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SUMMARY

As one approach to the problem of analyzing missile wings of
approximately delta configuration for stress and deflection character=
istics, a uniformly thin plate of sector planform clamped along one
radial edge has been considered,

It is shown that an infinite set of deflection functions,
resulting from a product solution to the double Laplacian, may be
generated, but practicel utility is impeded because the functions are
non-orthogonal, It is believed that should the importance of the
solution warrant, the deflection of a sector under normal loading may
be found by using a combination of the deflection functions, the
Trefftz variational method, and high speed computing machinery,

Another section of the report is devoted to a study of the
stress along the clamped edge in the vicinity of the corner, and it is
shown that the stress varies from zero to a mathematical infinity as
the opening angle of the sector increases from zerc through ninety
degrees with the stress singularity becoming progressively stronger as
the opening angle is increased, Experimental datas are included that
show engineering sgreement with the theoretical results, for the case
of a delta plate of thirty degree opening angle and varying trailing
edge angle,

In conclusion, some remarks are made upon the application of
the sector results to swept rectangular plates by means of a hydro-
dynamic analogy wherein the possibility of obtaining approximate

overall stress distributions is indlicated,
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I INTRODUCTION

One of the more important problems arising in the field of high
speed seronautics is connected with the structural design of swept
wings., Recently a considerable amount of effort has been expended in
this direction with the modes of approach being directed along one of
the following three lines,

The most practical solution has been to build and test
experimentally a scale model of the desired full-scale wing, and, in
so far as the particular specimen is concerned, the answers obtained
have justified this method., Unfortunately, however, and aside from
the great cost of an experimental program, it frequently happens that
the structural configuration changes during the manufacture of the
aireraft and there is no one frozen design which the structural
engineer feels safe in testing, Such a fact leads one to look for some
design parameters, in this case associated with the sweep angle, which
will permit at least a qualitative answer to such questions as the
variation of the root stress with sweep angle, With such information
at his disposal, the designer feels a bit more secure in extrapolating
experimental results in case the design is changed slightly from the
initial configuration,

For the particular problem of the swept wing, some solutions
have already been presented in the form of beam equations, which have
proved satisfactory for the zero sweep case, with a more or less
empirieal correction factor dependent upon sweep, Such solutions,

which are certainly desirable from an engineer's point of view, are
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usually restricted to the range for which the resulis have been sub-
stantiated experimentally., It would therefore be very useful to have
an exact solution against which empirical formules would be compared,
The deviation between the exsct solution and the actual behavior of
the specimen would thus be reduced to a question of the validity of
the assumptions used in arriving at the solution,

As a first step, an investigation has been made to determine
what simplifying, though rational, assumptions can be applied to a
complex wing structure of an aircraft or missile which would permit
an idealization of the structure amenable to precise mathematical
treatment, without destroying or arbitrarily eliminating effects which
are important to the problem, As the present interest is confined to
wings of high solidity and low thickness ratio, it would seem reasonable
to consider a solid or homogeneous wing such as the type with a double
wedge cross section, Such an analysis leads directly to simmlating
the actual wing by a cantilever plate of variable thickness and taper,
As is well known, the solution of this problem involves at least a
fourth order partial differential equation with boundary conditions
for which solutions are known only in isolated cases, It further
appears that as yet there exist no solutions which take account of
variable thickness, and hence the idealization which still retains
some semblance of the actual structure and yet promises some hope of
solution is a cantilever plate of constant thickness,

Having an idealized structure, one must next examine the

boundary conditions, Here again it is found that a rigorous solution
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for the actual boundary conditions at the supported edge is too
difficult for the present, Actual wing-fuselage joints vary widely in
form, and while it is theoretically possible to simulate the boundary
conditions by an elastic support, only the simpler case of a fixed
edge will be treated here, The philosophy is to find one solution
first, if possible, and then to introduce the additional complications,
The idealized boundary conditions are thus zero deflection and slope
along the support, and unloaded boundaries elsewvhere,

With the problem formulated in this way, one planform has
already been treated., The deflection of a rectangular plate of
constant chord for arbitrary sweep angle is given in References 1 and
2, This solution is most useful for aircraft wings, as distinguished
from missile wings, In order to examine the latter type of planform
in which there is also some interest, it is proposed to investigate a
constant thickness plate of sector planform supported along one of its
radial edges, It will be shown that while the deflectlion may in
principle be represented satisfactorily by a series of eigen functions
which seems to converge satisfactorily, the non-orthogonal character
of the functions requires lengthly, though simple, computations which
impede their utility, On the other hand, these same functions permit
the character of a stress singularity in the angle between a free and
fixed edge to be determined very quickly, This latter phenomenon is
of course related to the build-up of stress along the rear spar of a
swept back wing,

