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ABSTRACT

The first part of this thesis i1s concerned with certain
‘exténsions of a formal technigue devised by Wigner for hand-
liné problems in quantum statistical mechanics, especially
to problems in quantum mechanical transport processes. The
approaéh is to find the closest possible analogy between
classical and quantum statistical mechanics, so that the
extensive work in classical statistical mechanics can be
utilized. This analogy is attained with the Wigner distri-
bution function, with which averages of dynamical varilables
in guantum mechanics may be calculated by integrations in
phase space. We will first state some basic properties of
distribution functions in classical statistical mechanics,
and then state the corresponding properties of the density
métrix in quantum mechanics. We will define and discuss
the Wigner distribution function, show that i1t has the de-
sired averaging properties, and obtain the analogue of the
Liouville equation satisfied by this function. We will
derive the analogue of the Liouville eqguation in reduced
vhase space, and then obtain the equations of hydrodynamics
from guantun statistical mechanics. This will lead to ex-
pressions for the stress tensor and heat current density in
terns of singlet and pair distribution functlons. |

In the second part of this thesils, the statistical
mechanical theory of light scattering from flulds is devel-

oped. The model used consists of a collection of spherically



LSymmetric,coptiCally isotropic particles, which are capable
of interacting both mechanically and electromagnetically.
The effects of these interactions are included rigorously.
This 1s done by using the radial distribution function for
the s?étial configuration of the particles, and the pailr
moment distribution function, which gives the dipole moment

of a particle when it and another particle are fixed at

specified positions, and the rest are averaged out. 4
chain of integral equations is set up, which is capable of

giving the local field within the fluld. The index af
refraction is then derived, with corrections to the Clausius-
Mosotti formula. Iinally, the light scattering cross section
is obtained. This reduces to the result obtained with the
Binstein-Smoluchowskl theory in the proper limit, but con-
tains corrections when the wavelength of the light 1s of the

order of interparticle distances.,
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QUARTUM HYDRODYNAWICS

JE S,

I Distribution IMunctions in Classical Statistical Mechanics

Gibbsilan statistical ﬂnoh nics is based on the concept
of a distribution of systems in phase space. His “density=-
in-phase" is now usually called the distribution function.
(Hereafter, we will abbreviate this to d.f.) When normalized
over the entire volume accessible to the system, it becomes
the probability d.f, and gives the probability that the co-
ordinates and momenta of a system of I particles will have the

- py - = - i .

values Rq, Roy ees hN, and P1, Ppy ee. DPlf. (When no confusion
will result, we will refer to the sets of coordinates and

. \ . e 4 .o . .
momenta with single symbols R, p.) In equilibrium, for a

canonical ensemble, the probability d.f has the form

-F(N)/ﬁ, 2) = e,ﬂ(mH‘”’)

(W) .

where 4 1s the free energy of the system, and I is the

Hamiltonian function

( N) Z

K=y 2 mK

+ U(/Z, ers /—Zj,) (1.2)

o

In a nonequilibrium state, the time behavior of the d.f 1is

given by Liouville's equation,

o™ (1.3)
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'  Usually the potential is simplified to a sum of terms which
‘refer to interactions between single particles'and an exter-
nal field, and other terms which refer to interactions between

palrs of particles:

UR) =5 4 (8) + £5°5 . (7,R

= L . (R ) (1.4)
R rE gz.Zi ZE: \jk i 5 R

When this is done, reduced d.f's, and in particular the sing-

let and pair d.f become useful. The reduced d.f's are de-

fined by

my/= 2 = - ) &% 35 37
_F (RU" ph\; /b/y.- p)h ;t) =" —F 7r d' pk C! F/z (l.‘?)

M+t “

and are called specific d.f's because they refer to the pre-
cise specification of each particle. Also used are the generic
d.f's, which refer to the probability of finding any particle
of the regquired type at a point in phase space. With the
assumption of pailr potentials many thermodynamic and trans-
port properties of flulds can be expréssed in terms of the
singlet and pair d.f alone. An excellent discﬁssion on the

use of these d.f's in equilibrium statistical mechanics may

be found in an article by DeBoer(l).
II Transition to Quantum llechanics

It is not immediately clear how one should go about
setting up the gquantum mechanical analogue of classical

Gibbsian statistical mechanics. The difficulty lies in the
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ct that the uncertainty principle prohibits the precise
-specification of the location of a system in phase space.
Several approaches are possible in defining quantum mechan-
ical d.f's. Cne of them 1ls to uge instead of the nhase
spece btechnigue, the matrix formulation of quantum mechanics,
in which the analogue of the d.f 1s the density matrix. A4
second possibility is to construct a d.f which has no simple
interpretation in terms of probability concepts, but which
can be used for calculating averages over nhase space in a
way which is formally identical with the classlcal one. This
is the nrocedure that was followed by Wigner<2) and which will
be vtillized later in this paper.*
The density matrix method can be developed in a very
(3); nowever, i1t is usually used in the "coordinate"

ceneral way

representation. This has been studied in great detall by

(4)

ko] )

Husimi and by Zorn and Cnnaen<ﬁ>. The density matrix is

defined for a pure state as

/0/5, Bit)= Pr(R; t) P(R;?) (2.1)

wher [P(R t) ig the wave function for ‘;’1 state of the

svstem, When we deal with an ensemble of systems, or a mixed

stave, the density matrix has the form

* another possibility may be to use some kind of coarse-
graining in phase space, so that one may talk. about the pro=-
bability of finding a system in a certain cell, p0031bly of
volume h3N, in phase space. This approach has not yet been
used successfully



il
" where IP; is the wave function and Aj is the statistical
“weight of the J'th state in the ensemble. The space ¢.f is
C g g
given by /0(2, R; 't:) and reduced d.f's are defined in the
usual way. Averages of dynamical variables are calculated
. : P ndling
as traces of matrix products: if @&(R,R') is the matrix

associated with the variable & then the average value of
? £

R is the trace of the matrix product of X and /0 ,

- 3 -
@, = (SRR DIRLR .
This is the average over a state, i1f the system is in a pure
state; or it is the ensemble average of the pure state aver-
ages, if the system is in a mixed state. Ilatrices are assigned
to the basic variables in the following way -
coordinates:
d(-él}-'- k’ﬂ)'—? a(,i",,...k'”) ;7‘7' §( R ‘/-ék,)
| (2.4)

-

momentas /3' e -C:th_'. 775(5;"'?/:).

For example, the Hamiltonian operator is

(w)/- -,) _: RJ +U[R)}776(Rk Rn) (2.5)

and bchr001nper‘ time dependent equation 1is

a?-fﬂ) < 2. /”) _hz 2 {”
2T B [Z 2 Rxf ZE;KKZ;f)

- U(g)/,(w) _ U(,gr)/ryy'

(2.6)
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/(The superscript on /9 refers to the number of varticles in
the.systemu} This equation 1s the guantum mechanical analogue
of the classical Liouville equation in the density matrix
formalism. Born and Green(S) have made use of this in their
method for setting up a quantum mechanical theory of trans-
nort processes.

In 1932, Wigner(g) ghowed how a phase space d.f could be
constructed and used for simple evaluations of averages. This
function is defined most convenlently in terms of the density
matrix

4

+60
- v —-—:.’--’ - — oy - _7
$(85:9)= (5) [ ¥PVom a7, 27V
- 00

Some of the more important properties of the Wigner d.f are:
1) f(N) is everywhere real, though not necessarily posi-

tive.
2) 5
r~F<~)d3P :f’”)(é: E,’ ‘b) (2.8)

so that the integral of the d.f over momentum space does give

the probability density in configuration space.

where U’(N) (5,5';t) is the momentum representation of the



-bom
- density matrix.* Therefore, the integral of the d.f over
‘conTiguration space gives the probability density in momen-

Tum space.

-
B ™2
4) —'_;J__S: d P - Z?/W*V& _W.._ vV&; w‘”} (2.10)

when f(”) represents the pure state 7;7 « The right side 1is
recognized as the standard expression for the probablility

current density in configuration space.

$PR pit) =

5) [ \3¥ & ~2¢ k"sl (N/=> 2, = =4 2,
@) f"/e ¥ O 53, Bee s t)d P
: -0

which is an expression for f(N) dual to equation (2.7) where

(2.11)

the roles of coordinates and momenta are changed, and 1 is
replaced by -1.

6) Since the Wigner d.f is a bilinear form in TIT s 1T
is symmetric for both symmetric and anti~symmetric wave func-
tions. However, it is possible to determine whether any
particular d.f corresponds to a Bose-Einstein or a Fermi-Dirac
system in this way: take the inverse Fourier transform of

(1) e ) 2 .

f to obtaln /0 (R,R'") and then examine the symmnetry of

this function by interchanging either the primed or the un-

primed quantities, but not both.

S T (ML T T TS T m T T T U temamse of the
o is not independent of go because of the

Fourier ftransform relation between cbordinate and momentum

renresentations of the wave function. This is a point of

najor difference between guantum mechanics and classical

nechanics, where the probabllity densities in configuration

and monmentun shace nay be specified independently. This

independence permits, for example, a factorization of the
classical d.f for a canonical ensenble.
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7)Y The great value of the Wigner d.f is that it is
‘possible.tb calculate averages of dynamical variables by
direct integration over phase space, without using operator
technique. Although Wigner showed this only for some special
kindé of variables, it gives the correct average for any
funetion of coordinates and momenta, 1f the Weyl coorespon=-
dence(637) for quanbtum mechanical operators is used. This
assignment of operators is made in the following ways 1if
g(g;a) is the classical variable whose operator is desired,

we obtain 1ts Fouriler expansion e. 3
-3 W=
- L[O'-P'I'T'g) - 2
; pg)=1\| e g‘(o-,fr d o (2.12)
Then, the quantum mechanical operator is defined as

66, %)=[ e FP e (2,3 307 e

-

where P (§9§') and'§ (§,§‘) are the operators corresponding
to momentun and position. We will now derive this averaging
property of the VWigner d.f, using the coordinate representa-
tion of the density matrix. TFor simplicity in notation,
only one dimension will be considered — the generalization

is obvious. The operators P and @ are now

Pe —¢T f(;{ §(x-x") ”'-(_L‘Ti-—)m §(x-x7)

w4

]

Q" s(x—x’)

“we

Qf—t x §(x-x")



'

~and. the average value of g is

Jav =f/{(é(&x0//xj x") c/x} S(x~x")dxdx”

Substitute the expression for g into the integral, and use

the following property(7) of the exponential operator

e TP Q) _ BT 2@ o P

to get |
| cRker .
$F 2y =f[¢ = e”@e‘“’P//x,’X”)]

. g(o;7') 6/‘X~X’90(X'AX”JX d o ad7r

then, the Taylor's series expansion property

e WP(X’X')/»/XJX”) = o(x'+ v, x7) §(x-x7)

leads to

<i>ﬁv f[e —;:T 57(9(&x')/(x,+ O'T)X”)] 5[0’; )

. §(x-x?) §(x-x?) dx dx'dx" dvd7
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- and integration over x' and x" gives

ckeT

(2-2” = fc 2 ec'rx/[x-ro’ﬁ;x)g[o;?)dxc[vd?:
Now replace 6(0”7‘) by its expansion ;(}’»5) N
<j>Av (;L“)fe rr ec'rx/o (xt oK x)

 (r) P dx dodrdpdy.

Integrate over T and then over x, using the Iourler

theorem to get

$F0 =z'1“rfe'°”'°g(p,g)/(5*"’ 5~ 57) dodp .
o

L4
llow, take —1—- =~V , and

[N

4224‘, = J:’:f %’ PY]{PX)//g‘ f"'l}dp‘[ d)/ (2.14)

or

<ﬂzv:={g(ﬂﬁ)£(ﬂﬁ)dpdﬁ

(2.15)

—F(P;g): #{e%{/’yp/j*gza—)’) dY

where f 1s the Wigner d.f for one dimension.
With this theorem, it should be possible to carry large
parts of classical statistical mechanics into quantum mech-

anical language merely by changing the definition of the d.f.
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- This will be illustrated in this paper by deriving the
'Aequaulons of h rdrodynamics,.

