Invariance Hints and the VC Dimension

Thesis by
William John Andrew Fyfe

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1992
(Submitted 26 May 1992)

1

©1992
William John Andrew Fyfe
All rights reserved

Acknowledgements

Many people have had a hand in this thesis, in many different ways.

The content was influenced enormously by my advisor, Dr. Yaser Abu-Mostafa,
who, over the years, assisted me along those research paths that led to this thesis,
as well as those that did not. The thesis was reviewed by Doctors Alan Barr, Carver
Mead, Edward Posner and Richard Wilson, and I am grateful for their comments and
suggestions. My research group, over the years, provided extremely useful feedback:
Amir Atiya, Ruth Erlanson, Allen Knutson, Jack Lutz, David Schweizer.

Funding for my graduate studies came from a number of sources: the Natural Sci-
ences and Engineering Research Council of Canada, the Air Force Office of Scientific
Research, Hughes, and of course Caltech itself, which provided not only financial
support, but a place to work.

Essential to the thesis was the well-being of its author, and essential to that were
the many people around me. Some, John, David, Steve and Steve, have left to move
on to other things; others, Pat, Barry and Rob, remain, and have struggled with
me.

Finally, graduating with a thesis implies having started here some time ago. Get-
ting here depended on many people who taught and inspired me along the way.
Among the many, the names Ostlund, Ponzo, and Wilson stick out. And, of course,

above all, my parents.

v

Abstract

We are interested in having a neural network learn an unknown function f. If the
function satisfies an invariant of some sort, such as f is an odd function, then we
want to be able to take advantage of this information and not have the network
deduce the invariant based on an example of f.

The invariant might be defined in terms of an explicit transformation of the input
space under which f is constant. In this case it is possible to build a network that
necessarily satisfies the invariant.

In general, we define the invariant in terms of a partition of the input space such
that if ,z' are in the same partition element then f(z) = f(2’). An example of
the invariant would be a a pair (z,2') taken from a single partition element. We
can combine examples of the invariant with examples of the function in the learning
process. The goal is to substitute examples of the invariant for examples of the
function; the extent to which we can actually do this depends on the appropriate
VC dimensions. Simulations verify, at least in simple cases, that examples of the

invariant do aid the learning process.

Contents
Acknowledgements iii
Abstract iv
Chapter 1. Introduction 1
1. Outline 2
2. Notation 3
Chapter 2. Invariants 5
1. Perceptrons 5
2. Feed-Forward Networks 7
3. Tangent Prop 9
Chapter 3. The VC Dimension 10
1. Boolean-Valued Functions 12
2. Real-Valued Functions 16
Chapter 4. Invariance Hints 22
1. Boolean-Valued Functions 23
2. Real-Valued Functions 25
3. Graph View 26

4. Examples 35

vt
Chapter 5. Learning
1. Perceptrons
2. Feed-Forward Networks
3. Group Invariance and Feed-Forward Networks
Chapter 6. Simulations
Chapter 7. Conclusions
1. Further Study

Bibliography

41

41

44

52

60

72

73

74

CHAPTER 1

Introduction

Consider a simple problem, in statement if not in solution: Is the number p prime?
We begin with a naive approach. We appeal to a dictionary, such as the Oxford
English Dictionary, which defines a prime number as “Having no integral factors
except itself and unity,” and use the definition to establish a test of primality. Our
solution, then, is to take each of the integers between 1 and p, and check to see if it
divides p. If none divides p, then p is prime.

Our solution is correct, but it is not particularly efficient. A bit of simple mathe-
matics can speed up our solution. We observe that factors must come in pairs, and
both such factors can not be greater than +/p. Thus if p is not prime, it has a factor
no larger than 4/p, and we can thus restrict our search to those integers between 2
and 1/p, inclusive.

Heuristics can further speed up our solution. For example, even numbers, except
for 2, are not prime, and odd numbers can not have even divisors. Thus we need
not test p for divisibility by any even number other than 2.

In special cases, we can do much better. In the case of Mersenne primes, numbers
of the form 27 — 1, where ¢ is prime, there is the Lucas-Lehmer test. Colquitt and
Welsh combined this test with other heuristics to find the 29th Mersenne prime,
2110803 _ 1 and to verify that 2'%2°*° — 1 is the 30th, in order of increasing size [4].
These primes have 33,265 and 39,751 digits respectively; it would be impossible to
verify their primality by checking divisibility, using our solution above.

Consider another simple problem, again in statement if not in solution: Does this

picture contain a tree? Appealing to a dictionary does not give us the solution in

this case. The Oxford English Dictionary defines tree as, among other things, “A
perennial plant having a self-supporting woody main stem or trunk (which usually
develops woody branches at some distance from the ground), and growing to a
considerable height and size.” It is, in some sense, accurate without being helpful.

There is a certain irony in these two problems. If asked if a random number was
prime, one would probably apply some mental heuristics, such as divisibility by 2,
3 and 5, and, failing those, simply guess. On the other hand, if asked if a picture
contained a tree, one would very likely answer directly. Yet the former problem has
a straightforward solution, while the latter does not appear to.

Problems, such as recognizing trees, often fall in the domain of neural networks.
Such a network is an abstraction of a brain. Networks are programmed by learning
from example, not unlike their biological counterparts. It is hoped that by using
example pictures that do and do not contain trees, the network can eventually
deduce the rules that define a tree. This becomes the naive solution for our tree
recognition problem.

As was the case with the prime number problem, there is additional information
that we can use besides example pictures, to aid in recognizing trees. For example,
suppose we are given a pair of different pictures, each of a Joshua tree. We may be
uncertain whether a Joshua tree is actually a tree or not, but we will know that they
either both are, or both are not. There are properties that can vary without changing
the final result. In the case of recognizing trees, we can assume, for example, that
variations in position, orientation, colour, and so forth, do not change the answer.

In the case of prime numbers, we improved our solution by eliminating unnec-
essary tests of divisibility. In the case of recognizing trees, we want to eliminate
the need for the network to deduce invariants from the examples, such as position
independence, when we know in advance what these invariants are. This is the aim

of this thesis.

1. Outline

We begin by reviewing, in chapter 2, how invariants have been used. In the case of
perceptrons, invariants are incorporated directly into the structure of the network,

and thus need not be learned. In the case of feed-forward networks, it is possible to

3

learn the invariant, from examples of the invariant, while simultaneously learning
the solution to the given problem. Such examples of the invariant can be viewed as
a “hint.”

Since learning is done from examples, we need to know that the examples are
sufficient in quantity to be able to extrapolate based on them. It is not enough to
remember the examples; we want to learn the rules that define the examples. This
ability to generalize from the examples depends on a quantity known as the VC
dimension; it is the subject of chapter 3.

Next we turn to hints, or examples of an invariant. We wish to use these hints to
learn the rule that defines the invariant. Again we want the network to generalize,
to learn the rule that defines the invariant. In chapter 4, we apply the results about
the VC dimension to our hints in order to establish the conditions under which
generalization occurs.

With the theoretical foundations established, we turn, in chapter 5, to learning
algorithms. For perceptrons, where the invariant is incorporated into the network
directly, we need to develop an algorithm for learning that maintains the network
structure. For feed-forward networks, we need to introduce examples of the invariant
into the learning process, taking care to satisfy the conditions establish by the
appropriate VC dimensions. We also investigate transferring the structures used
with perceptrons over to feed-forward networks, and the implications for the free-
- forward learning algorithm.

Finally, in chapter 6, we look at simulation results for learning a simple function,
using hints, on a feed-forward network. This presents us with an opportunity to

explore some of the questions raised in earlier chapters.

2. Notation

Our problem, in its most general form, is to find a function g,, from a class of
functions GG, that approximates a particular function f. The index « ranges over
some index set A.

The class of functions we will typically use are those computed by a class of neural
networks. Within such a class, the function g, computed by a given network will be

defined by the assignments to the parameters for each neuron, namely the weights

4

w and the threshold 7. In this case, we might choose for our index variable o a
vector of all these parameters. We will identify a network by the function g, that
it computes.

The inputs come from the set X. This set may be n-bit Boolean strings, a subset
of n-dimensional Euclidean space, or just a set of n points. We will want to partition

this set X into disjoint subsets; we will use 8 to index these subsets.

CHAPTER 2

Invariants

In this chapter we will show examples of how invariants are used. In particular,
we will look at the perceptron model, where group invariance is asserted by the
structure of the network. In the feed-forward model, the invariance is asserted

during the learning process.

1. Perceptrons

Perceptrons are defined by Minsky and Papert [12]; they are simple, two layer
networks. The first layer is made up of functions ¢, taken from the set ®. The
second layer is a single, output neuron that computes a linear threshold function of

the outputs of the first layer

gale) = [Z wyp(z) > o} .

PP

The notation [---] will be used to represent 1 if the enclosed condition is true, and
0 otherwise. To avoid subscripts, we will write w, as w(p). Also, we will abbreviate
the sum by an inner product

> w(p)e(e) = w-2(z).

e

Suppose we have a function, such as the parity of an n-bit binary number. We

know that this function is independent of the ordering of the bits in the string.
Parity, then, is invariant under reordering of the input string. Alternatively, suppose
we are doing pattern recognition, and the function is independent of the relative

position of the image. In this case the function is invariant under translation of

the input image. These invariants are formalized by a set of transformations T' =
{t: X — X} that forms a group under the operator o, composition of functions.

For the parity example, the group of transformations would be all those functions
that return the n bits of the input vector x in a different order. This group is the
group of all permutations of n objects. For the pattern recognition example, we
would use the group of translations in the plane, or, in order to keep everything
finite, translations on the torus.

Two inputs ¢ and & are equivalent if there is some ¢ € T such that & = t(z).
Similarly, two input functions ¢ and ¢ are equivalent if there is some ¢ such that
$(z) = pot(z). The group divides the input set X and input functions @ into
equivalence classes. Finally, a function f is invariant under such a group of trans-
formations T, or T-invariant, if, Vt € T, f o t(z) = f(z).

In [12], Minsky and Papert prove the group invariance theorem. Suppose we
have a perceptron, and the function g, it computes is invariant under the group
T. Suppose also that the group is finite, and that the set of functions ® is closed
under T'. In the original perceptron g,, we assumed the weights w(¢) depended
only on the corresponding input function ¢; however, we can generate an equivalent
perceptron where the weights w(y) depend only on the equivalence class containing
@, that is if ¢ and ¢ are equivalent, w(yp) = w(P).

The proof of this theorem is straightforward. Since the set ® is closed under T',
we have {pot | € ® } = ®. This means that

w-B(z) = wp)p(z) =Y w(pot)poi(z).
€D pED
Since the function g, is invariant under 7', we have g,(z) = g,(t™*(z)). Suppose
go(z) =1, and thus w - ®(z) > 0. Then, g,(¢"!(z)) =1 and
Y wlpot)pot(t™(e)) =Y w(pot)p(z)>0.

wed weEP
This holds for all t € T, so we have

S S ulp ot z(zw@ot)) 0>

Let v(p) = |T|'1 Yierw(pot), and g,(z) =[v- ®(z) > 0]. We have v-®(z) >0
and hence g,(z) = 1. If instead we started with g,(z) = 0, we would obtain the

7

corresponding result, namely v - ®(z) < 0 and g,(z) = 0.

The new weight v(¢) is simply the average value of the weights w(¢) where ¢ is
equivalent to . This weight v(¢p) is constant on each equivalence class of ®.

We have shown that any network that computes a T-invariant function can be
replaced by an equivalent network where the weights are constant on each equiva-
lence class of ®. The converse also holds, that is, any network whose weights are
constant on each equivalence class is T-invariant. This follows directly, again using
the closure of ® over T, since

Y w(p)p(t(@) = D wlpot)pot(e) =) wlp)e(z),
PED pED PED
and thus g, o t(z) = g (z).

Those functions g, that satisfy the invariant 7" can be realized by a network with
the restriction that certain weights must be equal, and in any network where this
restriction holds, the function computed must satisfy the invariant. This, then,
suggests a technique for building networks that satisfy an invariant. And in this

case, the invariant itself is enforced by the structure imposed on the network.

2. Feed-Forward Networks

A feed-forward network is a neural network that is divided into layers, with the
inputs for a layer coming strictly from the layer before, and the outputs going to
the layer after. The exceptions are the boundaries; the first, or input layer, gets its
inputs from the environment, and the last, or output layer, returns its output to the
environment.

Each neuron computes a simple function o(w-x+7) where x is the vector of inputs
to the neuron, w is the corresponding vector of weights, 7 is the threshold, and o is
a smooth sigmoid function such as o(z) = (2/7) arctan(z) or o(z) = (1 + e~ %) 2.

Suppose we are given such a network. As before, let the function computed be
go- Suppose also that we wish to have the network learn an unknown function f.
That is, we wish to find a network such that its function g, is close to f.

Suppose further that we are given examples (z,y) of the function f. We don’t
require that y be a function of z. If it is, then we assume that x is chosen according

to a probability distribution P(z), and y = f(z). If it is not, then we assume that

8

y = f(z) + v(z) where the error v(z) has a mean of zero. In this case examples
are pairs (z,y) chosen according to a joint probability distribution P(z,y), and the
function we seek is the average value for y given z, that is f(z) = E(y|z). For any
pair (z,y), we want the output of the network, g,(z), to be close to f(x).

We can define an error function on n examples (z;,y;) by

1< 2
E(a) = " Zl(yz — ga(z:))"
i=
We can then minimize this error by gradient descent. For feed-forward networks
this is the back propagation algorithm [11].

Suppose our function f satisfies an invariant. Farlier, we defined an invariant
by a group of transformations 7. This group induces a partition of the input set
X into equivalence classes. We will, therefore, define an invariant in more general
terms by a partition of the input set X = (J; X, where we have f(z) = f(z')
whenever z,z’ € Xp for some 3. If a network function g, is close to f, then we
expect, when f(z) = f(z'), to have g,(z) close to g,(z'), or, equivalently, we expect
(go(z) — g(,t(av'))Z to be small.

If we were given a series of n such pairs (z;,z}), we could, as above, define an

error function
n

Er(a) = %Z(ga (z:) — ga(wg))z

i=1

and apply gradient descent to this. Note that we don’t actually need to know the
value of the function f at any of these points. This method of learning an invariant
was suggested by Abu-Mostafa [1].

Minimizing the error functions F(«) and Er(e) is only guaranteed to give us
a network that performs well on the given examples. Given a sufficiently large
number of examples, however, we expect the values given by such an error function
to become representative, in probability, of the limiting value over all examples.
What we would like to do is substitute examples of the invariant for examples of the
function, and meet the sufficiency requirements with fewer examples of the function
than had we not used the invariant at all.

Here we don’t impose any structure on the network, but rather incorporate the
invariant into the learning process, so that the network learns the invariant as it

learns the function. And, since we don’t need to know the value of the function for

9

our examples of the invariant, we can generate arbitrary numbers of examples of the

invariant, as required.

