MONTE CARLO STUDIES OF TWO DIMENSIONAL

QUANTUM SPIN SYSTEMS

Thesis by

Miloje S. Makivié

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1991

(Submitted August 2, 1990)

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Professor Michael Cross, for his inspiring guidance,
insight and warm and friendly support throughout my graduate studies. I owe him a lot

for making the subject of condensed matter physics a fascinating place.

I also wish to express my sincere gratitude to Professor Geoffrey Fox for his constant
encouragement and support during my work. I thank him for being exposed to the exciting

fields of parallel computing and complex systems.

I am deeply thankful to Professor Peter Weichman for his valuable advice and insight

and very generous help. I also thank him for listening to my questions so patiently.

I would like to express my great appreciation to Hong Ding, with whom I worked

closely during the last two years. I consider myself fortunate to have had such a fruitful

collaboration.

I'am indebted to all my friends and colleagues who made life at Caltech so enjoyable

and enlightening.

I would like to thank The California Institute of Technology and The Shell Founda-

tion for their financial assistance.

For their love and support I owe a special debt of gratitude to my parents Stanoje

and Marica Makivié.

I thank my wife Irina for bringing love, beauty and meaning to everything and I

dedicate this thesis to her.

iii

ABSTRACT

Spin—% nearest neighbor Heisenberg antiferromagnet and XY model on a square
lattice are studied via large scale quantum Monte Carlo simulations using a fast and
efficient multispin coding algorithm on the Caltech/JPL MarkIIIfp parallel supercomputer,
based on the Suzuki-Trotter transformation. We performed simulations with very good
statistics on lattices as large as 128x128 spins, in the temperature range from 0.1 to 2.5 in
units of the effective exchange coupling J. We calculated energy, specific heat, magnetic

susceptibilities and also spin correlation functions from which we deduce the correlation

lengths.

For the Heisenberg model, at temperatures higher than J the results are in excel-
lent agreement with high-temperature series expansion. At low temperatures the long
wavelength behavior is essentially classical. Our data show that the correlation length
and staggered susceptibility are quantitatively well described by the renormalized classi-
cal picture at the 2-loop level of approximation. From the divergence of the correlation
length, we deduce the value of the quantum renormalized spin stiffness, ps/J = 0.199(2).
We give evidence that the correlation function is of the Ornstein-Zernicke type. By com-
paring the largest measured correlation lengths with neutron scattering experiments on
LayCuOy4, we deduce the value of effective exchange coupling J = 1450 + 30 K. By mea-
suring the imaginary time-dependent correlation functions, we show that the dynamics of
the model can be well understood within a Bose liquid-type picture. The spin waves are
rather sharp throughout most of the Brillouin zone and the damping is weakly dependent

on the wave vector.

iv

In the case of the XY model, convincing numerical evidence is obtained on square
lattices as large as 96x96 that the spin-3 XY model undergoes a Kosterlitz-Thouless (KT)
phase transition at kT,/J=0.350(4). The correlation length and in-plane susceptibility
diverge at T, precisely according to the form predicted by Kosterlitz and Thouless for
the classical XY model. The specific heat increases very rapidly on heating near T, and
exhibits a peak around £7'/J = 0.45. We also measure the spin stiffness and the correlation
function exponent below the transition temperature. Within the statistical accuracy of
the measurements, the results are well described by the square root singularity (with a
nonuniversal amplitude) below T, and they have the universal values in agreement with

KT theory at T..

TABLE OF CONTENTS

Acknowledgementso i e e e e ii
A DSt At ..o e e iii
Table of contentsottt ittt in i eainaaness v
Table and Figure Captionscuuuiiiiiiieiiiiii et ernienaneenns vii
Chapter 1 Introductioniiiiiiiiiii ittt annnans 1
Chapter 2. The Spin Wave Theoryc.oiiiiiiiiiiiiiiiiiiiiaannnnn. 8

Chapter 3 Computational Method

3.1 The Suzuki-Trotter Transformationovviiiiiiiniinennn.. 20
3.2 The Monte Carlo Methodcoiiiiiiii i 26
3.3 The Updating Procedureccoiiiiriiiiiiiiinnnnenn.. 28

Chapter 4 Algorithm
4.1 Multispin Coding ..ottt 34

4.2 Parallel Implementationcccoiiiiiiiiiiiiir i, 38

Chapter 5 Simulation and Measurements
5.1 Simulationoiuiiiiiiii i e e e 48

5.2 Methods of Measurementovveurin e e iieeeaneenaannns 50

Chapter 6 Quantum Heisenberg Model in 2D

Chapter 7

Appendix

vi

6.1 Thermodynamicscco.eviriiiiinniiii it nnnenn. 62
6.2 Static Spin Correlationscoiiiiiiiiiiiii i, 65
6.3 Comparison with Experimentsc i iiiinin.... 71
6.4 Preliminary Dynamical Calculations 74
Quantum XY Model in Two Dimensions 80
.. 95

Figures and Tables...... ... i i 147

vii

TABLE AND FIGURE CAPTIONS

TABLES

. Temperature, Trotter number, linear size, energy, specific heat, uniform susceptibil-

ity, correlation length and exponent A for 2D Heisenberg antiferromagnet.

. A sample of spin correlations in .5, direction for the XY model for selected temper-

atures.

FIGURES

. (a) The breakup of the Hamiltonian: In x-direction, H; includes bonds indicated by
the solid links; H3 includes bonds indicated by broken links. Similarly for H,, H, in
y-direction. (b) The products U;U; and U3Uy decompose a square lattice into a col-

lection of noninteracting square cells. This property mimics the cell decomposition.

. A “space” flip. The dashed line denotes a noninteracting plaquette lying in spatial
dimensions. The four plaquettes extending in the time direction are interacting ones.

After the four spins are flipped, the two worldlines twist around each other.

- A “time” flip. The dashed line denotes a noninteracting plaquette. The 8 plaquettes
surrounding it are interacting ones. After the 8 spins are flipped, the worldline is

distorted. Notice that all plaquettes go in the time direction.

viii
4. A “global” flip in the time direction. Only four of the interacting plaquettes which

surround a straight worldline are shown.

5. (a) A “global” flip in spatial directions. The dashed line indicates the string of spins
being flipped. The plaquettes shown are all interacting. (b) A configuration with a

different winding number is reached.

6. The vectorized “time” flips are shown. Spins along the time direction are packed into
computer words. The two 32-bit words S1 and S2 contain eight “time” plaquettes,

indicated by the dashed lines. The plaquettes shown are all interacting ones.

7. (a) The configuration of the hypercube nodes. In this example, 32 nodes are con-
figured as 4 independent rings, each consisting of 8 nodes. Fach ring runs an in-
dependent simulation. (b) The decomposition of the physical space of each 1attice
among the nodes in a ring. (c) The sequence of steps necessary to perform a sweep of
“space” loop updates. In Step 1, individual processors update their nonoverlapping
domains in parallel. When a boundary is reached, the boundary layer of spins is
communicated via a cshift call, as shown in Step 2. In Step 3, the communicated
spins, which are now local, are updated. The system is shown as a cross section
through a single time slice. (d) The memory organization of a ring. A processor’s

data domain always occupies the lowest memory addresses.

8. Correlation functions on the 32x32 lattice at T' = 0.45, M = 24. Squares denote the
run with winding numbers N, and N, restricted to 0. Crosses denote the run with
nonconstrained winding numbers. The data points clearly overlap. The error bars

are of the symbol size.

9. Correlation functions on the 32x32 lattice at T = 0.45, with different Trotter numbers

M.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

ix
Correlation functions on the 96x96 lattice at T = 0.35 with M = 24 and M = 48.

Energy measured as a function of temperature. Squares are from our work. Plusses

are from Takahashi’s spin wave theory. The curve is the 10th order high temperature

expansion.

Uniform susceptibility measured as a function of temperature. Symbols as in Fig.

11.
Specific heat measured as a function of temperature. Symbols as in Fig. 11.

Correlation functions at selected temperatures. The details of the runs are given in

Table 1.

Correlation length measured at various temperatures. The straight line is fit to Eq.
(6.8). The other curves are the fits corresponding to A = T%, & = 1 and —1. The

a=0.03 upper bound curve is also plotted, but is indistinguishable from the straight
line.

The scaling plot of the staggered susceptibility.

Inverse correlation lengths of La;Cu0O4 measured in neutron scattering experiments,
denoted by crosses, and those measured in our simulation, denoted by squares (in

units of (1.1784)71). J = 1450K. At T ~ 500K, La;CuO4 undergoes a structural

transition. The curve is the fitting form of Eq. (6.13).

The results of Birgenau, et al. [15], for a spin-1 system, Ky NiFy, are very well fitted

by the 2-loop expression and spin stiffness calculated in spin wave theory.

The dynamic structure factor, §(q,w) is measured along the high symmetry direc-

tions of the Brillouin zone, denoted by squares. The lattice size is 32x32.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

X

The imaginary time spin correlation function, at T = 0.45J, for the wave vector
k = (11,11) - 2 /32a. The curve is the least squares fit to a sum of Lorentzians in

frequency space, after being Laplace transformed to imaginary time.

The imaginary time spin correlation function, at T = 0.5J, for the wave vector
k = (1,1) - 2r/32a. The curve is the least squares fit to a sum of Lorentzians in
frequency space, after being Laplace transformed to imaginary time. The majority

of spectral weight is around zero frequency.

(a) Spin wave dispersion derived from the locations of peaks in the Lorentzian fitting
functions at T' = 0.5. The straight line is the linear part of spin wave spectrum at

T = 0. (b) Same as (a), but at temperature T = 0.45.

(a) Spin wave damping derived from the widths of peaks in the Lorentzian fitting

functions at T = 0.5. (b) Same as (a), but at temperature T = 0.45.

Correlation length and the fit. (a) £ vs. T.. The vertical line indicates £ diverges at

Te; (b) log(£) vs. (T — T,)~*/%. The straight line indicates v = 1/2.

The correlation function exponent above T, is close to the Ornstein-Zernicke value

of 1/2 for systems sufficiently larger than the correlation length.
Susceptibility and the fit.
The correlation functions on a 96x96 lattice at (a) T = 0.41 and (b) T = 0.42.

(a) Specific heat Cy. (b) Energy. For T > 0.41 lattice sizes grow from 24x24 to

96x96. For T' < 0.41, lattice size is 32x32.
The correlation function at T=0.34 on a 32x32 lattice and the spin wave fit.

The correlation function at T=0.20 on a 32x32 lattice and the spin wave fit.

31.

32.

33.

34.

35.

36.

37.

38.

39.

xi
The correlation function at T=0.28 on a 48x48 lattice and the spin wave fit.

The exponent 7 as a function of lattice size, for three temperatures: T=0.20, T=0.30

and T=0.36.

The exponent 7 as a function of temperature, measured below T, on lattices from

L=12 to L=48.

(a) The exponent 7 as a function of temperature, measured below 7. on a 32x32
lattice. The line is a fit to the square root cusp predicted by KT theory. (b) Same

as in (a) but on a 24x24 lattice.
The spin stiffness as a function of temperature, measured on the 16x16 lattice.

The spin stiffness as a function of temperature, measured on the 24x24 lattice. The
line is a fit to the KT square root cusp. Spin stiffness is very flat into the spin wave

region.

(a) The exponent 7 as a function of temperature, measured on the 24x24 lattice. A
comparison is made between results obtained by fitting C(r) to the spin wave form
and the values obtained from spin stiffness via the relation (7.5). (b) Same for a

16x16 lattice.
The geometry of vortex density measurements.

Vortex density measured using Swendsen’s “vortex detector” operator. The sharp

increase above T, is noticeable. Lattice size is 32x32.

Chapter 1

Introduction

The discovery of high temperature superconductors {1] has brought about a resur-
gence of interest in two-dimensional quantum antiferromagnets. There are experimental
and theoretical indications that spin dynamics plays a crucial role in the new super-
conducting mechanism which is believed to originate from purely electronic degrees of
freedom [2-4]. Neutron scattering experiments on the parent compound La;CuQ4 reveal
a rich magnetic structure [4,5]. Over a wide temperature range, copper spins in Cu-O

planes exhibit strong two-dimensional antiferromagnetic correlations, but without broken

symmetry.

The simplest theoretical description of the system is provided by the spin-1/2 anti-
ferromagnetic Heisenberg model (AFHM), which is also the strong coupling limit of the
Hubbard model at half-filling (i.e., with charge fluctuations integrated out):

H=JY (8787 + S¥SY + 875%) (1.1)
(i5) ‘
The isotropic model of Eq. (1) is a special case of the general anisotropic Heisenberg
Hamiltonian with nearest neighbor interaction:
H=> (J:SFST + J,SYSY + J,525%) (1.2)
(i5) '
The summation) (i) 8oes over all the nearest neighbor pairs on a square lattice and S;

is the spin operator at the i-th site. The energy scales are set by the effective exchange

couplings J, Jy, and J,.

2

Much of the renewed interest in 2D antiferromagnets is rooted in P. W. Anderson’s
suggestion [2] that novel kinds of excitations which exist in strongly fluctuating spin sys-
tems may ultimately lead to superconductivity in doped materials such as Las_;Sr,CuQ4.
It is important, therefore, to understand the magnetic properties of the stoichiometric
compound (La;Cu04), which is an antiferromagnetic insulator. The immediate goal is to

understand the nature of spin fluctuations in CuO; layers, which seem to be responsible

for superconductivity.

It is very plausible that the intervening oxygen ions mediate an antiferromagnetic
coupling via the superexchange mechanism, leading to the § = 1/2 Heisenberg model of
Eq. (1). Previous studies and our work show that, to a large extent, static spin correlations
measured in neutron scattering experiments may be adequately described by an § = 1/2
nearest neighbor (NN) quantum Heisenberg model (QHAF) on a square lattice, with large
isotropic antiferromagnetic effective exchange J of the order of 1500 K. Interplanar cou-
pling and spin anisotropies are rather small [3,4]. Ising-like anisotropies could lead to a
qualitatively different behavior, but they are likely to be less important than the inter-
layer coupling. Effective interlayer coupling J! is about five orders of magnitude smaller
than intralayer exchange J, which is not surprising, considering the layered structure of
La;CuOy4. Although small, when combined with large regions of strongly correlated spins
in a layer, this coupling drives the system into a unique 3D ordered state. This transition
occurs at a finite temperature (Neél temperature, T), and is entirely due to the interlayer
coupling and symmetry-breaking perturbations, since the pure 2D Heisenberg antiferro-
magnet cannot have a finite temperature transition to an ordered state. If the spins in a
layer are correlated over a region of linear size &, the Néel temperature may be estimated
by: kpTn =~ J'€2. Using the experimental values for Ty =~ 200K and £ ~ 100 lattice

spacings [4], one arrives at the estimate J1/J ~ 107%. Above the crossover region close

3

to T'n, the 2D correlations should be relatively insensitive to such a small coupling. Also,

the staggered magnetization in the ground state is practically unaffected by this coupling.

A very difficult question to answer is the effect of next nearest neighbor (NNN) or
even further exchanges. It is likely that, as long as the ground state is ordered, the long
wavelength properties are going to be unaffected. However, for sufficiently strong NNN
antiferromagnetic interaction, the ground state presumably loses the long-range order.
The nature of such a state is highly controversial [6]. The path integral Monte Carlo
method, as developed here, is not suitable for studying such a system. Since the NN model
can be very successfully studied by the present method, and, as it turns out, some very
important experiments are adequately explained by the model, we will restrict ourselves

to NN Hamiltonian only.

Now that the choice of the model is somewhat justified, the first question one might
attempt to answer is the nature of the ground state. It will determine, to some extent,
the nature of the low lying excitations, which, in turn, determine the low temperature

behavior of the model, as observed in the experiments.

Two-dimensional systems in the extreme quantum limit present formidable chal-
lenges for a theorist. Strong fluctuations due to low dimensionality are coupled with pro-
nounced quantum fluctuations. Consequently, it is difficult to design reasonably controlled
perturbative approaches. One of the most profound fluctuation effects is the absence of
long-range order at finite temperatures, which is rigorously established by the Mermin-
Wagner theorem [7]. On the other hand, the exact results, analogous to those that exist

in one dimensional systems are lacking.

Analytical approaches employ different perturbation schemes (e.g., spin wave theory,

renormalization group approaches, series expansions, large-N expansions, etc.), variational

4

treatments, or exact diagonalizations for small systems.

On the other hand, Monte Carlo methods can provide nonperturbative results for
finite systems. If the system size is large enough, quantitatively reliable conclusions can
be drawn about the thermodynamic limit. Monte Carlo methods have been successfully

applied to study both ground state and finite temperature properties of AFHM.

Recent gains in computational power, particularly the advance of parallel supercom-
puters, made it feasible to perform simulations on systems which are almost two orders
of magnitude larger than those achieved before [8]. Statistical physics problems of this
kind, due to its regularity and short-range interactions, are particularly suited for dis-
tributed memory, medium grain-size architectures with high-speed processing elements,

like MarkIIIfp Caltech/JPL hypercube [9].

This thesis presents development and applications of a Monte Carlo algorithm, based
on a generalized path integral approach to quantum statistics, for this parallel computer.
The algorithm is designed with speed and efficiency on this particular architecture in mind.
A general model given by Eq. (2) can be studied, but the major interest exists for two spe-
cific cases: the isotropic model of Eq. (1), and the XY model, defined by J, = y = J and
Jz = 0. The classical 2D XY model exhibits a finite temperature phase transition to a state
with no long-range order, but with a diverging correlation length. This is the celebrated
Kosterlitz-Thouless transition [10]. It is interesting to examine the effects of quantum
fluctuations on a subtle transition like this one, particularly in the light of controversial
results coming from numerical studies [11] and a lack of reliable analytical results for the
quantum model [12]. Large-scale simulations were carried out for these two models. A
rather comprehensive picture of their finite temperature behavior is obtained. The contact

with current theoretical and experimental understanding is successfully established.

5

Chapter 2 is devoted to a discussion of the spin wave picture, which is the nat-
ural perturbation-theoretic framework to study spin models. It is used to formulate a
qualitative low temperature picture of the system. The physical quantities useful in char-
acterization of spin systems are defined. Chapter 3 is an exposition of the Suzuki-Trotter
transformation [13], which is the essential part of the method used in this work to study
the model nonperturbatively. The implementation of this formalism to the two spin mod-
els is discussed in detail, with particular emphasis on the effect of conservation laws on
the Monte Carlo updating procedure. The algorithmic issues regarding spin packing and
parallelization are given in Chapter 4. The methods of measurement of interesting physi-
cal quantities and technical details of the simulations are given in Chapter 5. The results
and the comparison with experiment and theory for the Heisenberg model are presented
in Chapter 6, and in Chapter 7, for the XY model. Appropriately commented parts of the

source code are given in the Appendix.

6

References
[1] J. G. Bendorz and K. A. Miiller, Z. Phys. B64, 189 (1986).

[2] P. W. Anderson, Science 235, 1196 (1987); T. M. Rice, Z. Phys. B 67, 141 (1987)

and references therein.

[3] G. Shirane, Y. Endoh, R. J. Birgenau, M. A. Kastner, Y. Hidaka, M. Oda, M. Suzuki,
and T. Murakami, Phys. Rev. Lett. 59, 1613 (1987); D. Vaknin, S. K. Sinha, D. E.
Moncton, D. C. Johnston, J. M. Newsam, C. R. Safinya, and H. E. King, Jr., Phys.
Rev. Lett. 58, 2802 (1987); K. B. Lyons, P. A. Fleury, J. P. Remeika, A. S. Cooper,

and T. J. Negran, Phys. Rev. B 37, 2353 (1988).

[4] Y. Endoh, K. Yamada, R. J. Birgenau, D. R. Gabbe, H. P. Jenssen, M. A. Kastner,
C. J. Peters, P. J. Picone, T. R. Thurston, J. M. Tranquada, G. Shirane, Y. Hidaka,

M. Oda, Y. Enomoto, M. Suzuki, and T. Murakami, Phys. Rev. B 37, 7443 (1988).

[5] G. Aeppli, S. M. Hayden, H. A. Mook, Z. Fisk, S-W. Cheong, D. Rytz, J. P. Remeika,

G. P. Espinosa, and A. S. Cooper, Phys. Rev. Lett. 62, 2052 (1989).
[6] See for example, I. Affleck, Phys. Rev. B 37, 5186 (1988).
[7] N.D. Mermin and H. Wagner, Phys. Rev. Lett 17, 1133 (1966).
(8] H.-Q. Ding and M. S. Makivic, Phys. Rev. Lett. 64, 1449 (1990).

[9] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Prob-

lems on Concurrent Processors, Prentice Hall, Englewood Cliffs, New J ersey (1988).

[10] J.M. Kosterlitz and D.J. Thouless, J. Phys. C6, 1181 (1973); J.M. Kosterlitz, J.

Phys. C7, 1046 (1974).

7

[11] H. De Raedt and A. Lagendijk, Phys. Rev. B33, 5102 (1986); E. Loh, Jr., D.J.

Scalapino and P.M. Grant, Phys. Rev. B33, 5014 (1986).

[12] J. Rogiers and R. Dekeyser, Phys. Rev B 13, 4886 (1976); D. D. Betts and M.
Plischke, Can. J. Phys. 54, 1553 (1976); T. Tatsumi, Prog. Theor. Phys. 65, 451

(1981); H. Takano and M. Suzuki, J. Stat. Phys. 26, 635 (1981).

(13] M. Suzuki, Prog. Theor. Phys. 56, 1457 (1976); M. Suzuki, J. Stat. Phys. 43, 883

(1986).

Chapter 2

The Spin Wave Theory

If the magnitude of the spin § is increased, so that the product JS? is kept fixed
at a finite value, while the quantum mechanical operator S/S tends to a classical unit
vector €2, we arrive at the classical analog of QAHM. This procedure implies that 1/ is

the natural expansion parameter as one goes from the classical to the quantum limit.

The ground state is trivial for the classical counterpart. The square lattice is a
bipartite lattice, i.e. we can identify two sublattices A and B, such that nearest neighbors
of a site in A belong to sublattice B, and vice versa. The classical energy is minimized by
the spin configuration where all spins on sublattice A point in a single direction, while the
spins in B are also aligned but in the opposite direction. This is the, so-called Néel state.
The system has finite sublattice magnetization, which, in this case, has maximum possible
value per spin, N = §. As soon as the quantum parameter 1/ is turned on from 0, this is
not an eigenstate of the quantum mechanical Hamiltonian. The situation is quite different
in the ferromagnet, where the effective exchange J is negative. The spins of a ferromagnet
in the ground state are all aligned in the same direction, yielding the maximum possible
value for magnetization per spin, M = §. The ferromagnet is frozen at M = S for any

value of 1/5.

Knowing that the Néel state is no longer the ground state, the natural question
is how different is the true ground state from the Néel state as 1/.5 goes from zero to

the extreme quantum limit, 1/§ = 2. In 1D, as soon as 1/S is turned on, the average

9

sublattice magnetization, N, becomes zero immediately [1]. Thus, the ground state is
qualitatively different from the Neel state, when quantum fluctuations are included. In
2D, for any bipartite lattice, there exists a rigorous proof that the ground state is Néel
like, i.e. N is finite, for sufficiently large spins, § > 1 [2]. Unfortunately, the proof is not
extended to S = 1/2. Assuming that the ground state is ordered, a natural perturbation
theoretic framework is provided by the spin wave picture, where the system is mapped
onto a collection of weakly interacting quasiparticles, after the quasi-harmonic precession

of spins around the direction of ordering is quantized [3].

The situation is much more problematic in the absence of a Néel-type picture to begin
with, since there are no reliable analytic methods to treat strongly interacting systems.
In the absence of classical order in the ground state, the nature of excitations is unclear,
the continuum limit of the theory is questionable, and subtle topological effects may alter
the picture qualitatively [4]. It is possible that these topological considerations lead to
qualitatively different pictures for integer and half-odd integer spins [4,5], particularly if
the Lieb-Shultz-Mattis theorem [6], proved in 1D, can be extended to 2D [4]. By now, there
is overwhelming numerical evidence that the ground state of § = 1/2 QAFM possesses
Néel-type order [7-9]. To drive the system away from classical ordering, one must introduce
frustration in some form to amplify fluctuations, for example through next nearest neighbor

coupling.

Spin wave theory attempts to construct a perturbation expansion in powers of 1/,

around the classical Néel state defined by:

. __) =85 ifie€ A4
S"‘{+S if i € B; (2.1)

There is a class of transformations which establish correspondence between the spin op-

erators and a set of boson spin deviation operators [10]. On sublattice A, one applies the

10
operator transformation:
s =v28al(1 - afa;/(25))°
S5 =v25(1 - ol a:/(28))'*a; (22)
Si=-85+ aja,-

where the operators aj and a; satisfy the usual boson commutator relations. On sublattice

B, one introduces another set of bosonic operators bj and b;, via the transformation

SF =v25(1 - b]b;/(28))'~°b;

S5 =v25b] (1 - b1b;/(28))° (2.3)
§7 =5 - blb;

Numbers o and B may be chosen independently. The famous Holstein-Primakoff
(HP) [11] transformation corresponds to @ = 8 = 1/2, while Dyson-Maleev [12] formalism
corresponds to & = 1, 3 = 0 (or vice versa). HP formalism preserves the mutual adjoint
relationship between spin raising and lowering operators, at a price of introducing the
square root of an operator. When expanded in a Taylor series, the square root leads
to an infinite number of terms in the Hamiltonian. In DM formalism the transformed
Hamiltonian is not hermitian, but it has only terms which are quadratic and quartic in bose

operators. This property frequently leads to a better controlled behavior in perturbation

theory [13].

Mapping onto a bosonic Hamiltonian is certainly advantageous because of simple
commutators, which lead to simple rules for constructing perturbation theory, based on
Wick’s theorem [14]. The problem is that the ordinary Fock space is much larger than the

spin space. It can be divided into two parts: (1) n; < 25 and (2) n; > 25. To dispose of

11

unphysical boson states, corresponding to the occupation numbers n; > 25, one introduces

the projectors onto the physical subspace [15]

_Jni> ifn; <28
P(S)ini >= {0 if n; > 28 (2:4)

which may be expressed in terms of bose operators

28
P(S)=> P,
Py = i (_“ﬁ_)i(af)jaj (2.5)
=0 7

1
Pn :H(af)”Poa”

The “restricted” bose operators a(.S) and af(S) may be used in place of ordinary bose

operators:

a=a(S)=aP(5) af = af(s) = P($)dl (2.6)

to achieve the exact mapping between spin and boson Hilbert spaces. When the projectors
are expanded, new tefms appear in the Hamiltonian, which go under the name of “kine-
matical” interaction [12]. It was shown by F. J. Dyson [12] that, for a ferromagnet, there
exists a gap between the physical states and lowest lying unphysical state. This justifies
the approximation, common for both ferromagnets and antiferromagnets, which neglects
the effects of kinematical interactions by replacing the projector with unity: P(S)~1. An
analogous proof does not exist for antiferromagnets, but the approximation is justifiable
as long as (N;) = (a}L a;) < 28. This is certainly true for large spins and low temperatures,
but cannot be known a priori. This condition, if satisfied, then serves as a check of the

self-consistency of a calculation.

12
The original QAFM Hamiltonian becomes, using the DM formalism, neglecting the
kinematic interactions, and Fourier transforming the boson operators [10]:

H=Hy+V

Kyl
Hy =5 Xq:«bq(l +7401)¥q (2.6)

K .
v :ﬁ Z "/)Ih'awjl‘z ,,BV ﬁ75(q1’q2’q3, q4)¢QS17¢Q4,5

41929394

where ¢l = (a:g,b__q) is a two-component operator, o; is a Pauli matrix, and I is the
identity matrix. For a lattice with coordination number z, K is defined as K = 2J28. If

the coordinates of nearest neghbors of a lattice site r; are denoted by r;, then the Fourier

transform of the unit cell is

1 iofes.
Tq =7 D el (2.7)
J

The quadratic part of the Hamiltonian, Hp, corresponds to a system of noninteracting
bosons, i.e., spin waves. Let us, for a moment, leave aside the interaction part, V. The

noninteracting time-ordered Green’s function is simply:
G%(q,w) = [woz — K(I 4 7401)]7! (2.8)

Its poles give the spectrum of elementary excitations: e¢(q) = K,/1 - 7Z. Due to the
symmetry under the interchange of sublattices A and B, there are 2 degenerate spin
wave modes. For small momenta, the spectrum is linear: lim,—¢ €(q) = cg, where the

noninteracting spin wave velocity is ¢ = 2S\/§Ja/h for a square lattice with lattice

constant a.

The noninteracting spin wave Hamiltonian Hy is easily diagonalized via the Bogoli-

ubov transformation [16]:

oq = (I cosh(é atanh(yq) — 01 sinh(% atanh(vq))¥q (2.9)

13

where the new bose operator set qf>jl = (al,ﬂ_q) is just a rotated original one. The

Hamiltonian becomes

1
Ho =3 geqczsi«»q (2.10)

This Hamiltonian is not normal-ordered. When rewritten explicitly in terms of o and
[operators, and casting the operators in normal order, the spin wave Hamiltonian will
include, in addition to quartic terms, a constant termn which represents the shift of the

classical energy even when no spin waves are present:
1
Ho = Eo + 5 Zeq(al;aq + 6164 (2.11)
a

where Fop = 1/2 Zq €q. This term comes entirely from zero-point motion, and is a trivial

example of renormalization effects due to quantum fluctuations.

Another quantity which is renormalized even at the level of noninteracting spin
waves is the staggered magnetization, N. In the spin wave ground state, it is equal to
N=(5)=5- (ajai) =5- (b:-[bi) = § — 0.197 for the square lattice and spin § = 1/2
[17]. The fact that this renormalization is finite hints that the assumption of Néel order
in the ground state is not unjustified, but certainly does not prove it. It is also easy to
calculate the uniform magnetic susceptibility x, in the direction perpendicular to the

sublattice magnetization (in units were guph = 1): x. = h*/8Ja?.

One of the most important properties that characterize the ground state is the spin
stiffness, which measures the rigidity of the spin assembly when a slow twist is imposed
in the direction of the order parameter. For a system of arbitrary dimensionality, and for
any temperature, it can be rigorously defined in terms of static equilibrium properties in
the following manner [18]: Suppose that a system is confined to a long cylinder of cross
sectional area A and length L. Introduce the “wall” potential at one end of the cylinder,

which forces the order parameter to align with phase angle . At the other end of the

14
cylinder, we imagine two possibilities: we may introduce “wall” potential that will enforce
a phase angle 8 or —. The first one will give a uniform system, the second one will induce
a slow twist in the phase of the order parameter as one goes from one end of the cylinder
to the opposite one. If we denote the free energy in the uniform case by F(+46,+86), and
the free energy in the twisted case by F'(46,—6), then the spin stiffness ps and the helicity
modulus T are defined by:
2

m

52)F(+6,-6) — F(+6,+0)] (2.12)

ps(T) = T = limA,L_,oo(-éaLZ—A

For calculational purposes, it is more convenient to use a different definition [19].
We imagine that a long wavelength twist of wave number kg is introduced in the order
parameter. Then, the thermodynamic limit is taken first. The free energy will depend on
both temperature and ky. Since it cannot depend on the “handedness” of the twist, to
lowest order the free energy will have a term o k2. The spin stiffness then may be defined
as:

2 0 F(T, ko)

m
ps(T) = =T = limy, 2.13
() ﬁ2 0—0 akg ()

It is easy to show that, for the spin wave Hamiltonian Hy, p, = ¢?xy = JS2.

So far the interaction part V of the Hamiltonian (2.6), which is of order 1/5, was
neglected. It leads to scattering and finite lifetime of the spin waves. When treated in
perturbation theory, it leads to renormalization of the physical quantities defined above,
but does not change the spin wave picture drastically. Spin waves remain relatively well-
defined excitations, especially the long wavelength ones. In 3D, a tedious analysis [13]
of the most important contributions to the self energy ¥(q,w(q)) on resonance, at low
temperatures leads to the decay rate which scales as 74 o< k%, while the dispersion, although
renormalized, remains linear at low momenta, €; o k. The situation is not so clear in 2D.

Renormalization of a physical quantity due to spin wave interactions can be expressed as

15

a series in powers of 1/S. Its convergence properties are not well understood. The series
is probably asymptotic and is missing out terms like e=*5. It is imperative to calculate

quantities by alternate methods, particularly for small spins.

Whatever the method of calculation, as long as the spin wave picture persists, the

effects of quantum fluctuations can be expressed by the multiplicative renormalization

factors [20]:
= 28 \;?J a

K’ (2.14)
XL "WZX(S)

Z.(5)

Ps =J52 Zps (S)

To lowest nontrivial order in spin wave theory [17]

Z, =1+ 0.158/25 + O((1/25)?)

