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WAVE FUNCTIORS FOR SIMPLE ATOMS
E, Bright Wilson, Jr,

ABSTRACT

This thesis is a review of the methods which have been
used to apply the Schrldinger equation to the problem of atomic
structure, an importent problem to chemists because it precedes any
similar treatment of molecules and valence, Original work includes
computations on helium, lithium, and beryllium, together with iso-
electronic .ions. The Thomes-Fermi statistical atom, the Hartree method
of the self-consistent field, Pauling's and Slater's sets of screening
constants, and the varietion principle are discussed and estimates of
their applicability mede, Hydrogen, helium, lithium, end beryllium
are individually treated and tables showing the results of many ine
vestigators included, In the case of lithium the new results give
an ionization potential in very close agreement with experiment while
the new work on beryllium is a slight but not satisfactory improve-
ment over previous results, The Appendix lists tables of integrals

used in the computations,
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The problem discussed in this thesis was suggested by Professor
Limus Pauling, to whom I am also very greatly indebted for advice

and guidance during the course of the work.



I - INTRODUCTION

Schr8dinger's equation has established itself as a very
close approximation to the truth, at ieast for a wide renge of
phenomena, including e very large portion of the field of chemistry,
However, the practical problem of using it to compute the properties
of matter and to explain observed phenomena is still beset with great
methematical difficulties in most ceses,

The solution of this equation for simple, isolated atoms
is a proﬁlem of considerable importance which has never been solved
in a really satisfsctory meanner, Schr&dingerl himself published the
solution for the hydrogen atom, but to advance further to many-electron
atoms involves serious practicel mathematical difficulties, which,
however, can be partially overcome, The attempts which have been made
to do this, including a number of original investiéations, form the
subject of this thesis,

These investigations were carried out for the purpose of
obtaining more accurate wawve functions for atoms and ions in their
normal states than those previously available, These wave functions
have a number of uses, They determine many of the physical properties
of the atom in question, being necessary for the calculation of atomic
radii, dismegnetic susceptibilities, Vean der Waals forces, ete, The
most important application from a chemical standpoint is the necessity
for reasonably accurate atomic wave functions for use in studying the
lews of molecule formation, Even in formel applicetions of guantum

mechanics to molecular problems where numerical computations are not

lE.SchrBdinger, Ann,der Phys,, 79, 361 (1926),
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made, it is frequently necessary to justify such assumptions as the

use of single-electron wave functions, and thgt cannot be done unless
the atomic problem is attempted, Questions both of molecular stability
end of reaction rates are attracting much attention at present, and of
course the whole basis for the ideas of velence is quantum-mechanical,

Electron densities are also obtained from atomic wave func-
tions and these are important in several connections, Ifor one thing
they give as nearly physical a picture of the atom as is possible
with modern theories, Furthermore, they are necessary in the calcula-
tion of F-values for use in the experimental study of crystals and
gases with x-rays end electron beaus,

The other primary quantity which results from studies such
as these is the energy of the atom, This is usually, but not always,
known experimentally with considerable accuracy from spectroscopy, and
so provides an observational check on the validity of the approximations
used, In some cases spectroscopists have not yet been able to obtain
complete energy data and for these atoms theoretical calculations pro-
vide hitherto wnaveilable information, which is frequently of great
interest, An importent case of this kind is the lowest level of
carbon, which is as yet uncertein, even as to its term symbol or
character, Other examples include highly stripped atoms, which are

usually difficult to observe experimentally,



IT - TUNITS

It is very convenient to introduce a new set of units,
ealled "atomic units", which are tabulated below:

Unit of length, aj = /2 2 42 , in the Bohr theory
) " m e

the radius of the first orbit in hydrogen, a, = ,528 & units,

Unit of mass, m, the mass of the electron,

Unit of charge, e, the magnltude of the charge on the electron,
3 3 ¥
Unit of time, //(q;;-'c/?) j/fooﬂ'/”‘z)

Unit of energy, —é/ao =°?/FZC » twice the ionization energy

of the hydrogen atom with fixed nucleus,

Unit of action, %/,?7;-’ )
Unit of angular momentum, j / on

These units form a consistent set so that ordinary equations
of physics are still valid when expressed in terms -of them, They will
be used throughout unless otherwise noted, ©Since, however, experimental
dataaie generally published in more usual units, the following conver-

1
sion table, based on Birge's compilation, 1is included:

1R, T.Birge, Phys,Rev,, Supplement, 1, 1 (1929),



TABLE I = ENERGY UNITS

Hultiply by to Obtein
atomic units 27,06 electron-volts
" 6,239 x 10° 15° calories per mole
" 2,194 x 10° wave-numbers
" 6, 575 x 10'% frequency units
n 4,3056 x 107+1 ergs
electron-volts 3,695 x 10'2 atomic units
" 2,3055 x 10% 15° calories per mole
" 8,106 x 108 wav§ numbers
" 2,4305 x 1044 frequency units
" 1.5911 x 107128 ergs

15° calories per mole 1,6028 x 106  atomic units

" 4,3375 x 10™°  electron-volts
" 3.516 x 10~1 wave-numbers
" 1,054 x 1010  freguency units

6,907 x 10'17 ergs

wWave-numbers 4,558 x 10-6 atomic units
" 1,2335 x 1074 electron-volts
" 2,84y .- 15° calories per mole
" 2.99795 x 1010 frequency units
" 1,9628 x 10™16 ergs
frequency-units 1,5209 x 10716 atomic units
" 411, x 10”18 electron=-volts
" 9,485 x 10711 15° calories per mole
" 3,33560 x 1011 wave-numbers

" 6. 54q x 10-27 ergs



Multiglz

ergs

"

n

TABLE I =

by
2,322 x 1010
6.285 x 10!
1,444 x 1076
5,095 x 101°

1,52 x 10%¢

continued-

to obtain
etomic units
electron-volts
15° calories per mole
wave-numbers

frequeney units



II1 - THE SCHROEDINGER EQUATION

The Schr8dinger wave-equation may be written
H K= W ¥ (1)

where /e/ is an operator formed by replacing each momentum /é? in the
classical Hamiltonian /f(/‘;)z—z) by _;%,j -39“?‘, . If it is
desired to use generalized coordinates, the transformation from Cartesian
to0 the new coordinates is made after the substitution indicated above,

2ﬁ' has the physical significance of a probability ampli-
tude; thet is, the square of its absolute value gives the probability
of finding the system within any differential volume element of con-
figuration space, Boundary conditions are imposed upon }ﬁ: s namely
that it must be single-valued, vanish at infinity, and be finite and'
twice differentiable over the whole of coordinate space, except that
it may become infinite at a few points if /// %/ 2d T
converges to a finite value even when these points are includedf

For the hydrogen atom, the Hamiltonian is:
a
HRg)=am (B 1 )1 am (Bt ET)- 55 @
where m is the mass of the electron
M is the mass of the nucleus
X¢ Y1 2y are the coordinates of the electron
Xz Ye Zp are the coordinateé of the nucleus

Z is the atomic number,

If the substitution for /0 is made as stated above:

R 2 A2 <? 7 2®
is obtained, where:
2 R
<2 _ o 9 (4)

o* 2
= oz T 27" M 2%

lJ.H.V’an Vieck, "The Theory of Electric and Magnetic Susceptibilities™
Oxford 1932, p, 122,



This operator gives an equation (1) which is completely soluble,
even when the motion of the nucleus with respect to the center of
gravity of the molecule is considered, but since in the work on
heavier atoms this nuclear motion cauées effects which are smaller
than the other errors, it will not be considered further except to
note that it is responsible for an isotope effect in certain spectra,

With the approximation of fixed nucleus, the wave-equation
for hydrogen becomes

VY R (W ZE) ¥ - (5)

This is greatly s:hhplified by the introduction of the values of the

constants in atomic units:

L ¥ (wr E )Y =0 8)

Schradingerl obtained the solutions for (5) and these will
be considered in more detail in section IV, since they form the basis
of the treatment of heavier atoms,

With the saﬁe assumption of fixed nucleus, the'wave-equation‘
in atomic units for an atom with b electrons and atomic number Z is

seen to be:s .3

2 —
2 Yy (woV) Y=o
=1 (7
where % ' Zﬂc B
Ve=%2 m T ZEL TR . @
pj=1 2=
with a
2 J
2 _ O + =—= + 2 (9)
Vi = 2z 2t T 9
/Z{/- = distance betwsen electrons ¢ ¥ J.
/1, = distance between electron ¢ sand nucleus

1g, Schrodinger, Amn,der Phys,, 79, 361 (1926),
Condon and Morse, "Quantum Mechanics" New York 1929, p. 58,



In all the considerations of this work electromagnetic
interaction energies such as that of the electronﬁspin with the field
due to its motion have been neglected, This is usually legitimate in
view of the small magnitude of these energies, However, it is essen-
tinl that the spin be teken into account by way of the symmetry pro=-
perties of>the wave functions, in connection with the Paull exclusion

principle, and this question will be treated in section V,

IV - THE HYDROGEN ATOM SOLUTIONS

Equation III-6 is separable in spherical polar coordinates,

for which:

. - 332 97
a_m{mf%(n*%)+5a;(mjlaa)+m5p}(l)

The solutions which satisfy the boundary conditions are
ZN 2.0+

Yoo W il P ) (52) 0 R (20

(28+)(L-pi)] (m-£-1)] Z3 (3)
7 ¥ (rm)! [(mel)] ]

where /V =

is the normalizing factor,
2J)
/?4 [MJ) is an associated Legendre polynomial
LJI;' (gf.?) is & polynomial (See Condon and Morse, l.c., p. 63)
h

For the first few sets of gquantum numbers 1, ¢, s, these reduce

tO: 23 _Z/.L
Fo =V X
(4)
Z R
_ o Sz -Fn [i —/}
Yo = 2 Vim 2 2 (5)

I

__2_’_'/'; -Znr
%?/o 4 27 £t V- S22 ] (6)

1 por V7in different coordinates, see, B,P,Ahdams, Smithsonian
Mathematical Formulae, Washington 1922, p, 100.