Finally, a solution using three eigen functions for a sector
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under uniform load is included to indicate the method and probable
convergence, and the paper is concluded by some remarks on other
approximations, and by posing a mathematical problem upon the complete-

ness of the eigen functions,



II THE EIGEN VALUE PROBLEM

According to the classical theory for the bending of thin
plates(3), the governing partial-differential equation in polar
coordinates for the deflection w(r,0) of a plate in a planform region

R subject to a loading q(r,®) normal to its surface is

2
¥ oL, .Y ) -
AA ur(n ©) = [ 3 + 2 dn + Y- wian,® = “S‘ q‘k,@)
£t
where D= YD) is the flexural rigidity.

In order to apply the solution of this equation to a particular
problem, two conditions must be prescribed along the boundary C of the
region., (Figure 1)

Because of the linear nature of the thin plate theory it i1s
permissible within certain limits to superimpose the effects of various
simpler loadings and boundary conditions to attain the desired result,
The deflection function may therefore be separated into two parts; one
the complementary solution to the homogeneous problem, and the other
the particular solution for the given loading, As the latter solution
presents no particular difficulty, only the homogenecus or complementary
loading (i.e., q(r,8) = 0 ) will be considered, This, of course,
implies that the boundary conditions over C are not homogeneous also,
or else only the trivial solution of zero deflection under zero load
would result,

As the first step toward finding a solution for the problem of
a general cantilever plate of arbitrary planform R, it is proposed to

consider here the case of a uniformly thin plate whose planform is the
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gsector of a unit circle, This type of normalization is arbitrary and
is introduced merely for convenience. Furthermore, it is assumed that
(Figure 1) the radial edges OA and OB are clamped and free respectively,
and some arbitrary sheer and moment loading are applied along the
circumferentlial edge AB, Note also that AB msy be any continuous
boundary, not necessarily restricted to part of an arc as it is in the
following development,
Stating the problem in mathematical terms using the notation
of Timoshenko(3), 1t is required to solve
QAW (18 =0 in R (1)
subject to the following boundary conditions along C,
Along OA, deflection and slope zero,
werno)=o (2)

o)
2HE =0 (3)

Along (B, moment and shear zero,

2
Aw/cor)-—//-v)é—g—‘i—f:,’-"-f@- =0 (4)
BAW A t Fwrnad) s Swira)] _
r o8 //U)af‘/~ om 08 FR 28 J (5)

Along AB, given moment and shear,

2
N (7, 6D = ~p///-z))§,—2 +z)4/w//, 8) =177,/ 8) (6)

//5)—--5 +// :J),, aa/ [ar ,,z//wffa) V/&’) (7)
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In addition, the deflection and slope are to be finite at the
origin,

As a first step in the solution, a product type solution is
assumed for the deflectlion function(4). Later on, some additional
remarks upon the uniqueness and completeness will be inserted, but for
the ensuing development, let it suffice to try as a possibility

#/
w, (n80,) = 7 e o) (8)

where J,, is some constant independent of the point coordinates, When
this function is substituted into (1), it is found that a fourth

order total differential equation in Fp(6) results, namely
53 18) 00t )5 12,20 08D + (3,2 D) U 1) o= (9)
vwhose solution is
£ (8) =512 (A, )8 b, cos (A3 NG #.byy 5225 1) 8 +4, c0503,,-/)&  (10)

As boundary conditions (2) and (3) imply that £ (04, )=A /0, A,)=0 ;
and that finite deflection and slope at r = 0 requireA >0, it is

easily found that

- 4 _ __bs
éﬂ,——@:ﬂ,ﬂ-ﬁn*/—- X7

so that the deflection function now becomes

H;ﬁﬁg;)”)z//bf;gk/&$ﬂ%ﬁ0§“&%YZW”QQZ
(11)

# By [Ty 1) 5702 (N DO = (221) 51120, 0E]



8
Turning next to the boundary conditions along the free radisl
edge where & -cr , the boundary conditions (4) and (5) using (8) are
equivalent to