(2.15)

Z,(8) =1 - 0.552/25 + 0((1/25)%)

and, using the hydrodynamic relation p, = c®x [20], we have
Z,,(8) = JS*(1 +0.158/25)%(1 — 0.552/25) (2.16)

Singh and Huse [7] have developed a method that goes far beyond spin wave theory
to calculate the ground state properties. They start from the Ising limit of the model,
i.e. they set J, = J, = 0. The ground state is Néel state again. Then J, = J, = J;
is turned on and a perturbation theory is based on the expansion in powers of J;. To
reach the isotropic Heisenberg limit J; = J, = J they do a Padé extrapolation. They
obtain the following numbers: Z. = 1.18 £ 0.02, Z, = 0.52 4+ 0.03 and Z,, = 0.72 £ 0.02.
For the staggered magnetization they find N = 0.302 & 0.007. The spin wave results
agree reasonably with these values: Z, = 1.158, Z, = 0.448, Z,, = 0.60 and N = 0.303.
It is interesting that the O(1/S) term in the spin wave expansion of N is identically

zero [17]. The remarkable agreement with the result of Singh and Huse, which is also

16
verified by Monte Carlo [9] and variational calculations [21], suggests that the next term
may be 0 as well. So far, there is a body of evidence, coming from numerical studies,
like zero and finite temperature Monte Carlo [9], exact diagonalizations for small lattices
[8] and variational calculations [21] that the ground state of QAFM is ordered and can
be adequately understood within the spin wave picture. Of course, there are quantities
that depend on the details of spin wave spectra and lifetimes, particularly near the zone
boundary, like Raman scattering intensities [22], where it is essential to go beyond the

spin wave theory.

The extension of these results to finite temperatures is not quite straightforward.
The major obstacle is the fact that there is no ordered state to begin with. The Mermin-
Wagner theorem precludes the possibility of having finite staggered magnetization at any
finite temperature. But the existence of long-range order in the ground state suggests
that spins at nonzero temperatures become correlated over large and larger distances as
temperature is lowered [20,23]. It makes sense to talk about long short-range order. On
length scales shorter than the correlation length £(T'), it is impossible to distinguish it
from real long-range order. Thus, the spin waves which satisfy k¢ > 1 (i. e, A < €),
are still going to be well-defined excitations. They should not interact strongly at low
momenta. However, as k£ ~ 1, they become overdamped, and the behavior becomes
diffusive as k€ — 0. Since the order parameter is not conserved, at k¥ = 0, the relaxation
rate is finite, and probably not very different from k& = £~!. This damping rate should then
set the frequency scale at low temperatures. The renormalization group analysis suggests
that the spin wave running coupling constant in 2D grows as the length scale increases,
leading to an increase of multimagnon excitations. Furthermore, the excitations are not
Goldstone bosons as k — 0, since the finite correlation length necessarily implies a gap in

the spectrum [23]. As temperature is lowered, the gap goes to zero since the correlation

17

length diverges, recovering the usual 7' = 0 spin waves, which are Goldstone bosons arising

from the broken rotational symmetry of the Néel state.

To verify the assumptions behind this qualitative picture we need a nonperturbative
calculation of static and dynamic spin correlation functions. Finite temperature Monte
Carlo methods based on the Suzuki-Trotter transformation [24] provide a convenient non-
perturbative framework. The Suzuki-Trotter transformation is a powerful method to treat
nonfrustrated quantum spin systems. It is a first principles calculation on the model, and
the systematic errors are easily controlled. The next chapters are devoted to the exposition
of the method and the results. The numerical results are then compared with perturbative

approaches [20,23,25] based on the spin wave picture and neutron scattering experiments

[26].

18

References

[1] E. H. Lieb and D. C. Mattis, in Mathematical Physics in One Dimension, (Academic

Press, New York, 1966), Ch. 6.

[2] E.J. Neves and J. F. Peres, Phys. Lett. 114A, 331 (1986); T. Kennedy, E. H. Lieb,

and B. S. Shastry, J. Stat. Phys. 53, 1019 (1988).
[3] P. W. Anderson, Phys. Rev. 86, 694 (1952).
[4] I. Affleck, Phys. Rev. B 37, 5186 (1988).
(5] F. D. M. Haldane, Phys. Rev. Lett. 61, 1029 (1988).
[6] E. Lieb, T. Schultz, and D. Mattis, Ann. Phys. (N. Y.) 16, 407 (1961).

[7] R. R. P. Singh, Phys. Rev. B 39, 9760 (1989); R. R. P. Singh and D. A. Huse, Phys.

Rev. B 40, 7247 (1989).

[8] J. Oitmaa and D. D. Betts, Can. J. Phys. 56, 897 (1978); J. E. Hirsch and S. Tang,

UCSD preprint.

[9] J. D. Reger and A. P. Young, Phys. Rev. B 37, 5978 (1988); M. Gross, E. Sanchez-
Velasco, and E. Siggia, Phys. Rev. B 39, 2484 (1989); T. Barnes and A. S. Swanson,

Phys. Rev. B 37, 9405 (1988).
[10] W. L. Ridgeway, Phys. Rev. B. 25, 1931 (1982).
[11] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940);

[12] F. J. Dyson, Phys. Rev. 102, 1217 (1956); 102, 1230 (1956); S. V. Maleev, Sov.

Phys., JETP 64, 654 (1958).

19
[13] A. B. Harris, D. Kumar, B. I. Halperin, and P. C. Hohenberg, Phys. Rev. B 3, 961

(1971).

[14] J. W. Negele, H. Orland, in Quantum Many-Particle Systems (Addison Wesley, New

York 1988).

[15] D. C. Mattis, in The Theory of Magnetism, (Harper & Row, New York, 1965), Ch.

6; P. B. Weichman, Ph.D. Thesis, Cornell University, 1985.
[16] N. Bogoliubov, J. Phys. USSR 11, 23 (1947).
[17] T. Oguchi, Phys. Rev. 117, 117 (1960).
[18] M. E. Fisher, M. N. Barber, and D. Jasnow, Phys. Rev. A 8, 1111 (1973).
[19] J. Rudnick and D. Jasnow, Phys. Rev. B 16, 2032 (1977).

[20] S. Chakravarty, B. I. Halperin, and D. Nelson, Phys. Rev. Lett. 60, 1057 (1988);

Phys. Rev. B 39, 2344 (1989).
[21] D. Huse and V. Elser, Phys. Rev. Lett. 60, 2531 (1988);

[22] R. R. P. Singh, P. A. Fleury, K. B. Lyons and P. E. Sulewski, Phys. Rev. Lett. 62,

2736 (1989).
[23] M. Takahashi, Phys. Rev. B. 40, 2494 (1989).
[24] M. Suzuki, Prog. Theor. Phys. 56, 1457 (1976).
[25] A. Auerbach and D. P. Arovas, Phys. Rev. Lett. 61, 617 (1988).

(26] Y. Endoh, K. Yamada, R. J. Birgenau, D. R. Gabbe, H. P. Jenssen, M. A. Kastner,
C. J. Peters, P. J. Picone, T. R. Thurston, J. M. Tranquada, G. Shirane, Y. Hidaka,

M. Oda, Y. Enomoto, M. Suzuki, and T. Murakami, Phys. Rev. B 37, 7443 (1988).

20

Chapter 3

Computational Method

3.1. The Suzuki-Trotter Transformation

The Suzuki-Trotter method [1] is based on M. Suzuki’s generalization of the famous

Trotter formula [2] for exponential operators:

A+B — lim (eA/m . B/m)n (3.1)

n—oo

€

In statistical physics, one is interested in evaluating the trace of the density operator,
p = exp(—BH), where 8 = 1/kpgT is the inverse temperature and H is the Hamiltonian of
the system. The first step towards obtaining a controlled approximation of this operator
is to write the exponential as a product of exponentals with “small” arguments. In other
words, thinking of p as a propagator in imaginary time, and of 3 as of the imaginary time
interval, one breaks the whole time interval into a large number of short time slices, and
rewrites the finite time propagator as a product of large number of short time propagators.
This is the essential and exact step behind any path integral formulation. In the next step,
one approximates the short-term propagators in such a manner that the matrix elements
are readily evaluated. There is a considerable freedom in choosing the approximation, but
they can be classified according to their error dependence on the number of time slices M,

for large values of M. This number is commonly known as the Trotter number.
This can be formally written as [1]:

e PH = (e PHIMM — i s, oo (Fu]-BH/MDM (3.2)

21

where the n-th order approximant f, satisfies:

1
ePHIM = f[~BH/M] + (<) (33)
This relation then implies for the density operator:
- 1
e PH = (ful-BH/MDM + Ol5=1) (3.4a)

and the partition function:

1

Z = Tre PH = Tr(f [-BH/M)M + O(37=1) (3.4b)
It can be shown that for the exponent of a sum of operators [1}:
P P
A A= (3.5)

i=1 j=1
It is not difficult to generate much higher order approximants. For example, one can

formally obtain any large order approximant [3] using
Fas1(A/M, B/M) = eAIMB/MC/M™ ... (Cn/M (3.6)

if the coefficients are chosen in the following manner:

1 1
Cz = 5[B,4], Cs=3[Cs,A+2B],--- (3.7a)
or, in general,
1,07 _ye- - -AB -
T ol ATIC0m1 L gm M C2mABmMAATB)Y| o (3.7)

One additional method of generating higher order approximants is borrowed from high

temperature expansions [4], i.e.,

n

fal-BH/M] = 3 -0 H/ M (35)

k=0

22

Since the expression on the right-hand side involves different powers of volume, it is better

to go to the cumulant expansion [5], i.e., make a resummation of the following form:
(fal=BH/M))pq = exp(fiP[-BH/M]) — (1 - &pq) (3.9)

It is easy to check order by order that the matrix elements of the new approximant are:

£P1A] =< plAlg >

1 , (3.10)
A4 = 214+ 5(< pl4%|g > — < plAlg >7)

and similarly for higher order terms. It is known [6] that the convergence behavior of this

type of approximant is worse for large system sizes, than if the Hamiltonian is broken into

pieces and then Eq. (3.5) is used. For that reason, we used a method based on Eq. (3.5).

It is fortunate that the traces of decomposed operators, under rather general condi-
tions, have better convergence properties than what Eq. (3.4) suggests. If the approximant

fan({A;}) of the type (3.5) satisfies the condition:
F{=AD7 = f {47 (3.11)

which is certainly true if the operators A; are symmetric, A;—r = Aj, then the approximant

for the partition function is an even function of M [2]:
Zn(M) = Tr{fo{(A;/ M)V = Zo(-M) (3.12a)

Therefore,

Z = Zon(M) + O(1/M*™) (3.12b)

A very similar result is valid if one calculates average values of operators which satisfy

QT = Q, namely

<Q>=Qum(M)+0(1/M?*™) (3.13)

23

where

Qan(M) = Tr(QUfan({A; M)/ Z2n(M) (3.14)

Therefore, the systematic error of using a finite value of M, which is what one has to
do in practice, is of the order of 1/M? [2,6]. The exact result then may be obtained by

calculating the quantities of interest for a few large values of M, and then extrapolating

to M — oo, using the formula:
QM) =Q(x)+a/(MT) +b/(MT)* + ... (3.15)

where (J(o0) is the correct value.

To use formula (3.5) we break the Hamiltonian into 4 pieces [1], H = E;l H;, each
containing a commuting subset of nearest neighbor bonds on a square lattice as shown
in Fig.la. H; contains odd bonds in x-direction, H, contains odd bonds in y-direction,
Hj3 contains even bonds in x-direction, and H, contains even bonds in y-direction. The
subHamiltonians H; themselves do not commute, but it is important that their constituent

bonds do. Then, to obtain the partition function, we apply the results (3.2) and (3.5):
4
Z = Tre /T = Te(em ™)™ = Tr lim (J]e27H)M (3.16)
M—oo =1

where M is the Trotter number and A7 = /M. After 4M resolutions of unity are inserted
between adjacent exponentials, we obtain:
Z = lim > (Cile™™|C;)(Cale™ 47| Cy) - - (Camale™27H41C) (3.17)
{c}
The intermediate states, C;, which are chosen to diagonalize S,, may be regarded as
belonging to different time slices. Therefore, the original 2D quantum system of size
LxL is mapped onto equivalent 3D classical system of size LxLx4M, where the labels of

intermediate quantum states, being ordinary numbers, now serve as classical degrees of

24

freedom. Since subHamiltonians involve subsets of bonds that do not share common spins,
the exponential exp(—BH;/M) decomposes into product of exponentials involving only 2
spins on a bond [7]. Hence, with this approximation of the short-term propagators one
has to solve only a two-body problem, which is, of course, trivial. The Hilbert space of a

bond has 4 states, and we have to calculate 16 matrix elements of the operator:

- z 5% vsy zg%
pij=e AT(Js ST S7+JySY S} 4+, S757) (3.18)

between two adjacent time slices labeled by 7 and 7 + 1:

z

pii (T, +1) = (87,55 1pis| 574157 741) (3.19)

where spatial indices i, j correspond to the particular bond. The four spin labels associated
with this transfer matrix element may be identified with four classical spins sitting on the
corners of an interacting 4-spin plaquette, which is then the basic building block of the
interaction in the equivalent classical system. The “local density matrix” W = p;;, which,

in this context is the “local Boltzman factor,” has the following nonzero matrix elements

[7.8]:
Wit = e PP = A1+ X3)

W____= e~ PEQ) — Al + X3)
Wit = e P73 = X1 - X3)
W_y—4 = e PPW = A1 - X;)
(3.20)
Wi _+= e~ BEG) = /\(X1 + X2)
W_+ +- = e‘ﬁE(S) = /\(Xl + Xg)

W++,__ = 6—ﬁE(7) = /\(X1 - X2)

W__ 14 = e PE®) = \(X; - X3)

’

25

where “+” stands for spin up, “—” stands for spin down, and:
A = cosh(K) cosh(K,) cosh(K ;) — sinh(K ;) sinh(K) sinh(K,)
_ tanh(K;) — tanh(K,)tanh(K,)

X1 =T anh(K,) tanh(K,) tanh(K.) (3.21)
. _ Ja:,y,z
Koz =310 ,T

and X, and X3 are obtained by cyclic permutations in x, y and z.

We are interested in the models which have higher symmetry than the general
anisotropic model. In the models with xy and full rotational symmetry, S, is conserved.
Because of that, it is easy to see that X; = X3, and only 6 out of 16 spin configurations of
a 4-spin plaquette have nonzero Boltzmann weights, i.e., energies E(7) and F(8) become
infinite. In the case of XY model, it is sometimes advantageous to work in the basis which

diagonalizes Sy. Since Sy is conserved only modulo 2, there will be 8 nonzero matrix

elements.

In order to interpret the matrix elements as local Boltzman factors, it is necessary to
render them all real and positive. It is easy to see that for the antiferromagnet, the matrix
elements corresponding to energies E(5) and E(6) are negative. These are the off-diagonal
matrix elements, and they bring the signature of quantum fluctuations. The problem is
easily solved for a bipartite lattice. To obtain positive matrix elements, it is sufficient to
perform a cannonical transformation on one of the sublattices, say B, [9]:

H=UHUY = H = 7Y (-5757 - §¥5Y + 25757) (3.22)

(i5)
where the unitary operator U=exp(i7 } ;.5 S7) maps §° = —5% and S¥ = —SY. The
energies of the allowed spin configurations for the Heisenberg antiferromagnet are given

by:
BE(l)=BE(2)= K = 1/4MkgT

BE(3) = BE(4) = —K + In(cosh(2K)) (3.23)

BE(5) = BE(6) = —K + In(sinh(2K))

26
The negative sign of local Boltzman factors cannot be removed in the same fashion for
a nonbipartite lattice, or a Hamiltonian that couples antiferromagnetically spins both
between sublattices and within a sublattice, as is the case with the Hamiltonian having NN
and NNN interactions. This is the major obstacle to performing simulations of frustrated
spin models. It is presumably possible to find a representation that would not involve
this problem, but it is likely that some of the features of these simple representations that

work for nonfrustrated systems, like locality, are going to be lost.

Ferromagnetic and antiferromagnetic XY models are unitarily equivalent, through
the cannonical map (3.22). The corresponding energies for the ferromagnetic XY model

are:

BE(1) = BE(2) = 0
BE(3) = BE(4) = In(cosh(2K)) (3.24)
BE(5) = BE(6) = In(sinh(2K))

The final result of the Suzuki-Trotter decomposition is an equvalent 3D classical
system of Ising spins with rather unusual interactions. It may be regarded as a collection
of 4-spin interacting plaquettes, denoted by shaded squares in Fig. 1b. Although we
started from a highly isotropic quantum system, the equivalent classical system is very
anisotropic. The couplings in the classical system also depend on temperature and Trotter

number.

3.2. The Monte Carlo Method

The equilibrium averages of the equivalent classical system are evaluated in a stochas-

tic computer simulation using the Metropolis algorithm [10]. If a spin configuration of the

27
whole system is denoted by 2, its energy by E(2), and the quantity we are interested in

is Q(82), we want to evaluate many-body integrals of this form:

DQO(N)e—LE)
<@ > [D20
[DQe~PE)

(3.25)

Major contributions to the integral come from relatively small parts of the otherwise huge
phase space. Therefore, to evaluate the multidimensional integral (3.25) efficiently, it is
essential to sample different regions of phase space according to their contribution to the
partition sum, i.e., to perform importance sampling. If a discrete set of N phase space
points Q,, v =1,..., N, is drawn according to its probability of occurring in the partition

sum, P(2) = exp(—BE(S2)), the integral (3.25) is approximated by:
1 X
<Q>mc= N;Q(Qu) (3.26)

and the error can be controlled by increasing the size of the sample, since, for large sample

sizes, the central limit theorem assures that

< Q >mc=<Q >+0O(N~?%) (3.27)

The method of generating the equilibrium distribution is borrowed from kinetic the-
ory. A system at equilibrium has no memory of its history prior to equilibrium, and its
equilibrium is independent of the details of dynamics, as long as the dynamics fulfills the

detailed balance condition:
P(Q)W (2 — Q2) = P()W (2 — Q1) (3.28)

and is ergodic. One constructs a random walk through the phase space, which is essentially
a Markov chain, so that the conditions of detailed balance and ergodicity are satisfied.
The distribution of points approaches the fixed point, the equilibrium distribution, after a

sufficiently long relaxation time, which depends on the dynamics. In practice, one starts

28
from an arbitrary initial spin configuration, generates trial moves (updates) in such a
manner that whole of the phase space can be explored, and accepts or rejects the moves
according to the chosen dynamics W. An experimentally determined number of steps
at the beginning of a run are discarded to allow the system to thermalize, and then the
measurements are taken. The constraints on the dynamics do not specify it uniquely. The

one we used is the celebrated Metropolis algorithm:

exp(—B(E(Q:) — E(1)) if E(22) 2 E($)

Wi =) = { 1 if E(2:) < E() (3.29)

3.3. The Updating Procedure

Special care has to be exercised to ensure ergodicity for quantum problems {11,12].
In particular, we must not. violate the quantum conservation laws. For an ordinary Ising
system, the updating of spin configurations is trivial. Any spin configuration can be
achieved through a sequence of one spin flips. This is not true for the equivalent classical
system (3.17). Actually, a single spin flip always generates a configuration with infinite
energy. A look at the matrix elements (3.20) reveals that an interacting 4-spin plaquette
can have either 2 or 4 spins updated at a time. A 4-spin flip can always be achieved as
a product of 2 2-spin flips on different edges of the plaquette. A 2-spin flip on a diagonal
of the plaquette is a product of 2 2-spin flips, one of which is on a horizontal edge and
the other on a vertical edge. Thus, any allowed update can be achieved as a sequence of
updates of pairs of spins on plaquette edges. Since each spin is shared by 2 plaquettes, it
follows immediately that one has to flip a closed loop of spins. This would be sufficient in
a case where there are 8 nonzero matrix elements (e.g., XY model in S, representation).
In the Heisenberg case, the conservation of S, imposes the following constraints. If two
spins on a horizontal edge of an interacting plaquette are being updated (both spins on

the same time slice), the conservation law requires that the two spins be opposite. If two

29

spins on a vertical edge of an interacting plaquette are involved, one may update the spins

only if they are both up or both down.

The ergodicity requirement then reduces to the problem of generating all possible
closed loops. This could be done stochastically, in principle, by generating loops of arbi-
trary shape and length on a computer, but it is not efficient. A better way to generate
all possible closed loops under these constraints is to exponentiate a set of 4 types of
elementary updates which mimic the generators of the fundamental homotopy group on
a torus, with the conservation law built in. The toroidal geometry is the consequence of
spatial periodic boundary conditions (to preserve translational invariance) and periodic

boundary conditions in the time direction (required by the trace operation).

We have fwo types of local updates and two types of global updates. The local
updates are homotopic to the unit loop. The simpler local update (“space” flip) is shown
in Fig. 2. One searches for a noninteracting loop (“space” loop), bounded by the edges
of four interacting plaquettes. A “space” loop belongs to a single time slice. Due to the
constraint, one may attempt to flip the four spins on a “space” loop (according to the
Boltzmann weight in Eq. (3.23) or (3.24)) only if they are in a Néel configuration, as

shown in Fig. 2.

Another local update (“time” flip) is shown in Fig. 3. It involves a noninteracting
loop, extending in the time direction (“time” loop), bounded by eight interacting plaque-
ttes. There are eight spins involved in the flip. Again, the flip is attempted only if the
spins are in a Néel configuration, i.e., the four spins on one vertical edge are all the same

and opposite from the four spins on the other edge, as shown in Fig. 3.

The global update in time direction is shown in Fig. 4. One searches for a straight

line of all up or all down spins, and flips them all. This move is responsible for generating

30

fluctuations of the total magnetization. The efficiency of this type of update depends on
how many straight lines of up (or down) spins are available. Naively, one would expect that
it is increasingly difficult to find such lines as temperature is lowered and number of time
slices increased. This is not true, however, since the spatial correlation length grows faster
than the system width in the “time” direction, L;. Hence, at low temperatures, in the
renormalized classical regime, temporal correlation length always saturates around &; ~ L;.
Indeed, we found that the straight lines are abundant enough at all temperatures we used
in the simulations. The plaquette configurations corresponding to off-diagonal matrix
elements (E(5), £(6)) are energetically costly in a Néel-like environment, their probability
being « 1/M for large Trotter numbers. However, once the Néel environment is “melted”
a bit by these fluctuations, they are more likely to be accepted. The relative abundance
of straight lines shows a slight increase with size for very small systems (L < 12), in
agreement with the preceding arguments, since the singlet fluctuations are stronger for
smaller systems. Also, once a straight line is found, it is feasible to accept a flip, because
for large Trotter numbers the flip probability behaves as (e_“/M)M = e~ %, where a
is a finite positive number. This enabled us to obtain correct results for the uniform
susceptibility, which we calculated from magnetization fluctuations generated by these

straight line flips.

In Fig. 5a, the other type of global update, extending in either spatial direction, is
shown. Assuming that the numbering of time slices starts from zero, let us choose two
adjacent time slices, denoted by ¢; and ¢;, such that ¢; is even and ¢, is odd. Consider
now a pair of neighboring straight lines, belonging to ¢; and ¢, respectively, such that they
run in the y direction, i.e., z(t1) = z(t2) = const. It is easy to see that this pair consists
of segments that involve only edges of interacting plaquettes. The same is true for a pair
y(t1) = y(t2) = const, but in this case, the lower time slice #; must be odd and the upper

one t must be even. Therefore, global flips in the z and y directions are interleaved.

31
Furthermore, to satisfy the conservation law, the two lines must have the same, Néel-like

spin configurations, as shown in Fig. 5a.

By employing the connection between spin and boson algebra discused in Chapter 2,
this updating procedure can be given a useful alternative interpretation. Using a projector
P;(0) onto a state with 0 particles on site i, we defined the restricted Bose operators a; =
P;(0)b;, a:[= bjPi(O) which vanish outside the subspace with 0 or 1 particle. After the
identification |1 >= |+ > and |0 >= |- >, one has the equivalence al = o_anda= o4,

where o_ and o, are spin lowering and raising operators. Since N = a*a = (1 — 0?)/2,

the conservation of S, may be interpreted as number conservation in this language.

By connecting the sites with spins down (or up, due to particle-hole symmetry), one
obtains the worldlines of bosons with infinite on-site repulsion (hard core provided by the
projector), propagating in imaginary time. There is a unique way of doing this, since the
hard core prevents two lines from crossing each other. The updating of the spin system is

equivalent to generating all possible configurations of world lines.

The elementary moves have a more transparent interpretation in the boson worldline
picture. The “time” flip locally distorts a worldline in both spatial directions. Its effect is
shown in Fig. 3, and it involves a single worldline. The “space” flip involves two nearby
worldlines, and its effect is to exchange them and wrap them around one another, as shown
in Fig. 2. Due to this permutation, the worldlines do not necessarily close on themselves,

although the spin configuration is periodic in time.

The global move in the time direction destroys or creates static particles (holes) (Fig.
4). It connects subspaces with different particle number (magnetization). This global
move is easily generalized to tracing the worldlines of any shape (mobile particles), which

probably cannot be avoided in a strongly fluctuating system. It is not very complicated,

32
and it was done in the case of the XY model, but not for the purpose of updating the
system. It is rather fast and is parallelizable, but it certainly affects the speed of the

strictly regular algorithm.

Since the worldlines are on a torus they will belong to different homotopy classes,
characterized by their winding numbers N, and N,. The global move in spatial directions is
responsible for connecting these distinct topological subspaces. It breaks and reconstructs
a number of worldlines of order L, and its effect is shown in Fig. 5b. Physically, this
update is responsible for creating a coherent shift in the center of mass of the worldline
assembly, which ultimately leads to finite spin stiffness, as will be discussed later. For
periodic boundaries, this shift is of topological significance. This update is essential to
move between distinct global topological constraints. However, the important thing is
that the “space” flip may be used to emulate the effects of this type of update at the local

level, as will be discussed later in the context of XY model.

In the early stages of this work we also experimented with another basis set, the
coherent spin states. Being continuous, it is conceivable that they would be more appro-
priate to capture the dynamics, which is dominated by spin waves. However, they lead to

complex transition probabilities and the phase fluctuations destroy the statistics.

33

References

[1] M. Suzuki, Prog. Theor. Phys. 56, 1457 (1976); M. Suzuki, J. Stat. Phys. 43, 883

(1986).
[2] M. Suzuki, Phys. Lett. 113A, 299 (1985).
[3] M. Suzuki, J. Math. Phys. 26, 601 (1985).

[4] G. S. Rushbrooke, G. A. Baker, Jr., and P. J. Wood, in Phase Transitions and

Critical Phenomena, ed. by C. Domb and M. S. Green (Academic, New York, 1974),

Vol. 3, Chap. 5.
[6] H. Takano, Prog. Theor. Phys. 73, 332 (1985).
[6] R. M. Fye, Phys. Rev. B 33, 6271 (1986).
[7] J.J. Cullen and D. P. Landau, Phys. Rev. B 27, 297 (1983).
[8] M. Suzuki, S. Miyashita, Av. Kuroda, Prog. Theor. Phys. 58, 1377 (1976).

[9] J. W. Negele, H. Orland, in Quantum Many-Particle Systems (Addison Wesley, New

York 1988).

[10] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J.

Chem. Phys. 21, 1087 (1953).

[11] M. Marcu, in Quantum Monte Carlo Methods in Equilibrium and Nonequilibrium

Systems, M. Suzuki ed. (Springer, Berlin, 1987), p. 64.

[12] M. Gross, E. Sanchez-Velasco, and E. Siggia, Phys. Rev. B 39, 2484 (1989).

34

Chapter 4

Algorithm and Parallel Implementation

4.1. Multispin Coding

Ising spins are 1-bit objects. This naturally leads to the idea of some sort of spin
packing, since it is wasteful to represent a 1-bit data object with a 32-bit computer word.
Spin packing saves memory space, significantly reduces index manipulation and facilitates
vectorization. Hence, to achieve a high level of speed and efficiency, we implemented
the Suzuki-Trotter method via a multispin coding algorithm [1]. The spins are packed
into 32 bit computer words, along the imaginary time direction, which is singled out
as the natural choice due to the anisotropy of the equivalent classical system. Packing
in spatial directions introduces additional anisotropy between x and y directions, and
would ultimately lead to different codes for caleculating correlation functions in x and y
directions. Furthermore, boundary conditions would be treated differently for different
directions. Our choice of packing, on the other hand, results in a very homogeneous code,
leads to an extremely simple implementation of the global flip in imaginary time direction,
and reduces the amount of internode communication when the program is ported to the
parallel machine. In addition, this type of packing is more flexible than packing in spatial
directions regarding different types of spatial data decompositions and system sizes. The
reason is that any multicoding algorithm is most efficient if the words are completely
packed. For spatial packing, this means that one can study only systems with lattice sizes

which are multiples of 32. The efficient temporal packing requires that the number of

35
time slices has to be a multiple of 32 (or, alternatively, the Trotter number, M, should
be a multiple of 8). This leaves much more flexibility at low temperatures where Trotter
numbers are necessarily large. On the other hand, one attempts to increase the lattice
size in a more continuous fashion than in steps of 32 as temperature goes down, to keep
the system large compared with the correlation length. Excessively big systems are very
difficult to thermalize and tend to stay frozen in metastable regions as the temperature is

lowered.

All the necessary checks and updates can be implemented through bitwise logical
operations on words. In a single CPU operation, one retrieves information about 64 spins
residing in 2 words. Also, index calculation is done once for a spin word, instead of
calculating it for each spin separately. The same principles are applied for both local and

global moves, but it is easier to illustrate them for local moves, as shown in Fig. 6.

A pair of adjacent words contains eight “time” loops (see Fig. 6). Because every two
adjacent “time” loops share an interacting plaquette, we update all four odd “time” loops
simultaneously in a vectorized fashion. The other four even “time” loops are updated
next. Many of the useful quantities obtained in updating the four odd ones will also be
used for the four even ones. We want to update the odd “time” loops 1, 3, 5 and 7 of
the spin words S1 and S2 in Fig. 6. We first compute F = S1 [XOR] S2 , and then W =
F [AND] MASK1, where MASK1 has “1”s located at the proper position of the “time”
loop 1: MASK1=(0---01111). The flip of “time” loop 1 is allowed if W [AND] MASK1
= MASK1 and (S1 [AND] MASK1) + (S2 [AND] MASK1) = 16 (which means that all
four spins in 51 must be down and the four spins in S2 must be up, or vice versa). S1
is also XOR-ed with N1, N6 and N5 to obtain E1, E6 and E5, the information needed
to compute the energy due to the three interacting plaquettes on S1 side (see Fig. 3).

Note that the conservation law is now working to our advantage. Although a plaquette

36
may have 16 spin configurations, we know which one it is after a single logical operation.
The reason is that 10 possible configurations are ruled out by the conservation law. Out
of the remaining 6, once we know that the “time” flip is allowed, as established by the
appropriate entry in W, we are left with 2 possibilities only: either the plaquette has
antiferromagnetic configuration (£(3) or £(4), which are degenerate in the absence of a
magnetic field) or ferromagnetic configuration (E(1) or E(2), which are again degenerate
in the absence of a magnetic field). Thus, an XOR operation suffices to establish whether
the spins on the lower edge of the plaquette are equal or opposite. In the simulation of the
XY model in 5y basis, we do need the information about the spins on the vertical edge of
the plaquette, since they are allowed to be both equal or opposite. To retrieve that piece
of information, it is enough to XOR the word with itself, after it was right-shifted for a
single bit. Similarly, S2 is XOR-ed with N2, N3 and N4. This piece of information does
not need to be recomputed after the odd “time” loops are updated, since it is related to
the spin configuration in the neighboring words. Finally, S1 is XOR-ed with (S1 [right-
shift] 1) to obtain C which contains the information about the upper and lower interacting
plaquettes (which are shared by adjacent “time” loops). This part has to be recomputed
for the “even” loops. After masking N1-N6 and C with appropriate masks, we SHIFT,
OR them together, to obtain X1 and X2 which contain the information about the eight
“time” loops shared by S1 and S2. Notice that N1-N6 are used only once for all of the

eight “time” loops.

To retrieve the information specific to the “time” loop 1, we calculate I1 = X1 [AND]
MASK1 and 12 = X2 [AND] MASK1. (I1,I2) is a pair of small integers (11,12 < 16) in
one-to-one correspondence with the spin configuration on a specific plaquette chosen by
MASK]1, and they uniquely determine the transition probability. Thus (I1,I2) is used as
an index to fetch the transition probability stored in a small lookup table calculated at the

beginning. Upon acceptance, the proper four spins in S1 are flipped by S1 = S1 [XOR]

37
MASK]1, and similarly for 52. The update of the “time” loop 3 proceeds in the same
manner as for loop 1, after left-shifting MASK1 for 8 bits. Now the 4 1-bits in MASK1 are
located at the position of “time” loop 3, and they pick up the information about it from
X1 and X2 in exactly the same fashion as for “time” loop 1. The procedure is completely
analogous for loops 5 and 7. Once “time” loops 1, 3, 5, and 7 are completed, we need to
recalculate C only, and the entire process is repeated for even loops. Notice that the only

floating point operations in these updates are random number comparisons, required for

the Metropolis accept/reject test.

Four adjacent words contain eight “space” loops, which can be even more easily
vectorized. They can be updated without alternating even and odd ones, since they are
decoupled. Because the detailed explanation of the procedure does not introduce anything

substantially new with respect to the “time” flip, it will be left in the form of comments

in the source code.