The starting point for a statistical .mechanical theory

of transport procegses in guantum nechanics 1s the analogue
of the Liouville equation. The guantunm mechanical equation

of motion has already bheen gilven in the density matrix form-

alism, and can be used to get the equation of motion for

s
Wigner's d.r. &lthough this is described in detall by Wignerkg)
. - . e ' . = TR Ml
we will outline the derivation herce. ile renlace R by H-Y

- - =
and R' by R+Y in equation (2.6), multiply through by

%
2 p- and integrate over
L

> , .
Ys Ghis gives

o+ ¢ Y
LR D o/ o, Pl D)

- VR,;); P R-¥, R+Y)] Ay

1

P

r("r )3” ezi‘);— [U(k )’) U(R y)]/p(} q* E*Y)C/ )’

) -

ihe kinetic energy contributions can be integrated by parts,

LR A AT 14 >
R U P
e 2 T L) [ € e fo- Vv /2 d

<

- j?:. f%,. ‘a;( £ 0"?/25

which is 1Geltjo,l in form with the classical result. The

notential energy contribution 1is



L~ ¢ N '_:1_3:“ .
oL (L /[U/R~>r)_u(§+y)]

e¥PT BT ReFi ) Y

and the equation of motion can bhe written

(2.17)

w  x 7
3¢ Pe ) )
ST+ T":'ng_F +6-4 =0 (2.18)

K=1

The potential dependent term can be nut into several different
forms, involving integral or differential operators. If we
define the kernel

+e® =

K( F/’)"_ _L) /[U(R-X) U[R+X]9*P.Ydj)—(. (2.19)

~00
hen this term is

o |
9‘.¥(~,=(K(§)};-};/)—F(~)(§J F':'t)”lii_’" (2.20)

Another possible form is

2,21)

£ (ww)//im/f? pp)- +E r)]cﬁp (R )U(x)d’*d“’

The corresponding differential operator forms are

e ;,‘—[ V(R-X ,,) U(R+ X P)]«C MR 3it) (oo

(,.,) /:F(,y) 2 x )__F(ﬂ) _7%— )]U/k) (2.23
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\
>
£
3
™
%
5
=
[op
o)
62}

ulwaszod in a convenient formal ways
ac™ 2 T 3 TRE)
o-+ == 5 T ‘Z]U(R)—f ('{’J/’ (2.24)

where cz must operate on the potential only. The series
expansion of this 1s the form that Wigner obtalned originally.
It shows that the guantum nechanical ecguation of notion dif-
ron the classical one only in second and higher even
nowers of . Ifor a system of harmonic oscillators the guanbtunm
mechanical and classical equations are 1ldentical.

IT the notentlal can be expressed as a sum o0

U ==ZE: ¢£(/Ei + }f};ij:i: Vs (7., g:)

then the operator forms can be written in the same way,

9.4@):2”_- e‘m. 'F(N)""szi i o .£™ (5.28)

(o
C#FJ

(e) . . .
where 62- ig the onerator corresnonding to the 1'th part
of external potential and 6%5 is the onerator correspondting

to the palr potential, k& .
The reduced eqguations of motion are analogous to the
classical ones, with the correspondence of 62' in guantum
chanics to-—(t%t))-t; in the classical case. The egua-
tion of motion for the set of parvticles n is obtained

.4

ecwduion of motion ifor

¢

—

integrating f

[

the coordinates and momenta of th



~discussion to the distributions for which the surface inte-

‘srals of the currents vanish on the boundary of the phase

space accessible to the systemn, so that Green's theorem may

be us
. o 3
w)/)_ p)= f{—F(N)PP,PP)J d
m) m g M
- ¥a b ) = e _(n) (n)
e te m %t 2 @t sV X
= (2.26)
( N
X" {2 e +Pe 155 0, ™) I8 47 F
e i

1l ~n d’ -.4 - o SR BN E " A PR K = £ - W L T e
where v, p refer to the set n and ®, P refer to the set [I-n.

=

1

The Tirst part of the integral vanisheg by integration over

—
'
It

one containing terms referring to pair interactions for which

both particles are in the set n, another in which one particle

is in set n and the other is in set N-n, and the third in

which th particles are in set H-n¢
N M
(n) ™ 3 (W
X =a'-.Z_Z o, FWRAF 455 ((g, 7R d'F
(':;’ C:r’””
N N
/ (N) 24,32
vz 22 || @ F AR
¢ v
=N+

: -3
he third group of terms vanish by integration over P, the
first group integrates obvicusly, and the second group leads

to integrals LﬂVOlVlP“ f<n*1>:

(m) Mmoo ) N )
X =‘7L:ZZQ¢.»'F "‘ZqZXm

=t nH (2.27)

o The second part can be spllit up into three groups of terus,



T
¢

;.X(m) (,m.,)(., - -; ’ },: ;i—) 0{3,%’ A7

Bauations (2.20) and (2.27) contain the reduced Liouville

.L

cquation in guentun statistical mechanics. The speciali-
zatlion to the equation Tor the singlet d.f is given here as

wt

an illustration:

] —
2" B @ re)

Set % F + 8 "

(2.

o
o
~

J

N
__zz; 627 _Fcn K3,é&.,);,}%-;?€) szki
Js

1

ITT The Zquations of Hydrodynamics

In this section, we will show how the equations of
hvdrodynanics can be derived in gquantum statistical mech-
anics. In particular, we will show that the derivations and
results are Tormally ildentical with those obtained by Irving
and hlleOOd( ) Thelr derivations have been gilven in great
detail, and there 1s no need to duplicate them here. The
coal of the following discusceion 1s a statenent of the equa-
tions of hydrodynamnics in a form which involves all IV parti-
cles in the svstem. The remainder of the derivation consilsts
in reducing these equations to a form which involves singlet
and pair d.f's, and may be found in the paper of Irving and

Kirkwood, The notation used here will be the same as theiris.
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ithe equations of hydrodynamics are obtained by calcu-
hé time derivatives at a point of the fluid of the
mass density, the momentum density, and the energy density,
for this purpose, the following results are useful., If

OZ(EJ'P is a dynamical variable, the aversge of & is
‘ - 3> N ,3
o = S e(RP) ;Y7 P;t)>
= [«(EF) ™R B; ORI

and if & is not an explicit function of the time,

a(
’ ‘__ [N)[P —v) )> (3'2)

(3.1)

When we use the analogue of Liouville's theorem 1In this expres

[l

sion, we get

D<d>,4v > F (w) . )
= =—<d’§-:, = F >-.<o<,e—r (3.3)

D00

The first term is i1dentical with the classical one, and can be

transformed with Greents theorem to

N ' N q,,‘ . w)
(g By o= & B%m %) oo

Kns ’'4

The other term is (using equation (2.21))
. () C [ el gl N2,
<0() e-+& >= ‘.E'(%';r) {fa’(R) P){”E (RJ P-F,)

~ SR 5.3 )) %é/”'fm)u(g)d R 'Ry
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. 1. - 9, .._’ 2 ES) L3 fa

o and when s replaced by p in the first term of the
e . = - .

- Integral, and p#p' 1s replaced by p in the second term

(the limits remaining from minus infinity to plus infinity),

: <o(; 9-~F(~)>:—.'<A ;‘-F(~)>

: w T ""I. 573 T
(0((}?) P*P)"O‘/R:P F) (3.5)

we g

3|

2¢ P

.e,.i_ .( ,)(J(R)d , 3}—;,

This can also be put into operator form,

A-ifalk pzn)-a(@p-w) VR O

If we expand this as a series in h and take the 1limit as
H approaches zero, the classical result is obtained. A

more useful result is this: 1f & is of the form

R

= 0 /E)+f_‘ % (R) ,B', }_LZE’ MKR)P, Pe (3.7)

Js¢

this leads by a simple substitution to the eguation for the

rate of change of the average value of this special &

2 ¥y X Px (n)
ot - %:,‘ E‘VR" a’ s -F
55 (B
+ Lk, o,. - (3.8)
Koo 3=t < M VRK Yy - -+ >



which differs from the corresponding classical equation only
in the definition of the d.f. It can also be shown that
higher terms in the expansion of & in powers of 5 will lead
to expressions differing in form from the classical ones.

As a specilal case of this theorem, take the following

values of -

Old'—‘f_—_‘ my 'g(ﬁ"";)
K=t
- N -~ = -
C%»\=:2;r Pe 6'(,Eﬂ:—'r)
%= (3.9)
ty =2 | Pov f (B)+ £ 2 Ve (R, R} S(RF)
#dJ

These gquantities define the mass density, the momentum den-

sity, and the energy density:

P(F;t) = R (3.10)

(3.11)

éF'(iz;t:) = <: 5¥5 ) £ (~9;>

(3.12)
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- and lead to the equations of continuity, momentum transport,

. and energy transport respectivelys:

D plFit) =) U (T
__%_%____ — - V)’ .[//r,-t)u(T) é)], (3.13)

]
K

%[ﬂ/ﬁt) a[’:;‘t)]: —VT'.Z < I’/;P 5(@“?);{(~§
K=t X

(3.14)

fﬁz E’i. 5(R.-%): -F(N))

ot = \ 2m. T,
| (3.15)
2 BE R sRD) ;™)
K= K
rX F - )
475 Vo Besmo® ;s >]

=/

+ 3..L ii<(vﬁa %K). % [8[7{-?)-6(}3,9?)] g _F(N))
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/‘Thesé results have the same form as the classical ones, as
obtained(by Irving and Kirkwood(a), although the d.f is of
course determined by the laws of quantum mechanics. The
remainder of their derivation consists in transformning these
equaﬁibns into the form in which the stress tensor and heat
current density are given in terms of singlet and palr d.C's
and the potential of intermolecular force. Since these transs
formations are identical with those of the classical case,
they will not be repeated here. Ve will now state the results
of these calculations. The microscopically correct hydro-

dyvnanmical equations are the continuity eqguation:

g&f --V -[,ozi] (3.130)

ne equation of motion (momentum transport equation):

% (pR) = [p 2T+ Ko veg o

and the energy transport equation

?FE ' -
—é—g=—vr-[EJ+5~&'-g (3.15")

The quantities appearing in the above equations are

defined as follows:

plFe)=7 <“m,< §(R-7); ¥ (3.10)

N
k=1
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is the mass density at re.

A(Fse) =45 (Bs(R-T); ¢ “’) Gty

XK=t

1ls the mean molecular velocity (fluid veloecity) at r.

X/* f')"*Z V. {)-)]<S'(R,‘ F); _;r> (3.16)

. - a .4 . . —
is the bhody force per unit volume due to external filelds at r.

E(r )= F +E E, (3.17)

—d
is the internal energy density at r, where

E /)" t) = _/_Df_ &‘()3',‘-')3);-?(”) (3.18)
A=/ a2m

[ 3

is the kinetic energy density,

(=X

E;; (F:¢) ¢0')<8(l2 -7 —Fm> (3.19)

1s the potential energy density associated with external

fields, and

£,(7t)= i‘fﬁ(\/u §(R-F). 4“’} (3.20)

S#K
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. 1is the potential energy density due to melecular interaction.
(In defining Ly 1t is assumed that the potential energy of
interaction between two molecules is localized half at each
molecule, )

" These definitions are completely general. The other
guantities, however, appearing in the above hydrodynamical

-3

equations9gzleumi 5 , have been defined only for a single
component, single phase system Iin which the intermolecular

force is central, depending on range only. Their definitions

followe.

(3.21)

59
g
)
”
N
I
1
+
o

is the stress tensor at T, where

N - B - P _ (”)

O ==> m<(%_u>(%‘-u)g(a—r}, 5 > (3.22)
K

is the kinetic contribution to the stress tensor, and

(3.23)

Xf/z)/)? T+ 15; z':) A5

is the intermolecular force contribution to the stress tensor.

?/P; v) = ZK +iv (3.24)
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- 1s the heat current density at r, where

B =2 <12—‘[1’E-a)2(§5-~)5(/3k~;); ™ (3.25)
K=t h h

is the heat current due to transport of thermal kinetic

energy’ and
gy =4 a./[v(rz)l - BR—’SV’(R){,_ELL R.y +}]
x/m(;: F‘fﬁ;i‘)c/z/‘g
% f[‘/fk)i'- BEvir) {1- R+ H

3@(%, 7o R o) 47 B

(3.26)

is the contrilibution to the heat current density by molecular

interaction.

In the definitions of EIV and 5\, the following

gquantities apnear:
(2)(—:-1, £ = =2 o Vary -/ R )
Ve EFGe)=0 2 (8(R-%)&(R.-%'); % (3.27)
J #EK
is the palr density at T and ?‘, the probabllity per

(unit volume)? that one particle (any particle) will be at

- -
T and another at T'.

Z—*’(a) <Pg S(R,‘ T’) 6(.‘? 7") < f~)> (3.28)
0 ¢/<
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is the projection onto the space of r of the particle current
: ’ . -’ b . 3 . .
density at r, r' in pailr space, and is the particle current
U 2 ~ o - . — . .
density at r if another particle is at r' multiplied by the

03 - —
particle density at r'.