//]"“/[//\,.,.*/)//,t VA, FOR) 4 £ pac)] =0 (12)

P / L 22t (1= 020,, (2, 2] F let) +/‘”’/or)/7 =0 (13)

where the primes again signify differentiation with respect to & ,

Next substituting the expression for F,(0;1), equation (10),
into these boundary conditions (12) and (13), there result two
equations in A, and By, which must hold for all values of r, except pos-
8ibly the origin

ﬂﬁ”-//fl}iﬁ*l]mé‘aﬂﬂ) a -[A,,*,%;g]dos (A7) a‘]ﬁ,? (14)

* [ (g 1Ay 1) 5727 (At 1) O ~ () ,,+/)[/1 ”-fl‘f-)yxfzm,,—/)af 5,,.]= o

o /f//b?f/);//yaﬂw)a' —/ 2, * /—‘?_——;i)]y/f; //),,—/)q'f/),, (15)
= [N DO 1) cas R DA = (2 D) (A ;—91‘,-,—’3 )cos(A)afB, [=0

For there to be other than the trivial solution, the determinant
of these latter two equations must be set equal to zero which leads to

the characteristic equation of the plate

74 1) 2
/-~ ;;;fwz -+ sz;) ;'os,ezﬂq’—'/ﬁ;a;,?cx)aﬂ =0 (16)

The solution of equation (16) then will determine a value or

values of the parameter A,,, and consequently fix the ratio of 4, to
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By, but not their absolute values as equations (14) and (15) are
homogeneous, With the exception of an arbitrary multiplicative
normalizing factor then, all the constants in (11) have been evaluated.

The significance of the subsecript n now becomes evident, If
there are N values of A, which satisfy (16), one may then form a
linear combination of the functions (11), and choose the constants
8o as to satisfy, either exactly or in the mean, the boundary
conditions (6) and (7) along the are. Before turning to this point,
which involves questions of the completeness of the set of functions,
the number of possible solutions to the characteristic equation will

be investigated,
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III THE EIGEN VALUES

Two items should be noted in equation (16)., First,
£(A,) = £(=2,); and second, there are only a finite number of real
values of the eigen parameter i, ., (To avoid possible confusion, it
night be remarked that the word eigen is used in its broader sense of

racteristic, as differentiated slightly from its more frequent and
familiar usage in connection with Sturm-Liouville theory.) Now in
order to obtain an infinite set of eigen wvalues, which is certainly =
necessary condition for a complete set of functions, the eigen values
must be considered as complex, This of course does not destroy the
even property of the eigen equation but merely means that if
An = 8y +iby is a solution, X 5= -a, % ib, and A = a; = iby are
also solutions,

As a trivial illustration of the computation of the eigen
values, it is instructive to digress momentarily and consider the case
of a =7 , for which the eigen equation takes a partieularly simple
form, namely,

cos(R1A,) = =2,462 (V= 0.3)

In this case there are obviously no real roots, but assuming
Ap complex, say an+ 1bp, there are two simultaneous equations;

cos (27 ay) cosh (21Mby,) = «=2,462
sin (27 a,) sinh (21Tbn) = 0
so if

sin (27Ta,) = sin (aT) = 03 T n = 0,1,2,3,e00

-s

then
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cos (27a,) = cos (n1) = (=-1)2
but as cosh (zﬁbn)z 1l this requires t n = 1, 3, 5, + « » and thus
cosh (27]'bn) = 24462

Hence

_ -1 -
b, El*n" cosh=1 (2,462) 0.2467

“we

n =2
and therefore
A= 52 0.246M 5 I no=1,3,5 «..
or in notation consistent with later development

M=l 20246718 3 n = 2, 4,6, ...

For the special case of o =77, 2=0,3, the eigen constants

are easily found to be

)
Re Ap = 244464 (a + 1)(-1)?
o
In Ay = 6,4389 (=1)2
ReB, = 0
B
In B, = 4.8857 (=1)2 no= 2, 4y 6, ces

Returning now to the more general problem of solving (16), write
R, T = ,+ 2 ) F L0, 3 En = 0, 2, by 6, eee

Then setting the real and imaginary parts of (16) separately equal to
zero, there result two simultaneous transcendental equations which are

most conveniently solved "by an iterative process making use of the
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asymptotic values at large n for the initial trial veluea, The
detailed method of caleulation is given in Appendix I and the results
are summarized in Table I,