_ Z 3 . ? _Z ,
%//’ ; Vi P ne I (7)
}ﬁ/rz%\/—,f—swﬂ-ﬂ’i?-/zz“g”- (8)

The quantum numbers ¢, ¢ , »m can take on the values
n=l, 2, 5’ eve

V4
n= -4, -br1, - O,/ QJ~A--1?

i

6, l, 2, o0 e n-l (9)

The quantum number m measures the component of angular momentum in
the direction of the pole, l’(]?+£)is»the square of the total orbital
angular momentum of the atom in atomic units, In the case of hydrogen
and other one~electron atoms, to the approximation we have considered
the energy depends upon n only, If the electron moved in a non=-
coulomb field as in more complicated atoms, n and 4 both would
gffect the energy,

The energy levels for hydrogenic atoms, the characteristic
values of equation IIl-6, are:

P
W, = - = atomic units (e.u.) (10)
m ‘

2m?

which is in agreement with experiment,

The electron density is:

£- 1% Sy

Frequently this is integrated over all angles to obtain a new quantity,

sometimes called the electron distribution:
amr 7 2 : .
D= f //%,‘/ n? ain) d2 P (12)
A
If %& is independent of }ﬂ) J

D: q41mr f’za- (13)
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V -~ SYMMETRY CONSIDERATIONS

The Pauli exclusion principle states that no two electrons
in the same atom can have the same set of quantum numbers, if the latter
includes the spin quentum number, The gquantum-mechanical analogue of
this is the requirement that every wave function for a group of elec-
trons be completely anti-symmetric in the electrons, Ihis means that
interchanging the coordinates of any two electrons merely alters the
sign of the wave function,

If the interaction of the electrons is completely disregarded,
equation III-7 for a many-electron atom will separate into equations for
each electron, Therefore a solution for the atom is:

y‘—-‘ A, B Cg ... % . (1)
where A, B, C, etc, are the solutions of the separated single-electrom
equations and the subscripts refer to the number of the electron, But
an equally goqd solution would be:

}L/ = PA, By Cg ... %l. ‘ (2)
where P is a permutation operating on the subscripts (or on the letters),

Perturbation theory leads to the result that the best solution
will be & linear combination of these %/ permuted products, It also

gives the possible sets of coefficients, which will be such that:

y=y—%—7;’tPA,BJC3~---G,L - (3)

There will be %/ such combinations, depending on the distribution of
the plus and minus signs, To introduce the electron spin into the solu-
tion, Slater1 suggested that each single-electron function A, B, C, ete,

could contain a spin factor or:

15.c,51ater, Phys.Rev., 34, 1293 (1929),
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A = < J(MSJS)

where a is the orbital function and

(4)

) . § #F m
é(/"‘sas)‘—‘{f Z S=mz' (5)
with m; the spin quantum number,
Hereafter A, B, etc, will either be as above the complete spin and orbit
funetion with unspecified spin, or in contrast to K; B, ete, which will
refer to orbit plus negative spin, A, B, C will mean orbit with positive
spin,

To obtain a function }é which is anti-symmetrie, it is necessary
to use one special linear combination (3), namely the one in which the
plus sign is used with permutations made up of an even number of inter-
chenges and the negative sign for odd permutations, Then the interchange
of any pair of subscripts will merely change the sign .of 3Af.

Equation (3), with this rule of signs, may also be written as

8 determinant:

Al 5# Cl Gl
A, B, C, Gy

Y =var |

Ag By Co o Gy

(6)

If more general types of wave functions are used, which may include
those with interaction terms between the electrons, the same device in-
sures £hat 3/’ will be completely anti-symmetric, For example

¢=%’_T:PA.B,CJ~--G& £ (1,2,3) (7)

or

'}ﬁszPAl,a By, (8)

P .
where here P permutes the coordinetes of the electrons and in (3) operates

on £(1,2,3) as well as on the other factors,
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VI =~ THE THOMAS-FERMI STATISTICAL ATOM

L.H.Thomas1 was the first to epply statistical methods to
the calculation of electron distribution and atomic fields in heavy
atoms, He treated the electron cldud s a degenerate gas acted upon
by a field due to the nucleus end the electrons themselves, and obtained
two relations between the electron density end the potential, the first
being Poisson's equation and the second the analogue of Boltzmann's dis-
tribution law, modified by the degeneracy,

The fundamental assumption of this treatment is that the elec-
trons are uniformly distributed in the six~dimensional phase space with
8 density of two to each element of volume J@g . The Fermi-Diracz
statistics isibased on the principle that no more than two electrons
can occupy each volume element of this size in phase space and in this
application it is further assumed that the atom is in.the lowest possible
energy state so that all the lowestilying cells will be completely filled
giving the uniform distribution postulated above,

The energy of an electron in the field about the nucleus isiv

F=anl 2V ()
where 2 1is the magnitude of the electronic charge
st 1is the electronic mass
/P is the momentwof the electron
Y/ is the potential at aeny point,
The zero of energy is such that an electron at rest at infinity hsas

zero energy; therefore E is negative, giving the relation:

/b< (2 m L V)Vaz (2)

L.H. Thomas, Proc,Cemb,Phil,Soc., 23, 542 (1927)

%E,Fermi, Zeit.f,Physik, 36, 902 (1926);
P.A,Dirasc, Proc,Roy,Soc,, A 112, 661 (1926),
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To find the density in ordinary (coordinate) space it is

necessary to integrate over momentum space, with limits given by (2)

' _ o

S CEss S/ A 4y 2k (3)
Meking a change to polar coordinates:

Px= P sin Jcoss’p

P, = P sin v/ sin ¢ ' (4)
P, = PcosJ’_

where P is therefore the magnitude of the total momentum.
27 7 Vormeav

(’ J{a/// Plaint dP PP

3'/.:2

= (2mev)

3%3 (6)

This is one relation between (9 and V/ ; the other is Poisson's equation:
= -
TR\ = 4L ‘ (7)
Combining the two gives: ( |/ is spherically symmetric)

& adV)_ 3am’l Y2
7;_—52—&‘(/7’ aUL)‘ 313.("2’”‘£V) (8

The boundary conditions are

Lem fpV—> Ze

>0

and /fdf_____ =z (9)

The first condition asserts that the _f_'_l_g}_d_ for small r is due to the
nucleus alone; i.e. that the electrons are all outside of this region,
while the second condition specifies that the atom is neutral,

Fermil has obtained & numerical solution to this problem,

first making the substitutions:

x= ¥ Wy 00)

15, Fermi, Zeit.f.Physik, ¥9 S5O (/228).




3% A7 3% 7B a,
where /’" 275 B am 22 273 = _27/3 273
~, ggsa PSz%B = oy6) /7" AU (1)
13/ 95 3 /4 2
3-?/3‘4:( 3.2/377_‘4/3 o
= /320 f z 3 (12)
which give: , 4 Y2
ich give: o j?r 2 ‘g(L}Z . _}Zf
+ T £ =
ax? X alx (15)
with
x>0 (14)
oD \7/2 2 _
VAN 2R (15)

o

To obtain (15), (6) is first used with the second part of (9) before

meking the substitutions (10),

A further simplification follows from

P =X v (16)
2 32
i‘f{—zg = P //; . (17)

which gives:

and -
32 Ay =

Dlo)=/ ; / PTESE =1 e

Fermi gives the following table, which is the result of a numerical

integration of equetion (17),



TABLE II
x (x) x (x) x (x)
0 1,000 1,5 ., 315 10 .024
o1 . 882 2,0 . 244 11 . 020
2 » 793 2,5 .194 12 .017
] . 721 3,0 157 13 ,014
ok . 660 3.5 «130 14 .,012
.5 . 607 4 .108 15 ,011
.6 . 562 5 .079 16 . 009
.7 . 521 6 . 068 17 . 008
.8 . 485 7 . 046 18 . 007
.9 » 453 8 . 037 19 . 006
1,0 . 425 9 . 029 20 . 005

15,
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Then '
. Z2 22
VTR 7 ( (19)
and - 02?/2 77’0’1%2%/ __/_. §2)( 2)
3 A° a4 ~
_ 2 7% L gRR) (20)
= o L7 nR Px
° 22 (21)
= gr702 ZV/ 7 - % 50 (

The effective nuclear charge, Z% , defined by:

_r2 dV (22)
Loy = z 2

Z% - Z[/— ,ézlf:’l—?%(rj-d/l’] (23)

where x is related to r by (10) aend the integral can be obtained by

is given by

numerical integration using the values of 50 in Teble II, However,
Thomas® has given such a table for Cs (Z = 55), together with relations
for obtaining the corresponding gquantities for any atem,