The differential operator, <sz , occurring in the
definitions of U/ and 5,/ operates on/o”/r’ I"*IQ ?f') and
"(21[

7, r;r+k,t vmtq_n held fixed. &Since in the interior of

. (£ (2 A . — . -

a fluid /0 and /f) are slow functions of T (holding R
o . . | - . \ .
fixed), changing negligibly for r varying by a displacement
whose length is of the order of the "range" of intermolecular
forces, all terms beyond the first may be neglected in the

. s * . « _’ s -
brace anpearing in the definitions of 12; and gV . I'his

vields the simplified expressions:

vf(k);‘=>/eat)d’fe -2

- fd ~) ) pugd » 3 g 'Y O
,u/r;z-)/o"’ PP.R:e)d R (3.30)
where the correlation function ;{a) is defined by
@y/o 2 / - o B ry2 3. '
ﬁ ()','I'+P.;t')=.)-)’7/p/r,t)f/r+9,t)/ /F PJ‘Z"} (3.31)
The pressure is defined by

Per.e) -_-___;_71.{2-(?,-7:)} (3.32)
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*In an ensenble Which is in equilibrium, the pressure 1s
P=-3%-~Z<f';6/3k-?);4m’
L R3y <m
27/ oV v ) o™ (3.33)
- 3_/,")//2 VIR) () AR
°

-

(In deriving the stress tensor, i1t is assumed that ﬁ?-\z./o‘”
is negligible. In the absence of external forces, and with
the neglect of surface effects, this assumption is jusﬁifiede)
e cannot replace the average kinetic energy by 3kT/2y because
this is now a quantum mechanical system. Thus, the tempera-
ture enters into the equation in an implicit way. This is

the quantum mechanical equation of state that has been obtain-
ed by Born and Green<5) vsing the virial theorem and by DeBoer(l)
using statistical thermodynamics. There is some ambiguity in
the derivation presented here, for the following reason: the
stress tensor obtained by this method is undetermined up to

an arbitrary tensor of vanishing divergence. This arbitrary
tensor may not necessarily have a vanishing trace, and may
therefore contribute to the pressure.> In the classical case,
Irving and Kirkwood(g) showed that the definition used here

in terms of the d.f is consistent with the physical plcture

MY

involving the force "acting across' a unit area. This defi-
[ (&)

b

nition may be used in the quantum mechanical case, but is

st1ll arbitrary.
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IV ConcTusions

The.equations of hydrodynamics have been derived from
guantum statistical mechanics, and contain microscopically
correct expressions for the stréss tensor and heat current
density of a quantum fluid. These expressions are identical
with the classical ones, except in the specification of the
distribution function, which must be obtained using some

| ' - (%)

guantum mechanical theory. Born and Green have obtalned

similar expressions in the density matrix formalism. Theilr

efforts to apply these expressions to the problem of liguid
helium ITI have not been entirely successful. What is needed
is a logical procedure for terminating the chain of reduced
equations of motion, so that f(g) can be evaluated with fair
accuracy. This may take the form of a guantum mechanical
analogue of the theory of Brownilan motion developed by
KiTKWOod<9), or some other way of introducing the drreversi-
bility of hydrodynamic effects. When such a theory is avail~
able, 1t should be possible to construct a %igorous nolecular

theory of quantum superfluids.
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A STATISTICAL MECHANICAL THREORY OF LIGHT

SCATTERING FROM SINPLE NON-POLAR FLUIDS
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4 STATISTICAL URCHANICAL THEORY OF LIGHT

'DCAW’”{ITL RO STHPLE NON-POLAR PLUIDS
I Introduction

In the last few years, the technique of light scatter-
ing has becone a valuable tool for the study of the size and
shape of macromolecules. The theory of 1ight scattering is
a strange Iintermingling of statistical and phenonemonological,
discrete and continuum ideas. In this thesis, a completely
statistical mechanical theory of a very simple model is dis-~
cussed. The purpose 1is not so much to produce experimentally
meaningful resvlts as it is to clarify various aspects of the
exleting theory and to develop methods for extending the
statistical theory to more useful cases.

When a beam of light (which will be used hereafter to
refer to electromagnetic radlation of any wavelength, visible

or otherwise) propagates through natter, some of the light is

b

C—

cattered away from the direction of propagation. This
scattering arises in a quantum mechanical theory in the fol-
lowing way: the time-dependent perturbation due to the
electromagnetic field causes transitions between quantum
states of the system, from states of lower to states of higher
energy, and reverse transitions occur, releasing the extra
energy as light. 1In a cruder theory, the field induces dipole
and higher moments in the distribution of electrons in the

atoms and molecules, and these oscillating moments re-radiate

light. The intensity, angular distribution,polarization, and
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k‘possible fine structure of the scattered light are deter-

- mined by_the properties oi the incident light and by the
properties and distribution of the atoms and molecules in
the system. The reverse of this statement is true, within

certain limits. Some of the atomic and molecular properties,

and some information aboult the distribution of the atons and

nolecules can be obtained from a study of the properties of
the scattered light.
A complete quantum mechanical theory is impractically

m

complicated for systems of interest to chemists. The appro-

ximations that must be made are dictated by what kind of
information one wants. The experimental situations which
are most common, and to which the theory must pay special
attention are these:

1) The system consists of a small number of components,
gach of which is a relatively simple molecule, in a solid or
fluid phase., The properties of the individual atons are
assumed to be known. X-rays are used, and the distribution
of the atoms in each molecule, and of the molecules in the
solid or liquid is desired. This situation, with solid phases,
has been of intefest for many years; with liquid phases, 1t
has become of importance only recently.

2} The systen consists of a liquid solvution, one of
whose components Is a solvent of simple and known structure.
The other components are usually large complicated molecules,
about which 1ittle is known. Visible light is used, and the

size and shape of these molecules 1s desired. This problem
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;lis mofe complicated than that of situation (1), but 1esé
information is desired.

‘he theory of the diffraction of x-rays from liguids
and solids (situation (1)) has been worked out in fairly
great detail. The approximations which are necessary here
are usually quite satisfactory, and the theory works rather
well. Perhavps the biggést stumbling block at present in
the theory of x-ray scattering from liguids is the lack of
detailed knowledge about the scattering from individual atoms,
The existing theory of light scattering from solutions of
macromolecules (situation (2)) is different. It works well
enough to encourage experimentalists to use 1t, but the
validity of some of the anproximations used in the derivation
of this theory is doubtful. Unfortunately, these approxi-
mations are made at the very beginning of the derivations,
and cannot be amended in a convenilent way. For this reason,
an investigation of the theory of light scattering was under-
taken for the simplest possible physically meaningful case,
a single component liquid composed of spherically symmetric,
optically isotropic particles. Ilivery effort was made to keep
the development.of this theory as rigorous as possible. The
interest in the theory lies not only in the actual results,
but also in the methods. Iliethods were developed with an
eye toward possible extensions to multicomponent solutions,
optically anisotropic‘molecules, and SO On.

In the course of this research, 1t was necessary to work

out a theory of the dielectric constant or index of refraction
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- of a liguid of spherically symaetric, optically isotropic
~molecules. This is also capable of exten$ion to more com=

plicated cases,
IT Historical Background

Theoretical discussions of light scattering nay be
classed into several groups. These are
1) scattering by a single particle,
2) scattering by a collection of independent

particles,

o
p—g

scattering by a collection of dependent
particles.

The third group is of greatest interest here. The existing
theories of scattering are based largely on a result obtained
for group two, which in turn rests directly upon several
results in group one. Ilost of the material in this survey

of the literature of light scattering was obtained fronm a

(1)

review article by Oster , Which contains a gratifying amount
of detail. T'or this reason, no attemnpt will be made to carry
out a thorough study of the literature here.

The scattering of light by a simple atom or molecule may
be studilied quantum mechanically. Except in the theory of
x-ray scattering, no one ever does this, and even in this
case a classical approximation 1s made. For complicated

molecules, the guantum mechanical problem becomes prohibi-

tively difficult. Therefore it iy customary to use some



-31-

. simple model for a particle, and to treat the scattering with
classical'electromagnetic field thebry. The models which
have been used are a point dipole, a spherical dielectric or
conductor, and an ellipsoidal dielectric or conductor. If
the particle is small compared witlr the wave length of the
incident light, the scattered light is obtained from the
equation for the intensity of radiation from an oscillating
point dipole. This calculation was first performed by

Rayleighsy the details are now available in almost any text

on electromagnetic theory, e.g. Stratton(g), The result 1is
—_— + Coo 2.1
&~ .
T AT 4%

where 1 1s the intensity of scattered 1light, I is the inten-
sity of the incident beam, r is the distance from the particle
to the observer, & 1is the angle between the line of ohser-
vation and the direction of propagation of the incident bean,
A is the wavelength of the light, and & 1is the polarizi+
bility of the narticle. This equation applies for the case
where the incident beam is unpolarized.. The case with polar-
ization is derived first, and the result is then averaged
over all directions-of polarigzation to give this equation.

If the particle is not small compared with the wavelength
of the light, the mathematical treatment is much more compli-
cated, and has been pefformed even for ellipsoidal particles

(3,4)

only in an approximate way . For spherical particles,
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" either transparent with a given index of refraction or else
metallic,'the scattering problem has been solved by Miecs).
Several ilmportant contributions have also been made by Debye(6)
The details of this calculation also are given by Stratton(2).
There 1s no need to state the results of these calculations
here. In the limit of small size, the result given above is
naturally obtained. For very large particles, the problem
reduces to one in geometrical optics.. For intermediate sigzes,
the scattering intensity is hard to calculate. Atoms are
fortunately small compared with the wavelength of visible
light, so that they may be treated as point dipoles with a
certain polarizability. (This cannot be done for x-ray scat-
tering.) The scattering of visible light by a molecule may
;

in principle be calculated with a knowledge of the structure
of the molecule, using point dipolescattering from its con-
stituent atoms. This method requires more information, but
on the other hand is capable of yielding more information
than the simnle picture in which the molecule 1s a sphere
with a certain dielectric constent. This method 1s actually
used, ifor example DY Debye(7) and by Zimm, Stein, and Doty(8>°

The scattering by a collection of indevendent particles
is obtained by adding the scatlering intensities of the
single particles., "Independence" here implies that the
scattering 1s incoherent, so that the intensities are additive.
This seers to be taken as the definition of independence in

light scattering theory. In this case, the scattering from
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~a collectlon of snall isotropic narticles is

7 (/1_ C@L&) (2.2)

Lol

in which is the density of particles, 1 is the intensity

of scattered light per unit volume of particles, and the

. N ey T T vy e ~ ey L o iy e A R N R N
he same meaning as before. 4 quantity

i

other symbols have
wiich 1s of'ten used is the turbidity, 77 , of the system. ihis
is the logarithm of the fractional decrease in the transmitted

intensity,
- -0 .
[ =T, e (2.3)

and 1 is the length of the optical path along the direction

of' propagation. For this simple system, the turbidity is

287TS av

- (1) A
T= T 7 /0 (2.4)

This indicates that Deer's law is satisfied by this system.
hen this expression is used, the polarizibhility seldom is
avallable, but the Index of refraction usually is available.
further, the systen usvally considered consists of the scab-
tering porticles dmmersed in a transparent, non-scattering
medimn of dielectric constant €e . In this case, the di-
electric constant of the nixture, & ,(which is the square of
the refractive index) and the dielectric constant of the

solvent are related to the polarizibility



7 : /? €o ‘ (2.5)

Using this, the turbldity of the nixture is

2 _ 2
g’ (e €.) (2.6)

z,i4/o

This 1s the prototype of the expressions which are used in

T =

the theory of scattering from collections of dependent npar-
ticles.

When one talks about dependent particles, there are two
kinds of dependence which must be kept in mind. One of these
is the dependence which ariseé from mechanlcal interactions
between particles, giving rise to a distribution of particles
differing from that of an ideal gas. The other kind of de-
nendence comes from the electromagnetic interaction between
particles, because each particle exists in the field not only
of the external source but also of all the other pérticles.
With the exception of the worl of Yvon, to which later refer-
ence shall be made, all theoretical discussions have avoided
an explicit considerétion of the latter kind of dependence
by using a seml-phenonmenological . model. This mpdel and the

\ AY
treatment of 1t 1s due to Einstein(g} and Smoluchowsk1<lo).

