relatively minor. A ring oscillator will change the
value of the output frequently, so if we do not change the value of the inputs, the
original circuit will not change its outputs, whereas the ring oscillator will. Also,
if a circuit under test does not switch within, say, a microsecond after a correct
circuit switches, then we may safely assume that the circuit is faulty.

There are two types of faults. Some faults cause the circuit to halt entirely, and
some faults result in an unspecified output change. I consider such occurrences
detectable. I could extend the definition of detectability: in the presence of some
faults an output of a circuit will switch faster than expected. However, it may be
hard to tell whether such an occurrence takes place because of a fault or because
the chip happens to be relatively fast.

To the above observations I add an important caveat, concerning testing of
arbitration devices. As is well-known, any arbitration device has a metastable
state, when arbitrating between two alternatives. The time that the arbiter takes
to leave such a state is arbitrary and unbounded [16]. Therefore it is not enough
to wait a microsecond or so for outputs to change. Typically it is possible to
test an arbiter by having only one request valid at any time. The arbiter is then

considered equivalent to two wires, where the wires are not both high at the same
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time. If the actual arbitration is tested, then the methods described here do not
apply. The simplest way to test an arbiter is to add test circuitry with which it

can be functionally separated from the remainder of the circuit.

3. A Classification of Stuck-At Faults

For a given production rule a fault may reduce the number of states in which
the production rule may fire, or it may increase the number of such states. In
the former case, the fault inhibits the production rule, and in the latter case it
stimulates the production rule.

I assume that each circuit is non-redundant. A variable is redundant if each
occurence of the variable in the production rules can be replaced with true or
false. A gate is redundant if its output is redundant. A circuit is redundant
if it has a redundant gate, or a gate with a redundant input. See Appendix B.
Note that a production rule in a non-redundant circuit may still have a redundant
literal, or a redundant term. (A literal is a boolean variable, or its negation.) In

particular, weakening production rules introduces redundant literals.

DEFINITION 3.5 (INHIBITING FAULT). Let C be a circuit that has a gate with
mput s and output t. Consider a production rule for t. If it contains a non-
redundant term with literal s (—s), then fault s stuck-at-0 (s stuck-at-1) is inhibit-

ing the production rule.

DEFINITION 3.6 (STIMULATING FAULT). If a production rule for t contains a
non-redundant term with literal s (~s), then fault s stuck-at-1 (s stuck-at-0) is

stimulating the production rule.

An inhibiting fault reduces the set of states in which a production rule may
fire. Such a fault may be tested by bringing the circuit in a state where the

correct production rule fires, and the production rule with the fault does not. A
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stimulating fault augments the set of states in which a production rule may fire.
Such a fault may be tested by bringing the circuit in a state where the correct
production rule does not fire, but the production rule with the fault does. The
following theorems state that, both for inhibiting and stimulating faults, there is

always such a state in the handshaking expansion.

THEOREM 3.1. Let C be a non-redundant circuit that has a gate with input s
and output t. Let s stuck-at-0 be an inhibiting fault. Then there is a state in the
handshaking expansion where the fault causes a production rule for t not to fire

when it should. Similarly for fault s stuck-at-1.

Proof: The general form of the production rules for ¢ is:
sABy V —sAB — t]
sANCy V —~sACy — tl,
where each B; and C; is a boolean expression not containing s. Consider fault s
stuck-at-0. With this fault, the gunard for ¢ | reduces to B;. The fault inhibits a

transition ¢ if there is a state in the handshaking expansion where
-t A (s A By V =is A By) A By,

that is
-t AsA By A-Bj.

If s is not redundant in the guard for ¢, then there is a state in the handshaking
expansion where t 7 fires, so that ¢ ] is an acknowledgement for transition s, and
s A By holds when ¢ T fires. If B; holds in this state, then ¢ T may fire before the
gate observes transition s, that is, ¢ does not acknowledge s T. Hence ~B; must
hold. Therefore there is a state in the handshaking expansion where a transition
¢1 is inhibited, if s is not redundant in the up-guard. Similarly if s not redundant

in the down-guard. O
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THEOREM 3.2. Let C be a non-redundant circuit that has a gate with input s
and output t. Let s stuck-at-0 be a stimulating fault. Then there is a state in the
handshaking expansion where the fault may cause a production rule for t to fire

when it should not. Similarly for fault s stuck-at-1.

Proof: The general form of the production rules for ¢ is:
sABy V =sAB;, — t]
sANCy V =sANCy — t,
where each B; and C; is a boolean expression not containing s. Consider fault s
stuck-at-0. With this fault, the guard for ¢ T reduces to B;. The fault may cause a

premature transition of ¢ T if there is a state in the handshaking expansion where
—lt/\Bl/\_!(S/\Bo\/—h‘?/\Bl),

that is
-t As/A\~ByA By.

If —s is not redundant in the guard for ¢ T, then there is a state in the handshak-
ing expansion where ¢ T cannot fire, and where s A =By A By holds; in this state
the fault may cause a premature firing. Similarly for —s in the down-guard. O

The next theorem states that any fault on an output of a gate is both stimulating

and inhibiting.

THEOREM 3.3. Let C' be a delay-insensitive circuit. Let s be a variable in C
that is either a primary input, or the output of a gate, but not a primary output.

Then faults s stuck-at-0 and s stuck-at-1 are both inhibiting and stimulating.

Proof: Consider, without loss of generality, the fault s stuck-at-0. Since s is not
a redundant variable in C, there is a transition s T in the handshaking expansion

(or [s] if s is a primary input). Let u | be a transition directly following this
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transition s 7. Then s must be an input to the gate with output u, and transition

uT acknowledges transition s1. The production rule for « 7 is of the form
s A BO V Bl - UT,

where s A By is not redundant. With a fault s stuck-at-0 the same production rule
reduces to
By —ufl.
Then 7T will not fire if s A By holds; the fault is inhibiting.
Now consider a transition s in the handshaking expansion. Let the transition
immediately following it be v . Then v | acknowledges s |, and s is an input to

the gate with output v. The production rule for v 1 is of the form
“1-5‘/\00\/01 -—->’UT,

where —s A Cy is not redundant. With a fault s stuck-at-0 the same production
rule reduces to
CoVCi—T.

This production rule may fire before transition s |; the fault is stimulating. O

A fault that is only inhibiting, or only stimulating, is necessarily a fault on an
input of a gate. For a primary output, the terms inhibiting and stimulating are
not defined. It should be clear, that for any fault on a non-redundant primary
output, there is a state in the handshaking expansion where the primary output

has the wrong value.

4. Faults Causing the Circuit to Halt During Test

Most stuck-at faults in a delay-insensitive circuit will cause the circuit to halt

during some test. I investigate under what circumstances a circuit halts.
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THEOREM 3.4. Let C be a circuit implementing program P. Let s be a primary
input or the output of a gate of C. Let circuit C' be identical to C, except for a
single stuck-at fault on s. If there is a test such that each variable has the same

value in C' and in C' after execution of the test, then the fault is testable.

Proof: Assume, without loss of generality, that the fault is s stuck-at-1. Exe-
cute a test such that C' and C’ are in the same state. This implies that s is true
in circuit C. Continue to execute the handshaking expansion from this point until
the first transition s |. As long as s is true, both circuits are identical. Because
of the fault, C’ will not have any transition s |.

Continue to execute the handshaking expansion until the first transition of a
primary output after s |, say 7. This part of the handshaking expansion is of the
form

3sli[ms A Bl uT;. .
Transition u T is an acknowledgement of transition s |. In circuit C' such a transi-
tion u T will eventually take place. For circuit C’, however, there is no transition
s | to be acknowledged. Therefore there will not be a transition u 1 in circuit C".
The fault is testable. O

From this theorem a number of simple statements follow.
THEOREM 3.5. A fault on a primary output is testable.

Proof: Let so be a primary output of circuit C. Let C’ be the same circuit,
but for a fault so stuck-at-0. Then the initial state for C' and C' is the same. By

theorem 3.4, the fault is testable.
Let C" be identical to C, except for a fault so stuck-at-1. The fault is detectable

in the initial state, since so will be observed by the environment to be true. O

THEOREM 3.6. Let s be either a primary input, or the output of a gate in circuit
C. Then fault s stuck-at-0 is testable.



40
Proof: Let C' be the same circuit as C, except for a fault s stuck-at-0. Then
circuits C' and C’ will reset to the same initial state. Variable s is not redundant,
therefore by theorem 3.4 the fault is testable. |
Because of this theorem, the only faults on outputs of gates that need more

analysis are stuck-at-1 faults.

THEOREM 3.7. Let si be a primary input of circuit C, where si is an nput of

a passive channel or a lazy-active channel. Then fault si stuck-at-1 is testable.

Proof: The initial state of s7 is false. If si is an input of a passive channel this
input may have a transition to true at any time. Therefore si true must also be
allowed in the initial state. By theorem 3.4 the fault is testable. Likewise, if s1 is
an input of a lazy-active channel, then si may initially be true. O

Theorem 3.4 is a testability result for faults on primary inputs and on outputs
of gates. Upon closer inspection of the proof, it also extends to some faults on
inputs of gates. In the proof, a fault s stuck-at-1 is shown to be testable since it
causes a transition s | not to take place in circuit C'. As a consequence, there is a
series of acknowledgements that do not take place, resulting in a primary output,
u, not having a transition when it should.

If s is not a primary output, then the transition s | is acknowledged with another
transition, say v T (variable v is not necessarily the same variable as «). This means
that s is an input to the gate with output v. Now consider circuit ¢ , Which is
the same as the correct circuit C, except the input s to the gate with output v is
stuck-at-1. Then the test that detected fault s stuck-at-1 in circuit ¢’ also detects
this fault in circuit C”, since the fault prevents an acknowledgement (namely, v 1)

of the transition s | to occur. This leads to the following

COROLLARY 3.8. Let s be a primary input, or the output of a gate, in circust
C. LetT be a test for the fault s stuck-at-0 (stuck-at-1 ) that results in a transition
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of a primary output not taking place in the presence of the fault. Let s be input to
a gate with output v, such that the last transition s 1 (s]) in T is acknowledged
with a transition v 1. Then test T also detects a fault if input s to the gate with
output v is stuck-at-0 (stuck-at-1).

Theorem 3.4 proves the testability of an inhibiting fault, by constructing a test
such that the fault causes the circuit to halt. There are a few other theorems on

inhibiting faults on inputs of gates.

THEOREM 3.9. Let s be an input to a gate with output v. If a stuck-at fault on

the input s causes the guard for v1 to be false, then this fault is testable.

Proof: Without loss of generality, consider fault s stuck-at-1. The production
rule for v T is of the form

“sAB — T,

where B is a boolean expression. With fault s stuck-at-1 this reduces to
false — v 7.

Therefore variable v is invariantly false during any test. Fault v stuck-at-0 is

testable, therefore input s stuck-at-1 is also testable. O

THEOREM 3.10. Let s be an input to a gate with output v, where v is a primary
output. If a stuck-at fault on the input s causes the guard for v| to be false, then
this fault is testable.

Proof: If v is true initially, as a result of the fault, then by theorem 3.5 the
fault is detectable. Otherwise apply theorem 3.4. |

This theorem can be extended to any fault that causes a sequence of variables
that are stuck at some value, resulting in a primary output being stuck-at-1.

The above theorems can be used to prove the testability of many inhibiting

faults in a circuit. For the remaining inhibiting faults it is necessary to consider
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the handshaking expansion. In the next section I derive conditions under which

these inhibiting faults cause the circuit to halt during a test.

5. A Classification of Inhibiting Faults

The following is a classification of faults that are inhibiting. A fault that is only
inhibiting and not stimulating is always testable, provided that the circuit resets
to a well-defined state. For such a fault, there is a test that will cause the circuit to
halt. If a fault is both inhibiting and stimulating, then it may be detected either
if the circuit halts, or if there is a premature firing of a primary output. I derive
when such a fault causes the circuit to halt.

The formulae for the testability of an inhibiting fault depend on whether the
fault is stuck-at-0 or stuck-at-1, and on whether the corresponding literal is in the
guard for the up-transition or the down-transition of a gate, or both. In the first
subsection I derive these formulae for one of these cases in some detail; the other

subsections can be omitted on first reading.

5.1. Fault stuck-at-0 Inhibits Down-transition. Consider a gate in circuit
C with input u and output v, and production rules:
uANBy V By — v]
uANCy V C; — v,
where By, By, Cy, and C; are boolean conditions that include neither u nor —u.
Let circuit C' be identical to C, except for a stuck-at-0 fault on this input u.
The production rules for v in C' are;
By V By — v
Ciy — vl.
The guard for v T has weakened, whereas the guard for v | has strengthened. If

the circuit is to halt during a test, then v | should not fire prematurely, and the
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circuit should be brought in a state where v | is inhibited.

If u is redundant in the guard for v |, then the fault is not inhibiting, and only
stimulating, which is dealt with in section 6. If - is redundant in the guard for
v T, then the fault is only inhibiting, and will always cause the circuit to halt,
provided that v resets to the correct value.

The remaining case is when neither u nor —u is redundant. Consider a state in
the handshaking expansion where v | fires as a result of condition u A Co A =C4.
If circuit C’ can be brought into such a state from the initial state, without a
premature firing of v T, then the fault is testable. With fault u stuck-at-0, condition
u A Cy A =Cy (when the guard for v | is true) reduces to =C} (when the guard for
v | is false). As aresult, v | will not fire, and there will not be an acknowledgement
for v, so that there is a primary output that fails to have a transition.

There is a possible premature firing of v because of the fault when
”‘I’U/\’LL/\B()/\‘WBl.

Even if this condition is transient, there could be a premature firing of v 7.
In conclusion, the stuck-at-0 fault on input u is testable and causes the circuit

to halt if there is a test such that
vV =uV-ByV B
holds from the initial state until a state where
vAuACyA=Cj.

Note that the first condition holds in the initial state, since = holds in the initial
state. Therefore the circuit will reset correctly even in the presence of this fault,

except for variable u.
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5.2. Fault stuck-at-1 Inhibits Up-transition. Consider the same circuit C,
where C’ has input u stuck-at-1. In C the production rules for u are:
~“uABy V By — o
uNCy V C; — v,
In C' these production rules are:
By — vl
Co V C; — wv].
Again assume that neither u nor —u is redundant in the production rules for v.

The fault may cause a premature firing of v | when
v A —uACyA\-Ch

holds.

The stuck-at-1 fault on input u is testable and causes the circuit to halt if
—vVuV-CyV(C
holds from the initial state until a state where
v A—~uA By A-Bj.

Note that the first condition holds in the initial state, since —v holds in the initial

state. Therefore the circuit will reset correctly even in the presence of this fault.

5.3. Fault stuck-at-0 Inhibits Up-transition. A second kind of gate is one
where v occurs in the guard for v 1, and = in the guard for v |, and neither literal
is redundant. The production rules for variable v in circuit C are:

uANBy V By — vl
~uANCy V C; — wv].
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Let circuit C' be identical to C, except for a stuck-at-0 fault on input u. The
production rules for v in C' are:
By — vl
Co V C1 — v].
Circuit ¢’ will halt if there is a transition v { that fails to occur, before there is a

premature firing of v |.

The conditions to cause the circuit to halt are derived in the same way as before.
Circuit C’ will halt if
vV -ouV-aCyV C
holds from the initial state until a state where

ﬁU/\'U:/\Bo/\“IBl.

Note that the first condition holds in the initial state, since both —v and —u hold
in the initial state. Therefore the circuit will reset correctly even in the presence

of this fault.

5.4. Fault stuck-at-1 Inhibits Down-transition. This is the same gate as
in the previous case. In circuit C’ input u is now stuck-at-1. The production rules

for v in C are:
uANBy V By — vl

—uACy V C7 — v].
For C’ the production rules for v are:
By Vv By — vt
Ci — wv|.
In order for the circuit to halt, there must be an inhibited transition v | before

a premature firing of v 7. Circuit ¢’ will halt if

’UVU\/—IBO\/Bl
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holds from the initial state until a state where
v A —uACyA-Cl.

Since —u A —w holds in the initial state of the handshaking expansion, =B V B;

must hold in the initial state to avoid a premature firing.

5.5. Fault stuck-at-0 Inhibits and Stimulates Both Transitions. Finally
I examine the general case of production rules for a gate with input « and output
v. This is when u and —u are included in both the guard for v | and the guard
for v |. Therefore either production rule may fire prematurely and may cause the
circuit to halt.

The previous gates are special cases of this gate. I have analyzed them sepa-
rately, since the conditions that cause halting are less complicated, and since those
cases generally comprise the vast majority of gates.

For an arbitrary gate with input v and output v the production rules are:

uANBy V - uAB;y V By — v
uANCy V -uACy V Cy — v,
where By, By, By, Cy, C1, and Cs are boolean expressions that contain neither u
nor —u as literals. With input u stuck-at-0, the production rules reduce to
By vV By — v
C; vV Cy — v].
Transition v T will not take place in the presence of the fault if there is a transition
v 1 in a state in the handshaking expansion where u A By A =By A =B holds. A
transition v | does not take place if there is a state where a transition v | occurs
because uACy A=Cy A—Cs holds. Either production rule may also fire prematurely.
For v 7 this can occur when w A By A =By A = B3 holds, and for v | this can occur

when u A C; A =Cy A =C4 holds.
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In a formula, the circuit will halt as a result of a stuck-at-0 fault on the input

u of the gate with output v if
(vV-ouV By VBV By) A(-wV-uVCyV—CpVCy)
hold from the initial state until a state where
(rv AuA By A=Bg) V(v Au A Cy A=Chy).

5.6. Fault stuck-at-1 Inhibits and Stimulates Both Transitions. Con-
sider the same general production rules:
uANBy V muAB; V By — o]
uANCy V ~uANCy V C; — wvl.
Now let input u be stuck-at-1, then the production rules reduce to
By VvV By — v
Co V Cy — wvl.
As before, either production rule may cause the circuit to halt, or may cause a

premature firing. In order for the fault to be detectable by an inhibited firing,
(vVuV=aByVBLVB)A(-vVuVaCyV OV Cy)
should hold from the initial state until a state where
(mv A=u A By A=Bg) V(v A-uACyA=Cs).

5.7. Primary Input or Output of Gate stuck-at-1. Let u be either a
primary input, or the output of a gate, and consider the fault u stuck-at-1. If u is
a primary output, then the fault is immediately detectable. Otherwise, u is input
to one or more gates. If fault u stuck-at-1 causes the circuit to halt during a test,
then none of the faults on the inputs should cause a premature firing, until there
is an inhibited transition for one of the gates to which u is connected. The same

formulae can be used as for the cases above, The conjunction of the conditions to
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prevent a premature firing has to hold, until one of the conditions for an inhibited

firing holds.

6. Stimulating Faults

A fault that does not cause an inhibited firing (and a halting circuit) for any test
must be tested by having the fault cause a production rule fire prematurely. The
case of such a stimulating fault is more complicated than the case of an inhibiting
fault. Suppose, for an inhibiting fault, that there is a test such that the fault
causes an inhibited firing before any premature firing. Then subsequent firings
are also inhibited, causing a primary output not to have a transition when one is
expected. The difference between the correct and the faulty circuit is that there
are fewer transitions in the faulty circuit.

In case of a premature firing, however, there may be more transitions in the
faulty circuit, possibly introducing more concurrency. There are several problems
associated with prematurely firing production rules. The first problem is one of
stability of the production rule set of the faulty circuit. Since the premature firing
is not specified in the handshaking expansion, it may be that the condition for the
premature firing is transient. The premature transition may or may not occur,
depending on the propagation delays in the circuit, hence such a fault may or may
not be detected with a test. In that case the fault is not testable.

To find the state (or states) where the production rule may fire prematurely,
derive a boolean condition, from the guard, for the premature firing to take place.
Then scan the handshaking expansion, and try to match this condition with the
value of variables in each state of the handshaking expansion. In each state the
value of all internal variables and primary outputs are known; only the values
of some primary inputs may be unknown. The primary inputs are controlled by

the environment, hence such unknown values may be defined by the user. Once a
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state is found where the production rule fires prematurely, check whether the firing
is guaranteed to take place, then check (in the handshaking expansion) whether
there is a test sequence from the initial state to this state, without reaching a
transient state where the premature firing can occur.

Suppose a production rule fires prematurely, and the condition for this prema-
ture firing to occur is not transient. If the variable firing prematurely is a primary
output, then the fault is obviously detected. Otherwise, the variable (v, say) is
an internal variable, and the premature firing has to be propagated to a primary

output. There are three possibilities at this point.

e There is a sequence of transitions, from the premature transition of v to
a premature transition of a primary output, and no condition for any of
these premature firings is transient. Then the fault is testable.

¢ There is a sequence of transitions, from the premature transition of v to
a premature transition of a primary output, and one of these premature
transitions is unstable. Then the premature transition of v may or may not
propagate to a primary output. The fault is sometimes detectable, but it
is not testable.

e The premature transition of v does not cause a sequence of premature
firings leading to the premature firing of a primary output. Then the fault

is never detectable, and not testable.

Only in the first case is the fault testable. In all other cases, the fault can
only be made testable with the addition of test circuitry. This is the subject of
chapter 5.

The derivation of a condition for a premature firing of a production rule is quite
similar to the derivations for inhibited production rules. I only derive the general
case.

Let C be a delay-insensitive circuit that has a gate with input u and output v,
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and production rules:
uANBy V -uAB; V By — o7
uNCy V uANC; V Cy — v,
where By, Bi, By, Cy, C, and C; are boolean expressions that contain neither u
nor —u as literals. With input u stuck-at-0, the production rules reduce to
By vV By, — o1
Ci vV Cy — wv].
Now v 1 may fire prematurely, since the conjunction —u A B; in the correct circuit
is weakened to B; for the faulty circuit. The premature firing will take place if

there is a controllable state in the handshaking expansion where
_I'U/\’LL/\Bl/\“IBg.

This state must be reachable from the initial state without having an transient in-

termediate state where the same condition holds. This ensures that the premature

firing is stable, and that there is no unstable premature firing previously.