3. Tangent Prop

Simard and others [15] propose a technique for handling certain types of invariant,
which they call tangent prop. Their technique generalizes back propagation to learn
both the unknown function and its derivative.

Suppose we define an invariant by a function t(a,z) that transforms an input z
according to a parameter a. For horizontal translation, for example, the parameter
would be the amount of the translation. For rotation, it would be the angle. We
assume that this transformation is differentiable with respect to o and z, and that
t(0,z) = =.

Since the function f satisfies an invariant, it is constant as we transform an
input = according to £. Thus, in the direction of this transformation t(a, z), we have
f'(z) = 0. Any network g, approximating f should also have g,,(z) ~ 0, again in the
direction of the transformation ¢. Tangent prop, then, modifies back propagation by
also minimizing the derivative of the network, in the direction of the transformation.

This technique is in some ways similar to our earlier modification to back prop-
agation. Again we are incorporating the learning of the invariant directly into the
learning process. To do this we need not know the actual desired output for a given
input z; we only consider a directional derivative at . We will not consider this

technique further.

10

CHAPTER 3

The VC Dimension

Our task is to select a network g, that approximates an unknown function f, based
on a series of examples, drawn at random.
We have seen, with feed-forward networks and the back propagation algorithm,

that we can define an error function and minimize it using gradient descent. In par-

ticular, for a series of examples ((z1,%1),-- -, (Tn,¥Yn)), we define the error function
1 < 2
E(a) = — > (yi — ga(z)) "
=1

Minimizing this error function gives us a network that performs well on the n
examples given. What we want, though, is a network which computes a function
close to f. What we need, then, are the circumstances under which we can be fairly
certain that the performance of the network on those examples is representative of
the network’s performance overall. We want the observed performance to generalize.

Corresponding to E(a), we have the functional

1@)= [[-0) Py dedy.

The error function F(«) is an estimate of (). We need to know the circumstances

under which we can be confident that the estimate is an accurate one, and know

that minimizing #(c), and hence I(«), gives us a network where g, is close to f.
First, let’s verify that minimizing I(«) is equivalent to finding the function g,

closest to f. Should y be a function of &, then we can substitute f(z) for y to obtain

10) = [(o)~ 9(2))"P(a) do,

11

and hence we are minimizing the distance between f and g, as desired. Alterna-
tively, suppose y contains some error. In this case the function f we seek is defined
by

$(@) = Bl) = [yP(ule) dy,
where P(y|z) = P(z,y)/P(x). Thus we get

= /[Xy(y—f(w)——ga(w)+f(w))2P(w,y)dwdy

=/Axy(y~f(w))2 .,y dacdy—}-//xxy — u(@))} Pl2,y) do dy
“2//XXY = ga(@)) (y — f(2)) P(z,y) de dy

=// (v — £(2)*P(z,y) d:cdy-l—//x(f(m)—ga(x))zp(m)dm
_2// (=) [/ (- fl=))P(ylw)dy] P(z)de

The last term is 0, since the inner integral of y — f(z) is 0, by our definition of
f(z). The second term is again the distance between f and g,. The first term is
independent of ¢, and hence minimizing I(«) is the same as minimizing just the
second term, that is, minimizing the distance between f and g,.

Next, let’s verify that minimizing F(«) gives us a function g,, that isn’t too far
from optimal, as defined by I(x). Suppose we know that |I(a) — E(a)| < ¢, in
probability. The optimal function g,, the one closest to f, is the one that minimizes
I(a). Let this function be g,,.

We have

since we assume F/(a) is close to I(a). Combining these we have

I(og) < I(ap) < E(ag) + e < E(ar) + e < I(ag) + 2,

12

that is,

I{ay) < I(ag) < I{a) + 2.
Thus we see that the function g,, that minimizes our estimate E(a) is at most 2¢
farther from f than the actual, optimal, function g,, is from f, in probability.

We assumed that |I(a) — E(e)| < €, that we have generalization. Even if we fail
to pick the network that minimizes F(«), we still want generalization. We need to
be confident that the performance of our network on the examples, good or bad, is
typical of its performance overall, since we are interested in how f compares to our
chosen function g, over all inputs X, not just over the examples we have seen.

If we had a single network, we would get the required number of examples for
generalization from Bernoulli’s theorem, for it gives a bound, in terms of the number
of examples, on the probability that the observed behaviour differs from the overall
behaviour by more than some constant 8.

Our task, though, is to choose a single network from a class of networks, a class
that may not be finite. Further, we must assume that we may ultimately choose any
one of these networks. We need, therefore, a uniform result, that gives us a bound,
given a number of examples, on the probability that any network has a difference
between observed and overall behaviour of more than §. This result is due to Vapnik
and Chervonenkis [16, 17, 18].

1. Boolean-Valued Functions

First let us consider a probability model. We have a collection of events {F,},
with each event F, a subset of some set X. Also, we have a series of samples
T1,T3,...,Tn, chosen independently, according to the distribution P(z) over X.

For each event E,, we have its probability =,, and, given the n samples, an
observed frequency v{". What we want are the conditions under which v{" tends

to 7, uniformly, that is, for any § > 0, we want
lim Prob {sup|7ra - 1/[(1”)] > 6} =0.

THEOREM 3.1 (VAPNIK AND CHERVONENKIS [16]). For a series of n samples,
n>2/6,
Prob {sup|7ra — v > 5} < 4m(2n)eF /8,

13

The growth function m(n) is defined in terms of the events {E,}. Consider a
sequence of n samples, x = (zy,2,,...,2,). If two events E,, F, should agree on
these samples, that is, if S = {z;,...,2,} and E,NS = E, NS, then the two events
are indistinguishable by the samples. We will refer to £,N.S as the projection of £,
onto the samples. The set of all projections { £, N S |all events E, } is a subset of
the power set of S, Z(S). Let m(x) equal the total number of distinct projections,
which is independent of the ordering of the samples. Note that m(x) < 2%, since
this is the size of Z(S). The function m(n) is defined as the maximum number of

projections for any choice of x, that is

m(n) = {33,2’5 m(x).

Suppose for some n that m(n) = 2". Then there are n samples zi,...,z, that
give rise to all 2" possible projections. If we take any k < n of these samples, say
Zi,,...,Ts, then these samples must give rise to all 2* possible projections, and
hence m(k) = 2* for all k < n. If at some point n = d + 1 we have m(n) < 2", then
it must be that m(n) < 2" for all n > d + 1. It turns out that if there is such a
point d, then m(n) < n?*! +1. The VC dimension is defined as d, the last value for
which the growth function was 2". If there is no such d, then we consider the VC
dimension to be infinite.

In the case of a finite VC dimension, we can derive stronger bounds on the growth

function m(n).

THEOREM 3.2 (SAUER [14]). Suppose the VC dimension of a set of events {E,}
isd. Forn >d,

d
n
< .
o5 ()
COROLLARY 3.3. Forn > d and n > 4, m(n) < 1.5n%/d!.
Sauer’s result also follows from the following theorem.

THEOREM 3.4 ([6]). Suppose G = {g.} is a finite set of Boolean functions on n
inputs. Then

(1) 3G with |G| =T, (7) and the VC dimension of G is d,

%

(2) if |G| > 5, (%) then the VC dimension of G is strictly greater than d.

14

Recall the statement of theorem 3.1. It gives a bound on the probability that
E(a) differs from I(«) by more than §. Suppose we want to consider a particular
probability of this happening, say €, and solve for §. We will assume a finite VC
dimension, and use the result of corollary 3.3. What we find is § depends on the
ratio of the number of samples to the VC dimension. We reduce é by increasing
this ratio. We can do this either by increasing n, that is, using more samples, or by
reducing d, that is, using fewer events.

The condition that m(n) be bounded by a polynomial is sufficient to ensure
uniform convergence. It is not necessary, however. It is always possible that those
samples x that give rise to large values of m(x) are extremely unlikely, and the
typical value for m(x) is smaller.

We defined m(n) as the maximum number of projections for any choice of n sam-
ples. We can also define an average number of projections N (n). The n samples x =
(z1,...,%,) are chosen independently, so the probability of x is P(x) =[]}, P(z;).
Thus we have

N(n) = E(m(x)) :/ m(x)P(x) dx.
Finally, let H(n) = E(log, m(x)).
We can use H(n) to strengthen theorem 3.5.

THEOREM 3.5 (VAPNIK AND CHERVONENKIS [16]). For

lim Prob {sup[wa — y&”)| > 6} =0,

n—oo
it 1s necessary and sufficient that

lim g@ =0.

n—oo
The difficultly in using this definition is the fact that the quantity H(n) depends
on the probability distribution, which we assume we do not know. By using the
worst case m(n), we make the result independent of the distribution.
Now let us consider neural networks and Boolean functions. We will assume that
the unknown function f, and the network functions g, are all Boolean. We used
B(o) = 3" (5 — gala:))”

=1

15

to measure the error on the given examples. Since y; and g,(z;) are both Boolean,
the square of their difference is 0 if the two are equal, and 1 if not. Thus F(a) is
the number of examples where the network erred divided, by the total number of

examples. In other words, E(«a) is the frequency of error. Similarly,

10) = [(£(e) - gu(2))*P(2) de

is the probability of error. If we let

Ey={ze X [f(2)# ga(2) },

then we have 7, = I(a) and v = E(e). Uniform convergence of #{" to 7, thus
gives us uniform convergence of F(«) to I(«), and generalization, as required. Note
that in translating our neural network model to a collection of events, we have not
changed the meaning of ; or X. We still are choosing z; according to the probability
P(z). We don’t carry y; over to the events directly; however, y; is a function of z;
so nothing is lost.

There is another way to look at the projections above. Again we will assume we
have a fixed, but arbitrary, sequence of n samples, in this case (z1,y1),..., (Tn, Yn),
where y; = f(x;). For each event E,, we will define an n-bit binary string b,
where bit 7 is 1 if ; € E,, or, equivalently, recalling our correspondence with neural
networks, if y; # go(x;). If we let x = (zy,22,...,2,), ¥ = (¥1,¥2,.--,Yn), and
9a(x) = (9a(21),- .., 9o(®n)), then we have b, = y P g,(x) where @ is the exclusive
or operator. The projections are mapped one-to-one onto the n-bit vectors; the
vectors b, are characteristic strings for the projections E, N S.

Recall that our sequence of samples, though arbitrary, is fixed, so the vector
y = f(x) is constant. Also, since b, =y @ g,(x), we have g,(x) = y ® b,. Thus we
have b,, = b,, if and only if g,,(X) = ga,(X), and the number of distinct vectors
b, is equal to the number of distinct vectors g,(x). Thus we need not consider y
at all in computing the VC dimension of the set {g,}.

We can also view b, as an n-dimensional vector. Coordinate ¢ of b, is equal to
(y; — ga(a:i))z. The vector by, is thus a vector of values for (y — g, (a:))2 evaluated
at each of the n examples (z;,y;). Each of these vectors represents the coordinates
of one of the vertices of an n-dimensional unit hypercube, and the growth function

m(n) is thus the maximum number of vertices that can be covered.

16

Let’s now construct an example. Suppose our input set X has n elements, and
the functions g, are all those Boolean functions that assign to at most d elements
the value 1, and 0 to the rest. This set of functions has VC dimension d.

To see that the VC dimension is at least d, we need to show that there is some
sequence of d distinct samples x such that we get all 2¢ distinct vectors g,(x).
Suppose the d samples are x = (zq,@,,...,24), and suppose we have some d-bit
vector b. We need to find a function g, so that g,(x) = b. Suppose that for
1 =1,...,d we have g(z;) equal to bit 7 of b, and for 1 = d + 1,...,n we have
g(z;) = 0. Then this function g can assign at most d inputs the value 1, and hence
g € {9a}-

To see that the VC dimension is at most d, we need to show that any sequence of
d + 1 distinct samples x can not give all 24+! vectors b, (x). In particular, we can
not get the vector b = 1...1 since this would require some function g, that assigns
to those d 4 1 samples the value 1.

This set of functions has Y&, (") elements. Thus this set can be used to prove
part 1 of theorem 3.4. Furthermore, this set gives an instance where the inequality

m(n) < ZLO (7) from theorem 3.2 can be an equality.

2. Real-Valued Functions

Vapnik and Chervonenkis generalized their result for probabilities and frequencies
of events, to the following [17]. Suppose you have a family of uniformly bounded
functions 0 < F,(z) < c¢. We want to know the conditions under which the empirical

average of these functions tends to the expected value uniformly, that is when

E(Fa(z)) — %Zn:Fa(Zi) > 6} =0.

=1
Note that the variable z may be a vector, and, if so, the expected value of F,(z) is

=00

lim Prob {sup

computed over the appropriate joint distribution.

We can use this result directly: in our case the functions F,(z) are simply (y —
Ja (w))z, where z = (z,y). It is not necessary that y be a function of z; the choice
of a pair (z,y) depends only on the joint distribution P(z,y).

Uniform convergence once again depends on a growth function. As we did in the

Boolean case, we will take each function (y — ga(m))z and evaluate it for the n pairs

17

(zi,y;). Again let us call these vectors b,, though now the individual components
are real numbers, not just 0 or 1.

The range of values for (y — g, (a:))2 depends on the transfer function o we use in
our network; we will assume that values for y are within the same range. If we use
o(z) = (1+e7%)~! then we have a range of [0, 1] and the vectors b, are points within
the n dimensional hypercube [0,1]". If we use instead o(z) = (2/7) arctan(z) then
we have a range of [—1,1] and the hypercube becomes [0,4]". The uniform bound ¢
on the functions F,(z) is the edge length of the hypercube.

Let B be the set of all the vectors b,. In the Boolean case the set B was a
subset of the vertices of the hypercube. Now it is a possibly uncountable collection
of points within the hypercube. Since we cannot count these points we need to use
another method to quantify the size of B.

We will use one of two roughly equivalent techniques; both, as well as a third, are
investigated in [9]. First, an e-net for B is a finite set of points U in R™ such that
for every b € B, there is some u € U such that p(b,u) < e. We may additionally
require that the points u are elements of B; in this case we have a proper e-net.

Alternatively, an e-separation is a set of points U C B such that for any u;,u, €
U, we have p(u;,u;) > e.

What we seek, for a given set B, is the smallest e-net, or the largest e-separation.
Let .4 (¢, B) be the size of the smallest e-net, #;(¢, B) be the size of the smallest
proper e-net, and .# (e, B) be the size of the largest e-separation. We have

M (2¢,B) < AN (e, B) < (e, B) < (e, B).

We will verify this chain of inequalities from right to left. The rightmost inequality
holds since a maximal e-separation must also be a proper e-net. The next holds
since relaxing the condition on the choice of the points in the e-net can only help.
Finally, the last inequality holds because of the pigeon hold principle. To see this,
take any maximal 2e-separation, and any minimal e-net. There can be at most 1
point from the 2e-separation within € of any point in the e-net, since if there were 2,
then these two points would be as most 2¢ apart. It is this chain of inequalities that
allows us to choose between an e-net, a proper e¢-net, and an e-separation based on

which is most convenient; we will use an e-net.