\

The scattering elenent is a small volume of the liquid. e-

cause of fluctuations in density, composition, and anything

clse that can fluctuate, the dielectric constent of this

o3

small volime will be instantaneously different from that of
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the liquid as a whole., If the volume is indeed srmall com-
nared with the wavelength of the lizght, 1t mayv be treated as

a small isotropic particle of dielectric constant & immersed

1n a nediun of dielectric constant &, , and thereafter the

theory of scattering from an indenendent set of such particles
nay be used. The average square ol the polariz 1pility for

the volume &V is given Dby

(Aé) > (Sv) (2.7)

/6 r* €o

with Q€= € ~ &4

L

[}

‘he Intensity of scattering per unit volume of scatterer is

_—% _ E>) <(Aé) >(/+Coa ) (2.8)

. :u/z

and the turbidity is

7= 3,{4 </AC)> (gv)

‘he rest of the nr0ul emn 1s to relate the mean square Tluctu-
ation of the dielectric constant to the equilibrium properttes
of the liguid. Tor a single component liquid, the only fluc-
tuation of importance is the density. In this case, the

scattering is

¢ 't 2¢)?
-_— e e— — / C&)’“ 5o
T, 2A% 47 //0 3/0 ~ “ /2 (/+ 6) (2.9)
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where/ﬁ? ig the isothermal cow>?0051)171*v Yo use this
expression, the denendence of the dielectric constant on

dengity is needed; to a good annroximetion the Clausiug-

osotll equation holdg:

€ +2 (477' A
— - X
c — i %/ (2.10)

L.

Uging this together with equabtion (2.9), fair agreenent is
obtained with experiment for scattering from argon and scme
other substances., for ethyvlene and similar compounds, cor-
rections for denolarization are necessary because of the lack
of symmetry of the molecules. These corrections will not be
considered here.

When the system consists of a multicomponent solution,
it 1s necessary to take into accoilint not only the density
fluctuations but also composition fluctuations. (Although
the dielectric constant depends on temperature, in general,
fluctuations in temperature seem to be too small to be con-
sidered.) The case of two components was treated by
snmoluchowski (10 and by Einstein(9), and was extended by
Debye to a form useful for practical calcnlation(7)e The
result of these treatments is the eguation

i 2 Kc
-_—
M RT

e s (3

H & =

(2.11)
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in which ¢ is the concentration of the scattering solute.

I ] -

fhe effect of the solvent 1s subtracted out. = is a measure

4

of the deviation from ideality of the solution, and I is the

: a3

molecular welght of the solute., Whis eguation, or modificg-
tiong of 1t, is most often used in the theoretical treatment
of light scattering data, The theory of scattering from

multi-component solutions has been worked out by Kirkwood and

(.11)

Goldberg , uelng this same fluctvation anproach.
The theory of the scattering of x-ravs by liquid elements

(12)‘

was developed by Debye and llenke The theory and experi~
1

3
mental resvits have been reviewed by Gingri ch(“J), When

x-rays are scatbered by atoms, the classical dinole treatment
is not valid, and "structure factors" are introduced instead.

The kind of molecular dependence that 1s considered is the

istrupiton of

Q_»

mechanical one, which gives rigse to a spatial

LD

atoms. Interactions which micht be described as multinle
oy £

scattering are not considered. Since the dielectric constant

(._l’

for x~rays is very close to unity, the effect of electro-

magnetic interactions is negligible.

”31n< 14) has glven a moderately rigorous treatmnent of

light scattering. 1e made explicit use of distritbution

functions, but vseé for the average field at a particle the

Lorentz~Lorenz field, which is derived with a continuum model,
The most successful attempt to nlace the theory of light

; as . . 7 (15) T o
scattering on a firm basls was made by Yvon -7/, IHis work

is relatively Inaccessible, and deserves much wider attention
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than it has received. The nodel and procedure used by Yvon
Care quit@'similar to those w“od in this researc
his methods are not convenient for working out the theory
in cetell, and he has not done so. 3ince the ideas and
notation used are rather involved, the sinilarities and
dilfferences Dbetween his work and the research reported here
will be discussed after some notations and basic ideas have
been esbablished,

& corollary of a theory of light scattering is a theory

of the dielectric constant or index of refraction of a liquid.

(16)

This has been worked out to some cxtent by Kirkwood and
7 p <7 - (15) T ra S 4 A Jo 2 I [§ B, - B Py -
by Yvon . ihe case of the static dielectric constant was

thie subject ol an excellent paper by W. ', Jrown(l7), In
the methods used here arce a natural exitension of those

used by Drown.
ITT Physical Pilcture

J—WH

heory of the scattering of light by a liguld is

in 1ts statistical mechanical asnects quite conplicated. wo
that the reader will not become lost 1n a maze of notatlons
and eguations, a brief verbal transcription of the theory
will be given first. This will show what effects are Lo be
considered, and approximately how they will be consldered,
The physical situnation is thiss & liguid consisting of

identical spherically symmetric particles, which interact
electronagnetically as point dipoles, occuples a fized volune.

X L]

& plane polarized monochromatic light wave enters the liquid.



- Tor convenlence, the liquid will have at least one nlane
suriace as a boundary, and the incident beam will have a

direction of propegation normal to this nlane surface. The
problem is to determine the angular dependence, intensity,
and polarization of the scattefed light when the vproperties
of the incident beam, the potential of interaction between
the particles, and the volarizihility of the individual
particles are given, and a certain tenperature and density
are specified,

What is a microscopic description of the scattering

from this system? The incident bean will act on all the

)

particles in the liquid, inducing a dipole moment in each.
Since the incident wave is oscillating in time, the induced
moments will also oscillate. Each induced dipole therefore
radiates a field. The actual field which acts on a given
partiéle ig the sum of the external field and the radiation
fields of all the other particles. From a photon point of
view, this 1s a multiple scattering process. Iowever, a
slightly different description is moré useful: the last par-
ticle to scatter a photon is called the scattering particle,
and the motion of the photon up to this particle is des-
cribed by an "average wave" propagating through the system.
In any microscopic state ol the system, the wave propagating
from dipole to dipole through the liquid is a complicated
affaire. Iowever, from a macroscopic pgint of view, this
wave 1s a plane wave, whose nature is determined by the pro-

perties of the incident wave, the geometry of the system, and
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5,the»dielectric'cdnstant of the svstem., To effect a corres-

poﬁdeﬁceAbetween the microscopic and the macroscopic points

of view, a statistical postulate is needed. The macroscopic

field within the dielectric may be described in terms of

the polarization or average dipole nmoment per unit volume

(as a finction of space and time). Then, the fundamental

postulate 1s this: The macroscopic polarigation is assumed

to be the ensemble average of the actual dipole moment per

unit volume. Thils average is calculated using the distribu-

tion functlion for the system, which is determined by the inter-

molecular potential, the density, and the temperature in

canonical equilibrium. The propagation of the average wave

is given by the propagation of the average volarization.

This wave will travel with a velocity less than that of light

in vacuo. The actual fields still propagate with the velocity

of light in vacuoj; however, the actual path traversed by a

nhoton will be longer than the minimum one because of the

multiple scattering effect. The velocity of the average wave

1s of course related to the index of fefraction of the liquid,

This is the way in which the index of refraction may bhe obtained.
The scattering intensity may be calculated in a rigorous

way by determing the energy flux or Povnting vector of the

actual electromagnetic field at the observer, due to all the

oscillating dipoles. Again a statistical hypothesis is made:

The macroscopic value of the intensity of scattered light

from a system 1is assumed to be the ensemble average of the

actual Poynting vector of each microscoplc state. This leads
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in a first approximation to a theory similar to the theory
of x-ray scattering from a liguid, but different in that the
poiarizabilify appears instead of the atomic structure fac-
tor. Ior the case of scattering of visible light, the first
approximation 1s equivalent to the theory obtained using the

Hinstein-Smoluchowskl fluctuation theory of light scattering.
IV Assumptions and Special Notations

One of the two basic dependences that will be considered
in this theory is due to mechanical forces between particles,
which give rise to distribution functions. These functions
are used for evaluations of averages over a statistical en-
senble. The particles that will be considered here are all
identical and are spherically symmetric---there 1s no pre-
ferred orientation of one particle with respect to another.
The force between any two particles 1ls then a function only
of the distance between the centers of the particles. It
will not be necessary to specify further the form of this
force, unless certain explicit calculations are to be made.
These varticles will also be interacting as electric dipoles,
but the externally induced dipole-dipole force will be neg-
lected as small compared with any other forces. Since the
applied external field determines the magnitude of the in-

)

duced dipoles, this approximation holds in tThe 1imit of low
field strengthis. & further approximation will be made in
the neglect of the motion of these particles. It is assumed

that the particle does not move appreclably during a veriod
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. of the dipole oscillation. Without this assumption, there
would beAd Ytemperature broadening" of the scattered radia-
tion. - This approximation is made explicit by assuming that
the particles are fixed in position. The distribution func-

tion which is important is

N, a = -
P (R, R, R)

wihich 1s the probability density that the N particles of the

(4.1)

system will be found at the positions Rj, Roseesy Ry« The
reduced distribution functions, obtained by calculating the
probability density that any n particles out of the set I will
be found at the positions rq, Tro,ce.,rp , are also neces-
sary. The first two reduced distribution functions, the
singlet and the pailr, are defined in this way:
0)/ — -l = - /N) 37 Jg
/ /A/)z e 2 S(RK -‘AI)/a d RI“' ~,
R=s
N-FoLD

(4 nL_)

pm//f;, )= f N J 5SS (R, ,‘_,)g(/e “/&)/ ™ AR P R,

J#K
N- FOoLD =t

and the higher ones are defined in an analogous vay. (The
Dirac delta function is used as a convenlent way of singling
out a particle and locating it at a specified point, and the
surmations are used because it 1s not essentlal to know which
particle is located at that point.) There is a simple rela-

tionship between different order distribution functions:
A

J/O(”)a’z/i; = (/V-m)/m—’)  (a.a)
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. IT the system 1s in canonical equllibriun, the distribution

function 1s given by

where Vi 1s the potential energy of the entire system. For
9,

certain speclal potentials, the pair distribution function

has bheen evaluated(18). An excellent discussion of some pro=-
perties of these distribution functions is that of DeBoer<l9).
The other basic dependence that is involved in this
theory is due to electromagnetic interactions between induced
dipoles. The dipole moment (always electric dipole) of the
k'th particle, when the positions of all the particles in the

(W)
svstem are fixed and known, is given the symbol FL « 1the

average dipole monent of the first particle, when the posi-

tions of it and of the n-~1 particles 2,3,...n are fixed and

p(m)
known, is P, . When no confusion will arise, some of
9 1;2,3,... "
() *(3) rog &) N
the subscripts will be omitted: then P ’_ i B will mean

A3 RE) 5(3)
B, B

. s ) 1 . - $ - - N -
35 By 09 B2 respectively. There is a simple rels

tionship between successive monment distribution functiong-—-

+) (M) am
P B LR = (e B
V .

The macroscopic polarigzation is the average dipole moment per

q

unit volume, and is therefore

—n

E /W/ ) ﬁ (4 :2) (4.5)
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Thig is in general still a function of nosition and tine.

111,

The electric field due to an oscilllating dipole is

o

given(g)
—a - - |
E/R,;t): \Z,l x\ x[ﬁ/)?z;t?] (4.6)
where [-ﬁij is the retarded Hertz vector, defined by
5 .
- I /P . R,
[77] - —R:: P(Pz.)t— Ejj (4.7)

If the dipole oscillates harmonically with the time depen-
) (Lt . B .
dence @ , the retardation produces a factor on which
the differential operators act. This differentiation may
be performed explicitly, and the result may be written in a

dyvadic operator form(Z)

E(R:t)= A,  P(R:®)
¢ QRIL — -
//\,l = e: {(3 e, 6. ; )_ ¢ Ko R /:ee),z €. "Z)
)
_ (m R'L)?_(ela en' - 1)} (498)

-—y
= R ~ = =5 (%) 279r

Ao

and 1 is the unit dvad. 4 similar expression may be obtained
wA

for the magnetic field produced by the oscillating dipole,
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— ) e ¢ I‘(o)?,z_ / / iy ) é < 9
- - sz -4 12
//z w RIL R‘z
- L] ) e ! demm 2 g ) 5 =y ( —] o
The expression for the electric field used by grown&“7> for

thids purpose 1s the limit of the one given here as the fre-
guency vanishes, and therefore glves the electrostatic field

due to a stationary dipole. The extras frequency dependent

ct

erms give rise to departures from Brown's theory of the

tatic dielectric constant.

wn

my

The remaining assumption about the nature of the par-
ticles is that they are non-polar, but can possess an induced

- : —
dipole moment P under the action of an applied field E,
according to the eqguation

E:&(E.