The global move in the time direction is very easy to implement with this type of
spin packing. One has to check whether bits are all either 0’s or 1’s, then to XOR the
word to be flipped with four neighboring words to get the transition probability. The
same principles are used to implement the global flip in spatial directions, but the actual
procedure is much more complicated. One has to worry whether the flip is in the x or
y direction. Furthermore, to check whether the flip is allowed or not, one must scan L
spin words, which should be contrasted to 2 in the case of “time” flip or 4 in the case
of “space” flip. Determination of transition probability for the flip in the y-direction
requires knowledge about spins residing in different processors, due to the nature of data
decomposition (see below). Thus, unlike other updates, this cannot be done completely
in parallel, with communication required for boundary spins only. The way we deal with

it is to gather the data spaces residing in different processors into a complete copy in each

38
of the processors. Then the update is done in node 0 only, and results are broadcasted to
other nodes. This is inefficient, but we are not particularly worried about it. The reason
is that even when we use this update, it is done infrequently, thus diminishing bthe true
overhead due to gather/scatter procedure. More importantly, for most of the runs we

disposed of this update completely, because the results are unaffected by its inclusion for

large systems.

It is desirable to have the simplest possible spin interaction in order to minimize the
complexity of the various tests needed to determine the transition probability. For this
reason, we believe that a “bond-type” decomposition is preferable due to the simplicity of
spin interactions, although the spin packing could be done with any other decomposition,

such as “cell-type” breakup, which leads to more complicated 8-spin interactions [2].

4.2. Parallel Implementation

The code was adapted for a parallel supercomputer, the 32-node Caltech/JPL MarkI-
IIfp Hypercube [3,4,5] at Caltech. MarkIIIfp is an assembly of rather sophisticated pro-
cessors (nodes) which are connected as a 5-dimensional hypercube and are managed by
a separate computer (host). The node board consists of 3 processors: the I/O proces-
sor managing the communications between nodes, the data processor (both are MC68020
chips) and the WEITEK processor to enhance ﬂoating point performance. In addition
to local fast memories, the 3 processors can access 4 megabytes of DRAM [3]. Without
spin packing, this memory cannot accomodate the complete spin system for most of the
lattice sizes we simulated. The node system is managed by a Counterpoint 19K computer
via a custom built interface. The actual computation is performed in the WEITEK chip,

which is in a master-slave relation with the data processor. In our application, the data

39

processor is used only to initiate a call to the WEITEK chip, which has superior numer-
ical capabilities. The programming model consists of two interlocked programs: the host
program which serves the requests from the node assembly and the node program which

is the actual application program [4,5]. The node program is downloaded to the nodes by

the host.

The hypercube topology has a rather rich, but practically feasible, interconnection
structure [5]. Nodes reside on vertices of a D dimensional hypercube and communicate by
passing messages to its nearest neighbors. Thus each node has D communication channels.
In each of the hypercube dimensions, a node can be assigned either coordinate 0 or coor-
dinate 1. Hence, a binary number with D digits is enough to uniquely specify the location
of the node in the assembly. A very appealing property of hypercubic topology is that it
can be mapped onto Cartesian grids of lower dimensionality. A two-dimensional Cartesian
grid is the natural data space topology for our simulation. The communication between
nodes is handled by the Crystalline Operating System (CrOS) [5]. It is a very efficient
environment for regular applications with short-range interactions. The communactions
are very rigid in the sense that only nearest neighbors communicate and both message-
sending and message-receiving nodes must expect the communication. The same applies
to the host-node communication. This expected communication introduces an implicit
synchronization in the working of the processor assembly. This is known under the name
of loose synchronicity [5]. Since a processor blocks if its communication call is not com-
plemented by another communication call on the other side of the channel, it is essential
that the amount of computation between scheduled communications be evenly distributed
among the nodes. This is an extremely sensitive issue in a variety of inherently irregular
problems, but is, fortunately, irrelevant for our simulation. The homogeneity of the spin
system assures that, when pieces of the system are divided among nodes in a geometrically

uniform fashion, the computational load will also be even. This holds for the majority of

40
equilibrium Monte Carlo calculations, where one Monte Carlo sweep essentially defines a

global internal clock.

It is possible to design a more general and flexible message-passing environment, but
it is going to be far less efficient than CrOS. All the interprocessor communications in our
simulation are handled by the CrOS calls. This implies that the mapping onto a Cartesian
grid should preserve the nearest neighbor connections existing in the hypercubic topology.
It is easy to see that nearest neighbor’s coordinates differ by a single bit. Therefore, the
nearest neighbors on the Cartesian grid should also differ by a single bit. This is easily
achieved using a Grey code [5]. There is a set of utilities that performs this mapping
transparently to the user:

gridinit(gdim, num)
gridcoord(proc, coord)
gridchan(proc, dir, sign)

Gridinit is used to initialize the Cartesian grid of dimension gdim. Num is an array
of size gdim, and each element in the array gives the number of nodes assigned to the
corresponding dimension of the grid. The number of nodes in each dimension should be
a power of 2 in order to achieve periodic boundary conditions automatically. The routine
gridcoord returns an array coord of Cartesian coordinates of a processor number proc. A
processor selects one of its neighbors for communication by specifying the corresponding
channel mask to the channel hardware. Processor number proc, residing in a Cartesian
grid, will communicate with a processor in positive (sign = 1) or negative (sign = —1)
direction dir, through the channel whose mask is returned after a call to the function

gridchan.

The nearest neighbor interaction in the spin system allowed for an efficient paral-

lelization. The hypercube topology of the processor node system is first mapped onto a

41
2D grid. Then, the processor nodes were configured as disconnected rings, by selecting a
subset of channel masks. Each processor uses only 2 channel masks to communicate with
processor to the left and the one to the right in its ring. The rest of the channels are
nonexistent for the purpose of simulation. Of course, the system communication routines
employ all channels. Each ring corresponds to an independent system, so we achieve trivial

parallelism just by configuring the node assembly in this way (see Fig. 7a).

Each processor is assigned a piece of the 3D lattice, consisting of a number of (x,7)-
planes, as shown in Fig. 7b. When projected onto the original 2D lattice of the quantum
system, we divide it into stripes running in the y-direction. The communication between
processors is required only if the boundary spins are updated and involves only nearest
neighbor processors as is required by CrOS. Another data decomposition that seems nat-
ural in this context is to break the latice into square patches instead of our decomposition
into stripes. This would be a truly 2D decomposition, while ours is 1D or ring decompo-
sition. Theoretically, 2D decomposition has the advantage that it is extensive, i.e., if we
want to increase the system size, we just increase the number of processors, while keeping
the size of the patch assigned to individual processors constant. Thus, the computation
time is independent of system size since the load per processor is constant and communi-
cation is strictly local. This actually does not hold in practice, since the number of nodes
is limited to 32. In our application, the width of the stripe in the x-direction is fixed,
but the length in the y-direction is the same as the system size. Thus the computation
time scales linearly with system size, since we usually fix the width of the stripe to 4 or
6 layers ((z,7) planes). Although this seems to favor the 2D decomposition, one should
keep in mind that the efficiency of implementation strongly depends on the amount of

communication, which is a bottleneck, particularly in an architecture where the node is

42

very fast, and it takes 20 times longer for the channel hardware to transmit a word than

for the CPU to perform an operation. The efficiency of a program is defined as [5]

Tseq

€T NTeome()

=(1+ fc)™! v (4.1)

where T4 is the time required to perform the computation on a sequential computer,
while T,onc(NV) is the time required for the same task on a concurrent processor consisting
of N nodes. The quantity fc is called the overhead. In our case the communication
overhead is the major contributor. It scales with the data volume n as n'/¢, where d is
the topological dimension of the application. Apparently, the l;igher the dimensionality of
a decomposition the more communication is required, since the previous formula is just
surface-to-volume ratio. Communication itself is slow, but also the software overhead to
setup a channel transfer is significant. Experimentally, to send a message consisting of N

computer words, the required amount of time is [6]
Tcomm(N) = (200 +2. N)/LS

Obviously, one should attempt to communicate rarely, and whenever a message is pa.ssed,
it should be as long as possible if the communication time is to scale linearly with the
length‘of the message. Both of these criteria are met with our ring decomposition. There
is a significant amount of computation within a stripe, before a boundary is reached and
communication is necessitated. As seen in Fig. 7c, the communication occurs only at two
boundaries of a stripe, while it would be necessary to communicate on four boundaries of
a square in the 2D decomposition. Also, a communication involves LM /8 computer words
at a time (M=Trotter number, L= system size). In the 2D decomposition it would involve
oM /8 words, where b is the size of the square patch assigned to the lattice. Experimentally,

the efficiency of the application is very high (around 90%) [7].

43

There are additional considerations against the 2D decomposition. A close exami-
nation of the details of communication reveals that the minimum lengths of the messages
are different for the x and y directions. Also, the order of communications in x and y
directions is important, and the order of updates within a node matters, since the updates
of the boundary spins of a node sometimes require knowledge about spins residing in next
nearest neighbors. Since such a communication cannot be handled directly in CrOS, one
must carefully schedule the order of message exchanges along the x and y directions in the
grid. Finally, the input and output buffers have to be handled differently for communica-
tions along the x and y directions. All of these problems which complicate programming

and debugging are absent with the ring decomposition.

Sometimes, due to slow dynamics, systems tend to get stuck in nonequilibrium re-
gions of phase space. A good way to ensure that this does not happen is to have another
run with a completely different random number sequence. It is considered better to have
a few shorter runs than a single long one [8]. We always decompose a system among
processors so that we have at least 4 independent rings. This serves to guard against
metastability as well as against possible hardware errors. We have not encountered hard-
ware errors, and we detected metastability only at T = 0.25J, for system size 160x160.

At this point we discontinued running.

The communication is implemented via one of the library routines:
cshift(inbuf,inmask,insize, outbuf, outmask, outsiz)

Insize bytes are written from a single input channel specified by inmask into the buffer
pointed to by inbuf. Also, outsiz bytes from a buffer pointed to by outbuf are written

into output channels specified by outmask.

44

Memory management is rather simple. Each node operates on its own piece of the
lattice, but the lattice coordinates are shifted according to the position of the node in
a ring. This is depicted in Fig. 7d. Hence, the spin words are stored in an array so
that the spin words corresponding to the processors own subspace occupy labels from 1 to
bLM /8. Each word carries 32 spins stacked atop each other along imaginary time. Since
the decomposition breaks the Hamiltonian into 4 pieces, the number of full spin words
stacked on top of each original 2D lattice site is M/8, where M is the Trotter number.
There are L lattice sites in the y-direction, and b denotes the number of (z,7) planes
alotted to a processor. Next LM /8 array elements are used to store the boundary layer
of spin words from the processor in the positive x direction along the ring, and additional
LM/8 elements are used to store the boundary layer from the neighbor in the negative x
direction on the ring. These are the array elements pointed to by ¢nbuf in a communication
call. These boundary layers are all that a processor needs to know about its neighbors to
perform local updates and global updates in the time direction, and for the measurements

of thermodynamic quantities.

The situation is different for winding number updates and measurements of corre-
lation function, since these involve global operations on the lattice. This is handled in a

pipelined manner by a pair of gather/scatter routines written in CrOS calls with syntax:
gather(buf,dim,size)

scatter(buf,dim, size)

Gather will pick up size bytes at the location pointed to by buf, and transfer them along
direction 0, if dim = 1, so that after nproc[dir] steps(nproc[dir] is the number of processors
along dir) a copy of the complete spin system will reside in each node. If dim = 2, this

routine may also accomodate the 2D decomposition. It will first gather the square patches

45
of the lattice from all processors with the same coordinate in dir = 0. This exchange
is along dir 1 and is similar to the one described above, except that one must use the
library routine vshift instead of cshift, since the data to be transferred are not adjacent
in address space. After that, each processor has a stripe extending in dir 1. Hence,
the situation is now analogous to the ring decomposition, and one just repeats the steps
appropriate to dim = 1. This exchange goes along dir 1 and uses cshift. The coordinates

of each node’s subspace always begin with 0.

After the global exchanges, each node computes all correlation functions, but for its
own spins. So the measurement is done in parallel. After that, the partial results from

the nodes are combined into a global result using the library routine
combine(buf, func, size,nitems)

This function uses a binary tree algorithm to combine nitems of size size bytes stored
at the location pointed to by buf, according to a commutative and associative function
pointed to by fune. The final result is placed in buf and is achieved in logN steps,
where N is the number of nodes. After the global measurement scatter is not used, since
nothing was changed in the spin configuration. Scatter is used only after the winding
number update is performed on the node with ring coordinate 0. Then, the updated
spin configuration is scattered to all the nodes from the source node, which is assumed
to be node 0. The overhead associated with these global communication routines is not
significant, since the measurements are relatively rarely done, typically after 5 to 10 sweeps

of each of the types of moves in turn.

The measurement of correlation functions is slightly different in the program that
calculates dynamical correlations. Since we ultimately want to calculate Fourier trans-

formed functions for a certain number of wave vectors, it is better to measure a subset of

46
correlation functions, different for each processor, but on the whole spin system residing
in each processor’s memory after a call to gather. The results are not combined until
the very end of a run. Then each processor calculates its own contribution to the Fourier
transform, with its own subset of spatial correlations, and then the results are combined.
Note that we can separate the measurements from the communications, since we can place
the complete data domain in a single processor. Otherwise, the measurements would be
interspersed with communication calls which would bring data subsets from different nodes
in the ring one at a time (procedure call rotate in Chapter 9 of Ref. [5]). That probably

slightly increases the communication overhead.

In the simulation we used a parallel version of the generalized Fibonacci additive
random numbers generator [5,6] which has a period longer than 2!27. The computations
of static properties of Heisenberg and XY models took about 2000 hours of CPU time on
a 32-node hypercube (roughly equivalent to about 2400 hours of Cray-XMP after the code

is further vectorized).

47

References
[1] M. S. Makivic and H.-Q. Ding, submitted to Phys. Rev. B.
(2] E. Loh, D. J. Scalapino and P. M. Grant, Phys. Rev. B31, 4712 (1985).

(3] J. Tuazon, J. Peterson, and M. Pniel, in The Third Conference on Concurrent Com-

puters and Applications, Volume I, ed. by G. Fox, ACM Press, New York (1988), p.

71.

(4] P. Burns, J. Crichton, D. Curkendall, B. Eng, C. Goodhart, R. Lee, R. Livingston,
J. Peterson, M. Pniel, J. Tuazon, and B. Zimmerman, in The Third Conference on
Concurrent Computers and Applications, Volume I, ed. by G. Fox, ACM Press, New

York (1988), p. 872.

[5] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Prob-

lems on Concurrent Processors, Prentice Hall, Englewood Cliffs, New Jersey (1988).
[6] H.-Q. Ding, Caltech Report C3P-799 (August 1989).

[7] H.-Q. Ding and M.S. Makivic, presented in the 5th Distributed Memory Computing

Conference, Charleston, S. Carolina, April 1990, (Caltech report C3P-845).

[8] K. Binder, in Applications of the Monte Carlo Method in Statistical Physics, ed. K.

Binder, Springer-Verlag, Berlin (1987).

48

Chapter 5

Simulation and Measurements

5.1. Simulation

We tested the algorithm on a 4x4 system, where the exact results are available [1].
It is necessary to include all types of updates to obtain correct results, since the system
is far away from the thermodynamic limit. However, in Table 1, we show the results with
and without the spatial global moves for a much larger system (32x32). We also plot the
correlation functions for the 2 cases (Fig. 8). It is apparent that this system size is large

enough to eliminate any systematic differences.

The equivalence between the quantum system and the classical one is exact only in
the limit of infinite M. In practice one works with finite values of M (or, equivalently,
AT # 0), which is a source of systematic error. The error introduced is small and well
controlled. As discussed in Chapter 3, it is of order (A7)?, and it is volume-independent
for suﬂicielntly large systems, being proportional to the norm of commutators [H;, H i1 [2]-

For a wide class of observables, one may use the extrapolation:
Q(M) = Q(o0) +a/(MT)? +b/(MT)* + ... (5.1)

where ()(o0) is the correct value. Commonly, only the leading order term is retained,
so one extrapolates linearly in (1/mT)?. If one works with small values of M, or if one
suspects that the coefficients a or b exhibit a singular dependence on temperature, which

might happen if T = 0 is the critical temperature, a more careful procedure might be in

49

order. One should attempt to fit the results with polynomials in 1/(MT) of increasing
order, until the fits stabilize. A different approach, the one we adopted, is to fix the
value of (1/MT)? = (Ar)? to a very small number at every temperature, by choosing
appropriate values of M [3]. The systematic error is then the same at every temperature.
Our choice of AT < 0.07 is small enough to ensure that the systematic error is within the
statistical errors of the simulation. To prove this, at T = 0.45, we used 3 different values
of the Trotter number: M = 16, M = 24, and M = 32. The results show a very weak
M-dependence and the differences between the extrapolated values and those obtained
with the largest value of M = 32 are within the statistical errors. Since we have only
3 values of M, it is difficult to show quantitatively that the data scale as M ~2, but we
assume that it is true. In Table 1 we show the calculated values of energy, susceptibility

and specific heat for M = 16 and M = 32. Additional checks are given below.

Simulations of the Heisenberg model were done on (2+1)-dimensional systems as
large as 128x128x192 spins, in the temperature range from T = 2.5J to T = 0.25J. For the
XY model, the largest system size was 96x96, and the temperatures range from T = 0.1J
to T' = 1.0J. During the simulations, we have monitored the thermal relaxation and the
autocorrelation lengths. At each T we did several sufficiently long runs. For example, at
T = 0.3, on the 96x96 lattice, we did 4x350000 sweeps (4 independent runs, 350000 sweeps
each). The thermalization took about 5000 sweeps and the autocorrelation length is about
4000 sweeps. (This all refers to global observables such as the spin correlation functions;
for local observables such as energy, both relaxation and autocorrelations times are much

shorter.) At higher temperatures and for smaller systems, the runs are slightly shorter.

A noteis in order here about the singular coupling problem [4]. At high temperatures,
we use M = 16, leading to MT =~ 30. Such alarge value of M T implies rather high energies

E(5) and E(6) (Eq. (3.23)). The author of Ref. [4] speculates that such a strong coupling

50
may lead to a breakdown of the importance sampling. One of the consequences may be the
“premature convergence” problem, where the observables, upon increasing M exceed the
correct value, and become increasingly inaccurate as M is further increased. The author
[4] attributed that to the singular coupling in the classical problem, but it seems that it is
just a problem of poor statistics in his simulation. Although we are working in the strong

coupling regime, we do not encounter the “premature convergence” problem.

The global move which changes the magnetization significantly improves the relax-
ation rate, by about a factor of 3, and its acceptance is quite reasonable (10-50%, depending
on T'), as discussed before, contrary to many reports in the literature. In all the simula-
tions, we use this global move. On the other hand, we find that the global move which
changes the winding numbers is not efficient and does not improve significantly the relax-
ation time, so we dropped it in our simulations. It follows from standard thermodynamic
arguments that both the global moves may be dropped, since the averages will not be
affected in the infinite volume limit. There is, however, a case when one cannot dispose
of the winding number update without penalty. This will be discussed below. It should
be pointed out that finite size effects may be affected by inclusion or exclusion of global

moves. We do not have to worry about that, since we are working on rather large systems.

5.2. Methods of Measurement

There are, in general, two types of quantities that can be easily measured with a path
integral Monte Carlo method: those that can be obtained as the derivatives of the partition
function, and those which are diagonal in the chosen representation. We calculate energy,
specific heat and uniform susceptibility, as the derivatives of the partition functioﬂ. They

are given by the following averages [5]:

E= (3 Fiy) (5:2)

51

or? = (S (F G - 6G)) - (X FG) (53)

p

xT = (3 NGp)Y?) (5.4)

The summation goes over all the interacting 4-spin plaquettes, labeled by p, and Jp is a
label of a particular spin configuration on a plaquette. The functions F(j,), G(j,) and
N (jp) represent contributions of individual plaquettes to the total average. Note that the
quantity that is measured in Eq. (5.2) is not the same energy that appears in the exponent,
Egs. (3.20, 3.21). This peculiarity is a consequence of the Suzuki-Trotter decomposition,
where the energy levels of the equivalent classical system depend on temperature and
its size in the imaginary time direction. For the same reason, the specific heat has an
additional contribution coming from the function G(j,). Only the uniform susceptibility
does not have the anomalous terms, since it is diagonal in the representation. The functions

F, G and N for the allowed 4-spin configurations in the §, representation are:

FG) = 3(/35(9'))
F(1)= F(2) = K/B
. (5.5)
F(3)=F4) = E(—K — In(cosh(2K)))
F(5) = F(6) = %(—K ~ In(sinh(2K)))
6) = 52
G1)=G(2)=0
2K) (5.6)
G3)=G4) = [—,3_ sech(2K)J
2K
G(5) = G(6) = [—,3— csch(QK)}
N(3)= N(4) = N(5)= N(6) =0
1
N1 =57 (5.7)
N(2) = -7

52

More detailed information about the system may be acquired by studying spin cor-

relations. We first measured the static staggered spin correlation function
4
Cr) = (~1) =+ = S (S25%4) (55)
n

along the x and y directions (a factor of 4 appears in the definition due to the normalization
C(0) = 1). This quantity still provides a somewhat limited picture, but it takes much less
computer time to measure than the full set of spin correlations. Nevertheless, it allows us
to infer the correlation length, which can be compared with experiments. This correlation
function is a diagonal operator, hence one can choose any time slice for the measurement,
make a mask which has a single 1-bit at the location of that time slice, and just XOR
the two spin words at positions (ng,ny) and (ng; + rz,ny + 7). We used a slightly more
complicated procedure. Due to the decomposition, the translational invariance of the
Hamiltonian is broken and we want to partially restore it during the measurement. This
effect, of course, vanishes in the limit of infinite Trotter number. Since the Hamiltonian is
decomposed into 4 pieces, the spin interactions are periodic in time with period 4, so we
calculate the correlation function at 4 adjacent time slices, corresponding to the lowest 4
bits in a spin word. All the Trotter numbers in the simulation are larger than or equal to 16,
thus we have at least 2 words stacked on top of each 2D lattice site. To improve statistics,
we do such a measurement for each word and then average them. Therefore, we do the
measurement on a fraction (1/8) of the total number of time slices. The correlations are
calculated separately along the x and y axes, and then averaged. We check>whether they
agree within error bars, to insure that the result is indeed isotropic and as an additional

test of thermalization.

Furthermore, we check whether the finite value of the Trotter number will lead
to significant systematic effects. At T = 0.45, we calculated the correlation function

using 3 different values of M, M = 16,24,32. In Fig. 9 we show these correlation

53
functions. The correlation function has very weak M-dependence for large values of M.
The apparent nonmonotonic behavior in Fig. 9 is due to the statistical errors combined
with a weak Trotter number dependence. We calculated the extrapolated correlation
function, from these 3 Trotter numbers using the extrapolation formula of Eq. (5.1).
The extrapolated correlation function and the one with the largest value of M = 32, are
practically indistinguishable. At 7' = 0.35 and T = 0.3 we calculated correlation functions
with two different values of M, M = 24 (Ar ~ 0.14) and M = 48 (At ~ 0.07). In Fig.
10 we show the correlation functions at T' = 0.35. Although the width of the time slice is
halved, the correlation function differences are very small and within the error bars. The
results at T' = 0.3 are quite similar. The parameters of the fits to these data are given in
Table 1. The correlation lengths are practically the same. These results clearly show that
the values of A7 = 1/MT we are using are small enough to ensure that the systematic

errors are buried within the statistical errors of the simulation, and that the extrapolation

to M = oo is unnecessary.

We also calculate the staggered susceptibility for the antiferromagnet,

Xot = (-1 ¥ 57)?) (59)

following the same approach as outlined for the correlation function. Note that we define
the staggered susceptibility to be simply equal to the antiferromagnetic structure factor
C(m,m). The reason is that it is more suitable for a scaling analysis than the thermo-
dynamic susceptibility. They are different in the quantum model because the staggered

magnetization is not a conserved quantity.

The calculation of the thermodynamic staggered susceptibility, which is the true
response function, requires knowledge of the dynamic structure factor. The dynamic

structure factor contains much more information about the system, particularly about the

54

excitations. It is directly measured in inelastic neutron scattering experiments. It requires
the amount of measurement that scales with the volume of the system, unlike the function

of Eq. (5.8) which scales with the linear size of the system.

The dynamic structure factor §(q,w) is the Fourier transform of the time-dependent

correlation function:

S(qsw) = Z/oo e U =wt) G (s t)dt (5.10)
where
S(r;t) = —L% S48, (x5 + 131)S5.(x530)) (5.11)
and J
S.(r;t) = 'S, (r)eH? (5.12)

is the spin operator in the Heisenberg picture.

Real-time correlation functions are notoriously difficult to measure. The source of
the difficulty is the oscillatory behavior of the integrand, which also plagues analytic
calculations. The established way to go around it is to calculate dynamic correlations
on the imaginary time axis (Wick’s rotation in field theoretic language), and then to

analytically continue to the real time.
The imaginary time correlation function is defined as:
1
S(r;7) = Iz Z(S’z(rj + r;7)5.(r;;0)) (5.13)

where

Si(r;7) = ef7 5, (r)eH7 (5.14)

After a Fourier transform in real space, one obtains the imaginary time correlation function

in momentum representation:

S(q;7) = Z e UTS(r;) (5.15)

55

It is related to the structure factor via a Laplace transform:

(oo}

S(q;7) = 51;/ e"“"S(q;w)dw (5.16)

- 00

The imaginary time correlation function S(q;7) is very easily measured in our simulation,
since it is diagonal in §,. The only difference with respect to the measurement of the static
correlation function is that for 7 # 0 one has first to shift the corresponding spin word for
7 time slices to pick up the value of S.(r; + r;7). Also, the method of distributing the
calculation among the processors is slightly different, as explained in the previous chapter.
Most interesting q values are around the incipient antiferromagnetic order wave vector
q = (7, 7), in units of inverse lattice spacing a™!, and around the zone center, q = (0,0).
Because of that, we calculate the Fourier transforms for the allowed discrete values of wave

vector along the triangle in the Brillouin zone defined by (0,0) = (r,7) = (,0) = (0,0).

To calculate the frequency-dependent structure factor S(q;w) one has to invert the
Laplace transform of Eq. (5.16). This operation is ill defined for noisy data in the time
domain, and is a major obstacle for calculating dynamical properties of quantum sys'tems
reliably. Recently, significant progress has been achieved in this area with maximum en-
tropy methods used for image reconstruction [6]. We are currently using that method
to analytically continue our data to the real frequency domain [7]. That work is not yet
complete, and will not be presented here. There is, however, another possibility, if one
knows what type of real frequency behavior is to be expected from other calculations.
One can formulate a guess for the structure factor in real frequency domain with a set
of variational parameters, S4(q;w;), then perform the Laplace transform (5.16) to the
imaginary times, and then determine the parameters by minimizing appropriate cost func-
tion. Most frequently we perform a x? fit, i.e., the variational parmeters are determined

by minimizing;:

+00
L=7), (717(&1(‘1; T) - % /_oo €77 §4(q;w; @)dw)? (5.17)

56
The data are given by §4, the Laplace transform of the the variational guess with pa-
rameters « is represented by S,, and o, represents the statistical noise in the data. The

preliminary results using this approach will be given in the following chapter.

For the XY model we calculated additional quantities. The topological order in the
model may be quantified by vortex density. An intuitive picture of vortices in the quantum
model is not without problems, but it is possible to construct operators that have the

correct eigenvalues in classical vortex configurations. One definition of the vortex density

operator is due to Betts [8]:

1
= (010} — 0i03 + 050 — ofo7) (5.18)

The labeling of spins used to define vorticity is shown in Fig. 38. Time reversal symmetry

implies that < V' >= 0, i.e., the densities of vortices and antivortices are equal. The total

density of vortices and antivortices
2 1 T T T Y T Y
<Vi>= Z(l—2<ala3 >+ < o{ojoso] >) (5.19)

is in general nonzero. The averaging is performed over all elementary squares on the

lattice.

It is not straightforward to measure this quantity, since the operators cannot be
simultaneously diagonalized by a single basis for the whole lattice. An attractive possibility
is to chose an S, basis on sublattice A and an S, basis on sublattice B. It is easy to see that
the vortex density operator is diagonal in this basis, but a more serious problem appears.
The introduction of a phase shift between sublattices leads to imaginary matrix elements

for the local Boltzman factors. This eliminates the basis change as a possible solution.

57
In general, this problem is solved in the following manner [9]. We start from the

Suzuki-Trotter approximant for the expectation value:

4
<Q>=Z'TrQe /T = Z7'TeQ(e2THHM ~ Z'lTrA}im Q(H e"ATHOM (5.90)
—00

i=1

We must now insert 4M 4 1 resolutions of unity between adjacent operators, to obtain:

<Q>=27" lim 3 (GolQIC1)(Cile™TMCo)(Cale™4THE|C5) -+ (Canale™47H4|Co)

{C}
(5.21)
For the sake of brevity, let us denote:
U, = e-AH; (5.22)
Then the previous equation can be rewritten as:
. 2o Col@ICI Y C1|UL|C2){(C2|U2|C3) - - - (Cane|Us|Co)
<@ >= lim (5.23)
ar=0 3o {Col Cri{C1ULIC2) Ca|U2|C3) - - - {Cane [U4| Co)
or equivalently
. Tr(Co|Q|C1)pm(Co, C1)
<@>=1 5.24
Q A:'EO TI'(C()lCl)pM(Co,C]) ()
where the new density matrix par(Co,C1) is:
(C1|U1|C2){C2|U|C3) - - - (Cana|Us|Co) (5.25)

Co,Ch) =
pm(Co,Ch) E{c};éco,cl(CIIU1,C2><C2|U2IC3>"'(C4M|U4|CO)

This approach would work for any operator, but it has very serious disadvantages. It
breaks the homogeneity in time of the equivalenf classical system by introducing an extra
time slice for the measurement. In a worldline picture, this also implies that one has to
break them, since there is no propagator to connect time slices Cy and C;. Furthermore,
the measurement can be done at a single time slice only. If the worldlines are not broken,
we can do the measurement at any time slice. This significantly improves the statistics
of the measurement. Finally, spin packing and vectorization cannot be done efficiently,

because the additional time slice has to be treated differently from the rest of the system.

58
Fortunately, there is a class of operators that is not diagonal but still can be measured
without breaking the worldlines. These operators have the same selection rules as the
propagators U; or their products, U;U;. In the case of the vortex density operator, it is
easy to see that products U;U; and UsU, decompose the lattice into disjoint square cells,
as shown in Fig. 1c. The measurement of vortex density is performed on these elementary

squares. The expectation value of the vortex density operator can be written as:

2y {C1IV2 UL U2|Cs) - - - (Cam|Us|Cr)

<Vis>= i 5.26
Air-n*‘)E{C}(CllUllcz)(Clele:s)"'(C4M|U4|C0> (5.26)
One can insert identity into the numerator, to obtain
(CL VUL UL |C5)
Voo lim 20} emtaes s (C1lULC N (Ca|Us |Ca) -+ - (Cama| U |Ch) (5.27)

AT—0 2 (c{C1lU1IC2)(Ca[Us|C3) - - - (Cama|Us|Cy)
This formula implies that one has to measure the expectation value of the quantity

(CT|V2 Ul UZ ICT+2AT>

<CTIU1 UQICT+2A7-> (528)

between any pair of time slices which are 2A7 apart, but with the respect to the original
density operator with unperturbed worldlines. Of course, this works only if the ratio of
matrix elements in (5.28) exists. In general, it may happen that an operator QU U> will
connect states which are not connected by the propagators U; U,. Fortunately, VU, U,
has the same selection rules as U;Us. In addition to that, if this formula is to be practical,
then the required matrix elements should be easy to calculate. Because of that, it is crucial
that U;U; and UsU, decouple the lattice. This trick wouldn’t work with any other bond
decomposition. Other choices of nonoverlapping bond subsets do not decouple the square
lattice. This is an additional reason to choose this particular decomposition. In addition
to the simplicity of spin interactions when compared to the square cell decomposition,
which is true for any bond decomposition, all operators that can be easily measured with

the cell decomposition can also be measured here.

59
The anticipated Kosterlitz-Thouless transition is characterized by a universal jump
in the spin stiffness at T;.. We measure the spin stiffness p, using the relation between p,

and winding number fluctuations [10]. In 2D, this relation reads:

ps = %kBT(Wz) (5.29)

The winding number, for a system of linear size L, is defined as:
N
D (rp —ri)= LW (5.30)
i=1

where r; is the position of a worldline at 7 = 0, rp, is its position at 7 = 3, and the
summation is performed over all worldlines. The subscript P; denotes that the propagation
from 0 to 3, if the worldline does not close on itself, entails a permutation of particles,
since it must connect to another worldline. Our algorithm accomplishes this reconnection

of the worldlines via the “space” loop flip.