18

For our e-nets, we will follow Vapnik and Chervonenkis and use the L*>° distance
p(b,u) = max; |b; — u;|. Others, such as Haussler [7], use the L* distance p(b,u) =
Ly |bi —w;l. In [17], Vapnik and Chervonenkis investigate the implications of
using the L! norm, relative to the L°° norm.

The hypercube has a finite edge length ¢, and hence a finite e-net must exist.
Such an e-net need have no more than (1 + |¢/(2¢)])" elements. Also recall that the
elements of the net do not need to come from our set B — they can be arbitrary
points within the hypercube.

For any choice of n pairs (x,y) = ((@1,%1),...,(Tn,¥n)), let m(e, (x,y)) be
the size of the smallest e-net that covers the corresponding set {b,}, that is,
m(e, (X,y)) = A (& {ba}). For real-valued functions we have the size of the smallest
e-net playing the same role as the number of distinct projections did in the Boolean
case. Note that, as in the Boolean case, the order of the samples is independent of
the size of the e-net, since reordering the samples corresponds simply to relabelling
the coordinate axes. We let m(e,n) be the maximum value for m(e, (x,y)), and
N (e,n) be the expected value, over all possible choices of n pairs. We also define
H(e,n) = E(log, m(e, (x,y)), as before. Finally, we define

c(e) = lim M,

n—00 n

and this limit does exist. Since N(e,n) is bounded by (1 + [¢/(2¢)])", we have

0 < c(e) < log, (1+ [iJ)

Further, c(e) is non-decreasing as we decrease ¢, since a smaller ¢ can not provide

for a smaller e-net.

THEOREM 3.6 (VAPNIK AND CHERVONENKIS [17]). For
> 6} =0,

Let us return briefly to the Boolean case. Here the vectors b, are the vertices of

kSuude ol

lim Prob { sup

B(R(2) - £ (e

it 1is necessary and sufficient that c(e) = 0 for all € > 0.

the unit hypercube. For ¢ < %, any single point in the e-net can cover at most one
vertex. Thus to cover {b,} we need a point in the e-net for every vertex represented

by by, and hence we must have m(e,n) = m(n), provided € < %. The same applies

19

to N and H, and we see that the real-valued case does generalize the Boolean-valued
one.

Theorem 3.6 gives the necessary and sufficient conditions for uniform convergence
in the real-valued case, just as theorem 3.5 does for the Boolean case. However, we
do not yet have an analogue for the VC dimension.

Vapnik [18] defines a VC dimension of a class of real-valued functions to be equal
to that of a corresponding class of Boolean functions. These Boolean functions are
those created by taking each real-valued function g,, and applying an arbitrary
threshold to it. Specifically, we define the functions .. (z,y) = [(y - go,(ac))2 > 'y]
where v € R. For this extended class of functions {§a~}, we apply our results for
Boolean functions. Given n samples (z;,v;), we have, for each function §,,, the
n-bit vector f)av. Let the number of distinct vectors f)av be m(x,y), and, as before
let 71(n) = max(xy) (X, y). Finally, associated with the growth function 2 (n), we
have a VC dimension J, which is then also the VC dimension for the set of functions
Jo-

THEOREM 3.7 (VAPNIK [18]). For n samples, where n > 2/6,

B((y - 0@)) = 23 (s — galer))’

n

3=1

Prob {sup

> cé} < 6m(2n)e™" 4,

There are other ways to define a VC dimension. In general, for real-valued func-
tions, the size of a minimal e-net replaces the growth function. If this quantity fails
to dominate the negative exponential e™", where v is a constant that depends on
the details of a theorem such as 3.7, then, for n sufficiently large, we get uniform
convergence. If we can bound the size of an e-net by a polynomial in n and ¢~ of
degree at most d, then we will have the required uniform convergence, and we may
use d as an estimate of the VC dimension.

Suppose we have a 3-dimensional volume, and cover it with an e-net. If we
decrease € by a factor of 2, then each point in the net covers 272 less volume, and
thus we expect to need about 2% times as many points to continue to cover the
volume. The size of such an e-net will be about (a/e)® points, for some constant

a. The exponent 3 corresponds to our volume being 3-dimension. We can define a

20

metric dimension [9] as

mmuﬂzgﬂ—ﬁaﬁﬁl,

where this limit exists. For our volume, the metric dimension will be 3. This
quantity need not be integral; if it is fractional then the set B is fractal [10, 5].
Suppose that for any n, and n samples (z;,y;), the set B = {b,} has its metric

dimension bounded by d. Then, for any § we have ¢, such that for € < €y, we have
log A4 (e, B)
log(e—1)

and thus .4 (¢, B) < ¢ ("9, In such a case, we have uniform convergence, and d

<d+56,

becomes our VC dimension.

There are additional ways to attempt to bound the size of the minimal e-net.
Haussler [7], following Pollard [13], uses the combinatorial dimension. This approach
is similar to that of Vapnik. Here we are given our set of points B, and translate
each by some constant vector b*. We seek the translation that results in a maximal
number of occupied orthants of R™. The number of orthants occupied is the number
of distinct Boolean vectors [b, —b* > 0] = [b, > b*].

Let rn(n) be the maximum number of orthants that can be occupied given any
translation b*. This function behaves like our growth function m(n). It is either
identically 2", or there is some n = d+1 such that 72(n) < 2”. In this case, Haussler
bounds the size of an e-separation, and hence an e-net, by a function of ¢! raised
to the exponent d. Again we can call d the VC dimension, and we have uniform
convergence.

Let’s now turn to an example. Our functions g, are the lines g,(z) = mz + b,
where m,b,z € [0,1]. Our index o will be the ordered pair (m,b). The range of
these functions is [0,2]. Our samples (z;,y;) will have z; € [0,1] and y; € [0,2].
For a choice of n samples, we want to investigate the structure of the points b, =
(y — (mx +b))".

First lets consider the points b, = y—mx—b. Suppose we have 2 samples (z1,y;)
and (z3,y). Then our points b, are (y; — m@; — b,y, — ma, — b) € [—2,2]2. Here
Z1,Y1,Z2,Y2 are constants, and we have m,b € [0,1] Provided z; # @, these points

b, form a parallelogram in the plane.

21

The points b, also form a region in the plane. This region is related to the
parallelogram in the following way. We transform the points b o bq by first
taking the absolute value of each coordinate, and then squaring it. By taking the
absolute value, we reflect the parallelogram in the two axes, folding it into a single
quadrant. Squaring then replaces the boundary lines by segments of a parabola.
Since the points b,, form a region of the plane, they have metric dimension 2. And,
if we were to move the origin anywhere inside this region, then we would occupy all
4 quadrants, and thus the combinatorial dimension is at least 2.

Now let’s add a third sample (z3,ys). Since the ordering of the samples does not
effect the size of an e-net, we will assume that z; lies between z; and x5, that is,
71 < z3 < @y. Again we will consider first the points b, =y — mx —b.

Consider any function g,(z) = maz + b. Let

s=y,—mz, —b

t=1ys —mzs —b

and thus
s+b—1y,
= ——
m
t+b—y2
Ty oz ————— %,
m

Let z3 = Az; + (1 — A)z,. Hence we get

ys—maz3 —b=ys+As+b—y1)+ (1 -N{E+b—y)
=As+ (1 =Xt +y3— Ay + (1 — Ny,

Hence the points b, are of the form (s,2, As + (1 — A)t + 7), where v = y3 — Ay; +
(1 - X))y, and X are constants, and thus the points form a planar region. The points
b, now form a 2-dimensional surface, and again their metric dimension is 2.

The bits b, form a planar region, and since a plane can not occupy all 8 octants
of 3 space, these points have combinatorial dimension 2. The bits b,,, however, form
a curved surface in 3 space. Such a surface can occupy all 8 octants, and thus the
combinatorial dimension is at least 3. These dimensions are not required to agree,

as they represent different techniques for bounding the size of a minimal e-net.

22

CHAPTER 4

Invariance Hints

Suppose we have an invariant defined by a partition X = [J; Xj3. We have seen that
we can “learn” this invariant by using gradient descent on the error function
1< 2
Ei(e) = - > (gal@:) — gala)) .
3=1

As with learning an unknown function, we need to know that E(«) is, in probability,

a good estimate of the actual error

1@ = [[(9a(@) = gu(e) Ple,a") do do.
XxX

Note that the range of the functions g, is the same as the range of f, and thus we
also have 0 < (gq(z) — gol(a’))2 < c. Since these functions are uniformly bounded,
we can apply the general VC result directly. We have only to define the distribution
P(z,z'), and investigate the growth function for this system.

One might imagine picking examples of the invariant (z,z') by choosing = at
random, and then choosing «' from Xz where ¢ € Xj3. This gives us the distribution
P(z,2') = P(z)P(2'|Xs) where ¢ € Xg,

, P(2")/Ps ifa' € Xg,
P(2'|Xp) =

0 otherwise,
and Py = [y, P(z)dz.
As we’ve defined the probability distribution P(z,z’) it is defined over all of
X x X. However, the only interesting part of X x X is |J; Xp x X since outside
this subset, P(z,z') is identically 0.

23

We are left now with the growth function. What we want to do is bound this
growth function in terms of the growth function for the set of functions {g,}. We
will look at the growth function in two parts; first, for Boolean-valued functions,

and then for real-valued functions.

1. Boolean-Valued Functions

Suppose we have n examples of the invariant (z;,2)). For each function g,
we define a function h.(z,z') = (g.(z) — ga(x’))z. Again, since the functions g,
are Boolean, we have hy(z;,2)) = [ga(2:) # ga(zh)] = gu(z:) ® gu(z)). Let x =
(z1,%2,...,2¢,) and X' = (2}, 2),...,2)). Just as m(n) is the maximum number of
distinct vectors g,(x), we will define the growth function for the invariant, m;(n), to
be the maximum number of distinct vectors ho(%,X’) = (ho(z1, 1), ..., halZn, 2})).

Note that there could be as many as m(n) different binary vectors g,(x), and
similarly as many as m(n) different vectors g,(x’). Thus there could be as many as
m(n) - m(n) expressions g,(X) ® go(x"). In the worst case, each expression would
lead to a distinct vector h,(x,x’'), in which case we have my(n) < (m(n))2 This
worst case can not actually arise, however.

THEOREM 4.1. Ifm(n) > 1 then ms(n) < (m(n))*.

ProOOF. The function m(n) is non-decreasing, so if m(n) = 1 for some n, then
we must have m(1) = 1. This means that there can be only a single function g,,, for
if there were two, they would necessarily differ somewhere, and using such a point,
we would find m(1) = 2. Thus the restriction that m(n) be greater than 1 is simply
eliminating a degenerate case.

Also, we have my(n) < 27, so if m(n) > +/27 then the theorem trivially holds.
Thus we will consider the case 1 < m(n) < v/2". Note that this implies that n > 2.

What we will show is that if we have m(n) vectors g, (x) and m(n) vectors g, (x'),
then having all possible (m(n))2 combinations will imply that the growth function
for {ga} is greater than m(n), which is a contradiction.

We will first look at the vectors b, = g,(x), and show that we can remove one of
the n bits, projecting the vectors to an (n — 1)-dimensional space, and be left with

m vectors, where m is more than half the original number of vectors.

24

To find such a bit we will proceed iteratively. We will use the notation b,[k| to
indicate the first k bits of b,. Let my = m(n), and |{b,[n]}]| = m,.

We remove the last bit, and let m; = |{bs[n —1]}|. Note that we must have
my > %mo. Ifm, > %mo, then we are are done. If m; = %mo, then each vector
b,[n — 1] can be extended both by a 0 and a 1, and we continue, now removing the
last bit from each vector b,[n — 1].

If, at some point we have m;; > %m, then we are done. Bit n — ¢ is the required
bit. Since we had reductions of exactly half through m; = |{bs[n —i]}|, we have
m; = 27%m, and each vector b,[n—1i] can be extended by all possible 2¢ i-bit vectors.
Thus deleting only bit n—i will give us m;,,-2° > %mi 2t = %mo vectors, as required.

We can continue this process only as far as reducing the set of vectors to a single
vector. This must happen, if we don’t stop earlier, since we can reduce n — 1 times,
and we have at most /2" < 2"~! vectors to begin with. Suppose this happened
after j reductions. Since j < n — 1, we have n — 7 > 1 and hence the remaining
vector is at least 1 bit long. This means that {b,[n — j]} is a singleton, and the 27
original vectors are all possible j-bit extensions to this single vector. Thus we can
choose any bit from b,[n — j] as our required bit; removing that bit alone will leave
the number of vectors b, unchanged.

Removing a single bit is equivalent to removing a point z; from the vector x.
Thus we have shown that m(n — 1) > im(n). We will now pick a point z} from x’,
and show that, along with the n — 1 points from x, we have the growth function
m(n) > 2m(n — 1) > m(n), a contradiction.

We assumed that each vector b, was paired up with each vector b!,. We also

!

assumed that m(n) > 1, so there are at least 2 distinct vectors b/,

, and hence they
differ in at least one bit. Let this bit be j, and the corresponding point z is the bit
we sought.

Thus for each of the m distinct vectors on n — 1 points from x, we can extend this
vector by both a 0 and a 1 by adding the point z}. The number of distinct vectors

is thus 2m > m(n), which is a contradiction. [J

In showing that m;(n) < (m(n))z, we relied only on demonstrating that you can
not actually generate all (m(n))2 possible expressions of the form g,(x) ® go(x').

We can obtain a stronger result by considering the vectors x and x’ together. Let

25

xx’ be the concatenation of x and x', and consider the 2n-bit vectors g, (xx’). We
earlier suggested, in effect, that there could be as many as (m(n))2 distinct vectors
go(xx’). However, the number is necessarily bounded by m(2n). Hence we get
m(n) < m(2n).

We have shown that m;(n) may be larger than m(n). How much larger can the
corresponding VC dimension be?

Suppose the VC dimension of {g,} is d. Then, for n < d, m(n) = 2", and for
n > d, m(n) < 2". Also, for all n, we have m(n) < n®™' + 1. We want to find
an n such that m;(n) < 2", or, using our inequality, m(2n) < 2". Such a solution
will have n > d, so we may use the inequality m(2n) < 1.5(2n)?/d!. We have
24! > (d/e)?, by Stirling’s approximation, so we have m(2n) < e%- (2n/d)?. Solving
for e¢ - (2n/d)? < 2", we get (n/d)? < 2"77% where v = 1 + log, e, and, taking
logarithms, log,(n/d) < (n/d) —~. Solving this, we find that for n/d Z 4.7, or
n Z, 4.7d, we have my(n) < 2". Thus the VC dimension of {h,} can be no more
than about 4.7 times larger than that of {gs}.