For any neutral atom:
R =R, ({;{)/3, Z,ﬁ:Z,z; /;f:) y-x (2)” o

where R is r measured in atomic units

N

}Z is V measured in atomic units,




TABLE III
R. Z, U A ; 0%

. 001517 55,0 35960 . 04800 52,5 906,8

,001910 55,0 28500 ., 06040 51,5 683, 8

002404 55,0 22580 .07603 50, 3 510, 4

. 003027 55,0 17870 .09572 48,7 376, 4

. 003811 55,0 14140 .1205 47,7 273.9

. 004800 55,0 11170 L1517 44,2 196,1

, 006040 55,0 8809 .1910 41,3 138,0

.007603 54,9 6936 ', 2404 38,0 95,15

. 009572 54,9 5450 . 3027 34,2 64,18

.01205 54,8 4273 . 3811 30,1 42,26

,01517 54, 6 3340 . 4800 25,8 27,10

,01910 54,4 2601 . 6040 21,6 16,90

.02404 54,0 2018 . 7603 17,5 ° 10, 23

. 03027 53,8 1556 .9572 13,7 6,008

,03811 53,2 1198 1,205 10,4 3,412
1,517 7.6 1,887

17,
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Numerous assumptions are involved in this treatment and it is
not to be expected that the results will be very exact, The use of a
statistiecal ﬁethod necessitates a large nﬁ%ber of particles, so that the
results should be accurate only for heavy’atoms. Furthermore, except for
the choice of statistics, the methbd is essentially elassical, so that
the presence of nodes is not observed, Dirac1 has discussed the whole
question of the validity of the Thomas~Fermi model, reaching the decision
that it is proﬁably a good approximationjfor the interior of heavy atoms
but inaccurate in the outer part, The separate maxima of the different
electron shells within the atom do not appear in this trestment, a smooth
ecurve representing an average density resulting instead, The transition
from one atom to the next is also perfectly regular without any of the
periodic features shown by real atoms,

Milne?

has used this method to calculate the energy necesseary
4o remove all the electrons from a heavy atom, i,e, tﬁe sum of the
ionization potentials for the atom, He calculates the electrostatic
energy of the charge density f’ in the field V , both obtained from
Thomas! procedure and uses the virial theorem to obtain the kinetic
energy, His result iss

E = 17873

volt-electrons (25)
Beker® has attempted to apply this model %o positive ioﬁs,
using certain approximetions, Using the seme principles as Milne, he
computes the quantity E for positive ions and thﬁs by difference obtains
successive ionization potentials,
Sommerfeld4 has obtained an asymptotic solution of egquation (17),

¢

good for large x,

1p,M,Dirac, Proc, Camb,Phil,Soc,, 26, 376 (1930),
2g,A,Milne, Tbid., 23, 794 (1927),

®E,B,Baker, Phys.Rev., 36, 630 (1930).

44 Sommerfeld, Rend,R.Accad,Lincei, 15, 788 (1932),
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 VII - THE VARIATION :METHOD

SohrBdingerl first formulated the new mechanics as a
variational principle and for many purposes, partioulerly where
approximate solutions are being sought, this is the most convenient
form of the theory to use,

If :

o= v+ Y (1)

then the varistional problem:

§ Sy HYar=o . JEFrs D

leads to the equsation:

4+ V2 U+ (w-V)¥=

by the standard methods of the caleulus of va.riations.2 Equation (3),

(8)

the wave equation, is thus the Buler equation for the variation
problem (2),

The Ritz® method may be used to solve (2), although it is not
ordinarily convenient, The function }4 is expanded in a finite number

part of
of suitable functions }b which form/a complete, orthogonal set:

Y ot ettt (@)

and the n coefficients C,, ¢, - C, are determined by the ordi-
nary methods of maxima and minima problems so that (2) is & minimum,

This process is repeated for inereasing n so that under the proper

PO P W

form a sequence which converges to a limit, the solution of the problem,

conditions

15, schrBdinger, Ann, der Physik, 79, 361 (1926),

2Courant-Hilbert "Methoden der Mathematischen Physik" I, Springer, Berlin,
€924, p, 165
Osgood, "Advanced Calculus" Macmillan, New York, 1928, Chap, XVII,

5Courant—H:leert loc,cit,, p, 157,
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\J

Although this method is not very often used, it suggests
a modified procedure which is of wvery great importance, A function <

is chosen which depends upon a number of parameters C, ,ca , ¢ -~ C

15 2 L™

and this function is substituted for 74 in equation (2), The integral
is then minimized with respect to the n parameters, either by the
methods of calculus or by actual computation, The resulting values
of the parameters, when substituted in Sﬁ yield a function which is
not in general the exact solution of (2), because of the restricted
nature of the variation which has been performed, but if a suitable
form is chosen for 55 » 2 good spproximation to 7b may result,
Although it is not easy to estimate the inaccuracy in the
function so obtained, something can be said about the energy values.1
Ir 95 were the true solution }Z' s then from (3):

H = WP - (6)

and
St HpdT = [gTwpgr=w (D

If ¥ is not exactly equal to }Z' » 1t may be expanded in a series
P = 27 am Pon (8)
since it can be shown® that the characteristic solutions 7éh of (3)

form a complete orthogonal set, Then
* » a -
E:/¢*H¢ql7' =,hZ/!”‘ \/\/ﬁ“ amd.m jZ K‘O/T'ZZM{“/Q”I(Q)
7

In the particular case of the lowest energy state, W, , the following

is true:

E-W, =Z ( Wa-w.) ] an]”, (10)

—_— .
1¢,Gekart, Phys,Rev,, 36, 878 (1930).

2Condon and HMorse, loc,cit,, p, 40,
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Since W, > W, » the right-hand side is a positive quentity,

therefore £ > W, , This result that the value of the variational

integral is an upper bound of the energy of the lowest state, is of

great importance, In special cases it may be extended to other than
the ground state; If @, a,, 24, - a,_, are all zero, the theorem
applies to Wh, In atomic problems such a case occurs for the lowest
state of any specified angular momentum, siﬁce
z = [o% "ar = o0 \ (11)

if ¢ and 3,/ have different angular momentum quantum numbers, Like=
wise, the lowest slate of any specified multiplicity may be similarly
treated, h

t is unfortunate that no such definite statement can be made,
apparently, concerning the function ¢ itself, The most reasonsble
eriterion for the degree to which ¢ approximates }/ is the smallness
of

S [¥-#]" AG) a7 G2)

where A(q) is some weight function of the coordinates and the integration
is over the entire coordinate space, What function to choose for A de-
pends upon the purpose for which 75 is wanted, For some uses it is
importent that ¢ be a good appréximation in certain regions of space
and then A should weight those regions, The variational integral (&)
corresponds to a special form for A such that the best value for the
energy is secured, but it is certain that the function so obtained
would not in general be the best, unless the variational problem were
completely solved, for the calculation of diamagnetic susceptibilities,

say, If (2) be completely solved, then 75 equals }/ and it is of no
Q
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consequence which function A is used in (12), The value of the wave=-
functions obteained by the approximate method described depends upon ¢

being so nearly equal to ')4 that (12) is small for any reasonsble A,

VIII - METHOD OF THE SELF-CONSISTENT FIELD

Probgbly the most nearly accurate wave functions and charge
distributions for many-electron atoms have been obtained by the method
devised by Hartree.l He solves numerically the problem of one electron
moving in a spherically-symmetric central field created by the nucleus
and the other electrons, The solution of such a single-electron wave
equation is carried out for each of the electrons in the atom, the
central field being assumed in the beginning, and then from these
solutions the corresponding charge distribution and field is calculated,
The agreement between this field end the one originaiiy assumed forms
the eriterion for the validity of the wave functions oblained, If the
discrepancy is too great, the process is repeated, with the use of a
new trial field, In deciding on the field acting on any given electron,
it must be remembered that the contribution which that electron mekes
to the total field of the atom should not be counted in computing the
field acting on that electron, Hartree has diagrammed the above steps:

Assumed initial fiéld —>
Field corrected for contribution of electron in question —>
Solution of wave equation for this electron with above field —>
Contribution of electron to charge distribution ——>

1

Field for whole atom due to nucleus and total charge demnsity,

Q
1D.B.Hartree, Proc, Camb,Phil, Soc., 24, 89, 111, 426 (1928); 25, 310 (1929).
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If either the initial or final fields, or the contribution
of any electron to the field, is not spherically'gymmetric, the approxi-
mation is made of averaging it over the surface of a sphere before using
it in the above sequence of operations, ~ This is not necessary for s

1

electrons or for closed groups™ of electrons, because they have spherical

symnetry,

In obtaining solutions for each electron, Hartree uses the
faet that fz,l' s where ,Xr is the radial factor of the solution, mﬁst
venish at both zero and infinity, Choosing some value of €& , the energy
parameter, he integrates the wave equation for X numerically, start-
ing first from zero and then from infinity, For general values of €
these two solutions will not meet, but if € is varied, certain wvalues
of € - the “characteristic values" - will be found for which the
two solutions are identiecal; 1i,e, only for diécrete values of € will
there exist solutions which are zero at both zero and infinity, This
laborious . process is simplified by numerous practical short-cuts which
Hartree describes in detail in his original papers,

The megning of the characteristic values €& was not clear
for some time but has been made so by a consideration of the relation
between the criterion of the self-consistent field and the variation
m.ethod.2 The treatment given here was suggested by Dr, Pauling follow=
ing the outline given by Slater, and although essentially the same is
considerably simpler then that of Fock,

Hartree uses wave functions of the type:

Y= abics o 7a (),

where Q@ , 4{ » ete, are single-electron wave functions for the lst,

e

1§, Unsold, Amn.d.Physik, 85, 355 (1927),

2y, Fock, 2,Physik, 61, 126 (1930);
J.C,Slater, Phys,Rev., 35, 210 (1930).
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2nd, etec, electrons, His wave function for the whole atom does not
therefore have the proper symmetry with regard to interchange of
electrons, This neglect of the exchange phenomenon is one of the
approximations involved in his treatment, That it is not a necessary
approximation will be shown later, However, if the wave function is
assumed to be of the form (1), then the variation method (sec, VII)
gives a definite criterion for determining a, b, ¢ ete, The condition
is:

Je= S f¥*HY AT = J/q%'c;‘----;‘; H @by c;sgq dro(z)

with
SE Y A=y
(3)
But ,
2 M+ 5 2 T,
i g m (4)
He » =% V= Z/n, (5)
I ;
U/};*'ay do) =1 el (6)

¥ )" 4 " ag0,3) , .
-+ JC/}ZJQ a, 4, qégfy *:/D(G;bk g .C3 ‘7;?1 + - - (@bl fatea), (7)

m

For minimum E, the variation in E caused by eny infinitesimal variation

in each of a, b, ¢ etc, must vanish independently, or:

2E- 2 fyit e dut [fa 4 a b L1

+ //076}‘@63 dLY . (attfoisesimmtig @)} =0 (5)

13
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If we put %/,;HI'/‘/«é*éi@-F/C}*cjﬁ))L

/71;1 j7’3
= -5 vi-ZF L, (9)
2 t 7, .
where
V- [878 42 . [ 42, 0o
ra ‘3

is the average potential acting on electron 7 due to the other electrons,
then equation (8) is equivalent to:
95 fq / q, do) = o (11)
and similar equations hold for by, 5z ... By
Hartree solves, for each electron, an equetion
L-v?a + (€- VV+E)a =o (12)
where \/ 1is the average potential acting on the electron due to the

other electrons and is of course given by (10), To solve (12) the

variation principle may be invoked once more, giving
¥ oLyt z = dfar K a Joy=o 13
$fa’ (4V e -F ) a 40 « (13)

This equation, which results from Hartree's criterion, is the some as
(11), which was obtained from an epplication of the variation principle
to the wave equation of the whole atom, so that the two criteria are
equivalent,

In this derivetion the deviation from spherical symmetry
which may ocecur in \{ ete, is not averaged out, but is rigoroﬁsly
treated. In the practical application of Hartree'!s method, averages
over & sphere are used, which introduces é further approximation,

As prefiously mentioned, it is not necessary to neglect in-
terchange, Fock has included this, but the following treatment is

simpler, Assume that }”’ has the following form:

_%5 V‘;{?Zi—PA'BQCJVHG%_ (142)
P
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where F represents a permutation on the electrons 1, 2, 3 ...
(subscripts), HEven permutations have the plus sign, The symbols
A,s Bs .., represent single-electron wave functions including the
spin factor:

E= Spthrpdr =g 3 T [PATEI H A B ET

=27t [a¥Br - H PA By A7
P

= 3 = (AR PA) (BalFB) + 35 (AL 1A (s 0 P2)
P F o (A,B_-,/-;.,’— | PA, Pa,)(c3/,/,=c3)...._+ all paire.

P . (15)
where

(AIXIPA )= [A xPA, do 2k (16)

(A8 | x] PAPB)= [[ A B] x PA PBy 4012 (A7)

end APA, mneans the letter which has the subscript 1 after the opera-
tion of the permutation AP in (14), If A, , B; ete, are kept nor-

mal and orthogonal, then:
PA,#* A, (18)

o :
(A' I FA')= [ / Zz PA, = A,
and terms with the factor ((A8:/%,/FPA, PB,) will venish unless:
PA, PB,=A, B, ~  PA PBs = B Ay (19)
because of the factors like (18) which multiply it, |

éi‘.fz 5):- {(A,/H./A,)+(A,62/#;/A‘Bz (A, c3l T, A )y

_(A’B"‘ /TJ(TRIAJ3,)-'(A,c3l’/'713IA3Cl)— (“’e‘/""“""‘”‘"’"&"’?ﬁ\)}

) :%{IA'*%IA, Q/(/}j:O (20)
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The set of such equations, with B, C ete, replacing A, is equivalent

to the condition:

Se= & [¥"HFar =0 (21)
if , - @) c¥e L (3) PR
7)/, = H, + /BQ B, _B:?— * f 372 Sus
B. * Jdra) _ C, A< N
A, /AQ B2 L A, f"3 R (22)

Just as before, the integrals in ' give the average poten-
tial acting on electron 1 due to the other electrons, only now there
are additional terms representing interchange effects, If the Hartree
method werevapplied in such a manner that the criterion wes the agree-
ment between the assumed initial field and the field obtained from the
charge density plus the interchenge terms, the formér giving rise to
the tems [ 85 8, 42 ete, inH' and the latter terms like
- ,%‘ f A, BY ﬁ%% , then the result would be the best wave func-
tions obtainable of the form (14) and would include the effect of

resonance,

The energy of the atom is:
£= (A/H/IA) + (B, /H]B2)+ -+ (A Ba]F A B )+ -

— (AB T A B, )= (all pairs), (23)

The characteristic velue €, for the electron 1 in the central field V,

(including resonance) is:
€.= (A |HMIA)= (A HIA) + (A, Ba|F, ] AB2)+ "

o (ABa [P [ ALB ) = (all peirs involving A)  (24)

c. = (B2 | 15B:)= (Bz/Hal B:) + (BeA NP | BaA) 4

(B AF B A)= (all peirs involving B)  (25)
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V2
F=2l€— (A B F[AB)—
=1

+ (A.\Ba [F5, 1 A2B ) + (all pairs) (26)

The total energy of the atom thus differs from fhe sum
of the characteristic values due to the fact that such a sum counts
both the coulomb and exchange integrals twice,

Hartree has not included exchange effects in computing his
wave functions, although it seems &s if it should be possible to do so,
He has, however, in his latest paper4 celculated the total energy by
inserting the single-electron wave functions obtained without resonance
into (23) so that the energy is correctly calculated but is not of
course the best which could be obteined with the form (14) because of
the nbglect of exchenge in obtsaining A4, B, ... .

Celeculations of the wave functions have been made for He, Li+,
Bett, Be, BV, o™, ott, o, 0, F°, We, ma*, mttt, mt, sittt, o1,
A, K5, cat, cu’, Rb', Cs', but unfortunately the results of most of
these have not been published, Slater5 has published a teble for the
2s, 3s and 3d functions of Rb¥ (not orthogonal) which he obtained from
Hertree,

In this paper Slater considered analytic expressions which fit
closely the numerical results of Hartree, He fitted Si4+, K+,,Cu+, RbT
and CsT in this way and gave curves for interpolating others, The func-

tions he used were:

ls: e ; : &€ “=cre ete,

His results should be rather accurate for the range of ions to which

they are eppliceble,

4p,R.Hartree and M.M,Black, Proe.Roy.Soc,, A 139, 311 (1933).

%5,c.S1ater, Phys,Rev,, 42, 33 (1932),
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IX - Sets of Screening Constents,

Paulingl and Slater2 have both published rules for constructing
approximate wave functions for any atom, - Both base their -solutions on
modified hydrogen-like functions; i,e,, they use s wave-function for the
whole atom of the determinant ﬁype given by equation V-6 in which the
single-electron functions a, b, ¢ ete, are related to the solutions of
the hydrogen atom discussed in Section IV, Pauling modifies these func-
tions by the use of a screening constent s such thet Z in equations
IV-4 - IV=8 is replaced by (Z-s), thus idealizing the interaction of the
electrons by assuming that they affect each other by shielding the
nucleus, The screening constants he used were obtained from theoretiecal
and empirical sources and while they yield wave functiomns inferior in
accuracy to those of Hartree, for many atoms they afford the best availe
eble approximete solutions,

Slater bases his functions on the work of Zener® on the lighter
atoms, in which the variation method was epplied in order to determine the
best values of the paremeters in a modified hydrogen~like wave function,

Slater uses single-electron functions of the type:

/Z/nf_/ y _,[Zﬂ:;s)/i (1)

and determines the values to be assigned n* and s from empirical con=-
‘siderations, These functions do not have any nodes, as do the hydfogen
solutions, but neither are solutions (1) with different values of n*
mutuelly orthogonal and if they are made so by the process of taking the
proper linear combinations of functions (1) with different values of n=,

the nodes reappear,

lL.Pauling and J,Shermen, Zeit,f,Krist,, 81, 1 (1932);
L,Pauling, Proc,Roy,Soc., A 114, 181 (1927),

25.C.Slater, Phys,Rev., 36, 57 (1930),
3¢, Zener, Phys,Rev., 36, 51 (1930),
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For the light atoms for which Zener has carried out the
variation treatment, these functions are remarkebly sccurete, consider-
ing their simplicity, As the atom becomes’more complicated, however,
they diverge from the correct expressions, For the heavy atoms for
whichSlatert's generalization was designed no comparisons with Hartree's

or Pauling's wave functions have been published,
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X « CHARGE DENSITIES, ATOMIC FIELDS AND F-VALUES

2
/}ﬁ/q@“ gives the probability of finding the system in

any given element of configuretion space 47", 1In order to calcu-

late the total electron density (9 it is necessary to integrate

over the coordinates of all the electrons but ome, thus giﬁing the
probability of finding that one electron in e specified volume ele-
ment regardless of the positions of the other electrons, and then to
add together similar expressions for all the eleétrons. However, since
the total wave function for the atom should be antisymmetric in the

electrons, the contribution of each electron will be identical, so thats

(O’ N [ ) V¥ (raz-m) | L d@ - dm). (1)
2 %

In the special case in which '30 is of the determinent form

(v-6), (1) becomes:

—" *pro ¥ ’ Yo )
(J: (Wf/)! ;. .,/M'%/FA' Bl Gy PA, By Gy S0 d3) (3)

end if A,, B, etc, are mutually orthogonel and normelized, this tekes
on the simple forms