Thus having illustrated a procedure by which an infinite set of
discrete A n Velues having their limit point at infinity may be
obtained, the eigen values are ordered according to their absolute
values, including the real roots of (16) in their proper places,

Knowing the eigen values, the next step i1s to evaluate the
constants A, and By specifically. Inasmuch as the problem is homo-
geneous, only the ratio of A, to By is independent which is immedistely
apparent from (14) and (15). It develops then that a simple choice of
constants using (14) is

A0 =A%) 5972 14 )X # (T2 7‘1)-"2)//\ #1) SH2 (A=) (a7)
B, (= —(a2)) cosr)a (215 —2) o5 (a-pa (18)

where to simplify the notation, A = a + ib is understood to mean
;\n = an -+ ibno

Separating into real and imaginary parts, the constants become

e Ay, = f b7 (s (o)t coskh b] - 2ab [f035 s ) swate b ]
# [ //%y - ]( ars) # 52]/-}//? (a-ox cosk bx] (19)
_[é (7{_’.32..24-/)][:'05 (-t sumrtp boc ]

T Ay = 2 Sprz (DX cOsh b # @%b cos @) suot b
~/-[(.7f2) —a) @)+ é”][c'od (@~ J‘//?/z,éa’_/ (20)

+[é 3"”—20—/)][.;7»@4)« cossh éar_/



Re& B, = = (7)) CO5 (@41) X Ot bA — b Sz (@ #2) KX S/72/ ot

21
+ bsria-rx Simbba —-/%Zj—) «cr) oS (G- ok Osh bx ( )

Tin B, = —bcos(@r)or cosh BX A+ (255072 (A ) OF Srr2f7 X

22
*bcos(@-7) X cosh b +(—/—3:"—g-~a) 72 (D& 5775 b (22)



IV THE EIGEN FUNCTIONS

It remains to examine the effect of the complex eigen values
upon the representation of the deflection function, The A , values:
obtained apply specifically to a particular u,(r,6 ;2p) or eigen
function which, as a consequence of the complex eigen value, has itself
become complex, Here, however, it must be remembered that only the
ratio of A, to B, is independent and the function is still subject to
multiplication by an arbitrary (complex) constent, say
k=5, 15,0

In the first place,

vy '
W (16, 4,) =y ,;[/?e/‘,', (8 An) + (I Fp (8, /),7)]
= pa”+//R95 oS (4, logr) = ZTrrk, s7(4, /oy/')f

* P ﬁ/:z*m £, CoS (b, logr) * Ref swilk, /ayr)]

— ) . . 2) .
"‘1’\77 (/19,),7)7"[?\/” f/’;ﬁ, ),7) (23)

vhere there exists the obvious relationship

w0 8;4,) = r””*;fﬁe £ 008 (8 [0577) = Z 102/ 5172 (By L0 7) _/7 (24)

W, A EN,,)= T [Im/‘; o8 (b, l0gr) +Re £ 57 (b, oF+) j7 (25)

It may be noted incidentally that if the conjugate values,

A n=8&n = ib,, are used ons can easily show
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w?(rn& 3,0 =uCr&;:A,) 3 iee., an even function in by (26)

%(2]/,/, o; ;\-ﬂ) _:-..%‘?’/,;-5/-/)”) 3 i.8., an odd function in bn (27)

It is then easily seen that

. = /o a0l @, @
A’/?M//‘?Ofﬁj/\n)—/é‘”—éé‘”/% ""AW”
@ rz) (2 m @ (:o e
= (80w 80 s
#?

and then as the deflection function is real, the corresponding real

(28)

part is taken, although the imaginary part also satisfies the field
equation and boundary conditions, Forming a linear combination over
the infinite number of eigen functions then gives the most general
solution obtainable under the assumptions.

O 187w e; An) 8, Wm0, f (29)

YEXTAR

Two boundary conditions have yet to be satisfied along the
circumferential length AB, but before proceeding to the evaluation of
é‘m and &, “in terms of the moment and shear, further remarks as to
the form of ReFy(r,0; A ) and InFy(r,052,), and incidentally their
derivatives, are in order, Specifically then, the real and imaginary
angulsr parts of the deflection function, Fn(e) , and their derivatives,
may be summerized in Table II, For each quantity there are in general
the eight terms of the first column multiplied by the coefficients in
the second, third, etc, colums for F, F', ete,, respectively., The
table is constructed for the real parts only but the coeffiéien‘bs for

the imaginary expressions may be easily obtained by a simple interchange
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of the constants as noted.
By use of equations (24) and (25) and Table II, sufficient
information has been developed to evaluate the eigen functions,