Let’s return briefly to our other inequality, m;(n) < (m(n))z, and find an n’ such
that m(n’) < 2". Here we would want to find an n' such that (m(n'))2 < 2%, or,
equivalently, such that m(n') < 22%. Above we found an n such that m(2n) < 27,

so the required »' is exactly double, or n’ 2 9.4d.

2. Real-Valued Functions

Again we consider n examples of the invariant (z;,z)) and, as in the Boolean
case, we define the functions hg(z;, 7)) = (go(:) — ga(as;))z, and as before, we will
consider the vectors h,(x,x’). This time, however, these vectors are points within
an n-dimensional hypercube. For what follows, let’s assume that the functions g,
map X to [—1,1], and thus the hypercube is [0,4]". The particular choices for these
ranges is not important, so long as there is a uniform bound on h,(z;,z}) as required
for the generalized VC result.

Our goal will be to construct an e-net for the vectors h,(x,x’). As suggested
by the Boolean case, we want to look at the concatenated vector xx’, and the
corresponding vectors g,(xx’). For these vectors g,(xx'), let g;,g,...,8% be an

e-net. Let g; ; refer to the j** component of the vector g;. Define the vectors h; in

26
terms of the vectors g; by

hig = (945 = 9iG4m) >

for 5 = 1,...,n. We know that for any vector g,(xx'), it is within e of one of the
vectors g;. We will show that the corresponding vector h,(x,x’) is within 12e of
the corresponding vector h;. Hence the vectors h; form a (12¢)-net for the vectors
ho(x,x'), and thus an upper bound for the minimum possible (12¢)-net. Then
N;(12¢,n) < N (¢, 2n), where Ni(e,n) is the expected value for the minimum size of
an e-net for {h,(x,x')}, and, as before, H;(¢,n) = log, Nt(e,n).

Since the vectors g; form an e-net for {g,(xx')}, we have the following, for j =

1,...,n

9ij = galj) + 65
Gi(i+n) = galT}) + 755

where |6;],]v;| < €. Thus we get, for e <1,

|ha(zj,25) — hag| = ‘(ga(%‘) — gal@}))” = (955 — gz',(j+n))21
= ‘Q(QQ(W) = 9a(23)) (8 = v;) + (6; — %‘)Zl
< 2|ga(z;) = gal(@))] - 16 — 13| +18; — %I
<2-2-2¢+ (2¢)?
< 12,

as required.

Recall that the necessary and sufficient condition for uniform convergence is
H(e,n)

lim ————= =0

n—ro0 n
for all € > 0. Then, since Ny(e,n) < N(3¢€,2n) we must have uniform convergence
within our set of functions {h,} if we have uniform convergence within our set of

functions {g,}-

3. Graph View

Our results so far for the growth function have not taken into account any specific
information about the invariant itself. Indeed, about the only piece of information

that we have used is that n examples of the invariant (z;, z}) collectively contain 2n

27

points from X, without any regard for the partition on X. In this section we will
attempt to remedy this situation.

Our goal is to choose n examples of the invariant so that the number of different
vectors ho(x,X’) is maximal.

We know that for any function h,, we have h,(z,z) = 0. Thus we would never
want to choose such a pair among the n examples. The vectors h,(x,x’) would all
have 0 in some coordinate, and so the number of vectors would be the same as the
number on n — 1 examples, where we drop the example (z,z).

For similar reasons, we would not want to repeat any example (z,z'). Again,
dropping the second instance of the pair would leave exactly the same number of
vectors ho(x,x'), but on n — 1 examples.

Further, the functions h, are symmetric, that is, h(z,2') = ho(z’,z). Thus
the only interesting choices for examples of the invariant are unordered pairs (z,z')
where z # z'.

Let’s now look at the simplest case. We will assume that the set X is finite, and
all our functions g, are Boolean.

First, we will look at a simple example, where X = {z;,...,27}, and the invariant
is defined by the partition X; = {1, %2, %3, 24} and X, = {5, z¢, @7 }.

Let us consider the elements of X to be vertices of a graph, and examples (z,z')
of the invariant to be edges in the graph. Thus, for our example, the graph with all
possible edges is shown in figure 4.1. This graph, %, is a pair of cliques, one on 4

vertices and the other on 3.

Lo Ty Te

Ty T3 Ty T

FIGURE 4.1. The graph ¢

28

Suppose we choose 4 examples of the invariant (z,,z), (2s,23), (z3,21), and
(z6,27). We consider these 4 pairs to be edges in a graph; this graph ¢ will be a
subgraph of J¢. This subgraph is shown in figure 4.2.

) Ty Tg

.

T T3 Iy Ty

FIGURE 4.2. The subgraph ¢
Now, suppose we choose some function g € {g,}; let this function be

1 ifzis odd,
g(z;) =
0 if<¢is even.
Corresponding to this function g is the function h(z,z’) = (g(z) — g(a:'))2 =g(z)®
g(z'). We can use these two functions g and h to label the vertices and edges,
respectively. In figure 4.3, we use a solid circle to represent a vertex that was
labelled 1, and an open circle for a vertex labelled 0.

Lo Zg

[]
Ty T

Ty

FIGURE 4.3. The subgraph ¢, labelled by g and h

In our graph, we have a cycle @, @,, and z;. In this cycle we have 2 edges labelled

1; in general, for any function g € {g,}, the number of edges labelled 1 must be even.

29

If we start at, say, z;, then move to z,, the label on z; is the same as that on z; if
and only if the edge label was 0. This follows directly from h(z1,z2) = g(z1) ® g(z5),

g(z2) = h(z1,22) ® g(z1).

Similarly, continuing to 3 and back to z; we have

g(zs) = h(z2,z3) @ g(z2),
g(z1) = h(zs, 1) © g(z3).

Combining these we get
9(21) = h(zs, 1) ® h(zz, x3) © h(z1,22) ® g(1),
and hence, cancelling g(z;),

0= h($3,$1) D h(:Bz, 533) (&) h($1,$2).

Thus, around our cycle, the exclusive or of the edge labels must be zero. This is
not particular to our cycle; in the above, all we have assumed is that we return to
where we started, allowing us to cancel g(z) where z is the starting vertex. So for
any cycle, the exclusive or of the edge labels must be zero, and thus we must have
an even number of edges labelled 1, as required.

For our choice, then, of 4 edges, we have one edge which is redundant, in that
for the vectors h,(x,x’), the coordinate corresponding to any one edge in the cycle
depends strictly on the coordinates of the other two, and hence we have exactly as
many different vectors h,(x,x’) as we would if we deleted that redundant edge.

The restriction that a cycle contain an even number of edges labelled with 1 covers
our earlier restrictions against loops (z,) on a single vertex, and duplicated edges.
In the case of loops, we have a cycle containing one edge. Our requirement of an
even number of ones then means that the edge must be labelled 0, and hence is
redundant. In the case of a duplicated edge, we have a cycle containing two edges.
Thus we must have neither or both labelled with 1, and thus either depends on the

other, making one of the two edges redundant.

30

Thus we do not want a cycle of any kind, whether it’s a loop on a single vertex, a
pair of edges between the same two vertices, or a cycle on 3 or more vertices. Let’s
return to a more general setting.

Let the m points of X be vertices of a graph. Our input set is divided into &
parts, X = U?:l X;. We will place an edge between two points = and &' if they are
both from a single X; and if @ # 2. Since there are k elements in our partition of
X, the graph is a collection of k cliques. Let us call this graph J¢ .

Again we will choose n pairs (z;, z}), and we will generate a subgraph ¢ of J# that
has only the edges (z;,2}). We seek n pairs that maximize the number of distinct
vectors h,(x,x').

As before, we will not permit any loops (z;,;), any duplicated pair (z;,z;), nor
any cycles in the subgraph ¢. All of these lead to a redundant edge. We will again
label this subgraph, based on a given, but arbitrary, function g,. We label each
vertex z; by g.(2;), and each edge (z;,z}) by h,(z;, z}).

Each connected component of 4 must be cycle free, and hence a tree. Thus ¥ is
a collection of trees, or a forest. This sets an upper bound on the number of edges
we can have in the subgraph ¢. Recall that the graph J¢ is a collection of cliques.
Take any one of those cliques, and suppose it has j vertices. We know that if we
have as many as j edges in a graph with j vertices, we must have created a cycle.
Further, with j — 1 edges, we can produce a spanning tree. Thus, in our subgraph
¢, we can have no more than j — 1 edges on those j vertices from our designated
clique. Since we have a clique on these j vertices, we have no other restrictions,
beyond avoiding cycles, when choosing up to 7 — 1 of the (;) edges. J£ contains k
cliques, and a total of m vertices, so the maximum number of edges in our subgraph
% is m — k. This gives an absolute upper bound of 2™~* on the growth function
mr(n).

Consider the boundary cases. Suppose that the number of cliques is m. This
means there is a single vertex = in each X;. Since we don’t permit loops, our
graph ¢ has no edges, and hence so must our subgraph. In this case, however, the
only examples of the invariant we would be able to generate would be of the form
(z,z), and we know that h,(z,z) = 0. Hence the growth function m;(n) would

be identically 1, and the corresponding VC dimension would be 0. This extreme

31

example corresponds to a null invariant, since it doesn’t make any assertions about
pairs (z,z') where z # &'

On the other extreme is a partition of a single element, X = X;. This corresponds
to a universal invariant, that asserts that everything is equivalent to everything else.

In this case we have m vertices, and at most m — 1 edges. Suppose we have m—1
edges, which must form a spanning tree. Let us label the vertices by some function
Jdo- This gives rise to a unique labelling of the edges, where edge (z,2’) is labelled
by ho(z,z') = go(z) ® golz’). Let the function g¢ be the complement of g,, so
g95(z) = 1@ g,(z), and now label the vertices by g5. Then we have

he(z,2') = go(e) @ go(a)
=1 ga(z) ® 1g4(")
= ga(7) @ gu(2')
= ho(z,2'),

and the edge labels remain the same. We can look at this from the other direction.
Suppose we have a labelling of the edges. Then either one of two labellings of the
vertices could give rise to this. To see this, we designate any vertex as the root, and,
since we have a spanning tree, there is a unique path to every other vertex. If the
number of edges labelled 1 in the path is odd, the the vertex is labelled opposite
to the label on the root, otherwise, they are labelled the same. The only remaining
variable is the choice of the label for the root, either 0 or 1. This gives us the two
labellings of the vertices.

Suppose that we have n pairs, or edges, (z;,z}), rather than m —1, as above, and
that these edges make up k trees. Then the number of vertices is n + k. For those
n+ k vertices, let the maximum number of labellings induced by the functions g, be
p < m(n+ k), and, for the n edges, let the maximum number of labellings induced
by the functions h, be ¢ < my(n). If k = 1, the n edges form a single tree, and,
as above, each labelling of the edges will correspond to either one or two labellings
of the vertices, and thus we must have %p < ¢ < p. In general, for k trees, we will
have 27%p < g < p. Note that the number of trees can not exceed n; having exactly
n would require n isolated edges.

Suppose for these particular n pairs (z;, z}) we actually attain the growth function,

32

that is ¢ = m(n). The number of distinct labellings for the n+ k vertices can be as
large as m(n+ k), and must be at least m;(n). This tells us that m;(n) < m(k+n).
Note that the growth function is non-decreasing, so we have m;(n) < m(k +n) <
m(2n), as we derived earlier.

Earlier we found that for m;(n) < m(2n) < 2", we needed to have n about
4.7 times the VC dimension d of the set of functions {g,}. We have shown that
if the n pairs form k trees, then we have my(n) < m(n + k). We can, as we did
before, solve m(n + k) < 2" for any value of 1 < k < n, this time requiring that
log,((n+k)/d) < (n/d) —log,(e), and thus find the maximum number of times that
the VC dimension for {h,} may be larger than the VC dimension for {g,}. This is
plotted in figure 4.4.

4.8
4.6+
4.4+

Maximum 4-27]
potential 4-]

increase
in the VC 3-87
dimension 3 g-
3.4
3.2
3 1 1! al

Number of connected components

FIGURE 4.4

Figure 4.4 follows our intuition. The number of vertices is equal to the total
number of edges plus the number of connected components. The more vertices we
have, the greater the number of possible assignments to the vertices we have, and
thus a greater possibility of maximizing the number of assignments to the edges.

The graph suggests with a single component, we might be able to get a VC
dimension of {h,} that is about 3 times larger than the VC dimension of {g,}. This
is surprising. The graph of course represents an upper bound, and may not be a

particularly tight one. We will show later that we can have the VC dimension of

33

the set {h,} twice that of {g.}.

In the case, then, of the universal invariant, we find that what turns out to be
important is the nature of the n pairs we choose, and, in particular, how many trees
they produce. Having a single invariant does give us complete latitude in choosing
our pairs, since all possible pairings are available.

Suppose our input set X has 6 elements. Disregarding any partition on X, suppose
we have 3 disjoint pairs (x;,«;) that maximize the growth function. The pairs are
consistent with a partition of X if for each pair (z;,z]) we have z;, 2, € X5. These
pairs are necessarily consistent with the universal invariant. They are also consistent
with a partition of X into 3 subsets, each of 2 elements, provided that each subset
contained exactly one pair. There are 15 ways to partition X into 3 subsets of 2
elements each, yet only 1 is consistent with the 3 pairs (z;,z}). No partition of X
into 2 subsets of 3 elements each is consistent with our 3 pairs. Yet a partition into
2 subsets of 4 and 2 elements may be.

We saw that with the null invariant, the growth function m;(n) was identically 1.
With the universal invariant, we do attain the maximum possible value for m;(n).
However, given the pairs (z,z’) that maximize m;(n), it may be possible to partition
X into more than a single subset such that we also attain this maximum value for
my(n), by simply constructing the partition around those given pairs. Thus we find
that the nature of the invariant, except in extreme limiting cases, does not provide
for a bound on the growth function m;(n).

Suppose now that our set X is infinite. Our graph J¢ also becomes infinite; either
an infinite number of cliques, or cliques on an infinite number number of vertices,
or both. The subgraphs ¢ will remain finite, containing n edges, and no more than
2n vertices. We still reject loops, and duplicate edges. Loops are defined as a pair
(z,z). With an infinite input set, we might have a pair (z,z') where p(z,z’) is
arbitrarily small. Would such a pair still be considered a loop?

The question is moot unless we can actually have the pair (z,z'), and thus we will
require that both z and z’ be in the same subset Xg. If our functions are Boolean,
then they can not be continuous, unless they happen to be constant. Thus there
will be points = and 2’ where p(z, 2’) is arbitrarily small, yet there will be a function

g € {ga} such that |g(z) — g(')] = 1. Such a pair (z,z') could only be considered

34

equivalent to a loop if all functions g, have |go(z) — go(2')] = 1. This will not be
typical.

If our functions are real, then they may be continuous. We want, given (z, z’) with
p(z, ') small, that |g,(z) — go(2’)| be small, for all network functions g,. Suppose
we have a Lipschitz condition |g.(z) — ga(2')| < ap(z,z’) where a is a constant that
is uniform over all {g,}. Such a condition holds, for example, on our feed-forward
networks, provided that we have a limit on the size of the weights.