ST PA P'A,/ﬂ@*-ﬂ’@ @) S P& Plo, d()
AP 2

o
T (-1)! 2%

:(%’)/ZPA’TFA, (P ofertes an Lelins)
TP

N b A L A R KA

(3)

since from the orthogonality P must equal P! and then there will be
(Nw1)! P's with the same letter assigned to the subscript 1, cancelling
the factor 1/(N-1)! , It is important to notice that if A, B, ete,
are not orthogonal, then it is necessary to include cross terms in

the expression for (o .
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The potential at any point K&,/ P due to a charge
density -¢/° is:

(4)

where s is the distance from ﬁ, A, ¥ to the volume element o7,

F (RS @)=~ [L- a7

In the special case in which F is spherically symmetriec,

#  becomes (including the effect of the nucleus):
R V2]
- =L sne E - &mre s dr 5
e ®
R R o
A quantity which is important in crystal structure and elec-

tron beam experiments is the atomic scattering factor or F-value,

which for an isolated atom is given by:
27 P o Cn
N L pead .
Q o

where [ is the effective interplanar distance in the crystal, If

(—’ is spherically symmetric this becomes:

Frio)=20 ) P ain L2 2 ™
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X - HELIUM

Neutrel helium has been treated with complete success,
at least for the normel state, However, it is interesting to compare
the results obtained by the many different methods which have been ap-
plied to this atom, Even the Thomas-Fermi model has been tried, al-
though two particles can hardly be sufficient for such a statistical
method,

The simplest analytical treatment is that of Uns81a® who used
hydrogen single-electron functions with nuclear charge two, In all
these discussions of helium, the lowest state is understood and the
spin factors can be taken out of the determinent (V=6), leaving an
orbital part of the form:

% = @, 9, (1)
This separation of‘spin and orbit is not possible for more complicated
stome, In Table IV are listed a number of the wavenfunctions which
have been used for helium together with the energy of the atom calcu=-
lated by meens of them,

Uns8ld's treatment is equivalent to a direct first order per-
turbation problem, with the interaction of the electrons as the pertur-
bation, Lenne.rd-Jones2 hes shown how part of the second order correc-
tion to the energy may be easily obtained and I have applied this to
helium, As seen from Teble IV, this correction is too large.

Frenkel3 and others very considerably improved the value

of the energy by introducing & parsmeter, the effective nuclear charge,

1, Uns81d, Amn,d.Physik, 82, 355 (1927),
25 E.Lennard-Jones, Proe,Roy.Acad, 129, 598 (1930),
3J.Frenkel, "Einfthrung in die Wellemmechanik," Berlin 1929, p, 291,
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into the hydrogen-like wave function, this paresmeter being evaluated
by the variation method (Sec, VII), His wave-function and energy
value are listed in Teble IV under No, 5, I applied the Lemnard-
Jones term to this also, with even poorer results,

No, 7 eand 8 in the table are two funcitions which were tried
without success, since they both reduced to simpler funetions, This
mey be of interest because - No, 7 especially is of a form which
qualitative notions regarding the effect of the electron interaction
would tend to support, yet it seems to be valueless,

The next entry is one of the best functions which is separable
into single-electron factors, I calculated this because it is similar
to the functions used for the 2s electron in later work,

Hylleraas4 and Eckart5 published No, 10, The method of
Hartree (Sec, VIII) has been used by Gaunt,6 who substituted the numeri-
cal wave functions obtained by this procedure into the variational in-
tegral in order to secure the energy, Since no interchenge or deviatioh
from spherical symmetry occurs in helium, this should be the best func-
tion possible of the factorable form (1),

The remainder of the functions listed in the table are due
to Hylleraas7 who has practically completed the solution of normal
helium through his comprehensive and successful investigations{ As
seen from the selection of his trial functions listed in Table IV,
weve functions are now available for helium of almost any desired de-

gree of accuracy, The only reason for enumerating so many is that for

>

E,A Hyllersas, Zeit,f,Physik, 54, 347 (1929), Eq, (11).

C.Eckert, Phys,Rev,, 36, 878 (1930),

J.A, Gaunt, Proc,Cemb,Phil,Soec,, 24, 328 (1928),

E,A.Hyllersas, Zeit,f,Physik, 48, 469 (1928); Ref, 4; 65, 209 (1930).

3 o O
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meny applications a simple function of intermedisate accuracy, such as

No, 13, is satisfactory,



¥

Ox%

10

Table IV = Approximate Wawve-Functions

and Energies for Normal Helium,

Wave-functions
Experimental

Perturbation Method, zeroth orde

" b first order

1 . "

Lennard-Jones
_¥n,
Screening constent &, =-£
" " Lemmard=-Jones
}5:,@va (/__e—cu)
Y= 2”5+ cwu 2~ 7%
- (I'r’
a IPER C %

'

y__;/é-‘f’%—b’h_l_j—f”z_b’\h

11 Hartree method

12

13

14

156

16

Y = 25 (1+ct?)

Y= 275 (1 +cu)

- 4?':53 2 cw

‘fg(/+C,u+C.z t-l)

L
= j_fs(/-fC,Z(*C.ztz'/'CJS
+.

g ST+ Cr 2?

17 Hylleraas' best function

Y= Cuga. & smtlu™
1l

Energy
-2,905

r -4, 000
-2,750
=3,026
-2,8476
-3,1627
see no, 5
see no,13
-2,8603
-2,8754
-2,875
-2,8768
-2,8912
-2,8896
-2,9024

=-2,9032

=2,906

*-}(f‘for this function is of the form (1)

s=r, +rx; wu=r,;

t=r -rg

Diff,
-1,095
.155
-1,121
. 0567

- ,258

. 045
. 030
. 030
.028
.014
.0186
. 003

. 002

. 000
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Paremeters

=2 207

S=2% ; p=/17

$=/ 899, C=036Y

f=/ gé}. C = 0,26

{ S:/ 67/6 _1' C,= 0., 30
C

2—‘—‘0.0‘/
=1 8/8
C'=0.3530
CJ:O,/Q?
C3=—-O./0°6

C": 0,023
Cpr=0.032

12 lerma.
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Wave Functions for the Ground State of Lithium and Three-Electron Ions

E. BrigHT WILSON, JR., Gates Chemical Laboratory, California Institute of Technology
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Improved wave functions and ionization potentials have
been obtained for the configuration 1s* 2s, by using the
variation method with a variation function containing four
parameters. The wave function for the whole atom is of the
determinant form, built up of K and L single-electron
functions. The K function used is hydrogen-like with one
parameter, the effective nuclear charge, and the L function
is of the form are™" —e¥7. A simple rule is obtained by

means of which it is possible to write down the wave
function for any three-electron ion without further calcu-
lation. The deviation of the calculated ionization potentials
from the observed values is 0.9 percent for Li I and de-
creases to 0.3 percent for C IV. Comparison is made with
the results of other investigators and curves showing the
wave functions and electron density functions are given.

INTRODUCTION

HE solution of the Schridinger equation for

the hydrogen atom and for the ground
state of the helium atom! has been carried out to
a high degree of exactness, but the best approxi-
mation which has been obtained for the lowest
state of lithium is not nearly so accurate. While
it is probably not feasible at present to obtain a
result for the energy which is superior to the
experimental value in accuracy, it was thought
worth while to test out on lithium wvarious
possible approximate solutions, partly because
the better agreement with the experimental
energy and the correspondingly improved wave
function and electron-density function were con-
sidered important in themselves and partly
because this study would provide a basis for
similar investigations of heavier atoms.

GENERAL METHOD

Slater? has shown how to build up a properly
antisymmetric wave function for a many-
electron atom by using a determinant whose
elements are functions of the coordinates of a
single electron only. In particular, if the inter-
action of the electrons with each other is regarded
as a perturbation and neglected in obtaining the
zerott order approximation to the solution of the
wave equation, there results for lithium:

LE, A. Hylleraas, Zeits. f. Physik 65, 209 (1930).
2 J. C. Slater, Phys. Rev. 34, 1293 (1929).

1A1 Ay, A4;
\bO:Egl EQ 453 (1)
B, B: B;

where A4, is the 1s hydrogen-like wave function
with positive spin for the first electron; 4, is the
same function with negative spin for the second
electron, and Bj;is the 2s hydrogen-like function
with plus spin for the third electron.

The method adopted in this work was to seek a
better approximation by the use of new functions
for B based on the hydrogen-like functions but
generalized by the introduction of parameters
whose values were then determined by the
application of the variation method.

The solution of the variation problem:

SE =3[ S W HYdr| Sy *Ydr]=0, (2)

where ¢ is the function varied and H is the
Hamiltonian operator for the system, is equiva-
lent to solving the wave equation

Hy=Wy (3)

with the usual boundary conditions. In particular
if this variation problem is not completely
solved but instead a trial function ¢ used which
contains a number of parameters which are
varied until E is a minimum, then it can be
shown® that £ is an upper limit to the energy,
and ¢ is assumed to be an approximate solution.
The method which was used in this problem is

3 C. Eckart, Phys. Rev. 36, 878 (1930).

210



GROUND STATE OF LITHIUM
applicable to the lowest state of any multiplicity

or total angular momentum.