Similarly, for v | to fire prematurely there has to be a controllable state in the

handshaking expansion where
v AuACy A—Cs.

In case input u is stuck-at-1, v | fires prematurely if there is a controllable state

in the handshaking expansion where
v A-uA By A-Bsy,

and v | fires prematurely if there is a controllable state where
v A =u A Cy A —=Cs.

In all these cases, there must not be a transient intermediate state where a pro-

duction rule can fire prematurely, until the controllable state has been reached.



51

Once a production rule has fired prematurely, the result has to be propagated to
a primary output. Hence, if v is not a primary output, there has to be a sequence
of premature firings, resulting in the premature firing of a primary output. The
condition for each subsequent premature firing to take place is the same as the
condition derived above for the firing caused directly by the fault. There has to
be a controllable state where the next production rule will fire prematurely, and
there may not be a transient state between the premature firing of the previous
production rule until this controllable state, and so forth until there is a stable
premature firing of a primary output.

There is another way for a fault causing a prematurely firing production rule
to be detectable. After one or more production rules have fired prematurely, the
circuit is not in a correct state any more. It is then possible that a subsequent
transition is inhibited. In other words, the sequence of premature transitions may
cause another transition not to take place, so that the circuit halts. In such a
case, the fault is obviously detected. The conditions for production rules to fire
prematurely remain the same as above, as do the conditions for the inhibited
production rules. For the inhibited production rules it is not necessary to check
the conditions from the initial state (if the fault caused the circuit to halt before
the premature firing, then it would already be detected), but only from the state

where the premature firing takes place.

7. Fault Analysis of a One-bit Queue Element

I derive a test for all single stuck-at faults for a circuit implementing a one-
bit queue element. The queue element has two one-bit channels, I and R. Tt
repeatedly receives a binary value over channel L from its left neighbor, then
sends the same value over channel R to its right neighbor. The CSP specification

of such a queue element is
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FIGURE 3.1. One-bit wide queue element

*[L?z; Rlz].

In the handshaking expansion I reshuffle some actions, and I include internal

variables y1, y2, and yo, yielding

[ 11— ylTiyl];loT; [=rd; r1T;y01; [yo A -l
yLli[Pyifilolirilirl L yo l; [-yo]
| 22— y21;[2liloT; [=ril r2 1350 T; [yo A -12];
y21; [=y2;lo|; [ril;r2 Ly yo |; [=yo]
II-

If the left neighbor sends a “1” value to the queue element, it raises signal {1,
and if it sends a “0” it raises signal [2. (I use the suffix “2” to avoid confusion
with the suffix for outputs, “0”.) Similarly, the element sends a “1” to the right
neighbor by raising 1, and a “0” by raising 2.

The production rule set is
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IA-yo — yl17
-l1Ayo — yl]

2A-yo — 9427
-2Ay0 — 2]

ylvy2 — o7
ylA-y2 — lo|

ylA=-ri — 717
—ylAre — rl]

Yy2A-re — 727
“y2Ari — 712]

rlvr2 — yol
-r1A-r2 — yol.

A schematic of this circuit is in figure 3.1. There are three primary inputs, three
primary outputs, and three outputs of gates that are not primary outputs, as well
as six forking wires, all with an out-degree of two. Therefore there are 21 fault
locations, and 42 different single stuck-at faults. I analyze the testability of the
faults, by category.

A fault on a primary output is trivially testable (theorem 3.5):

lo,r1 [primary output],r2 [primary output] stuck-at-0 and stuck-at-1.

The stuck-at-1 faults are testable in the initial state. Primary output r1 stuck-at-0
is testable with test
117;[lo A1)
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and primary output r2 stuck-at-0 with test
121; [lo A r2).

Either test also detects fault lo stuck-at-0.
A stuck-at-0 fault on a primary input or the output of a gate is testable
by theorem 3.6: The circuit resets correctly, but an acknowledgement does not take

place. I list each fault and a sequence that detects it.

I1,y1,71 stuck-at-0: 117;[lo A rl]

12,92,72 stuck-at-0: 127;[lo A r2]
yo stuck-at-0 : 1175 [lo A r1];11 |5 [lo]
71 stuck-at-0 : ILT;[lo Arl]; 1L 5 [—lo); i T; [—rl].

A stuck-at-1 fault on the input of a passive or lazy-active channel
is testable, by theorem 3.7. Since channel L is passive, {1 and [2 stuck-at-1 are
testable. For either fault, lo will be true after reset. Chanmnel R is lazy-active,
hence i stuck-at-1 is testable. A test is an execution of the handshaking expansion

until the first [—7¢] action, for instance

1175 [lo A rl).

A fault that causes the guard for an up-transition to be false is testable,
since as a result the output of the gate is permanently false (theorem 3.9. For
instance, yo[yl] stuck-at-1 inhibits any transition y1 7. This fault can be tested
with any test for y1 stuck-at-0. Likewise for faults:

y1[rl], y2[r2] stuck-at-0
yoly2], ri[rl], 7i[r2] stuck-at-1.
A fault that causes a primary output to be trueis testable (theorem 3.10).

In the initial state the following faults are therefore testable:

y1, y1[lo], y1[rl], y2, y2[lo], y2[r2] stuck-at-1.
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A fault that causes the guard for a down-transition to be false, and
that does not change the up-guard, is testable; the initial state of the circuit is a
valid state, and once the output of the gate becomes true, it remains true. In
this circuit there are no faults in this category.

All faults above either cause the circuit to halt during a test, or result in a
primary output being true after the circuit is reset. Some of the remaining faults
may cause a premature firing of a production rule.

A stuck-at-0 fault that inhibits an acknowledgement is testable (theo-
rem 3.8). Such a fault causes the circuit to reset to the correct initial state, but
interrupts a sequence of acknowledgements. For instance, fault y1[lo] stuck-at-
0 will inhibit an acknowledgement lo T for action y1 7. A test for this fault is

therefore
117;[lo A r1].

Likewise, the following faults are testable:
y2[lo] stuck-at-0 : 127;[lo A 72
yolyl], r1yo] stuck-at-0: (17;[lo A rl];11|;[-lo]
yoly2], r2[yo| stuck-at-0: (27;[lo A r2];12 |;[-lo]
ri[rl] stuck-at-0 : 117;]lo A rl]; 11 | [Dlo]; 7 15 [-rl]
ri[r2] stuck-at-0 : 127;[lo A r2);12 |5 [-lo]; 7 75 [-r2).
These are tests that cause the circuit to halt. Fault yo[yl] stuck-at-0 may also

cause a premature firing. This occurs in any state where

yo AL Ayl

holds, for instance if there is a transition /1 T immediately after the environment
observes a transition lo . Likewise for fault yo[y2] stuck-at-0. Fault ri[r1] stuck-

at-0 also may cause a premature firing, in any state where
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7t Ayl A —rl

holds. A state where this occurs is after the environment sets /17, and r¢ is true.
Likewise for fault r¢[r2] stuck-at-0.
The remaining five faults do not fall in any of the above categories. I derive a

test for each.

e Fault yo stuck-at-1 is both inhibiting and stimulating. If it is tested as an
inhibiting fault, there has to be a test, such that

(1 A =yo A yl) A =(=i2 A —yo A y2)
holds until a state where
(11 A =gyo A =yl) V (12 A =yo A —y2)
holds (subsection 5.7). It is easy to check that test
1175 [lo A rl]

fulfills this condition. Furthermore, faults 71[yo] and r2[yo| stuck-at-1 imply
that yo is invariantly true. These faults are testable with the same test.

e Finally, fault y1[r1] stuck-at-1 is testable as an inhibiting fault if there is a
test, such that

=(=yl A —=ri A =rl)

holds until a state where

—yl Ari Arl

holds (subsection 5.4). The first condition does not hold in the initial

state. But then there is a premature firing of 717 after the circuit is reset.
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This firing is obviously detectable. Likewise fault y2[r2] stuck-at-1 causes

a premature firing of 727 in the initial state.

This concludes the analysis of each individual fault in the circuit. If N one-bit
queue elements are concatenated into an N-bit queue, the results are the same.
An N bit queue is fully testable, and a complete test consists of sending to, and

receiving from, the queue a one and a zero.
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CHAPTER 4

Testing Delay-Insensitive Combinational Logic

The ALU was sitting outside Gallifrey’s frame, on the extender.
Gallifrey was running a low-level program. Carman said, “Hmm-
mmm”. He walked over to the computer and, to the engineers’ hor-
ror, he grasped the ALU board by its edges and shook it. At that
instant, Gallifrey failed.

They knew where the problem lay now.

— Tracy Kidder, The Soul of a New Machine

1. Introduction

An efficient way of synthesizing a delay-insensitive circuit is to split it into con-
trol and datapath [47]. Whereas the control part enforces the sequencing between
different parts of the computation, the datapath performs the computation of the
data.

In synchronous systems, combinational logic is a feedback-free network of combi-
national gates that computes a function of the inputs. There are similar feedback-
free delay-insensitive circuits that compute such a function, without buffering the
result. Strictly speaking, such a circuit is not combinational, as a state-holding

element is necessary for the implementation of all but the simplest functions. Fol-
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lowing Seitz [66], I still call a feedback-free network that computes a function
without buffering — for lack of a better term — combinational logic.

In this chapter, I show that any delay-insensitive combinational logic circuit can
be reduced to a standard combinational logic circuit, for testing purposes. This
combinational logic is monotone, and any test that detects all testable faults in
this circuit will also detect all testable faults in the delay-insensitive circuit, with
one exception.

Consider a process, P, computing a function f, with input z and output ¥, such
that y = f(z). Input values z are encoded on port L, and output values y on port
R, using a delay-insensitive code (see chapter 2). P repeatedly waits for a valid
input to occur on port L (denoted v(L)), then computes function f, and outputs
result y on port R by raising some wires (denoted R {}). The environment then
lowers the inputs of port L, and P lowers the outputs of port R (denoted R ).
Between receiving valid inputs, the environment sends the all-0 vector (for which
all variables are false) on L; this vector is known as the neutral value [49]. A

program for P is

*[[o(D)]; R s [n(D)]; R U,
A formulation of the program as a handshaking expansion is as follows. Let L

be implemented with wires ly, {1,... ,{,_1, and R with wires r¢,71,... ,7m—1. Then
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FIGURE 4.1. Model of delay-insensitive combinational logic
the handshaking expansion for P is of the form:
#[ [loo Aot Ao Aoy — Too 1,701 Ty - -+, Toge T
o ANlin Ao Al = oy i Ty T1g 1
Ik
o Alsi Ao oAy, = 150,761 Ty ooy Tog, T
B

[“1[0/\‘lll/\.../\ln_l];’f'ol,Tll,... ,’I“m__ll

where
Lij € {lo,l1,... ,lu_1}for0<i<s,0< 5 < p;
and
T € {r0, "1y ;1 for 0< 1< 5,0< 7 < ¢,
and if (lig, Lz, ... ,lip;) is an encoding of z, then (7,731, ... ,Tig;) 18 an encoding

of f(z). See figure 4.1.

EXAMPLE 4.1 (SIMPLE DUAL-RAIL AND OPERATOR). I derive an implemen-
tation for the computation of the AND-operator for two dual-rail encoded vari-

ables. The primary inputs are a0 and al, and b0 and b1, and the result is encoded
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wn primary outputs z1 and 20. Output 21 is raised if both al and bl are true,

otherwise z0 is raised. A program for this computation is:

%[ [(aoV al) A (boVbl)];[al Abl — 217 [a0 V B0 — 201];
[mal A =a0 A =b1 A =b0]; 21 ], 20|
].
Transform this program by combining the first wait-action with the guards of the

if-statement:
#[[ al Abl — 217

| (a1 ADBO)V (a0 ADL)V (a0 ABO) — 207
] ;[mal A=ald A =b1 A=b0); 210, 20]
]
A production rule set derived from this program is:
al A bl — 217
—al A =bl — z1|

(a1l ABO)V (a0 ADL)V (aOAB0) — 207
{ —al A —a0A b1 A=D0 — 20].

It is possible that some of the wires of R are raised before all the necessary wires
of L are raised. For instance, for a full adder, in some cases the carry can be
computed when only two of the three operands have been received [66]. The sum,
however, can only be computed when all three values are known (see section 6).

For any delay-insensitive implementation of program P, I make the following
assumptions:

(1) The circuit has no feedback at the gate level;
(2) Each production rule for an up-transition (down-transition) has only posi-

tive (negative) literals in its guard.
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In other words, there is an induced partial order among the gates of the circuit,
and there are no possible pending transitions of internal variables between R 1t

and [n(L)], and between R |} and the following [v(L)].

2. Monotone Circuits

The state-holding elements of a delay-insensitive combinational logic circuit are
solely used to distinguish the up-going phase (that sets the outputs and, possibly,
internal variables) from the down-going phase (that resets the outputs and any
internal variables that were previously set). During each phase, there is at most
one transition for each variable: a possible transition from false to true in the
up-going phase, and a transition from true to false in the down-going phase for
each variable that had a transition in the preceding up-going phase.

Consider a delay-insensitive combinational logic circuit C'. For each state-
holding element in C, replace the guard for the down-transition with the negation
of the guard for the up-transition; call the resulting circuit C,. Circuit C, combi-
national. It is important to note that during the up-phase, the behaviour of circuit
C cannot be distinguished from the behavior of circuit C,, both for the primary
outputs and for all internal nodes. The only production rules that can fire are
production rules that set a variable to true. These production rules are identical
for C and C,,.

Circuit C, is a monotone combinational circuit [25]. Much research has been
done on finding test vectors for monotone combinational logic; I use this to derive

test vectors for delay-insensitive combinational logic.
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EXAMPLE 4.2. [ derive another implementation for the dual-rail AND program:

x[[ al Abl — 217
| (a1 ABO)V (a0 ABL)V (a0 A b0) — 207
] ;[-al A =ad A =b1 A —=b0]; 21,20 |
].
In this implementation, the AND function is computed with an AND-gate with
inputs al and bl, and its complement with an OR-gate with inputs a0 and b0. To
insure that the primary outputs are only changing after the primary inputs have
changed, I add a signal that detects when a0 or al, and b0 or bl have changed.
This “completion signal” is then input to two C-elements, one for each primary
output. See figure 4.2. Call this circuit C.

By changing each C-element in this figure to an AND-gate, the circuit of fig-
ure 4.3 results. This circuit, C,, is monotone. During any up-phase circuits C
and C,, are equivalent. Note that circuit C, is redundant. For instance, the top
input (the “completion signal”) to the AND-gate with output z1 can be replaced
with true without changing the functionality of C,. Note that no signal in C, can

be replaced with false without changing the functionality of the circuit.

This implementation of the AND operator is larger than the previous. However,
it is an example of a general method to implement an arbitrary function as a delay-

insensitive circuit, using a completion signal. For a description, see section 5.

3. Testing Synchronous Combinational Logic

This section is a synopsis of a method to find test vectors to test all faults
in monotone combinational logic. It is based on the work of Betancourt [9]. A
function f is monotone if X < Y implies f(X) < f(Y), for all X and Y; a
monotone circuit is a circuit that is equivalent to combinational logic consisting

of only AND and OR gates (that is, no negative logic).
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Let circuit C' be a monotone circuit that implements the monotone function f.
The circuit has n primary inputs, zg,%1,... ,Z,-1, and one primary output, y,
where
y= f(zo,21,... ,Zp_1).
Define the function Af as follows:

R (X) = f(zoy. oy Ti1y iy v v, Tno1) ® flxo,. .. 1, false, . .. y L)
Then the set 7§ = {t|hi(t) = true} is the set of all test vectors that will detect if
primary input z; is stuck-at-0. Likewise, defining function h! as

hiCX) :if(mo,.” ,$F4,w“...,wn_l)G)f(mo,...,wﬁqjtrue,...,mn_lh

the set 71 = {¢|h{(¢) = true} is the set of all test vectors that will detect if primary
input z; is stuck-at-1.
Define
fo(X) = f(zo,... ,z; 1, false, ... 2, 1)
and

(X)) = f(zo,... ,zi1,true, ..., T,1).

For a monotone function f, the functions k) and A% reduce to
ho(X) =z A= f3(X) A F1(X)
and
hi(X) = =2 A= f5(X) A Fi(X)
for any input vector X.
THEOREM 4.1. The test set
n=1  a-1
Urnuy+
=0 j=0
will detect any detectable single stuck-at fault in circuit C implementing f, includ-

wng faults on internal variables.
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Proof: See Betancourt [9] O
This is a strong theorem, as it holds for any monotone implementation of the

monotone function f.

Now define set Sy as follows:
So = {p|f(p) = true and p > ¢ = [(q) = false},

where p > q iff for all 7 the ith codrdinate of p is true when the ith codrdinate of

q is true. Each element of S is known as a minimal true vertez.

THEOREM 4.2. The set Sy is sufficient to detect all testable single stuck-at-0

faults in any monotone circuit that implements f.

Proof: Let C' be a monotone circuit implementing f, and let C have a single
stuck-at-0 fault. Denote the output of C for input = by C(z). Then C(z) < f(z)
for all z.

Assume there is an input z such that C(z) # f(z). Then f(z) = true and
C(z) = false. Pick a vector y € Sy such that y < z. Then f(y) = true. Apply
input y to circuit C. Subsequently apply z to C. Since y < z, the only transitions
that can occur in the circuit then are from false to true. If there is a transition
of the output of C, it must be a transition from false to true. But since C(z) =
false, it must be that C(y) = false. Therefore the fault will be detected by
applying y to the circuit. O

Similarly, define the set S; as follows:
S1 = {p|f(p) = false and ¢ >p = f(q) = true}.
The elements of Sy are the mazimal false vertices.

THEOREM 4.3. The set Sy is sufficient to detect all testable single stuck-at-1

Jaults in any monotone circuit that implements f.

Proof: Analogous to the previous theorem. O
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COROLLARY 4.4. The set of all minimal true vertices and all mazimal false
vertices is sufficient to detect all testable single stuck-at faults in any monotone

circuit implementing f.

Reddy [62] has shown that the same result holds even if the implementation of
f is redundant.

The set Sy may not be a minimal set to detect all stuck-at-0 faults for an
arbitrary implementation of f. However, for an important class of circuits each

element of S is necessary to test such faults.

THEOREM 4.5. All the elements of Sy (S1) are necessary to detect all stuck-at-0
(stuck-at-1) faults in a two-level non-redundant AND-OR (OR-AND) realization

of f.

Proof: See Betancourt [9)]. O

4. Sufficient Tests for Delay-Insensitive Combinational Logic

For any delay-insensitive combinational logic circuit C, there is a monotone
combinational logic circuit C,, such that C' and C, are equivalent during any
up-phase. A test for C, can be used to test for faults in C also.

For combinational logic, a test is a sequence of test vectors that is applied to the
circuit. In order to be able to apply the same sequence of test vectors to the delay-
insensitive combinational logic circuit, the all-0 vector has to be applied between
consecutive test vectors. In this manner the environment of the delay-insensitive
circuit behaves according to the four-phase (return-to-zero) handshaking protocol.
Note that during an up-phase there are only transitions from false to true, and

during a down-phase only from true to false.
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THEOREM 4.6. Let t be an input vector that detects a single stuck-at fault on
gate G, of circuit C,. Then the equivalent fault on gate G of circuit C is also
detectable by applying t from the initial state.

Proof: Assume, without loss of generality, that an input, y, of G,, is stuck-at-0.
Input vector ¢ detects fault y stuck-at-0. After applying ¢, variable y is true for
the correct circuit, and false for the faulty circuit. The fault is detectable, so
there is a primary output, z, whose value is false in the faulty circuit and true in
the correct circuit. In addition, there is a series of variables, yo,y1,... , Vs, With
Yo =Y, Yo = 2, and, for 0 < 7 < n, y; is an input to the gate with output 1.,
such that y; is true in the correct circuit, and false for the faulty one.

Therefore there is a series of variables for which an up-transition does not take
place in circuit C,, with fault y stuck-at-0. Now apply vector ¢ to circuit C in the
initial state (where all variables are false). Recall that C' and C, are identical
during the up-phase. If y is stuck-at-0 in circuit C, then there is the same chain
(Yo, Y1, - - - , Yn) Of variables, all of which are true in the correct circuit and false in
the faulty circuit. In particular, primary output z is true for the correct circuit,
and false for the faulty one. Vector ¢ detects fault y stuck-at-0 in C.

If y is stuck-at-1, then there similarly is a series of variables from y to a primary
output z, such that these variables are false in the correct circuit, and true in
the faulty one. If vector ¢ is applied to the delay-insensitive circuit from the initial
state, then for the correct circuit z remains false, and there is a premature firing
of zT in the faulty circuit. O

Note that the order in which the inputs are raised in the delay-insensitive circuit
is irrelevant. Any test that can detect all testable faults in C, will also detect the
equivalent faults in C. In general, circuit C, is redundant, so that not all its faults
are testable. It is possible, however, that the equivalent faults in C are testable. I

investigate when a variable in C, is redundant, and if the corresponding fault in
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C is testable.

EXAMPLE 4.3. Consider again the delay-insensitive circuit C, the implemen-
tation of the dual-rail AND operator in figure 4.2. In the equivalent monotone
circuit C,, of figure 4.3, the expression that z1 evaluates is al A bl. A minimal
true vertex for this expression is al Abl. When al A bl is supplied to C,, as a test
vector, z1 remains false if al, bl, y1, or z1 is stuck-at-0, as these variables are
not redundant in C,. Consequently, if test vector al A bl is supplied to circuit C,
ot detects if al, bl, yl, or z1 is stuck-at-0.

After al A bl is supplied to C, z1 is true. In the following down-phase a
transition z1 | will follow transitions al | and b1 |, in the correct circuit. If the
input & of the C-element with output z1 is stuck-at-1, then there is no transition
z1]. Hence this fault is detectable in circuit C. In circuit C,, however, the input
z to the AND gate with output z1 is redundant (it can be replaced with true),

therefore no test vector detects that fault.

The following theorem states that C, has no redundant primary outputs. This

trivial fact is necessary for the next theorem.

THEOREM 4.7. If circuit C' is not redundant, then circuit C,, has no redundant

primary outputs.