Q omgle gegegg

The next problem is to evaluate the constants &, and ¢§é?)in
terms of the arbitrery loadings along the circumferential edge, It is
precisely this point which provides the greatest difficulty as for an
exect solution the determination of the constants requires a complete-
ness proof for the eigen functions, Such a proof is handicapped
because so much of the work in the mathematicel literature has been
carried out on the basis of Sturm-Liouville equations and real eigen
values, It would be presumptive to state that the set 13 complete
even though it possesses certain properties, to be discussed presently,
that make it seem intuitively so. On the other hand, the author has
been unable to estaeblish the incompleteness of the set, Between these
two limits, the most that can be justified is that, using the functions
generated in the foregoing analysis, linear combinations using, for
example, the method of least squares, can be set down which approximate
the desired expansion with the smallest error possible with the given
functions,

One such convenient method is due to Hildebrand(5), although it
is more complicated for this case than satisfying the moment and shear
at arbitrary points and solving a set of simultaneous linear equations,
His procedure is somewhat of a variational method coupled with numerical

integrations permitting s weighting at important points in the expansion,



17
No further description is necessary as the reference paper is readily
available, It may be noted incidentally that if the functions are
complete, this approximation would be better than any other good
approximation based on functions which were not part of a complete set,

In lieu of a formal analysis, some points which lead to an
intuitive feeling of completeness will be enumerated, First, the
elgen values are infinite in number, discrete, and have their limit
point at infinity, Secondly, the complex eigen value is asymptotic to
a complex number having for its real part an integer and for its
imaginary part a value which becomes vanishingly small compared to the
real part, If the value at infinity in some sense then approaches a
regl integer, the eigen functions themselves would approach trigonomet-
ric functions which are, of course, knowm to form a complete set, And
finally, the functions when plotted appear to have interlacing zeros,
Such considerations at infinity in no way prove the desired result but
intuitively might mean that if the behavior is regulated at infinity
where, speaking loosely, one essentially loses track of the individual
functiong, the behavior in the large might be adequate to insure
completeness,

From a rigorous mathematical standpoint, there are at least two
formal approaches one may make to establish the completeness of a set
of functions, One method is to consider the eigen functions themselves,
formally orthonormalize them if practicable, and show that the set has
the necessary closure and completeness properties, Practically
speaking, the calculations are too lengthly and cumbersome to apply in

the present case, Another intuitive argument may be presented, however,
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by considering the case of r=7"., Here the eigen valueg have been

shown to be A= ”2’/* ‘b (n=2, 4, 6, 4+ss)c The eigen functions

in G are then made up of terms containing

A, 8 bO-i8 ;L8 /
e T~ ,5‘, J}—e < ~81/??9 (m =1’ 2, 3, 000)

which ranging over m form a trigonometric (complete) series, However,
no rigorous justification is implied,

The other alternative to proving completeness would be to argue
directly from the solution to the partial differential equation, It
has been proved(€) that the general solution to the double Laplacian

(1) for a convex simply connected region R may be written as
wirnd) =L nb) + PR (1) (30)

where f,(r,0) and fa(r,f) are functions harmonic in Rj that is they
each satisfy laplacel!s equation,

The problem then is to find the two harmonic functions which
are analytic in the sector R, Suppose for the moment that each one

could be represented by its (complex) power series
A rnd)=Fie = 4;:35,7 z7 (31)
L(no) = fha) =5 al, 2™ (32)
then the complex deflection would be represented by

: 2 .
W 8)= Z g, r' s s +i51208] # i [cvs 26 » dsrrrr8]
2

Taking the real part of the deflection function, there remains, upon

renasming the constants
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o0
) 2) 4
wind) =3 fral esrne +a, Smmb) + r7 ve S ensme +a smma)f  (33)
72 77

and now for the infinite summation, it appears that there are two ways

of grouping the terms, namely by letting n=morn=m + 2,

o
were)= 3 $alre 220 7R [p 506 + 2 a0 7R s 128 (34)
7 P ’? led e g

o PN <)) 2) €
wrE)=2r [a) cosr6+tq_,cosn-DB +q, swmrd+ Gy, swmie-8]  (35)