PrEVIOUS WORK ON LITHIUM

Hargreaves* has applied the method of Hartree
to lithium, but his results have not appeared in a
very usable form. Hartree’s method of the
“self-consistent field” is not based on the vari-
ation principle, but Slater® has shown the relation
between these two procedures and in addition has
pointed out that several important corrections
are needed before the energy values obtained can
be compared with the experimental ionization
potentials. The curve Hargreaves publishes for
the wave function cannot be used for comparison
since he gives no scales and has not made the L
function orthogonal to the K function, so that its
shape is of little significance. However, he does
give a table of the self-consistent field, and these
values will be compared with other results in
Table I11.

Eckart,® using essentially the same method as
is described in this paper, employed hydrogen-
like functions with two parameters, the effective
nuclear charges for the K- and L-shells. Thus if
we use a, b, ¢, -+, to represent single electron-
orbit functions without the spin factor and
A,B,C, ---;4,B,C, -, for the same functions
with plus and minus spin, respectively, Eckart’s
solutions are

(K-shell functions) ¢ =e7¢"

4
(L-shell functions) b=e " (yr—1). ®

There appears to be an error in his energy
value for lithium so this has been recalculated
and will be found in Table I.

Guillemin and Zener® introduced an additional
parameter {«) into b, obtaining thereby a con-
siderable improvement in the energy. Their
function is:

b=er(ar—1) (s)

and values for the energy will also be found in
Table I and of the parameters in Table II. In
addition these authors varied the exponent of »

4 J. Hargreaves, Proc. Camb. Phil. Soc. 25, 75 (1929).

5J. C. Slater, Phys. Rev. 35, 210 (1930).

®V. Guillemin and C. Zener, Zeits. f. Physik 61, 199
(1930).
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TABLE 1. Energies and donization potentials (alomic

units: e’/aq).

Toniza-
tion
Total poten-
energy Diff. 9 tial Diff. %
il
Experimental —7.4837 — — 0.1983 — —
4-Parameter —7.4192 0.0645 0.86 .1965 0.0018 0.91
Guillemin- —7.4183 0654 .87 .1956 .0027 1.36
Zener
Slater —7.4179 .0658 .88 .1953 .0030 1.51
Hydrogen-iike —7.3922 .0915 1.22 1696 .0287 14.5
Be IL
Experimental —-14.3422 — — 6704 — —
4-Parameter —14.2639 .0783 .55 .6663 .0041 .61
Slater —14.2584 .0838 .58 .6607 .0097 1453
B III
Experimental —23.476 — — 1.395 — —
4-Parameter —23.363 .113 .48 1.390 .005 .36
Slater —23.350 126 .54 1.378 017 1.22
Cclv
Experimental —34.778 —  — 23722 — —
4-Parameter —34.713 065 .19 2.3650 .0072 .30
Guillemin- —34.698* .080 .23 2.3496% .0226 .95
Zener
Slater —34.690 .088 .25 2.3422 .0300 1.26

*This is probably not quite the best value obtainable
with this function.

TasLe I1. Parameter values, except for four-parameter

function.
£ 7 o £ n @

Lil Be I1
Guillemin-Zener® 2.688 0.630 5.56 3.688 1.158 5.88
Slater 2.688 630 — 3.682 1.09 —
Hydrogen-like®?  2.686 .888 — 3.70 142 —

B III CI1Vv
Guillemin-Zener® 4.688 1.671 5.56 5.688 2.179 5.88
Slater 4676 1.52 — 5672 195 —
Hydrogen-like* 4.72 196 — 571 248 —

in the coefficient, but found in this case that its
best value was one, the hydrogen-like value.

Zener” and Slater® noted that « is fairly large
and concluded that a good result would be
obtained with the very simple function

(6)

b=re .

? C. Zener, Phys. Rev. 36, 51 (1930).
8 J. C. Slater, Phys. Rev. 36, 57 (1930).
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This function was tried and, as is seen in Table I,
found to be remarkably good considering its
simplicity. It is better than the hydrogen-like
function with screening constant used by Eckart,
although, of course, not as good as Guillemin and

Zener’s function, of which it is a special case.

FuNCTIONS INVESTIGATED

The type of function which has been used in
this paper, a natural generalization of Guillemin
and Zener’s function, is

(7

The same type has been used by Slater® in seeking
analytical expressions for Hartree's graphical
wave functions. Results which are obtained by
using (7) are listed in Table I under the heading
““4-parameter’’ function.

The following form was also tried but found
not to give as good results as (7):

b=qare " —et".

b=care " +ref".

(8)

Since the variation principle is applicable to
the lowest P state of the atom, the following
function was tried for the configuration 1s? 2p of
lithium:

c={(ye " +e)r cos . )

However, the surprising result was obtained, on
varying the parameters, that this function re-
duced to the simple screening constant type used
by Eckart. In other words, the best values of the
parameters v, « and X were such that y=0;x=AX\.
Therefore, the calculated total energy for this
configuration, —7.35039 €®/ao, is not different
from Eckart’s value, but by combining this with
the best calculated value for the ground state,
—7.41915 €*/a,, a new result for the resonance
potential of lithium is obtained, 0.06876 e€*/a,,
which is to be compared with the experimental
value, 0.06794 e2/a,. The difference is 0.0082 */a,
or 1.2 percent.

The calculated energy of removal of the 2p
electron from 1s? 2p of lithium is 2.2 percent
greater than that for a 2p hydrogen atom,
¢2/8a,, whereas the experimental value is 4.2
percent greater than ¢?/8a,. The discrepancy of 2
percent is probably to be attributed to the effect

9 1. C. Slater, Phys. Rev. 42, 33 (1932).
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of polarization of the K-shell by the valence
electron, the effect of which is not taken into
consideration by any of the variation functions
used in this paper, approximate calculations of
the polarization energy" leading to somewhat
larger values than the 2 percent needed. It is of
interest that these calculations show, as sug-
gested by Pauling and Goudsmit,"* that there is
appreciable interaction of the valence electron
with the core of the atom other than polarization
even for “‘nonpenetrating’’ orbits.

DEeTtaiLs oF METHOD

When the units a,=h%/(d7%ue?), 2Rhc=¢e*/a,
and e are used for length, energy and charge,

respectively, Schrodinger’s equation for the
three-electron problem becomes
Iy=(—3V'+V)y=Wy (10)
where
V:1/7’12+1/7’23+1/7’13—Z/7’1—Z/7’2—Z/7’3. (11)

v2 is the Laplacian for the coordinates of the
three electrons, and Z is the atomic number of
the atom or ion. As pointed out by Hylleraas,™
application of Green’s theorem to the term in (2)
involving the Laplacian yields for E:

E=(M' —2L")/2N’ (12)
where
M’'= fgrad ¢|%dr
L' = — fy*Vdr (13)
N = [y*ddr
Further, if the change in scale:
r'=Er; n'=nft =(/¢ (14)

is made, it is possible to differentiate E with
respect to £, solve for the minimizing value of £
and insert this value in E. The result is

E=—IL}2MN (15)

where L, M, N differ from L', M’, N’ only in that
the substitutions (14) have been made.

The other parameters enter in such a compli-
cated fashion that it is not feasible to obtain the

1], Pauling and S. Goudsmit, The Struciure of Line
Spectra, McGraw-Hill, New York, 1930, p. 47.

11 Reference 10, p. 48.

2 . A. Hylleraas, Zeits. f. Physik 54, 347 (1929).
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minimum by differentiation so resort was had to
actually computing E for various values of the
parameters and graphically determining the
minimum. This is a tedious process at best; the
quickest and most certain method was found to
involve constructing rough contour maps of the
energy surface. An estimate was first made of the
probable values of parameters. One of these
(usually %’) was inserted in the formula for E
and a survey of the {’, o plane made by giving {’
a number of fixed values and plotting E as a
function of «’. Each of these curves then gives a
section of the energy surface, with £ thought of
as a function of o’ and {’ only. From these a
contour map can be constructed and an estimate
made of the best values of &’ and {’ for the value
of #' originally chosen. With these values of o
and {’, %’ is then varied until a minimum is
found. A contour map may be constructed for the
o, ¢’ plane with this new value of o’ and the
best values redetermined.

K-SHELL FUNCTIONS

In all the cases discussed here, with the
exception of Hargreave's paper, the function
used for the K electrons was the same as in
Eckart’s work, i.e., a hydrogen-like function
with one parameter, the effective nuclear charge,
as in Eq. (4). It is well known that this is not the
best function to represent the K electrons, some
term such as one of those used by Hylleraas,!?
for example, to correct more exactly for the
repulsion of the electrons giving a better result.
However, the introduction of even the simplest of
these interaction factors, such as (14~79),
enormously complicates the problem in the case

4G,
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of lithium and so was not regarded as practicable.
Instead, the ionization potential was calculated
by subtracting the energy of the Lit ion com-
puted by using the same type of 1s wave
function, the value of the energy so calculated
being: 7.22266 €*/a, for Lit; 13.59766 €*/a, for
Bett; 21.97266 e*/a, for B*++; and 32.34766 €*/a,
for C*++++  Although the total energy of the
lithium atom is, therefore, in error by about
0.065 €*/ao or 0.86 percent in all these examples
due to the inaccuracy of the K functions, the
assumption made that this error is nearly equal
in the ion and in the atom is well justified by the
close agreement between the experimental and

theoretical ionization potentials as given in
Table 1.