Then, if p(z,z’) < §, we have (g,(z) — goz(:r:’))2 < (a6)%. Suppose such a pair
was one of the n examples of the invariant. Then all the vectors h,(x,x’) would be
close to one of the coordinate hyperplanes. We are trying instead to fill n space, if
possible.

Similarly, if we have two vectors (z1,z]) and (z,,z,) with p(z;,z2) < 6 and
p(zy,zy) < &, both small, then these distinct edges are close to a duplicate edge.
We have |ga(z1) — ga(22)| < @6, or go(xs) = go(z1) + v Where |y]| < aé. Similarly,
we have g, (z5) = go(x}) ++' where |¥'| < aé’. Then

lhtx(ml’a’ll) - ha(w2,$,2)| = (ga(wl) - ga(mg))z - (ga(ml) +7v - ga(wll) +7’)2
<20y + 9] ga (1) + gal(m2)| + [y + 7'

Here we have the values of the functions ho(z1,2]) and hy(z2,z)) close to one
another, and thus, with such a pair of pairs among our n examples, we would again
have the vectors h,(x,x’) close to a hyperplane, rather than filling n space.

The nature of the invariant has little role here. If the invariant splits up two
points z and z' that are close to one another, then we can’t have the pair (z,z’),
and if it does not, we don’t want such a pair anyway. Similarly, two nearly equal
pairs are redundant whether they can both be made from a single subset Xg, or if
each comes from a different subset of X.

Note that now that we have moved to real-valued functions, we no longer have a
restriction on non-trivial cycles. In the Boolean case, as we moved around the cycle,
we knew that we must have an even number of edges labelled 1. In the real-valued
case, the edge labels are non-negative real numbers, and there is no constraint on
the sum around a cycle. The only restrictions we can assert are the ones mentioned

above.

35
4. Examples

Let’s look at a few specific examples. We will begin, as always, with the simplest
case, a finite number of Boolean functions.

Suppose we have four functions ¢, g2, g3 and g4, defined on the three element set
X = {&1, 22, 23}. We will define these functions so that they have a VC dimension of
1. When we take two pairs, (z,,23), and (z;,x3) we will find that the corresponding
functions h;(z,z’) = (g;(x) — g: (2’))2 have a VC dimension of 2. This demonstrates
that, in general, the VC dimension of the functions h, can be greater than that of
the corresponding functions g,. In the following table, we list the functions ¢g; on

the left, and the functions h; on the right.

T4 To T :1 :;
|0 0 00 0]h
alo 0o 10 1]h
9210 1 0|1 O0]h
g|1 0 0|1 1]h;

We will now generalize this example.

Suppose our input set X contain n points, and the functions g, will be those that
assign 1 to at most d of those n points, and assign 0 to the rest. For the above
example, we had n = 3 and d = 1. We will assume further that n = 2d + 1. This
set of functions has been seen earlier; we know that it has VC dimension d. The

number of functions is

20 -2 ()= 2 () -
L= L) = C) =22 =2%%
;(7’ z':Ed-;-l n—t i:%dz 2

We can choose as many as n — 1 pairs (z;,z}), and for those pairs we wish to find
the VC dimension of the corresponding functions h,. We will show for any non-
redundant choice of n — 1 pairs, each of the functions h, is unique. There are 22¢
possible functions on n — 1 = 2d input pairs, so this would imply a VC dimension
of 2d.

Let us return to our graph model. The n points in X become vertices, and our
pairs (z;,z;) edges. Suppose the edges form any spanning tree of these n vertices.
This gives us n — 1 edges, as required. As before, we will label the vertices with

go(®;) and the edges with h,(z;,z}). Recall that if two labellings of the vertices

i

36

give rise to the same labelling of the edges, then the labellings of the vertices must
be complements of one another. We therefore can have two functions from {h,}
equal to one another only if we have two functions from {g,} that are complements
of one another. Each function g, assigns 1 to at most d points. The complement
must therefore assign 1 to at least n — d = d + 1 points. Therefore, a function and
its complement can not both appear, and we have shown that the functions h, are
unique, as required.

What if we had n < 2d + 1?7 We can choose as many as n — 1 pairs (z;,2}), and
n — 1 < 2d. Since the functions h, are on fewer than 2d inputs, we can not obtain
a VC dimension of 2d.

Finally what if n > 2d + 17 If we choose 2d pairs in a single spanning tree, then
the above still holds. If we attempt r > 2d pairs in a single spanning tree, then we
fail to get all 2" functions h,. The r pairs are on r 4 1 vertices, since we have a
single spanning tree. The number of distinct functions g, on these r 4+ 1 inputs is

k=i<rj‘tl> _ % (r+1) _ "Z“ ('f‘-{-l).
=0 \ g \T 10 i=rt1-d \ °

The first sum is from 0 to d, and the last from 7 — d+ 1 to r + 1. Since r > 2d,
we have » —d > d + 1, so we have some binomial coefficients missing in the middle,
namely d + 1 through » — d, and hence

f(’"jl)=zk+§ (’"jl)=zr+1,

i=0 i=d+1
giving us k < %2’"’”. Thus we do not have enough functions to obtain a VC dimen-
sion of r > 2d.

We have shown, given these functions g,, that the VC dimension of the corre-
sponding functions h, is 2d, provided that n > 2d + 1. However, in demonstrating
this, we have used a single spanning tree, and hence assumed the universal invariant.
We will now generalize this example further, to demonstrate that the VC dimension
of {h,} is at most 2d, for a variety of choices of pairs (z;,z.). To demonstrate a
VC dimension of 2d for {h,}, we need 2d edges, and possibly as many as twice that
number of vertices. So we will assume that n > 4d.

Suppose we have r pairs (z;, ;) taken from the set X, and these form k trees.

Let the size of each tree be r;. We will show that in order to obtain all 2" functions

37

ha, we must have d > -;-7“, or r < 2d.

Consider any one of these trees. There are two cases to consider. Either r; is
even, or it is odd. If it is even, then we have a tree of r; = 2k edges, and 2k + 1
vertices. We’ve looked at this case earlier. If we use labelling of the vertices using at
most k ones, then we can generate precisely the 22* distinct labellings of the edges.
Since each labelling appears exactly once, there must be one that requires the use
of at least k = 77; ones in the labelling of the vertices.

Suppose r; is odd, and thus we have a tree with r; = 2k — 1 edges and 2k vertices.
If we use labellings of the vertices up to k& — 1 ones, then we fail to get all possible
labellings, since we have 2k — 1 > 2(k — 1), as we saw earlier. If we allow up to
k ones, then we do get all 22*~! possible labelling of the edges. Some labellings of
the edges appear twice; those must be the ones that use k ones in the labellings of
the vertices since the complement of such a labelling also uses 2k — k = k ones. In
any event, we once again have a labelling of the edges that requires we use at least
k= f%ri] ones in the labelling of the vertices.

We have, for each tree, a particular labelling of the edges that requires at least
[27;] ones in the labelling of the vertices. Combining these, we get a labelling of all
the edges that requires at least 3/, [1r;] > Lr ones in the labelling of the vertices.
‘We have available as many as d ones, so we must have d > %r. If all of the r; are
even, that is, if all the trees have an even number of edges, then the total number
of edges r must also be even. In this case, all 2" labellings of the edges are possible
if we have 2d = r. This shows we can have the VC dimension double. If one of the
7; is odd, then we have Y5, [37:] > 37 and thus d > 37.

The VC dimension of the functions h,, is twice that of the functions g,, provided
that the invariant allows us to choose pairs in such a way that the trees corresponding
to them all have an even number of edges. Here we find what was suggested earlier,
that the particular nature of the invariant itself has a limited effect.

In this example, we found that it is disadvantageous to use r disjoint pairs (z;, %),
since these form trees with an odd number of edges. In such a case, we have r; =1
for all 4, and thus the number of ones required in the labelling of the vertices is at
least Ele [1] =k = r. In this case we would only obtain 2" distinct labellings of

the edges, far fewer than the 22" we could get if we used, say, pairs of pairs with a

38

common point between them.

This example suggests a number of questions. Is it always better if we don’t take
disjoint pairs? Since this particular set of function {g,} is maximal in the sense that
you can not have a set with more functions and still have a VC dimension of d, is
it also maximal with respect to the change in the VC dimension of {h,} over {g.},
giving us a bounding factor of twice rather than the factor of about 4.7 we derived
earlier? Is it only the number of edges within each tree that matters? The answers
are no, no, and yes.

We can demonstrate a “no” by providing a counterexample; we will answer the
first two questions with the following example. We have a set of 32 functions g;
on 10 inputs zg,...,z9. These functions were chosen to have a VC dimension of
2. The largest set of functions on 10 inputs with a VC dimension of 2 is (%) +

0
(10) + (10) = 56, so our set {g;} is not maximal. We will choose 5 disjoint pairs for

1 2
the corresponding functions h;, and use these pairs to generate 32 distinct vectors
hi(x,x), demonstrating that the functions h; have a VC dimension of 5, 2.5 times
larger. These functions are listed in table 4.1.

The final answer is “yes.” Consider a tree of n edges on n + 1 vertices. We seek
the VC dimension, so we are required to generate all 2" possible labellings of the
edges. We know that each such labelling corresponds to one of two labellings of the
vertices, and those two are complements of each other. So we consider the set of
all 27*! labellings of the vertices and pair each up with its complement, giving us
exactly 2" pairs. We must have at least one of each of these 2" pairs of labellings,
and collectively, they must generate all possible labelling of the edges, no matter
what the nature of the spanning tree.

Now let’s return to our example of real-valued functions g,(z) = mz + b, where
m,b,z € [0,1]. These functions are a poor choice for fitting data that satisfies an
invariant. Suppose for our unknown function f, we have f(z) = f(z'), where = # z’.

Suppose a function g, satisfies this invariant. Then we have
mz +b=mz' +b,
mz = mz’,

and since ¢ # z', we must have m = 0 and hence g,(z) = b. Nevertheless, we will

39

hyo

hy

he

hs

hy

hs

he

hq

hs

hey

hll

h13

h15

har

h‘19

Py

h23

has

h27

hao

ha

Lo Ty ZTg rg
T3 &5 T g

o
7

0 | Ay

1

0

0 | by

0

0 | his

1

U P

0

0

0 | his

1

0

0

1

0 | hoy

1

1

0

0

0 | hg

1

0 | hyg

0

1

1

1

Ty Ty T3 T4 Ty Tg Iy Tg Xg

Lo

Jo

5

g2

gs

94

gs

s

g

Js

9s
J1o
g11

912

913
g14

gis

Jis

g1

g18

19

920

g21

922

g23

924
g2s

926

ga27
g2s

29

3o

931

TABLE 4.1

40

compute the VC dimension of the set of functions h,(z,a') = (ga(z) — gu(z'))’ =
m?(z — z')?. Since we have a single parameter here, namely m, rather than 2, both
m and b, in the case of the functions g,, we will find the VC dimension to be 1.

Suppose we have a single example of the invariant (z,,z}). The range of the
functions ho(z1,2}) is the interval [0, (z; — 2})?]. This is a line segment, provided
x; # 2, and thus the metric dimension is 1.

Now let’s add a second example (z,,25). The functions h, give us the points
(m*(zy — 27)?,m*(zs — },)?). Suppose (z; — z}) = A(z; — z}). We will assume that

23 # x4. Then the points become
(m?(z1 — 21)*,m’ (22 — 23)%) = (m*(z1 — 21)*, m*N* (21 — 2})°) = (5,\%s),

where s € [0, (z; — z])?]. Here again we have a line segment, and again the metric
dimension is 1.

A line segment can occupy both the positive and negative segments of 1 space,
but at most 3 of the 4 quadrants in 2 space. Thus the points b, have combinatorial
dimension 1, and, in this case, the combinatorial dimension coincides with the metric

dimension.

41

CHAPTER 5

Learning

We will now investigate specifically how we can incorporate invariants into learning
algorithms. We will start with our original two examples, perceptrons and feed-

forward neural networks.

1. Perceptrons

Minsky and Papert provide a learning algorithm for perceptrons. Our goal will
be to modify this algorithm to learn functions that are invariant under a group of
transformations T

Suppose we have an unknown function f that is T-invariant, and we are given
examples (z;,y;) of this function. We will split these examples into two sets, those
for which the required output y; is 1 and those for which it is 0. We will consider
only the former class; the latter is handled in the same way save for a change of
sign.

Recall that a perceptron is a linear threshold function

gao(z) = |VZ wep(z) > 0} =w-®(z).

ped
The learning algorithm of Minsky and Papert is the following. Take an example
and use this as input to our perceptron. If the output g,(z) = 1, we do nothing. If
it is 0, we modify the network. Since the output is 0, we must have had w-®(z) < 0.
We want w - ®(z) > 0; we move in this direction by adding the vector ®(z) to w,
since

(W4 (x)) @(z) =w- B(z) + B(z) - B(z) > w- B(x).

42

Minsky and Papert prove that this algorithm will converge after a finite number of
changes to the weight vector w.

We want to modify this algorithm to take advantage of the knowledge that the
unknown function is T-invariant. We will assume that the set of input functions
® = {p} is closed under T'. The group invariance result of Minsky and Papert then
applies. The set T’ divides the input functions ® into equivalence classes. If we have
a perceptron g, (x) that is invariant under T', then there is an equivalent perceptron
where the weights w(¢) are equal within the equivalence class containing ¢, that is,
if ¢ is equivalent to ¢, then w(y) = w($). This will refer to this as the equal weight
property.

We know that if we have an example z, then we have another example ¢(z) for
all transformations ¢t € T.. Further, we know that if the perceptron is T-invariant,
we can assume the weights are equal within the equivalence classes of ®. What
we will do is assume that the perceptron starts out with equal weights within each
equivalence class, and ensure that each time we update the network we preserve this
property.

Suppose for some z we have w - ®(z) < 0. Then, we have w - ®(¢(z)) < 0 and

hence

Y owed(tz)) =w-) B(t(z)) <0.
teT ter
Since scaling won’t affect the sign, we also have

w - S Z@(t(m)) <0.
171 i
Using the same argument as above, if we add the vector v = [T'|7* 37, ., ®(¢(z)) to
the vector w, we will increase the value of the dot product. We have then two things
to show: first, that this update preserves the equal weight property, and second, that
we will still converge to a solution if one exists.

Suppose ¢ is equivalent to ¢, that is, that ¢(z) = ¢ o s(z) for some s € T'. Then

> o(t@) = pos(t(e)

teT teT

= _¢(sot(z))

teT

=D o(i(z))

teT

43

since composing each element ¢ of the group of transformations with a fixed trans-
formation s simply returns the group, possibly in a different order. Thus for any
two equivalent functions ¢ and @, the increment to the weight vector w is the same.
Thus we have preserved the equal weight property of w.