Proof: Let z be a primary output of C, and let z, be the corresponding primary
output of C,. Variable z, cannot be replaced with true, as all primary outputs
are false in the initial state.

If z, can be replaced with false, then for all input vectors to C, primary output
z, is false. Therefore z is false during every up-phase of C. Since there are
no transitions from false to true in any down-phase, z is redundant in C. A

contradiction. O
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I now show that no output of a gate in C,, may be replaced with false without

changing the functionality of C,.

THEOREM 4.8. Let = be a primary input or the output of a gate in a non-
redundant delay-insensitive circuit C, and let z, be the corresponding variable in

circuit C,,. Then replacing z, with false alters the functionality of C,.

Proof: By contradiction. Suppose there is a set of primary inputs, and outputs
of gates that may be replaced with false without altering the functionality of C,,.
Let z,, be a member of this set, such that in the graph induced by the circuit there
is no path from z, to any other member of the set. Such an element exists, since
the graph is acyclic.

The corresponding variable z in C' is not redundant. Therefore, there is an input
vector that results in a transition z {. Since z is not a primary output, there is
a series of acknowledgements, resulting in a transition of a primary output that
is an acknowledgement of 2 T. Since C and C, are identical during any up-phase,
there is a transition of a primary output that acknowledges transition z, 7. For
a fault z, stuck-at-0, this acknowledgement does not take place; z, can not be
replaced with false. O

As a consequence, a stuck-at fault on a primary input or on the output of a gate

in C is testable, as shown next.

THEOREM 4.9. Let z be a primary input or the output of a gate in circuit C.
Then a test set that detects all testable faults in circuit C, also detects faults x

stuck-at-0 and z stuck-at-1.

Proof: Consider the variable z, in circuit C, that is equivalent to variable z in
C. Variable z, cannot be replaced with false without altering the functionality of
Cy. Therefore fault z, stuck-at-0 is testable, say with input vector t. The same

vector t also tests fault o stuck-at-0, by theorem 4.6.
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To detect fault z stuck-at-0, there has to be a transition z T during the test.
If z is stuck-at-1, then there will not be a corresponding transition = | during a
down-phase of the test. Then there is no acknowledgement for this transition z |;
the down-phase ends with at least one primary output true. O

The only case left is the testability of faults on inputs of gates. Let y be the
input of a gate with output z in circuit C, and let y, and 2, be the corresponding
variables in C,,. If y, is not redundant, then there is a test that detects a fault on
Yu; the same test detects the corresponding fault on y.

If y, can be replaced with true without altering the functionality of C,, and z |
is not an acknowledgement for y |, then fault y stuck-at-1 is not testable. Input
y is not necessarily a redundant input for the gate with output 2; y is added to
the guard for 2T to avoid a hazard on z. An example of this is in section 5. If a
variable is added to a production rule not for functionality but for the avoidance
of a hazard, then a fault on such a variable is not testable. A test point has to be
added to the circuit to make it fully testable.

If y, can be replaced with false without altering the functionality of C,, then
no transition y 1 in C is ever acknowledged; variable y is redundant in the guard
for z T, and is used in the guard for z | to insure correctness of a down-phase. Then
an additional test vector has to be generated for this fault, for instance using the
D-algorithm (see section 7).

The latter case occurs in the adder example of section 6. It is possible to re-
design the adder so that any variable that occurs in a down-guard also occurs
non-redundantly in an up-guard; this significantly reduces the performance, how-

ever.
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5. Application: Combinational Logic in AND-OR Form

The following is a method to implement any function as a delay-insensitive

combinational logic circuit [19]:

(1) Create a two-level AND-OR network of gates implementing the desired
function, such that for any legal input vector each OR gate has at most
one input true at any time;

(2) Create a completion signal that detects that a legal input vector has been
received, and that all inputs have been reset to false. For a set of dual-rail
encoded signals, each pair is merged with an OR gate, and the output of
each such OR gate is input to a C-element that is the completion signal;

(3) Finally, the completion signal is input to a number of C-elements, each of

which has an output of the AND-OR network as the other input.

EXAMPLE 4.4. I derive a circuit that computes the majority function of three
inputs. The output is 1 if at least two inputs are 1, and 0 otherwise. In the
implementation there are three input channels, A, B, and C, and one output
channel, Z. Each channel is dual-rail encoded, with variables al and a0; bl and
b0; c1 and c0; and z1 and 20. To derive an AND-OR network for this function, I

write the outputs as a disjunction of conjunctions of inputs:

zZl=alAblValAclVblAcl

20=a0 A b0V al A cOV b0 A cO.
This description cannot be transformed directly into an AND-OR network, since
the terms in the disjunctions are not mutually ezclusive. A description with mu-

tually exclusive terms is:

2l =al Ab1ValAbOAclValdAblAcl
20=a0 A0V a0 ADBLACOVal AbOA cO.
With the addition of the completion signal, the circuit is in figure 4.4
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For the following fault analysis I assume that each variable is dual-rail encoded.
The problem of testing all stuck-at faults in such a circuit is greatly reduced with

the following observations:

e Consider a C-element whose output is a primary output (step 3). Faults
on the inputs and outputs of the C-element are testable if there is a test
vector that raises the primary output, that is, if the primary output is not
redundant.

¢ Consequently, any fault on the inputs and outputs of the C-element whose
output is the completion signal (step 2) is testable.

e Consider an OR gate that merges the two signals of a dual-rail encoded
variable (step 2). The inputs to this gate are primary inputs. The output
of the OR gate is the input to the C-element generating the completion
signal, hence faults on this output are testable. If an input is stuck-at-1,
then the output of the OR gate is stuck-at-1, so that fault is also testable.
Finally, consider the case when an input to the OR gate is stuck-at-0. This
fault is testable if there is an input vector for which the variable is raised.
In other words, if no primary input is redundant, then any stuck-at fault

on the inputs of the OR gate is testable.

The faults that remain to be considered are faults in the AND-OR network (step
1). If there are no redundant primary inputs and outputs, then all other faults in
the circuit are testable with any test that tests all faults in the AND-OR network.
Therefore the problem of finding a test set for the circuit is reduced to finding
a test set for the AND-OR network. Since such a network does not contain any
state-holding elements, any technique to find test vectors for combinational logic
may be used.

A test consisting of all minimal true vertices is necessary (theorem 4.5) and suf-

ficient (theorem 4.2) to test all stuck-at-0 faults in the AND-OR network. During
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this test each variable in the network will be raised at least once. If there is a
stuck-at-1 fault on the output of an’AND gate, or on an input or the output of
an OR gate, then there is a down-phase that does not complete during this test
(that is, a primary output will not have a down-transition). Consequently, such
faults are also testable with the same test.

Finally, I consider the faults where an input of an AND gate is stuck-at-1.
Consider an AND gate with inputs a, b, and ¢, and output u:

a AN b AN ¢ — ul
—a V -b V ¢ — ul.
(The analysis generalizes to AND gates with an arbitrary number of inputs). Let
u be used as part of the implementation of primary output z. Fault a stuck-at-1

is testable if there is a test vector ¢ such that

3

(1) the production rule for w1 fires prematurely. This can only be in a state
where ma A b A ¢ A —u; and

(2) primary output z will have a premature up-transition after transition u T,
so thaf the fault is detectable. Therefore ¢ must cause the completion signal

to be raised.

I prove that there is a minimal true vertex for a variable other than z that will
test fault a stuck-at-1, if a is not redundant in the AND-OR network. Variable
z is part of an output channel. For the proof below I assume that this channel
is a dual-rail encoded bit. The proof generalizes to other encoding schemes. Let
z = z1. In the proof I show that there is a minimal true vertex for 20 that detects

fault ¢ stuck-at-1.

THEOREM 4.10. Let a be a non-redundant input to an AND gate of an AND-
OR network, as above. Then there is a minimal true vertex of a primary output

that tests fault a stuck-at-1.
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Proof: Variables a, b, and ¢ are primary inputs. If only b and ¢ are raised
from the initial state, then neither z1 nor 20 can have an up-transition: if z1 can
have an up-transition, then u is redundant in the implementation of z1; if 20 has
an up-transition, then an additional transition ¢ T cannot cause a transition z17
(since =20 V =21 is invariant for a dual-rail encoded channel), so that u is again
redundant.

The only remaining proof obligation is to show that there is a minimal true
vertex for z0 that includes —a, b, and c. For such a true vertex the completion
signal has an up-transition, and, since it raises z0, z1 must be false.

Observe that there is no true vertex for z0 that includes a, b, and c all true.
Since a A b A c causes u T, any such vertex would also cause a transition z1 7.
Suppose that there is no true vertex for 20 that includes —a, b, and c. Then no
true vertex for z0 includes both b and ¢ true, only true vertices of z1 have both
b and c true. But then a is a redundant variable in the AND gate with output u.
A contradiction.

There is a true V\ertex for 20 that includes —a, b, and ¢, and that will detect a
fault a stuck-at-1. O

From the preceding analysis it follows that

THEOREM 4.11. For an implementation of delay-insensitive combinational logic
with an AND-OR network to which a completion signal is added, all testable faults
are testable with a test set consisting of all minimal true vertices for the outputs

of the AND-OR network.

If this method is used to derive delay-insensitive combinational logic, there are
some single stuck-at-1 faults that are not testable without the addition of test

circuitry. Consider the case of the following function to be implemented:

z = f(a,b,c) = =cV —a A —b.
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In a delay-insensitive implementation, all variables are dual-rail encoded. A dia-

gram of function f in terms of the dual-rail encoded variables is:

fF1|aOADBO | al ABO | al Abl | a0 Abl
c0 1 1 1 1
cl 1 0 0 0

An easy — but wrong — implementation of z1 and 20 as an AND-OR network is

21 =¢c0V a0 A b0

20 =clAalVeclAbl,
consisting of an AND gate followed by an OR gate, and two AND gates followed
by an OR gate. This is a direct conversion into a dual-rail code of the original
formula for z. For z1, in case a0 A b0 A c0 holds, both inputs of the OR-gate
can become true. This may cause a hazard [12]. Similarly for 20. To avoid
this from occurring, a term can be added to the AND-gate, yielding the following

implementation:
z1=c0VclAalAbO

z20=clAalVel AaQAbl.

Consider this implementation of z1. Since =(c0Acl) is an invariant, the two inputs
of the OR gate can never be true at the same time. Note that the implementation
is not redundant. Figure 4.5 shows the circuit for z1, including the completion
signal (variable z0 is omitted).

Consider the fault stuck-at-1 for the input c1 to the AND-gate. To test this fault,
cl must be false, a0 and b0 true, and c0 false. Then the output of the AND-OR
network is false in the correct circuit, and true in the faulty one. There are two
ways to propagate an erroneous value of the output of the AND-OR network to
the output z1:

(1) The completion signal is true, and z1 is false for the correct circuit. This

occurs during the up-phase. In the presence of the fault, a transition 217
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FIGURE 4.5. Implementation of z1

occurs. For the completion signal to be true during an up-phase, however,
either c0 or c1 must be true, which is not the case;

(2) The completion signal is false, and 20 is true for the correct circuit. This
occurs during the down-phase. Then a transition z1 | takes place for the
correct circuit, but not for the faulty circuit. For the completion signal to
be false during a down-phase all primary inputs must be false. However,

a0 and b0 are true.

In either case it is not possible to propagate the erroneous signal to the primary
output z1. Therefore the fault is not testable.

The reason that a fault stuck-at-1 on the input ¢l of the AND-gate is not
testable, is that it is, in some sense, redundant. The signal itself is not redundant,
according to the definition of redundancy, and there is no smaller AND-OR net-
work that will correctly implement the function. The problem is that cI was added

to the AND-gate not because of functionality, but to avoid a possible hazard.
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There are three ways to approach this problem.

(1) Disregard faults stuck-at-1 for inputs to AND gates when the input is added
to avoid a possible hazard. A complete test will detect all testable stuck-at
faults, but the fault coverage is not 100 percent.

(2) Do not add terms to avoid hazards. In the example above, the implementa-
tion of z1 would be c0Va0Ab0. This may cause a hazard, and the resulting
circuit is not delay-insensitive. For such a hazard to occur, however, the
propagation delays must be widely different. We can extend the concept of
an isochronic region, and assume that the propagation delays of the combi-
national gates are roughly the same, or that the propagation delays of the
combinational gates are smaller than the propagation delays through any
feedback circuitry.

(3) Add test circuitry. A test point to observe each output of the AND-OR
network is sufficient to make all faults testable. These test points make it
possible to test the AND-OR network independently of the remainder of
the circuit. The AND-OR network is not redundant, and consists solely of
combinational gates; it is fully testable. Any method to derive a test set for
combinational logic can be used. The remainder of the circuit consists of
the completion signal and C-elements that generate the primary outputs.

Faults in this part of the circuit are testable as before.

Of these three alternatives, only the last yields a fully testable delay-insensitive
circuit. It is, however, the slowest solution, as well as the costliest in area. If we
can make assumptions on propagation delays, then the second alternative yields
the smallest circuits, as well as the fastest of these three possibilities.
Alternatively, it is possible to derive logic in a different manner, without adding
terms to avoid hazards, or employing hazard-avoidance algorithms. An example

is the ripple-carry adder in the following section, which is derived directly from
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the program it implements; function evaluation and completion detection are not

separated. The ripple-carry adder has no untestable faults.

6. Example: Ripple-carry Adder

As an example of testing delay-insensitive combinational logic, I analyze a circuit
for a ripple-carry adder [49]. The one-bit adder element has inputs a0,a, b0, and
b1, for both operands, and c¢0 and ¢! for carry-in; it has outputs d0 and dI for
carry-out, and s0 and s for the sum (result).

The production rule set is

[ (((a1 A BL)V (@D ABO)) Acl) vV
(((a1 A B0) V (a0 A b1)) A c0) — sl
=cl A —=c0 — sl

[ (((a1 A1)V (a0 A BOY) A cO)

(((al A BO) V (aO A B1)) A cl) — 507
=cl A =c0 — 50

\

(@l ADL)V ((alVDBL)Acl) — d17T
—al A—=a0A-b0OA-DT — dl}]

—al A=a0A-b0OA-b1 — dO|.

There are six primary inputs, four primary outputs, and 22 inputs of gates;

{(aO/\bO)\/((aOVbO))/\cO) ~ 4ot

the total number of fault locations is 32, and there are 64 possible single stuck-at
faults.

All faults are tested if each input combination is used once (eight vectors),
with the exception of faults on variables that occur only in the guard for a down-
transition. These are a0 and b0 in dl | and af and b! in d0 |. Fault a0[d1]

stuck-at-1 is testable, since it causes the guard for d1 | to be false; the fault is
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detected with any test vector for which d7 is raised. Likewise, faults a1[d0], b0[d1],
and bI[d0] stuck-at-1 are testable.

Fault a0]d1] stuck-at-0 is only detected if the inputs are changed in a particular
order. Since a0 occurs only in the guard for d1 |, the fault has to be tested during
a down-phase. For the corresponding up-phase, a0 and df have to be true, hence
b1 and c1 are true. Subsequently there will be a premature transition d1 | after

a transition b1 |. A test for this fault is therefore
a0T,b17,¢17;[d1l A s0];01] .
For faults a1[d0], b0[d1], and b1[d0] stuck-at-0 we get tests
alf,b07,c07;[d0 A s1];00]
alT,607,¢cl17;[d1 A s0];al ]
a07,b17,¢07;[dO A s1];a0] .
The size of the test can be reduced to six test vectors. Consider only the
up-transitions, and transform the circuit into a combinational logic by having as

down-guards the negation of the up-guards.

The outputs as a function of the inputs are
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d0 = a0 ADB0 \Y
(a0 Vv b0) A c0
dl = al Abl V

(a1 Vbl)Acl
sO0 = a0 ABOACO
a0 AbLAcl
al AbOAcl
al AblAcO
sl = alAblAcl
al ABOA c0
a0 AbL A0
a0 A b0 A cl.
Consider output s0. Fault a0[s0] stuck-at-0 is testable with either of two test
vectors:
a0 A b0 A c0
a0 AbL A cl.

Fault al[s0] stuck-at-0 is also testable with either of two test vectors:

al AbOAcl
al A bl A c0.

Since the function for s0 is symmetric in a0, b0, and c0, and in al, b1, and cI,
the test vectors for stuck-at-0 faults on other inputs follow easily. Similarly for
faults on the gate with output si.

Next, consider output d0. Fault a0[d0] stuck-at-0 is testable with either of the
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following test vectors:
a0 AbOAcl

a0 A b1 A c0.
Likewise for faults b0[d0] stuck-at-0 and c0[d(] stuck-at-0, and for faults on the

gate with output d1.
It follows that the minimal number of test vectors for this adder is six, for

instance
a0 ABO Al

a0 AblL A cO
a0 A bl Acl
al A b0 A c0
al ADO A cl
al Ab1 A c0.

This test set will test all faults (stuck-at-0 and stuck-at-1) for variables that occur
in up-guards of the production rule set, as well as on the primary inputs and
primary outputs.

In addition, to test faults a0[d1], b0[d1], al[d0], and b1[d0] stuck-at-0 some more
tests are needed, as analyzed previously. It is easy to see, that these tests can be
combined with the six test vectors above. All that is needed is that the order in
which signals are changing during the down-phases be specified.

A test to test all faults in the complete circuit is

a0T,b07T,c17;[d0 A s1];a0],b0],cl [;[~d0 A —s1];
a07,017,¢07;[d0 A s1];a0 |;b1 |, c0|; [~d0 A —s1];
a0T,b17,c17;[d1 A s0];01 500, ¢l |; [~dl A —s0];
alT,607,c07;[d0 A s1];60 |;al],c0;[-d0 A —s1]
alT,b0T,clT;[d1 A s0];al ;00 |, ¢l |5 [-dl A —s0];
alT,b17,c0T;[d1 A s0];al],b1(,c0[; [=d1 A —s0].

?

.
!
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For an array of N one-bit adder elements, the carry-out (d0 and dI) of an element
is connected to the carry-in (¢0 and cI) of the next. The number of different test
vectors to test such an array is still six, regardiess of the size of the array. With
the six test vectors above, the same vector can be supplied to each element, with

the exception of vectors
aOABOAcl

and

al Abl A c0,

which have to be alternated between elements.

The only problem, again, is the stuck-at-0 faults for variables that occur in a
down-guard only. These cause a premature transition, either d0 | or d1]. These
signals may not be directly observable by the environment, since they encode the
carry-out. Such a premature transition will, however, cause a premature transition
of either s1] or s0| for the next element; this is observed by the environment.

Note that the sequencing between actions needed to detect these faults still does
not cause the testing time for the array of full adders to increase; all elements can
be tested in parallel.

In the remainder of this chapter, I investigate how to test delay-insensitive

combinational logic by adapting algebraic testing methods for combinational logic.

7. The D-algorithm for Delay-insensitive Circuits

The D-algorithm (see Appendix) can be extended to find a test vector for a
stuck-at fault in a delay-insensitive combinational logic circuit. Since such a circuit
is feedback-free, the regular forward and backward propagation methods can be
used. The difference with combinational logic circuits is that there are state-

holding elements. As seen previously, the purpose of the state-holding elements is
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to have the circuit obey the handshaking protocol. In propagating a fault through
a state-holding element, it is important to note whether the circuit is in an up-
going or a down-going phase.

Recall that for the D-algorithm there are five different logic values: 1 (true),
0 (false), X (don’t care), D (true for the correct circuit, and false for the faulty
circuit), and D (false for the correct circuit, and true for the faulty one).

Both during any up-phase and during any down-phase a delay-insensitive com-
binational logic circuit is equivalent to a monotone combinational logic circuit.
This simplifies the propagation algorithm somewhat. If there is a signal D, then
there will not be a signal D; if there is a signal D, then there will not be a signal
D. For arbitrary combinational logic, it is possible that two faulty signals cancel
each other. For instance, if an OR-gate has an input D and an input D, then the
output is 1, and neither faulty signal can be propagated. This situation does not
occur with delay-insensitive circuits.

The following is an overview of forward and backward propagation of faults.
The forward and backward propagation of faulty signals through combinational

gates is the same as for the standard D-algorithm.

7.1. Forward Propagation. For a state-holding element, the output depends
not only on the inputs, but also on the state of the gate. The faulty signal may
be propagated either during an up-phase, or during a down-phase.

Let G be a state-holding element. Transform G into gate G, by replacing the
guard for the down-transition with the negation of the guard for the up-transition.
Gate G, a combinational gate, is equivalent to G during the up-phase. Therefore
the propagation of D and D is the same for G as for G,. For instance, if G is a
C-element, then G, is an AND gate; a D (D) input causes a D (D) output if all

other inputs are 1 or D (D).
During a down-phase, G only propagates a faulty signal if the output of the
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gate is 1 after the up-phase. Transform G into G4 by replacing the guard for the
up-transition with the negation of the guard for the down-transition. Then G is
equivalent to G during the down-phase, if the output of G is 1 after the up-phase.
The propagation of D and D is the same for G as for G4. In addition an input
vector has to be computed for which the output of G is 1 after the up-phase. This
is done by backward propagation.

If G is a C-element, then G is an OR gate. Propagate the D (D) signal by
setting all X inputs to 0, so that the output of the C-element is D (D).

7.2. Backward Propagation. For backward propagation, transform G again
into G, for the up-phase, and G  for the down-phase. The backward propagation
for these combinational gates is as before.

If G is a C-element, and the output is D, then all inputs must be 1 for detection
during an up-phase; at least one input is 1 for detection during a down-phase.
Likewise, if the output is D, then during an up-phase at least one input is 0;

during a down-phase all inputs are 0.

7.3. An Example. As an example, I reéxamine the circuit of example 4.2,
which is an implementation of an AND-operator. See figure 4.6.

Consider fault input z of the C-element with output 21 stuck-at-1. To apply
the D-algorithm, set all variables to X, except this input, which is D. Assume that
the fault is detectable during an up-phase. For the forward propagation, z1 is D
if y1 is 1. What remains is backward propagation. Since y1 is 1, both al and b1
have to be 1. Since z is D, one of the inputs of the C-element generating signal =
must be 0. But since al and b1 are both 1, both inputs of that C-element are 1.
This is a contradiction. Therefore the fault is not detectable during any up-phase.