COMPARISON OF I, FUNCTIONS

The 2s functions which have been enumerated
do not, at first glance, appear to be very similar,
and it may seem strange that such different
functions can all be even moderately good
approximations to the true solution. The reason
for the discrepancy is the use of single-electron
wave functions for comparison instead of the
wave function for the atom as a whole. Slater®
has pointed out that it is possible to make the 2s
function orthogonal to the 1s function by adding
to the 2s a certain fraction of the 1s function.
Since the wave function for the whole atom is a
determinant, it possesses the property that the
addition of the members of any row multiplied
by any factor to the members of any other row
does not change the value of the determinant.
Thus:

A; As: As A A, A
1. - 11 - — _
¢/=—1A1 A2 A3=—1 Al AZ A3 (16)
6% 6%
B1 B: B; By+B841 Bet+BAs Bs+pBAs
and in particular 8 may be so chosen that b later tabulated have been normalized to 4r,
1.e.,
S Ay(Bi+p41)dr=0. a7 S Addr= fBidr=4r. (18)

With this value of 8, the single-electron functions

are mutually orthogonal, since 4, and 4, have
opposite spins. In addition, the functions ¢ and

The orthogonalization and normalization make a
and b unique (as long as functions of different
spins are not combined), and it is thus possible to
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compare the different approximations which have
been obtained.

As shown by Fig. 3, the four approximations
already enumerated are remarkably near to each
other. The only one showing any great deviation
is the hydrogen-like function, which is also the
one giving the poorest energy value. The simple,
so-called “nodeless’” function of Slater® is seen
to be miscalled, since, when it is orthogonalized,
it has a node in practically the same place as the
more precise functions.

RESULTS

The parameter values obtained for the func-
tions of Guillemin and Zener, Slater, and Eckart
are found in Table II. In the case of the four-
parameter function, the best parameter values
fit into a very convenient rule if we introduce the
idea of screening constants. The function for the
L electron which has been used, Eq. (7), consists
of two terms (before orthogonalization), and it is
seen that the first term is the more important at
large distances, because of the factor 7 and the
smaller coefficient in the exponent, while the
second term is the more important for small
values of 7. In the simple hydrogen-like function
analogous to this, there is only one exponential,
whose exponent is Zes;./2, or (Z —0)/2 if we define
the quantity o, the screening constant. ¢ thus
represents the shielding effect of the inner
electrons which reduces the attraction of the
nucleus for the L electron. Likewise in our more
complicated function the idea of the screening
constant can be introduced, only here two
different screening constants for the L electron
are needed, since there are two exponentials. The
results which are obtained are that these screen-
ing constants are essentially independent of the
nuclear charge and, therefore, provide a con-
venient method of summarizing the results of the
variation problem. Furthermore, to a sufficiently
close approximation, the screening constant for
the inner part of the 2s function is zero, so that
in a sense the four parameters originally used
have been reduced to three.

The parameter « can also be related for the
ions of different atomic number. It is found that
in all four cases investigated o« comes so close
to 0.5 that it is very convenient to assume that

BRIGHT WILSON,
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—-23.302475
~23.362500
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‘23,3625254—‘F
-23.362550
048 049 0.50 031 052

o —

Fic. 1. Curve showing the variation of E with the
parameter o« for B IIl, with the four-parameter function
with 01=0.31, ¢2=1.67, {=Z/2.

value for all three-electron ions. Fig. 1 shows the
way FE varies with « in the case of B III.
Since a=da't and £=Z—o0y, if ¢; is the K-shell
screening constant, therefore,

a=0.5(Z— 1) =0.5(Z—0.31). (19)

Introducing the values indicated above for the
parameters 1, {, @ and £ we obtain for the best
wave function for the state 1s? 25 25 of any three-
electron atom or ion the expression

v=(1/61) pPA4,B;. (20)
a=(gr)etr (21)
b=kiarem—etrBeir} (22)
where
=7Z— =Z/2
£ o1 Y / } (23)
7]=(Z—<72)/2 a=0.5(Z—0a1)
g=84 1 _ 3a orthogonality
(§-+E)3 (n+$)4 constant
a2 1 B2 48«
kel 714
38 (n+o)?

N 48 168 ]}*5
(n+8&)* +§&)°

and Z = atomic number of ion; and ¢;=0.31, K-
shell screening constant. ¢3=1.67, L-shell screen-
ing constant. The sum in Eq. (20) is over all per-
mutations P of the numbers 1, 2, 3, odd permu-
tations having the negative sign. (This is another
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way of writing the determinant of Eq. (1).) The
single-electron functions a and b as given above
are individually normalized to unity and are
mutually orthogonal.

The energies obtained with the various func-
tions are tabulated in Table I, which also con-
tains the calculated ionization potentials. The
experimental energy values are listed in the same
table, together with deviations and percent
deviations of the calculated and observed quanti-
ties. It is seen that the poorest values are those
obtained with the hydrogen-like function of Eq.
(4), even the simpler function put forward by
Slater and given in Eq. (6) being considerably
better. The error in the ionization potential
computed by the use of the four-parameter
function is only from thirty to seventy percent of
the corresponding error found when Guillemin
and Zener's function is used.

42,
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Fig. 2 is a plot of the four-parameter single-
electron function for the 2s electron normalized
to 4= and with 8 adjusted so that the L and K
functions are orthogonal. Fig. 3 gives 47722, the
distribution function integrated over all angles.
On comparing the size of the two maxima in Li [
and in hydrogen (2s state), the effect of the core
electrons of lithium in reducing the probability of
close approach to the nucleus by the valence
electron is clearly seen, in agreement with the old
concept of the penetrating orbit, in the inner
segment of which the electron was speeded up by
the increased effective nuclear charge, diminish-
ing the time spent in traversing this segment. Fig.
4 gives the total electron density function for
Li I, integrated over all angles. The very steep
rise at the K-shell and the more spread-out
maximum of the single L electron are shown.

02

o

-0.2-

_o‘aﬁ

—-1.04

1.2~

T T T T

0 i 2 3 4

T~

T T T T !

5 6 7 le) 9 10

F1G. 2. Plot of four-parameter orthogonalized single-electron wave function b for 2s electron, normalized to 4.
r in atomic units, Li 1.
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T IntErRNAL FIELD

Hargreaves! has given a table of values for the
self-consistent field for lithium, obtained graph-
icallv. This is expressed in terms of the “effective
nuclear charge for field,” which is the number Z;
such that the charge Z,e placed at the position of
the nucleus would give the same field (not
potential) at the point in question as is actually
{found. In other words:

Zy=rH a1 [ar) (24)

SN aHomic units.
In Table TIT the values of Z, found by
Hargreaves are listed. In addition there is also

WILSON,

TR,
given the field due o the nucleus and the two K

TanLe 1. Field due to K electrons. v in atomic units.

¥ Zy—llargreaves  Z;—Eq. (24)

Difference
0 3 3 0
0.1 2.963 2.965 —0.002
2 2.807 2.811 — .004
3 2.539 2.559 .000
4 2.280 2.272 -+ .008
.6 1.773 1.748 -=.025
.8 1.425 1.394 031
1.0 1.219 1.192 027
1.2 1.108 1.089 019
1.4 1.050 1.039 0t
1.0 1.022 1.017 005
1.8 1.009 1.007 .002
2.0 1.003 1.003 .000

036

028

~ ] 2 5 4
-

-

€

o s 8 9

I16. 3. Plot of electron distribution function for 2s clectron, Dy.=47726%, with different types of functions. 1.i T.
A, 4-parameter; B, Guillemin-Zener; ¢, Slater; 1), hvdrogen-like.
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30

24—

18-

D

1.2~

06

[o]

S I 3 PR 4 y ] 5
Fic. 4. Total electron distribution function for Li I, D =4xr%y*, as a function of # in atomic units.

electrons, found by using the K functions pre- | If ais given by Eq. (21), (25) becomes
viously described. To calculate this latter quan- V= —Z/R+(2/R) {1 —e%5(1+£R)}. (26)

tity at a distance R from the nucleus, use is made
of the equation derived from electrostatics for
the field due to a distribution of electricity of
density p=a?

.

Z 87 pF @
= —— ——f r2azdr+87rf ra*dr. (25)
R R Q0 R

As is seen from Table III, there is quite good
agreement between the field calculated in this
manner and that of Hargreaves, the deviation
being about 2 percent at most. This comparison
refers only to the 1s functions used, and not to
the 2s function, however.

ExPrEssioNs FOR N, L, M

Eq. (15) gives the energy in terms of N, L, M, defined by (13). Algebraic expressions for N, L, M
for the configuration (1s)? 2s and for the 2s functions of (7) are given below:

ad=aft; =(/E =/t (27)
2K=¢"+9'; b=147"; f=14+¢; g=1+K. (28)
o’ o't ! o 1. 64
N=7r3{—5—576-——|—384——3— —5———} (29)
7 bs 7 I S L

12 /2 /2 /2

L=1r3{3(ZZ )a—+(1 52— 3)—+3—+6——+(516 384.7) ——57

12 ,2

a 3840
b8 b4(2 +0b)3
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11524 o o o o o o
-+ (4—-2Z) ——4——6—+(128-Z—256) —+1922 —+ (3842 — 384) —
BA(2+b)* K3 g P 1353 bif? bHfs
128q' 384qa’ 15360 15364’ 128’ 1924’ o
+ + + + + + —-3(2Z—3%) —
FEABR R0 B B PO U K4
+(2Z ) (Z—2) b4 (20— 642) — (128 — 64 2, Lo b } )
M o 5 LA A
6 72 ar2 /2 12 ‘l’l' o o g—"’l’ o o o ot
M=rz? ——~+ +384———576———1152 ——6——3 —~128 —+4384 —+2 —
7 b7 be b8 Kt K* b3 b3 K3
Ig-’ ,71, g-/ 1
+384-—+ 4-———+ +——1 8 ——064 —} (31)
i L fe Se