It is easily seen that the representation is the same in either
case, the choice depending primarily upon the ease of application to
the given boundary conditions, The first is essentially that given by
Prescott(7) » vhile the latter form under the transformation n=A,+ 1
is similar to (8)., The difference of course lies in the fact that n
has been taken to run to infinity through integer values, while it has
been found that the Ap values are non-integers,

The completensss property of the eigen functions would automate
ically follow then if it could be proved that the harmonic funetions
in the sector can be represented by the complex power series where the
powers do not necessarily run through integers, One method might be

to consider the complex power series analytic in the umit circle and
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then by conformal mapping to the sector, show that the exponents of
the power serles become non~integers under the transformation,

There may also be other methods unknown to the author for
dealing with the problem, but so far it has proved impossible to
insure the completeness of the set with the necessary mathematical
rigor, Temporarlily, at least, approximate methods of applying these
functions to the practical problem will have to suffice,

Ingsmuch as‘each value of An corresponds to a particular or
characteristic loading along the arc, which except in fortuitious
cases will not be the prescribed m,(d) or v,(d) of (6) and (7) (in
which case of course an exact solution will have been obtained), it
will be of interest to calculate some of these loadings for particular
angles in order to get a feeling for the types of functions and load-
ings which are under consideration, The combination of two or more
eigen functions to obtain approximations to an arbitrary loading will

be taken up in a later section,

The Characteristic loads

By using known relations, the stress conditions can be cal=-
culated at any point in the plate from the deflection function., In

particular, the radial moment and shear are obtained from

Miro) = —g[//ﬂu 5)72 +7/A/W/C9/ (36)
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O
Vel 8) = §n= F 55

(37
= -D 32 v 0-0) 755 [F 55055 - /-)]/Wﬁ“ﬁ)

Substituting (11)* and writing for the n®® term,
Y (7 8;0,)=2 =022 [(a114 cosr # 8- 1 -D(A-EL) A cos 26
*A +/)2//1 “NBEN?(A+DE

(38)
~ (A% /)//\ )5 SR (A-1)8 ]

/# 3V

/‘7,;? (782, )= =77 0y f[m +DACOSA4)E = (A + 55— ) Acosa-DE

*A% ) B a+NE
(39)

— DA+ )55/»? -)6 ]

These latter two equations may then be written in terms of their
real and imaginary parts corresponding to the deflections of (24) and
(25), respectively,

1. = DR f T o [er (2 0 =] Lo ey R
* b (2-D)RelF"f sir7 (b log r) (40)
t f o Zore o2 0) T e - o, Rz

~ [ate- v)—/]/x’ef’?ms/é/agr)]

#* 1In this and following sections, the subseript n will
frequently be omitted for convenience where no confusion will result,



22

0

/‘7/? ):—- D/"ag/[(/(az‘m/”*K,/?e/";ﬂz)_rm/"”) s (b fogr)
77,

(41)
= (A R = g Zom 4 IR F) 05 (b 1og ) f

where
4y = - [earnP- b2 -2aarn b

o= b [2ra-n) + card?- b2/
Ay = (@) carn-6%

iy = (Ra+/+ V)b

ReF,, InFp, ReF}, InF% are found from Table II. Vy (2) and
Mr,(?) are obtained by replacing ReF, by IuF, and InFp by ~ReFy in
(40) and (41), respectively, The derivatives are interchanged by the
same rule,

As in equations (24) and (25), the superseript (1) stands for
the shear and moment obtained from wn(l) and the superscript (2) for
the corresponding quantities obtained from wn(z) « At the circumfer-

ential edge, r = 1, the equations take the simple form

/ I ”
Y (4 8) = Ky Lior F OO + (2= o L2 (6 (42)

— ke, R f () ~[fr2-D)c- 1] R F78)

)5{'/\7:)(5 B)= —foy Ro FIB) + Ay Zrmr F(O)-V Re F “(8) (43)
Ve d
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@) ”
bi V. (48— Re FIO) - (2-0) b Re F7(&) (422)
-, Zr7 ) ——[afz-u) "jfm/:—”/é)
L 17200,0) = ~ Ky Zrre F18) = Ay ReF(8) =0 Zrro 18D (43a)
7

Concentrated load

In addition to the distributed loading previously described,

there is in genersl a concentrated load at B(1,X) given by

2P (1 OI=20-ID[F 5 (5% ~ 7 )] vhs (72 8) (44)
or in complex form

2Py (r,0)=-2(-IAPA 4, [Ar DS #E - A-DsrraaNE]