Physically, the winding number measures the coherent motion of a collection of
worldlines as the system of particles evolves from 0 to 3. It describes the average shift of the
center of mass of the worldlines. This coherent motion, if it persists in the thermodynamic
limit, leads to superfluidity or finite spin stiffness. If the system has periodic boundary
conditions, then this shift in the center of mass translates into a topological constraint,

implying that the particles have wound around the torus.

The fact that particle number and phase are cannonicaly conjugate operators, trans-

lates into the following formula [10]:

Z0) _ .
-Z@ = <€ 9W> (531)

where Z(#) is the partition function of the system with a twist 6 introduced in the order

parameter, and Z(0) is the partition sum without the twist. But, according to Eq. (2.12),

60
in the limit § — 0, we can also write

g_% = e~ Pr /2 (5.32)

In the thermodynamic limit, the probability distribution of W is Gaussian, which combined

with Egs. (5.31) and (5.32) leads to Eq. (5.29).

It is apparent that in a simulation with periodic boundary conditions, we must
introduce global flips that will introduce winding number fluctuations. The problem is
that such a global flip is extremely inefficient for large system sizes. In practice, we find
that it is not possible to generate a sufficient number of these flips within a reasonable
amount of computer time, for systems bigger than 8x8. This is certainly not enough to

guarantee small finite size effects.

The solution is rather simple. As discussed before, if one restricts oneself to a partic-
ular winding number subspace, it may be regarded as a choice of the statistical ensemble.
Following the same logic that derives the cannonical ensemble considering a subsystem
within a system which is microcannonical, we can work with a system having a winding
number 0, but we isolate a subsystem, which cannot have such a topological constraint.
In other words, the large system with W = 0, is “microcannonical,” but it is just the heat
bath for its subsystem, which is "cannonical.” The winding number for the subsystem is
not a topological constraint, since it has open boundary conditions. It is interpreted as
an ordinary shift in the center of mass of its worldlines as they propagate from 0 to 5.
Thus, running a large system without winding number flips, but measuring the coherent
motion of the worldlines in a subsystem, we can still calculate spin stiffness efficiently.
The subsystem size, of course, cannot be larger than 1/2 original system size. Running a
single very large system, and measuring concurrently (W?2), for various subsystem sizes,
one can acquire enough information to extrapolate to infinite system size in a single run.

This may compensate for taking measurements only on a portion of the large system.

61

References
[1] M. C. Cross, private communication.
(2] R. M. Fye, Phys. Rev. B 33, 6271 (1986).
[3] E. Loh, D. J. Scalapino and P. M. Grant, Phys. Rev. B31, 4712 (1985).
[4] A. Wiesler, Phys. Lett. 89A, 359 (1982).
[5] J. J. Cullen and D. P. Landau, Phys. Rev. B 27, 297 (1983).
[6] M. Jarrel, J. Gubernatis, R. Silver, N. Sivia, in preparation.
[7] M. Makivic and M. Jarrel, in preparation.
[8] D. D. Betts, F. C. Salevsky, and J. Rogiers, J. Phys. A 14, 53i (1981).

[9] J.E.Hirsch, D.J.Scalapino, R.L.Sugar, and R.Blankenbecler, Phys.Rev. B 26, 5033

(1982).

[10] E. L Pollock and D. M. Ceperley, Phys.Rev. B 36, 36, 8343 (1987).

62

Chapter 6

Quantum Heisenberg Antiferromagnet in Two Dimensions

6.1. Thermodynamics

The energy as a function of temperature is given in Fig. 11. The size-dependence of
the energy is negligible. The results are in good agreement with the calculations performed
by other authors on much smaller lattices. The rotational invariance of the Heisenberg
Hamiltonian should be preserved by the Monte Carlo simulation. We check this require-
ment by calculating the energy in two ways: using Eq. (5.2) and from the nearest neighbor
spin correlation (S575%) assuming full isotropy in spin space. This rotational invariance

requirement is satisfied within error bars for all of our data points.

We compare the results of the simulation with two analytic calculations for two
opposite limits. Takahashi developed a modified spin wave theory, which is expected to
be valid in the low temperature regime, by constructing a variational spin wave density
matrix [1]. The density matrix is that of a noninteracting spin wave system, as discussed
in Chapter 2. The difference from a T = 0 spin wave theory is that the parameters of the
Bogoliubov transformation are determined by minimizing the free energy, but with the
constraint that ($7) = 0. This implies that the Mermin-Wagner theorem is enforced by a
global constraint. In the limit of T — 0, the ordinary spin wave theory is recovered. At
finite temperatures, spin waves become excitations with a gap. The theory does not lead

to the damping of excitations. The spin wave energy is:

€q = M1 - 793"/ (6.1)

63

where A and 7 are obtained from the self-consistency requirement:

1 2 1 1 A 22412
S+2—N2q:2(1"7727c2;)1/2 coth{2T(1 n’yq)r } (6.2a)

and

T: TN & 21—)l coth{z= (1 - n’7q)'/*} (6.2b)

The agreement with our calculation is rather good for T' < 0.6J. In the high tem-
perature limit, accurate results can be obtained with high temperature expansion [2]. We
plot our data along with Takahashi’s calculation for a 64x64 lattice and high tempera-
ture expansion up to z!%(z = J/kpT). Our data smoothly interpolate between these two
asymptotic regimes. At T > J, the agreement with the high tempefature expansion is

excellent.

The data for the uniform susceptibility are presented in Fig. 12. The susceptibility
saturates around T’ ~ J, and then connects smoothly to the high temperature form. Again,
the agreement with high-T expansion is excellent for T > J. For T < 0.6J, we obtain

reasonable agreement with Takahashi’s result:

1 2
X =355 (0§ +nq) (6.3)
a

where nq is the thermal occupation number for spin waves with wave vector q. A major
source of the small systematic difference is the incorrect temperature-dependence of the
variational parameter that determines the spin wave gap (parameter 7). Note that at
T = 0.35J and 0.40J the system size is exactly the same as in his calculation, 64x64
spins, so this cannot be attributed to a systematic size-dependence. As one goes to higher
temperatures, spin wave theory fails. The magnetization fluctuations are overestimated,
because the ideal density of states overemphasizes the short wavelength spin waves. This

is not felt at lower temperatures, since temperature acts as a cutoff.

64

At temperatures higher than T = 0.25J, we attempt to work on system sizes large
enough to practically eliminate the finite size effects. The finite size effects are expected to
get worse at lower temperé,tures. At T = 0.25J, we deliberately simulate a 32x32 lattice,
which is 16 times smaller than the lattice used at T = 0.27J (128x128). The sharp drop
in the susceptibility is the indicator of a significant finite size effect for the lattice of this
size. This demonstrates that quantitatively reliable results for the zero temperature limit
cannot be obtained by studying relatively small systems (up to 16x16), as was attempted

in recent literature [19].

The specific heat data are shown in Fig. 13. It peaks around T = 0.6J. The
agreement with the high temperature expansion, in the range T' > J is excellent. Specific
heat is expected to behave as o« T2, from spin wave theory, in the low temperature regime,
but we are not going low enough to be able to accurately extract the proportionality
constant. Again, we point out that quantitatively accurate results cannot be obtained on
small lattices for the T' = 0 limit. We illustrate this again by plotting the data point for
a 32x32 lattice at T' = 0.25J, next to the 128x128 lattice at T = 0.27J. We should point
out that our thermodynamic data agree well with other calculations [19], performed on
smaller systems, for temperatures higher than 7 = 0.35.J. The disagreement is noticeable
at lower temperatures, particularly in the case of the specific heat. This implies that one
should use large lattices, but it is very difficult to obtain accurate results on large lattices

in the extreme low temperature limit due to thermalization problems.

65

6.2. Static Spin Correlations

In an infinite system, the correlation function behaves asymptotically as:
. .
lim Coo(r) = Ar~re™/¢ (6.4)

This expression may be regarded as a definition of the correlation length £. In Ornstein-
Zernicke theory, for a d-dimensional system, the exponent X is equal to (d-—1)/2. In
order to incorporate periodic boundary conditions, for a system of linear size L, we use

the following symmetrized form:
Cr(r) = A(r™2e /8 4 (L = r)~Re~(L-1/8), (6.5)

The correlation length £, the exponent A and the amplitude A are treated as fitting

parameters. We are not aware of any previous attempt to infer A for the present model

from Monte Carlo data.

We start on a 24x24 lattice at T = 2.5, where the correlation length is less than a
lattice spacing. As the temperature is lowered, we increase the lattice size up to 128x128,
to keep L > 5£. With a procedure like this we hope to keep finite size effects negligible.
The correlation functions at few moderate temperatures are plotted in Fig. 14a, along
with the best fits. The results of the best fits for £ and)\ are summarized in Table 1. In
Figs. 14b, c, d and e, we plot correlation functions for the lower temperatures and larger

lattices.

The shortest range correlations were not included in the fit, since they are not de-
scribed by the asymptotic form of Eq. (6.4). For larger correlation lengths, usually 4 or 5
shortest range correlations were excluded, while for shorter correlation lengths we discard

1 or 2 points. Also a few points close to half the system size were discarded since their

66
error bars are too large. The criterion was to keep those points which have a signal/noise
ratio of at least 5. After these points are discarded, the fits are excellent and are very

stable for a rather wide span of both long-range and short-range cutoffs.

Since the measured values of the exponent A are very close to (d — 1)/2 = 1 /2, we
believe that the correlation functions are of a Ornstein-Zernicke (0OZ) type, as expected
on general grounds. This indicates that the puzzling result A = 1 (as in 3D), predicted by
Schwinger boson mean field theory [3] and by modified spin wave theory [1], may be an

artifact of the approximations involved.

For temperatures less than T ~ 0.35, A drops slightly below 1/2. This is not unex-
pected, since the OZ behavior is found only asymptotically, for r/€ > 1. This condition
is no longer true for our data points, as T' is lowered: £ becomes large and 7,4, =~ 2€.
The surprisingly good fit to Eq. (6.5) shows that an effective value of A can accommodate
these not-so-distant points. This gradual decrease of effective A is, of course, consistent
with A = 0 in an ordered ground state. In principle, with the data of significantly higher
statistical quality, at finite temperatures we should be able to measure the effects of loga-
rithmic corrections to OZ function in momentum space, where the expected scaling form

is
14 31n(1 + (¢€)%)
1+ (g¢)*

Apparently, our fitting form with “running” exponent)\ takes care of these corrections

S(q) = 5(0) (6.6)

in an effective way. On the other hand, for extremely low temperatures with respect to
lattice size L, when the staggered magnetization has finite value, we should be able to

separate [4] the spin wave correction to scaling at T = 0 by a fit of the form

C(r) (Mt 4 %)2 (6.7)

67
for distances a < r < £, where a is lattice spacing and £ is J osephson’s correlation length
[5]. For larger distances, this should be smoothly matched onto OZ form. We attempted
to do this, but the system sizes we are working with require much lower temperatures
than those we used, to measure statistically significant staggered magnetization M f. This

leads to very unstable fits to the form of Eq. (6.7).

In previous calculations [6,7], the correlation functions were described by pure ex-
ponentials. Our approach allows for a more consistent comparison with experiment, since
the correlation lengths in neutron scattering experiments [8] were obtained by fitting the

structure factor data to Lorentzians.

The correlation length as a function of inverse temperature is shown in Fig. 15.

The data points fall onto a straight line throughout the whole temperature range. This

naturally leads to the exponential fitting form :
E(T) = Ae?mre/T (6.8)

Similar behavior is found in the classical Heisenberg model in 2D [9] and is typical for
systems at lower critical dimensionality. The fit is indeed very good (x? per degree of

freedom is 0.62). The parameters of the fit are listed below (see Eq. 6.9).

It was argued by Chakravarty, Halperin and Nelson (CHN) [5] that, in the parameter
fegime where the ground state is ordered, the hydrodynamic description is provided by
the nonlinear o model, which has the correct symmetry and excitation spectrum. A
perturbative renormalization group calculation carried out on this model leads to a classical
picture, but with the parameters renormalized by quantum fluctuations. Essentially the
same result is obtained by Arovas and Auerbach [3] who study the model within the
framework of a large N expansion, but the connection with the classical model is not so

transparent. Takahashi’s variational spin wave theory also turns out to be equivalent to

68

the 1-loop result [5]. However, we show that the 1-loop result is not quantitatively correct.
Our calculation is in very good agreement with the renormalized classical picture. Besides

verifying the qualitative picture, we provide accurate quantitative results.

In particular, we find that the long-wavelength spin stiffness p, is significantly re-
duced due to quantum effects, which leads to a much slower growth of the correlation

length when compared to the classical case. This renormalization of the spin stiffness for

a quantum spin § is most conveniently expressed in terms of the renormalization factor

Zés), defined by: p, = JS(S + 1)Z§S).

The spin stiffness governs the leading exponential divergence, but its value can be
accurately calculated only if the leading temperature behavior of the preexponential factor
A(T) is known. In analytic calculations, A(T) depends on the level of approximation. For
instance, in the classical 2D NLoM, at the 1-loop level this prefactor is temperature

independent, A(T') « const, while at the 2-loop level A(T) T.

In a numerical simulation, the extraction of correct temperature-dependence is com-
putationally very demanding, since it requires spanning a wide range of correlation lengths
and a high statistical quality of data. For this reason, our calculation is the first one that
can clearly identify the functional form of the correlation length from the numerical data.
Since the correlation lengths we measure range from 1 to 28, with statistical uncertainties
always smaller than 5%, we can clearly distinguish between different powers of T in front
of the exponential. Our data show that the preexponential factor has to be a constant.
This follows from a very good quality of the fit given in Eq. (6.8). The parameters of the

fit are:

A =0.276(6), p,=0.199(2)J (Z¢ = 0.265(2)) (6.9)

69
These considerations are illustrated in Fig. 15, where we show our data, along with

the best fits obtained with different powers 7%, o = —1,0,1 . Clearly, only the constant

prefactor renders a good description of the data. We also fit the data with a general form
¢ = AT®e2mP/T (6.10)

regarding a as an additional free parameter. From such a fit, we obtain a ~ 0.03, which
may be regarded as an estimate of the upper bound on this exponent. This fit is also

shown in Fig. 15, although it is completely indistinguishable from the straight line.

This is in complete agreement with the calculation of CHN [5], where the classical
2-loop term and 1/T factor coming from quantum to thermal crossover conspire to give
a constant prefactor. The analysis of CHN assumes that the long-wavelength sector of
the antiferromagnet can be described by a quantum generalized nonlinear ¢ model with

effective action (written in dimensionless coordinates)

1 ﬁhCoA
Sefr =5— dU/dzy{layﬂl2 + 10,9/} (6.11)
2g0 Jo
where the dimensionless coupling constant gy = ficoA/p? is determined by local spin

wave velocity c¢p, short-range cutoff A and local spin stiffness p%. A momentum shell
renormalization group calculation leads to a set of recursion relations which show that
the system has no finite temperature transition. For any nonzero temperature, the flow is
toward high temperatures, but the correlation length grows exponentially as 7" is lowered,

just like in the classical case.

The quantum nature of the model just leads to a finite size effect due to the finite
slab “width” in the imaginary time direction. The one loop calculation reveals that the

only difference with respect to the classical case is that the short wavelength cutoff for the

70

quantum model is not the lattice spacing a, but the thermal de Broglie wavelength, which

is equal to Azg = hc/T, where c is the spin wave velocity. Thus the one-loop result is:
h
gl—loop 08 7—?’62”‘)’/’1 (6.12)

Quantum dynamics thus leads to a different cutoff and renormalized spin stiffness, but
does not affect the classical picture qualitatively. With this in mind, it is natural in the
next step to take over the 2-loop f function from the classical model, but with these
changes made. This leads to exactly the same results as when the quantum fluctuations
are explicitly integrated out in the 2 4+ 1 model of Eq. (6.11). The 2-loop result, given by
Eq. (6.8), compares very favorably with our computation, as shown above. The excellent
fit to Eq. (6.8) up to 7' ~ 1.0 indicates that the renormalized classical region is quite
wide. This picture remains valid up to a crossover temperature where the Josephson and
thermal length scales become compatible [5]. This implies that 27p, ~ T.,, i.e., Eq. (6.8)

should be valid while the argument of the exponential is of order 1 or less.

Let us compare the renormalized spin stiffness we obtained to those obtained in
previous Monte Carlo simulations [6,7] on much smaller lattices (< 20x20). Manousakis
and Salvador [6] gave ps ~ 0.22. Gomez-Santos, Joannopoulos and Negele (7] obtained
ps =~ 0.159. At lower temperatures, the former will overestimate the growth of the correla-
tion length, while the latter will underestimate it. Both of these simulations are based on
the Handscomb Monte Carlo method, which is aﬁplica,ble to spin-1/2 only. The method
is, essentially, stochastic evaluation of linked cluster diagrams of perturbation theory in
powers of 8J. It is more difficult to perform sampling in the abstract graph space than in
the worldline configuration space, and we believe that the method may be rather inefficient
and the simulations might be plagued with metastability. In the earlier simulation of [6],
the growth of { was overestimated, which led to a possibility that the correlation length

diverged at a finite temperature. This would imply a rather unlikely analogy with the

71
defect-driven KT transition for the XY model. This result was brought into question by
the latter simulation [7]. Our result ruled out the possibility of a finite temperature phase

transition.

Singh and Huse [10] estimated the spin stiffness constant by expanding around the
Ising limit (see Chapter 2). They obtain p, ~ 0.18(1), in reasonable agreement with our
calculation. Auerbach and Arovas [3] obtained p, >~ 0.185, quite close to our result. This
is a little surprising considering the mean field nature of their theory. They keep the
rotational invariance of the Heisenberg Hamiltonian by generalizing it to a model with
SU(N) symmetry, and then doing a mean field calculation which is exact in the N — oo
limit. They do not calculate Gaussian corrections to their result, so it is difficult to know
the convergence properties of the theory. It is interesting that our calculation gives a
higher value than the mean field theory, indicating that the inclusion of fluctuations of

all orders in 1/N actually increases the spin stiffness.

The results for the staggered susceptibility are plotted in Fig. 16. The Ornstein-
Zernicke form of staggered spin correlation function implies that x.:(T) b(T)E?. The
function 5(T') is known to behave as b(T) « T? in the classical 2D NLoM at low tem:
peratures [11]. Our data show that this scaling form applies to the quantum Heisenberg
model as well. We plot the staggered susceptibility as a function of T2€2. The data points
are well described by a straight line, indicating that x,; oc T2£2. The slight curvature at
larger correlation lengths is most likely a finite size effect. The constant of proportionality

can be related to various quantum renormalization factors [5].

6.3. Comparison with Experiments

It is believed that the Heisenberg model can provide a good description of the un-

doped high-T, materials in the insulating phase (Chapter 1). We investigate this by

72
comparing the correlation lengths from our calculation with those obtained in neutron

scattering experiments [8].

The effective exchange coupling J and the lattice spacing a are the free parameters
in our calculation. Although the Heisenberg Hamiltonian is an effective model, the most
straightforward approach is to identify the microscopic length scale a with the distance
between copper atoms on Cu-O planes (neglecting the orthorombic distortion): a = ay =
3.79A. The only unknown parameter remains the exchange coupling J, which is to be
determined. Choosing J = 1450 K, we plot our data points, the best fit (Eqs. (6.8, 6.9))
and the data from neutron scattering experiments [8] in Fig. 17. The agreement is very
good, since our data points are nested between the experimental points. This is a strong
indication that the magnetic‘behavior is indeed dominated by the the nearest neighbor
Heisenberg Hamiltonian. Thus, we provide, by a direct comparison with experiment, an

independent determination of the exchange constant J:
J = 1450 + 30 K

The uncertainty of £30K is estimated by plotting our data points for various values of J,
until the deviation from the experimental data points becomes noticable. This value of J is
in very good agreement with the one derived from the spin pair Raman spectrum, by Singh
et al. [12]: J = 1480 £ 70 K. The agreement between estimates derived from both short-
and long-wavelength physics is another indication that the Heisenberg model captures the
essential physics. Also, the measurements of spin wave velocity [13] on a different sample,
combined with the quantum renormalization factor for spin wave velocity [10], yield a close

estimate, J ~ 1550 K.

The fitting form of Eqs. (6.8) and (6.9), with this value of J,

g(T) = 0.276 - ag - 61.25-1450/T[K]A (613)

73
can reproduce some of the experimental data at lower temperatures, which are not accessi-
ble to direct simulation. Our choice of J yields a very good agreement with experiment over
a wide temperature range and achieves the best agreement between our data points and
experimental data points. Note, however, that as the 3D Néel temperature is approached,
the theoretical curve gives systematically larger correlation lengths than experiment. A
multitude of small effects like anisotropies, interlayer coupling etc., enter the picture in the
vicinity of Tny. Tn itself is a manifestation of these effects, because the pure Heisenberg

model does not have a finite temperature transition.

The correlation lengths are very sensitive to the value of spin stiffness, due to the
exponential dependence. However, if an error is made in the calculation of p; in units of
J, it is possible to adjust the amplitude A and the exchange J, and still obtain reasonable
agreement with experimental data. Because of that, the values of J that were used in the
literature to fit the experimental data vary from 900 K to 1600 K. We believe that our
calculation provides an accurate determination of J, in the sense that it is the optimal
value, as long as one is satisfied with the description of the real system via the single
coupling model. It is a first principles calculation on the model, with all possible sources
of error under control. Our estimate is derived from the data of very high statistical
quality, and is based on a direct comparison with experiment. Furthermore, our values of

ps and J are in very good agreement with two independent series estimates of p, [10] and

J [12].

We do not perform the calculation for higher spins, but in order to appreciate the
renormalization effects of quantum fluctuations in the spin-1/2 case, it is very instructive
to make a comparison with the extensively studied spin-1 system K,NiFy [14] with J =

104K. Recently, Birgenau [15] very successfully fitted the measured correlation lengths to

&(T)/a = 0.123¢°3V/T /(1 4+ T/5.31J) (6.14)

74
The factor (1 + 7/5.31J) comes from integration of the 2-loop B-function without taking
the T'— 0 limit and could be neglected if T is very close to 0. The spin wave value (see
Chapter 2) is:
2mp, = 20 J S*(1 + 0.158/25)%(1 — 0.552/25) (6.15)

For S=1, 2mp, = 5.30, fits the experiment quite well (Fig. 18), whereas for S=1/2, the
spin wave value 27p, = 0.944 differs significantly from the correct value 27p, = 1.25.
This indicates that the large quantum fluctuations in a spin-% system are not adequately
accounted for in the spin wave theory, whereas for a spin-1 system, they are. Similar

results follow from Raman spectra experiments and calculations [12].

6.4. Preliminary Dynamical Calculations

The dynamical structure factor for a noninteracting spin wave system can be easily

calculated [16]. The result can be written in the following form:

S(a:0) = 37 2AY s Fla,w) (6.16)

where the function F' contains only two delta functions coming from sharp spin waves.

The exponential factor guarantees that the detailed balance condition is satisfied, i.e.,
$(q,w) = 8(q, —w)e’ (6.17)

while x(q) is the static wave vector dependent susceptibility. The arguments at the end of
Chapter 2 imply a natural guess for F in the case of the real system. For large correlation
lengths the quasi-long range order can support well-defined spin waves, but they will be
smeared mostly by quantum fluctuations and then due to thermal effects. We attempt
to represent that by introducing finite widths for the spin wave peaks. It is reasonable

then to take over the expression familiar from the elementary theory of damped harmonic

75

oscillator and to attempt to fit dynamic correlations by a sum of two Lorentzians centered
on the expected spin wave frequencies w(q). The spin wave frequencies and the widths of

the spin wave peaks 7(q) may be regarded as fitting parameters.

Hence, we calculate the Laplace transform (5.16) of the following variational guess

for the dynamic structure factor:

_ Bw 1 1
Selae) = A Dy (e 7 T @ rem T 019

and determine A, wq and vq from the x? fit to the imaginary time data from the simulation
(see previous chapter). At the moment, we have the results for 2 temperatures, 7' = 0.5J
and T = 0.45J. In both cases, we used Trotter number M = 32 and a 32x32 lattice.
It is probably possible to use the same lattice at T = 0.4J where we know from static
calculations that the correlation length is £ = 10, but the major advantage of using a bigger
lattice is smaller spacing between the allowed wave vectors in the Brillouin zone. The data
on imaginary time axis are, expectedly, correlated and a more careful analysis than what
is suggested by Eq. (5.17) is actually required. We diagonalize the full covariance matrix
and perform the rotation in data space to obtain uncorrelated data before doing the y?

fit.

The fit to a sum of Lorentzians is very good and is shown in Figs. (20,21) for selected
wave vectors. The value of x? per degree of freedom is typically ~ 1. This is true for all q
points that we analyzed (shown in Fig. 19). The linewidths are typically much smaller than
the peak frequencies. Therefore, spin waves are well-defined excitations and are weakly
damped for most of the zone. From the locations of the peaks we derive the dispersion of
spin waves at low temperatures. This is shown in Fig. (22) and the linewidths are plotted
in Fig. (23). We also show the linear part of the spin wave spectrum for renormalized

spin waves, using the result of Singh et al. with Z. = 1.18 for the spin wave velocity.

76
Apparently, finite temperatures contribute weakly to the renormalization of spin waves.
At the Bragg point, the excitations develop a gap, related to the finite correlation length,

as is obvious from the above figures.

The gap decreases with decreasing temperature. The damping at the Bragg point is
nonzero, since the staggered magnetization is not a constant of motion. The ¢-dependence
of the damping is not dramatic. It grows as the wave vectors move away from the Bragg
point, but it is rather weakly dependent on the wavevector along I' direction. The wavy
structure that is seen in Fig. 23 is more likely the artifact of fitting, rather than a real
effect. It is apparent that the relaxation rate of the staggered order parameter at k =
(r,m) —q = 0 and at k€ 1 are of the same magnitude. This relaxation rate should set
the frequency scale for wq and 7q. It is then plausible that the momentum and frequency
dependent quantities, like S(q,w) should be expressible in terms of the scaling functions

which depend on momenta and frequencies through scaled arguments only:

S(q,w) = w;15(9)8(Q, Q) (6.19)
where
w
Q = q£7 Q= w—s (620)

The spin wave damping at the Bragg point should be determined by the spin wave fre-

quency of the mode with wave vector oc £~1:

W ~ w1 = ps(§) 1/2 ¢-1
s 2w(f) (_XJ.(f)) ¢ (6.21)

The second equality comes from spin wave hydrodynamics [5]. The spin stiffness and
transversal susceptibility which enter this relation are defined on length scale « £. Using
the 1-loop momentum shell RG results for these quantities, one arrives at CHN’s suggestion

for the scaling frequency [5]
T

Ty)2 (6.22)

wsocg(

77

These conjectures can be tested by performing calculations for various temperatures.
While some sort of dynamic scaling is very probable, the scaling frequency is not necessarily
given by (6.22). CHN and others [17] also give certain asymptotic forms for spin wave
frequencies and damping in the limit k€ > 1. However, the results coming from different
approximations are contradictory. Numerical simulation will be able to test the validity of
different microscopic analytical approaches. What is even more interesting is the regime
k€ ~ 1, which is difficult to access analytically. The spin stiffness is vanishing on this
length scale, and topological defects may be important. A more sophisticated analysis
using maximum entropy methods with “informed” default models that incorporate three
sum rules [18] is underway. This will enable us to go beyond the simple sum of Lorentzians
as the structure factor. In principle, by collapsing the data from various temperatures onto

a single curve, we should be able to extract the exact scaling function #(Q, Q).

78

References
[1] M. Takahashi, Phys. Rev. B. 40, 2494 (1989).

[2] G. S. Rushbrooke, G. A. Baker, Jr., and P. J. Wood, in Phase Transitions and

Critical Phenomena, ed. by C. Domb and M. S. Green (Academic, New York, 1974),

Vol. 3, Chap. 5.

[3] A. Auerbach and D. P. Arovas, Phys. Rev. Lett. 61, 617 (1988); D. P. Arovas and

A. Auerbach, Phys. Rev. B 38, 316 (1988).
[4] P. B. Weichman, private communication.

[5] S. Chakravarty, B. I. Halperin, and D. Nelson, Phys. Rev. Lett. 60, 1057 (1988);

Phys. Rev. B 39, 2344 (1989).

[6] E. Manousakis and R. Salvador, Phys. Rev. Lett. 60, 840 (1988); Phys. Rev. B 39,

575 (1989). Their correlation lengths are close to ours for T > 0.5.J.

[7] D. H. Lee, J. D. Joannopoulos and J. W. Negele, Phys. Rev. B 30, 1599 (1984); G.

Gomez-Santos, J. D. Joannopoulos and J. W. Negele, Phys. Rev. B 39, 4435 (1989).

[8] Y. Endoh, K. Yamada, R. J. Birgenau, D. R. Gabbe, H. P. Jenssen, M. A. Kastner,
C. J. Peters, P. J. Picone, T. R. Thurston, J. M. Tranquada, G. Shirane, Y. Hidaka,

M. Oda, Y. Enomoto, M. Suzuki, and T. Murakami, Phys. Rev. B 37, 7443 (1988).
[9] S. H. Shenker and J. Tobochnik, Phys. Rev. B 22, 4462 (1980).

[10] R. R. P. Singh, Phys. Rev. B 39, 9760 (1989); R. R. P. Singh and D. A. Huse, Phys.

Rev. B 40, 7247 (1989).

79

[11] D. J. Amit, in Field Theory, the Renormalization Group, and Critical Phenomena,

(World Scientific, Singapore, 1984).

[12] R. R. P. Singh, P. A. Fleury, K. B. Lyons and P. E. Sulewski, Phys. Rev. Lett. 62,

2736 (1989).

[13] G. Aeppli, S. M. Hayden, H. A. Mook, Z. Fisk, S.-W. Cheong, D. Rytz, J. P. Remeika,

G. P. Espinosa, and A. S. Cooper, Phys. Rev. Lett. 62, 2052 (1989).
[14] R.J. Birgeneau, J. Skalyo, Jr., and G. Shirane, Phys. Rev. B 3, 1736 (1971).
[15] R.J. Birgeneau, Phys. Rev. B 41, 2514 (1989).

[16] W. Jones and N. H. March, in Theoretical Solid State Physics, Chapter 10, (Dover

Publications, Inc., New York, 1973), vol. 1.
[17] T. Becher and G. Reiter, Phys. Rev. Lett. 63, 1004 (1989).
(18] P. C. Hohenberg and W. F. Brinkman, Phys. Rev. B 10, 128 (1974).

[19] Y. Okabe and M. Kikuchi, J. Phys. Soc. Jpn. 57, 4351 (1988).

80

Chapter 7

Quantum XY Model in Two Dimensions

It is well known that the two-dimensional (2D) classical XY model undergoes
Kosterlitz-Thouless (KT) [1] transition at kT./J = 0.898 [2,3], characterized by expo-
nentially divergent correlation length and in-plane susceptibility. The transition, due to
the unbinding of vortex-antivortex pairs is weak. The specific heat has a finite peak above
T. and it is a smooth function of temperature. The transition cannot be established by

measuring specific heat which is a smooth function of temperature, due to the presence of

essential singularity.

The natural question is whether the 2D quantum XY magnet will exhibit a phase
transition, and if the answer is yes, what is the type of the transition. The answers are
relevant to a wide class of 2D problems such as magnetic insulators, superfluidity, melting,
and possibly to the recently discovered high-7,. superconducting transition. Physics in
two dimensions is characterized by large fluctuations even at the classical level. Changing
from the classical model to the quantum model, additional quantum fluctuations (which
are particularly strong in the case of spin-1/2) may alter the physics significantly. A direct

consequence is that the already weak KT transition could be washed out completely.

Two decades ago, high temperature series studies [4] raised the possibility of a diver-

gent susceptibility for the two-dimensional model. For the classical model, the remarkable

81

theory of Kosterlitz and Thouless [1] provided a clear physical picture and correctly pre-
dicted a number of important properties. We first briefly summarize the most important
results. The ground state of the model is a perfectly aligned ferromagnetic state. At
low temperatures, the Mermin-Wagner theorem precludes the possibility of long-range or-
der, but, just like in the case of the O(3) symmetry, if the correlation length is large, the
pseudo-long-range order may support spin waves, now defined on lengthscales shorter than
£. What matters is that the nearby spins are always almost aligned although the average
direction is not defined. Then, it is natural to begin with the quadratic approximation to
the original XY Hamiltonian

H=J7) (8757 + 8¢5Y) (7.1)

(i5)

Since we are discussing the classical model, spin components are pure numbers. We are
mostly interested in the long wavelength properties, so we will turn lattice sums into
gradients, and we arrive at the continuum O(2) spin wave Hamiltonian where the local

degree of freedom 6(r) is confined to lie on the unit circle:

"= % / 2r)0,8]2 (7.2)

The analysis of the spin wave Hamiltonian leads to a rather interesting result. Asymp-
totic spin correlations, instead of exponentially decaying, as is typical in the absence of

conventional long-range order, exhibit the power law
C(r)xr™" (7.3)

where the exponent 7 is temperature-dependent. Within the spin wave approximation it

is given by:

o) = (7.4)

82
The power law is typical at a critical point. Spin wave approximation thus leads to a line
of critical points. This line extends to infinite temperatures if only spin waves are kept.
The remarkable insight of Kosterlitz and Thouless was that the inclusion of topological
defect configurations, vortices, ultimately leads to the termination of this fixed line. At
low temperatures, vortices tend to stay together, tightly bound in pairs and clusters.
Because of this, they cancel each other at larger distances, and do not alter qualitatively
the spin wave correlations. Above T, they begin appearing isolated, and this leads to the

exponential decay of correlations above the KT transition.