I wish to express my appreciation of the suggestions during the progress of the work. I
assistance of Professor Linus Pauling, who am alsoindebted to Mr. L. G. Bonner for much of
proposed this problem and made many useful the numerical computation.
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In addition to the functions just described, I attempted
to calculate the energy of lithium, using wave functions with inter-
action terms, The complications involved made the problem seem im=-
practical at the time and this line of attack was abasndoned,

The first function of this type tried was:

%=}V’[/+C(n,2+/7“+n,3)j (32)

where {° is a determinant type function using hydrogen-like functions,
similar to those in eqguation (4),

The difficulties encountered were so great with this function,
which includes the interactions between each pair of electrons, that a

simpler one was attempted, namely:

v - ﬁ; o F PA, A, B, %;: (33)
]//2 = /#+ C /7/,2 (54)

A and B are given, as before, by equation (4), This function has in-
teraction terms only for the repulsion of the electrons in the K shell,
* The permutation operator / acts on 72 @8 well as the orbit functions
“A and B so that ;% is anti-symmetric, Zven this wave function, however,
prﬁved impracticel, but it is quite reasonable to expect thet one

modeled closely upon this msy prove to be feasible in the future,
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XII1 - BERYLLIUM

The normal state of beryllium has the configuration
1s°2s® 'S, The presence of two electrons in the L shell instead of
one as in lithium introduces an additional strong interaction which
makes the computation of the energy & much harder problem than lithium,
A satisfactory anslytic solution has not yet been obtained, although
practically p11 the funetions which are fairly successful for lithium
have been tried, Slaterl includes Be in the list of atoms for which
Hartree has computed the wave function but not the energy, using the
self-consistent field criterion, Zener's function:

L= e 1w -1) (1)
has been worked out.2 The results, listed in Table V, show an error
much greater then the corresponding treatment of lithium, The simple
function:

;% =7 £ A (2)
gives very nearly the same results,
I have tried the L function which was used with success for
lithium, nemely:
4= =" (3)
The computation is excessively complicated and the numerical variation
of parsmeters was not very thoroughly carried out, instead only a few
parsmeter values were tried which seemed to be the most reasoneble,
The best energy obtained is so little better than that given by the
very much si.mp'j.er expression (2) that the work was abandoned, It is

of course possible that a further exploration of the minimum of the

15,c,Slater, Phys,Rev,, 42, 33 (1932),
20. Zener, Phys,Rev,, 36, 51 (1930),
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energy integral would yield better results, but this seems doubtful.
Another possibility is that an error exists in the rather eleborate
computations,

Another function which I have epplied to beryllium without
great success as yet is:

=n (x4 27) (@)

This was also applied to lithium but found to be inferior to the type
of equation (3), Only two sets %, A havebeen calculated for
beryllium and here again the value is not quite as good as that given
by (3) although very nearly the seme,

me conclusion is, therefore, that if oﬁly fair accuracy is
needed, a determinant type wave function with K functions:

a = & -¥r (5)
and L functions given by (2) is satisfactory and reasonably easy to
use, If better results are desired, it is necessary to use the numeri-
cal wave functions of Hartree which are probably not as accurate as
the best treatments of lithium, The results of tﬁese investigations
seen to indicate that' no wave function which does not include inter-
action terms can be an especially good approximation in the case of
beryllium, |

In the celculations for beryllium, I am indebted to

Mr, L,G,Bonner, who performed all the numerical work,
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Table V. Wave Functions Energies for Beryllium.

Wave function
Experimental

Zener Eq.(1)
4 =J7,é'77/7' (2)
4= =n e V5 G

b= 7, (x ey 27)

Hartree

Energy

-14.553

-14.557
~14569
-14.557

Energy not

Diff. Parameters

i —

% =0.96
€= 36878

1132 { < =.067

.128

.126
.128

calculated



XIV - GENERAL METHODS USED IN COMPUTATIONS'

There are certain general methods which apply to any atom
and which simplify the computation of parameter values for wave func-
tions such as those which have been discussed under helium, lithium
and beryllium,

Define N, L, M by:

w- Sy ar 8
M= flj/uw‘y’/a‘”“ (2)
L= - [Y ¥ VvIT (3)

where V is the potential energy, Then it will be shown that:
F= Y HYIr= T | (4)
To prove this, use the fact that (VII-1):
= —F I+ V (5)
s0

F= [PHYdr= -5 [V ¥dr+ /2 ¥var (6)

In rectangular coordinates:
Ik aﬂ

ve=2] 557 (7)
80
3% = = 2
Jrrvpar-3 [ [y S A g
But
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Sinece both Vf and %} —> o0 as /Q" — + o , the first term
3

vanishes so that:

3% e =2 r

But
X3 y’x
/7“‘*7&/&"5 5}7 2% (11)

From these, (4) follows immediately,
It usually is convenient to make a change of scale which
will eliminate the effective nuclear charge for the K electrons,

To do this put

gié - ji[

2 ) ,
Sr T S o A U 02
V(;): -772:’__ :-.-—_%_3‘5,..... =§V(f’)

Nig) = gam NGI= N/ g
M(p = gz M= o4

L (g)- g}laz‘, L (3)= L’/?‘?%/ (13)

2 M~ 2 F L
E: ?
2 N (14)
For minimum E:
E_ Em-1L'

or

E=- = | (16)
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Substituting this (14):
E:

£ = [3" L%’," }//v - ,?M,N/ (17)

which is the expression for the energy from which ¥ has been

entirely eliminated,

It % is of the form:

Y=gz TPABGT & (18)
, 74 )
and
fa j/ 6/7,"‘—‘- Qo ,ZZZ'« (19)
e N= =2t [PAYPA DT [pBlPB, dry
AP
= ;{;//DA,*JDA: ar; -/PB;/Dﬂ_z A7y e (20)

since from orthogonality / must equal /' , There are %/ A% and
each will give the same value since they differ onlyfin the order of

the integrals,
N:/a,*‘e, a7 ,/4%45...... (21)

It should be noted that if an orbit function, say e, is occupied by
two electrons, with plus and minus spins, then there will be two
factors with a in (21),

In polar coordinates:
N i ' 2 2 2
2 _ ¥ -+ / oz / / l/
/7w47‘/ -221 {lam e sl + R ain?p | 2 @ (22)
Since 3& is entisymmetric,

M=% [ 12l B rm ] }47‘ (29

But ’
on, V! ; I (24)
where
2 X

X,* ~ on, | - (25)
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, // _allidr:_l Z’ f/}’A; @*C;’,, F’A,a‘ B, Cy A7 (26)

For non-zero terms, /A =/’  since all but 1* factors are orthogonal

otherwise,
For ~ =7F'

, there are (m=l)! permutations which leave

the same letter with the subscript 1*, all of which give the same value,

»* A ¥ / ¥
Mz%l R f{AﬁnA,x + e A/° A/" + /7,-2%%)1 Ar AT} d’; ‘ (27)

‘ jBJ A5 - [CCs el Ta

where

24, . _ 24 ‘
A,azé_;): ) A;—“;ﬁ”@tc.%ﬂgl.zcl . (28)

and R is an operator which interchenges, in turn, each of the functions

B, C, ete, with A in the first bracket,

Since
I % '
V=2 Sy - o (29)
Ll i<
2 B
= Sprrk 4 22 [P F A = —CrO (30)
= v 2=t
Y
Using (18)
ZIA’Z (PA & Cs /—/_;:-I FIAIBzC_?"") (31)
= LF
From the seme considerations as under N:
D='+z%}RfA."A,?’zﬁ-/a"ﬁ,d?:'/c;c;a’E- (52)
where R is an operator shifting l/r to each factbr in turn, There are
% terms in this sum,
SIS £ (PATR G |7y | PAB G ) (33)

C %/ ij ABr
For every F there will be two P’ for which non-zero terms result;

one equal to P , end the other differing from £ by the single

interchange (Z j).
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.'. (?:(o,"(_o.z (34)

CD‘ = Z R ,/.A'*B:: #,_.l A, B, dr/g ‘_/C;‘C:‘.C/T._/"" (55)
rR

where R shifts  [/v, to a different pair A Bs, A,Cg, BgCs, ete,

There are %(%-/)/2  terms in the sum .
C;: ZK_/A,’BQ*;%; B,Azdt'l'jc;c_gd?}"" (36)
R

This is similar to (35) except that the interchange (¢j) has been
made, Many of these terms are zero because the spins may not match

in the interchange integral,

Certain integrals will occur frequently asnd may be symbolized:

[ atdr = A | [aindn = F

[47dr = B [araii d7 =6
f(%%)adﬁzc' fq'%jf—/li, d7,= H (37)
/(a%)g‘{”’ﬂl - Jada b, AT
farg - £ A AT A

By using these and applying the general rules just developed, the
following expressions for the three-electron problem, configuration
15228 , are obtained:

_ a2 | M=2C'AB + D'A7
N=A"B (38)
J =2FZ EAB+ZFA =BG -2AH+AT,
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For the four-electron problem, configuration 152232 , these becone:
N= A?B? M= 2A°BD + 2A8B%c
/= @z ABE'+22A8F-B°G-AK-YABH'+2ABY.
(39)
Tables of integrals such as these, with special wave functions ,are given
in the appendix,

In carryingrout & variation treatment, especially for the
same atom in successive states of ionization, it is convenient to
calculate the numerical values of the integrals A, B, ¢’ ete, separate=
ly and combine these numerical values by means of (39) to get the
energy, rather than combining the integrals algebraically by (39)
snd then performing the numericel computation, because most of the
same quantities will occur in all of the different ions and do not
need to be recalculated, but merely combined in different ways, such

as (38) and (39),
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B-Integrals Involving Special Wave FPunctions.
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