(4.10}

The polarizibility & is assumed to be a scalar, independent
of the positions of the other particles. A more general
theory would recuire this to be a tensor or dyadicy this will
not add to the basic theory, but will add complications of a
mathematical sort, and will not be considered here. Using

this equation it is possible to define an average electric

Field
Tiel —

E(’") | _ ﬁ(”/
- l

[
I;Z.'...m X 2, - N )
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- 0 greatest ¢A?or ance are the electric field h(“) and the
C . e s (1)

“magnetlce field 1 when all particles are at fixed lknown

nositions.
V Fundanental Haovations of Light Scattering

The quantity that is of interest in a 1light scattering

[55]

megsurenent 1s the energy flux at the observer (e.g., a photo-
cell) which results from the oscillations of the induced di-
poles In the system. The energy flux in a radistion fileld

is given bv the Poynting vector of the fie If the electric

C‘«

and magnetlc fields are assumed to oscillate harmonically, with
-cwtT

Jode
ct
e

the time factor @ R is in general convenient to use

complex duantities throughout. In this case, the time aver-

ol

age of the Poynting vector over one period of oscillation is

8

S=Ref 5 ExH” (5.1)

R 4

where T and I are the electric and magnetic fields, and the
asterisk means as usual the complex cbnjugate. This time
averaged Poynting vector will be used throughout. It will
be shown later that the radiation field at the observer does
contain the proper time dependence.

The oscillations of the induced dipoles give rise to
the radiation field. The external field which induces the
dipoles does not in any standard experimental arrangement

extend to the observer. The fields at the observer are

therelore



2oy & =
Zg; = ZE: 44DK : ﬁz
I £7;
A" = 2o Ao x B (5.2)

The notation has been explained in section IV. The subscript
—

zero refers to the position Ry of the observer. The time

average of the roynting vector is then

2_1 5 p™ = ‘“ﬂM;)*' 5
S,-ZRG{KZ“/LK l,i)x(Jz;’ Mo x P; (5.3)

when all I particles are at known positions. The exnerimen-
tally important quantity is the ensemble average of this, and
. W) .

l1s obtained by multinlying Dy/0 and integrating over all
positions of the I particles in the volume V accessible to

the particles.

<Ex = #Re{3)
= A EE (k) g o) R 'R

. j{ é (/Lk,a(d)x ﬁ;xﬁrﬂ)*)/omfjélzg..v/sé

or
So = [[ PRI Ay ) x (k< B¥Y) A AR
yv

(SOAI" )

N f/ﬁm[é) (/)01‘7,:0)) X/—’,,*x P:wx)d.r;édsé
. v ‘
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The importa ﬂt>feature of this equation is that the "pair®
~moment distribution funection is needed in the first term.
Ihis has not appeared in any previous theory of light scat-
tering. In order to successfully complete the theory, a
nethod is needed for evaluating this function. Before this
is done, certain simplifications can be made, during the
course of which a first order approximation, takin

=2(2) - =2(1) o e ,
Pivs = Py , Will be obtained. After some simple alge-~
5 = - ‘

i3]

-
braic manipulatilon, the vector <<~S‘>:V becones

<§>Av = .é/_:io + £ A% -
where
§“ = f{/(z’(z) E,_)(Ao/,i‘é”))x/j: xi;zn)*) 6/315,'0/2?:_

v ( pR) (A BY)<(ar B7) AR
and

83, ([ RO o B = (B R) R
of[ P R Ao (B B[R] SR AR

o [l R R AP B[AR E )RR
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he 1étter terms will be expanded later in a power series in
»the‘polariiibility, and the Tirst few terms of the expansion
wlll be stated explicitly. ©“his will require a solution of

I

a chain of linear integral equations. Tor the remainder of

[

this section, attention will be focussed on the firs

4

t part,
—_—
Sooe

The distance from the observer to any particle in the
system is assumed to be very large in relation to the wave-
length of the light and the distance between any two parti-
cles in the system. This is from an experimental point of
view a well-justified assumption. Also, the scattering will
be calculated for a volume v which is small compared with
the dimensions of the system but large compared with inter-
molecular dimensions, so that many particles are in it. The
scattering formuias that will be derived are therefore "dif-
ferential scattering cross sections". In this case, the

following approximations hold:

ko R, - ,
/\o, ~ e ,:koz(eo,e,,, ~1)

¢ Ko Roa

o C k! e.. (5.8)

- .
e
Mos =

é’o Po, = I?oz.

I
™
2

{

and by vector algebra, a useful equation may be obtaineds



(A -B)x( <« B%) =

' Cs“’: /(4 < Rm""poz. Ko ) - - -
_~_£_°_ < ( ) [(e"l eol'l)'A x(@a,xgx) (5.9)

ot wua

s Gt
= —eo:‘ °

em//e.p/a,a)[@g. 6. )(7-4,) -(’é"'.;q')]

RL
(-1}
- -~y
N -~ I al .
since eo. = €Coo , the exponential factor can be rearranged

in this way,

o f(RimR) _ hr(R-Ra) a3

—
——

Therefore, (/\,,- /Z) '\'[/Z{o: x s *) =

¢ pe B

2 Gk ¢ Ko €/0° Ria 2N - - - (5.10)
€o —— @ (R".é B
X Ra 70 /4'6’,0 - 'A

0/ '

der o o PR - T e LD
In order to apply this, it 1s necessary to lmow what 1-3 is,.
g s N NIRRT e S P ~ ey . . —-’(1) . -1
Using one ol the fundamental correspondences, Pl ~is the

: . . . - s . .
nacroscople polarization at Ry . It is certainly possible

to construct a system in which the average wave is plane:

= m ~ - K- R, i ,
P'= B efi'f grewe (5.11)

- “ . _’ IS . -y a
In this, kj is the propagation vector of the plane wave; its

direction is the direction of propagation, and its magnitude

is
‘ 297 5
K,:mka‘z/n-/‘—— h P‘,-K, =0



. where n is the index of refraction of the liguid.
When these simplifications are wade in equation (5.6),

and the chosen form of P<]) is substituted,

- ot ¢ — ~ .
S =8 ST (BLR) o ()

° 5.12)

(V=1 R~ (( P02, kl)e"m )R g o

Vv

<

the bracket may be put into a more familiar form by a simple
rearrangenent,
/f/)(z) ef(Klo-K:)"sn-

TV

L 3

dJ/?’ d.&/ez —_ [/ (l)”/’ﬂ) II)/e 4 (Klo*f(,) 'A’I‘L dSk d}'k:
14

W c(A’o z)- l?u.a,g-v A7

f p

The second term on the right side may be Integrated. The.
singlet densities are for a fluid independent of vosition,
and may be taken outside the integral sign. If the volume

of integration 1s large, this integral is

'(I?,o-?(, '—Eu. - -
e’ ) %, = @m) §(K-K)

But if the refractive index of the mediunm differs from unity,

-

e X1 — /(’
5o-/(=/%€’,o—~/hk3);ﬁ' #O
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- so that this te i vanis hes, or is anyhow negligibly small.
- Some further sinplifications can be mades: the vector

may take on all orientations in space, and its magnitude
only is of importance. The average of the integrand over

ﬁlrectlon

I /K/o £ | R. o .{2./[

T ()R-K] R e @
e

2T &om ada/st??’

M /Z:Io"_/%/ R
Il?la‘ 7(:/ /?i?.

Using a more familiar notation,

- -y :
-
] Kio = k,) (5.13)
the result of these manipulations is that the scattered in-
tensity in the first approximation is given by

-~ an? G
<S>Av = @, \
/

wne (B 3) My { ]

o

(5.14)

~
[N
I

/-r/omf [?(a)/k) _{]477,Rz A;.R:Rd,e
° £

where ny 1s the average number of particles within the

element of scattering volume v, and g&‘%Rlp)is the radial
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- dlstribution function, defined by
. (2)/*‘ 3
R, R)
/ S
g"(&)z f* — (5.15)
Ve //a)/ (Z.)

The quantity s contains an angular dependence also. Vhen

the index of refraction is sufiiciently close to unity,

where ¥’ is the scattering angle. For visible light scat-
tered from a monatomic liquid, the term containing s may be

neglected, in which case

{} = /.,./pﬂ) o;—n'lél[fa)/k)—/ dR (5.17)

rma,

fhis is directly related to the fluctuation in density which
appears in the HDinstein-Smoluchowski theory. The fluctuation
in density is determ_ined by the quantity < (’nv -—(/nv>)z>
which 1s the mean square deviation in the number ny  of

particles in the volume v. This relation was shown in a very

(19) |

simple way be DeBoer The result is

<mEd~ dmN
 mv)

_ /+/0(l) ”[;(z)(R)_']d3Ev

(5.18)
RT /3Y
v \2P/



and leads to the well known expression for scattering from
a one component monatomic system.
The scattering intensity given by equation (5.14) is

only the first approximation. 'The deviations from this

s 2(2) =(1 . . .
depend upon P&T% - Pé ) which is the subject of the
?

next section. This quantity is obtained by solving a chain
of integral eguations, Another relationship which is needed
. —'

1s the one between the amplitude of the average wave Py and
the external field Eo « This depends upon the index of
refraction. In a later section, the theory of the index of

refraction will be developed.
VI Integral Eguations for the iMoment Distribution Functions

The expressions worked out in the preceding section are
-
only correct in a first approximation. To the gquantity Sgq

must be added 435; . This devends upon the difference be-
tween the moment of particle 1 when 2 is fixed and the moment
of 1 when all others are averaged out. The calculation of

this quantity could be performed in principle by solving a

_L

set ol ¥ simultaneous linear cguationg in the varisbles
-r-)’ <1J) 11 ot v a2 intecratione Por W ol the order of
X k.‘ 9 i O 4.0V QCL ")u L=t .Li].bei:_,l STLONS. or s 0 L orger

Avogadro's number, thils program 1s highly impractical._ °
fore a scheme was developed using integral eguation methods,
quite similar to the procedure for evaluating the radial
distribution function of a liguid. The integral equations

"

and the methods of solution are almost identical with those



-F5a
" used by Browa(17) in his'theory‘of the static dielectric
constant.,

Consider a'q,s ey containing Il particles, of the type
already described. These particles are under the influence
of an.extcrnal fieldf@(o>(ﬁ;t) , and are also acted on
by'the radiation fields of all the other particles. There-
fore, the dipole moment of the k'th particle, when all I

particles are fixed in position, is

-ty —

E‘(N):a m//?n,t) Z /\ R-("’//é'-;r) (6.1)
#K

This set of equations for k = 1,2,...N, determines eadﬂfﬁk<N)

as a function of & @(O>, and the relative positilons of

all the particles, and in principle may be solved for P(l)

Instead of doing this, the equation is multiplied through-

out by /O(Q) , to obtain an ensemble average, and then in=-

tegrated over a subset N-n of the N particles. The particle

[l

k is kept in the subset n. The result of this integration,

after using the notations of reduced digtribution functions

and reduced moment distribution functions, 1s

’ m = “w
B (Reon) = B Re) w3 A K Ese)

)
(6.2)
(n
+ -ﬁ—:') % —,(”"") d;
/a{a) 3, m+ ' m+: / ! ’t) R’”*’

v
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. In particular, the first two equations of thlo series are
. I 9

B (39 =af E%ry

(6.3)
/ (L) e — -2
* /2;) 44&. E(’) K. J‘ta 6/3 R;
v /°
and
-~ f2) = — , |
b2 (R, o) =,“(/E(°)(’?»;t) + Ao B(R2)
| (6.4)

a)

* g /f" /)'3 3;11 //?,;t) dx'é]

It is obvious that each moment distribution function depends

upon integrals over the higher order moment and spatial dis-
tribution functions. There are two relatively simple methods
for solving the chain of linear integral equations. One in-
volves a kind of "superposition approximation", and uses

only the first two equations, (6.3) and (6.4). This will be
liscussed later., The other method de?ends upon the expansion

of' a moment distribution function as a power series in the

nolarizibility:

—. .
AR LR (6.5)
J = N 104
Sto
‘—y N
First, the equation for Pgl) is subtracted from the general

ecuation (6.2), so that the external field may be eliminated.
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s " B . P
o In this way, the independent variable is Pil) instead of E(O),
and ultimately some relation will have to be derived between

these two OhmﬂtlbieSo 'he equation is now

-3 n ]
=/
#+y

JK K

(6.6)
/’h‘fl} - (2) -
+ AJ' mr ‘ PMWI — 9, mu P() 6/3
; > /0 ») M+ —_— M-'-L.J

o)
f

£ 4.