According to KT theory, the correlation length increases exponentially above T,
following Eq. (7.11). This leads to an essential singularity in the free energy (o £72)
and specific heat. A very important prediction of the theory is the universal jump in spin
stiffness [5]. Although the system has no finite magnetization, at T, the spin stiffness
acquires a nonzero value. This is consistent with the Mermin-Wagner theorem. In 3D,

both spin stiffness and magnetization become nonzero below T,. Spin stiffness and the

exponent 75 are related by
T
Ps = oD (7.5)
This exact result is essentially a generaliia,tion of Eq. (7.4) with fully renormalized spin
stiffness p, replacing the bare spin stiffness J. At T, the ratio of spin stiffness to the

transition temperature has the universal value:

ps(;:c‘) _ }2' (7.6)

This also implies that the exponent 7 has the universal value

(1.7)

N

nTy) =

It is also a simple consequence of the recursion relations [5] that near T, spin stiffness and

n exhibit a nonuniversal square root singularity.

83

However, much less is known about the quantum model. In fact, its behavior has been
controversial. Using a large order high temperature expansion, Betts et al. [6] suggested
a second order transition at £T./J = 0.64 for spin-1/2. Later, real-space renormalization
group analysis was applied [7] to the model with results contradictory and inconclusive.
DeRaedt, DeRaedt, Fivez and Lagendijk [8] then presented an exact solution for the pair
product approximation [9] and a Monte Carlo simulation. Both were based on the Suzuki-
Trotter transformation with small Trotter number M. Their results, both analytical and
numerical, supported an Ising-like (second order) transition at the Ising point k7,./J =
1/2log(1+4+/2) = 0.567, with a logarithmically divergent specific heat. Loh, Scalapino and
Grant [10] simulated the system with an improved technique [11]. They found that specific
peak remains finite and argued that a phase transition occurs at TC=O.4-O.5 by measuring
the change of the “twist energy” from the 4x4 lattice to the 8x8 lattice. The subsequent
dispute [12] between DeRaedt, et al, and Loh, et al., centered on the importance of
using a large Trotter number M and the global updates in small size systems, which
move the system from one topological subspace to another. Recent path integral Monte
Carlo simulations [13] still measure only thermodynamic quantities, and cannot offer firm
evidence for any kind of transition. A decoupled cell Monte Carlo method [14] indicates

an ordinary transition, with correlation length diverging as £ oc =%, and v ~ 0.7.

The key to pinning down the existence and the type of transition lies in the study
of correlation length and in-plane susceptibility because their divergences constitute the
most direct evidence of a phase transition. These quantities are much more difficult to
measure and large lattices are required in order to avoid finite size effects. These key points
are lacking in the previous works, and are the focus of our study. We report simulations
on much bigger lattices with much better statistics. Due to the algorithmic advances and
extensive use (equivalent to about 1100 Cray hours) of the Caltech/JPL MarkIIIfp parallel

supercomputer, we are able to measure spin correlations and thermodynamic quantities

84
accurately on very large lattices (96x96). We report convincing evidence that a phase
transition does occur at finite temperature in the extreme quantum case, spin-1/2. At
the transition point, ¥T./J = 0.35 £ 0.01, the correlation length and susceptibility diverge
exactly according to the form of Kosterlitz-Thouless [1] (see Eq. (7.11)). If the transition
is KT-like, the universal properties should persist in the quantum model as well. To firmly
establish the nature of the transition, we measure the spin stiffness and exponent 7 below
T.. We find that their behavior, within statistical uncertainties of the simulation, agrees
very well with KT theory. From a broader perspective, this comprehensive study of the
quantum model provides additional numerical support for the well-founded belief that

quantum fluctuations are irrelevant for finite temperature critical phenomena.

The quantum XY model is simulated following the Suzuki-Trotter approach. The
method is discussed in Chapters 3, 4 and 5. Here and below, both the Boltzmann constant
kp and the exchange coupling J are set to 1. We performed simulations on lattices as
large as 96x96 spins and temperatures ranging from T = 1.0 to 0.2. The correlation length
calculations were done in the following manner. We start at 7 = 1.0. As T is lowered,
we systematically increase the lattice size to satisfy L > 4£ at every T, so that finite size
effects are small. A similar procedure was used successfully for the classical XY model
[3]. Over 95% of CPU time is spent on lattices 64x64 and 96x96 at four temperatures.
We did two sufficiently long runs at every T. We used a large Trotter number M =24 for
all temperatures. The width of the imaginary time slice is A7 < 0.1 for the temperature
range we studied. This should be contrasted with DeRaedt et al. [8] who used Ar ~ 1

and Loh et al. [10] who used A7 = 0.25 (which is already reasonably good).

Our main focus is to compute the static spin correlation function:

C(r) = 25 Y(SUS%4) (78)

85

and the in-plane susceptibility
x = (32522 + (S spyy/2r? = (X S0P/, (7.9)
where L is the linear size of the system. At large r, C(r) has the asymptotic form:
F(r) = Ar—2e~7/¢ (7.10)

where £ is the correlation length, 7 is the algebraic exponent. In practice, we fit to
C(r) = F(r) + F(L — r) to incorporate periodic boundaries. The fits to this form are
excellent, quite similar to those for the Heisenberg model. The best fits for £, and x are

plotted in Figs. 24, 25, and 26. Selected correlation functions and the fits are plotted in

Fig. 27.

Clearly, £ and x increase very fast as T is lowered. They will diverge at some finite
T.. We fit them to the form predicted by Kosterlitz and Thouless for the classical model

[1]

§(T) = AePIT-T) y = (7.11)

N

The fit is indeed very good (x* per degree of freedom is 0.81), as shown in Fig. 24. The

fit for correlation length gives

A¢ = 0.27(3), B¢ = 1.18(6), T, = 0.350(4) (7.12)
A similar fit for susceptibility x is also very good (x*/DOF=1.06):

A, = 0.060(5), B, = 2.08(6),T. = 0.343(3) (7.13)

as shown in Fig. 26. The good quality of both fits and the closeness of T,’s obtained with
two independent fits are among the main results of this work. The fact that these fits also

reproduce the expected scaling behavior x oc €27 with

n=2— By/Be = 0.24 £ 0.10 (7.14)

86
is a further consistency check. These results strongly indicate that spin-1/2 XY model
undergoes Kosterlitz-Thouless phase transition at 7, = 0.350 & 0.004. The exponent A
for temperatures above T, is plotted in Fig. 25.) is consistent with the Ornstein-Zernike
exponent (d-1)/2=1/2 at higher T. As { grows, we observe a decrease, which is quite
analogous to the Heisenberg case. Due to the violation of the asymptotic requirement
T > &, we are seeing corrections to the OZ form from shorter length scales. Close to 7,
the correlation function crosses over to the power law (7.3). Below T, we use the pure

power law to extract 7. Those results will be discussed later.

We measured energy and specific heat C, (for T < 0.41 we used 32x32 lattice). The
value of energy is in general agreement with previous work [10,13]. The specific heat is
shown in Fig. 28. We found that C, has a peak above T, at around T = 0.45. The
peak clearly shifts away from T = 0.52 on the much smaller 8x8 lattice [10]. De Raedt
et al. [8] suggested a logarithmically divergent C, in their simulation, which is likely an
artifact of their small M values. The strong anisotropy in temporal direction probably
pushes the system toward the Ising limit. It is possible that approximations with different
Trotter numbers belong to different universality classes. A classical equivalent with a
small Trotter number is then qualitatively different from the original quantum model.
One striking feature in Fig. 28 is a very steep increase of C, at T ~ T,. The shape of the

curve is asymmetric near the peak. These features of the C, curve differ from that in the

classical XY model [2,3].

The evidence so far strongly suggests that the quantum model undergoes classical
KT transition. Quantum fluctuations are capable of pushing the transition point from
T.=0.898 [3] in the classical model down to T,=0.35 in the quantum spin-1/2 case, although
not strong enough to push it down to zero. If this were the case, it would probably be

more difficult to establish the map between the quantum system and the classical one with

87
identical long wavelength physics. However, the experience with the Heisenberg model
shows that even that is still intuitively simple if the ground state is qualitatively similar
to the classical ground state. The constant B, is reduced from 1.67 in the classical case
[3] to 1.18 in the spin-1/2 case. This is expected, since the amplitude of the square root is
nonuniversal. This amounts to a multiplicative renormalization of temperature scale. An
analogous thing happens with the quantum N Lo model discussed in the previous chapter,

after quantum fluctuations are integrated out.

The next step toward establishing the nature of the transition is to test the universal
predictions of the theory. For that purpose, we first measure the correlation functions
below T, and deduce temperature-dependence of the exponent 7. The correlation functions
are measured on system sizes ranging from 12x12 to 48x48. They are fitted by a pure power

law, altered to incorporate periodic boundaries:
Cr)y=A(r""+(L-7)"") (7.15)

One should expect logarithmic correction to the power law at T, but our data are very
well fitted with this form within statistical uncertainty. Some of the fits are shown in Figs.
29-31. The size-dependence of the exponent 7, as inferred from these fits is negligible.
We show 7 as a function of lattice size at T = 0.2, T = 0.3 and T = 0.36 in Flg (32).
For larger lattice sizes, 7 seems to increase slightly, which is consistent with the expected
decrease of spin stiffness as the lattice size grows, but it is difficult to quantify it, since the
differences are within error bars. It is apparent from the figures that the smallest lattices
tend to have larger 7. This comes again from the shorter length scales where correlations
decrease more quickly. As expected, the exponent values are also more sensitive to the
short-range cutoffs than in the case of larger lattices. In Fig. (33) we show 7(T) for all

lattice sizes. We attempt to fit n(T") with the following form:

nT)=A+ B(T - T.)* (7.16)

88
Since there are too many variational parameters for the amount and quality of data, we
fix the parameter o to the value predicted by KT theory, a = 1 /2. Then we change the
value of T, until the fits give the expected universal value of A = 7(T.) = 1/4. This
procedure gives T, = 0.321 and the square root amplitude B = 0.343 for the 32x32 lattice.
On the 24x24 lattice, the same approach yields T, = 0.324 and B = 0.254. While the
amplitudes differ by about 25%, the estimated transition temperatures are very close.
They also agree well with the value of T, estimated from susceptibility and correlation
length measurements. While these estimates are not quantitatively as accurate as the
correlation length measurements above T,, we obtain a perfectly consistent picture. These
results imply that, within the accuracy of the simulation, n(7T.) is equal to the universal
KT result of 1/4. They also show that below T,, its behavior is 'consistent with the
nonuniversal square root cusp, in accordance with KT picture. The fits are shown in Figs.

34a and b.

Using the exact relation (7.5) we can go one step further. We can do an independent
calculation of spin stiffness, using the method described in Chapter 5, and then calculate

n from Eq. (7.5). The results should agree with those calculated from the correlation

function within error bars.

The results for spin stiffness are currently available for only two lattice sizes, 16x16,
and 24x24. They are shown in Figs. 35 and 36. Qualitatively, they agree with everything
one expects to see in a KT transition. The finiteness of p, above T = 0.36 is a finite
size effect. Finite size is also responsible for the smooth appearance near T., but it is
apparent that the “tail” above T, shrinks as lattice size increases, and the increase around
T, is steeper. In the thermodynamic limit, this will become a jump. In Figs. 37a and b
we show the exponent 7 calculated in the 2 different ways. The agreement is very good

below T. and, as expected, breaks down sharply above. Hence, this final consistency check

89
also points to the KT transition. Spin stiffness is also well fitted with Eq. (7.16). The
procedure is the same as for the exponent 7. The parameter A is now kept at the value

2/nT., and o = 1/2. The fit is shown in Fig. 36.

The quantum fluctuations lead to a finite density of topological defects even in the
ground state. This leads to small additional depletion of spin stiffness at T = 0. A way to
quantify the defects in the model is to measure the vortex density. The method is given
in Chapter 5. We use both the operator suggested by Betts et al. [15], as described in
Chapter 5, and Swendsen’s [16] “vortex detector:”

Vs = Z(l —ofof — 0¥0d)1 - d50f — o}0)) (7.17)
P

The summation goes over all elementary squares on the lattice, as depicted in Fig. 38.
Both operators lead to the same qualitative picture, with a sharp rise of vortex density
near T.. The results are plotted in Fig. 39. The results show negligible size-dependence,
since they measure short-range multispin correlations. Although one cannot quite naively
relate these microscopic vortex configurations to the vortices of KT theory, this is in
general agreement with the idea of vortex driven transition. Deep into the spin wave
region, vortex demsity is very small and practically temperature-independent. We use
this weak temperature-dependence to estimate the ground state vortex density: Vg ~
0.0236(1). This is in excellent agreement with the result of Betts et al., obtained by
extrapolating to thermodynamic limit exact diagonalization results on clusters of up to 18

spins: Vg ~ 0.025.

We also measured spin correlations along S, directions in spin space. They arise
only as a consequence of the spin algebra in the quantum model. They are weak and
short-ranged (see Table 2), which is consistent with the idea that the long wavelength

sector of the quantum model is accounted for by a classical model living on a .S! manifold.

90

The mapping onto such a model should not present any conceptual problems. Given that
the correlation length diverges at a finite temperature, the situation is even simpler than
for the Heisenberg model. This is what one expects on rather general grounds, since
the renormalization group transformation eliminates all nonzero Matsubara frequencies at

finite T, thus eliminating quantum dynamics.

Therefore, one can formulate the following qualitative picture. The low energy sector
of the lattice quantum XY model may be described by a quantum field theory. The exact
form of the theory is not known, but for the critical properties it is not even important.
Finite temperatures lead to the finite thickness 8% in imaginary time direction which
incorporates quantum fluctuations. We can explicitly integrate out quantum fluctuations,
until the system becomes truly two-dimensional, just like Chakravarty et al. did for the
quantum N Lo model. The numerical results suggest that the effective model we arrive
at is in the same universality class as the classical model. It is then plausible that the
dominant fluctuations are described by the following dual effective action of a sine-Gordon
type [17,5]:

Serf = -21-1(0 /x |0x5|2dx + 2ypa™? /xcos(27rS(x))dx (7.18)

The memory of the original quantum model on the lattice is burried in the model-
dependent quantities Kj, related to the bare spin stiffness and y, which controls the
self-interaction of vortices. Under the length rescaling transformation of the renormaliza-
tion group, this effective model is mapped onto a model with different couplings K (1) and
y(1), depending on the lengthscale defined by I. A momentum shell renormalization group

technique leads to the following flow equations to order y2[5,17]:

2
i?»:ﬂﬂ =(4 - 2r K()y2(1)

dK-1(1)
al

(7.19)
=4m’y* (1)

91
These equations are valid in the regime with small density of defects. Our simulation
indicates that such an assumption is justified below the transition temperature. The

initial conditions are given by K(0) = Ko and y(0) = yo.

Below the transition temperature, one has the important relation: ps(T)/T =
lim;_, o K(I). This relation, combined with the flow equations leads to the prediction
of the universal jump in spin stiffness at T, and the nonuniversal square root cusp, which
is verified in the simulation. The important fact is that these results do not depend on

the initial conditions Ky and yg.

As we move away from T, the behavior depends on the particular model. In princi-
ple, given the model-dependent initial conditions, the flow equations may be numerically
integrated to obtain K(oco) and spin stiffness. This was done for the classical XY model,

where the proper treatment of spin waves leads to the following choice [117]:

KE7H0) =(87)" (1 +(287)7")
, (7.20)
y(O) =e—K(0)7r /2
This choice leads to a linear decrease in p, from the bare value J at 7 = 0. It is apparent
from our simulation that the behavior of p; below 7T, in the quantum model is rather flat
(see Fig. 36). This indicates that a different choice of the initial conditions is required.

The flatness of spin stiffness in the quantum model suggests that a more appropriate

model-dependence might be a generalization of the model choice of Nelson and Kosterlitz

[5]:
K(0) =C18J5?
(7.21)
y(0) =~ 2K |
The nonuniversal constants C; and C; can be fixed by measuring the spin stiffness in the
ground state, or at very low temperatures. It should be noted that the observed behavior

of the spin stiffness is also consistent with a 73 power law. The power law 7%+, where d

is the dimensionality of a quantum spin system, is obtained by an application of the naive

92
spin wave theory [18]. In order to resolve this issue, we are currently trying to push the
simulation down to T' = 0.05J and to calculate T' = 0 spin stiffness by a variational Monte

Carlo approach.

While the simulation of the static properties of the quantum XY model fully agrees
with the well-established and understood Kosterlitz-Thouless picture, the understanding
of dynamical properties is not as satisfactory. Computer time permitting, it will be very
interesting to investigate dynamic correlations in the XY model, particularly in the vicinity
of T.. At this point, the spin stiffness vanishes and the defects are expected to substantially
affect the line shape. Very little is known about the dynamics of these objects, particularly

in the context of a quantum model.

(1]

[2]

[3]

[4]

93

References

J.M. Kosterlitz and D.J. Thouless, J. Phys. C6, 1181 (1973); J.M. Kosterlitz, J.

Phys. C7, 1046 (1974).

S. Miyashita, H. Nishimori, A. Kuroda and M. Suzuki, Prog. Theo. Phys. 60,
1669 (1978); J.Tobochnik and G.V. Chester, Phys. Rev. B20, 3761 (1980); J. van
Himbergen and S. Chakravarty, Phys. Rev. B23, 359 (1981); J.F. Fernandez, M.F.

Ferreira and J. Stankiewicz, Phys. Rev. B34, 292 (1986).

R. Gupta, J. DeLapp, G. Batrouni, G.C. Fox, C.F. Baillie and J. Apostolakis, Phys.

Rev. Lett. 61, 1996 (1988); U. Wolff, Nucl. Phys B322, 759 (1989).

H.E. Stanley, Phys. Rev. Lett. 20, 589 (1968); M.A. Moore, Phys. Lett. B5, 65

(1969).

D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977); J. V. José, L.

P. Kadanoff, S. Kirkpatrick, and D. R. Nelson, Phys. Rev. B 16, 1217 (1977).

D.D. Betts, in Phase Transition and Critical Phenomena, ed. C. Domb and M.S.
Green, (Academic Press, New York, 1974), Vol. 3, p. 569; J. Rogiers, E.W. Grundke

and D.D. Betts, Can. J. Phys., 57, 1719 (1979).

J. Rogiers and R. Dekeyser, Phys. Rev B13, 4886 (1976); D.D.Betts and M. Plischke,
Can. J. Phys. 54, 1553 (1976); R. Dekeyser, M. Reynaert and M.H. Lee, Physica
86-88B, 627 (1977); T. Tatsumi, Prog. Theor. Phys. 65, 451 (1981); H. Takano

and M. Suzuki, J. Stat. Phys. 26, 635 (1981).

H. De Raedt, B. De Raedt, J. Fivez and A. Lagendijk, Phys. Lett 104A, 430 (1984);
H. De Raedt, B. De Raedt and A. Lagendijk, Z. Phys. B57, 209 (1984); Also see, M.

Suzuki, S. Miyashita, A. Kuroda and C. Kawabata, Phys. Lett. A60, 478 (1977).

94

[9] M. Suzuki, J. Stat. Phys. 43, 833 (1986).
(10] E. Loh, Jr., D. J. Scalapino and P. M. Grant, Phys. Rev. B31, 4712 (1985).

[11] J. E. Hirsch, D. J. Scalapino, R. L. Sugar and R. Blankenbecler, Phys. Rev. B26,

5033 (1982).

[12] H. De Raedt and A. Lagendijk, Phys. Rev. B33, 5102 (1986); E. Loh, Jr., D. J.

Scalapino and P. M. Grant, Phys. Rev. B33, 5014 (1986).
[13] Y. Okabe and M. Kikuchi, J. Phys. Soc. Jpn. 57, 4351 (1988).
[14] S. Homma, T. Horiki, H. Matsuda and N. Ogita, Nagoya University preprint.
[15] D. D. Betts, F. C. Salevsky, and J. Rogiers, J. Phys. A 14, 531 (1981).
(16] R. H. Swendsen, Phys. Rev. Lett. 49, 1302 (1982).

(17] T. Ohta and D. Jasnow, Phys. Rev. B 20, 139 (1979).

95

APPENDIX

Source Code

The most important parts of the source code are listed here. Following a subroutine
name is a brief explanation of its purpose. The comments which clarify certain pieces of

the code are inserted within the body of a subroutine.

96

/*******i***

size.h : include file, defines

maximum sizes of the lattice and some masks
**/

#define MXnx 128 /* max size in x-dir*/
#define MXny 128 /* max size in y-dir*/
#define MXtrot 56 /* max Trotter number*/
#define MXword (MXtrot/8) /* max number of 32-bit words*/
#define HIGH_1 0x80000000

#define HIGH_3 0xe0000000

#define HIGH_4 0x£0000000

#define LOW_3 7

#define LOW_4 15

#define M_TIME 0x80

#define M SPACE 0x40

#define M _GLOB 0x20

#define M WIND 0x10

/**

spdef.h : include file with global variables,
defines arrays and parameters
**/

#include "size.h"™

unsigned int tlines{MXnx*MXny*MXword]; /* spin words */
unsigned int bits[32], low_bits([32], high bits[33]; /* masks */
unsigned int mask_dn[4],mask_md[4],mask_up[4],mask_hi[4];
unsigned int t_mask([32],s_mask[4]:

int fwdt{40], bckt[40]}; /* arrays to include periodic boundaries */

int fwdx[4*MXnx], bckx[4*Man],fwdy[4*MXny],bcky[4*MXny];

int wr([3*MXword]:;

float t_prob[16]({16], s_prob[5], g_prob[MXword*32+1]; /* probabilities*/

/* hypercube environment */
int doc,procnum,totproc,cpmask;
int nprocs(2},perbec(2],recpnum[2],nextproc(2] [2],dim;

/* parameters */

int upflag,totswp,mratio,tmratio,blksiz,iseed,init_flag,accpt,wrtsiz;
int nx,ny,nword,totspin,nspins,mmax;

float temp, £0,£1,£2,£3,£20,£30,£32,e0,el,e2,e3,92,93;

char outname{40];

float kosinus[MXnx*MXny*2]:

float e_data[60]:

int taccpt, saccpt, gaccpt, waccpt:
float taacc, saacc, gaacc, waacc;

97

/***

globline: global flip in time direction. This routine will
sweep through the lattice, and for any given spin
word identify its neighbors. The actual update is
performed in globflipr().

***/

#include "spext.h"
#include "cros.h"
#include "ih.h"

/**
glob line geometry

. Y
ylow |
*xhgh *cen *xlow i —————— > x
yhgh
*

**/
/**

glob line memory management

1
i
H

| | !
! I [
[een.. o | I
! | |

space_left space_right0 space_rightl

-_ 0
[
[\V]
w
'y
B
o)}

—_—

**/

glob_lines ()

{

int X,Y.len,space_right,space_left,y0,yl,y2:
int xfwd, xbck, yfwd, ybck,cen,inl,outl;

len = nx*nword*4;
space_right = ny ;
space_left = ny+l;

/* copy y=ny-1 plane from left to right node */

y0 = space_ left;

outl = (ny-1l) *nx*nword;

inl = yO*nx*nword;

cshift(&tlines[inl],nextproc[O][NEG],len,&tlines[outl],
nextproc[0] [POS], len) ;

cflush(&tlines[inl], len):

inl = nword*space_right*nx;
outl = nword*0*nx;

for (y=0:y<ny;y++) {
yl=y+1;
y2=(y == 0) ? space_left : (y-1):
if(yl == ny) {
/* pass tlines from right node to left */
cshift(&tlines[inl],nextproc[O][POS],len,&tlines[outl],
. nextproc[0] [NEG], len);
cflush(&tlines([inl], len);
}

98

for (x=0;x<nx;x++) {
xfwd= nword* (fwdx[x] + y*nx) ;
xbck= nword* (bckx[x] + y*nx) ;
yfwd= nword* (x + yl*nx)
ybck= nword* (x + y2*nx) ;
cen = nword*(x + y*nx) ;
/* identify the neighbors and pass their pointers to the actual
flipping routine */
if(y%2 == 0) {
if(x%2 == 0)
glob_flipr(xfwd, cen, xbck, yfwd, ybck) ;
else
glob_flipr (xbck, cen,xfwd, yfwd, ybck)

} else {
if(x%2 == 0)
glob_flipr (xfwd,cen, xbck, ybck, yfwd) ;
else
glob_flipr (xbck,cen, xfwd, ybck,yfwd) ;

}
1

}

/***;*********
globflipr: Calculate energy of the flip and perform update.
Spins along trotter (z) direction are packed into

words of 32 spins each.
**/

#include "spext.h"
#include <stdio.h>
#include "math.h"

/**

+

+ 4+ + 4+

-+
|
|
I
+++++++ +
+ +
+ + +
+ —t—-
+ +
+
+ |
++ +++
| +
| +
++ +++ -=> X

***/
glob_flipr(xlow,cen,xhgh,ylow,yhgh)

int xlow,cen,xhgh,ylow,yhgh;

{

unsigned int x1lw, xhg,ylw,yhg,x0,x1,y0,vy1,1i;

unsigned int mskx0,mskxl,msky0,mskyl,cenln,flag0, flagl;

int sum, mw;

/* check if all spins are up or all are down x/
flag0 = flagl= 1;
for (mw=0; mw<nword;mw++) {

cenln = tlines([cen+mw];

£flag0 &= (cenln == 0)? 1:0 ;

99

flagl &= (cenln == Oxffffffff)? 1:0 ;
}

sum = 0;
if((flag0 | flagl) == 1){ /* available for flip
for (mw=0;mw<nword;mw++) {
cenln = tlines[cen+mw];
xlw = cenln * tlines[xlow+mw] ;
xhg = cenln * tlines[xhgh+mw] ;
ylw = cenln # tlines[ylow+mw] ;
yhg = cenln ~ tlines[yhgh+mw] ;
/* XOR a spin word with its 4 neighbors

for(i=0;i<32;1i += 4){

/* mskx0 = bits[i];

: mskxl = bits[i+2];
msky0 = bits[i+l1]:
mskyl = bits[i+3}; *

/
x0 = (xlw >> i) & 1;
x1 = (xhg >> (i+2)) & 1:
yO0 = (ylw >> (i+1)) & 1;
vyl = (yhg >> (i+3)) & 1;

/* pick up the correct bit at every time slice
sum += (int) (x0 + x1 + y0 + yl);
}

/* calculate the energy
/* flip all spins
el = 2.0*£20* (float) (sum - nword*16) ;
if (randf() < exp(el)) {
for (mw=0; mw<nword;mw++) tlines[cen+mw] =
gaccpt ++;

}
} /* end of glob_flipr() =*/

*/
*/
*/
*/
*/

~tlines[cen+mw];

100

/**

wind_lines: Identifies spin words needed for winding number

updates and calculates transition probabilities.

If between layers (0 and 1) and (2 and 3)

they update Ny, if between layers (1 and 2) and

(3 and 0) they update Nx.

It is called in node 0 only, after a call to gather ().
***/

#include "spext.h"
#include "math.h"

/**

Layer=0,2 goes in y-directions
Layer=1,3 goes in x-directions

**/

/*** winding _line goes in x (or y) direction:

+-——t dmmedt fmeed et et

! ! | ! I] | I !
+———t dmmmt et oot ey

**********/
wind lines ()

{

unsigned int x,y,x1,yl,layer,line,linel, vert [MXnx] [MXword],t,mask;

unsigned int flagl,flag_even, flag odd,maskl,mask2;
unsigned int start, flpmsk, flpmskl,lt, flt,blt;

int engx,engy,mw,mw0,mwl;

float delta;

for (layer=0; layer<4; layer += 2){ /* goes in y-dir
for (x=0;x<nx; x++) {
if (layer == 0){
if (x%2 == 0) x1 = fwdx[x]:
else xl1 = bckx[x]:
} else{
1f(x%2 == 0) x1 = bckx(x]:;
else x1 = fwdx|[x]:;
}
for (y=0;y<nx;y++) for (mw=0;mw<nword;mw++) {
line = tlines[nword#* (x+y*nx)+mw];
linel = tlines([nword* (x+y*nx) +wr [mw+1]];
vert[y] [mw] = line”((l&linel) << 31 | line>>1);
}

for (mw=0;mw<nword;mw++) { /* loop over all Trotter layers */

flpmsk = 0;
for (t=0;t<32;t += 4)({
1t = layer + t;
mask = bits{1lt]:
flag_even=flag odd=flagl=0;
for(y=0;y<nx;y += 2){
/* this plece calculates contributions from plags which are
running in the same direction as the winding line flip */

flag_even += (tlines[nword* (x+y*nx)+mw] >> 1t) & 1
flag_odd += (tlines([nword*(x+fwdx[y]*nx)+mw] >> 1t) & 1
flagl += ((vert(y][mw] >>1t) & L)+ ((vert[fwdx[y]] [mw] >>1t) & 1)

}

if (((flag_even == (nx/2)) && (flag odd == 0)) ||
({flag_even == 0) && (flag odd == (nx/2))}})
/* check if update allowed */
/* all 1's or all 0's */

if(flagl == 0 }{ /* all 0's */

/* need to treat different layer separately, or shift before flip */

*/

{

’

’

’

101

mwl = (lt+1 > 31)? wr(mw+l] : mw ; /* if 1t+1>31 use upper word */

mwO = (1t-1 < 0)? wrinword+mw-1l] : mw ; /* if lt<l wuse lower word */

flit fwdt [1t]:

blt bekt[1t]:

maskl = bits[flt]:

mask2 = bits([blt]:
/* engy: interacting plags in y direction */

engy = 0;

start = (layer==0) ? 0 : 1 ;

for (y=start:; y<nx;y += 2)

engy += ((vert[y](mwl] >> flt)& 1)+ ((vert[fwdx([y]][{mw0] >> blt) & 1);

/* engx: interacting plags in x direction */
/* these are plaquettes which are sticking out in x-dir from the
winding line flip */
/* they do not need shifts since they are on the same time slice */

engx = 0;

for (y=0;y<nx;y += 1)

engx +=

((tlines[nword* (x+y*nx) +mw] “tlines[nword* (x1+y*nx)+mw]) >>1t)&l;

delta = (engy - nx/2)*2.0*£32 + (engx - nx/2)*2.0*£20;

if(randf () < exp(delta)) flpmsk = flpmsk | bits([1lt] | bits[flt]:;

} /* if */

} /* if */

} /* ot */
for (y=0;y<nx;y++) tlines[nword* (x+y*nx)+mw] *~= flpmsk;
} /* mw loop */

} /* x */
} /* layer */
/* the same as above, but these are running in x~dir and they
update Nx */
for (layer=1; layer<4; layer += 2){ /* goes in x-dir */

for (y=0;y<nx;y++) {
if(layer == 1){
/* if(y%2 == 0) yl = fwdyly]l: */
if(y%2 == 0) yl = fwdx{yl:
else yl = bckx[y]l:
} else{
if(y%2 == 0) yl = bckx([y]l:
else yl = fwdx[y]:
}
for (x=0;x<nx;x++) for (mw=0;mw<nword;mw++) {
line = tlines[nword* (x+y*nx)+mw];
linel = tlines[nword* (x+y*nx)+wr[mw+1]]:
vert [x] [mw] = line”((l&linel) << 31 | line>>1);
}
for (mw=0;mw<nword;mw++) {
filpmsk = 0;
flpmskl = 0;
for(t=0;t<32;t += 4){
1t = layer + t:
mask = bits[1lt];
flag_even=flag odd=flagl=0;
for (x=0;x<nx;x += 2){
flag _even += (tlines[nword* (x+y*nx)+mw] >> 1t) & 1 ;
flag_odd += (tlines[nword*(fwdx[x]+y*nx)+mw] >> 1t) & 1 ;
flagl += ((vert[x][mw] >>1t)&l) + ((vert[fwdx[x]] [mw] >>1t)&l) :
}
if(((flag _even == (nx/2)) && (flag odd == 0)) ||
((flag_even == 0) && (flag_odd == (nx/2)))){
/* all 1’s or all 0's */
if(flagl == 0){ /* all 0’'s */
/* time boundary condition comes here if any */
mwl (1t+1 > 31)? wr[mw+l] : mw ; /* if 1t+1>31 use upper word */
mw0 (1t-1 < 0)? wrnword+mw-1] : mw ; /* if 1t<l use lower word */

o

102

flt = fwdt[1lt]:
blt = bckt[1lt]:;
maskl = bits([£f1t];
mask2 = bits[blt]:;
engx = 0;
start = (layer==1) 2?2 1 : 0 ;
for (x=start; =x<nx;x += 2)
engx += ((vert([x][mwl] >> flt)s& L)+ ((vert [fwdx([x]] [mw0] >> blt)s 1);
engy = 0;
for (x=0;x<nx; x++)
engy += ((tlines[nword*(x+y*nx)+mw]“tlines[nword*(x+y1*nx)+mw])>>lt)& 1;
delta = (engx - nx/2)*2.0*£32 + (engy - nx/2)*2.0*£20;:
if(randf () < exp(delta)) {
if (1t == 31) (/* layer=3, top bits in upper word */
flpmsk = flpmsk | bits[1lt] ;
filpmskl = flpmskl | bits[flt];
} else
flpmsk = flpmsk | bits{lt] | bits([flt];
}
Y} /* if */
} /* if */
} /*t */
for (x=0;x<nx;x++) if(layer == 1)
tlines[nword* (x+y*nx)+mw] = flpmsk;
else {
tlines[nword* (x+y*nx)+mw] “= flpmsk;
tlines[nword* (x+y*nx)+wr[mw+1]] “= flpmskl;
}
} /* mw */
} /* y */f
} /* layer loop */

}

103

/**

space_flipr: The addresses of 4 spin lines involved in a
space flip are provided by spaceplag(). This
routine will calculate the energies of the
flips and then update the spin lines

***/

#include "spext.h"

/**
even layers:

y
3*——up---*2 layer=0,2
| I ~
down down |
] ! |
0*--up---*1 = cm——ea > x

space_flip(s0,sl,s2,s3,layer)

NOTE: by the way the energies computed
even/odd plags makes no difference.