Now assume the fault is detectable during a down-phase. With forward propa-

gation, z1is D, so y1 is 0. In addition, 21 must be 1 after the up-phase. It is easy
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FIGURE 4.6. AND operator
to check that this occurs when al and b1 are both 1. Then, during the down-phase

yl is 0, so at least one of al and bl is 0. Since z is D, both inputs to the C-element
with output = must be 0. Propagating backward through the two OR-gates, al,
b1, a0, and b0 are all 0. It follows that a test to detect the fault is

alt,b17;[21];al],b1 |;[~21].
An efficient way to use the D-algorithm to find tests for all faults is

(1) For each primary input, find a test for the stuck-at-0 fault and a test for
the stuck-at-1 fault. In applying the D-algorithm, each fault is propagated

to a primary output. If a test is found for an input that is D (D), then the
same test will detect faults on all other variables that are D (D). Hence the
D-algorithm finds a series of equivalent faults for each fault on a primary
input.

2) Repeat the process for any remaining variables, starting with any variables
g ) g y
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that are “closest” to the primary inputs, until for each fault there is either
a test that detects it, or a contradiction occurs (in which case the fault is

not testable).

I apply this method for the same circuit for an AND operator.

Let primary input al be D. I choose to propagate through the AND-gate. Then
ylis D if b1 is 1. Following that, 21 is D if  is 1 (detected during an up-phase).
With backward propagation ca and cb are 1. This is a consistent assignment. Also
assign 0 to a0 and b0. Note that if the D of al is propagated through the OR-gate,
then the same test suffices. Raising al and b1 will therefore detect the following
stuck-at-0 faults: primary input al; input al of the OR-gate and the AND-gate;
ca; x; yl; input z to the C-element with output z1; and primary output z1. By
symmetry, the same test vector also detects these stuck-at-0 faults: primary input
b1; input b1 of the OR-gate and the AND-gate; and cb.

Similarly for a0 stuck-at-0 the test raises a0 and b1, and for b0 the test raises
b0 and al. These two test vectors detect the remaining stuck-at-0 faults.

For the stuck-at-1 faults, let al be D. Then yl is D if b1 is 1, and 21 is D if
z is 1 (during an up-phase). For backwards propagation, ca and cb are both 1.
Therefore a0 is 1. Furthermore, let 50 be 0. Note that, unlike for the stuck-at-0
fault, signal D for al is not propagated through the OR-gate. Raising b1 and
a0 will detect the following stuck-at-1 faults: primary input al; input al to the
AND-gate; y1; and z1.

For b1 inputs al and b0 have to be raised; and a0 and b0 signals a1 and b1. Now
the following stuck-at-1 faults remain: all inputs to the OR-gates with outputs ca
and cb; z; and input = to both C-elements. Applying the D-algorithm on these
variables, starting with the inputs to the OR-gates, it turns out that all these
stuck-at-1 faults are detectable during the down-phases of the previous tests. The

D-algorithm also comes up with some tests to detect some of these faults during
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an up-phase. For instance, raising only a0 will detect a fault stuck-at-1 for either
input of the OR-gate with output cb.
With the D-algorithm I have derived the following test, that detects all faults

in the circuit:
alT,bl7;[z1};al],b1 |5 [—21];

al7,507;[20]; al |, b0 ]; [-20];

a07,b17;[20];a0|,50 |; [-20].
In this section I have shown that the D-algorithm can be adapted for use in
delay-insensitive combinational logic circuits. Other non-algebraic methods may
be adapted in the same manner. The only additional thing that has to be examined

is the fault propagation for state-holding gates.
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CHAPTER 5
Design for Testability

[ENIAC] was very reliable and very few hours were lost per week
in tracing down the defective tubes. The greatest difficulty came
about when on rare occasions two tubes would fail simultaneously.
Then the observed symptoms were always highly anomalous.

— Herman H. Goldstine, The Computer, from Pascal to von

Neumann

1. Introduction

In this chapter I explain how to improve the fault coverage of a circuit with
the addition of test points. First, however, I discuss some details of the testing
problem that have not been addressed before. In particular, I discuss how to
test faults that cause interference in the production rules of a gate. With the
strictest definition of testability, most such faults are not testable. It is possible to
redesign the gate, with a simple transformation of a guard, so that no fault causes
interference.

Another problem is the initialization of the circuit. For most of the proofs on
testability of faults, I have assumed that the circuit initializes to a well-defined

state. Whether this is the case in practice depends on the technology with which
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the circuit is implemented, and on how the initialization of the circuit is performed.
I discuss the case of CMOS circuits, to which a global reset signal is added.

I show that each fault in a circuit can be made testable with the addition of
test points. These can be control points or observation points. I explain when and
where such test points need to be inserted into the circuit.

If the circuit is implemented on a chip, then each test point adds another pad to
the design. If the design is pad-limited, then it is advantageous to string the test
points together into a queue, so that the overhead for the test points, in terms of
the number of pads, is constant. I derive a design for such a test queue, and show

that it is fully testable.

2. Non-interference

Counsider the production rules for a gate in a delay-insensitive circuit:
B, — 27
By — z|.
For correct operation of the circuit, =B, V —By has to hold invariantly, so that a
gate cannot have an up-transition and a down-transition simultaneously. This is
the non-interference requirement. It may be violated in the presence of a fault.
If =B, V- By is a tautology, then the expression evaluates to true for any value of
the inputs. It still evaluates to true if there is a stuck-at fault on one of the inputs.
A fault can therefore not violate the non-interference requirement. Gates in this
category are all combinational gates, the C-element, and most generalizations
thereof. For a state-holding element where both guards are conjunctions, it is
necessary and sufficient that there be an input that is included as a literal in one
guard, and its negation in the other guard.

One of the few gates that can have interfering production rules in the presence
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of a fault is the set-reset flip-flop:

s — zT

r — zl.
If input s is stuck-at-1, the production rules reduce to

true — z7
r o — z|.

The production rules for z now interfere when r holds. In the implementation of
the circuit, there is a short circuit. The value of the output z depends on how

strongly the fault pulls z up, as compared to how strongly r pulls z down.

(1) If the fault causes a strong pull-up of z, then z is, effectively, stuck-at-1.
Any test that detects z stuck-at-1 also detects s stuck-at-1.

(2) If the fault causes a weaker pull-up than the pull-down of r, the gate effec-
tively changes into an inverter:

-r = 27
r o — zl.
The fault may be tested by bringing the circuit in a state where ~sA—rA—z,
where the faulty circuit will have a premature 2z 7. In addition, -7 should
hold from the initial state until this premature transition.

(3) Otherwise, the fault causes z to have an intermediate value (neither true
nor false) when r holds. How such a state influences the rest of the circuit,
and in particular, how this value can be propagated to a primary output
so that the fault is detected, is not clear.

The third alternative is the most realistic: the fault is untestable if » holds at some
point during a test.
It is always possible to redesign a gate so that a stuck-at fault on an input does

not cause the production rules to interfere, by strengthening one or both of the
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guards. For instance, for the gate with production rules
B, — 27
Bi — 2z,
condition =B, V =By is an invariant. Therefore the guard for 21 can be strength-
ened with =By, and the guard for z | can be strengthened with —B,. If both these
changes are made, the resulting production rules are:
B,AN-B;y — 27
BsA-B, — z].
The set-reset flip-flop, can be changed into a C-element without changing the
functionality of the circuit:
sA—r — 27
rAns — z|.
Another case of interference is a fault on a reset variable. This is the subject of

the next section.

3. Initializing a Faulty Circuit

In chapter 3 I have stated a number of theorems on the testability of single
stuck-at faults in a delay-insensitive circuit. In each I have assumed that, even
in the presence of a fault, the circuit can be initialized to a well-defined state,
that is, a state where each wire is at a high or a low voltage. The way a circuit
is initialized depends on the technology with which it is implemented. I explain
initialization for a CMOS process.

The output of a combinational gate depends solely on its inputs. For each input
combination, there is a production rule with a true guard. This is not always
the case for a state-holding element. In particular, the output may not be well-
defined as a function of the initial value of its inputs. In that case the state of the

state-holding element has to be explicitly initialized.
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FIGURE 5.1. C-element with added reset transistor
A common way to initialize a state-holding element in a CMOS process is to

add a reset transistor to the gate. Consider a C-element with inputs ¢ and b and
output z. Adding a reset signal to the circuit is equivalent to adding a term in
the production rules for 2:
a N b — 27
—a AN ~b V reset — z|.
A standard implementation of these production rules is in figure 5.1.

To initialize the circuit, there is a transition reset T, and all primary inputs
are set to their initial value. All state-holding elements then have a well-defined
output. After a transition reset | the circuit is in its initial state. Note that the
reset signal does not obey a handshaking protocol. There is no acknowledgement
for any transition of reset.

I postpone the problem of faults on the reset variable. First I investigate how a
fault on any other variable may interfere with the initialization of the circuit.

Since the initial value of each variable is false, a stuck-at-0 fault cannot cause
the circuit to initialize to an incorrect state. Consider a stuck-at-1 fault on input

s of a gate with output ¢. If the fault does not cause the production rule for ¢ |
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to evaluate to true, then the faulty circuit will initialize correctly (that is, each
variable has the correct initial value, except for the fault). Otherwise, the fault
causes interfering production rules. See the previous section. There are three ways
to approach the problem of interference during initialization due to a fault, two of
which involve changing the circuit.

(1) Assume that the signal that initializes ¢ to false is stronger than the signal
that causes ¢ to have an up-transition as a result of the fault. Each variable
is initialized to the right value, after which a t ] transition occurs. Although
this requires no alteration of the circuit, and allows the fault analysis to
proceed as before, the realism of this assumption is shaky at best.

(2) In case of a production rule that may fire in an initial state, an extra reset
transistor is usually included to prevent this firing during the initialization.
Similarly, an extra reset transistor can be included to prevent transition tT
from taking place in the presence of the stuck-at-1 fault on input s.

(3) The problem of having ¢ T as well as ¢ | fire in the initial state is, that
the result (possibly an intermediate voltage) may propagate to other gates,
thereby impeding the initialization of other gates. A solution to this prob-
lem, then, is to interrupt propagation of variable ¢. In that case, ¢ is a test
point (a control point). See section 4.

Consider the C-element with the following production rules:
s A - — t7
s A r V reset — t].

Let input s be stuck-at-1. Then transition ¢ T is enabled when the circuit is

initialized, as is ¢ |. Adding an extra reset transistors to prevent transition tT
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FIGURE 5.2. C-element with additional reset transistor, to insure

non-interference
from firing when reset is true is equivalent to changing the production rules to:

s A -1 A -reset — t7
s A r V reset — t|.

An implementation is in figure 5.2

A second possible alteration of the circuit is to have ¢ as a test point. Variable ¢
is transformed into variables to and i, where to is ¢ as the output of this gate, and
ti is t as input to other gates. Variable to may be observed by the environment
(an observation point), and ti may be set by the environment (a control point).
See figure 5.3. In case of a fault s stuck-at-1, variable ¢+ may not reset to the
correct state, but the transition ¢ T after initialization will be observed directly
by the environment. Also, an incorrect value of ¢ is not propagated, since the

environment controls the value of variable ¢i.

3.1. Cascaded Resets. If the output of a state-holding element is uniquely
determined by the initial values of its inputs, then no reset transistors are needed

to initialize it. The state-holding element has a correct initial output because
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F1GURE 5.3. C-element with output as a test point

its inputs are known to have the correct initial value. Such an implicit way of
initializing state-holding elements is known as a cascaded reset.

In the presence of a fault, a cascaded reset may not work. If the output of
any gate in the cascade is not initialized to the right value, then subsequent gates
may also not be initialized to the right value. It is possible that the circuit is not
initializeable to a well-defined state. For fault analysis, either the circuit is left as
is, and assumptions have to be made about the initial state of a faulty circuit, or
reset transistors are added to guarantee a correct initialization. In the latter case,
of course, the initialization is no longer a cascaded reset.

A cascaded reset causes unnecessary complications for the analysis of stuck-at
faults in a circuit. This is not surprising. Indeed, Abramovici et al. [3] recommend

that for any circuit the initialization procedure be as simple as possible, to facilitate

fault analysis.

3.2. Faults on Reset Variables. The reset signal is another input for a state-
holding element. I investigate if, and how, faults on this input can be tested.
In the absence of a reset input to a state-holding element, its output may be at a

low, high, or intermediate voltage, after initialization of the circuit. In particular,
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1t is always possible that this output is initially at a low voltage, and is interpreted
as false. Then there is no need for any reset transistor. Therefore a fault reset
stuck-at-0 is not testable.

Whether a fault reset stuck-at-1 is testable depends on the implementation of

the gate. Consider the C-element with one reset transistor (figure 5.1):

a AN b - 27
—a A —=b V reset — z].

With fault reset stuck-at-1 the guard for z | is invariantly true. The circuit will
reset to the correct state, but as soon as a A b holds, both transitions are enabled.
The production rules are interfering, and in the implementation there is a short
circuit. As in section 2, either the short circuit is detected, or the z | transition
does not take place, in which cases the fault is detected, or there is a regular
transition zT, and the fault is not detected.

If a second reset transistor is added to a state-holding element, then fault reset

stuck-at-1 is testable. Consider again the circuit of figure 5.2:

s N —r A —reset — t]
s A r V reset — t|.
With fault reset stuck-at-1 ¢ is invariantly false. This is testable.
In conclusion, a fault reset stuck-at-0 is never testable, and a fault reset stuck-

at-1 is not testable for the simplest (and most common) implementation.

4. Control and Observation Points

A stimulating stuck-at fault in a delay-insensitive circuit causes a production
rule to fire prematurely. In order for this premature firing to be detectable, it
is necessary that the premature firing is guaranteed to take place. Furthermore,
there has to be a sequence of premature firings, resulting in a premature firing

of a primary output or in an inhibited firing (and a halting circuit), so that the
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environment detects the fault. This is not necessarily possible for all faults in the
circuit. If there is a fault in a circuit that is not testable, then one or more test
points can be added to make the fault testable.

There are two types of test points. A control point is a wire in the circuit that
the environment can directly set to a certain value. It transforms an internal
variable into a primary input, for testing purposes. An observation pointis a wire
in the circuit whose value the environment can directly observe. It transforms an
internal variable into a primary output.

For a circuit with test points, there are two modes of operation. The first is the
regular mode, when the circuit operates as before, and the test points are ignored.
The second is operation in test mode, when the control and observation points are
used by the environment to test previously untestable faults.

It is easy to see that with the addition of test points each fault in a circuit can

be made testable.

THEOREM 5.1. Let C be a delay-insensitive circuit, and let G be a gate in C.

Then any stuck-at fault on G is testable with the addition of test points.

Proof: Transform C' so that the output of each gate in the circuit is both a
control point and an observation point. Then each input of G is either a primary
input, or a control point. Therefore the environment can set each input of G to an
arbitrary value, and it can hold these values for an unbounded time. The output of
G is either a primary output or an observation point. Therefore the environment
can always observe the value of the output of G.

In other words, with these test points, the environment can hold each gate in an
arbitrary state for an unbounded time, and it can observe this state. If the gate
has a stuck-at fault, the environment can detect it. U

Fortunately, for most circuits far fewer test points are needed to make the circuit
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fully testable. For instance, in the control part of the asynchronous microproces-
sor [51, 50], without the memory unit, there are 174 gates, and three test points
are needed to make it fully testable. I investigate where control and observation

points are necessary.

4.1. Control Points. Let C be a delay-insensitive circuit, and consider a
stuck-at fault in C' that may cause a premature firing of variable t, say t. There
is a state in the handshaking expansion where this premature firing will take place.
Consider a test, T', that will bring the faulty circuit in a state where the premature
firing may take place. If the premature firing is unstable, a control point has to
be added to the circuit.

Consider the state where premature firing ¢ T takes place. Since the firing is
unstable, the guard of ¢ T is evaluated to true, and then may be evaluated to false
before transition ¢ | is acknowledged. There are transitions of one or more of the
inputs that falsify the guard of ¢t 7, say 97,21 1,... ,Zn_1 1. If these transitions
are delayed by a sufficient amount of time, then the firing of ¢t T will occur. If
Zo,T1,... ,Tp—1 are control points, then the environment can hold these variables
to false until the premature firing of ¢ T occurs.

It is possible to have another set of control points. If y is an input to the gate
with output zy, and the transition z¢ 1 is an acknowledgement for transition y T,
then y can be a control point instead of zy. If the environment keeps y false,
through the control point, then y T and zy 7 will not occur, and the premature
firing of ¢ T will take place.

This process of substituting control points may continue to the inputs of v,
and so forth, as long as the circuit is guaranteed to reach the state where the
premature firing of ¢ T occurs. Note that the purpose of a control point is to
delay, by a sufficient amount of time, a transition in the circuit. It is therefore

not strictly necessary that the environment be able to set the value of the control
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point directly.

4.2. Observation Points. Once a premature firing has occurred, it has to be
propagated to a primary output. Either the circuit halts (a transition of a primary
output does not occur), or there is a premature firing of a primary output. If
neither case is guaranteed to occur, it is necessary to add an observation point. If
the fault causes a premature firing «{ in circuit C, then % can be an observation
point. If the premature firing of T causes a stable premature firing of another

variable in C, then that variable can be an observation point in lieu of «.

5. Example: Microprocessor Control

The instruction fetch circuit for the asynchronous microprocessor [51, 50] con-
sists of nine gates, and has one untestable fault. It occurs in a gate with output
g, and production rules

ao ANuUNbEA-CctA—gi — g7
—u A —eo — gl.
Variables ao and eo are primary outputs, bi, ci, and g7 are primary inputs, and u
and g are internal variables.
Consider fault bi[g] stuck-at-1. It is not inhibiting, and can only be tested with

a premature firing. The fault will cause a premature firing of g7 in a state where
ao A u A =bi A —ct A gt A —g.

However, in any state where this condition holds, « | may fire, as the production
rule is

(ao A =bi)Veo— ul .
This means that any premature firing of g  is unstable. By transforming u into
a control point, the environment can delay transition u |, so that the firing of ¢

is stable, It is not necessary to have control points for the other inputs of g: ao
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remains true as long as u is true, and ¢i and g¢ are primary inputs, which the
environment controls directly.

The stable firing of g T results in a stable firing of a primary output, which the
environment will detect. It is not necessary to have an observation point for this

fault.

6. Design to Minimize Number of Test Points

I have described where to insert test points in a given circuit, to make the circuit
fully testable. The next problem is how to design a circuit so as to minimize the
number of test points needed. Ideally, one would like to design circuits that need
no test points.

For many control-type programs, it is possible to derive a circuit that is fully
testable without test points. For sequential synchronous circuits, it is not known
how to design a circuit with a minimal number of test points [3]. The problem is
not solved for delay-insensitive circuits either. The following are merely heuristics
that minimize the number of test points and facilitate testing.

Maximize the number of inhibiting faults. It is more difficult to test for a
prematurely firing production rule than to test for an inhibiting production rule.
Faults that are both stimulating and inhibiting are usually tested by having an
inhibited firing, so that the circuit under test halts.

To maximize the number of inhibiting faults, one has to change production
rules, so that a fault on an input of a gate that is only stimulating also becomes
inhibiting. Consider a gate with input s and output ¢. If literal s is included in
the production rules of ¢ by syntactic derivation or strengthening, and —s is not,
then fault s stuck-at-1 is only stimulating. If —s can be included by strengthening
one of the production rules, then the fault is also inhibiting.

Such a transformation does not necessarily mean that the fault is testable with
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an inhibited firing. If the state in the handshaking expansion with the inhibited
firing can be reached before the state with the premature firing, then the fault is
testable. Otherwise, the premature firing should be analyzed.

It is not always possible to make each stimulating fault also inhibiting. Consider

the D-element, which has handshaking expansion
%[[li];ro1; [ri]; w1 [u]; ro |; [ord); Lo T; [li]; w |5 [—u]; o |].

Since [li] occurs immediately before ro T, literal Iz has to be included in the produc-
tion rule for ro1 by syntactic derivation. Then fault lz[ro] stuck-at-1 is stimulating.
It would also be inhibiting if a production rule for ro can be strengthened with
—l¢. This is not possible, however, since all transitions of 7o occur when {7 is true.

For a circuit that has a fault that is stimulating but not inhibiting, there nec-
essarily is an isochronic fork. If s[t] stuck-at-1 is stimulating, but not inhibiting,
then —s is not included in the production rules for ¢ by either syntactic derivation
or strengthening. Therefore no transition s | is acknowledged with a transition of
t, which implies that there is an isochronic fork. Specifically, the branch of s that
is input to the gate with output ¢ is an isochronic branch.

Maximizing the number of inhibiting faults generally means to reduce the num-
ber of isochronic forks in a circuit. The cost of adding terms to production rules
is an increase in the number of transistors, and a degradation of performance.

There is one type of stimulating fault that is generally simple to test. Consider

a handshaking expansion containing, in part, the sequence
o8t sl e
Then s is included in the production rule for ¢7:

sAByV B —t].
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Fault s[t] stuck-at-1 makes t T fire prematurely in a state before the [s]-action.
If s is a primary input, and ¢t a primary output, and if this state is reachable
from the initial state, then fault s[t] stuck-at-1 is testable. In general, ¢ | fires
prematurely in the last state before s T where the environment waits for a primary
input transition; the premature firing causes a sequence of transitions leading to
the transition of the primary output immediately following ¢1.

This analysis leads to two rules for designing circuits with high fault coverage.

e From the handshaking expansion, produce production rules by syntactic
derivation.

o If a production rule for variable ¢ is strengthened with a literal, then a
production rule for ¢ also has to be strengthened with the negation of that
literal.

Minimize concurrency. For a stimulating fault, a state has to be found where
the fault causes a premature firing of a production rule. The more concurrency is
introduced by reshuffling a handshaking expansion, the more states there are, and
the more difficult it is to find a test vector.