ATter the series ewpansion ig substituted in this, and co-

efflcients of powers of & are collected, the results are

(”\)(’) M /‘ X0 A /a/"'*’) /o (2) Q2w d! =
=2_ A, P+ S Pom| P
K Mt /4.) il Nt
Ke/ r /
+5 v
(6.7)
"; (mi(s) o p ‘}3 (m)(s~1)
3 = Z oK K
K=?
¥y
M (z)
. A . . /0( ) o (m+)(s-1) fa es — @) (s-1)
J, Mt  — - s Mt /3 d
Y (™ ‘A . "‘fl
r Vad
; . . . . - C ” s
If the spatial distribution 1uncuions/o{ )ar@ known, this
pernits the calculation, at least in principle, of all the
coefficients in the expansion. The case which is of greatest
+ o e -2 . TR Jo [ g 4
interest 18 of course that of D\ ?) The first two Terms in

Jhe expansion are
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AR ’ IRy o z h
The terrsoi order of & are exceedingly complicated, but

they can 1 desired by

ovtalned simply by performing the sub-

stitutions in eguations (6.7). “he first correction is

(2)(1) - m 27 =, 927 )
e =%Iz. Pz + f%'-" f’ji ~ ﬂz }??I)a/ Ps (4.9
v

‘hese terus mayv be analvzed verbally

o

the fleld at 1 when 2 is

R B e e ~ e o o} - - -7 o BN SR
pnen 2 1s averaged, plus he fized
e iield freom a 3 whiech 1ls avers

N il 1 e » -y o]
rased keeping 1L and 2

fixed. The guantity which 1s needed both in the light 2 G-

tering theory and the index of relraction

/) - M B2 ()
BB B

xS

ihe other method for solving these integral ecuations

will now be discussed. This depends upon a "superposition

a0

approxination®,

p p® 5(2) -~ 6 ~a
D — . m PN
,l;zx P; E,-,_ - P, +J P. - P (UI.,:LC)

wihleh states that the nmoment of 1 when 2

equal to the moment of 1 when 2 and 2 are averaged out plus

the correctionsg due to first having 2 {ixed and 2 averaged

out and then having 3 Tixed and 2 averaged out. In this
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. way, the effects of electromagnetic interactions are retained

H

in the theory up to a point, and the chalin of integral egua-

tions can be terminated at the second one, (£.4). The re-

- —
A F‘(l) — E':-a) _ =2 W {),l],)

<V

Then the intezral
nanipulation,

A 2)

AP = a{A.-

I

-
o]

ts lg an dnhonopeneous linesr integral equation, and ca

BN AN

2

N - o T e R S Y W PR “y =Y RPN Ao TEVY, o e g2 -
pe solved oy varlous standard nmethods. The method nere

3]

13

2(

o]
s}

anslion. Define

2

is again that of

A () = 7 B R) o P
A P = Z ‘{‘-k( 1, z) (;_v,l;

.2

series ex

i
s

‘D/” ,3) (z) - (1) 2 -2
= /\'&' Pz +‘/ plzn - ’/o) /)13 ) P:f d ’?3 (4.14)
AR VENN
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Then, the usual procedure of ewpanding and collecting cow

w

L

effleients leads to

= O . ’ ‘-'61 = j{z

i

3’& (E',' ,E,_) = //,n. * fn-g (é ’ 7?.')

(6.15)
. f_ﬂ,_/)n[l,,(m,)e) Y /R,,/e)]a/é

)

The loss in accuracy caused by the superposition is accom-
panied by the gain in convenience due to the appearance of

2 (3) . . . ; ;
only /9() and /o in the expressions for the coefficients.

1

it ghould
—

X :hz , 1s the same as the one obtained by the more exact

b

nserved that the first order correction

)_
~

1

alffairs is reminiscent of the way

in which the radigl distribution funection in the Ysecond

virlal' approxzimation .cen be obtained using various procedureg

The h:

sher order corrections here can also be calculated,

They are simpler than those calculated from the more exact

-

-

theory, but are stlll too complicated to do rnuch with at

precserit.

is
the density. However, this is mathematically a less natural

+

procedure, and furthermnore 1t would requlre the awkward

N
. R . . e -~ e
exnansion of g(QJIUI powers of censity. Therefore, this

nrocedire was not Investligated.



fhis 1s a good place to noint out a relation hetween

[

4

: 5 .
this theory and that of Yvon'~ ', In his, the leading tern

B (2)

. ] - . o w
in the expansion of P would be E(O>1H3Cﬁa@ of P<l) . Dlince

'}
P(l)is e much

better annrox

and index of reiraction formulas, Yvon's procedure was not

o

VII The Theory of the Index of Refraction

the index of refraction is a necessary variable in the
light scattering theory, and also has its own intrinsic in-
terest. 4 theory of the indey of refraction follows from

the integral equations of the preceding section, and will

be developed here. This theory is gimilar in broad outline
Yo t (1[7> 4 . o\ L ) ey i A - 3
to Brown's ~7’ theory of the dielectric constant, and in-
deed should reduce to his in the limit of infinite wave-
Length,
The svsten to be consldered is the same one that has
been discusged in €

he preceding sections. The starting pnoint

1ls the eguation

)

< ~ (o -'(z) 3"

pY = a{f"”(k,;r)-r _/O‘Tj Au. d R 7.1)
v /°

I'he following steps are the highpoints of the derivabions
Caiie fome fon DL Lted. the hic :

a sultable forn for P'-/ls postulated, the higher order

moment distribution function P(g) le obtalned using the

solutions already‘obtained in section VI, and finally, the

—-—p
relationshily between P(') nd E(O)is sought. “his latter

noint leads to the index of refrection.
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In order to Spec1f3‘E(O) and P(j) precisely, the geometry
of the system is needed. In this section, the systen is
assuned to esccupy a "hall-snacel, That 1s, the universe is
divided in two by a plane surface, with liguid on one side

T dpe v N Fho RN I, i U N ?—?(O) " ]
and vacwun on the other. The incident wave & is assunmed
to be plane, with 1ts propagation vector normal to the plane
surface (Jjust for simplicity). The form of EALYER

. -4
— —p (' ko . R '_(. w t

E(O) = o € e (7.2)

-—
vhere the nagnitude ol KO i

[9]

case 1t 1s reasonable, on the bhaslis of macroscople electro-
ietle field theory and one of the fvndamentsal statistical

postulates, to tale for the average dipole wave the

"y
P et fiR twT (7.3)

Yere, ki = n kg wnere n iz the index
oi the fluid. 1t is necessary to show that

solution provides a conslistent solubtion of vhe chaln of

integral eguations, and 1t 1s necessary to find the rclation
-y —

) s - Tt

ol Pp to Lo .

Sone algebraic manipulation casts the basic integral

el tion iato a more convenient form

‘ﬁl(l) - & {E(o) /wf/)“_ P AR,
+a/)m{f [/{z)_l] /‘:; ] "31(,) d.zz;z

-+ J ;h’) A,L/ ’2)__ '}'?:l)] JI’/?,_’} (7.4)

v
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- In the approximation that 5(2) =—}5<1)9 and wi U,/"‘):__:/

the integral eccuation talres on the very silmnle Torn

3 ) 2 56 f27
F = a{f’o +/w Au B AR (7.%)

= (0

Mis equation has been solved exactly, for the b wmd (1)
postulated here. The solution ig¢ nresented in some detail

by Dorn : , and also by Darwin(21>. The method of solution
is referred to as the "Useen" process. <The problem in both

the exact case (7.4) and in the approxinate case (7.5) con-

sistg in evaluating the integrals on the right hand sides

of’ the

\D

equations,
The integral involved in the Oseen nrocess will
consicered first, With the explicit form of r(]>9 the

integral is

v
- P
1 < i’;: °J[:)\‘f) . 3 : . 1
The quantity e~"1 "2 satisfies a wave equati on, with the
veloclty e/n. The other factor, ,A“_"i , also satisfies

a2 wave equation. This can be seen most easlily in this waye

by the definition of the ‘A operator,

e c'A’qu._,
A Bo= Vv o €505

R

That 1s, the cnrl curl operator acts only on the retarded

part ol the ?etu¢ded Hertz vector. The guantity in braclkets
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. 1ls the provagation function for a svyherical wave (the con=-
N . o \ . ~ . s
- stint vector Py does not matter) and therefore satisfies
the wave equation. The curl curl operation commutes with
the Laplacian, and thereflore the entire quantity satisfies

a wave ecuation with the velocity c¢. Therefore, following

Y ey
DOTT,

-~ . /‘-’;i’: g
~ @t Bl e 0t (Ve AR) e AR

S . ~ 2. p —
-yt L s ot AR (\7,?:‘ ek R‘)a/?/ﬁ

<

and subtraction leads to

f:’"—_: <™ e._(-wtr{ (th /):;' )3;) ecx,-Re.
v

w=(m*~1)

AF (e e TR

Then, Green's theorem transforms the volume integral ihto

a surface integral,

(_E/_ ct e-cwtf (% //)'L_K) ec'kz-&
)

\

&f‘Cm‘—d /
(7.59

-
iy ? C AR, 2
'—//\/:.'P“(B-pe d—ﬂa
Q
' —y
in which.'»i is the normal to the surface in R2 space.

This svrface integral must now be evaluated over two sur-

faces. One of these is the external plane boundary, and
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- the other is a spherical surface about the point R1, and is
‘required . because of the singularity in.AA,l . The correct

result is then obtained by taking the 1limit of the latter

integral when the radius of the ecavity vanishes. The cavity

integral will lead to the Lorentz local field, and the
' - .
outer surface integral will cancel S(O)and provide a rela-

—y
N

g -
tionship between Py and B, .
The cavity integral will now be discussed. A simple
R-Bo _CReR _cRB “
- . CiGe Ry ANAYARAY] CAr Kra
transformation, € = é , allows a
1 ‘ = T~ ¢ .
complete transfer to R, space, with Ky always fixed. The
a8 =
-
surface involved is then,RuJ = A& , where a is the radius
of the spherical cavity. Then 33 = 32——
& < . avz B Pr.-
tiatlons give rise to some trigonometric functions, and the

« The differen-
3
surface integration requires integrating over angles at
-
fixed Ikﬂz/ . The integrations were performed by Born,
who first expanded the exponentials in powers of /ﬁi;l .,
then integrated, and finally Took the limlt as /ﬁ;) = A
approached zero. The integrals can also be done exactly,
- .
for finite Hyo + The work is tedious, but quite sinmple.
It will not be repeated herej; however, a simllar and more

general calculation is degcribed in the appendix. The

resuvlt 1s in the limit the same as Dorn's, and leads to the

=

ollowing expression for the contribution to the total

electric field:

My

+7T w m+2 Zo /3 o
seuere @ o P, (k;;t) (7.6)
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- 'The other'coﬁtributiom, due to the external plane
’bouhdary, has also been worked out by Born and by Darwin.
Although their methods are faulty in some respects, it
was not felt to be worthwhile to improve them. One source
of diséomfort is that it is necessary to throw away a di-

!

verging part of the integral, on the grounds that it should

physically vanish. This situation is probably closely re-

lated to the one In which the notential duve to a unifornmly

charged Infinite nlate 1s infinite, while the electric

field is finite, and has something to do with interchanging

o}

q

differentiations and integrations when thilis is not permitted.

1651

fiowever, the Iinite part of the integral works out very

nicely to

)y : 27 v 3 t‘/‘;:)"—s, —WwWT
EPLAIUE T M-l / E) € 53 (7@7)

so that the entire term is

= (o) y 297r 3 ko R “—CwT
E,( +/’) __/n-, Po'e(-ko R, _Q¢w

(7.0}

47r mr+r =2
Ry R

+

This contains a term with the proper space devendence to

ps K

4= o

cancel the external [ield,

s A . ‘ Ny
ecko-k, e—;wt— 27 ,,,}'5’ ¢ Ko~ e~¢‘w‘c-

Sy
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- nrovided th

G ° (7.9

This agrees with the result obteined using electromagnetic

37
L

field theory with continuous isotropic dielectrics, since

-~ L
1) nm-~ 2t . . . . .
“P = prey E within a dielectric, so that

-) mk-{ Z”T —
—y -
E, = — = £ o (01+9)é: T
° 4w = 2
M-
which 1s the well known expression Tor the amplitude of the
. X . v o
transmitted wave with normal incidence at a plane boundary(“g).
Therefore, the result of these integrations is that
-—) -y -—
o) ) A ) 3p
x{ & +/ f/,,_ PR
\'4
(7.10)

w ML B
2z ¢
-1

47r X
3 /
In the approximation discussed by Born, this is set egual.to
PP
P%L) (eguation (7.9)), and leads the well known Clausius-

iosotti (or Lorentz) formula for the index of refraction,

(7.11)

I

47 0 P2

[
3 M~/ ok

The terms which Born neglected will of course lead to devia=~

tions from this simple formula.

™

here are two types of terms which give rise to deviations.
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"~ One of these containing g<2>~1, can be integrated explicitly.
" The other; containing'?(2)—§(lzleads to a series in &, in
which the higher terms than the first are very complicated,
Some manipvlation will be performed on the first term in the
(63 eﬁpansion. It is an obvioué requirement in this theory
that the reésults of the integrations on these deviation terms
be of the form of a constant times B(1) s S0 that the index
of refraction may be isotropic.. The requirement will be
satisfied, at least for the simplest terms.