3 ———— 3
| |
! |
| I
+++ 2 —mee— 2
+ | |
up I I
+ i |
+++ 1 ————- 1 +++
| | +
| | down
| | +
0 ——=—- 0 +++

layer=0 down plaq and layer=3 up plag must rotate the words
since the top and bottom spins are in adjacent words.
Unlike the time plaq, here we don’t shift t-lines.

****************/
space_flip(ss0,ssl,ss2,ss3, layer)

int ss0,ssl,ss2,ss3,layer;

{

unsigned int eng_upo,eng_upl,eng_downO,eng_downl,tot_eng;
unsigned int eng_upOh,eng_uplh,eng_downOh,eng_downlh;
unsigned int flag,£01,£23,£03,£12,aux0,auxl, flpmsk, mask;
unsigned int i, s0, sl1, s2, s3, il;

int mw;

float delta;

/* calculation is done one spin word in time direction at a time
until all spin words stacked upon a 2D lattice site are processed */

for (mw=0; mw<nword; mw++) {

s0 = tlines[ssO+mw];
sl = tlines[ssl+mw];
s2 = tlines|[ss2+mw];
s3 = tlines[ss3+mw]};

f01 = 80 ~ s1
£23 = 82 ~ s3 ;
£03 = s0 ~ s3 ;
12 = s1 ~ s2 ;

104

/* XOR the 4 spin words, to pick up the spins at a single
time slice */

if(layer == 0){

/* the bottom of the lowest space loop plaquette is in the word
below, so we must patch the 2 spin words */

eng_upl = (s0~ (s0 >>1) }&s_mask[layer):

eng_upl = (s2* (s2 >>1))&s_mask{layer];

/** perform a rotate << 1 ~function **/

aux0 = ((HIGH_1 & tlines[ssO+wr[nword+mw-1]]) >> 31)y
auxl = ((HIGH_ 1 & tlines[ss2+wr[nword+mw-11]) >> 31) |

/* XOR the spin word with the same word but shifted. This is not
necessary for the Heisenberg model due to the conservation law.
We now know what is the spin configuration. */

eng_down0 = (s0 ~ aux0)&s_mask[layer]:
eng_downl = (s2 ~ auxl)&s_mask[layer];
} else if(layer==3){

/* the top of the uppermost space loop plaquette is in the word
above, so we must patch the 2 spin words. The rest is the same
as above */

/** perform a rotate >> 1 function **/

/* aux0 = ((1 & s0) << 31) | (sO0>> 1) ; =/
aux0 = ((1 & tlines{ssO+wr[mw+1]]) << 31 Y I (s0>> 1) ;
auxl = ((1 & tlines[ss2+wr[mw+l]]) << 31) | (s2>> 1) ;

eng_up0 = (s0” aux0)&s_mask[layer];
eng_upl = (s2* auxl)&s_mask[layer];
eng_down0 (s0 ~ (s0 <<1))&s_mask[layer]:
eng_downl (s2 ~ (s2 <<1))&s_mask[layer];
} else {

eng_up0 = (s0~ (s0 >>1))&s_mask|[layer]:
eng_upl = (s2* (s2 >>1))&s_mask|[layer];
eng_down0 = (s0 “~ (s0 <<1))&s_mask[layer];
eng_downl = (s2 ~ (s2 <<1))&s_mask[layer];

eng_upOh = £0l&s_mask[layer];
eng_uplh = £23&s_mask[layer];
eng_downOh = £03&s_mask[layer];
eng_downlh = £12&s_mask[layer];

/* shift everything, so that the relevant bits are the lowest */

if(layer > 0)({
eng_up0 >>= layer:;
eng_upl >>= layer;
eng_down0 >>= layer:;
eng_downl >>= layer;
eng_upOh >>= layer:;
eng_uplh >>= layer:;
eng_down0h >>= 1layer;
eng_downlh >>= layer;
}

eng_up0 = (eng_upOh << 1);
eng_upl i= (eng_uplh << 1);
eng_down0 [= (eng_downOh << 1);
eng_downl I= (eng_downlh << 1);

/* get the energies */

(s0<< 1)
(s2<< 1)

’

105

flpmsk = 0;

for(i=0:;1<32;i+=4){

/* get the relevant bits and fetch transition probability */
mask = bits[layer + i]:
delta = s prob{(eng up0 >> i) & LOW _21*s_prob[(eng_upl >> i) & Low_2]
delta *= s prob{(eng_down0 >>i)& LOW_2]*s_prob|[(eng_downl >>i)& Low_2]

if(randf() < delta) flpmsk = flpmsk | mask;

/** flip the 4 t-lines **/
tlines([ssO+mw] = s0* flpmsk
tlines[ssl+mw] = sl1* flpmsk
tlines[ss2+mw] = s2* flpmsk
tlines({ss3+mw] = s3~ flpmsk

Sa Ne e N

} /* mw loop (loop over all spin words) */

} /* end of spaceflipr() */

/**

space_plags: Calculates the addresses of the spin words for
space loop flips, as it sweeps through the lattice,

and pases them to spaceflipr(), which does the updates.
***/

#include "spext.h"
#include "cros.h"
#include "ih.h"

/**
even plaqg:

y
3*——yup—=-=-*2 layer=0,2
| | ~
down down !
l | |
0*~—up~--*1 = e > x

***/

space plags()
{

int x,y,y1l;
int xfwd, cen, yfwd, xyfwd:
int in, len:

in = ny*nx*nword;
len = nx*nword*4;

/* layers 1 and 2 can be updated stictly locally */
/* layer=1 and 2 */
for(y=0;y<ny;y += 2){
yl = y+1;
for (x=0;x<nx; x++) {
xfwd= nword* (fwdx[x] + y*nx) ;
yfwd= nword*(x + yl*nx) ;
xyfwd=nword* (fwdx [x] + yl*nx) ;
cen = nword*(x + y*nx) ;
1f(x%2 == Q)
space_flip(cen,yfwd, xyfwd, xfwd, 1) ;
else
space_flip(cen, xfwd, xyfwd, yfwd, 2) ;

/* layers 0 and 3 need boundary layers from neighbors, so first

106

call cshift */
/* layer=0 and 3 */
cshift(tlines+in,nextproc[0][POS],len,tlines,nextproc[O][NEG],len);
cflush(tlines+in, len):
for (y=1l;y<ny;y += 2){
yl = y+1;
for (x=0;x<nx;x++) {
xfwd= nword* (fwdx[x] + y*nx) ;
yfwd= nword*(x + yl*nx) ;
xyfwd=nword* (fwdx [x] + yl*nx) ;
cen = nword*(x + y*nx) ;
if(x%2 == 0)
space_flip(cen, xfwd, xyfwd, yfwd, 0) ;
else
space_flip(cen,yfwd, xyfwd, xfwd, 3) ;
}
}

/* now return the updated spin layer to the neighbor */
cshift(tlines,nextproc[O][NEG],len,tlines+in,nextproc[0][POS],len);
cflush(tlines,len):

107

/***

time_flipr: Time loop updates performed by this routine. The
addresses of the 6 spin words involved in the flip
supplied by timeplaq().

***/

#include "spext.h"

JxFEAx Mtrotter = nword*8 *x*xxxx/

/*
Energy information is contained in 2 words, which are then shifted
and their 4 lowest order bits are read to decide if flip or not.

*/
/***
Layer=0
rlags in y direction, both even and odd ones.
Layer=1l

plags in x direction, both even and odd ones.

boundary condition(z) for the upper-most one.
Layer=2

plags in y direction, both even and odd ones.

boundary condition(z) for the upper-most one.
Layer=3

plags in x direction, both even and odd ones.

boundary condition(z) for the upper-most one.
***/

[R Ak Ak even plaqg:
Y b4
* * layer=0 layer=1
downl down2 » A
| {
*left *cenl *cen2 *right —---——-- > x y <-==--
upl up2
* *

0dd plag: exchange down <=> up

**********/

/*****************
st do 0 2 4 6, then do 1 3 5 7 (all on the same t-line).

Rt most sig bit
+ +
+ + ~
3 4 |
| | upper
!
4+ 2 ——mem 5 +++
+ | i +
+] | +
+++ 1 ————e 6 +++
| | I
| | down \Y%
0 ~——-- 7
cenl cen2 least sig bit
+ +
+++++++
e3 = top int_plaqg
ed = bottom int_plag
€0, e7= two down plags

el, e6= two middle plags

108

eng3 = (cenl{mw] ~ aux0) & mask_hi(layer] ;
eng4 = (cenl[mw] ~ auxl) & mask_dn[layer] :
engd4 = (eng4 << 3) | (HIGH_3 & eng4) >> 29 ;

tot_engl = eng0l2[mw] | eng3;
tot_eng2 = eng567{mw] | eng4;

start=0;
flpmsk = 0;

for (i=start;i<32;i+=8)
{
1li = layer + i;
mask = t_mask[1li];
if ((flag&mask)== 0)
if((cenl[mw]&mask) == 0 || (cen2{mw]&mask) == 0) {
1ft = (tot_engl >> 1li) & LOW_4;
rght = (tot_eng2 >> 1li) & LOW_4;

/*1ft and rght contain information about the energies, just use
them as indices to the look-up table. */

delta = t_prob[lft]) [rght]:

if(randf () < delta) {
flpmsk = flpmsk | mask;
taccpt ++;

}

/** flip the 0 2 4 6 time_plags **/
cenl (mw] = cenlmw] ~ flpmsk:

cen?2 [mw] cen2 [mw] *~ flpmsk:

/********** do l 3 5 7 (all on the same t-line)- *************/
/** Only eng3 and eng4 needs to be recomputed, since the plags
might have been flipped *%/
aux0 = (1 & cenl{wr[mw+l]]) << 31 | (cenlimw] >> 1) ;

auxl = (HIGH 1 & cenl[wr[nword+mw-1]]) >> 31 | (cenlmw] << 1) ;
eng3 = (cenl{mw] *~ aux0) & mask_hi([layer]) :

eng4 = (cenl[mw] ~ auxl) & mask_dn[layer] ;

engd4 = (eng4 << 3) | (HIGH_3 & eng4) >> 29 ; /* to align to eng3 only */
tot_engl = eng0l2[mw] | eng3;

tot_eng2 = eng567[mw] | eng4;

start=4;

flpmsk=0;

for (i=start;i<32;i+=8) {
1li = layer + i:
mask = t_mask({1li]:

if((flagamask) == 0)
if((cenl(mw]é&mask) == 0 || (cen2[mw]&mask) == 0) {
1ft = (tot_engl >> 1i) & LOW 4;

rght = (tot_eng2 >> 1i) & LOW_4;
delta = t_prob[lft] [rght];
if(randf () < delta) {
fipmsk = flpmsk | mask;
taccpt ++ ;

109

e2, e5= two upper plags

****************/

int time_flipr(left,cpl,cp2,right,down1,down2,upl,up2,layer)
int left, cpl, cp2, right, downl, down2, upl, up2, layer;

{
unsigned
unsigned
unsigned

eng0,engl, eng2, eng3, eng4, eng5, eng6, eng7;
flag,aux0, auxl, flpmsk, mask, low, high, back;

cenl [MXword], cen2[MXword], e012[MXword), e567 [MXword];
unsigned int eng012[MXword], eng567[MXword], tot_engl, tot_eng2, 1£ft, rght;
int mw, lyr, layerl, start, 1li, i, wrl;

float delta,rl;

int
int
int

layerl = layer ;

/* First compute eng012 and eng567 */

/* These are the energy contributions coming from the neighbors
of the 2 spin worfs which are being flipped. These energies are

useful for both even and odd time loops. */
/* Just XOR the words and pick up the appropriate bits by masking*/

for (mw=0; mw<nword;mw++) {

eng0 = (tlines{cpl+mw] ~ tlines[downl+mw]) & mask_dn{layer] ;
engl = (tlines[cpl+mw] ~ tlines[left+mw]) & mask_md[layer]
eng2 = (tlines[cpl+mw) ~ tlines[upl+mw]) & mask_upllayer]
eng5 = (tlines[cp2+mw] “ tlines{up2+mw]) & mask_up(layer] H
eng6 = (tlines{cp2+mw] ~ tlines{[right+mw]) & mask md[layer] ;
eng7 = (tlines[cp2+mw] ~ tlines[down2+mw]) & mask_dn[layer]:
€012[mw] = eng0 | engl |eng2;
e567[mw] = eng5 | eng6 |eng7;

}

/* Rotate eng0l1l2, cenl etc. for different layers to layer=0 position */

lyr=layer;

back = 32 - lyr;
if(lyr > 0){
low = low bits[lyr]:
for (mw=0;mw<nword;mw++) {
wrl = wr[mw+l] ;
eng0l2 [mw] = e012[mw] >> lyr | e012[wrl] << back;
eng567 [mw] = e567[mw] >> lyr | e567[wrl] << back:
cenlmw]= tlines([cpl+mw]>>1lyr | tlines[cpl+wrl] <<back :
cen2[mw]= tlines[cp2+mw]>>1lyr | tlines[cp2+wrl] <<back ;
}
} else for (mw=0;mw<nword;mw++) {
eng012 (mw] = e012[mw];
eng567[mw] = e567 [mw]:
cenl [mw]= tlines[cpl+mw];
cen2[mw]= tlines|[cp2+mw];

1

/* now layer=0, because already shifted eng012, cenl */
/* loop over multiple words of a single trotter line */
for (mw=0;mw<nword;mw++) {

layer=0;
flag = ~(cenl{mw] *~ cen2imw]) ;

/* First do Oth 2nd 4th 6th time-plags, then do odd ones */

/* To calculate contributions from plaquettes within the 2 words
cenl and cen2, need to shift them and then XOR. When shifting, must

pickup the bits residing in words above and below. */

aux0 =
auxl =

(1 & cenl(wr[mw+1l]]) << 31 |
(HIGH_1 & cenl{wr{nword+mw-1]]) >> 31 |

(cenl[mw] >> 1) ;
(cenlmw] << 1) ;

110

/** flip the 1 3 5 7 time_plags and put back in t-lines **/
cenl[mw] = cenl{mw] ~ flpmsk;
cen2{mw] = cen2[mw] ~ flpmsk;
} /* mw loop */

if(lyr > 0){
high = high bits[lyr}:;
for (mw=0;mw<nword;mw++) {
wrl = wr[nword+mw-1};
tlines{cpl+mw]= cenl{mw]<<lyr | cenl{wrl] >>back:
tlines{cp2+mw]= cen2[mw]<<lyr | cen2[wrl] >>back;
}
} else for (mw=0;mw<nword;mw++) {
tlines([cpl+mw]= cenl[mw];
tlines[cp2+mw]= cen2[mw];

}

} /* end of timeflipr() */

/**

time plags: Calculates adresses of spin words involved in time
loop flips. Sweeps through the lattice, passing
the adresses to the routine timeflipr(), which does

the updates.
**/

/***

Layer=0

plags in y direction, both even and odd ones.
Layer=1

plags in x direction, both even and odd ones.

boundary condition(z) for the upper-most one.
Layer=2

plags in y direction, both even and odd ones.

boundary condition(z) for the upper-most one.
Layer=3

plags in x direction, both even and odd ones.

boundary condition(z) for the upper-most one.
**/

JEREE KKK KKk even plaq:
y x
* * layer=0 layer=1
downl down2 ~ ~
| !
*left *cenl *cen2 *right ——=--—- > x y <——=-
upl up2
* *
Odd plaq: exchange down <=> up
**********/
/****************
! (A [! |
I | T R o | |
| (N N It] |
I [I R (I | |

spc_left0 0 1 2 3 4 ... 6 7 space_right0 space_rightl
|

*****************/

111

#include "“spext.h"
#include "cros.h"
#include "ih.h"
time plags ()

{

int xeven,yeven,layer,left,right,downl, down2,upl,up2;

int cpl, cp2:

int x,xl,xOO,y00,y,y0,y1,y2,len,space_lefto,space_righto,space_rightl;
int inl,in2,outl,out2;

len = nx*nword*4;

/* these are the memory locations for the boundary layers from
the node to the left and to the right */
space_xrightQ = ny ;

space_xightl = ny+1l ;

space_left0 = ny+2;
layer=0;
y00=1;
xeven=0;
/* find out the addresses of spin words which share time loops
that start on layer 0 *x/
for(y=y00;y<ny;y +=2){
yl=y+1;
y2=y+2;

if(yl == ny) {
/* pass tlines from right node to left */
inl = nword*yl*nx;
in2 = nword*y2*nx;
outl = nword*0*nx;
out2 = nword*l*nx;
cshift (&tlines[inl],nextproc[0] [POS], len,
&tlines[outl],nextproc ([0} [NEG],len);
cshift (&tlines{in2],nextproc|[0] [POS], len,
&tlines[out2]},nextproc{0] [NEG], len);
cflush(&tlines{inl], len);
cflush(&tlines{in2],1len):
}
for (x=0;x<nx;x++) {
right= nword* (x + y2+*nx);
left = nword*(x + bcky[y]*nx);
if(x%2 == xeven){ /** even plag **/
downl = nword* (fwdx[x] + y*nx);
down2 = nword*(fwdx([x] + yl*nx);
upl = nword* (bckx{x] + y*nx);
up2 = nword*(bckx[x] + yl*nx):;
} else {
upl = nword*(fwdx[x] + y*nx);
up2 = nword*(fwdx[x] + yl*nx):
downl = nword* (bckx[x] + y*nx);
down2 = nword*(bckx([x] + yl*nx);
}
cpl=nword* (x+y*nx) ;
cp2=nword* (x+yl*nx) ;
time_flipr(1eft,cpl,cp2,right,downl,downZ,upl,upZ,layer);

}

layer=1;

x00=0;

yeven=0;

/* find out the addresses of spin words which share time loops
that start on layer 1 */

for(y = ny-1; y >= 0 ; y--){

112

yl=y+1;
yO=y-1;
if(y == ny-1){
yl=space_rightO0;
/* because the plane is in the left node in layer 0 */
} else if (y == 1) {
/* put y=0 plane back, from left to right */
outl = space_rightO*nx*nword;
inl = O*nx*nword;
cshift (&tlines[inl],nextproc([0] [NEG], len,
&tlines[outl],nextproc{0] [POS],len):;
cflush(&tlines{inl],len);
} else if (y == 0) {
/* because y0 is ~1 if y==0. So y==0 is different from y==1 */
y0 = space_left0 ;
/* copy y=ny-1 plane from left to right node */
outl = (ny-1)*nx*nword;
inl = y0*nx*nword;
cshift (&tlines[inl],nextproc{0] [NEG], len,
&tlines[outl],nextproc[0] [POS],len):;
cflush(&tlines{inl],len):

for (x=x00; x<nx; x+=2) {
x1l=fwdx[x]:;
/* for(y=0;y<ny:y++){ */ .
left = nword* (bckx[x] + y*nx);
right = nword*(fwdx[x1l] + y*nx):;
if (y%2 == yeven){ /** even plagq **/
downl = nword*(x + yl*nx):;
down2 = nword*(xl + yl*nx);
upl = nword*(x + y0*nx):
up2 = nword*(x1 + y0*nx);
} else {
upl = nword*(x + yl*nx);
up2 = nword*(x1l + yl*nx):
downl = nword*(x + y0*nx);
down2 = nword*(xl + y0*nx):;
} .
cpl=nword* (x+y*nx) ;
cp2=nword* (xl+y*nx) ;
time flipr(left,cpl,cp2,right,downl,down2,upl,up2,layer);

}

layer=2;
y00=0;
xeven=1;
/* find out the addresses of spin words which share time loops
that start on layer 2 */
for (y=y00:y<ny;y +=2) {
yO0=y-1;
yl=y+1;
y2=y+2;
if(y == 0){
yO=space_left0;
} else if(y2 == ny) {
y2=space_right0 ;
/* pass tlines from right node to left */
inl = y2*nx*nword;
outl = O*nx*nword; .
cshift (&tlines{inl}, nextproc{0} [POS], len,
&tlines[outl],nextproc[0] [NEG],len);
cflush(&tlines(inl],len);
}
for (x=0;x<nx; x++) {
right = nword*(x + y2*nx);

113

left = nword*(x + y0*nx);

if(x%2 == xeven){ /** even plaqgq **/
downl = nword*(fwdx[x] + y*nx):
down2 = nword* (fwdx[x] + yl*nx);
upl = nword* (bckx[x] + y*nx);
up2 = nword* (bckx[x] + yl*nx);

} else {
upl = nword* (fwdx[x] + y*nx);
up2 = nword* (fwdx[x] + yl*nx);
downl = nword* (bckx[x] + y*nx);
down2 = nword*(bckx[x] + yl*nx);

}

cpl=nword* (x+y*nx);

cp2=nword* (x+yl*nx) ;

time flipr(left,cpl,cp2,right,downl,down2,upl,up2, layer);

}

layer=3;
x00=1;
yeven=1;
/* find out the addresses of spin words which share time loops
that start on layer 3 .*/
for (y=ny-1;y>=0;y--){
yl=y+1;
yO=y-1;
if(y == ny-1){
yl=space_right0:;
/* because the plane is in the left node in layer 0 */
} else if (y == 0) {
y0 = space_left0 ;
/* copy y=ny~-l1 plane from left to right */
outl = (ny-1) *nx*nword;
inl = y0*nx*nword;
cshift (&tlines{inl],nextproc(0] [NEG], len,
&tlines[outl],nextproc[0] [POS], len);
cflush(&tlines[inl],len);

for (x=x00;x<nx; x+=2) {
x1=fwdx{x];
left = nword* (bckx[x] + y*nx):;
right= nword* (fwdx[x1l] + y*nx):
if(y%2 == yeven){ /** even plag **/
downl = nword*(x + yl*nx):

down2 = nword*(xl+ yl*nx);
upl = nword*(x + yO*nx):;
up2 = nword* (x1+ y0*nx);
} else {
upl = nword*(x + yl*nx):
up?2 = nword* (x1+ yl*nx);
downl = nword*(x + yO*nx):;
down2 = nword*(x1+ y0*nx):

}

cpl=nword* (x+y*nx) ;

cp2=nword* (x1+y*nx) ;
time_flipr(left,cpl,cp2,right,downl,down2,up1,up2,layer);

114

/***

weightsv: Calculates transition probabilities for elementary
flips in the XY model in Sy representation. It also
calculates tables which give matrix elements for
the operators UlU2 and U3U4, needed for vorticity
calculations. It is called in init(). The indices
to the tables ulu2, sls3, sls3ulu2, s0sls2s3 and
s0sls2s3ulu2 are calculated in meas_vortx().

**/

#include "spext.h"

#include <math.h>

weightsv(J1)

float J1:

{

float exchk,sinhk,coshk,expk;

float ul,u2,a,b,c,d,sigmal3,sigma0l123;

float ulu2(16]1([16],s1s3[16][16]),s1ls3ulu2[16]1[16]);
float s0sl1ls2s3[16]1([16],s0s1ls2s3ulu2(16]([16];
float uwul[l6][16], uwu2(1l6][16];

unsigned int i,3j,k,m,il,3jl,k1l,ml,down,up:

exchk = 1./(4.*(nword*8)*temp):;
sinhk = sinh(exchk):
coshk = cosh(exchk);

expk = exp(exchk);

a=expk*coshk;
b=expk*sinhk;
c=coshk/expk:;
d=sinhk/expk;

for (i=0;i<=1;i++)
for(j=0; j<=1; j++)
for (k=0;k<=1;k++)
for (m=0;m<=1;m++)
for (i1=0;il<=1;il1++)
for (j1=0;jl<=1;jl++)
for(kl=0;kl<=1;kl++)
for (ml=0:ml<=1;ml++) {
down = 15 - ((m << 3) | (k << 2) | (F << 1) | i);
up = 15 - ((ml << 3) | (kl << 2) | (31 << 1) | 4i1);

if((d == il) && (j == 1)) {

if (1 == j) u2=a;
else u2=c;
goto P2U2;

}

if((i t= 4i1) && (F !'= J1)) |
if (i == j) u2=b;

else u2=d;
goto P2U2;

}

u2=0,;

goto P1lU1;

P2U2:

if((k == k1) && (m == ml)) {
if(k == m) u2 *= a;
else uz2 *= ¢;

goto P1U1;

115

if((k != k1) && (m != ml)) {
if(k == m) u2 *= b;
else u2 *= d;
goto P1U1;

u2=0.;
P1ULl:
if((J == J1l) && (k == k1)) {
if(j == k) ul = a;
else ul = ¢;
goto P2U1;
}
if((3 = j1) && (k != k1)) {
if(j == k) ul = b;
else ul = d4d;
goto P2U1;
}
ul=0.:;
goto S1S3;
P2U1:
if((m == ml) && (i == il)) {
if(m == i) ul *= a;
else ul *= ¢;
goto S183:
}
if((m !=ml) && (i != il)) {
if(m == i) ul *= b;
else ul *= d;
goto S183;
}
ul=0.;
S1S83:

if((i == il) && (k == k1) && (j != j1l) && (m != ml)) sigmal3=1.;
else sigmal3=0.;

1f((1 != i1) && (k != k1) && (J != j1) && (m != ml)) sigma0123=1.;
else sigma(0l23=0.;
uul {down] [up] = ul;
uu2 [down] {up] = u2;

sls3[down] [up] = sigmal3;
s0sls2s3[down] [up] = sigma0123;

}

for (i=0;i<16;i++)

for (3=0;3<16; j++) {

ulu2{i] [j] = 0.;

for (k=0;k<16;k++) uwlu2[i][j] += uul[i] (k] * uu2fk] [j1;
}

116

for (i=0;1i<16;i++)

for (3=0; 3<16; j++) {
sls3ulu2{il} {j} = 0.:
s0sls2s3ulu2([i] [j] = 0.:

for (k=0;k<16;k++) sls3ulu2(i] {j] += sl1s3([i]([k] * ulu2(k](j]:
for (k=0;k<16;k++) s0sls2s3ulu2{i][j] += sO0sls2s3[i] [k] * ulu2{k](3]:

if(sls3ulu2(il{j] == 0.) x1x3([i]1{j)=0.:
else x1x3[i]([3] = sls3ulu2{i][j]/ulu2{il[jl:

if(s0sls2s3ulu2{i][j] == 0.) x0x1x2x3[i](j]=0.:
else x0x1x2x3{i])[j] = sO0sls2s3ulu2[i] [§)1/ulu2(i][3]:

z0z2[0] = 1.;
z0z2([1] = -1.;

}

/**

prob_tab: Calculates transition probabilities for all possible
time, space, and glob flip updates. Called at the
beginning of a run by init{().

**/

#include "spext.h"
#include <math.h>

prob_tab (£20, £32)

float £20,£32;

{

unsigned int shift;
int deltal,delta2, j,k:

/* This is a table of probabilities for time and space flips.
There are 5 possible space flip configurations and 16 * 16
possible time flip configurations, stored in s_prob[5] and
t_prob(16][16] */

/* Numbers 0,1,2,3,4, which are indices to s_prob{], are

obtained in bit manipulations performed by spaceflipr () */
s_prob[0] = exp((-4.) * £32);
s_prob{l] = exp((-2.) * £32):
s_prob{2] = 1.0;
s_prob[3] = exp(2. * £32):

s_prob[4] exp(4. * £32);

/* Numbers j,k, which are indices to t_prob[][], are
obtained in bit manipulations performed by timeflipr () */

for(j3=0; 3j<16; j++)
{

for(k=0; k<16; k++)
{

deltal = 0;
delta2 = 0;
for(shift = 0;shift < 3; shift++) {
1f(((j >> shift) & 1) == 1)
deltal++;
else

deltal--;

117

if(((k >> shift) & 1) == 1)
deltal++:;
else
deltal--;

If(((3 >> 3) & 1) == 1)

delta2++;
else

delta2--;
if£(((k >>3) & 1) == 1)

delta2++;
else

delta2--;

t_prob[j][k] = exp(deltal*f20 + delta2+*£32);
}

}
/* to calculate the probability of a glob flip in time dir,
one needs the number of antiferromagnetic plaquettes, atteched
to a particular string of tlines above a lattice site. This is 3
and is obtained by globflipr() */
for (j=0; j<=nword*32; j++) g _prob{j] = exp((double) (j-nword*16) *2.0*£20).;

}

118

/***

spmain_wtk: node program, running on the WEITEK
**/

#include <math.h>
#include <cros.h>
#include "ih.h"

#include "spdef.h"

int ack, param{10],cmd ; /* Subroutine parameters */
int timel,time2 ;

int no_op() :

int combeltl();

spmain_wtk ()
{

int 1,3,
/* get cube environment */
cros3hack():

/* server loop, complemented by the request loop in the host
program S 74

while (1) {
/* get the function to be performed */

bcastelt (&cmd, sizeof (int)) ;
cflush(&cmd, sizeof (int));

ack = -cmd ;

printf (" cmd = %d \n",cmd);

if (procnum == () cwrite (&ack,cpmask,4);

switch(emd) {
case SEED:

/* initialize random number generator */

bcastelt (&iseed, sizeof (int)) ;
cflush(&iseed, 4);

rm = jseed ;

ack = -iseed;

dumpelt (&ack, 4) ;

fib_init (procnum, iseed) ;
break:

/* get the parameters of the run */

case SETPAR:
recpar () ;
break :

/* initialize the spin configuration,
generate masks, probabilities and 2D grid */

case INITIALIZE:
bcastelt (param, sizeof (int)) ;
cflush(param, 4) ;
init_flag = param{0] :
ack = - param[0] ;
dumpelt (&ack, 4) ;
init (init flag) :

/* set_dist{(); */

119

break ;
/* perform updates and measurements */

case UPDATE:
timel = clock():
update () ;
time2 = clock():;
time2 = (time2-timel)/1000;
dumpelt (&time2, sizeof (int)) ;
break:

/* perform a single measurement, no updates */
P g

case MEASURE:
measure () ;

break:
/* dump the spin system to the host */
case DUMPLAT:
dumplat () ;
break;
case QUIT:
exit (1) :
default
break :

} /* switch */
}
exit (1)
} /* main routine */

/* just for testing purposes */

int (*Dabort) ()
ccabort ()

{
calldp(babort,0);
}

inc_or(a,b, size)
int *a,*b ;
int size ;
{
*a |= *b
return 0 ;
}
inc_and(a,b,size)
int *a,*b ;
int size ;
{
*a &= *b
return 0 ;
}

add_f(a,b,size)
float *a, *b ;
int size ;
{
*a += *b ;
return 1 ;

120

no_op(a,b,size)
int *a, *b ;
int size ;

{

return 0 ;

/***

This is the main program running in the host. It sends
commands to be performed by the nodes and serves the
requests coming from the nodes. It is in lockstep with

the complementary routine running in the nodes.
***/

#include <cros.h>
#include <stdio.h>
#include "ih.h"
#include "ihspdef.h"

#define order(N) cmd = N ;
printf ("brcast return %d\n",bcastcp(&cmd,4)) :
printf (" ordered : N \n") ; chk(N) ;

main{argc,argv)
int argc:
char *argv(]:

int cmd,param[10},i,j,iflg,pflag,mode;
char ctemp, measfile([40], gqgfile[40] ;
int timeO,timel,epoch() :

int msec[128],secmap([129];

float rate:

FILE *outfile;

printf ("Dimension of cube is ? \n");

scanf ("%$d", &doc); /* Dimension of cube */
printf("doc = %d\n",doc):;

cubeldl (doc,argv[1l],NULLPTR) ;

printf (" Finished download \n"):

totproc = 1<<doc; /* Total number of active nodes.*/
pflag = 0; /* output to terminal */
while ((ctemp=getc(stdin)) I= 'q’) {

switch{(ctemp) {

case ’'b’:
order (DUMPLAT)
dumplat () ;
break;

case ‘r’:
order (SEED) ;
printf ("INPUT seed : \n"):
scanf ("$d", param) ;
bcastcp (param,sizeof (int))
mdumpcp (bckbuf, sizeof (int) ,bufmap) ;
for(i=0 ; i<totproc ; i++)

if (bckbuf(i] != -param[0]) error out ("seed");

break:;

case 'i’:
order (INITIALIZE) ;
printf ("INPUT (ferro mag=0 Neel=1 random=2 old=3): \n") ;
scanf ("%4", param) ;
bcastcp (param,sizeof (int)) :
mdumpcp (bckbuf, sizeof (int), bufmap) ;
for(i=0 ; i<totproc ; i++)

if (bckbuf[i] != -param[0]) error_out ("init");

if(param{0] == 3) loadlat ():
break;

121

s’
order (SETPAR) ;
read_file("par.in");
setpar () :
printf ("Parameters set up.\n");
fflush(stdout):
break:

£
pflag = 1;
break:
case ‘u’:
order (UPDATE) ;
time0 = epoch() :
update (pflag)
timel = epoch() ;
elapsed(timel,timel) ;
fflush(stdout);
break:;

‘m’ :
order (MEASURE) ;
measure rec (pflag) ;
fflush(stdout);

break:
ror.

case

case

/*

case

case

output to files

*/

printf ("Commands are:\n");

\n\n")

printf("
printf("g
printf("i
printf ("u
printf (s
printf ("r
printf(“f
printf("b

break;

default:
print£(“INPUT (? for help) ");
}

}
/* Received quit signal.....

order (QUIT) ;
fclose(outfile);

printf (“"computation completed.\n")
exit (0)

} /* main() ends */

chk (given)
int given ;
{
int i,ack=555 ;
i = combep(&ack,4,1) ;
printf ("combcp return %d \n",i)

if(given != -ack) printf("Sent %d

}

Quit\n") v
Initialize\n");

Update \n");

Set parameters\n");

Set random number seeds\n");
Output into files\n");

Back up lattice \n");

.
’

received %d\n",given,ack)

/***********************************‘k************************

init_ conf:

Initialize the spin configuration. If flag = 0,

initial configuration is ferromagnetic, flag=1

is for Neel configuration, flag = 2 is for random
initial configuration, and flag=3 is configuration
from a previous run, kept in a file,

There is also a version of this routine which performs
different initializations for different processor

rings.