Concurrency may also increase the length of a complete test. An example occurs
in the instruction fetch process of the asynchronous microprocessor [51]. Part of

the handshaking expansion is

39075 (9t A —eil;eoT;. ..,
resulting in production rule

goANuANgiA—et — eol.

Faults eifeo] stuck-at-0 and gi[eo] stuck-at-1 are both only stimulating. The former

causes a premature firing eo7 in a state where

—eoAgoAuA gi A et,
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whereas the latter causes a premature firing of eo] when
—eo A go A u N\ gt A\ et

The test sequences for these two faults are incompatible, that is, the faults cannot
be tested in the same cycle.

The reason that these faults have different test sequences is that transition eoT
occurs only after two concurrent primary input transitions (gi T and ei |) have
been observed. If the transitions of the primary inputs were sequenced, then these
faults could be tested with one test vector.

The requirement to minimize concurrency to facilitate testing is in obvious con-
flict with the aim to improve performance. Introducing concurrency is an elemen-
tary way to reduce the number of transitions in a critical path, and thereby to
speed up the circuit. Performance, not testability, ought to be the prime measuring
stick in circuit design.

Reduce interference in if-statements. The reason that a fault in the in-
struction fetch circuit is untestable is that it causes both guards of an if-statement
to be evaluated to true. Consider part of the if-statement:

[ b — ["gin-el;gT;...
| —bi — wul
-

This results in a production rule
ao AuANbiAN—ciA—gi—gT.

Fault bi[g] stuck-at-1 is only stimulating. To test the fault, b: should be false.
When the circuit reaches the if-statement, the gate with output w evaluates b:

to false, and, because of the fault, the gate with output g evaluates b: to true.
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Therefore both g1 and u | are enabled, but the firing of g T is not stable, since u
is a term in the guard of g7.

The firing would be stable if either u is not a term in the guard for g T, or
if there is another wait-action between the guard evaluation of the if-statement
and transition u |. Indeed, fault bifu] stuck-at-0 (which is also only stimulating)
is testable since g is not in the production rules for u, and since there are two
wait-actions between the guard evaluation for the if-statement and g 7.

Keep interaction of state variables simple. There are several conditions
for a stimulating fault to be testable. It has to cause a premature firing in a
stable state, and the result has to be propagated to a primary output. If there
are no internal variables, then a premature firing in a controllable state is always
detected. With the introduction of state variables, the number of transient states
increases. In addition, there are now possible premature firings (namely, of the
state variables) that are not directly observed by the environment.

It is advantageous to keep the interconnection of state variables simple. For
instance, each state variable should be in the guard of few other state variables.
It is also advisable not to have circular dependencies among state variables (that
is, if u is input to the gate with output v, then v should not be input to the gate
with output «). Finally, a state variable should not have two or more transitions
between consecutive controllable states in a handshaking expansion.

Consider, for example, a different implementation of the buffer (example 2.2

of chapter 2). See figure 5.4. It has four internal variables, u, v, z, and y, and



107

ﬁ — i — -

O LO-

FIGURE 5.4. Implementation of buffer with two D-elements

handshaking expansion

[ [ 2T [z];roT;
reTiuT;[v]irol;
[=radiy 15Tyl u s [l 2 b [l v b [0l y 4 [yl Lo s
[=lil; u ;s [-ul; lo]

.

This circuit is really two D-elements concatenated. It is redundant in the sense
that there is an implementation of the handshaking expansion with just half the
number of gates. Since there is no redundant gate, and no redundant input, the
circuit itself is not redundant. |

Between the [—ri] action and the [~i] action there are two transitions of state
variable y. Hence y is only true in transient states. Now consider fault y|lo]

stuck-at-0. It is only stimulating, and causes a premature firing of loT only when
—-loANuAy

holds. This condition only holds in transient states, hence the fault is not testable.
In short, to design circuits with high fault coverage, there should be few transi-

tions of internal variables between consecutive controllable states. A state variable
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should have at most one transition between controllable states. The number of
inhibiting faults should be maximized, by having a variable and its negation in-
cluded in a pair of production rules by syntactic derivation or by strengthening.
And if, for a faulty circuit, two guards of an if-statement are evaluated to true,

the resulting actions should not cause instability.

7. Test Circuitry

The addition of control and observation points to a circuit requires more connec-
tions between the circuit and its environment. For a circuit that is implemented as
a chip, this means more pads. As most designs are pad-limited, it may be prudent
to reduce the number of pads that are needed for test points. This is done with
the addition of test circuitry.

The test circuitry itself should be fully testable for stuck-at faults. Moreover,
the size of the test circuitry should be small compared to the remainder of the
circuit, since it serves no purpose once the circuit has been tested, and since any
additional active area on a chip increases the probability of a fault. Adding test
circuitry degrades the performance of the original design. For an observation point
the test circuitry merely adds a fork to a wire, increasing the capacitive load on
that node. For a control point the value of the node set by the environment should
replace the value set by the remainder of the circuit. This requires the addition of
a stage of logic to the circuit, which degrades its performance.

The most common approach to the design of test circuitry is to string all control
and observation points together into a queue or a stack, so that values can be
read and written by the environment serially. The main advantages are, that the
number of pads required for such a scheme is minimal, and independent of the
number of test points, and that there are compact implementations for queue and

stack elements.
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The description of test points for delay-insensitive circuits in terms of control
and observation points is no different from the description for synchronous cir-
cuits. Consequently, any design for test circuitry for synchronous circuits may be
used also for delay-insensitive circuits. It is, perhaps, somewhat of a heresy to
suggest the use of these clocked implementations to test delay-insensitive circuits.
However, there are many compact and well-understood designs for clocked queue
stages for use as test circuitry (most are smaller than their delay-insensitive coun-
terparts) [25]. In addition, there is not a problem of clock skew. The clock that
controls the queue can be relatively slow.

I now describe a delay-insensitive implementation of a test queue element, as
well as some shortcuts to obtain a reasonably small design.

Consider a circuit C' that is a delay-insensitive implementation of program P.
A fault analysis yields a number of control and observation points. The problem
is to change the program and the circuit to incorporate these test points into a
queue. Circuit €' should not change beyond the addition of the test points.

The new circuit now has four distinct modes of operation:

¢ Regular operation. Circuit C is used without using the test points;

e Shifting in values. The environment shifts values into the queue, to be used
to set the control points;

o Test operation. The circuit operates using the values of the control points
that have been set by the environment. The resulting values are then read
from the observation points;

e Shifting out values. The environment shifts values out of the queue, that
have been read from the observation points.

The second and fourth modes of operation may overlap, as one can shift values

into and out of a queue simultaneously.

Let the queue have N stages, and assume that each test point is both a control
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FIGURE 5.5. Schematic of circuit with test queue

point and an observation point. The queue is connected to the environment with
channel Ly, with which values are entered into the queue, and with channel Ry_;,
with which values are taken from the queue. For each queue element there are two
connections to the original circuit, C. Channel E; (0 < 7 < N) is used to set a
control point with the value of the ith queue element, and channel D, (0<i<N)
1s used to take the value from an observation point. See figure 5.5.

A program for the complete circuit is

%[[ -test —» P||Q
| test —» “P,,"
]
As long as the circuit is in regular operation, it executes program P. The queue
may operate in parallel, as there is no connection between the two parts of the
circuit when test is false. In test operation, program P is executed, with the
provision that values are taken from the queue to the control points, and sent to

the queue from the observation points. Let z[i] (0 < 7 < N) be the value of the
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ith element of the queue. The program for the queue itself, Q, is

%[ 1:=N —1;
¥t > 0 — Lo?z[i];i := 1 — 1];
Eolz[0], Eqlz[1],... , Ey_qlz[N — 1];
Dy?2[0], D1%2[1],... ,Dy_172[N — 1];
1:=N—1;
[t > 0 — Ry_ylzfi];i =1 — 1]

]

The environment (including circuit C') of the queue has program

*[i < N — Lolz;i:= 0+ 1];

Eg?ctrl[0], Ex?ctrl[l],... , Ex_17ctri[N — 1];

(+)

Dylobs[0], Dilobs[1], ..., Dy_1lobs|N — 1];

1 :=0;

#[i < N — Ry_172;1 := 1+ 1]

l

where ctri[1] is the value of the ith control point, and obs[i] the value of the ith
observation point. The original circuit, C, operates in state ().

Next the queue is distributed over N separate processes. Each queue element
has a channel L to receive a value from its left neighbor, and a channel R to send
a value to its right neighbor. The left channel of the first element and the right
channel of the last are connected to the environment. Each element has channels

E and D that connect to the remainder of the circuit, as before. The jth queue
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element has program

[ 1:=7;
ki <N —1— L?z; Rlz;i:=1i+1
li=N-—1— L?; Elz; D?2; Rlz
J;
1:=0;
*[i < j — L?; Rlz;i =1+ 1]

.

The implementation of the L and R channels is standard: two wires for the
dual-rail encoded variable that is transmitted, and one acknowledgement wire.
The implementation of channels D and E, which provide the interface between
the original circuit and the queue, is more complicated.

Channel D takes the value of an observation point and sends it to the queue. The
queue may be able to acknowledge receipt of such a value, but there is nothing
in circuit C' that can process such an acknowledgement. Therefore there is no
acknowledgement for values transmitted on channel D. The value that is sent over
channel D tests whether there is a premature firing in circuit C as a result of a fault.
In case there is such a premature firing, the queue has to wait long enough before
it receives the value on channel D. This is inherently not delay-insensitive; it is not
possible to encapsulate such a transmission in a delay-insensitive communication
protocol. Therefore the value is not dual-rail encoded, and the queue can observe
directly the value of the observation point.

For channel E, which sends a value from the queue to a control point, there is
also no acknowledgement, as circuit C' does not generate such an acknowledgement.
Since the control point is a single wire, the value sent on channel E is also not
dual-rail encoded.

The handshaking expansion for the above program is now straightforward. The
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next problem is to find a reshuffling that will lead to a small queue element. The
largest part of the test circuitry will be the queue itself. It is important to minimize
this part of the design.

For the queue, I choose the implementation of chapter 3, which consists of two
C-elements and two OR-gates. Given this circuit for the one-bit buffer process, I
choose the following reshuffling of the handshaking expansion for the jth queue
process:

[ i:=7

#[i <N —1— [11—lol;[=ri];rl1;[=i1];lo|; [ri];rl]
12 = loT; [=ril; 215 [-i2]; o |; [ri]; 72|
I
ti=141

i=N-1— [I1VI2;[Il -el]l2— el
[d— loT; [=ri]; 115 [<IL A =I2);10 ) [ri]; 71 |
|=d — loT; [-ri]; r21; [~I1 A =I2]; Lo |; [ri]; 72|

]

x[{ < j — (11— lof; [=ri);r1 15 [SlL]);lo ) [ri]; 1 |
12 — loT; [=ril; r215 [-12]; Lo |5 [ri]; 2]
B
ti=1+1
]
In this handshaking expansion, signal e is the implementation of channel E from
the queue to a control point, and signal d is the implementation of channel I from
an observation point to the queue.

The main difficulty at this point is the implementation of 7. It is impractical to
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have a counter for each queue element. The only use of variable 7 is to indicate
whether 7 = N — 1 holds. Since this condition is true for each of the queue
elements at the same moment, I introduce a global signal, s, that indicates whether
t # N — 1. The program for the jth queue element is now simpler:
*[[ s — L?z;Rlz
| —s — L%z; Elz; D?z; Rlz
Il
7.1. Queue Element for an Observation Point. For an observation point
there is no communication on the F channel, only a communication on the D chan-
nel. A straightforward transformation of the above program into a handshaking
expansion yields:
*[[ s AL — lol;[~ri];r1 15 [=I1];l0 | [ri]; el ]
| s A2 — Lo [—ri];r2 75 [-I2]; Lo |; [ri]; 2]
| —sA(IVI2) —
[ d — lof;[-ril;rl ;[ A =I2)lo | [ri]; 71 ]
| —d — lol;[=ril;r27;[-I1 A =l2];lo |; [ri];r2
]
Il

With state variables similar to the ones for the one-bit buffer, the resulting cir-
cuit is a one-bit buffer for which the production rules for y1 and y2 have been
changed to include signals s and d. The disadvantage of this particular implemen-
tation is that it has an untestable stuck-at fault.

To obtain a fully testable queue element I restrict the specification of the queue.
With a queue element for an observation point, a value is taken from the circuit,
and sent — using the queue — to the environment. The original value of the queue

element is overwritten with the value of the observation point. I now require that



115

the original value of the queue element be identical to the value of the observation
point for the correct circuit. If the value of the observation point is expected to
be true (false), then a one (a zero) should be loaded by the environment into the
corresponding queue element. The queue element acts as a comparator.

In the handshaking expansion this requirement translates into an additional
wait-action. For the correct circuit this wait-action is superfluous, as the value of
the queue element is the same as the value of the observation point. For a faulty
circuit (where the observation point has the wrong value) I show that, because of
this wait-action, the fault is detected by the environment.

The handshaking expansion is

x[[ 11— lof; [=ri);r1 15 [-lL];lo s [ri]; [s Vs Ad];rl |
| 12 = loT;[~ri];r27; [12];lo L [ri]; [s V ns A d; 72 ]
Il

I introduce, as before, state variables y1, y2, and yo, yielding:
#f[[ 11— ylT;[ylfloT; [-ri]; 71107 [yo A =l
yl 15 [~ylllo Ly [rd]; [s V =s Ad]yrl ] yol; [—yol
| 12 — y275[y2l;loT; [=ri]; 215 y0T; [yo A I2];
y2|; [my2lslo ] [ri]; [s V =s A =d]; 72 |5 yo |5 [-yol
1l
Signal s is controlled by the environment. That means that now the environment

has to count to V — 1. Assuming that the environment fills the queue with a series
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of ones, the program for the environment is
[ 1:=0;sT;
¥[1 < N —1 = 11715 [lgo]; lo1 |; [~lgo]; i := i + 1]
Il 7; [ry—11];testT;
[ctrl[0) A ctrl[1] A ... A ctrl[N — 1]];
(+)
0bs[0] T, 0bs[1]T,... ,0bs[N — 1] T;
sl;sT;test|;
rn-1tT; [ry—11 Algol;
blliry_1l;[ry—11 A =lgo];
1= 0;
*0 <N =1 — ry 3075 [Fry—11]y 714 ) [ry—11]]
]
The remainder of the circuit, C, operates in state (%), following which the values
of the observation points are sent to the queue. In this case, all values are true
(‘di 7).

There is no acknowledgement signal for signal s in the handshaking expansion
of the queue element. It is possible to generate such an acknowledgement for each
queue element, and then to merge all acknowledgement signals into one global
acknowledgement signal, by means of a completion tree. This, however, is costly
in area. The size of the queue is linear in the number of test points, whereas the
size of a completion tree grows faster than linear.

In the following, I do not implement an acknowledgement for signal s. Instead,
by judiciously changing the value of s in states where no transition occurs if s is
either true or false, the size of the queue element circuit is significantly reduced.
Note that the function of signal s in the queue is to determine whether the value of

the previous queue element (encoded into {1 and [2) or the value of the observation
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point (d) has to be sent on to the next queue element. Since the circuit has to
wait long enough for the value of d to change (in case of a premature firing), 1
assume that within this period of time any transition of s has also be received by
the queue element.

Circuit C operates in test mode when the environment of the test queue is in

state (x). At that point, each queue element is in the following state:
IIA=I2A=loA—yl A =y2 Ayo ArL A =r2 A =i,

again assuming that the environment has sent a series of ones. This corresponds
in the handshaking expansion for the queue element to the [ri]-action in the first
(if a one was last received) or second (if a zero was last received) case of the if-
statement. Therefore, if the environment is in state (%), there is no transition until
71 holds, and the value of s can safely be changed (s]).

Likewise, when the environment changes s to true, there is no possible transition
in the queue element. I assume, of course, that the value of d does not change
between transitions s | and s7.

It is now a rather straightforward task to derive a production rule set for the
above handshaking expansion. Variables y1 and y2 are again C-elements.

NA=ri — yl7
SllArT — yl|

R2AN-ri — 9427
-2Are — 2.
Variables lo and yo are, again, OR gates.
rlvr2 — yof
Tl A2 — yol
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ylvy2 — lof
ylA-y2 — lo].

For r1 and r2 the production rules are somewhat complicated. Because of
the requirement that the value of the queue element be the same as the value
of the observation point, the extra wait-action in the handshaking expansion is
superfluous, and therefore no additional production rule is necessary. For the faulty
circuit, however, the value of the queue element and the value of the observation
point are different (due to a prematurely firing production rule), and this result
has to be propagated. In a departure from standard design methods, I add a third
production rule to the production rules for both 1 and 72 that fires only if the

value of the queue element is different from the value of the observation point.
sAYylA=-ri — rl17
sA-ylAri — rl]
“sAd — rl]

SANY2ZA-rt — r27
SA-Y2APT — r2]
“sAd — r2].

For a correct circuit, only the first two production rules of 71 and 2 will fire. If
the observation point has the wrong value, due to a prematurely firing production
rule in circuit C, then the third production rule fires. This third production rule
is, in a way, an explicit encoding of a premature firing. If the environment operates
the queue as before, then it will observe a premature firing of lyo 1 after transition
s T for the faulty circuit.

The full implementation of the queue element for an observation point is in

figure 5.6.



119

FIGURE 5.6. Circuit of a queue element for an observation point

7.2. Queue Element for a Control Point. What remains is the implemen-
tation of signal e, which sets a control point. When the environment is in state (%),
each queue element has to set the corresponding control point to the last received
value. That is, if /1 holds, e should be true, and if I2 holds, e should be false.

In circuit C, consider a variable, u say, that is a control point. There is a
duplicate of u, u' say, such that v’ is identical to u when the circuit is in regular
operation (that is, when —test holds), and identical to e when the circuit is in
test mode (when test holds). A queue element for a control point can be made by
taking the original one-bit queue element, and adding a gate that has output «’.

The production rules for u' are:

(

u—test — ']
—u A —test — u']

eANtest — o'

—eAtest — o' .

\

These production rules are akin to a double-throw switch in a synchronous circuit,
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Ot

test

FIGURE 5.7. Circuit of a queue element for a control point
for which the production rules would be:
(u A —test) V (e Atest) — ']
(—u V test) A (e A —test) — '] .

Like signal s, signal test is global. Its main function is to determine, for each
control point, when a value should be taken from the queue element. It is possi-
ble to have each queue element acknowledge the transitions of test, and then to
merge this set of acknowledgements into a single acknowledgement by means of a
completion tree. Again, such a completion tree grows faster than linear in the size
of the queue. I implement test without acknowledgements.

The circuit for the control point is in figure 5.7.
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8. Testability of the Test Circuitry

In order for the test circuitry to be useful at all, it has to be fully testable. In
this section I analyze the testability of the queue element.

The original one-bit buffer, with four C-elements and two OR-gates, is fully
testable for stuck-at faults by sending it a zero bit and a one bit. A queue of such
buffers is fully testable by sending to it, and receiving from it, an alternation of
zeros and ones. Consequently, most of the queue element for testing is testable
in the same way. For the two C-elements (with outputs y1 and y2), and the two
OR-gates (with outputs yo and lo) this is trivially true.

Next I show that a fault on signal d is testable. This also shows that a premature
firing on an observation point is detectable. Suppose d is stuck-at-0. Fill the queue
with values, such that 1 is true. During transition s | the queue element for the

observation point is in state
ILA=I2 AN=loAN -yl A=y2 Ayo Arl A =r2 A =ri.

At that point, production rule —s A =d — 71| fires . This results in transitions
yol,ylT, and loT. Then, after transition s, this transition lo] propagates to the
left neighbor of this queue element, and so forth, until the environment observes a
transition lpoT. This is a premature transition, as for the correct circuit looT only
takes place after the environment sets ry_1¢ to true.

By symmetry, fault d stuck-at-1 is also testable. Faults d[rl] stuck-at-0 and
d[r2] stuck-at-1 are testable by the same reasoning.

For fault d[r1] stuck-at-1, enter values into the queue such that r1 is true, and
bring circuit C in a state where observation point d is false (for instance, the

initial state). In the correct circuit there will be a transition lyo | directly after

!Note that the firing of =s A d — 72/ is vacuous.
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s T, whereas in the faulty circuit this does not occur. Similarly d[r2] stuck-at-0 is
testable.

If s is stuck-at-1, then the queue never observes a premature firing. Again enter
values into the queue such that 71 is true, and bring circuit C into a state where
d is false. The transition loo7 that occurs in the correct circuit after sT does not
occur in the faulty circuit. If s is stuck-at-0, then the guards for r1T and 727 are
both false, which is obviously detectable by using the queue.

For the queue element for the observation point, some faults on the inputs of

rl and 72 remain to be examined. The production rules for r1 are

SAylA—-re — r17
sA-ylAre — rl]
“sAd — rl].
I have shown that faults d[r1] stuck-at-0 and stuck-at-1 are both testable, as are
faults s[ro] stuck-at-0 and stuck-at-1. If there is a stuck-at fault on yl[rl] or ri[rl],
then either 17 or r1] never fires. This is detectable by entering and retrieving a
one into and out of this queue element.
Any stuck-at fault on the inputs of 72 is testable in a similar manner.
Finally, I consider faults on the gate with output «’, for the control point. The

production rules are:

( u A\ -test — o'l
J u A -test — o]
eANtest — o7

—eAtest — u'].

\

If u is stuck-at-0 or stuck-at-1, then that fault is already testable, possibly with
another test point. This gate does not alter the testability of u, and any test for

u can also be used for /.
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If test is stuck-at-0, then «’ always has the same value as u, and it is not possible
to set the value of u’ with the queue element. One way to test this fault is to use
the circuit in test mode, with e false. Then in the faulty circuit a transition ' T
in the handshaking expansion occurs, but in the correct circuit this transition is
inhibited. Therefore the fault causes a premature firing of u’ 1. By continuing to
execute the handshaking expansion, the fault is detected.

If testis stuck-at-1, then the converse holds. Use the circuit in regular operation,
and let e be false. Then the faulty circuit has v’ false invariantly. Therefore v’
is inhibited for the faulty circuit, and this causes the circuit to halt.