So show convergence, we will follow the proof of Block and Levin [3]. We want to
show that if there is a solution, then we will converge to some solution, after a finite
number of updates to the perceptron. By a solution, we mean a set of assignments
to the weights such that the perceptron correctly classifies all of the examples given.
Suppose there is a solution vector w*. We can assume, by the group invariance
theorem, that the weights are equal with the equivalence classes of ®. We start
with a vector wy, also with the equal weight property. This vector is otherwise
arbitrary. Suppose for some example z, w; - ®(z) < 0. Then w;.; = w; + v, where
v =|T|"* Y ,cr B(t(z)), as before.

Let a = min;(w* - ®(z;)) and b = max; |®(z;)|. Note that ®(¢(z;)) is a permuta-
tion of ®(x;), where the elements are reordered within equivalence classes. Thus we
have |®(t(z;))| = |®(z;)|, and, since the weights in w* are equal within equivalence

classes, we also have w* - ®(z;) = w* - ®(¢(z;)). Let v = b*/a. Then
[Wips — YW]2 = |w; — yw* +v|?
= |w; —yw >+ 2w, - v — 2yw* - v + |v[%.

We have w; - v < 0. Also,

VP =1T17) @(s(zy)) - B(¢(z;))

<ITI7) 18(s(2))] - [@(¢(w5))]
< b?

Y

and,

w'.v=|T|" Zw* - ®(t(z;)) > a.
teT
Combining these we get

b2
Wiy =W < [wi — W™ —2—a +b* = |w; — yw[? — P’

44

and thus

0 < |wipy —yw|? < jwy —yw™|? — ib%
Hence we can only update the perceptron a finite number of times before we converge
on a solution.

What if we had used the sum of the vectors ®(¢(x)) rather than the average as
our update vector v? In this case everything would simply have been scaled by the
size of the group |T'|. In particular, we would have had |v|* < |T|*6*, w* - v > |Ta,
and the scale factor v = |T'|b?/a. The use of the average rather than the sum of the
vectors ®(¢(z)) is very much suggestive of the proof of group invariance, however.

Suppose, as before, we have a weight vector w with elements that are equal within
each equivalence class of ®, and we have an example z; for which w - &(z;) < 0.
We then obtain a new weight vector w' by adding ®(x;) to w, according to the
original learning algorithm. We cannot assume, now, that the function computed
by the new network is T-invariant. Nevertheless, suppose we apply the averaging of
the group invariance proof.

We want to compute, then,

717 S w(pot) = 11 Y (w(eot) +pot(zy))

teT teT

= w(p) +|T|7) g ot(z;)

teT

and hence we have w' = w + v, where v retains its earlier definition.

2. Feed-Forward Networks

‘We have defined functionals that measure the distance between our network func-

tion g, and the unknown function f, namely

10) = [(/@) - 9u(e)" Ple) do

as well as a functional that measures how closely our network function g, satisfies

the invariant, namely

Ii(a) = //}{xx(ga(a:) — ga(w'))zP(:c,a:') de dz'.

We have corresponding estimates E(a) and F;(«) for these, based on examples, and

the circumstances under which the estimates are probably accurate. We can apply

45

gradient descent to both estimates to get a learning algorithm. What we need to do
is combine all the pieces.

The unknown function f is known to strictly satisfy the invariant. We expect
that any function g, that approximates f well, will also nearly satisfy the invariant.

This is proven with the following.
THEOREM 5.1. If I(«) < ¢, then I;(a) < 2e.

PrOOF. We will show that I;(e) < 2I(c), over an arbitrary invariant class Xg.
That is, we will show that
// (go(z) — ga(x'))zP(a:,w') dede’ <2 [(f(z)— ga(m))zP(m) dz.
XgxX Xp

We will consider the left and right hand sides of this equation separately. Let
L= / / (90(2) = ga(2") " P(2,2") da da,
Xﬁ xX

and

R=2[(f(z) - ga(z))’ P(z)dz.

Xs
We will show that R — L > 0.
First we consider the right hand side R. Since f satisfies strictly the invariant,
f(z) =a for all « € Xz. Hence we get
R=2[(a-g.(2)’P(z)dz

Xp

=2 [(&’ - 2agq(z) + g2(z)) P(z) d

Xs
= 2a2P; — 4a / 9o(2) P(2) do + 2 / ¢ (z)P(z) de.
X3 Xp

Next we consider the left hand side L. P(z,z') = P(z)P(2'|Xg). Since z € Xy,
we have P(z'|Xz) = P(a')/Pp for ' € Xg, and P(2'|X) = 0 otherwise. Thus we

46

can reduce the integration from X5 x X to Xz x Xz and the left hand side becomes

B F}/; //X@ xXg (92(2) = 29a(2)ga(2") + g2 (2")) P(2) P(") de da’

Pﬂ //Xﬁxxﬁg“ (z)P(z') dz dz'
-2], @ PEPE) b

+ L // g2 (z")P(z)P(z') dz dz'.
Pﬂ XgxXp

Let’s take each of these three terms in turn. The first term becomes

=11 oy, C@P@PE) drda’ = - [G@P@) e [Pa)d

= / g2(z)P(z) dz
Xs
Similarly, the third term becomes

—;—ﬂ- //X;;xxﬁ g2 (z)P(z)P(z') dz dz’' = ~/X;a g2 (z")P(z') da'.

And the second term becomes

B //)}X (=) P(2)P(a') do da’ = 73; /X 9.(@)P@) da [gu(a)P() ds’

B

= %ﬁ [/X go(z)P(2) d:c] .

Combining these, the left hand side becomes

= 2/ 92 (z)P(z) dz — _/3 [/X/; go(z)P(z) dmr.

Finally, subtracting the left hand side from the right hand side, we obtain

R—L=2d"Ps ~ 4a/ go(z)P(z)dz + % [/}; go(z)P(z) dw]

Xs B
5 2
= — (aPﬁ —/ 9o(z) P(z) dw) .
Py Xp
Thus we have the 2I(a) — I;(a) > 0, as required. [

We are using I7(c) to measure the distance between a network function g, and the

invariant. Let’s consider an alternative measure — the minimum distance between

47

go and any function that strictly satisfies the invariant. First, we define the distance

between an arbitrary function f and the function g, by

p(£,92) = [(£(@) = 6ul@)’ P(e) da.

This has the same form as our functional I(«). Then the alternate distance between

go and the invariant becomes
p1(ge) = iInf { p(f, g9o) | f strictly satisfies the invariant }.

Each candidate function f strictly satisfies the invariant, and thus we may use the
theorem 5.1 to get

It(@) < 2p(f, 9a)-
From the proof, we find that we have strict equality if the constant value a of the

function within each invariant class is

- ,%ﬁ [9.()P(a) de

that is, if a equals the mean value of g, over Xz. This defines the closest function

a

that strictly satisfies the invariant, and hence we have

pr(ga) = 51r{a).

We want to find a network that approximate the unknown function f. We have
seen that if I(a) < ¢, then I7(a) < 2e. We can use this to restrict the set of networks

that we need to search. Let
Gze = {ga eG |II(OZ) < 26}.

Then for any g, such that I(a) < €, we have g, € Gs..
The set G, is defined in terms of Ir(«) which we cannot compute directly. We
can compute Ej(«), and, subject to having enough examples, we know that these

two quantities can differ by at most §, in probability. Thus we define
rers =190 € G | Er(a) <246},

and for any g, € Gs., we have g, € G5, 4, in probability. While we could assert that
for any function g, with I(a) < ¢, we had g, € G+, we can only assert g, € G5,

in probability.

48

Note that we need to pick examples of the invariant according to the probability
distribution P(z,z'). The results for uniform convergence of F;(a) to I;(«) make
this assumption. It can be relaxed, under some circumstances, though there is a
penalty involved in the number of required examples. Haussler and other investigate
this in [8]. Further, the ability to restrict our set of networks relies on the observation
that I(a) < € implies that Ir(«) < 2e. The proof of this implication assumed that
the probability distribution P(z,z’) was derived from the distribution P(z) on the
input set X.

Suppose, then, that we limit our search for a function g, close to f to those
functions in G}, ;. The number of examples of the function will depend now on the
growth function for G, s C {ga}, which can be no larger than the growth function
for all functions {g.}, and, possibly, much smaller. We can use gradient descent
to reduce the empirical functional Er(«), over enough examples of the invariant to
ensure that Fr(a) is close to Ir(a).

Let’s look at the gradient descent algorithm for E;(«). We will simplify things
somewhat. We will assume we have two equivalent inputs, x; and x,, and the
outputs of the network for these inputs are y; and y;. The error function will
simply be E = 2(y1 — y2)?. To return to the actual error Er(c) we will simply have
to reintroduce the summation.

In general, the change in the weight Aw is proportional to —0FE/0w. We will
compute this partial derivative. First, let’s suppose we have a single neuron, with a
transfer function o: R — R. The input 6 to the function ¢ is the inner product of
the inputs x and the weights w.

Let #; = w-x; and 02 = w - X,. Then y; = 0(0;) and y, = o(62). We get

0E 19 ,
_Bwi - _§8wz (yl B yZ)
— _(_) (ayl _ 8y2)
Y1 — Y2 o, B,
B N R)
=~ — 1) (G 5 - — o' (Ca) 5

= —(yr — ¥2)0" (1) 21 — (42 — yl)U’(OZ)x%-

Let 6; = 0'(61)(y2 — y1) and 63 = 0’(05)(y1 — y2). Then Aw; « §121; + baa;.

We now generalize this to an interior layer of a multilayer network. The previous

49

derivation will apply to the output neuron, if we understand the vectors x; and x, to
be the inputs to the final layer, and not inputs to the network. The following figure
will provide the framework for generalizing to an interior neuron. We will consider a
single neuron from each of 3 adjacent layers, in order to avoid unnecessarily complex
notation. We use u to indicate the output of a neuron. Note that layer £ may be
the output layer, and layer 7 may actually be the inputs, in which case u; would

refer to those inputs.

FIGURE 5.1

We will compute the change Aw;;, by

_(9E__(_)<8y1_8y2>
8’wij - h Y2 8wi]~ Bwij
= ~(y1 — ¥2) (

8y1 8u1j 801j 8y2 auzj 892]')
8 ! 8 !
= —(y1 — ¥2) (2 g (91j)ulj - —yg‘a (92j)uzj) .

8’&1]‘ 801]' 8w,-j B 8u2]~ 802]' 8w,-,-
Ouy ; Ouy;

Let 615 = (y2 — y1)0y1/00:1; and 85 = (y1 — y2)0y2/002;. Then we have

Oy Ouy;
3 J

= (2 —11)o’(61,) >

= U,(elj) Z&lkwjk.
k

Oyr 00y
801k 8u1j

Similarly we have 835 = 0'(62;) X b2rwjr. Thus we get Aw;; o b1jusj + bajUs;.
This turns out to be equivalent to running the standard back propagation algorithm
twice, once assuming ¥, is the “correct” output and adjusting y; to match, followed
by the reverse. The only difference is that the changes to the weights are summed,

and applied after both passes through the network.

50

We have established a means, therefore, of minimizing the functional F;(e). If
we use enough examples, and we get Fj(a) < 2¢+ 6, then we can be confident that
our network is in the set G,.. The examples of the function f have only to select a
candidate from this reduced set. The number of examples required to do this will
depend on the VC dimension of the set G,,.

The set G3. contains those functions that nearly satisfy the invariant. The set
Gy is the set of all functions that exactly satisfy the invariant. We know that
Gy C G2 € G, and hence we have VCdim(G,) < VCdim(G,,) < VCdim(G).

First let’s consider GG3. Note that the constant function necessarily satisfies ex-
actly any invariant. For our networks, we can construct a constant function by
setting the weights in the output neuron to 0. The network then computes the func-
tion o(7), and thus we can obtain the constant function g,(z) = a by setting the
threshold in the output neuron neuron to o~ !(a), provided a is in the range of o.
The constant functions have VC dimension 1, and hence we have VCdim(G,) > 1.

Now let’s move to the set G,.. Here we allow functions that nearly satisfy the
invariant. Such functions include, for example, those that are nearly constant. We
can generate a pair of nearly constant functions by making the threshold in the
output neuron very large in magnitude. This will force the output of the neuron
near the limiting values of the sigmoid, independent of the values of the remaining
weights and thresholds in the network.

We have 0 < (gn(z) — g(,t(a:'))2 < ¢, 50 once € > %c, we have G5, = G. The exact
behaviour of the VC dimension as we vary ¢ between 0 and %c will depend on the
invariant and the functions g,.

We cannot actually proceed by first minimizing E;(a), to restrict ourselves to
networks within G, followed by minimizing F(«), to select a network that is close
to our examples and hence close to f. The function Ej(a) does not depend in any
way on the function f. While we know that if a network computes a function g,
close to f, then g, is necessarily close to the invariant, the reverse does not hold — a
function that is close to the invariant need not be close to f. If we use the invariant
alone, we obtain a network that closely satisfies the invariant, and no more. As we’ve
seen, a nearly constant function is close to the invariant, and to get such a function,

we need only increase the magnitude of the threshold in the output neuron.

51

We can’t use the examples of the invariant alone, yet we do want to use them.
The solution is to simultaneously minimize E(«) and Fr(c).

However, this seems somewhat suspect. In minimizing E;(a), for a given pair
(z,z"), we are moving g, (z) toward g,(z'), and vice versa. While they may become
closer to one another, they are not necessarily close to f(z). If we happen to also
have the example (z,y), then we bring g.(z) close to y. Now, bringing g,(z") close
to go(z) should also bring it close to y. In this case why not be more direct and
simply use the pair of examples (z,y) and (z',y)?

Our results with the VC dimension say nothing about how we select a function
Jo- Since the results are uniform, they apply to any function we might pick. Once
our minimization is complete, we need to verify, using sufficient examples of the
invariant, that F;(a) < 2¢ + 6. If this is the case, then we can be confident that
our network is in the set Gs.. Knowing this, the value we compute for E(a) will be
close, in probability, to I(a), assuming we compute E(«) using enough examples of
f as dictated by the VC dimension of G,.. If we simultaneously minimize Fr(«) and
E(a), using adequate numbers of examples, then we directly address the required
conditions above.

What if we were to not use examples of the invariant, but use the invariant to
generate additional examples of the function. Suppose we have the example (z,y),
where z € Xj for some 3. Then, for all 2’ € Xz, we also include the examples
', y).

Within this framework, we have to be careful in applying the uniform convergence
results. In order to say that the estimate E(«a) is close to I(a) we need to have a
sufficiently large number of examples, chosen independently, according to the distri-
bution P(z). Our extended class of examples does not satisfy these requirements.
The original set of examples is chosen as required, but the number of examples
needed is dictated by VCdim(G), not VCdim(Gs,), as before.

Instead, however, we can look at the problem from a different perspective. Instead
of thinking of each of the original examples as picking a point z € X, according to
P(z), we can think of it as choosing a partition Xjg, according to its probability Pj.

The example (z,y) then carries all of (z,y) where ' € Xz. Given this, assume we

K2

can compute

9(8) =/ (y — gol@)) " P(2|Xg) de.