One of the deviation integrals is

pa (2) BW 295

Ez. [[g4 (Rn)=1] Au+ BY AR, (7.12)
14

In this, 1t 1s probably quite safe to extend the domain of

(2) 144

integration over all space, since g essentially a

short range term. Then, after transforming coordinates to
—

the relative configuration space Rio 5 the integration

over angles 1s the same as in the preceding evaluation.

L

ik}

‘his must then be followed by an integration over sealar

&
- ¥ ) . ~
Rq1o « The result is a special case of a more general re-

A

t derived in the avpendiz. The answer is

2% - am B [[gm-] F)dr = GR"

sul

F(R) = 2 e"""R/’o (% R) (7{- +C Ko +,<<,‘R)
(7.13)

+<2€k%RZr/ﬂ,/x7@)7/&”(%;@2/7(<£} -3¢ Ao —KELF5>
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Z.Here, Jjo(kiR) is the spherical Bessel function of 1/2
order |
. dn ki R
fo(KR) = ———
K R
and the primes denote differentiation with respect to the
argument, = If ¥(R) 1is expanded in powers of R, a simpler

and probably more useful result 1s obtained as a first

approximations

2T 27 | M0 2w m[ n)(R)—l]Rdl?

ET = 5= 357 5 F J (7.14)
° [

e s . . o " 2 -

This expression was first obtained by WOod("3). It is clear
—f

that the g(2>—1term does give rise to the proper P(l)depen-

dence.

The other deviation integral is

I 2.) () -0 >
3 f;’ (Rn) //\u EY - B R (7.15)

4

With the expansion of 75(2)in. 2 2N
/. (2.)(:) 1A
.5 - f gr) Au- BT LR
=1

The first term will be considered here, Tnis is

a( (?-)(Ru) /L:. /Au P/) /233 Iaa.z 23”‘) "’(/)dz ]0/2

II)
n-
14

- /‘7/ F(I)
[}
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- (anticipating ‘the proof that the value of the integral is

prOpDrtiohal to-§§1) ). The 1ntefwal is evaluated in two
partss the actual integrations are also performed in the

appendix. The first part,

‘H' ~P:0) - X / ;r;)/klt) du. ﬂ{JRI * )9)”)

L4

has the wvalue : ,
*° 2C Mo R
(3 o
b= Pata [ [gP@-] o d
(o]

(7.16)
() 4 4 /0 ko© [2(.' Ko ¢ 2¢ ke R
-+ ﬂT j / /){ ° po 3 4--,%-—,.) el d’?

R

The second part,

3)

4B (770 /ﬁ— Lo ot TR gy D B HRAR

presents greater difficulty, because of the presence of two
variables of integration which are.miXed in the integrand.
Only certain parts of this integration were performed, namely
those which show that Hp 1s a scalar. The details again are

' given in the anpendix. Since the integrations are to be
performed over all space, and since the only directionai
quantity in the integrand is 721 , the following device
proved useful: The integration was divided into two parts,
one of which 1nvolves an 1nteﬁratlon over the relative

configuration of Lhe partlcles in a fixed plane, and the
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- other an integration over the relative orientation of this

plane with respect to-Ea. It 1s the latter integration that
has been carried out, and which shows that Ho is a scalar.

With the definitions

—_
Co 9,223 = é/}_ * ezs

and so on, the result of the integration over angles 1s

- (/) P
475 F { } (7.17)

where
{} =2 | N, Nzg ‘—iL M. M,, C® Bpag (QD Sz, @ Biz23
— Ce 9'/2_23)
+__-
Mo My o =N zl‘ Mo Mys 200 %8 ,323]/ (k l?)
(7.18)

| ‘
+3 Mo My; co 9/323 /3C° 8312 C© 8353 ~Co sz:)

ﬁ'lpnz Aé3 (%W&azg%ul "Z)‘+'AAL/~&J(<}GBL5%an"457‘(

x[/o/k: Rs) < 1. (s /?,3)]
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.~ This must then'be'integrated over the relative configurations
" of the parﬁicles in a plane, and involves, of course, the
distances Ryoy R23, and Rl3’ and the angles 4ﬁ£332,£ﬁ323 R
and £E223_' The result is therefore:

47‘7ij(§:/ E_) E)){} O(P'J Plz C{'Qn_ dezl:{ (7‘19)

While it is certainly possible to carry out further compu-
tations on the I term, this hardly seems to be worth while
in view of the length of even the simplest parts of this
term. However, 1t has been shown that this correction term
is proportional to P(l), in a first approximation.

The calculation of the index of refraction can now be

made completes

G477 ) Ab'*?
b4 mz

1¢)) n
=/ * al 6*”/ H (7.20)
where G is defined in equation (7.13) and H (= Hy ¢ Hy) is
defined in equation (7.16) and the following text. It would
probably be preferable to have this expansion in powers of
density, but then it would be far more difficult to evaluate
the coerficients. Brown has claimed that the dielectric
constant . € can be best fitted by the equation |

€&+ 0’0 . ﬁm /')

= —— +C + C + -———
€ — | /m ° Y ﬁlo ( -+

where dg, €7, Cg... are constants, on the basis of a theory
similar to this. From a practical point of VlOW, this may

be the case for the index of refraction too. &4t least in
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principle, it is pogsible to expand the right hand side of
(7.20) in powers of the density, so that it has the form of

Brown's eguation,
VIII Correcctions to the Light Scaittering Formula

In sectlon V, the exact light scattering theory was
described, and the customary approximetion was obtained.
Calculation of the correction terms required knowledge of

o) B . . . . .
the quantity P'</-P s Wwhich was obtained in section VI.
In this section, the corrections will be discussed.

The extra term is

A —S‘Q' J/ /4;’-) }0/3,5,0/3%
{A) (/1.. 4 Pf”) x (g x B”*) (8.1)
2) *

' 20) pydl R
+ (‘401' P X( Ao x A4 E;;

(ho- 8 BY) (@l x A B2*)

With the use of the approximations in A and/); , and

simplification according to equation (5.9), this becomes



| _-(‘é"’* D)+ (aBD*2,)(37.8,) - (0 B0~ 5)

AR AR R) - (uE at)

-
Then, making the expansion of P(2>in powers of &

: 00 -
- - < (2)(s)
A ,3-(1) = /35(:) - })I”, = 2 o* F, (8.2

;2 ]
the moment dependence of the scattering correction becomes

—" (oKo '_:-_: acl ¢
{/]} z e(.k R Z 0(‘ F"‘)

w =/

(s) < (P n):v Qo,)/ P(z)(s) Po,) (Pmi 3 2)(s)

,J
(8.3}

( 2(:-/)(3)7\‘. - )( /I) ) ( (z)(s)* —'(.)

/

PE (BROZ)(B99.E,) - (RO )
:Ks

Only the first order correction will be considered here:
the higher order terms can be written down, but are too
long and involved to receive much consideration at the

present time. 'The first order correction is



=

- ] Co ko 2 ~ - —
45, = €, “/f/” R ) PR AR,

v v

FOS (B8R 3,) (7 529) o
* (é?;)(')* . 6‘,‘01)//”%0/_ _éw) - (’32,'(3)(’)*‘ /",;‘0/)

The quantities that avpear in this expression are

.
= R AN cCwE
PP = B et [ecwe)

2 @) - - () (2) (8.%)
Pl,'?.. = AI&'K0)+{413°E,(')/>_~':L, /as d@

v /A Va
L(1)

¥ can be simplified by noting that in the integral in
which F(l)appears, the coordinates 1 and 2 are interchange-
able, and that with such a change the second two terms are

complex conjugates of the first two terms:

F’“) = A+ a.*

(8.6)
m* 3 ' 2 D 3 2)(1)
a= (BP*.8,)(B»n.8,)~ (B .BX)
After substituting,
-3 K - - - ~'/_('I'Ea. - .
A= Pg . (eol €. “1)’(6 ‘ f?.i‘)(')) (8.7)

Therefore, the scattering correction is



Te B (8bu-1)- L o5

-—

- 12) (iR B = ,
L=Hﬁz‘ g forfe gl B O 15 AR

iz
Putting in the explicit form of'§<2)(1),

n Jf l(a.) e(./?o"Rn_ /’M.E d"/?: d’P—;

2

~
il

NV
(8.9)

Ko R (. /3) (z) - —
[//J" Y[R B R R bR

The integrals involved here are very much like those re uired
g a

in the index of refraction theory. However, they differ in
the domains of integration and in some small but significant
details. In these iﬁfegrals both variables must remain with-
in the domain v of integration. However, this volume is of
macroscopic size: 1t is large compared with molecular dimen-
sions and also with the wavelength of the light. The inte-

grands are essentially short-range, so that one of the volume
integrals may be replaced by an integration over all space.

That is,

| (3) B) (8.10)
, (3) ‘-ko Rn. l‘(l Ru (23 o
+(/)(9V—j7 je / (t)-/z)/
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. If the volume v is symmetrical about the direction of propa-
- gation ky (and Kﬁ, then these integrals are specilial cases of

the more general type worked out in the appendix, with the

—

—-—
result that L is proportional to Py and in the same direction.

This will be expressed

[

”V/”m W kK (8.11)

where W is now the magnitude of the corresponding dyadic in-
tegral. The evaluation of ¥ should proceed along much the
same lines as The evaluation of the correction to the index
of refraction formula. The actual evaluation will not be

performed here. Collecting terms, the light scattering cor-

rection is

. . oy 2y .
A}:, = & é—?"“/(’)”v /W*W*)(P’#'P’)Mze (8.12)

-] (e
Ror

and the whole intensity 1s.

{3 = éo{% %;"3447,,(?’,*- P) em*0] «

1 . " s R
oo e st

+a/o”’_(W+w*)
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. In this, '310 is.the unit vector from the scattering volume
to the obéerver, co 1s the velocity of light in vacuo, kg
isfquct where A, is the wavelength of the light in
vacuo, Rp1 1s the distance from the scattering volume to
the bbserver, ny 1s the number of particles in the scattering
volume v, 'ﬁo is the mégnitude of the macroscopic dipole
wave, and € 1is the angle between the direction of polari-
zation of the incoming light and direction of observation.
In the brace,/ﬂw is the density of the fluid, g(2> is the
. — —_

radial distribution function, s is the magnitude of lkjg- ky
(and contains another angular dependence, in general), & is
the polarizibllity of a particle, and W is a numerical con-
stant defined earlier in the section.

Since most scattering measurements start with unpolar-
ized light, a more u;eful expression is obtained by aver-

. . . . N . 7 .2
aging this over directlons of polarization. *‘hen, sin“ &
/+ co?

is replaced by

, where @ is the angle between
the direction of propagation of the incoming 1light and the

~

direction of the observer. It is also desirable %o express
the result in terms of an "initial intensity" I, which 1is
taken to be the magnitude of the Poynting vector of the
electromagnetic fleld that is traveling through the liguid.

The electric field is

E{,} _ -.(I) (.‘E‘R, e-(.wt

[ [-]

)
>

(8.14)
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. and the energy flow is therefore
I =me,

AL
° 2

= T (B R)

so that the first part of thekscattering intensity formula

(8.15)

(8.13) 1is
c /4)4.4‘
’2’* i (R%‘B.)'-‘-‘ —:———-—T. (8.16)
Ro/ Pol h

(The definition of Iy varies from author to author: the one
used here is convenient from the point of view of a Mscattering
cross~-section", This formula differs from nost in having the
index of refraction in the denominator, which is just a result
of the definition of I,.)

The scattering cross-section, which gives the intensity
of light scatiered iﬁto a solid angle a(.ﬂ.. , from a volume v,

. . O . . o . . R
with den51ty/0 ) and incident intensity I,, is

v %“:T%'Kf"’ (v cotyp) {’ wpf [ 57 |-

(8.17)
x 47 R* ""”-S—'——;P AR+ a/(”/W*W”)}
nith -
w (2) Ko Rye A
W= I ( 9"r.)e A, AR,
- (8.18)

jg% Mz// - B é%_/f A 'R ) AR
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- The other symbols have all been defined after the equation
(8.12). .To carry this a bit further, the polarizibility is

determined, although indirectly, by the index of refraction:

4T m M2
3 m*~

= "1" 0{/”)6 'I‘A’L/ﬂ) l‘/"‘ -

which 1s equation (7.20). Therefore it is possible to eva-
luate the light scattering intensity, if one knows the index
of refraction and the radial distribution function. This
concludes the rigorous derivation of the light scattering
intensity from a fluid of spherically symmetric, optically

isotropic particles.



-8~

IX Appendix

In the text, we promised that some of the more in-
voived calcuiations would be described in an appendizx.
These are the fundamental cavity integral which leads to
the Lorentz-Lorenz field, and the simplification of the
correction terms in the index of refraction and light
scattering theory. These are all of the form of volume
integrais or surface imtegralsg and the parts that will be
performed here involve the angular dependence of the inte-

grands.