Testing faults on e is somewhat more complicated. In circuit C , fault u stuck-
at-0 is inhibiting. Note that if a string of ones, or an alternation of zeros and ones,
is sent to and received from the queue, then signal e will alternate between true
and false.

Fault u stuck-at-0 in circuit C' is inhibiting, therefore there is a state (g, say) in
the handshaking expansion where this fault causes an inhibited firing. For fault
e stuck-at-0, fill the queue such that e is false, and operate circuit C (which has
no fault) until it reaches the last controllable state before state q. Set test to
true, and operate circuit C' until it reaches state g. Then use the queue such
that there is a transition e 1. For circuit C' this transition eT causes a transition
u'T, and the circuit operates as before. If e is stuck-at-0, however, there will not
be transitions e T and v’ 1, causing the circuit to halt. Fault e stuck-at-0 is then
testable. Similarly for fault e stuck-at-1.

I have now shown that all faults in the test circuitry are testable. The test queue
also allows the environment to test all previously untestable faults in the original

circuit (C'). The resulting circuit is therefore fully testable for stuck-at faults.
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CHAPTER 6
Test Generation and Other Topics

There is some feeling that the prospects of LSI are limited. When
thousands of circuits are packed onto a chip, there is a tendency for
chip size to increase and for yield problems to increase accordingly.

— Ernest Braun and Stuart MacDonald, Revolution in Miniature

1. Introduction

If each stuck-at fault in a circuit is testable, then it is possible to test the circuit
by concatenating the tests for each individual fault. This obviously results in a
long test. To find the smallest test that will detect all faults is an NP-complete
problem. I focus on ways to find a reasonably small test sequence that detects all
faults. This process is guided by the handshaking expansion of which the circuit is
an implementation. That this is possible is a major advantage of testing circuits
that are synthesized from high-level programs.

I'also investigate the fault location problem for the stuck-at fault model. Finally,
I discuss the applicability of fault detection methods for stuck-at faults in delay-
insensitive circuits to a more detailed fault model, one that considers stuck-open

and stuck-on faults for transistors.
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2. Heuristics for Test Generation

In chapter 3 I have explained how to derive a test vector for a particular stuck-at
fault in a delay-insensitive circuit. The goal of testing is usually not to test for a
particular fault, but to test for all possible faults in the circuit at once. Finding
the shortest test that detects all stuck-at faults in a circuit is an NP-complete
problem. In this section I give some heuristics that yield reasonably minimal test
sequences.

The method in this section is suited for “control” type circuits. These are
circuits for programs with only synchronization channels, and channels with few
encoded bits. Of course, the distinction between “control” circuits and “datapath”
circuits (with wide channels and large blocks of combinational logic) is somewhat
arbitrary.

Most stuck-at faults in delay-insensitive circuits are inhibiting faults. Many
inhibiting faults are testable simply by executing the program that the circuit
implements. In the presence of such a fault, the circuit will halt. It is easy to
derive a test from the handshaking expansion. For a program, P, that is an
infinite repetition:

P = %[9]

the test should be such that-the circuit executes program part S at least once.
If S contains an if-statement, then each alternative of the if-statement should be
executed at least once. For instance, the one-bit queue element (chapter 3) has
handshaking expansion

([ 1L — doT[=ril;rl 13 [-i1]5 o | [rd); 1 |

| 12— ot [=rilyr21;[~i2); o ); [ri]; 72|
1l

The if-statement has two branches. The first is taken when /1 holds, the test
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sequence generated from the handshaking expansion is:
1175 [lo Ar1];11 |5 [-lo]; ri 1; [
The other branch is taken if [2 holds. A test sequence, from the initial state, is:
127;[lo Ar2];12 |; [-lo]; ri 15 [-r2].

The circuit implementing this handshaking expansion has 42 different stuck-
at faults. The first test sequence detects 31 faults (74 percent), and the second
sequence the remaining eleven faults. In this example, the test derived from the
handshaking expansion detects all faults. In general, there remain undetected
faults after this step.

There is a test for each fault. The problem is to find a minimal number of tests
that detect all remaining faults. If, for two different faults, the test that detects
the one fault is a prefix of the test to detect the other, then the longer test will
detect both faults. The two tests are compatible.

The test generation problem can then be transformed into a graph problem.
The nodes of the graph are the faults in the circuit, and there is a vertex between
nodes if their tests are compatible. Finding a minimal set of test vectors for the
circuit is equivalent to finding a smallest clique cover in the graph. The clique
cover problem is, of course, NP-complete [28].

Solving such a clique cover problem does not necessarily yield the smallest test
sequence; there may be more than one test that detects a certain fault. A reshuf-
fling of the actions in a test for a fault is often also a test for the same fault.
Assume, for now, that there is no arbitration in the circuit. Then the order in
which the environment changes the primary inputs to the circuit does not alter
the final state of the circuit, as long as the handshaking protocol is obeyed. In
the queue circuit above, for instance, there is no difference in the final state of the

circuit whether 74T takes place before or after /1 ]. In the case of a test for a fault,
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the actions of the test may be reshuffled as long as for the reshuffled sequence the
fault does not cause a premature firing in a transient state.

Two faults are then compatible if a test for one fault can be reshuffled into a
test for both faults. It is, alas, not true any more in general that, for a set of faults
that are pairwise compatible, there is a single test sequence for all faults in the
set.

The following heuristics seem to work well in finding a minimal test set.

Partition the tests according to the sequence of states in the handshaking
expansion that each test causes. This is only useful for a handshaking expansion
with one or more if-statements. If, for two tests, different branches of an if-
statement are taken, then the two tests are not compatible.

Sort the tests in a set of the partition by length of the test sequence. Consider
the longest test, and find the next longest compatible test. Continue until there
are no more compatible tests; repeat the process with the remaining tests.

I demonstrate this with the faults in the queue circuit. In chapter 3 I derived a

test for each individual stuck-at fault. This resulted in six different test sequences:

117;]lo A rl]
I17;[lo A el 11 |5 [—lo]

175 [lo Ar1]; 11 |5 [=lo]; 74 T[]
127;[lo A r2]

127;[lo A r2);12 | [-lo]

1275 [lo A r2];12 | [-lo]; i 15 [—rd].

Since the handshaking expansion has one if-statement with two cases, the tests
are partitioned into two sets; the first three test sequences correspond to the first

case of the if-statement, the second three to the second. Next, take the longest
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sequence in the first set,
1175 [lo A r1]; 11 ) [lo); ri 15 [—rd],

and check if the actions can be reshuffled such that the next-longest sequence is
a prefix of it. In this case, obviously, no reshuffling needs to be done, either for
the second sequence or for the shortest one. All faults in the queue element are
therefore testable with the following two test sequences:

1175 [lo Ar1]; 11 |; [=lo]; 7i T; [-d]

127;[lo A r2];12 |; [-lo]; 73 T; [-rd].

Deriving a test sequence in this manner, the circuit has to be reinitialized be-
tween the different test sequences. In this case, however, the two sequences can
be concatenated; faults that are detected in the second sequence are also detected
if the first sequence is prepended.

The derivation above to find a test to test all faults in the queue process is
typical for other circuits. The most naive way to derive a test, namely executing
the handshaking expansion as it is written, yields a high fault coverage. This is
because the majority of faults is inhibiting. In addition, an inhibiting fault that is
also stimulating will only cause a premature firing under specific conditions. For
most such faults, these conditions do not occur during this simple test.

The difficult part of the test generation process is to find a small test sequence
for the remaining faults, most of which are only stimulating. This sequence may be
as long as, or longer than, the sequence that tests all other faults. It has, of course,
been noted before, that to alter a test with high fault coverage to 100 percent fault
coverage may require much computation, and may yield long tests [3].

I have analyzed the control part of the asynchronous microprocessor [51], using
the methods described above. I derived a test from the handshaking expansion for

each individual process, and combined these tests to form a test for the complete
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circuit. These results were verified with the COSMOS switch-level simulator with
fault model. For each process I divide the faults into inhibiting faults, faults that

are stimulating and not inhibiting, and untestable faults.

process | inhibiting | stimulating not | total | instructions

faults faults | testable | faults in test
FETCH 78 20 2| 100 5
PC 87 13 0 100 6
EXEC 262 29 1] 292 12
ALU 92 10 0 102 4
Total 519 72 3| 5% 27

To test the untestable faults, three test points are necessary. I have implemented
a test queue for these test points. The size of the test queue is 146 transistors;
the total number of transistors in the circuit is 1290. Since there are so few test
points in this circuit, it would have been more economical to connect each test
point directly to a pad, and not implement a test queue.

The total number of instructions to test the control circuit is the sum of the
number of instructions for each process. It is possible that there is a smaller test,
if the circuit is analyzed in its entirety. The number of actions per instruction
(that is, changing the value of a primary input) is 13 for jump and branch, 17 for
load and store, 23 for load and store offset and for load address and store program

counter, and 27 for an ALU instruction.

3. Fault Location

Testing theories include fault detection and fault location. The tests in the
previous section apply only to the fault detection problem. Because of the large
number of equivalent faults, they only give a rough idea of the location of a par-

ticular fault.
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To locate a fault, the tests have to be refined, and test points have to be added
to the circuit. It is always possible to locate every stuck-at fault by adding enough
test points to the circuit. The proof is the same as the proof that each fault
is testable. But whereas for fault detection few test points are needed for most
circuits, for fault location the large number of test points needed is prohibitively
expensive. I explain this using a small circuit, the D-element.

The D-element has handshaking expansion, including state variable u,
«[[li]; ro 15 [ri]; u Tl [u]; ro |; [—rd]; lo 1 [2l]; w |5 [-ul; Lo ]

The production-rule set is
It AN ri — ul

=le A ort — ul

It N —u — rof

-li V. u — rol

-7t A u — lof
re V. —u — lo].

There are two primary inputs, two primary outputs, one state variable, and
three forks in the circuit. Hence there are eleven fault locations, and twenty-two
possible stuck-at faults. Each fault induces a faulty circuit, but these twenty-two
circuits are not all distinct.

Consider, for example, the case where input 7 to the gate with output u is
stuck-at-0. As a result of this fault, state variable v will be false invariantly.

Therefore lo is always false, and ro has the same value as li. The production rules

for this circuit are
li — rol

-l — 7“01.
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The fault is detected when testing the circuit, since lo does not have any up-
transition, and since 7o has a transition whenever l7 does.

Faults ri stuck-at-0, ri[u] stuck-at-0, and v stuck-at-0 reduce the D-element to
the same circuit. Without any test points, these four faults are equivalent for any
test.

Even with test points, it is not possible to distinguish between a stuck-at-0 fault
on an input of a C-element and a stuck-at-0 fault on the output of a C-element.
The difference between ri stuck-at-0 and the other faults can be tested if u is
added as a control point. In that case, the AND gate with output /o reduces to a
wire with input u for fault 7 stuck-at-0, but remains the same for the other three
faults.

Another example of equivalent faults is 7o stuck-at-0, li[ro] stuck-at-0, and u[ro]
stuck-at-1. For these faults ro is false, and the D-element reduces to

li A 7 — uf

=l A Art o — ul

-ri A u — loT
re V. —u — lo|.

In order to be able to distinguish between these three faults, v again has to be
made into a control point. The result is that both inputs of this AND gate can be
set independently, so that the gate can be fully tested.

In this small example, stuck-at-0 faults on inputs and outputs of the C-element
are indistinguishable, even with test points, and some faults on the AND gates
are distinguishable only if these gates can be set and observed separately from the
remainder of the circuit. The only variable that the environment does not control
is the state variable, u. For fault location it is necessary that « be a control point.

These observations generalize to larger circuits. Because of the sequential nature
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of delay-insensitive circuits, there are many equivalent faults. These faults can,
in general, only be located if each gate in the circuit can be set and observed
independently of the other gates. This requires a test point for each internal
variable of the circuit.

The test points cannot be strung together into a test queue. Fault location
in the test queue requires extra test points, which in turn requires test points,
etc. The only alternative is to have a pad per test point in the circuit. Even for
medium-sized circuits, this is prohibitively expensive in terms of the number of
pads needed.

In case the extra expense for fault location is considered justified, there remains
a fundamental impediment to fault location. These tests can be used to locate a
stuck-at fault. Actual faults in a circuit are generally not stuck-at faults. Even
if one can pinpoint the location of the stuck-at fault, that may not be where the
actual fault has occurred. Moreover, to know the location of a fault is of limited
importance. Most faults on a chip cannot be corrected.

In conclusion, to solve the fault location problem requires many additional test
points, and these test points cannot be part of a queue design. The usefulness
of stuck-at fault location is limited. Moreover, tests for fault detection are useful
for a limited form of fault location. Depending on at what point in the test a
fault is observed, it is possible to locate a region of the circuit where the fault has

occurred.

4. Stuck-open and Stuck-on Faults

So far, I have focused on the stuck-at model as a fault model to derive tests
for delay-insensitive circuits. The fault model is not accurate in describing actual
faults in a circuit, however.

A refinement of the stuck-at fault model is one that has stuck-open and stuck-on
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FIGURE 6.1. CMOS implementation of a NAND gate

faults. For a stuck-open fault, the source and drain of the transistor are perma-
nently disconnected; for a stuck-on fault, the source and drain are permanently
connected. This fault model is technology-dependent. It is possible, to some ex-
tent, to analyze these faults using the production rule set of the circuit. I discuss
the application of this fault model for CMOS implementations, where there is a
strong relation between a pair of production rules for a gate, and the transistor-

implementation of that gate.

4.1. Stuck-open Faults. Consider a gate, with inputs a and b, and output 2.

The production rules for this gate are

—a V =b — 2]
a AN b — z].
The CMOS implementation of this gate has two p-transistors in parallel, connected
to two n-transistors in series (see figure 6.1).
If there is an stuck-open fault on the p-transistor with gate a, then the path to
z from power through this transistor is cut. Such a fault is equivalent to changing

the production rules to

b — z7

a AN b — z|.
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This is not a fault a stuck-at-1; the fault is only inhibiting, not stimulating. If —a
is not a redundant term, then the fault causes an inhibited firing, and the circuit
halts.

Likewise, if the n-transistor with gate a is stuck open, then the guard for z | is
false. A test that detects fault z stuck-at-1 will also detect this stuck-open fault.

There is one complication that cannot be captured in production-rule form. A
stuck-open fault transforms the NAND-gate into a state-holding element. In other
words, there is not always a path to output z from either power or ground. If,
during a test, the circuit is in a state where signal z is not driven, then the test
should be executed fast enough that there is no significant decay of signal z.

For stuck-open faults on combinational gates with a like implementation the
analysis is similar. A stuck-open fault is equivalent to transforming a term in a
production rule guard to false. It is testable if that term is not redundant. The
fault changes the gate into a dynamic state-holding gate, which may result in an
intermediate voltage on the output.

There are several different CMOS implementations for state-holding elements.
The production rules of a gate may not reflect the actual implementation of that

gate. Consider a C-element with inputs a and b and output z:

a AN b — 27

-a A b — z|.
A direct implementation is a series of two p-transistors connected to a series of
two n-transistors, followed by an inverter, as in figure 6.2. If any one of these six
transistors has a stuck-open fault, then either all transitions z | or all transitions

z | are inhibited. Such faults are testable as before.
This implementation of the C-element is dynamic. In general more transistors
are added to the gate, to insure that the output is always driven. Since these added

transistors are not necessary for the functionality of the circuit, any stuck-open
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FIGURE 6.2. Dynamic CMOS implementation of a C-element

fault on these transistors is not testable. A common addition is a weak transistor
to ‘static-ize’ the dynamic nodes [47], as in figure 6.3. The signal generated by the
weak inverter is weaker than any other in the gate, so that the gate can switch,
and the output is always driven.

The analysis of an stuck-open fault on one of the original six transistors is the
same as before. Since the weak inverter is added, however, there is no danger that
the output may have an intermediate value at any time. If there is a stuck-open
fault on one of the two transistors of the weak inverter, then the output is either
not always strongly driven to power, or not always strongly driven to ground. The
only way to test for such a fault is to wait for the output to have an intermediate
value. How to test for such an occurrence is beyond the scope of this thesis. The
stuck-open fault is untestable.

In conclusion, most stuck-open faults in a CMOS implementation of a delay-
insensitive circuit correspond to a literal in a guard of a production rule that
evaluates to false. The fault is inhibiting, but not stimulating; it is testable if
that literal is not redundant in the guard. Not testable are stuck-open faults on

the part of a state-holding element that makes the output of the gate static.
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FIGURE 6.3. CMOS implementation of a C-element, with weak inverter

For synchronous combinational logic circuits, the analysis of a stuck-open fault
is complicated, as such a fault transforms a combinational circuit into a sequential
one. Delay-insensitive circuits, on the contrary, are already sequential, and these
inhibiting faults are simple to analyze, as it is easy to detect that a circuit has

halted.

4.2. Stuck-on Faults. If most stuck-open faults are inhibiting but not stim-
ulating, it should not come as a surprise that most stuck-on faults are stimulating
but not inhibiting. These stimulating faults may cause interference in a delay-

insensitive circuit, which is difficult to analyze.

4.2.1. Combinational Gates
Consider again the NAND gate of figure 6.1. Let the p-transistor with gate a

have a stuck-on fault. Then the output z is permanently connected to power. The
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production rules for this faulty gate are

true — 27

aANb — z]|.
To test the fault either a or b must be true. Then both guards of the production
rules evaluate to true; there is interference. The fault is detected if one of the
gates, to which z is connected, interprets the resulting signal z as true instead
of false, and if this incorrect value is propagated to a primary output. With my
definition of testability, the fault is not testable.

The same is true for all stuck-on faults in combinational gates. The stuck-on
fault can only be tested in a state where the faulty transistor should not conduct,
but does. If the correct circuit in that state has the output of this gate connected
to ground, then for the faulty circuit the output is also connected to power, and
vice versa. Hence a stuck-on fault in a combinational gate can only be tested by

having interference.

4.2.2. State-holding Elements

For most state-holding elements, interference does not occur in any dynamic
implementation. Consider again the dynamic implementation of the C-element,
in figure 6.2. Let the p-transistor with gate a have a stuck-on fault. Then the
production rules of the gate become

b — z7
—aV-b — z|.

These are the production rules for an asymmetric C-element. Testing this fault is
equivalent to testing fault a stuck-at-0 as a stimulating fault. The stuck-on fault

is testable if z 1 fires prematurely, that is, in a state where
—z AaAb,

and if this premature firing can be propagated to a primary output.
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The analysis for the n-transistor with gate a is similar. It can be tested the
same way that fault a stuck-at-0 is tested as a stimulating fault.

The remaining two transistors of the dynamic implementation of the C-element
form an inverter stage. Since an inverter is a combinational gate, any stuck-on
fault on these transistors can only be tested in a state where there is interference.
These faults are not testable with the current definitions of testability. The same
is true, a fortiori, for stuck-on faults on the additional two transistors of the static
implementation of the C-element.

In conclusion, most stuck-on faults are stimulating faults. With the current
definition of testability, no stuck-on fault in a combinational gate is testable. Some
stuck-on faults on state-holding elements are testable if the corresponding stuck-at

fault is testable as a stimulating fault.
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CHAPTER 7

Conclusions

I have developed a method to test faults in a delay-insensitive circuit, using the
single stuck-at fault model. A fault can be inhibiting, when it strengthens the
guard of a production rule, or stimulating, when it weakens the guard of a produc-
tion rule. A fault on a primary input, or on the output of a gate is always both
inhibiting and stimulating.

I have proven that for each inhibiting fault, there is a state in the high-level
specification of the circuit where the fault causes an inhibited firing, and that for
each stimulating fault, there is a state where the fault causes a premature firing.
A fault that is only inhibiting is always testable, since the state with the inhibited
firing is reachable from the initial state; the circuit subsequently halts. For a fault
that is also stimulating, if a state with an inhibited firing is reachable before a
state with a premature firing, then the fault is detectable, since the circuit halts
during a test. Most faults in a circuit are testable this way. Otherwise, the fault
causes a premature firing. If this firing is stable, and results in a premature firing
of a primary output, or in the circuit halting, then the fault is testable.

There are untestable faults. Such faults can be made testable with the addition
of test points. If a premature firing is unstable, then a control point is needed; if

the premature firing is not propagated to a primary output, then an observation
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point is needed. These test points can be strung together in a test queue. I
have shown a reasonably small test queue that is almost delay-insensitive. It is
inherently impossible to have a test queue that is strictly delay-insensitive. Since
the formulation in terms of control and observation points is the same as for
synchronous circuits, any queue used in synchronous systems can also be used
here.

For delay-insensitive circuits that implement combinational functions, I reduce
the problem of finding test vectors to the problem of finding test vectors for a
monotone synchronous combinational logic circuit. I have also shown that any
algebraic method to find test vectors for synchronous combinational logic can be
extended to cover these delay-insensitive circuits.

The problem of finding the smallest test sequence to test all stuck-at faults in
a circuit is NP-complete. I have shown a few heuristics that yield reasonably
small test sequences. In order to do this, I use the high-level specification of
the circuit. This significantly reduces the search space. Many test methods use
a bottom-up approach, where a gate in a circuit is set so that the fault causes
a malfunctioning, which is then propagated forward to the primary outputs, and
backward to the primary inputs to get a test vector. For any VLSI delay-insensitive
circuit, this approach is prohibitively expensive. Unlike synchronous circuits, the
interconnection of gates in a delay-insensitive circuit is highly complex, and a
large number of gates is state-holding. I believe that any efficient method to test
delay-insensitive circuits must rely heavily on the high-level specification and on
the synthesis method to obtain good tests.

I have applied the testing theory to the control part of the asynchronous mi-
croprocessor. Of 594 single stuck-at faults in the circuit, 3 are not testable. The
test queue that makes these faults testable takes up about 11 percent of the total

number of transistors in the circuit. A test that detects all faults is 27 micropro-
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cessor instructions long. This test was derived from the high-level specification; it
does not seem worthwhile to attempt to reduce the size of the test.