'k***************************************'k*‘k******************/

’

122

#include "spext.h"

#include "stdio.h"

#include "cros.h"

#include "math.h"

extern int cycle([130], r_table[127];
int temporal([65536];

init_conf (flag)
int flag:;
{
int x,y.mw;
switch (flag)
{
case 0: /* ferro magnetic */
for(x = 0; x < nx; x++) for(y = 0; y < ny; y++)
for (mw=0; mw< nword; mw++) tlines[nword*(x + y*nx)+mw] = 0;
break:;
case 1: /* Neel state */
for(x = 0; x < nx; x++) for(y = 0; y < ny; y++)
if{{(x +y) % 2) == 0)
for (mw=0; mw< nword; mw++)} tlines[nword*(x + y*nx)+mw]
else
for (mw=0; mw< nword; mw++) tlines[nword*(x + y*nx)+mw]
break;
case 2: /* random */
for(x = 0; x < nx; x++}) for(y = 0; y < ny; y++)
if(randf() < 0.5)
for (mw=0; mw< nword; mw++) tlines[nword*(x + y*nx)+mw]
else
for (mw=0; mw< nword; mw++) tlines[nword*(x + y*nx)+mw]
break;
case 3: /* old configuration, read from a file via
a call to loadelt () */
loadelt (tlines, nx*ny*nword*4) ;
cflush (tlines,nx*ny*nword*4);

Q:

Oxffffffefe;

0;

OxfEFfEFELE;

loadelt (&cycle[128],2*4);
cflush (&cycle[128],2*4);

loadelt (xr_table,127*%4);
cflush (r_table,127*4);
break:;
default:
printf(" error in init!\n"):;
exit (1);
break;

}

/**

dumplat: dump the spin system onto host computer’s file system
**/
dumplat ()
{

dumpelt (tlines, nx*ny*nword*4) ;

dumpelt (&cycle[128],2*4);

dumpelt (r_table,127%4);
}

/**
init_masks: For various purposes we have to pick up only
certain bits from spin words and words resulting
from operations on spin words. This is done using the

masks defined here.
***/

123

init_masks ()
{

int layer, i:

for(i = 0; i < 32; i++) bits[i] = (1 << i):
for(i = 0; i < 32; i++) low_bits{i] = 0:
for (i 1; i < 32; i++) low _bits{i] = low bits(i-1] | bits{i-1];
/* low[0]=0,low(1l]=1,low[2])=0x3, low[31]1=0x7ffffff */
for(i = 0; i < 32; i++) high bits[i] 0;
for(i = 1; i < 32; i++) high bits[i] high _bits([i-1] | bits[32-i]:
mask_dn{0] = O0x1111111%;
for(layer = 1; layer < 4: layer++) mask_dn{layer] = mask_dn[0] << layer;
for(layer = 0; layer < 4; layert+)
mask md[layer] = ((0x80000000 & mask dn[layer]) >> 31} |
(mask_dn[layer] << 1});
for(layer = 0; layer < 4; layer++)
mask_up[layer] = ((0x80000000 & mask md[layer]) >> 31) |
{mask md{layer} << 1);
for{(layer = 0; layer < 4; layer++)
mask_hi[layer] = ((0x80000000 & mask_upflayer]) >> 31) |
(mask _upl[layer] << 1):

]

t_mask([0] = 15;
for(i = 1; i < 32; i++) :
t_mask(i] = ((0x80000000 & t_mask[i~11}; >> 31) | (t_mask({i-1] << 1};
s mask([0] = s mask[l]) = s_mask[2] = s_mask[3] = 0;
for(i = 0; 1 < 32; i += 4)
for(layer = 0; layer < 4; layer++)
s_mask[layerl = s_mask[layer] | bits[layer + 1i];
}

/**

boundary: Defines vectors wich are to be used to properly

handle periodic boundary conditions.
***/

boundary ()

{

int i;
for{(i=0;i<nx;i++)fwdx{i]=i+1;

for (i=0;i<6;i++) fwdx[nx-1+i} = i;
/* fwdx[nx-1] = 0: fwd{fwd({i]] = fwd[i+l] */

for (i=0;i<nx;i++)bckx{il=1i-1;
beckx{0] = nx-1;

for (i=0;i<ny;i++)fwdy[il=i+1;
for (i=0;i<6;i++) fwdy[ny-1+i] = i;

for(i=0;i<ny;i++)bcky[i]l=i-1;
becky (0] = ny-1;

for (1i=0;3i<32;i++) fwdt[i] = i+l ;
for(i=0;i<6;i++) fwdt([31+i] = 1 ;

for(i=0;i<32;i++) bckt{i] = i-1 ;
bckt {0 = 31 ;

for(i=0;i<3*nword:i++) wr([i] = i%nworxd:

}

/**************************************W*********************

kos: Defines a mask used to calculate t:me dependent correlation
functions and the allowed wave vectors in the Brillouin zone.

124

**/

kos ()

{

int i, 3j.k.,b,bmax,imax, jmax;

float factor:

imax= 2*nx* (nx/2 + 1);
factor=6.28318530717959/ (float) nx;

for (i=0;i<imax;i++) kosinus[il=cos((float)i * factor):

bmax=16;

jmax = 1 << bmax;

for (j=0; j<jmax; j++) {

k=0;

for (b=0;b<bmax;b++) k += 1-2*((j>>b) & 1);
temporal[j] = k:

}

/***

init: Called at the beginning of a run, after the node
program and parameters are downloaded to the nodes.
Performs all the necessary initializations, by calling
appropriate routines.

**/

#include "spext.h"

#include "stdio.h"

#include "math.h"

init (flaqg)
int flag:

{

float J1,J3:;

J3 -1.0;
J1 1.0;
weights (J1,J3);

srand (iseed):
fib_init (procnum, iseed);

init_masks ()
init_conf(flag):
boundary ()

prob_tab(£20,£32);
kos () ;

} /* end of init () */

/***

recpar: Receive the parameters of a run from the host. The
version given here accomodates different parameter

sets for different rings.
**/

#include "cros.h"
#include "spext.h"
#include <stdio.h>
#include <math.h>

extern int inc_or(), combeltl();
int err,bckbuf[100],param[100] :

recpar ()

125
int cfg,f2,plen,i,eng_len,corr_len:

geometry:
/* Load the sizes of the lattices, the parameters of the

Cartesian grid, number of temperatures and initialization flag.

plen = 6;

bcastelt (param,plen*sizeof (int)) ;
cflush(param,plen*sizeof (int)};

for (i=0;i<plen;i++) bckbuf[i] = -param([i];
£f2 = dumpelt (bckbuf,plen*sizeof (int)) ;

nx param{0];
ny param{l};
ntemp = param[2];
init_flag= param{3};
nprocs[0] = param(4];
nprocs{l] = param[5};
/* configure the node system into a 2D grid */
cfg=config();

/* load temperatures to the rings */
temperatures:

plen = ntemp;

bcastelt (param,plen*sizeof (int)};

cflush(param, plen*sizeof (int))

for (i=0;i<plen;i++) bckbuf|i] = -param([i];

£2 = dumpelt (bckbuf,plen*sizeof (int)) ;

temp = ((float)param[recpnum({1]]})/10000.;

/*

dumpelt (&temp, sizeof (float));
dumpelt (recpnum, sizeof (int));
dumpelt (recpnum+l, sizeof (int));
*/

/* load Trotter numbers to the rings */
Trotter:
plen = ntemp;
bcastelt(param,plen*sizeof(int));
cflush(param,plen*sizeof (int));
for (i=0;i<plen; i++) beckbuf[i] = -param{i];
f2 = dumpelt (bckbuf,plen*sizeof (int)) :
nword = param[recpnum[1]]};
/*
dumpelt (&énword, sizeof (int)) ;
dumpelt (recpnum, sizeof (int));
dumpelt (recpnum+1l, sizeof {(int));
*/

config test:

plen=4;

bckbuf[0] = cfg;
beckbuf(l] = dim ;
bckbuf[2] = recpnum|0};
bekbuf[3] = recpnum(1];

f2 = dumpelt (bckbuf,plen*sizeof (int)) ;

/* load the parameters of updates, like sweep number, seeds,
bin size, and how many bytes are dumped to the host when
the spin configuration is backed up */
updates:

plen = 7;

bcastelt (param,plen*sizeof (int)) ;

*/

126

cflush(param,plen*sizeof (int)):
for (i=0:;i<plen;i++) bckbuf[i] = -param[i];
£2 = dumpelt (bckbuf,plen*sizeof(int)) -

ntemp = param{0]:

iseed = param[l]:

upflag = param[2];

totswp = param(3];

blksiz = param[4];

mratio = param(5]:

wrtsiz = param[6]; /* write out to host. in # of blocks

nspins = nx*ny;
/* init (init_flag); */

ndir = 1;

/*

eng len = 4*wrtsiz;

corr_len = ndir*wrtsiz*(nx/2 + 1);

if((e_data = (float *) malloc(4*eng_len)) == NULL) exit(1l):
if((c_data = (float *) malloc(4*corr_len)) == NULL) exit(1l):
*/

}

/**

config: sets up and configures communication channel numbers.
***/

return{0)

#include “cros.h"
#include "spext.h"

int config()
{
int error:
perbc{0] = perbc[l] = 1 ; /* periodic boundaries */

dim = -1;
/* determine the dimensionality of the Cartesian grid */
if (nprocs[0] == totproc)
dim=1;
else
if((nprocs[O]<totproc)&&(nprocs[O]*nprocs[1]==totproc))

dim=2;

error = whereami (procnum, nprocs,perbc, recpnum, nextproc, dim) ;
/* map onto a Cartesian grid of dimensionality dim */

return(error) ;

}

cros3hack ()
{

struct cubenv ce;

cparam(é&ce) ;

doc = ce.doc:

procnum = ce.procnum;

totproc = ce.nproc:

cpmask = ce.cpmask;
}**
whereami: Maps hypercube topoleogy onto the data decomposition grid.

Called in config().

***/

*/

127

#include <cros.h>
#include "spext.h"
#define ERR_1 -1
#define OK_1 0

int whereami(theprocnum,nprocs,perbc,recpnum,nextproc,dims)
int theprocnum, dims;
int nprocs{],perbc(],recpnum[] :

int nextproc[][2] :
{

int i;

int initerr,coorderr,chanlerr,chan2err;

initerr = (gridinit(dims,nprocs) == ERR 1) ;

coorderr = (gridcoord(theprocnum, recpnum) == ERR_ 1) ;

for (i=0 ; i<dims ; ++i) {

chanlerr = ((nextproc(i][0]} = gridchan(theprocnum, i, -1))== ERR 1) ;
chanZerr = ((nextproc[i][l] = gridchan (theprocnum, i, 1))== ERR_1) ;
}
if(initerr || coorderr || chanlerr || chanlerr)

return(ERR_1);
else
return(OK_1);

128

/***

gather: gather lattice pieces distributed among nodes in a ring
into a copy of the whole lattice in each node. Necessary
step before a global winding number update or correlation
function measurement.

***/

#include "spext.h"

#include "cros.h"

#include "ih.h"

gather (buf, dim)

int buf{],dim:;

/* buf should be in DRAM */

{

int in,out,len0,lenl, len2,len3, lend;
int Nx,coord0, coordl;

len0 = nx*nword;
Nx=ny*nprocs[1];

lenl = Nx*ny*nword;
len2 = nx*nword*4;
len3 = Nx*nword*4;
lend4 = 4*lenl;
if(dim == 1) {

if(dim == 2) {
/* for 2D decomposition, first exchange spin words along x-direction in
data space. A processor writes a chunk of data to the one below it, and
reads another chunk into the memory location next to to the location of
the written out chunk, from the node above it. Then the memory locations
are shifted again, and the same communication procedure is repeated */
for (coordl=1l;coordl<nprocs([1];coordl++) {
in = lenO*coordl;
out = len0* (coordi-1l);
vshift(buf+in,nextproc[1][POS],len2,len3,ny,buf+out,
nextproc(1l] [NEG], len2,1len3,ny);
}
cflush (buf, lend) ;
}

/* After the exchange in x-direction, the data are exactly in the form
required for the ring decomposition in y~direction, i.e each processor
has a stripe of the underlying two dimensional lattice. This is the part
that is actually used in the computation since our decomposition is 1D.
The procedure is exactly the same as for the exchange in x-direction.
The only difference is that vshift is not necessary, since the
communicated data occupy contigous memory locations. */

for (coord0=1;coord0<nprocs[0];coord0++) |
in = lenl*coord0:;
out = lenl* (coord0-1):;
cshift(buf+in,nextproc[0][POS],len4,buf+out,nextproc[0][NEG],len4);
}
cflush (buf, lend);
}

/**

scatter: the inverse of gather. Distribute the lattice to all other
nodes from node 0.

**/

scatter (buf,dim)

int buf(], dim;

/* buf should be in DRAM */

{

int r_len, in, out ,w_len, dist 0, dist_1:

int len0, lenl, len2, len3, lend4, Nx:

129

dist_0 = recpnum{0]}:
dist_1 = recpnum[1];
in = 0;

out = lenl;

/* Source node is assumed to be 0. It will first send stripes of
lattice along direction 0. It will send nprocs[0]-1 stripes(chunks) to
its neighbor, processor with coordinate 1 in O-direction. This processor
will send nprocs{0]-2 stripes to its neighbor with coordinate 2, and
so on, until the processor with largest O-coordinate receives only

1 stripe. If the decomposition is the ring decomposition, this is
enough.

w_len= (nprocs[0]-dist_0-1) *lend;

r_len= (nprocs{0]-dist 0)*len4;

len0 = nx*nword;

Nx=ny*nprocs|1l];

lenl = Nx*ny*nword;
len2 = nx*nword*4:;
len3 = Nx*nword*4;

lend4 = 4*lenl;

if(dist 0 == 0) {
cwrite (buf+out, nextproc([0] [POS],w_len)
} else if(dist_0 == (nprocs[0] - 1)) {
cread (buf+in, nextproc (0] [NEG],0,r_len);
} else {
cread(buf+in,nextproc[0][NEG],O,r_len);
cwrite(buf+out,nextproc[0][POS],w_len);
}
cflush(buf, lend*nprocs[0]);

/* For a 2D decomposition, only processors with coordinate 0 in
direction 1, are updated. They will now pass chunks of the lattice
along direction 1 to other processors. Now each processor with
coordinate 0 in direction 1 is a source. The procedure is the same

as for direction 0, but we must use vshift since the memory locations
are not consecutive. A processor with coordinate 1 in direction 1 will
receive nprocs[1]-1 chunks (square patches of the lattice), while the

last one along direction 1 receives only its own patch. */
if(dim == 2) {
in = 0;

out = len0;
w_len= (nprocs[l]-dist_1-1)*len0;
r_len= (nprocs{l]-dist_1)*len0;

if(dist_ 1 == 0) {
vwrite(buf+out,nextproc[1][POS],4*w_len,len3,ny);
} else if(dist_1 == (nprocs[l] - 1)) {
vread(buf+in,nextproc[l][NEG],O,4*r_len,len3,ny);
} else {
vread(buf+in,nextproc[l][NEG],O,4*r_len,len3,ny);
vwrite(buf+out,nextproc[1][POS],4*w_len,len3,ny);

}
cflush (buf,lend) ;

130

/***

update: This routine initiates MC sweeps, calls all the necessary
routines, and periodically dumps the results to the
host. It is complemented by a server routine in the
host. The version shown here involves measurements
of vortex density, thermodynamics and static correlations.
Very similar versions handle dynamic
correlations and spin stiffness as well.
**/
#include “spext.h"
#include "stdio.h™
float cbuf[10}];

update ()
{

register int sweep, i, k,j,ptr,c_ptr,max;

int dim0,diml;

int xcorr[MXnx],ycorr [MXnx];

float xcr([MXnx], yer([MXnx];

float en,en2,mag,mag2, su, sg, smagntz, factor;
float vfactor,blknorm,an,stml,stmag,stmagZ;
float v13,v24,v1234;

/* needed for combine routines */

dim0 = 0;

diml = log2(nprocs(0]):;

/* various normalization factors */

factor = 1./(float)(4*4*nx*nx*nword*blksiz);
vfactor=1./(float) (nx*nx);

blknorm = 1./ (float)blksiz;

nx2 = (float) (nx*nx);

max = nx/2;

/* initialize cumulative data variables */
en=0.; en2=0.;

mag=0.; mag2=0.;

stmag=0.; stmag2=0.;

ptr = 0; c_ptr = 0;
vl3 = 0.;

v24 = 0.;

v1l234 = 0.;

for (j=0;j<=max; j++) xcr[3j] = 0.;
/* needed for acceptance statistics */

tacept = 0; taacc = 0.0 ;
saccpt = 0; saacc = 0.0 ;
gacecpt = 0; gaacc = 0.0 ;
waccpt = 0; waacc = 0.0 ;

for(sweep=1;sweep<=totswp;sweep++) {

/* upflag says which types of updates to perform */
if((upflag&M TIME) == M TIME) time plags{():
if ((upflag&M_SPACE)== M_SPACE) space_plags():
if ((upflag&M GLOB) == M GLOB) glob_lines():

/* get the acceptance statistics */
accpt_update () ;

/* measure every mratio sweeps */
if (sweep%mratio == 0){

plagent (cbuf, &cbuf[4]);
stag mag(&cbuf[6]);
vorticity (&cbuf[7]);

combinesub (¢cbuf, 10, dim0, diml) ;

131

su = (cbuf{0]*e0+cbuf(l]*el+ cbuf [2]*e2+cbuf[3] *e3) /nx2;

sg = (cbuf[0]*gO+cbuf[1l]*gl+ cbuf [2]*g2+cbuf[3]*g3) / (nx2*nx2) ;
en += su;

en2 += su*su - sg;

smagntz = (cbuf{4] - cbuf[5])/(32.0*nword*nx2);

mag += smagntz;

mag2 += smagntz*smagntz*nx2/temp;

stml = (cbuf[6])/(4.0*8.*nword*nx2) ;
stmag += stml;
stmag2 += stml*stml*nx2/temp;

v1l3 += cbuf(7]:
v24 += cbuf([8];
v1234 += cbuf(9];

/* gather pieces of lattice for C(r}) measurement */
gather (tlines,nword*nspins) ;
corr_meas (xcorr,ycorr);

/* winding update, and then scatter from node 0 */
if((upflag&M_WIND) == M WIND) {
wind_lines():
scatter(tlines,nword*nspins,0);
accpt_update();

for (j=0;3 <=max ;j++) {
xcrij] += 0.5*(float)(xcorr[j]+ycorr[j]) H

/* accumulate measurements into a single bin */
if (sweep% (blksiz*mratio) == 0) {
e_data{ptr+0] = en*blknorm;

e_data[ptr+l] = en2*blknorm;
e_data[ptr+2] = mag*blknorm;
e_data[ptr+3] = mag2*blknorm;
e _data[ptr+4] = stmag*blknorm;
e_data[ptr+5] = stmag2+*blknorm;

= v13*blknorm*vfactor;

e_data([ptr+6]
e_data[ptr+7] vZ4*blknorm*vfactor;
e_data[ptr+8] v1234*blknorm*vfactor;
for (j=0;3j <=max ;j++) {
c_datalc_ptr++] = xcr[j]*factor;
xcr[j] = 0.0;

1

ptr += 9;
en = 0.0;
en2 = 0.0;
mag =0.0;
mag2 =0.0;

stmag =0.0;
stmag2 =0.0;
vl3 =
v24 =
v1234

.7

oo

0.

/* when wrtsiz bins accumulated, write to the host file system */
/* dumpelt () calls complemented by fdumpcp() calls in the host
server program */

if(ptr == 9*wrtsiz) {
dumpelt (e_data,wrtsiz*9*4);

132

combinesub(c_data,wrtsiz* (max+1),dim0,diml) ;
durmpelt (c_data,wrtsiz*4* (max+1));
ptr = 0;
c_ptr = 0;
}

} /* blksiz */
} /* mratio */
} /* sweep loop */

e_data[0] = taacc/(float) (sweep);
e_data[l] = saacc/(float) (sweep);
e_data[2] = gaacc/(float) (sweep):
e_data[3] = waacc*mratio/(float) (sweep);
combinesub(e_data,4,dim0,diml) ;

dumpelt (e_data, 4*4);

} /* update() */

accpt_update ()

{

taacc += (float) (taccpt)/(float) (nx*nx*nword*16) ;
saacc += (float) (saccpt)/ (float) (nx*nx*nword*8) ;
gaacc += (float) (gaccpt)/(float) (nx*nx);

waacc += (float) (waccpt)/(float) (nx*nword*32) ;

tacept
saccpt
gaccpt
waccpt
}

/***

plagent: Measurement of thermodynamic quantities requires
summing over contributions of individual interacting
plaquettes, which is the purpose of plagent ()
**/
#include "spext.h"
#include "stdio.h"
#include "cros.h"
#include "ih.h"
/**
Layer=0,2 plaquettes go %n y—d;rect?on
Layer=1,3 plaquettes go in x-direction
***/

’

.
’

(N e NoNe

’
.
’

/*** in y_direction ***
t=4 -t +———t +———t +-——t +———t

layer=3 I ! I J I ! I [I I

t=3 Fo——t te——t 4=t ===t +e———t

t=2 +———t ==t +———+ +———t =it

layer=1 | ! [| ! l | I I I

t=1 et +———+ +e——+ +-——+ F———t

***/

plaqent (e_conf, m_conf)

float e_conf[4], m conf(2];

{

unsigned int eng_conf[4], mag_conf[2];

unsigned int X_line[MXnx] [MXword], y_line[MXny] [MXword];
unsigned int x_vert [MXny] {MXword], y_vert {MXnx] [MXword] ;
unsigned int x_horzn[Man][MXword],y_horzn[MXny][MXword];
unsigned int hcmp,vemp, line, linel, mcmp , ix:

int t,bit, bit2, layer, mw,x,y, len, in:

133

eng_conf [0} /* 00: hrzn=same,vert=same => plag 1 or 2 */
eng conf[1] /* 01: hrzn=same,vert=opst => plag 7 or 8 */
eng_conf[2] /* 10: hrzn=opst,vert=same => plagq 3 or 4 */
eng_conf[3] /* 11: hrzn=opst,vert=opst => plag 5 or 6 */

mag_conf[0]
mag_conf[1]

Henn
[=N e} [eRaNoNal
oS v N

~e N

/* copy a layer of tlines from right to left */

in=nword*ny*nx;

len=nx*nword*4;
cshift(&tlines[in],nextproc[O][POS],len,&tlines[O],nextproc[O][NEGJ,len);
cflush(&tlines[in], len):

/* layer=1, 3: interacting plags go in y-dir */
layer=1;
for (x=0;x<nx; x++) {
for (y=0;y<ny;y++) for (mw=0;mw<nword; mw++) {
y_line[y] [mw] = line = tlines[nword* (x+y*nx)+mw];
linel = tlines{nword* (x+y*nx)+wr[mw+1]];
y_vert[y] [mw] = line~(((l&linel) << 31) | line>>1):
/* y horzn[y}[mw] = line”tlines[nword*(x + fwdy([y] *nx)+mw]; */
y_horzn{y] [mw] = line“tlines[nword*(x + (y+1)*nx)+mw];

}

/* after identifying spin words which are connected by interacting
plaquettes, and XOR-ing to see what are the spin configurations,
scan in time direction by shifting the words, and count plaquettes */

for (t=0:t<32;t += 4)for (mw=0;mw<nword; mw++) {
bit =layer+t;
bit2 = bit+2; /* layer=3 */

for(y=0; y<ny:;y += 2) {

- hemp = (y_horzn(y] [mw] >> bit) & 1;
vemp = (y_vert{y]l[mw] >> bit) & 1;
eng_conf [(hcmp<<l)+ vemp] ++;
if ((hcmp + vemp) == 0) {

mcmp = (y_line[y] [mw] >> bit)} & 1;
mag_conf [memp]++;
}
}

for(y=1; y<ny;y += 2) {
hemp = (y_horznly] [mw] >> bit2) & 1;
vemp = (y_vert([y][mw] >> bit2) & 1;
eng_conf| (hcmp<<l)+ vempl++;
if ((hcmp + vemp) == 0) {

memp = (y_linefy][mw] >> bit2) & 1;
mag_conf [memp] ++;

}

}
} /* t loop */
}

/*** in x—direction LEEEER SRS EE LR EEE R R T R R R R R I SR I,
t=3 Fe——t +———t +-——+ +———+ +-——+

layer=2 ! I I | I ! I I I |

t=2 +———t Fom——t +-——+ +———t +———t

t=1 ==t +———+ +~——+ +o——t F=——t

layer=0 | | | I I ! | I I I

t=0 Fe—t +-——+ R F——t +———+

‘k****/

134

/* repeat the procedure above, but for plaquettes running in
x-direction */

layer=0; /* both layer=0 and 2 */
for(y=0;y<ny;y++) {
for (x=0;x<nx;x++) for (mw=0;mw<nword; mw++) {
x_line([x] (mw] = line = tlines[nword* (x+y*nx) +mw];
linel = tlines{nword* (x+y*nx) +wr[mw+1]];
x_vert([x] [mw] = line*(((l&linel) << 31) | line>>1);
X_horzn[x] [mw] = line*tlines[nword* (fwdx[x] + y*nx) +mwj;
}

for(t=0:;t<32;t += 4) for (mw=0;mw<nword; mw++) {
bit=layer+t;
bit2 = bit+2; /* layexr=2 */

for (x=0; =x<nx;x += 2) {
/* hcmp = horizon compare of two lower spins */
/* vemp =vertical compare of two left spins */
hemp = (x_horzn(x] [mw] >> bit) & 1;
vemp = (x_vert([x][mw] >> bit) & 1;
eng_conf| (hcmp<<l)+ vemp]++;
if ((hcmp + vemp) == 0) {
memp = (x_line({x][mw] >> bit) & 1;
mag_conf [mcmp] ++;
}
}
for(x=1; =x<nx;x += 2) {
hemp = (x_horzn(x][mw] >> bit2) & 1;
vemp = (x_vert([x][mw] >> bit2) & 1:
eng_conf[(hcmp<<l)+ vemp] ++;
if ((hcmp + vemp) == 0) {
mcmp = (X_line[x][mw] >> bit2) & 1;
mag_conf [mcmp]++;
}
}
} /* t loop */
}

e_conf{0] = (float) eng_conf(0];
e_conf[l] = (float) eng conf{l];
e_conf[2] = (float) eng_conf[2];
e_conf{3] = (float) eng_conf(3];
m_conf[0] = (float) mag_conf[0];
m_conf[l] = (flocat) mag_conf[l] ;

} /* end of plagcnt () */
/**
tau_meas: Measure the complete set of correlations
S(x,y,t). For each value of t, the spin lines are
shifted, and than two spin lines which differ by (x,y)
vector, are XOR-ed. To improve statistics and recover
isotropy, 16 bits are used for measurement. The
corresponding value of the spin correlation is
stored in precomputed table temporall].
Each processor computes only a piece of the correlation
function.
'k***************/
#include “"spext.h"
#include "math.h"
extern int temporal{65536];
unsigned int shifted[MXnx*MXny*MXword];

tau_meas(cofxyt)
float *cofxyt;
{

135

int time len,tau_half,del_t,del_x,del_y,x,x1,y,yl,p,J.Jj1,cor,NY, NX;
int t,k,d,b,del_tw,del_tb,tm, ynx,wycgrid,offset, mw;

unsigned int word_dn, word_up,word_upl,word_up2,xor;

float factor:

/* assume square lattice, NY = nx, NY = ny * nprocs(0] */

NY = NX = nx;
tau_half=16*nword;
time_len=1+4*nword;
wycgrid = NY/(nprocs{0]);

/* correlations are calculated on every other spin word in time
directions, since the measurements are correlated */

tm= ((nword % 2) == 0) ? (nword/2) : (nword/2+1):;
factor=1./((float)l6*tm*NX*NY) ;
offset = recpnum{0]*wycgrid;

/* offset defines which correlations will be computed by the
processor with ring coordinate recpnum{0] *x/

for(del_t=0:;del_t <= tau_half;del t += 4){
/* shift the spin words */
if(del_t == 0) {
for (y=0;y<NY;y++) {
for (x=0; x<NX; x++) {
j=nword* (x+y*nx) ;
for (mw=0; mw<nword;mw++) {
shifted[j+mw] = tlines{j+mw];
} /* mw loop */
} /* x loop */
} /* y loop */
telse{
for (y=0;y<NY;y++) {
for (x=0; x<NX; x++) {
j=nword* (x+y*nx) ;
for (mw=0; mw<nword;mw++) {
shifted[j+mw] = ((1 & shifted[j + wrimw+l]]) << 31) |
(shifted[j+mw] >> 1);
} /* mw loop */
} /* x loop */
} /* y loop */

}
for(del x=0;del_ x<NX;del x++) ({
for(del_y = 0;del_y < wycgrid:;del_y++) {
cor=0;
for (y=0;y<NY;y++) {
for (x=0; x<NX;x++) {
j=nword* (x+y*nx) ;
x1l=(x+del_ x)%NX;
yl=(y+toffset+del_y) %NY;
jl=nword* (x1+yl*nx) ;
for (mw=0; mw<nword;mw += 2) {
word_dn=tlines{j+mw];
word up=shifted[jl+mw];
cor += temporal[(word dn ~ word up) & (Oxffff)];
/* XOR the spin words and accumulate the correlation function */
} /* mw loop */
} /* x loop */
} /* y loop */
t=del t/4:
cofxyt{t + (del_x+del y*nx)*time_len] = ({float)cor)*factor;
/* store the measurement in this array, to be FTransformed x/
} /* del y loop */ :
} /* del x loop */
} /* del t loop */

136

} /* end of tau_meas() */

/***

corr_meas: measure correlation functions along x and y
direction

***/

#include "spext.h"

#include "math.h"

corr_meas (Xcorr,ycorr)

int *xcorr, *ycorr;

{

register int del x,del_vy,x,x1,y,y1,p,3,31l,cor,NY;

register int ynx,ylnx,nx_half,NY half,mw, xor, sgn;

int corr_tab(16]:

/* assume square lattice, NY = nx, NY = ny * nprocs([0] */

NY = nx;
NY half = nx half = nx/2;
xcorr[0] = ycorr[0] = l6*nword*nspins;

/* pick up lowest 4 bits in a spin word. corr_tab[] converts
this number into the correct value of Sz */
corr_tab[0]
corr_tab(l]
corr_tab[2]
corr_tab{3]
corr_tab[4}]
corr_tabl(5]
corr_tab(6]
corr_tab[7]
corr_tab(8]
corr_tab[9] 0;

[|
[\V]

corr_tab([l0] = 0;

corr_tab[ll] = -2;

corr_tab(12] = 0;

corr_tab{1l3] = -2;

corr_tab[l4] = -2;

corr_tab[l5] = -4;

sgn = 1;

for(del_y = 1l;del_y <= NY half:;del_y++) {
sgn *= (-1);
cor = 0;

for (y=0;y<ny:y++) {
ynx = y*nx;
ylnx = (y+del_y) *nx;
for (x=0;x<nx; x++) {
j = nword* (x+ynx);
jl1 = nword* (x+ylnx);
for (mw=0;mw<nword;mw++) {
/* XOR the 2 spin words at (x,y) and (x+del_x,y+del y) */
xor = tlines([j + mw] ~ tlines[jl + mw];
/* pick up lowest 4 bits */
cor += corr_tab[LOW 4 & xor]:
/* shift and pick up next 4 bits, 2 Trotter layers

above */
Xor = xXor >> §;
cor += corr tab[LOW 4 & xor]:
Xor = xor >> 8; -
cor += corr tab[LOW 4 & xor};
Xor = xor >> 8; -

cor += corr_tab[LOW_4 & xor]:

137

}
}
ycorr[del_y] = sgn*cor;

sgn = 1;

for(del x = 1;del_x < nx_half;del x++) {
sgn *= (-1);
cor = 0;

for (x=0;:x<nx;x++) {
x1 = (x + del_x) % nx;
for (y=0;y<ny;y++) {
P = nword*y*nx;
j = nword*x + p;
31 = nword*xl + p;
for (mw=0; mw<nword;mw++) {
¥or = tlines{j + mw] ~ tlines[jl + mw];
cor += corr_tab[LOW_4 & xor]:
/* every other trotter layer */
Xor = xor >> 8;
coxr += corr_tab[LOW_4 & xor]:;
Xor = xor >> §;
cor += corr_tab[LOW 4 & xor];
XOor = xor >> 8;
coxr += corr_tab[LOW_4 & xor};

}

xcorr[del_x] = sgn*cor;

del x = nx half;
sgn *= (-~1);
cor = 0;
for (y=0;y<ny:y++) {
p = nword*y*nx;
for (x=0;x<nx_half;x++) {
xl = x + del_x;
j = p + nword*x;
i1 = p + nword*xl;
for (mw=0;mw<nword;mw++) {
xor = tlines([j + mw] ~ tlines[jl + mw]:
cor += corr_tab[LOW_4 & xor]:
Xor = xor >> 8;
cor += corr_tab[LOW_4 & xor]);
Xor = xor >> 8;
cor += corr_tab(LOW 4 & xor];
Xor = xor >> 8;
cor += corr_tab[LOW 4 & xor]:
}
}
}

xcorr[nx_half].= 2*sgn*cor:;
/* a factor of 2 is introduced since the overall normalization
factor will be 4*nword*nx*NY */

} /* end of corr_meas() */

/**

meas_vortx: This routine measures the vortex density and the
vortex pair probability. The addresses of spin

138

words needed for the measurement are supplied by

vorticity().
******************i**/

#include "spext.h"

meas_vortx(ss0, ssl,ss2,ss3,ss5, 556, layer, vdat)

int ss0,ssl,ss2,ss3,s85,ss6,layer;

float *vdat;

{

unsigned int sm,1bit0,lbitl,lbit2,1bit3,1bit6,1bit0123;
unsigned int ubitQ,ubitl,ubit2,ubit3,ubit6,ubit0123;
unsigned int aux0,auxl, aux2,aux3,aux6,aux02,aux06,aux26;
unsigned int i, s0, sl, s2, s3, s6, il:

int mw,corr_tab(16],20z122z3([16};

float c13,g13,g02,g0123,g1236,gl306,gx0123,920123;

/* these are the tables of 2 and 4 spin correlations in y
direction in spin space. The index to a table is provided

by bit manipulations on neghboring spin words. */
corr_tab[0] = 4;
corr_tab(l] = 2;
corr_tab([2] = 2;
corr_tab({3] = 0;
corr_tab({4] = 2;
corr_tab[5] = 0;
corr_tab(6] = 0;
corr_tab(7] = -2;
corr_tab(8] = 2;
corr_tab[9] = 0;

corr_tab[10] = O;

corr_tab{ll] = -2;
corr_tab (12} = 0;
corr_tab[l3] = -2;
corr_tab[l4] = -2;
corr_tab(1l5] = -4;
z0z1z2z3([{0] = 1;
z0z122z3[1] = -1;
z0z12223(2] = -1;
z02122z3([3] = 1;
20z122z3[4] = ~1;
z0z1z2z3[5] = 1;
z0212223([6] = 1;
z021z223([7] = -1;
z02z1z2z3([8] = ~1;
z0z1z2z3[9] = 1;
z02z122z3[10] = 1;
z0z122z3[11] = =-1;
z0z1z22z3[12] = 1;
z0z12z223{13] = -1;
z0z12z2z3[14] = -1;
z02z122z3[15] = 1;

gl3=0.;

g02=0.;

g0123=0.;

gl236=0.;

gl306=0.;

gx0123=0. ;

gz0123=0.;

for (mw=0; mw<nword; mw++) {

/* this piece is very similar to spaceflipr(),
of 4 spin words is involved.