(45)
- A%D B, ro50+08- 052 ~1E] ] D
when written in terms of real and imaginary parts,
2/70;:: (7 6)=-20-DDr7" f [ b Re F16) # a Zim Fi8) [ sr2 (6 log )
(46)

— e R 7 10) b T 18] 05 (b So7 7) f

21 P 170 = 20D [ Toro F10)- e 19)] 5206 fog )

—[@Zomr F(6) + b ReF (0> cos(b log r) f (46e)
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The above equations are easily specialized to the point B(1,X),

2/‘7,.;)? )= 2//—2))}/;7/{%-/;?’ ICORT vy I /ar)/

2/ (4 X) S2(I1-DD [@ 20 5 Cex) +.6 R 5 ()]

Support ILosds

From an aeronautical point of view, one of the most interesting
quantities to investigate is the reaction at the support or in the case
of a wing, the root reaction, The two quantities of interest, namely,

the shear V,; and the moment M, , are easily obtained from

i§ (7 6) =Gy — 2;1'::2

(47}
a-2:a
= D) se T/ ’Dar [—“5753”7'765)]‘4’/"‘9)
2
N (1) = —p[A -(/—z))f;:a]w//;é) (48)
With the ususl substitution, the complex forms become
: ‘j/' Y (ne)=X(1-D(A -Hpt [[bu)&mﬂw)a 0 + )5”?//1 /)9],4

- A*N(A+ —,‘3_1});05(,1—/)5]5})
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-,5/— M (@)= — (/- V)A M"; A+ D CoSA+1)E (A ~;3_—’21})-) cas(A-1)8 /4
# JAZD S (A #1E (50)
- (A+ (A~ f———f,—’—))smm—/) éjﬁj

When written in terms of their real and imaginary parts corresponding
to the deflections of (24) and (25) respectively, in the same manner

as in the previous case of the radial shear and moment,

5 Vo () =7 "'2/[/@ Zirs () + Ky R 1) + Tim 18 [ 5172 (16 o3 )

(51)
"‘[/<9 /?c’FZQ)"/;oImF'/Q) r/f’eF'”lfé)] o5 (6 /ayf')

;}»@:’m &H=v r""f[/f, Lo F18) Ky oo () + 5 T F (8] srro( b fog 1)

(52)
- ﬁﬁ; R F(8) ~ Kg Zrr2F(8) + ;}’— e F(0) ] costh /6'7/')

where

A = (Ca+ ;f)(d%/) - 6%
Ke =(Rari+ 5)b
ko= (a1 = b7+ (1-D)a-1ia- 67

Ao =Rb (@t 1) + (/-vNaG*-1) b
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As before, Ven(z) and Man(z) are obtained by replacing ReF, by
InF, and ImF, by =ReFy, in (51) and (52) respectively, with the same
rule applying to the derivatives,
At the support, the shear and moment equations take a particularly
simple form as for @ = 0; ReF(0) = ImF(0) = ReF?(0) = ImF?(0) = O
which leaves

3’— Jg:)(r; 0)= P2 L F00) 5120 fog7) - Re F70) c‘af(é/’y/’)] (53)

FAY 0= [T F 0251706 g ) - Re F 1) o5 (h fogr)] - (54)

2V Unor=r" el 015 (b 1og 1) ~Timf lr custlo logr)]  (520)

3/’ /\@f’/f; 0)=r""f- ke Ftoy suro (b fo G 1)~ Zors F(0I C0S (b /07/")] (542)
These quantities which have been calculated are graphed for a
range of opening angles and eigen values and presented in Figures 16
through 43, Six quantities have been shown; the deflection, applied
shear and applied moment alogg the are, the deflection along the free
radial edge, and the reacting shear and moment at the root,
It should be emphasized that regardless of any completeness
considerations, if any of the loadings given correapond to a dis-
" tribution actually desired, the eigen function gives an exact solution,
The problem arises in deciding how to combine the loads to obtain some

other edge loading not given uniquely by one or more of the functions,
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V THE UNIFORM LOAD OVER THE SECTOR PIATE

The Particular Solution

While the eigen functlons in themselves are interesting from =
mathematical point of view, it would be much more useful for practical
purposes to obtain a solution for some sort of distributed load over
the plate, The root reactions would then be more typical of econditions
to be expected from air loads, For this reason, the solution for a
uniform load over the sector plate will be derived.