During the synthesis of a circuit, testability should be taken into account. In
particular, the number of inhibiting faults should be maximized. If a variable, s
say, is an input of a gate, then both s and —s should be included in the production
rules of the gate, by either syntactic derivation or by strengthening. Also, most
untestable faults tend to occur for state variables that have transitions concurrently
with transitions of primary outputs. One can either add a test point for such
faults, or alter the specification, such that each state variable transition is directly
acknowledged with a transition of a primary output. The latter solution is usually
preferred, both in terms of transistor count and of performance.

Finally, the stuck-at fault model is a good fault model to analyze testability
of these synthesized delay-insensitive circuits, since the analysis can be done at
the gate level. Future work includes refining this fault model, to a technology-
dependent fault model, perhaps tailored specifically to the analysis of delay-
insensitive circuits. A transistor-based fault model with stuck-open and stuck-on
faults is promising, since most faults in this fault model can still be described with
production rules. Application of this fault model requires that the definition of
testability be refined, too; some faults introduce temporary and permanent shorts,
as well as nodes that are not driven for an arbitrary time. Application of a refined
fault model will not significantly alter the tests I have derived in this thesis; rather,

it will cause more defects to be detected.
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APPENDIX A
Algorithms

This appendix is an overview of various algorithms to test delay-insensitive circuits.

1. Finding a Test Vector for a Fault

Given a handshaking expansion and a production rule set, find a test vector that
will test a given fault in the circuit.
Assume, for now, that the fault is on the input of a gate. Call the input s, the
gate G, and its output ¢. Assume the production rules for gate G are
sANBy V By — t1
~sACy V O — tl,
where B; and C; are arbitrary boolean expressions not including s or —s. Consider
fault s stuck-at-1. The other cases are similar.
(1) Find the conditions for s to cause an inhibited firing (INH) and a premature
firing (PRE):
INH=-sACyAN-C{ AL
PRE = -s A By A —Bj A .
For a fault that is only inhibiting, PRE = false, and for a fault that is only
stimulating, INH = false.
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(3)
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For each state of the handshaking expansion, determine the value of the
inputs and the output of gate G. In each state, the value of the primary out-
puts and the internal variables is known; the value of some primary inputs
may not be known (call this value “X” or don’t-care). Since the environ-
ment controls the primary inputs, either true or false may be substituted
for any “X” value.
To test the fault as an inhibiting fault, find a state in the handshaking
expansion where INH holds, reachable from the initial state without an
intermediate state where PRE holds. The state where INH holds must be
a state where ¢ | fires. A value “X” in such a state may be either true or
false, whichever satisfies INH.
Then check if this state is reachable through a series of states for which
—PRE holds (from the handshaking expansion). If there exists such a series
of states, then the fault is testable as an inhibiting fault; it causes the circuit
to halt eventually. The test vector is implied by the sequence of states to
reach the inhibiting state.
To test the fault as a stimulating fault, find a state in the handshaking
expansion where PRE holds, such that the premature firing is stable, and is
propagated to a primary output. To find a state where PRE holds, we only
have to consider states in the handshaking expansion where a variable in
By or B fires; other states, including states where s or ¢ fire, are irrelevant.
If necessary, substitute either true or false for any value “X”.
Next, similar to the previous case, check if there is a sequence of states
from the initial state to the state where PRE holds, such that =PRE holds
in all intermediate states. This is the initial part of the test vector.
Check if the premature firing of ¢ | is stable. If not, find another state where
PRE holds. If it is controllable, and ¢ is not a primary output, then the
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premature firing has to be propagated. The problem, then, is to determine
if fault ¢ stuck-at-1 is testable, starting in this state (rather than the initial
state), with the condition that there is no transition ¢ |. This condition is
a simple addition to conditions PRE and INH for fault ¢ stuck-at-1. Apply
the algorithm again for this fault with these new conditions.

(5) If there is no state where the fault is detected, then a test point is necessary.

If the fault is on the output of a gate, and this signal forks to different gates, then
conditions PRE and INH are the disjunction of these conditions for the different
branches. Let t fork to signals ¢’ and ¢”, and let PRE(q,) and INH(q,i) be the
condition for a premature firing and an inhibited firing, respectively, due to fault
g stuck-at-i. Then

PRE(t,i) = PRE(t,i)V PRE(t",7)

INH(t,i) = INH(t,i)VINH({t",1)

(t=0,1).
The application of the algorithm is the same as before.

The number of cases to be analyzed can be reduced significantly by using the

testability theorems for inhibiting faults. For instance, if ¢ is a primary input or
the output of a gate, then fault ¢ stuck-at-0 inhibits the first transition ¢ T in the

handshaking expansion.

2. Finding Test Points

Gien a fault that is untestable, find appropriate test points

Consider a circuit with signal s, and let fault s stuck-at-i be untestable. Then
there is a state in the handshaking expansion where the fault may cause a pre-
mature firing of another variable, say ¢ 1. There are two possible reasons that the

fault is untestable.
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(1) The firing of ¢ 7 is unstable. Then there are one or more other inputs of
the gate with output ¢ that may change before transition ¢ is completed,
and that falsify the guard for ¢ 7. These other inputs have to be control
points, so that the environment can insure that the guard for ¢ | remains
true until the transition is complete; the firing then is stable.

(2) The firing of ¢ 1 is stable, but it does not result in a halting circuit or in a
series of transitions that result in a premature firing of a primary output.
Then an observation point is needed. Variable ¢ can be an observation
point, or any variable that has a stable premature firing as a result of the

premature firing of ¢ 7.

3. Finding a Test to Detect all Faults

Given a list of faults, and o test sequence for each individual fault, find a rea-
sonably small test sequence to test all faults.

Most stuck-at faults in a circuit are inhibiting faults. Most inhibiting faults are
testable by simply raising and lowering all signals in the circuit. This is done by
executing all of the handshaking expansion. Such a test is derived as follows.

(1) In the handshaking expansion, replace each transition ¢ T with [t] and ¢ |
with [—t], for primary outputs ¢, and replace each [s] with s and [—s] with
s | for primary inputs s.

(2) If the handshaking expansion is a straight-line program, the test consists of
executing this sequence once; if there is an if-statement in the handshaking
expansion, then the test is such that for each if-statement each case is
executed at least once.

Now simulate all faults with this test, and list the faults that it does not detect.

Then generate a test for the remaining faults as follows.

(1) For a given fault, there is a test sequence that detects it. This test sequence
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implies a state in the handshaking expansion where the fault is detected. If
there is an if-statement in the handshaking expansion, partition the faults
according to the state where the fault is detected. Two faults that are
detected in different parts of an if-statement are not compatible.

(2) For each set in the partition, order the test sequences by length, from
longest to smallest.

(3) For a given set in the partition, pick the fault with the longest test sequence.
Determine if there is a reshuffling of this test sequence, such that the next-
longest test sequence is a prefix of it. If so, check if this reshuffled sequence
still tests the first fault. If so, the reshuffled sequence tests both faults.
Continue the process for the other faults.

(4) In this manner, each partition yields one or more testing sequences. Then
concatenate the sequences (if necessary resetting the circuit between them),

to yield a test that detects all faults.

An alternative method to derive a small test sequence is to first find a test sequence
for all faults that are stimulating and not inhibiting. Such a test sequence will,
in all likelihood, also detect most inhibiting faults. Then find a test sequence for

remaining inhibiting faults, if any.
4. Calculating Fault Coverage for a Test

Given a test sequence and a production rule set, find the fault coverage.

(1) Characterize each state of the test as a boolean condition. There is no
“X” or don’t-care value, since the environment controls all transitions on
primary inputs, as specified by the test.

(2) For each fault compute conditions /NH and PRE.

(3) Simulate the test for the correct circuit

(4) For each action in the test, and for each undetected fault, check if condition
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INH holds. If so, the fault causes the circuit to halt, and this is detected
when a subsequent transition of a primary output does not take place. Let
the action in the test be on signal ¢. Then condition INH only needs to be
checked for faults on inputs to the gate with output <.

(5) For each action in the test, and for each undetected fault, check if condition
PRE holds. After the initialization, condition PRFE must be checked for
each fault in the circuit; thereafter, a transition of variable ¢ can only make
condition PRE true for faults on gates that have ¢ as an input.

(6) If there is a fault for which PRE holds, check if the premature firing is
stable. Check if the premature firing is propagated to a primary output,
or if it causes another firing to be inhibited. If not, check if the premature
firing is detected as a result of a subsequent action of the test. There are
three possibilities:

(a) If the premature firing is stable, and causes a premature firing of a
primary output, or an inhibited firing of another variable, then the
test detects the fault, and it need not be considered again for this test.

(b) If the premature firing is unstable, or if it results in an unstable firing,
then the test does not detect the fault; the fault need not be considered
again for this test.

(c) If the premature firing is guaranteed to return the circuit to a legal
state, then the fault is not now detected. It can be detected subse-

quently with the same test.

It is sufficient to check conditions PRE and INH only for faults on inputs of
gates. Let signal ¢ fork to ¢’ and t". If INH(t',%) (INH(t",1)) holds before either
PRE(t',i) or PRE(t",1), then fault ¢ stuck-at-i is detected when ¢ stuck-at-i (t"
stuck-at-i) is detected. Otherwise, only if PRE(#,i) or PRE(t",7) holds at some

point during the test can there be a premature firing of ¢. The analysis for the
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premature firing of ¢ is similar to the analysis for the premature firing of ¢’ or ¢”.

It is not necessarily true that the result of these premature firings is the same.
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APPENDIX B

Principles of Circuit Testing

1. Introduction

This chapter is a short overview of concepts used in the theory of testing cir-
cuits. Traditional theories focus mainly on testing synchronous circuits, hence
most circuits in this chapter are synchronous. The definitions are such that they
can be applied both to synchronous and to delay-insensitive circuits. The defini-
tions and methods are consistent with the ones described by Abramovici, Breuer,
and Friedman [3], and by Fujiwara [25], in two excellent textbooks.

The structure of this chapter is as follows. I give an overview of different types
of fault modeling, and I introduce the single stuck-at fault model as the fault model
most suited to testing delay-insensitive circuits. Following is a discussion on the
merits and shortcomings of that model.

A fault in a circuit is detected by means of applying a test to the circuit. I
define what a test is, and when a fault is detected by a test, as well as what
faults I consider testable. An important result for combinational circuits is that
any single stuck-at fault is testable if and only if the circuit is non-redundant.
I define redundancy, and I describe several methods to test combinational logic,
such as the Boolean Difference method and the D-Algorithm. Finally, I give a

short overview of how sequential synchronous circuits can be tested, and how
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such circuits are altered to facilitate testing (design for testability). This involves
adding test circuitry to transform a sequential circuit into a combinational one,

and to partition a combinational circuit into smaller circuits.

2. Levels of Fault Modeling

There are several levels at which faults in a circuit can be modeled. A fault is
a physical defect in a component [25]. This definition excludes testing to debug
a design. If a design error is equivalent to a fault in an otherwise correct circuit,
then the error may be tested using the fault theory. In general, it is difficult to
model an arbitrary design error [39)].

Testing can be done at the circuit level, at the board level, or at the system level.
Other than issues of testing complexity (hence testing time), there is no difference
for the testing theory between these levels. For the sake of simplicity, I assume
that the unit under test is a single chip that is connected to its environment via
its pads (external testing).

A fault is either a parametric fault or a logic fault. A parametric fault occurs
when a value of a circuit parameter (for instance, a capacitance) is outside of the
specification. A logic fault is a fault that alters the functionality of the circuit. A
parametric fault is typically detected, with a small test structure, by the manu-
facturer [1, 22]. Since a parametric fault typically does not alter the functionality
of a circuit, a delay-insensitive circuit with only a parametric fault will typically
still operate correctly. I therefore consider only logic faults.

Another distinction is between permanent and intermittent (or transient) faults.
It is rather difficult to detect an intermittent fault. The only approach to testing
intermittent faults seems to be to construct a test for permanent faults, and to re-
peat this test until the probability of detecting the intermittent fault is sufficiently
high [10, 37]. In this thesis, all faults are permanent faults.
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A chip consists of a number of layers arranged vertically. The most obvious
approach to testing chips is to take the layout of the circuit, and to investigate the
consequences of a fabrication error: two layers may have a spurious connection, two
layers may lack a connection, a wire may be missing, or two wires in the same layer
may have a spurious interconnection. This approach is known as geometric fault
modeling [60]. Geometric fault modeling can only be done on small circuits, as the
number of possible faults increases rapidly with circuit size. It yields statistics on
actual occurrences of faults in fabricated chips [27], which can be used to measure
the effectiveness of more abstract fault models.

A fault model for permanent logic faults depends on the level at which the
circuit is modeled, for instance at the register-transfer level, at the gate level, or
at the transistor level. It is also possible to generate tests without a fault model,
in order to test the functionality of a component [3]. The most widely used fault
model at the register-transfer level or at the gate level is the Stuck-At Fault Model,
where one or more variables in the circuit are either permanently at a high voltage
(stuck-at-1), or at a low voltage (stuck-at-0). A model for faults at the transistor
level is to assume either that the source and drain of the transistor are directly
connected (a stuck-on fault), or that the source and drain are never connected (an
stuck-open fault).

The model with stuck-open and stuck-on faults is a refinement of the stuck-
at fault model. I shall generate tests that will detect most, or all, faults in the
stuck-at model. In chapter 6 I investigate the fault coverage for these tests for

stuck-open and stuck-on faults.

3. The Single Stuck-At Fault Model

DEFINITION B.1 (STUCK-AT FAULT). A stuck-at fault is located either on an

input or on an output of a gate. It causes the input or output to be either perma-
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Ficure B.1. Combinational circuit C'1
nently at a high voltage (stuck-at-1), or at a low voltage (stuck-at-0).

Y

If the output of a gate is stuck, then the corresponding input of any gate, to
which it is connected, is also stuck. For an output of a gate that is connected to
only one gate, there is no difference between a fault on the output and a fault on
the corresponding input in the next gate. If an output, z, of a gate forks to N
gates, where IV > 1, then each of the V inputs of gates, to which z connects, can
be stuck independently of the other inputs. In this case there are N + 1 different
fault locations, and 2(NV + 1) different stuck-at faults.

EXAMPLE B.1 (STUCK-AT FAULTS). Combinational circuit C1 of figure B.1
has three inputs and two outputs, as well as three internal variables. There are
three forks in the circuit, each with a fanout degree of two. Therefore there are
fourteen different fault locations in the circuit, and twenty-eight possible stuck-at
faults. For variable ¢ the possible fault locations are (i) the primary input to the
circuit, before the fork; (i1) the input to the NAND gate; and (iii) the input to the
AND gate with output x.

For a circuit with M fault locations, there are 3% — 1 different circuits with

stuck-at faults. By contrast, there are just 2M different circuits with a single

stuck-at fault. In the circuit of figure B.1 there are 28 different circuits with a
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single stuck-at fault, but almost 4.8 million circuits with multiple faults. For large
circuits, it is impractical to consider all circuits with multiple faults. I therefore
assume that any faulty circuit has a single stuck-at fault.

A test for a combinational circuit is an assignment of values to the primary
inputs. A fault is detected if the value of at least one primary output in the
faulty circuit is different from the correct circuit. In section 5 I give more precise
definitions of a test and detectability, for arbitrary circuits.

The effect of a fault on the production rule set of a circuit is a substitution of
some terms of the guards. If output ¢ of a gate is stuck-at-0 (stuck-at-1), then all
occurrences of ¢ in the production rule set must be replaced by false (true). If
input s to a gate with output ¢ is stuck-at-0 (stuck-at-1), then all occurrences of
s in the guards of the production rules for ¢ must be replaced with false (true).
After such a substitution, many guards can be further simplified, by reducing
boolean expressions, until a guard is either false or true. This can be seen in the

following example.
EXAMPLE B.2. The production rule set for circuit C1 of figure B.1 is:

a V b — df
—a A b — d

b — o7

-b = V]
=V ¢ — el
¥ A ¢ — el

d AN ¢ — z7
-d V ¢ — z)
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d VvV e — yl.
If primary input c is stuck-at-0, then input ¢ to the NAND gate and input ¢ to

the AND gate with output & are also stuck-at-0. Replacing each occurrence of ¢
in the production rule set, and simplifying boolean expressions yields the following
gates that are different from the gates in circuit C1:

true — e

false — e]

false — z7

true — z].

Therefore e is a constant, true, and x is a constant, false. It is now possible to

do a further substitution, namely for e as input to the gate with output y:

false — g1

true — vy .
Output y is permanently false if there is a fault ¢ stuck-at-0. The fault is detected
if the primary inputs are set to values such that primary output x is 1 in the correct
circuit, for instance when a, b, and ¢ are all set to 1. ,

If input c to the NAND gate is stuck-at-0, then input c to the AND gate is not
necessarily stuck-at-0. The effect of such a fault is that each occurrence of c in the
production rules for e are replaced with false:

true — e
false — e].
Again, since e is now permanently true, y as a consequence is permanently false.

The production rules for x, however, do not change as a result of this fault.

It is not true that a test detecting all single stuck-at faults will also detect any

multiple stuck-at fault. The reason is a phenomenon known as masking [20]. Again
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consider circuit C1 of figure B.1. If the circuit has fault a stuck-at-0, then this
fault is detected only with a test where input a is set to 1, and input b is set to
0. If in this circuit not only a is stuck-at-0, but also input b to the OR gate is
stuck-at-1, then the same test does not detect this multiple fault: fault a stuck-
at-0 masks the multiple fault. The multiple fault is detected for a test where a,
b, and c are all 0. This is also a test for the single fault input b to the OR gate
stuck-at-1. Therefore, this single fault does not mask the multiple fault.

For some circuits, a fault f; masks the multiple fault {fo, f1}, and fault £,
also masks {fo, f1}. Therefore, a test that detects either fo or f1 does not detect
{fo, f1} [69]. This is known as circular masking, a necessary but not sufficient
condition for the multiple fault to be undetectable.

There are several algorithms to find multiple stuck-at faults that cannot be
detected with any test for single faults [2, 15]. The fraction of such multiple faults
is usually small. For instance, Jacob and Biswas [35] have shown that it is less
than 0.4 percent for circuits with at least three primary outputs. Agarwal and
Fung [4] show that for some combinational circuits less than 2 percent of multiple
faults, consisting of six or fewer single faults, are undetectable with a test for single

stuck-at faults.

4. Merits and Shortcomings of the Stuck-At Fault Model

The stuck-at fault model is an accurate and concise model for analysis of faults
in relay circuits. Few faults on components currently produced, however, can be
accurately described as stuck-at faults. This is a discussion on why the stuck-at
fault model is still useful.

The stuck-at fault model describes faults at the gate level. Therefore it is
independent of the technology with which the gates are implemented. This is

both an advantage and a shortcoming of the model.
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For a given test we can calculate the number of faults that it can detect. The
fault coverage of the test, then, is independent of the way the gates are imple-
mented. This is, a priori, unrealistic.

The description of delay-insensitive circuits is at the gate level. Such a circuit
operates correctly regardless of the technology with which it is implemented (see
chapter 2). Since the stuck-at fault model is also at the gate level, it is ideally
suited for fault analysis of delay-insensitive circuits.

A parasitic transistor, or a short of internal nodes inside of a gate may result in
a different gate. Such a fault may not be a stuck-at fault [40]. Even shorts between
gates may lead to faults that are not stuck-at faults: A typical fabrication fault
in MOS circuits is a spurious connection between crossing metal wires in different
layers [27]. Unless one of the metal wires is either power or ground, such a fault
Is not equivalent to a stuck-at fault. For example, in a 80486 processor, there are
about 1700 metal wires in one direction crossing about 1700 metal wires in the
other direction. Thus there are almost three million possible faults that cannot be
modeled as stuck-at faults [36]. Many faults that are not stuck-at faults can be
modeled as a multiple stuck-at fault, however [40].

What makes the single stuck-at fault model attractive, is that the number of
faults considered is relatively small, and that it allows fault theories to be formu-
lated using boolean logic. On the practical side, it has been shown that there is a
strong correlation between fault coverage under the single stuck-at model (that is,
the percentage of stuck-at faults that can be detected by a test) and the percentage
of faulty parts that fail such a test [5, 18, 53, 68].

5. Tests

A circuit, C, is tested by a sequence of actions of its environment. The envi-

ronment repeatedly sets the value of the primary inputs of C, then it observes the
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primary outputs of C. If, at some point during execution of the test, the value
of at least one primary output of C' differs from the output of a fault-free circuit,

then a fault is detected in C.

DEFINITION B.2 (TEST). A test for circuit C is a finite sequence of actions by
the environment of C. An action is either setting the value of a primary input of

C, or observing the value of a primary output of C.

A primary input, a, of a circuit is set either to true (denoted a 1), or false
(denoted a ). As a result of setting the primary inputs, a primary output, Z, may
change, either to true (denoted [z], “wait for z”), or false (denoted [-z], “wait for
not z”). For a test, there are two composition operators: sequential composition
(%) and parallel composition (“”). For delay-insensitive circuits, the sequential
composition operator is commutative for wait-operations. Therefore [z]; [y], and
[y]; [z] are equivalent. It is also written as [z A y]. Parallel composition, of course,
is also commutative.

In the execution of a test, there is a difference in interpretation of the wait-
actions between synchronous and delay-insensitive circuits. For a synchronous cir-
cuit, the primary outputs are allowed to change arbitrarily between clock ticks [54].
After the primary inputs of the circuit are set, the environment has to wait for a
predetermined amount of time before the primary outputs can be observed. This
time is at least the clock period, but could be longer. For a faulty circuit, some
output may not change before a full clock period. This is the case when the critical
path is longer than the clock period as a result of the fault.

For a delay-insensitive circuit, each primary output changes value at most once
while the primary inputs remain constant, because of stability. This is a con-
sequence of the stability requirement for delay-insensitive circuits. For a correct

circuit, once the primary outputs have the correct values, the environment may set
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the primary inputs to the next set of values in the test sequence. In case the circuit
is faulty, however, primary output changes may occur after the environment has
observed the correct primary output values. In order to be able to observe these
incorrect output changes, the environment has to wait for some time between ob-
serving the correct primary outputs, and setting the values of the primary inputs.
This leads to problems in the model for delay-insensitive circuits, where delays are
assumed to be arbitrary and unbounded. For a discussion, see chapter 3. In an
actual circuit, we can assume that there is an upper bound on the time that the

environment has to wait for such incorrect output changes.