The Tirst integral to be evaluated ig the general one

T,

—F(EE:;) M(Rlz) —én:éu. ¥ N(R'L) ;,1;] GI‘ L.,

-ty
over the surface of g sphere, ‘ngl = Ryo.  The functions
M and N are arbitrary functions of scalar distance, the

-

vectors ejp are unit vectors

. T
- Kee

Ko

and f 1is an arbitrary function of the scalar product of
— —
R and a constant vector k.
12 1
We transform from spherical to rectangular coordinates

X =R sin® cosy

i
H

R siné sin @

06y
]

R cos &

9.1}

9
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- For convenience, we also take the dot product of the inte-

o . . . e . -
grand with an arbitrary fixed vector a perpendicular to k1.
The integral is then

aw ‘ - o
[T [ odo $(7)] Mo 3u(E2) o, 3 )
o ) _

Select a special coordinate system in which the % axis is
e

in the 3 direction, and the z axis is in the kj direction.

Then

r(l'-ﬁn. = K, R c0 B s a,;('é.,;'a)z /@

A, = )| een*6 tp
4y
ke

)

IE’L/M“G Mycwgﬂ

i

[ &) 2n 0o cor

When we integrate over 99 , the Ay and ‘@é terms vanish,
and since

2T

Co"gﬂoﬂp =T

we get as a result

| . .
I -a = W{M,LJ <(k R. co 8) 2n*ode
(=] ‘

+2/\//,.f

(9.2)

m oty
(kR m®) e 6de} &
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hﬁ‘It should be observed that :ﬂ; behaves like a constant
times the'unit dyad, when it operates on a vecﬁor perpen-
dicular to-ﬁl. &s a further result, which is easily seen,
if we integraté the same integrand over any surface which
is symmetrical about’ﬁl, withﬁ@l pernendicular to-g, the
result is in the direction @. Going back to the spherical
case, we now take

—_— -
¢ kK- R

i -4
€ (k-R.) = @
Then, the integrals are

+! .
f e Adx = 2 aen KRy, = 2/0(/(,&,.)

-} lRl’.

and

M . T
[ emf?... w{x* -zd-”gk— . /’.(K,R,,)_ = -2/;’/[/(,/?,2)
-} " Ria

In this case,
ZZ,‘ @ = 277’{”12.[/ (% R"‘ +/ /&R”')]
+2 Mo &/ (Ki R ? Cl

This may be used to obtain the integral

J‘[fﬂ)(ku)-,] An ‘é_(/) d*R (6. 4)

(9.3)



~.which was reguired as a correction in the index of refrac-

" tion theory (equations (7.12-7.14)). This is just
o0 ( ' —

2. | 3 m,z)-]l',.f: d R.
0 . _

gince the integration over angles on the surface of the
sphere [:{19] = Ry, leads to ]—,-_ﬁél) « In this i and N

are determined by Akn;:

-~ -

/\,,_: M,,_ e, e, —+ Mz-z
Performing the substitutions and some simple algebra leads
to equation (7.13).

This basic integral may also be used to get the cavity
surface integral needed in the COseen process. This integral

13

- 1 ) < KR
EI = C ~(wt (_@_ A et frk.
e © s An T2
s = 3 (2.5)
] 9 . .
_ A"_‘ P° a_’_’l e( L1] 2.) 0( "/)‘?.

Here
2 _ _ ©° _
o ° R

and the integration is over the surface of a sphere. By
simple manipulation, the integral (without the constant

factors) is
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(. K".AR,z adlz
—r——

e
’ "9 Rn

oy -a 2.,
"'""k'.,e"'/\h?‘ﬁn o(,./l. (9.6)

[

which is of the general type (9.1) and can be handled easily.
The calculation in Born's Optik sooner or later comes to the
zseries expansion of this form. ©Since this has been worked
out in sufficlent detall in other places, no farther atten-
tion will be given to 1t here.

Another correction in the index of refraction theory
can be evaluated using the same basic integral. This is

equation (7.16),

- 2 -2
l""’l f:(”: A ya)(/?n) /Lz '—13;0} 6/3 Rz (9.7)

v

Here, the quantities of importance are

‘?(E‘En.) =

M= M +2 MM

N = Nol
//\,,_ = M, én. -él'(. + M, 1

[2g]
The integrations over © are easy:

”w .
j. 2adpde = %
o kg

LT.M' &6/9 = -2
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. and therefore

")

/

H ,;*o/_;x ??71 PZ;N“) [/Mf.?/\/]d£ )

Direct substitution gives the value of Il & 3Ws

MeN = ezc‘Kok(_s_;_ ”;‘_é’ _ /0&’,7‘_'_46&33 285
RS + Y —

Some attention wmust be paid to the convergence of the re-
sulting integral. All the terms converge at the origin

h)

because of the cutoff character of ;(2). At dinfinity, the

L) B

only term that will cause trouble is

s X% ¢ Ko
47} RY Mﬁ@ e? Ko R AR

8 K* (", (v 4 _20AR N A ® eCkoR
= 3 l~g' —[Z(z dR + e dR
0 3 o
The second part gives rise to a delta function singularity,
9 6V) ¥ rricient kot wi minate thi i
+ Ao/, Dut the coefficient ky will dominate this, since

the & function contributes for small k, where the factor
ko4 which multinlies it is also small. Therefore, the re-
sult is the one given in equation (7.16).

For the remaining integrals in the index of refraction
R 160 I }
theory, called HoP7™7, 1t is convenient to use the device of
averaging a function of points on a o*une over all orienta-

tions of that plane with respect to a fixed axis. For this
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- purpose, a lerma 1s derived first.
Wie are glven a dyad, A B, and we wish to rotate this
D wrey A 1 4 PR 1 eywr g —? N ey ] 3 41 o5 oo E
dyvad about a fixed axis rg. What 1s the average value
% s s 4 N i - s
(or ‘the corresponding integral) of the dyad? Take To in

the z directlion, and have both vectors start at the origin.

If the spherical polar coordinates of the wvactors are
v . .
A: & 6, ¢
—_— ) .
3’ : l% &, @

the the dvad is
—y - -

AB = (¢ al 2mb o6, oY Co P
-+ ;é; at e O Rm O, Renm ), 2n
-t 722 a/@— <D &, C’OQ}_

-t

+ (3 al om8 26, cof Lling

-

+9¢ Ak 26 8 .6, pm ¥ B QY
-ﬁ‘d .

<+ K a b MmO @8, Co Y

+ K ab o6, a8 w0y

“+ O'K a,@ A—u.S, ao@:. A""(ﬂ'

-4 ._ .
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The integration 1s performed with fh_, 65.9 and Qb= q?-—q{

fixed, allowing 50, to go from ® to 2W ., The result of this

integration is
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and going over to the rectangular comoonents of the dyads,

this is

SAED = g (achovank) (T o55)

(ax by -a, 8 (55 -37)
~+ (4%59 (EE)

This can alsgo be written in a form which does not depend on
. 1 v S 0 ﬂ i .1 PR Qs S - I EM) iy .4

he coordinate axes: 1f e 1s the unit vector in the direc-
tlon of the axls of rotation,

{AB>= L (3848F -45)

e

(9.8)
_hé (f,Z x % . éj) E‘X é;

in which é' is the unit dyvad,
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Wow it is possible to evaluste the desired integral,

(2)

H B "’f/aa[ LB Je# Ry, 0, B LRAE

I'or convenience, take

/& (R - ) ] m(/é : /zm i £)
‘ e, 13, l? = % | = ’L /o”’

Iris 1s & function only of the relative positions of the

three particles in plane. The integral is then

HhoB” = aH-B”

P . b -y
- ’; . . (K,.P’x 2 JS X4

H=1[& e oAy AR AB
- 1 3 ] . . . . . —,
The only thing which contains any absolute direction is k1.
The integration is therel re periormed in two parts, the
first being over the rolatlve positions of the points in a
foxed plane, and the second being over all orientations of
1. . ‘ . -+ .
this plane with respect to kj. Now, a dyad appears in the
integrand,

//‘n.i-‘- M'} é'h-é.n.. "'/Vya Z

i

Ao = My, &, B, + Mg 1

A - Aws = My, (é’»z-éu) é.
r MaNys 8, &,

.f— -A/,,f M, 1 é; ST

+ ‘/V'a- M3 ..1



| -90-
so that it will be necessary to average dyads by rotation
about an axis. Thils 1s the reason for the preceding lemma.
The accompan&ing diagram may help to clarify the process.
To cover all orientations, the plane is rotated abhout the
i

line Rl3’ and then this result is averaged by taking all
—

- 2 ‘ . o 1. ) 5 * 1 e v q . .

positions of the line R,, with respect to kl. Since during
=0

the rotations, i, Ii, and_éﬁ are constant (depending only on

relative positions in a plane), the guantities to be inte-
grated are
o -9 - —p
65&'623 €2 €23
— =2 pul
C KI Rls e, - elJ e’z. e’z
- -
C.3 €y

e

“"
. . - - e . I
Combinations like €15 ° eq3 are just functions of the rela-
Jask T
tive positions of the points in the plane, and are constant

during the averaging nrocess. The result of tThe rotation
. | sy iy -
is another dyad, with components €13 ej3 and

—
about Ky, with a constant angle

o

1
d . vext, this is rotate
pu—y

—
betvween €13 and kl. Lhe result of this rotation 1s a dyad

SR
with -components Ky K, and 1% . This may be simplifiled now
. ’ — —

by taking the required dot product with P, . Since ki and
- ‘ q o ’ . .". . o
P, are perpendicular, that part vanishes, and the result of

i

these two rotations ia a constant times the unit dyad. This
kN * k) » [ . . N [ 1 . “ d . -
rmust still be integrated over the angle between ej3 and ky

This introduces the spherical bessel functions. The result
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all this celculation is stated in equation (7.18). 3o

A

(o1

Tar, only three integrations have been performed, but six

o
|

are required. The other three lnvolve moving 3 along the
- . . . L - s -
line whose direction is e]3 , and then taiing Hp anywhere

in the plane.
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1. There is a close formal relationship between the
"Feynman kernel" and the density matrix of a system in
canonical equilibrium. This may be used to obtain the den-
sity matrix of a harmonic osclllator in closed form (some-
thing which was accomplished by Brdelyl u31ng advanced
matnem &tical analysis), rather than as a series of Hermite
funetions. It may also be of use in other s¥ steps, although
the application will not be guite so simple.

2. A new set of integral equations can be derived
which may be used to get the radial distribution function
both in classical and in quantum statistics. This is the
first set of integral equations derived quantum nmechani-
cally which contains the temperature explicitly.

3. 4s an application of this set of integral equations,
the second virial coefficient of a quantum gas may be derived.
4 case of special interest is that of rigid srheres. This
requires the solution of the quantum J@CﬂaﬂiCdl problem of
the energy levels and eigenfunctions of two rigid spheres
in a box,

4, The analogue of the Kirkwood apnproach to the free
volume theory o% liquids can be developed in gquantum statis-
tical mechanics

ST The theory of light scattering developed in this thesis
can be extended to multicomponent systems. In this way , it
should be possible to provide the statistical mechanical
basis for the Kirkwood-Goldberg expressions

6. A general scattering theory may be worked out, in
which explicit allowance is made for the effect of pa ftlcle
dependence on the scattering cross section (for example, the
polarizibility). The important quantities in this are the
wave function of the scattered particle at 1 when 2 is fixed
and the other scattering centers are uveraged out, and the
scattering cross section of 1 when 2 1s fixed and the others
are averaged out

Y. It has been claimed that the lambda point transition
in liquid heliuvm II may be due to a condensation in "momentum
space“. The scattering of slow neutrons from liguid helium
may give a method of obtalnlun the pair density matrix, and
hepce the momentum dlutTlDUtWOn of 11qu1d helium, =~ This

hould be a way of checking the above ﬂypotm05L5(596).
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8. Existing forms of statistical mechanics are not
 relativistically invariant. There are several good reasons
for wanting to cast the theory into invariant form. Some

of the basic notions of statistical mechanics will have to

be reconsidered carefully. .1t should prove possible to
obtain an invariant Liouville equation using modern classical
field theory, and maybe even using quantum field theory.

9. Purcell and Pound have claimed that they have ob-
tained a negative thermodynamic temperature in the labora-
tory. I believe that the operational significance of a
negative temperature is doubtful, and that thelr results
should be interpreted in some other way(7,8).

10. a) & possible inhibition caused by an electric
current of the decomposition of a solution of potassium in
liguid ammonia on a platinum surface should he investigated.
This effect has been observed, but not corroborated, and is
unexplalned.

b} Solutions of alkali metals in liquid ammonia-
ether mixtures should be investigated. Preliminary obser-
vations have shown some peculiar effects.