Xs
For the time being, we will ignore the distribution P(z|Xgs). If the partition is finite

in size, we can replace integral with a sum. If the partition is reasonably small, we
can sum over all elements; otherwise we can use the VC framework to estimate the

integral using a subset of X5. Corresponding to g, () we have functional
Ip(a) = ;ga(ﬂ)Pﬁ

and its estimate
Bolo) = 1Y 0u(6)

Note that Ip(a) = I(). If we have uniform convergence of Ep(a) to Ip(a), then
minimizing Ep(a) will give us a network with g, close to the unknown function f,
in probability. The number of required partitions, and hence original examples, is
governed by the VC dimension of the set of functions g, ().

The remaining detail is the distribution P(z|Xj), which appears in the definition
of g.(B). If we wish to compute g,(3), we need to know P(z|X;), and if we wish
to estimate g, (5) based on a random subset of X4, we need to pick elements of Xz
according to P(z|Xjg).

This problem has actually already come up, though it wasn’t mentioned explicitly.
We assumed that we could generate examples of the invariant (z, ') at random. Now
we have always assumed that we can get an input z based on P(z), but we now
have to add to it a point =’ based on P(z|Xg).

If we know that inputs are equivalent, we may know how likely they are, given
the subset Xj3. For example, equivalent inputs may be equally likely. Even if we
don’t know the conditional probability, we can substitute another, at the expense of
a penalty. The implications of such a substitution are investigated by Haussler and

others in [8].

3. Group Invariance and Feed-Forward Networks

For perceptrons, we have seen how invariance under a group can be ensured. We

would like to see if a similar result can be obtained for feed-forward neural networks.

53

We will start with a simple example.

Suppose our unknown function f: X™ — R is even, that is, f(zy,z2,...,2,) =
f(—zy,—xs,...,—2,). The group of transformations corresponding to this invariant
is simple: T' = {e,t} where e(x) = x is the identity and t(x) = —x.

For a perceptron, we would require that the functions computed by the input
layer be closed under T'. Suppose we make the same requirement on a feed-forward
network.

Each neuron in the input layer computes ¢(x) = o(w - x + 7). We require that
for every such function ¢(x) we also have the function ¢(x) = ¢ o t(x) = p(—x).

Let ¢(x) = o(W x4+ 7) and ¢(x) = o(W - x + 7) Thus we have
o(w-(—x)+7)=0(W-x+7)
and, since o is one-to-one
w-(—x)+T17=Ww-x+7T.

We can satisfy this requirement by w = —w and 7 = 7.

Again, from the perceptron model, we further require that the weights that mul-
tiply the outputs of ¢(x) and ¢(x) be equal for each neuron in the second layer.
Thus, in the first two layers of our networks we would have the structure shown in
figure 5.2.

The outputs of the second layer are even. This follows directly from the structure
we imposed, just as it did with the perceptron. Take any neuron in the second layer.
It computes o (7 + Y w(p)p(x)), where 7 is the neuron’s threshold and w(yp) are
the weights that multiply the outputs ¢(x) of the first layer. Since w(¢) = w(dot)
we have,

> w(e)p(=x) =Y w(pot)pot(x) =Y wp)p(x).
Thus
a(r+ Y w(e)p(—x)) = o(r+ Y w(p)e(x))
and the output is even, as required. Further, from the second layer forward, the
outputs of all neurons will be even, and thus the function computed by the network

is also even.

54

FIGURE 5.2
This network is very similar to the network suggested by Abu-Mostafa in [1].

Instead of having ¢(x) = ¢(—x), he uses ¢(x) = —p(—x). This means that the
weights multiplying the outputs ¢(z) and ¢(z) are negations of one another, rather
than identical as we have derived here.

In this network we have placed constraints on the weights in the first two layers,
and the thresholds in the input layer. These constraints reduce the number of free
variables that determine each network. Baum and Haussler [2] have shown that the

VC dimension of the networks can be bounded in terms of the number of weights

55

and thresholds in the network. Our constraints effectively reduces this number, and
thus tends to reduce the VC dimension of the networks. This then translates to a
reduced number of examples needed for learning.

To take advantage of any reduced VC dimension due to the imposed structure,
we need to modify the learning algorithm to maintain the structure. Our model for
doing so will be based on our modified learning algorithm for perceptrons. We will
start with an example, namely the even functioned discussed above. Let us first
simplify the network. We will have 2 neurons in the first layer, and a single neuron

in the second layer. The network is shown in figure 5.3.

FIGURE 5.3

The equations that define the network are the following:

61:W1'X+7’1 02=W2'X+7'2 03=U1U1+U2U,2+T3
Uy = 0'(01) Uy = 0'(92) Ug — 0'(03).

We will assume that the network has, initially, the structure we derived for even
functions, as shown in figure 5.2. We will assume that the two input neurons are
equivalent under 7', and hence wy = —wy, 7y = 75, and v; = v,.

Suppose we have an example (x,y). The output of the network given x is u;. We
want u; to be close to y. We know that (—x,y) is another example, and because of

the structure of our network, the output of the network given —x is also us.

56

The general back propagation algorithm, applied to our network, gives us the

following.

b3 = o' (03)(y — ua) Av; o< upds
A’Uz o8 u253
61 = 0'1(01)’0153 Awlj X :Ej(Sl

52 = o"(02)11253 A'LUQJ XX 117162

ATg 68 53

ATl X (51
ATZ o 62.

We will apply this algorithm for the two examples (x,y) and (—x,y). First we

- will reduce the number of variables by taking advantage of what we require for this

network.

Let wy = w, wy = —w, and 7, = 75 = 7. The output for both inputs x and —x

is u3 = u. Also, as we observed earlier, 03 is equal for both inputs x and —x, since,

for x we have

b =c(x-wt+t)v+o(x:(—W)+7)v+ 73,

and for —x we have

0y = o((=x) - w+r)v+0o((=%) - (=w) + 7)v + 75,

Hence let 85 = 6.
Thus, for the input x, we get
b3 =o' (0)(y — u)
6 =o' (x- W+ T)vés
8 = o'(—x - w + 7)vé;,
and for the input —x we get
b3 =10'(0)(y — u)
61 = U,(—X W + T)’l)63

8 =o'(x-w+ 7)vé;.

Let 6=0'(0)(y—u),a=0'(x-w+7),and b =0'(—x - W + 7).

57

Here we will update the weights by the sum of the individual updates, rather than

the average, as we did with the perceptrons. Thus we get

Avi x (c(x-w+T)+o(—x-w+7))§ A xé

Av, x (o(—x-W+T)+o(x-Ww+7))8
Aw;j x zj(a — b)véd A7y x (a+ b)vé
Awyj x z;(b— a)vé ATy (a + b)vé.

Note that we have Av; = Av, and A7y = ATy, so that after updating, we will
still have v; = vy and 7, = 75. Also note that Aw,; = —Aw,;, so we also maintain
the relationship w; = —w,.

We chose here to use the sum of the updates, rather than the average as we did
with the perceptrons. The difference between the two is a factor of |77, or, in
this case -;— However, we have yet to define the constant of proportionality. Thus
the difference between the sum and the average of the updates can be, at worst,
incorporated into the constant of proportionality.

In this derivation, we have assumed that we start with certain relationships be-
tween weights and thresholds. Given those relationships, we’ve shown that they are
maintained throughout the learning process. If we were to start with no such require-
ments on the weights and thresholds, it is always possible that the network would
eventually move to such a result. Any single step, however, does not necessarily do
80.

Consider updating the weights v; and v,. We will use the notation, for example,

41 (x) to indicate the output of neuron 1 given the network input x. We have

Avy o uy (x)0' (63(x)) (y — us(x)) + ur (=%) 0" (85(—x)) (y — us(—x)),
Awy o up(x)0’(63(x)) (y — us(x)) + uz(~x)0" (3 (—x)) (y — us(—x)).

The weights v; and v, appear only as part of #; and uz. Thus it is simple to
establish conditions under which the update will increase the distance between v;
and v;. Assume the range of the sigmoid is [—1,1]. Note that the derivative of ¢ is
strictly positive. Assume further that the three thresholds are large in magnitude,
making u;(x) & 1, us(x) = —1, and uz(x) ~ —1. Also assume that v; > 0 and

vy < 0. Assuming finally that y > 0, we have Av; > 0 and Av, < 0.

58

We want now to generalize this result to arbitrary networks. Suppose the input
neurons are closed under 7', that is, for each neuron ¢, and each t € T, there is
also some neuron that computes ¢ ot. The set T divides the input neurons into
equivalence classes. We will assume that the weights from all neurons within an
equivalence class to any given neuron in the next layer are equal to one another.

Thus the structure is as shown in figure 5.4.

FIGURE 5.4

Suppose we have a given example (z,y). The change in, say, one of the weights v,,

is proportional to the output of the neuron ¢(z) in the first layer times a constant

59

5. The constant § depends on ¢'(#), and the value of constants in layers beyond
the second layer. The value of § is invariant under 7', as we have already seen.
Substituting ¢(z) for the input z simply gives us the same output from the first layer
but in a different order, within equivalence classes. Since the weights multiplying
these outputs are equal with equivalence classes, the inner product and hence 0 is
invariant under 7'

We accumulate all the changes for a given weight, over the equivalent inputs
t(z) for all ¢ € T. Thus the change in the weight on the output of ¢(z) is v is
6T er #(t(e)).

Consider any other equivalent input neuron to ¢(z). We can use ¢ o s(z) to
indicate this neuron, for some s € 7. Then the change for the weight on this
neuron’s output is § Y., p 0 s(t(z)) = 6 X ,r @(t(2)).

Note that each function ¢(¢(z)) is in the equivalence class containing ¢(z). Thus
summing ¢ (t(z)) over all ¢ € T' is equivalent to summing the output of each member
of the equivalence class, modulo an integral constant multiplier. Thus the update
for the weights can be viewed in terms of the average update over the equivalence
class, for a single input z.

These changes to the weights multiplying the outputs of the neurons from a single
equivalence class are equal to one another, and so the corresponding weights remain
equal to one another after updating. In showing this, we have only assumed that
the outputs of the input layer were closed under 7'. Thus it is not necessary that the
input layer be made up of single neurons. Each input function ¢(z) could represent
a multiple layer neural network, so long as the closure condition is met.

In the case of even functions, we were quite specific about the structure of the
neurons in the first layer, and were able to show that the structure was preserved.
Here we have no explicit structure, and indeed we should not even assume that
the input functions ¢(z) are simply single neurons. Thus we can not explore this

algorithm further, in the general case.

60

CHAPTER 6

Simulations

In this chapter we will explore learning a simple function on a feed-forward net-
work. We will use the back propagation algorithm, exploring some of the variations
discussed earlier in the thesis.

Our simple function f: X™ — R is defined by

+1 it [T, ol < Ly/ATB,
fx)=4-1 if |35, 25 > 24/n/6,

unspecified otherwise.

The network we will use is similarly simple. It is the same network we used when
we considered even functions, and is shown in figure 5.3, on page 55. The network
has three neurons, two in the input layer, numbered 1 and 2, and one in the output
layer, numbered 3.

The network is capable of computing this function. We may rewrite f as

F) =1 iff (Zm,<\/—> (Zx, \/7>

The “and” function A can be computed by the output neuron 3. The two terms
are simple threshold functions, which can be computed by the two input neurons 1
and 2. In this case we have w; = (1,...,1), w, = (=1,...,-1), 1 = 7, = 4/n/6,
vy = vz =1, and 73 = 1. It may be necessary to adjust the gain of the neurons; this
can be done by scaling the above weights and thresholds.

Let us first verify that the network behaves as expected under back propagation.

We have a pool of 5000 examples, of which we choose, at random, a subset. The

61

performance of the network on all 5000 examples is our estimate of I(«); the per-
formance on the chosen subset is of course F(a). For n = 6, and 50 examples, we
plot these two functions against the number of updates to the network. The result
is shown in figure 6.1. We see here that the performance on the examples is much

better than the overall performance, so our network has not generalized well.

1.2 T T T T

Error 0.6 |~ -

0.4 .

0.2 - -

0 I i ! I
0 1 2 3 4 5
Millions of Iterations

FIGURE 6.1. 6 inputs and 50 examples

For any particular choice of 50 examples, it might be that the network learned the
function or it might have failed outright. The graph in figure 6.1 does not represent
a single simulation with one choice of 50 examples, but is the average over 25 such
simulations, each based on a different choice of examples. In figure 6.2, we plot the
final values, after 5 million updates, of E(a) and I(a), for each of the 25 individual
runs. Here we see that for 15, if not 17, of the 25 individual runs, that the network
did generalize.

We define an update, or iteration, as a single forward/backward pass through the
network. Such a pass is made for each of the examples, and the changes to the
weights are not made, but rather accumulated on the side. After a pass has been
made for all the examples, the weights are then updated. With, for example, 50
examples, a simulation will make 5,000,000 forward and backward passes through

the network, but will only actually update the weights 100,000 times.

62

==
oy o
1 1
+
+

+
'.:!'.‘:b
=&
06
+

|

=

oo
1

+
L1

Error 1 -

o o
(=230 o]
1
<
<
1

o o
U
LR
<
<
<
]

0 5 1 1 20 25
Simulation

<3
<P
<>

FIGURE 6.2. Final performance for each run with 6 inputs and 50 examples

The behaviour of our network depends on the VC dimension of the set of all
possible networks. To estimate the VC dimension, we again appeal to the results of
Baum and Haussler [2]. There are a 2n + 2 weights and 3 thresholds, for a total of
2n+ 5 parameters. All of these are not independent; nevertheless, we will use 2n+5
as an estimate of the VC dimension. What we see from our estimate is that the VC
dimension increases as we increase n, the number of inputs to the network.

Our concern is generalization, the difference between E(a) and I(«). For a net-
work of fixed VC dimension, we expect that if we increase the number of examples,
the difference will decrease, and vice versa. The following graph, figure 6.3, shows
that this is the case. Here we plot |I(c) — E(c)|, based on the average values over
25 individual simulations, with the number of inputs fixed at 6, fixing the VC di-
mensjon. Thus the line corresponding to 50 inputs is the difference of the two lines
in figure 6.1. We will refer to this difference as the generalization error.

We also expect that more of 25 the individual simulations will result in general-
ization as we increase the number of examples. In figure 6.4, we show the final value
for the generalization error, for each of the 25 simulations that make up the average
values plotted in figure 6.3. Here the errors are sorted by decreasing size, to make

the graph more clear.