ExAMPLE B.3. In the combinational circuit of figure B.1, assume that in the
wnitial state all primary inputs are false. Then the primary outputs are also false,
and internal variable e is true. If c is set to true, then primary output y becomes
true. If, after y has been observed, b is set to true, then x becomes true, and y

becomes false. Hence a test for this circuit is

cTi[wlo1; [e A -yl

Suppose this test is executed, and no transition y T occurs after ¢ is set to true.

Then there must be a fault in the circuit; the fault is detected.

DEFINITION B.3 (DETECTED FAULT). LetT be a test for circuit C. Let circuit
C' be the same circuit, but with a single stuck-at fault. If, during ezecution of test
T, there is a point at which a primary output of C' has a value that cannot occur

at the same point in the test for circuit C, then the fault is detected.

There are two ways that a primary output in the faulty circuit can differ from
the same primary output in the correct circuit. Either there is a transition on the
primary output when no transition is expected, or there is no transition when one

or more is expected. If circuit C'1 has primary input ¢ stuck-at-0, then no transition
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y T will occur after execution of ¢T as the first action of the test. Therefore fault
¢ stuck-at-0 is detected by the test. Conversely, if circuit C'1 has input d to the
AND gate stuck-at-1, then transition ¢ will cause a transition z T that does not
occur in the correct circuit. The test also detects this fault.

If, in circuit C1, both b and ¢ are set to true simultaneously, then eventually

output z will become true. The test sequence is
b1, cT;lz).

Depending on the relative propagation delays in the circuit, it is possible that there
are transitions e | and e?. This is the case if the propagation delay of the inverter
(with input b) is longer than the propagation delay from input ¢ to the NAND
gate plus the propagation delay of that gate. As a result of these transitions of e,
transitions y T and y | are possible. During execution of the test a voltage spike
may be observed on primary output y. This condition is known as a hazard.

For synchronous circuits, a hazards are allowed. After waiting “long enough”,
the primary outputs have stable values, and are not going to change unless the
primary inputs change. For delay-insensitive circuits, a hazard condition may
wreak havoc on the circuit. If the circuit of figure B.1 is (part of ) a delay-insensitive
circuit, then setting both b and ¢ to true simultaneously in the initial state must
be disallowed.

Even if a circuit is hazard-free, a fault may cause a hazard condition. In other
words, the fault results in a circuit that violates the stability requirement. When
a test for the circuit is executed, there may be a voltage spike on a primary
output, so that the fault is detected. But any hazard can only occur under specific
propagation delays in the circuit that may not occur during testing. I shall only
consider a fault detectable if it is detected when no assumption is made on the

propagation delays in the circuit (except, of course, that the propagation delays
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are finite). A fault that causes only a possible hazard during a test is therefore

not detectable with that test.

DEFINITION B.4 (DETECTABLE FAULT). A fault in circuit C is detectable with
test T' if the fault is guaranteed to be detected, regardless of the propagation delays

in the circuit.

DEFINITION B.5 (TESTABLE FAULT). A fault in circuit C s testable if there

s a test that detects the fault.

EXAMPLE B.4. For circuit C1, the test

cTi [l 073 [ A -yl

will detect faults ¢ stuck-at-0, and input d to the AND gate stuck-at-1, regardless
of the propagation delays. Both faults are detectable.

DEFINITION B.6 (FAULT COVERAGE). Let T be a test for a circuit. The fault
coverage for T' is the percentage of testable faults that are detectable by applying
test T' to the circuit.

The goal of test generation is to find a test that maximizes the fault coverage,
while minimizing the test length. A test that detects all testable faults in a circuit
is known as a complete test.

There are more sophisticated ways to detect a fault than by observing the pri-
mary outputs some time after the primary inputs have been set. As mentioned,
a fault can be detected if a hazard on a primary output occurs. Some faults can
cause a short circuit. By measuring the power consumption of the circuit, such
faults are detected. Also, given the physical parameters of a chip, the propagation
delays can be computed within some range. If, during a test, a primary output
changes much faster or much slower than expected, then, again, a fault is detected.

This can also be due to a parametric fault [1].



161

e

FIGURE B.2. Delay-insensitive circuit C2, a D-element
6. Redundancy
Consider circuit C2 of figure B.2. This delay-insensitive circuit is known as a
D-element. Its production rule set is:
i A rm — ufl

-l A rt — ul

Ili AN ~u — rof

-li V. u — rol

-1t A u — lof
rm V —u — lo}.
In the initial state of the circuit, all variables are false. Define test Tp to be the

following sequence:
it frolsrit; [-rol; ri s [lo; L ; [—lo].
With this test the circuit is hazard-free. Let’s assume that the only way the circuit

is operated is by executing test Tp, or repeating test Tp an arbitrary number of

times.
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Consider the gate with output ro. If the production rule =i V u — ro | is
replaced with w — ro |, then the circuit still has no hazard, and it will still
execute test Tp correctly. The term -7 is redundant in the production rule for

rol.

DEFINITION B.7 (REDUNDANT TERM). Let C be a circuit, and let s be an in-
put to a gate with output t, such that s or —s occurs as a term in the guard of
production rule t 7. Replace the term with either true or false. If the resulting
production rule set is still a correct implementation of the specification of C, then

this term is redundant. Similarly fort|.

For the above production rule set of the D-element, the other redundant terms
are r¢ in the guard for lo |, {7 in the guard for 1, and —7i in the guard for u |.

Eliminating redundant terms in a circuit does not always result in a smaller
circuit. For instance, if =7 is removed as a term in the production rule for ro |,
then the gate with output ro changes from a combinational gate into a state-
holding element, which may require more transistors to implement.

If an input to a gate is replaced with either true or false, then the resulting
gate can be implemented with fewer transistors. If the resulting circuit is still a

correct implementation of the specification, then the input is said to be redundant.

DEFINITION B.8 (REDUNDANT INPUT). Let C be a circuit, and let s be an in-
put to a gate with output t. Replace each occurrence of s and —s in the production
rules for t with either true or false. If the resulting production rule set is still a

correct implementation of the specification of C, then s is a redundant input.

DEFINITION B.9 (REDUNDANT GATE). Let C be a circuit, and let t be the out-
put of gate G. Replace each occurrence of t and —t in the production rule set
with either true or false. If the resulting production rule set is still a correct

implementation of the specification of C, then G is a redundant gate.
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DEFINITION B.10 (REDUNDANT CIRCUIT). 4 circuit is redundant if it has a

redundant input or a redundant gate.

EXAMPLE B.5. Consider circuit C1, and assume that it is used as a synchronous

circutt. The boolean expressions that the circuit implements are
r=(aVbAc
=-aA-bAc

Call the output of the inverter b'. If input V' to the gate with output e is replaced
with true, then the circuit still implements the same boolean expressions: b is a
redundant input. Since b’ is input to only one gate, the inverter must therefore be
a redundant gate. Circuit C1 is a redundant circuit.

Replacing b’ with true reduces the gate with output e to a simple inverter.
P g [ 74

For the D-element, there are no redundant inputs or redundant gates, hence the
circuit is not redundant.

There are other forms of redundancy. For instance, two inverters in series can
always be replaced by a single wire. For some circuits it is possible to remove one
or more gates, and to reconnect the remaining gates, resulting in a smaller circuit,.
In chapter 5, I show that the specification of two D-elements connected in series is
the same as the specification of a single D-element. As a result, half of the gates
in the former circuit are “redundant”. It is rather more difficult to detect this
general type of redundancy in a circuit than the simple input- or gate redundancy

defined above. I shall not consider general redundancy.

7. Testing Combinational Logic

The following theorem relates the testability of faults in combinational logic to

redundancy.
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THEOREM B.1. Let C be a circuit. Then C is non-redundant of and only if

every single stuck-at fault 1s testable.

Proof: If C is redundant, then there is a redundant input or a redundant gate.
Let s be a redundant input, or the output of a redundant gate. Then replacing s
with true or false does not alter the functionality of C'. If s can be replaced with
true, then fault s stuck-at-1 is not testable, and if s can be replaced with false,
then fault s stuck-at-0 is not testable.

Let s be a variable in C such that fault s stuck-at-0 is not testable. Then for
all values of the primary inputs the correct circuit and the circuit with fault s
stuck-at-0 produce the same values for the primary outputs. Therefore replacing
s with false does not alter the functionality of C: the circuit is redundant. O

Whereas any non-redundant combinational circuit is fully testable for single
stuck-at faults, determining whether the circuit is non-redundant is a hard prob-
lem. Whether a given single stuck-at fault in a combinational circuit is testable is
an NP complete problem [34]. The problem remains NP complete if the set of cir-
cuits is restricted to n-level monotone circuits, where n > 3. For 2-level monotone
circuits, the problem is polynomially solvable [24, 26].

Given that a combinational circuit is non-redundant, the test generation prob-
lem is also hard. For a non-redundant monotone circuit, finding a test that detects
a given single stuck-at fault is an NP complete problem [25]. Efficient test gen-
eration for combinational circuits is therefore an important area of research. 1
shall describe two simple approaches to the test generation problem, the boolean

differences method and the D-algorithm.

Boolean Differences. The boolean difference method is an algebraic method
to find all the test vectors that will detect a given stuck-at fault [67]. Let C be a

combinational circuit, with primary inputs z; (0 < ¢ < m) and primary outputs
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y; (0 < j < n). Then there are boolean functions f; (0 < 7 < n) such that for
each j
Yi = fi(zo, 21, .., Tm1)-
If input z; is stuck-at-0, then, for any test vector with which the fault is detected,
input z; is true. The fault is detected if there is an output y; that has different
values in the correct and in the faulty circuit. In a formula, fault z; stuck-at-0 is
testable if
di3x%0.x0, X0y - fi(Xo,... , X1, false, X; 4, ... y Xm—1)
# [i(Xo,..., Xi1,true, X;.q,. .. y Xm—1)-
DEFINITION B.11 (BOOLEAN DIFFERENCE). For a boolean function of m vari-

ables f(xo,21,... ,&m_1) the boolean difference with respect to input z; is
F(@oy oo i1, @i, Tty B 1) @ f(@0, - Timy, Ti, Tig,y - » Tm—1)-

The boolean difference is denoted

df(mm s ,wm—l)
dlEi.

THEOREM B.2. For a combinational circuit with output function f, the fault z,

stuck-at-0 is detectable if the primary inputs are set such that

daf
z; A dz,

holds. Fault z; stuck-at-1 is detected if there is an assignment to the primary

inputs such that
—L; N ——
holds.

Proof: Trivial ]
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ExXAMPLE B.6. For circuit C1 the function that primary output x implements

is (@ V b) A c. Therefore

L = ((trueVb)Ac)® ((false v b) A c)

= ¢c®(bAc)

= -bAc
Fault a stuck-at-0 is detectable with any test for which a A —=b A ¢, and fault a
stuck-at-1 is detectable with any test for which ~a A -bAc. In that case, the value

of primary output x is different in the correct circuit from the faulty one.

The result can be extended to faults of internal variables. Let s be an internal
variable. Re-write the output function f as a function not only of the primary
inputs, but also of s (as if s were an additional primary input). Then fault s
stuck-at-0 is testable if there is an assignment to the primary inputs such that
s A % holds, and s stuck-at-1 is testable if —s A % holds for some assignment to

the primary inputs.

EXAMPLE B.7. Consider internal variable e in circuit C1. Primary output v,
as a function of e, is 7(eVaVb), and e = ~(~bAc). Faulte stuck-at-0 is testable
in any state where

eNE = eA((trueVaVb)® (~(false V a V b))
= e A (false ® (—a A —b))
e A —a A =b)
=(=b Ac) A =a A —b)

= —a A -bA e
Fault e stuck-at-1 is testable in any state where
—eA¥ = -eA(~(trueVaV b) ® (—~(false V a Vv b)))
= —eA-aA-b

= —aA-bAc
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For variable V' we have y = ~a A=bAV Ac and ¥/ = —b. Fault ¥ stuck-at-1 is
testable iof

V' AZE = bA(-aA-bAc® false)

= false.
Therefore there is no test that detects fault ¥ stuck-at-1. Indeed, variable b is

redundant.

If there is a test vector for a given stuck-at fault, then the boolean difference
method will find it. However, the boolean difference method will generate all tests
for which the fault is detectable, which is more than strictly necessary. The D-
Algorithm, on the contrary, tries to find a single setting of the primary inputs with

which the fault is detectable. This involves backtracking.

8. The D-Algorithm

Let circuit C' have a single stuck-at fault, on gate G. To detect the fault during

a test, there are two conditions:

(1) The circuit has to be in a state where the fault causes the output of gate
G to have the wrong value.
(2) Once the output of G has the wrong value, the result has to be propagated

to a primary output, so that the environment can detect the fault.

Since a combinational circuit does not contain any state-holding gates, the pri-
mary inputs have to be set only once to make a given testable fault detectable. A
method to derive a test vector for such a fault is first to derive a condition on the
inputs of the gate G, so that the output has the wrong value. For a combinational

gate with production rules

z A B vV C — 27
(—nx\/—nB)/\—lC’—»zl,



168

where B and C are boolean conditions, let input = be stuck-at-1. If the circuit is
in a state where -z A B A =C, then the correct circuit will have output 2 false,
whereas the faulty circuit has output z true. This occurs in no other state. Then
the value of the primary inputs are derived (by backward propagation), as well
as the primary output that will have the wrong value for the faulty circuit (by
forward propagation).

If forward propagation is successful, then there is a path through a sequence
of gates, where the output of the last gate in the sequence is a primary output,
such that each gate in the the sequence has the wrong value for the faulty circuit.
If there is exactly one such path for a given setting of the primary inputs, then
it is known as single-path sensitization. Most faults are detectable with single-
path sensitization, but there are faults that are not detectable with single-path
sensitization [65].

The D-Algorithm [63] tries to find any single or multiple path to the primary
outputs that will make the fault testable. It employs a five-valued logic. Apart
from the standard values 1 (or true), 0 (or false), and X (or don’t care), there
are D, for a variable that is 1 in the correct circuit, and O in the faulty one, and
D, for a variable that is 0 in the correct circuit, and 1 in the faulty one.

With the values D and D the logic tables are extended as follows:

Al0]1|X|D|D
010{0[0]0]|0
101 D|D
X 1|0

D|0|D D0
D(0|D 0|D




169

VIIo|1]|X D
010]1 D
1111 {1]1
X 1

D|D|1 D|1
D|D|1 1|D
-(0{1|X|D|D
1|0 D|D

The blank entries are undefined.

These tables specify how a fault is propagated forward towards the primary
outputs. For instance, if one input of an AND gate is 1, and the other D, then, by
implication, the output of the gate must be D. To propagate backward towards
the primary inputs, there are similar implications. For instance, if the output of
an AND gate is D, then both inputs must be set to 1, and if the output is D, then
at least one input has to be 0. For an OR gate, if the output is D, then at least
one input must be 1, and if the output is D, then both inputs must be 0.

The D-Algorithm to detect a single stuck-at fault now works as follows:

(1) Select a variable with a stuck-at fault in the circuit. For a stuck-at-1 fault,
set the variable to D, for a stuck-at-0 fault set the variable to D. Set all
other variables to X (don’t care).

(2) Forward propagation. List all gates with at least one input D or D, and
output X. These gates comprise the so-called D-frontier. Select a gate in
the D-frontier, and set the other inputs of that gate in such a way that the
output of the gate is D or D.

(3) Compute the values of any variable that is implied by the known values

in the circuit (any value that is not X). If the result is an inconsistent
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assignment (where a variable has to be both 0 and 1), then the selected
gate in the D-frontier cannot be used for forward propagation. Return to
step 2, selecting another gate. If the result is still consistent, then return
to step 2, computing a new D-frontier, until the output of the gate selected
is a primary output.

(4) Backward propagation. Once a sensitized path has been found from the
faulty gate to a primary output, the values of the primary inputs are de-
termined. Compute the value of any inputs that are implied by the value
of the output of a gate. For instance, if the output of an AND gate is 1,
then both inputs are 1.

(5) If there remain variables with undetermined values, then select one, and
set it to 0 or 1. Compute the value of any variable that is implied by this
assignment. Again, if the assignment is inconsistent, select another value
for the variable, and if it is consistent, then select another variable with an
unknown value, etc.

(6) If the algorithm terminates with an assignment for all variables in the
circuit, and the assignment is consistent, then a test vector is found that
makes the fault testable, since at least one primary output will have value
either D or D. Otherwise, there is no assignment of the primary inputs
that makes the fault detectable.

The algorithm involves backtracking, and is not efficient. This is to be expected,
as the problem it solves is NP-complete. If there is a test for a fault, then the

D-algorithm will find it. The algorithm can easily be extended to cover multiple

faults.

EXAMPLE B.8. Consider circuit C3 of figure B.3. Let output e be stuck-at-0.
Applying the D-algorithm, all variables are set to X, except for e, which is D. The
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FIGURE B.3. Combinational circuit C3. A test for fault e stuck-at-

0 is derived using the D-algorithm
D-frontier is the gate with output g. This gate has to be used for forward propaga-

tion. Therefore f has to be 1, and output g is D. The D-frontier then becomes the
gates with outputs h and j. The implication step does not yield any further values
at this point. Choose the OR gate with output h for forward propagation. Then
output h is D if input a is 0. In the backward propagation step, this assignment
will turn out to be inconsistent, since if a is 0, then e is 0 for the correct circuit.

Backtracking, choose the gate with output j for forward propagation. Then j is
D while d is 1. Since j is a primary output, the forward propagation is done. The
values of primary inputs a, b, and ¢ are still unknown. In order for e to be D, a
and b both have to be 1, and f with value 1 while d is 1 implies that ¢ is 0. This

is a consistent assignment to the primary inputs.

From‘ this example it is clear that a combining of forward and backward prop-
agation steps can be more efficient than doing the backward propagation after
the forward propagation [64]. There are many other algorithms to detect a fault
in a combinational circuit. Most are based on the D-algorithm. Optimizations
include using a calculus with more values [6, 14], and algorithms to reduce the

search space for cases in which the D-algorithm is known to perform badly, such



172
I e e s e N
— 21  comb. l_—'PD"_’ comb. —'BD —  comb. -
— P logic —PD’—‘B logic —’D —®I logic -
~ bt A A

FIGURE B.4. Test generation for a sequential circuit by replication
as PODEM [29].

9. Testing Sequential Synchronous Circuits

The problem of testing sequential synchronous circuits, without the addition
of test circuitry, is much more complicated than testing combinational circuits.
Since a sequential circuit has state-holding elements, a circuit with a fault does
not necessarily reset to the same initial state as the correct circuit. It is even
possible that, because of a fault, a circuit does not have a well-defined initial
state [3]. For faults that cause the circuit to be in a well-defined but unknown
initial state, it may be possible to apply an initialization sequence to the circuit,
so that both the faulty and the correct circuit are in a known (but not necessarily
the same) state [3].

Once the circuit is in a known state, a test is applied to the circuit. The test
typically consists of a sequence of events to bring the circuit in a state where the
fault causes the output of a gate to have the wrong value, followed by a sequence
to propagate this wrong value to a primary output.

A common approach to test generation for sequential circuits is to duplicate
the circuit several times, to form a sequence of combinational circuits. For a
test sequence of length n the circuit is duplicated n times. See figure B.4. A

single stuck-at fault in the original circuit now corresponds to a multiple stuck-
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at fault in the duplicated circuit. An algorithm, such as the D-algorithm, can
now be used to generate a test sequence for this multiple fault, similar to the
algorithms for combinational circuits [25]. A complication for the D-algorithm
is that multiple faults may cancel each other. Also, because of the backtracking
involved, application of the algorithm for large circuits with long test sequences
may take very long.

For that reason, extra circuitry is usually added to the circuit to reduce the
complexity of test generation, as well as to reduce the actual test length, at a cost
of circuit area and a degradation of the speed of the circuit. A test structure may
also be added to a combinational circuit, so as to partition the circuit, in order to
simplify the test generation.

Suppose that the state of each state-holding element in the circuit can be set
and observed by the environment. Then the resulting circuit is equivalent to a
combinational circuit. Because of pin-count limitations, it is typically not possible
to connect the state-holding element directly to the environment for the purpose
of testing the circuit. Therefore a queue or stack is added to the circuit, so that
the state-holding elements can be set sequentially, and so that the values of the
state-holding elements can be observed by the environment sequentially. Such a
structure is known as a scan design [25].

Testing the circuit then is done as follows. Using the queue, the values of all
the state-holding elements are set. Then the circuit proper operates for one cycle,
after which the values of the state-holding elements are read. Since the circuit
being tested is equivalent to a combinational circuit, the D-algorithm for single
stuck-at faults can be used. In addition, test vectors have to be added to test for
any faults in the test structure, or in any of the state-holding elements.

A simple scan design is the so-called shift-register modification [72]. The state-
holding elements are clocked D flip-flops. The flip-flops are connected together
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to form a shift register, and to each flip-flop a double-throw switch is added (see

figure B.5). Each double-throw switch is controlled with a “mode” bit. If it is 0,
then the circuit operates as before the addition of the shift register: the state of the
flip-flops is sent to the combinational logic, and the result from the combinational
logic is stored in the flip-flops for the next clock cycle. If the mode bit is 1, then the
results from the combinational logic are no longer sent to the flip-flops. Instead,
the flip-flops form a shift register, and values can be shifted in and out of the
circuit by setting the value of the first flip-flop in the chain, and by observing the
last one (see figure B.6).

Shift-register modification is but one of many scan designs. Similar to shift-
register modification, but using more hardware, is a scan path [25], which allows
for easy partitioning of combinational logic. Another approach is level-sensitive
scan design, or LSSD, which is primarily used in IBM systems [21, 56]. It also
uses more hardware than shift-register modification. The main advantage is that
it results in circuits that are hazard-free, both during testing and during normal

operation.
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FIGURE B.6. A sequential synchronous circuit with shift-register modification
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