139

decomposition properties of UlU2 and U3U4

s0
sl
s2
s3
s6
sm

/*

elements in the following fashion. A sequence of XORs is needed

tlines{[ss0+mw];
tlines[ssl+mw];
tlines([ss2+mw];
tlines[ss3+mw];
tlines[ss6+mw] ;
s_mask[layer];

since a cluster
4 spin clusters are due to the

*/

the matrix elements that we need are between spin layers
t and t+2. We manipulate the spin words to get these matrix

to establish the spin configurations, and we pick up the relevant bits
by masking. What we obtain are small integers, which are then

indices to look-up tables calculated by weights{()
if(layer == Q) {
/** perform a rotate << 1 function *%*/
/** need a bit from the word below the current one **/
aux0 = ((HIGH_l & tlines([ssO+wr[nword+mw-1]]) >> 31)
auxl = ((HIGH_l & tlines([ssl+wr[nword+mw-11]) >> 31)
aux2 = ((HIGH 1 & tlines[ss2+wr[nword+mw-1]1) >> 31)
aux3 = ((HIGH_l & tlines{ss3+wr[nword+mw-1]}) >> 31)
aux6 = ((HIGH_ 1 & tlines[ssé+wr{nword+mw-1]]) >> 31)
1bit0 = aux0 & sm;
lbitl = auxl & sm;
1lbit2 = aux? & sm;
1bit3 = aux3 & sm;
1lbité6 = aux6 & sm;
ubit0 = (s0 >>1) & sm;
ubitl = (sl >>1) & sm;
ubit2 = (s2 >>1) & sm;
ubit3 = (s3 >>1) & sm;
aux02 = (aux2 ~ aux0) & sm;
aux06 = (aux6 ~ aux0) & sm;
aux26 = (aux2 * aux6) & sm;
} else if(layer==3){
/** perform a rotate >> 1 function *%*/
/** need a bit from the word above the current one **/
aux0 = ((1 & tlines[ssO+wr[mw+l]]) << 31) | (s0>> 1)
auxl = ((1 & tlines[ssl+wr{mw+l]]) << 31) | (s1>> 1)
aux2 = ((1 & tlines[ss2+wrmw+1l]]) << 31) | (s2>> 1)
aux3 = ((1 & tlines([ss3+wr[mw+l]]) << 31) | (83>> 1)
ubit0 = aux0 & sm;
ubitl = auxl & sm;
ubit2 = aux2 & sm;
ubit3 = aux3 & sm;
1lbit0 = (s0 <<1) & sm;
lbitl = (sl <<1) & sm;
1bit2 = (82 <<1) & sm;
lbit3 = (83 <<1) & sm;
lbit6 = (s6 <<1) & sm;
aux02 = 1lbit2 ~ 1bit0:
aux06 = lbit6é ~ 1lbit0:
aux26 = lbit2 ~ 1lbité6:
} else {
ubit0 = (s0 >> 1) & sm;
ubitl = (sl >> 1) & sm;
ubit2 = (s2 >> 1) & sm;
ubit3 = (s3 >> 1) & sm;
1lbit0 = (s0 << 1) & sm;
1bitl = (sl << 1) & sm;
1lbit2 = (82 << 1)} & sm;
1bit3 = (83 << 1) & sm;
1lbit6 = (s6 << 1) & sm;

*/

(s0<<
(sl<<
(s2<x<
(s3<<
(sb6<<

Ne Ne Ne e N

140

aux02 = lbit2 ~ 1bitO0;
aux06 = lbité ~ 1bit0;
aux26 = lbit2 ~ 1lbité6:

if(layer > 0){
/* shift the words with relevant bits to layer 0 position */

ubit3 >>= layer;

ubit2 >>= layer:

ubitl >>= layer;

ubit0 >>= layer:;

1bit3 >>= layer;

lbit2 >>= layer:

1lbitl >>= layer:

1bit0 >>= layer:;

aux02 >>= layer:;

aux06 >>= layer;

aux26 >>= layer;

}

/* the bits are overlapping, so we shift them again
and than OR them to get small integers */
ubit3 <<= 3;

ubit2 <<= 2;

ubitl <<= 1;

lbit3 <<= 3;

1bit2 <<= 2;

lbitl <<= 1;

ubit0123 = ubit0 | ubitl | ubit2 | ubit3;
1bit0123 = 1bit0 | 1lbitl | 1lbit2 | 1bit3;

/* now just use the look-up tables x1x3 etc. */
for (i=0;1i<32;i+=4) {
€13 = x1x3[(1bit0123 >> i) & LOW_4] [(ubit0123 >> i) & LOW_4]:

gl3 +=

cl3;

90123 += z02z2[(aux02 >> i) & 1]
gl236 += z0z2[(aux26 >> i) & 1]
gl306 += z0z2[(aux06 >> i) & 1]

* ¢cl13;
* ¢cl3;
* ¢l3;

i) & LOW_4)[(ubit0123 >> i
i) & LOW_4];

) & LOW_4];

corr_tab[(s2 ~ s0) & LOW_4] + corr tab[(sl ~ s3) & LOW_4];

g02 += z0z2[(aux02 >> i) & 1}];
gx0123 += x0x1x2x3{ (1bit0123 >>
gz0123 += 2z02z122z3[(1bit0123 >>
}
/*
g02 +=
*/
} /* mw loop */
vdat [0] = gl3/(float) (nword*8);
/*
vdat [1] = g02/(float) (nword*4*2);
*/
vdat [1] = g02/(float) (nword*8);
vdat (2] = g0123/(float) (nword*8);
vdat [3] = gl236/(float) (nword*8);
vdat[4] = gl306/(float) (nword*8);
vdat[5] = gx0123/ (float) (nword*8);
vdat [6] = gz0123/ (float) (nword*8});

/* these pieces will ultimately be combined to give the
vortex density */

} /* end of meas vortx() */
/**

141

vorticity: This function identifies elementary squares and
addresses of spin words which are then provided
to meas_vortx().
**/
#include "“spext.h"
#include "cros.h"
#include "ih.h"

/***

even plagq:

Yy
3*——yp-—=-*2 layer=0,2
|] ”
down down |
| | }
Q0*——up--=-*1 = ce—mee—- > x

**/

vorticity (vbuf)

float vbuf[7]:

{

int s5,s6;

int x,y,x1,y1l,x2,y2;

int xfwd, cen, yfwd, xyfwd;
int in, len;

float buf[7]:

in = ny*nx*nword;
len = nx*nword*4;
vbuf[0]
vbuf[1]
vbuf[2]
vbuf [3]
vbuf (4]
vbuf (5]
vbuf[6]
vbuf{7]

.
.

LI T |
OCOQOQOOO0OO0OO

« e
Ne e Se Ve Ne ve N

/* very similar to spaceplaq(), since the 4 spin cluster are

the same. Only difference is that here we also calculate addresses
of 2 extra spins needed for vortex pair density. Essentially we
sweep over lattice looking for 6 spin clusters residing on 2
adjacent squares. */

/* layer=1 and 2 */
for(y=0;:y<ny:;y += 2){
yl = y+1;
y2 = fwdy(yl]:
for (x=0;x<nx; x++) {
xfwd= nword* (fwdx[x] + y*nx)
yfwd= nword*(x + yl*nx) ;
xyfwd=nword* (fwdx [x] + yl*nx) ;
cen = nword*(x + y*nx) ;
if(x%2 == 0){
x1l=fwdx[x]:
$5= nword* (x+y2*nx) ;
s6= nword*(xl1 + y2*nx):
meas_vortx{cen,yfwd, xyfwd, xfwd, s5,s56,1,buf);
vbuf[0] += buf[0];
vbuf[l] += buf[l];

vbuf[2] += buf(2]:;
vbuf (3] += buf{3}:;
vbuf[4] += buf(4];

142

vbuf[5] += buf[5];
vbuf{6] += buf(6]:
vbuf([7] += buf(7}:;

}

else(
x2= fwdx[fwdx[x]]:
85= nword* (x2+y*nx) ;
$6= nword*(x2 + yl*nx):;
meas_vortx(cen, xfwd, xyfwd, yfwd, s5,s6, 2, buf) ;
vbuf [0] += buf([0]:;
vbuf (1] += buf{i];
vbuf[2] += buf[2];
vbuf [3] += buf[3}]:
vbuf{4] += bufid]:;
vbuf (5] += buf[5];
vbuf (6] += buf[6];
vbuf[7] += buf(7]:

}
}

/* layer=0 and 3 */ .
/* the only difference from above is that the boundary
layer from the neighbor is needed */
cshift(tlines+in,nextproc[0][POS],len,tlines,nextproc[O][NEG],len);
cflush(tlines+in, len);
for (y=l:y<ny:;y += 2){
yl = y+1;
y2 = fwdy(yl]:
for (x=0;x<nx;x++) {
xfwd= nword* (fwdx[x] + y*nx) ;
yfwd= nword*(x + yl*nx) :
xyfwd=nword* (fwdx [x] + yl*nx) ;
cen = nword*(x + y*nx) ;
1f(x%2 == Q) {
x2= fwdx[fwdx([x]};
s5= nword* (x2+y*nx) ;
s6= nword*(x2 + yl*nx);
meas_vortx(cen,xfwd,xyfwd,yfwd,sS,sG,O,buf);
vbuf[0] += buf[0];
vbuf (1] += buf[l];
vbuf[2] += buf[2];
vbuf[3] += buf{3];
vbuf[4] += buf(4];
vbuf[5] += buf(5];
vbuf[6] += buf{6];
vbuf[7] += buf[7];
}
else{
x1l= fwdx[x]:
s5= nword* (x+y2*nx) ;
86= nword*(xl + y2*nx);
meas_vortx(cen,yfwd,xyfwd,xfwd,s5,s6,3,buf);
vbuf[0] += buf{0];
vbuf[l] += buf[l]:

vbuf (2] += buf{2];
vbuf[3] += buf{3];
vbuf (4] += buf(4];
vbuf 5] += buf{5];
vbuf 6] += buf(6];
vbuf (7] += buf[7];:

143

/**
transform: Calculates the FT of the real space dynamic
correlations. Each processor in a ring has only

a piece of correlations, but all nodes combined

cover the whole lattice. They calculate a piece

of FT for a discrete set of points in BZ, and

then combine their pieces to get the whole FT.

This is done only once at the end of the run.
**/
#include "spext.h"

#include "math.h"

transform(cofxyt, cofkt)

float *cofxyt, *cofkt:

{

int del_t,x,y,NY,NX;

int wycgrid,offset;

int k d,yy,3j,th,index,k_d max;

float factor,cor:

/* assume square lattice, NY = nx, NY = ny * nprocs[0] */

NY = NX = nx;
k_d max=NX/2;
th=4*nword+1;
wycgrid = NY/ (nprocs[0]):
offset = recpnum{0]*wycgrid;
/*
factor=1./((float)NY*NX);
*/
factor=1.
33=0;
for(k_d= C:k_d <= k_d max;k_d++) {
for(del t= 0 del t < th;del _t++) {
coxr=0.
'for(yy=0:yy<wycgrid:yy++) {
y = yy + offset;
for (x=0;x<NX; x++) {
index=k_d* (x+y);
cor += cofxyt[del_t + (x+yy*nx)*th] * kosxnus[lndex],
} /* x loop */
} /* y loop */
*(cofkt + (del_t + jj*th)) = factor * cor:;
cor=0.;
} /* del_t loop */
Ji++;
} /* k_d loop */

for(k_d= k_d max-1;k_d >= 0;k_d--) {
for(del t=0 del t < th; del_t++){
cor=0.
for(yy=0;yy<wycgrid;yy++) {
y = yy + offset;
for (x=0;x<NX; x++) {
1ndex=k _d*y + k_d_max*x;
cor += cofxyt[del t + (x+yy*nx)*th] * kosinus[index]:
} /* x loop */
} /* y loop */

*(cofkt + (del_t + jj*th)) = factor * cor:
cor=0.;

} /* del_t loop */

J3++;

} /* k_d loop */

for(k_d= k_d max-1:k_d > 0;k_d--) {

for(del_t=0;del t < th;del t++){

144

cor=0.;
for (yy=0;yy<wycgrid;yy++) {
y = yy + offset;
for (x=0;x<NX:;x++) {
index=k_d*x;
cor += cofxyt[del_t + (x+yy*nx)*th] * kosinus{index];
} /* x loop */
} /* y loop */
*(cofkt + (del t + jj*th)) = factor * cor:
cor=0.;
} /* del_t loop */
J++;
} /* k_d loop */

} /* end of transform() */

/**

winding: Calculates spin stiffness by measuring the average
drift of the worldlines belonging to a subsystem
of the original system. Calculates the drift of both
particles and holes.

#include "spext.h"
#include <stdio.h>
#include <math.h>

winding(p_w,h_w)

float p_wll.h w[};

{

float p_walk([3],h_walk[3], *ptr(2];
int NX,NY,x,y,i,particle([2];

int deltal[2],what;

float factor:;

NX=NY=nx;

factor= 2./ (float)NX;
particle[0]=0;
particle[1]=0;
ptr[0]=h_walk;
ptr{l]l=p walk;

for (i=0;i<=2;i++) {
p_walk(i]=0.;
h_walk[i]=0.;

}

for (y=(NY/4) ; y<(3*NY/4) ;y++) {
for (x=(NX/4) ; x<(3*NX/4) ; x++) {
what=wlines (delta,x,y):
(((ptr+what))) += delta(0];
(((ptr+what))+1) += delta(l]:
particle([what]++;

/*
if (what == 0) printf("this is hole\n");

if (what == 1) printf("this is particle\n");
*/

}
}

h_w{0]l=h_walk[0] * factor:
p_w([0]=p_walk([0] * factor:;

145

_w[l]=h walk[l] * factor:;
_w[l]l=p_walk[l] * factor;

h
P

p_wi(2]=p wl0]l*p_w[0] + p_w{l]l*p w[1];
h_w([2]=h_w[0]*h_w[0] + h_w{l]*h w[1];

}

/**

wlines: This function identifies the individual worldlines, and
traces them from 0 to beta. It calculates the drift,
and then winding() accumulates the results for all
worldlines. With minor modifications, it can calculate
the probability of destroying an arbitrary worldline.
Each processor is assigned a different subset of
worldlines to trace by assigning a different piece of
the lattice. Since they are uniformly distributed, the

computational load is balanced on the average.
***/

wlines (del, x0,y0)

int *del,x0,y0;

{

unsigned int line,line_up,prop,line_above;
int NX,NY,x,y,x neigh,y neigh, z,pos, mw, zmax;
int what;

int delx,dely:

delx=0;
dely=0;
zmax = 32*nword;

NX=NY=nx;

mw=0;

pos = nword* (x0+y0*NX)
z = 0;

x= x0;

y= y0:

if ((tlines[pos] & 1) == 1) {
what = 1;
while(z < zmax) {
line = tlines[pos+mw];
line up = (line >> 1) | (tlines[pos+wr[mw+1l]] << 31);
line_above=tlines[pos+wr [mw+1]]:
prop = (line ~ line_up) & bits[z%32];:
if (prop == bits[z%32]) {
if(z%4 == 0) { .

y_neigh = y;
if (x%2 == 0) {x_neigh = x+1;delx++;}
else {¥x_neigh = x~1;delx--;}

if(z%4 == 1) {
x_neigh = x;

if(y%2 == 0) {y_neigh y+1l;dely++;}

else {y_neigh y-1l:;dely--;}
}
if(z%4 == 2) {
y_neigh = y;
1f(x%2 == 0) {x_neigh = (x-1+NX)%NX;delx--;}
else {x_neigh = (x+1)%NX;delx++;}
if(z%4 == 3) {
x_neigh = x;
if(y%2 == 0) {y_neigh = (y-1+NY)$%NY;dely--;}

else {y_neigh = (y+1)%NY;dely++:}

146

}

Z++;

X = x_neigh;
y = y_neigh;

else z++;

pos = nword* (x+y*nx);
1f(2%32 == 0) mw++;

}

}

else {
what = 0;
while(z < zmax) {
line = tlines[pos+mw];
line_up = (line >> 1) | (tlines[pos+wr[mw+1l]] << 31);
line above=tlines|[pos+wr{mw+1]]:
prop = (line *~ line up) & b1ts[z%32],
if (prop == bits[z%32]) {
if(z%4 == 0) {
y_neigh = y;
if(x%2 == 0) {x_neigh = x+l;delx++;}
else {x_neigh = x-1;delx--;}
}
if(z%4 == 1) {
Xx_neigh = x;
if(y%2 == 0) {y_neigh = y+1l;dely++;}
else {y_neigh = y-1;dely--;}
}
if(z%4 == 2) {
y_neigh = y;
if(x%2 == 0) {x_neigh = (x-1+NX)%NX;delx--;}
else {x_neigh = (x+1)3%NX;delx++;}
}
if (z%4 == 3) {
¥x_neigh = x;
if(y%2 == 0) {y_neigh = (y—1+NY) $NY;dely--;}
else {y_neigh = (y+1)%NY;dely++;}
}
Z++;
X= x_neigh;
y= y_neigh:;
}
else z++;

pos = nword* (x+y*nx);
S1£(z%32 == 0) mw++;

}

}

*del=delx;
*(del+l)=dely;
return what;

}

147

Figures and Tables

149

Fig. 1b

U,Ug

UsUy

150

Fig. @

151

1

A
===
! |
[_
! {
| i
| |
| I
_ |
! |
I
|
N
_ _
_ |
! I
.

/

L

Fig. 3

RSN

(b)

g.

nnnnn

N3

N4

S2

154
N5

St
T

N1_/_j“2/

N6

Fig. 6

| — e — }

155

PROCESSOR NODES

F,ﬂLHTDIDlDIDI%
F&l@n@.ﬁIUlQDlDu
‘oo ooooo

HOST

(@)

bad
/ ISPINWORD

“
_
_
1
_
|
A ——— m

156

Fig. 7c

Step 1: Local Update

:

O 0 g a g a g
g 0 g 0o a o g g
8 0 0 g g o0 o0 o

0 0 O a0 a a o g

bmmd

000

[

Step 2: Communication

«{0 0O 0 Ug«0 O 0O 0O+0
«j0 O 0 Og«0 0 0 g+«0
«0 0O 0O 0O«0 0 O 0«0
<0 0O 0 O«a o 0O O«0o
«0 O O 0«0 D O O«0O
«|O0 O O O«0 O 0 o«0O
<0 o o o+« O o O+«0O
«0 0 0o o+«0 0o O o+0

Step 3: Local Update

0 0 oo oo a o
0 0 o o a o g o
0O 0 oo oo o o

O 0 oo o g a g
0O g o a oo a o

157
Fig. 7d

Node O

x=M-2

158

Fig. 8
R ! T [I R I } R
i i
15 — —
- .
- .
A]
- hzd —
B bz
0.05 — = —
B % .
- [-
- X -
-0 | Ii 1 | 1 l ! L? ?
-0 5 10 15 20

159

Fig. 9
2 17 1 1 r1r 11 IT IR | U |
- % —
— X: m=16 .
| +: m=24 -
15 | —
L o: m=32 -
| 4
8 _
A
| * —
r__ p—
0.05 — & —]
| %) :
n | ¥ % .
- 8 * * *]
—o Lt 111 Lo b 1S QF_{ L 11
-0 10 15 20

C(r)

.19

0.05

160

Fig. 10

lllllllllllll!'llllllll

— O:. m=24 -

— X: m=48 -

-0 10 20 30 40 50

161

162

Cv

163

Illllfllllllllllllllllll

—

—

p—

l[lllllll'llllllllllllll

0.01

C(r)

0.001

0.0001

1x107°

164

P TTTI

[IIIIIII| [IIIIIHl

I IHHI]

I Illllll

R

1 | lIlIHl

9|
] IIIIHII] :I.IIIHII

] Illlllll

C(r)

165

.15

0.05

166

Fig. 14c

I L L L B N N B O
ol b b R e

-0 10 20 30 40 20

167

T=0.35, 64x64

168

.15

169

Fig. 15

{ T Tl I

________]

_
O O 5 2
o2 -~

J}5UST UOI}R[21JI0)

Xst

200

100

50

20

10

170

Fig. 16

IIIIII

i IIIIIII

IR

lllll

IIIII

50

100

171

600

400

Fig. 17
T (K)

200

__T__ o
i O_
= _

(]

(;_(VBAT 1)) U3TUST UOI}R[SIIO) SSISAU]

30

- 20

&/ a

172

%%
- \§ 10k
! ,
%\%

K,NiF,

T, §\
'l ! 0
100 150 200
T (K)

173

Fig. 19

30 LR LR LI L L IR
25 [-
20 |- -
-~ D —
15 3-8
— D —
10"' &)] —
n o 5 .
5 [o o -
E— 3]
_obdhbbhddbdbidbadal il]|
0 5 10 15 20 25 30
k

174

Fig. 20

o T T T [T 1T 71T ror T
4 -
B T=0.45, k=(11,11) -

.34 line: SOL fit —
N\ a: MC 7
2 =
1 -
o) AR R S N T SR R N N B SR

-0 2 4

175

T=0.50, k=(1,1)
line: SOL fit
O: MC

176

3 | I I | | | | | l | | |
— T=0.50
_ O

o | 0
i O
B 0
B O

1 S
o
e

_O | |] , | |
-0 5

w(k)

177

7(k)

178

Fig. 23a

1 B N L N B s B B e)
8 T=0.50 —
61— _
4 _
B o g - Bog - |
| | o a 0]
ol = o
B o
—0 L IR B N B |

-0 5 10 15

179

N A N N U N O Y
| | |

N

0

a

O

a

T=0.45

—

II[PIIIIIJIIIIIIIIIIIIII

|
IO
OBIIII|YIII

[4V]
Q

180

Fig. 24a

40

30 —

20

10 —

Tc

IIIIIIIIIIIIIIIIIII

Illlllllllllll

rTrT

IIIIIIIIIIIII

4

5

T

.6

log(¢)

181

Fig. 24b

4l|llllllllllll

182

_IIIIIIIIIIIIIlllllllllll

K
D¢

o

a

B

Illlll!lllllllllllllllll

Fig. 25

l | | | l
X: 12x12
¢: 16x16
+: 24x24
O: 32x32

0 X

% pA

'] | | | l

6 .8

[N

susceptibility

183

Fig. 26
200 LR LR I LR l L ‘I | LR
150 — —
100 — | —
50 —
— Tc
_O _I il l Lt 1 | L] 11 I_
.3 4 D .6 T .8

T

184

Fig. 27a

-8lllllllllllllllllllll1l

_OIIIIIIIIIIIIIIIIIIIIlIII

—0 10 20 30 40

50

185

Fig. 27b

I

llllllllllllllllll

10 20 30 40

50

Cv

186

Fig. 28a
8 T T U I | I , borT trTT
i o
6 — ; o —
- o)
i m
4 — ! N —
i o
- @ @
L= —
[~ m
B o
- Tc
__O —J | l Ll Ill] I | l I I I I |
-0 2 4 .6 .8

T

187

C(r)

188

B

AN
IIIIIIIIIIIIIIIIIII,III

T=0.34, L=32

llll'llll'llllllllllllll

C(r)

189

IIIIIIIIIIIIIIIIIIIIIII

T=0.20, L=32

lllllllll'llllllllllllll

C(r)

190

Fig. 31

T=0.28, L=48

—

lIlIlIlIIIIIII

191

X: T=0.20
¢: T=0.30
O: T=0.36
— %
M
A
o <o
X
X

.6 I
4 —
=L
T Il
& -
L2 °
X
-0 l
10

n (T)

192

Fig. 33
1 T 7T 1T I 1 7 1 , [I LR
[xX: 12x12
B — ©: 16x16]
- +: 24x24
[O: 32x32
- 48x48
4 — —
|
i R
B @og 7
— X
%
- 3 _
2 .
— o o
o ®
_O § | I I N N | I 1 | L1t 1
-0 1 2 .3

n (T)

193

Fig. 34a
°6 V 1T T T 1 T T 17T T1 ‘ 1] lir 1 7T 1
; O: MC 32x32
4 :_ line: KT fit
B Lo
2 B O
. -
_O | I I I | J I N N | I | L | N |
-0 .1 2 .3

T

194

Fig. 34b

-6lIIITIIl[IT7I|

i O: MC 24x24

B line: KT fit
4 —

r__
2

-

O

-

—
_OllLlllllLJIIIIJ
-0 1 2 3

ps(T)

195

Fig. 35

4‘ T T 11 IR] Pl l L I R
— T
u -
o L=16 ~
3]
- —
- f %@ .
2 i —
i b i
1 |
= -
|— @ -
-0 —l I | [I I I | T i I I I i1 1 I—
-0 2 4 .6 .8 1

T

ps(T)

196

Fig. 36

5 R] [rlT I ITI U T U T l~
B _

A4 — 0: MC 24x24 —
B line: KT fit ’
N B S 1
R 3 -
1= _
__O —I | ' I L] d 1 1 1 I | .| ‘ VI .| I—
-0 A 2 .3 4 5

T

n (T)

197

Fig. 37a

1
r—,l It 1 Tflﬁ | l T T I T T T T T T |
B 24 X 24]
8 o: C(r)]
: 0. p, :
. —
6= _]
; Lo oo
4 — —
- L] —
B _
2 o -
B C 7
__O —l {1 1 l | | l | I O LI P4 Ll 111 l—
-0 2 4 .6 .8 1

T

198

T

Fig. 37b

T I b T I I T 17 I T T 7 1
| 16 X 16 _
i o: C(r)]
: O: p, O :
i o o i

<o
N o _
u R a
~ 5
| <]
. g]
a
B 4 _
- | I | I 4 1 1 l | | l | I I | I 1 I_
2 4 .6 .8

199

Fig. 38

Vs(T)

200

[y
—

II]IIIIIIIIIII|]III|IIII

llIllIIlIIlIlI|IIII|lI[I

201

Table 1. Temperature, Trotter number, linear size, enerqgy, specific
heat, uniform susceptibility, correlation length and exponent.

“ T | m | L | -E | Cv _ e “ £ N _
...... el Rl D T Y DU e e E S eh—
2.5	16	24	0.1600(2)	0.067(1)	0.201 (1)	-	-
2.0	16	24	0.2003(3) [0.102(1)	0.227(2)	0.569(2)	0.5	
1.5	16	24	0.2666 (6) [0.168(3)	0.256(3)	0.68(3)	0.51(9)	
1.2	16	24	0.328(1) [0.248(3)	0.275(1) I 0.83(4)	0.47(16)		
1.0	16	32	0.3885(8)	0.322(4)	0.281(2)	0.968(2)	0.36(22)1
0.85	16	24	0.439(2) [0.393(1)	0.281(2)	1.21(3)	0.42(6)	
[0.75	24	32	0.4812(9)	0.43(1)	0.274(1)	1.44(2)	0.46(9)
0.60	24	32	0.5498 (8)	0.452(5)	0.259(2)	2.20(4) [0.47(3)	
[0.50	32	32	0.5946 (5)	0.425(3)	0.236(2)	3.5(1) [0.51(3)	
0.45	16	32	0.6263(2)	0.412(4)	0.219(1)	5.2(2) [0.51(3) }	
0.45	32	32	0.6208(5)	0.386(5)	0.221(2)	4.6(2) [0.47(5)	
I 0.40	40	64	0.6341(2)	0.353(5) I 0.207(2)	6.5(2) [0.47(4)		
0.35	24	64	0.6529 (1) I 0.283(7) I 0.191(1)	9.9(4) I 0.44(6)			
0.35	48	64	0.6507(2) I 0.23(1) [0.190(2)	10.1(5) I 0.36(5)			
i 0.30	24	96	0.6655(1)	0.21(3)	0.178(1)	18.0(5) I 0.38(2)	
0.30	48	96	0.6597(7)	0.19(3)	0.182(3)	17.5(5) I 0.40(2)	
0.27	48 128	0.6642 (1) [0.175(3)	0.173(3)	mm.oAH.mv_ 0.39(2)			
0.25	48	32	0.6669 (1)		0.155¢(7)	~--	—_

202

Table 2. 4<Sz Sz > at several temperatures.

T r=0 r=1 r=2 r=3

0.55 1 =~0.1145(1) -0.0016(1) -0.0002(1)
0.45 1 -0.1353(2) -0.0030(1) -0.0007(1)
0.35 1 =-0.1516(2) -0.0051(2) -0.0012(2)
0.2 1 -0.1647(1) -0.0073(1) -0.0027(1)