63

0.8 T T T T
0.7 - 25 examples —
50 examples ——
0.6 100 examples —— -
200 examples ——
0.5 -
General-
ization 0.4 -
Error
0.3 o
0.2 i
0.1 -
0! | 1 1 I
0 1 2 3 4 5
Millions of Iterations
FIGURE 6.3. Average generalization error, using 6 inputs
L6 o T T I I
| 25 examples ¢ |
14 ©0 ¢ 000 50 examples +
1.2 |t + + 100 examples] A
200 examples x
1
General-
ization 0.8
Error

0.6
0.4
0.2

Simulation

FIGURE 6.4. Final generalization error, using 6 inputs
Now, instead of varying the number of examples while holding the VC dimension
constant, we do the reverse. Here we fix the number of examples at 25, and vary the
VC dimension by varying the number of inputs. As the number of inputs increase,

we expect to see a reduced ability of the network to generalize. Figure 6.5 shows

64

exactly this behaviour.

0.45 T I |

04 5 inputs — |
6 inputs ——
0.35 mputs —— 7]
0.3

General- 0.25
ization
Error 0.2

0.15
0.1 F i
0.05 | .

0 I I I 1
0 1 2 3 4 5
Millions of Iterations

FIGURE 6.5. Generalization error, using 50 examples

We have now established the framework for our simulations. The next step is to
add examples of the invariant. We will refer to examples of the function f simply
as examples, and use hints to refer to examples of the invariant. The function
f is invariant under any permutation of the n inputs. It is also invariant under
any transformation that is a subgroup of the permutations. We will consider two
groups, the group of all permutations, and the group of cyclic shifts. The former
has n! elements while the latter has only n. The former carries more information
with it; we expect to see this reflected in the relative performance of these two types
of hint.

A hint is chosen at random. First an input x is picked at random, uniformly in
[—1,1]". Then an element of the group is picked, again uniformly, and applied to
x producing x'. The pair (x,x’) is our hint. Note that the identity element of the
group may be picked, in which case we have a degenerate hint.

Let us now attempt to estimate the VC dimension of the set G, those networks
that strictly satisfy the invariant. For this we will use the permutation group.
Consider the principles of group invariance, which have us split the input neurons

into equivalence classes. The obvious split is into two classes with a single neuron

65

each. In this case, we must have each neuron invariant under permutations of the
inputs, and hence the weights multiplying those inputs must be the same. Thus the
neurons no longer have n independent weights, but a single value that is used for all
weights. Thus the VC dimension of these networks is 4+ 3 = 7, and we will use this
to estimate the VC dimension of G,. Note that we are not suggesting that these
are all possible networks in Gy, nor are we suggesting that we should enforce any
restriction on the weights in the network.

The set G, those networks that are close to the invariant, will have a VC dimen-
sion between Gy and G. It is the hints that define the particular subset G,.. As we
increase the number of hints, we decrease ¢, and thus we move the VC dimension
of G4, closer to that of Gy. As a result, we need fewer examples to select a network
from G,..

We are able to vary the relative number of examples and hints. Hints are treated
in a similar way to the examples. The simulation will choose a number of random
hints and make a forward and backward pass over the network with each. The
changes to the weights are again accumulated, and applied at the end. The number
of hints used in making such an update is equal to the number of examples. The
simulation might alternate an update based on examples followed by one based on
hints, thus giving equal number of each. Or it might alternate a single update based
on examples followed by, say, 4 updates based on hints, making 80% of the updates
based on hints. _

We expect that as we increase the relative proportion of hints, we will decrease
the generalization error. From figure 6.3, we see that with 6 inputs and 25 examples,
we do fail to generalize. To these 25 examples, then, we add hints, so that of the
5,000,000 iterations, 20%, 50%, and 80% are hints. The generalization errors are
plotted in figure 6.6. Here we see that increasing the relative proportion of hints
does reduce the generalization error. Also, a comparison with figure 6.3 shows that
using 25 examples with 50% hints, is roughly equivalent to using 100 examples alone.
When we increase proportion of hints to 80%, we do better, on average, than 100
examples alone.

From the perspective of Gy, adding hints always helps us. However, we have a

fixed total number of iterations, and we need to reserve a sufficient number of them

66

0.5 T T T T

0.45 20% hints —
50% hints — _|
0.4 80% b;
0.35

0.3

General-
ization 0.25
Error 0.2

0.15 3
0.1 F .
0.05 - -

0 I I ! |
0

—
N
w
1N
o

Millions of Iterations

FIGURE 6.6. Generalization error, using 25 examples, and 6 inputs,
with examples of the invariant
for examples, otherwise the network won’t be able to select a network close to f.
In the limit, of 100% hints, we have no examples and thus we can’t expect to learn
f. Nevertheless, even in this limiting case, the generalization error will still tend to
zero. What happens, though, is that the performance on the examples tends to be
uniformly bad, as it is overall. This is shown clearly in figure 6.7, where we plot
E(a) in three cases where the pr/oportion of hints is increasingly large.
We stated that our function f is invariant under any permutation of the inputs.
A cyclic shift is a subset of these permutations. If we use only this subgroup, we
would not expect to do as well as we would taking advantage of the entire group. It
turns out that for our example function, the performance is almost identical, though
the entire group does appear to have a very small edge. In figure 6.8, we compare
the two groups, using 6 inputs, 25 examples, and 20% of the iterations going to
hints. These two curves are almost identical.
When we combine hints with our examples, the examples are only responsible
for selecting a network from the restricted class of networks that nearly satisfy the
invariant. We have seen already that the solution is found within a class of networks

that explicitly satisfy the invariant, and whose VC dimension is estimated at 7, which

1.2 T | T T

80% hints —
1 95% hints —

98% hintg ——

0.8 I-

Millions of Iterations

FIGURE 6.7. E(«a), using 25 examples and 6 inputs, with a large

proportion of hints

0.5 T T T T

0.45

0.4

0.35

General- 0.3

ization 0.25 § -
Error 0.2

permutation ——
cyclic shift —— _

0.15 |- -
0.1 .
0.05 -

0 [[i [
0 1 2 3 4 5
Millions of Iterations

FIGURE 6.8. Generalization error, using 25 examples, and 6 inputs,
comparing the underlying group
is independent of n. Thus we might expect that there will be less variation in the
generalization error as we vary n when using hints. In figure 6.9, we plot the results

of using 25 examples, with 80% of the iterations hints, for 5, 6 and 7 inputs. There

68

does appear to be a narrowing of these curves in contrast to figure 6.5. We don’t

see, in this case, that 5 is best and 7 worst, however.

0.25 [T T T
5 inputs —
| 6 inputs — _|
0.2 7 inputs ———
General- 0.15
ization
Error 0.1
0.05 | .
0 | i ! !

0 1 2 3 4 5
Millions of Iterations

FIGURE 6.9. Generalization error, using 25 examples, and 80% hints

Now let’s turn to the alternative method suggested in the previous chapter.
Rather than generating a hint, we transform the example. Thus, given (z,y), we
pick a random transformation ¢ and use (t(z),y). The estimate Ep(a) suggests that
we should take an example, and apply all possible transformations to it. We might
choose to update the weights after each example, or wait and update after using all
the examples. The results of these two choices are plotted in figure 6.10. We find
that the curves are very jagged. There are 6! = 720 permutations of the 6 inputs,
and the 720 corresponding examples (¢(z),y) are likely to be highly correlated. Such
correlations hurt the gradient descent algorithm.

We get much better results instead by either picking a random example and apply-
ing random permutation, and updating the network based on this single iteration,
or updating the network based on a single random permutation of all examples.
These curves are plotted in figure 6.11. Note that 25 examples, with 720 possible
permutations, gives us an effective pool of some 18,000 examples. If we compare
figures 6.11 and 6.3, we see that we generalize slightly better with 200 examples

chosen independently.

69

0.35 T T T T
VtVeg, t(eg) —
0.3 Vi, t(eg) — |
0.25 _
General- 0.2
ization

Error 0.15
0.1

0.05

Millions of Iterations

FIGURE 6.10. Generalization error, using all permutations on each example

0.25 T T T T
‘v’eg,t(eg) -
0.2 t(z) — _
General- 0.15 7]
ization

Error o1 L i
0.05 |- _

0 1 I ! |
0 1 2 3 4 5

Millions of Iterations

FIGURE 6.11. Generalization error, using a single random permuta-
tions on the examples
The permutation group has n! elements, while the cyclic subgroup has only n.
‘Thus we wouldn’t expect the same jagged lines with the smaller group. The corre-

sponding curves from figures 6.10 and 6.11, but based on the cyclic subgroup, are

70

plotted in figure 6.12, and are almost indistinguishable, in fact. Comparing these
three figures, we see that the permuted examples do better, assuming we update

based on a random example and random transformation.

VitVeg, t(eg) —
Vi, t(eg) — _|

02 Veg, t(eg) —

t(eg) —
General- 0.15]

ization
Error 01l B
0.05 | =
0 I ! I !

0 1 2 3 4 5

Millions of Iterations

FIGURE 6.12. Generalization error, varying how we update based on

the cycled examples

Since we are incorporating the invariant, we expect the variation in the gener-
alization error due to an increasing number of inputs to be less than it was with
examples alone. In figure 6.13, we compare 5, 6 and 7 inputs, all using 25 examples,
that are permuted randomly.

If we compare figures 6.9 and 6.13, we see that permuting the examples does
better than using hints, at least at the 80% level. This remains true if we use
cycled examples, rather than permuted ones. These results are suggestive, but are
based on a single, particular example. The relative performance does suggest that

a comparative study is well worth while.

0.25
0.2

General- 0.15

ization
Error 0.1

0.05

FIGURE 6.13.

71

T
5 inputs ——
6 inputs — _|
7 inputs —

2 3
Millions of Iterations

Generalization error, varying number of inputs

72

CHAPTER 7

Conclusions

In this thesis we have looked at invariants, inputs that are equivalent with respect
to the unknown function f that we wish to learn. We have shown two ways we can
take advantage of this extra information about f.

First we assumed that there was a group of transformations that defines the
equivalent inputs. Armed with this group, it is possible to build a network that is
guaranteed to satisfy the invariant. Further, the standard learning algorithms can
be modified to preserve the structure imposed on the network.

More generally, we defined an invariant as a partition over the input space, that
groups together inputs for which we know f gives the same output. We can use the
partition to choose examples of the invariant, and use these, along with examples
of the unknown function f, to learn f. In the case of back propagation, an example
of the invariant turns out to be not unlike two mock examples of the function. The
number of examples of the invariant that we must use is determined by the VC
dimension of the functions h.(z,2') = (ga(z) — go(z’))2, which can be several times
larger than the VC dimension of the functions g,(z). We assume, however, that we
are able to generate examples of the invariant at will, so a large required number is
not a concern. Using the examples of the invariant does allow us to effectively reduce
the set of functions {g,} to only those that nearly satisfy the invariant, and it is
now the VC dimension of this reduced set that determines the number of examples
of f that are needed. Simulations of a simple network learning an equally simple

function confirmed properties we would expect given the theory developed here.

73
1. Further Study

A number of topics for further study were raised. In computing the VC dimension
of {h,} we assumed the worst case. What happens in the average case? First, we
largely ignored the partition that defined the invariant. Given a set of pairs that
are used to define the VC dimension, we found it was likely possible to construct a
variety of partitions around them, certainly a coarse division of X but also probably
some finer divisions. Thus, except in the limit, we found that a fine division of X
could give rise to as large a VC dimension for X as a coarse division, even though a
coarse division represents more information about f. On average, however, this may
not be the case. Suppose the partition is given, and fixed. If we were to compute an
expected growth function for {A,}, we might gain something from the probability
distribution just as we would for {g,}. But we have additional requirements on our
choice of pairs (z,z') if we want to avoid redundancies. These redundancies might
be substantial in the average case.

The VC dimension of the subset G2, was not investigated. This is a difficult
problem; it’s not clear what networks are contained in the subset G, or even in the
smaller Gy, which contains only those functions that strictly satisfy the invariant.
The structures defined here based upon a group of transformations might be used
to provide a lower bound.

The use of transformed examples, as compared to using examples of the invariant
needs further study. The error estimate Ep(a) suggests gradient descent within
partitions X3, while the simulations find it better to cut across the partitions. This
is not a contradiction, since the uniform convergence results do not say anything

about how we select a network.

74

Bibliography

[1] Yaser S. Abu-Mostafa, Learning from hints in neural networks, Journal of Com-
plexity 6 (1990), no. 2, 192-198.

[2] Eric B. Baum and David Haussler, What size net gives valid generalization?,
Neural Computation 1 (1989), no. 1, 151-160.

[3] H. D. Block and S. A. Levin, On the boundedness of an iterative procedure for
solving a system of linear inequalities, Proceedings of the American Mathemat-
ical Society 26 (1970), no. 2, 229-235.

[4] W. N. Colquitt and L. Welsh, Jr., A new Mersenne prime, Mathematics of
Computation 56 (1991), no. 194, 867-870.

[6] Gerald A. Edgar, Measure, topology and fractal geometry, Springer-Verlag, New
York, 1990.

[6] Andrew Fyfe, Properties of the V-C dimension, Master’s thesis, California In-
stitute of Technology, 1990.

[7] David Haussler, Generalizing the PAC model: sample size bounds from metric
dimension-based uniform convergence results, Proceedings of the 30th IEEE
Symposium on Foundations of Computer Science, 1989, pp. 40-45.

[8] David Haussler, Michael Kearns, and Robert E. Schapire, Bounds on the sample
complexity of Bayesian learning using information theory and the VC dimen-
sion, Proceedings of the Fourth Annual Workshop on Computational Learning
Theory, Morgan Kaufmann Publishers, 1991, pp. 61-74.

[9] A. N. Kolmogorov and V. M. Tihomirov, e-entropy and e-capacity of sets in

functional spaces, American Mathematical Society Translations, Series 2 17

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

75

(1961), 277-364.

Benoit B. Mandelbrot, The fractal geometry of nature, W. H. Freeman and
Company, New York, 1977.

James L. McClelland and David E. Rumelhart, Ezplorations in parallel dis-
tributed processing, The MIT Press, Cambridge, Massachusetts, 1988.

Marvin L. Minsky and Seymour A. Papert, Perceptrons, expanded ed., The
MIT Press, Cambridge, Massachusetts, 1988.

David Pollard, Convergence of stochastic processes, Springer-Verlag, New York,
1984.

N. Sauer, On the density of families of sets, Journal of Combinatorial Theory,
Series A 13 (1972), no. 1, 145-147.

Patrice Simard, Bernard Victorri, Yann Le Cun, and John Denker, Tangent prop
— a formalism for specifying selected invariances in an adaptive network, Ad-
vances in Neural Information Processing Systems 4 (John E. Moody, Steven J.
Hanson, and Richard P. Lippmann, eds.), Morgan Kaufmann Publishers, 1992,
pp. 895-903.

V. N. Vapnik and A. Ya. Chervonenkis, On the uniform convergence of rela-
tive frequencies of events to their probabilities, Theory of Probability and Its
Applications 16 (1971), no. 2, 264-280.

, Necessary and sufficient conditions for the uniform convergence of

means to their probabilities, Theory of Probability and Its Applications 26
(1981), no. 3, 532-553.

Vladimir Vapnik, Estimation of dependences based on empirical data, Springer-
Verlag, New York, 1982.