It is relatively easy to find a particular solution of the

plate equation in this case; one such solution to

DAAwW(FE)= 7{/3 &g) = £, = constant
being
w8 = 5 L2 rlws"e (55)

In this case, however, it is important to select a solution
which fits as many of the boundary conditions as possible, If, for
instance, it were possible to pick a solution which satisfied the
boundary conditions of zero deflection and slope along & = 0 and also
zero shear and moment along = & , one would have only to calculate
the shear and moment variation along & for r =1 due to this solution,
and then add the same shear and moment with a negative sign expressed
in a proper combination of the previously-developed eigen functicns,
Such & superposition is the principal virtue of this new set as it

essentially permits a relaxation or a certain arbitrariness of the
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boundary conditions along the circumferential edge AB, As a con-
sequence, then, one may set out to find a particular solution for the
caese of a uniform load which satisfies boundary conditions at least
along 6=0and O=c o

As a first step, let

W (1 6) = 2; ;" rienr’e (56)

which certainly satisfies the conditions of zero deflection and slope
along & = 0, Then, from equations (36) and (37), compute the radial

moment and shear which becone

2
2
j,f—/v/a: (ra) = —;’p 1) sp7 e s (57)
Lo * — 2
7 Y, )= p 7T [ 4 (- vy siar]sem 200 (58)

In passing, note that the particular solution (56) is already
the desired result if the sector is of opening angle &'=7", as
G ) =Mp(£7) =0 . This ia s fortuitous happening that doss
not, in general, extend to other angles, For these cases, additional
analysis ig necessary.

It is possible, however, to extend the method used in deriving
the original eigen functions by introducing a slight variatiocn,
Equation (12)

wo» .9):/‘)\”*/ f/-l,? L0057, +1)8 - cos A1) Ef
(12)
£ B, [T 1) 517 (g # 19 8 = At D) 5172 (A~ /)9]}7
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also satisfies the conditions along & = 0 and contains the two un-
determined coefficients A, and B,, If, now, instead of requiring these
constants to be such as to satisfy zero moment and shear along #=-«x ,
An and Bn are chosen so that the moment and shear along 6 = & are
respectively the negative of those given in (57) and (58), there will
be defined a deflection function which, when added to (56), results in

a particular solution, namely,

g (nO=55 2 rlns o + 754 [co546 - 20528]+ B [27 46~ #50726] f (59)

vhich gives a uniform load over the plate and satisfies the boundary
conditions along both radial edges =0 and 9= »
The details are as follows: Equating the moments Mr following

from (12) to the negative of (57),

- )ar /;4[(A+/)('05(/\+/)a’ (/}—‘3“))(0.5'(,1 nHA

# B JOZ=1) St (A+ 1) X = (A+D(A - ‘/—?-_-_’5—53)5//7//} —/)or]j

2
fq
= Zop [7- 7~ V) s fsvroax

it follows that A = 3, which simplifies the above equation %o

37 2)) S/ R ]

(60)

A [4cos yor- (3- 222 ) cos 2] + BB s #ar— #(3-

5?5//?@’
= W[/” (7= 1) S/r? 0{/
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Similarly from the shears, where the assumption A = 3 is consistent,

4 [~ #5072 S # (39 ;{%)&mea’ (] # B [8cos #a- #(3+ L22 )cos2a ]

. Fo S/r7 A ( 61)

= D [/+(/- z))s//?zofj

These latier two equations may be solved for the constants
A(ax,V) and B(of, V),

The final step is evident, There remains only to calculate the
noment, shear, and concentrated load along the circumferential edge
due to (59) and subtract it out by a suitable combination of the
eigen functions, If the set had been proved complete, or if it becomes
possible to establish this fact, an exact mathematical solution for
the uniform loading, including root reactions, will have been obtained,
Otherwise approximations will have to suffice, These are considered

in the subsequent section,

Approximate Methods for Finding the Deflection Function

For a wide variety of problems in elasticity, the classical
approach for obtaining the unknown coefficients of the linear expansion
of a function, here taken as the deflection, is to employ the
principle of minimm energy in one form or another,

There are, broadly speaking, two methods of attack. One either
choses a set of functions which satisfy the boundery conditions of the
problem and not necessarily the governing differential equation, or
vice versa, the functions satisfy the differential equation and not

the boundary conditions, A linear combination of a finite mmber, 8ay
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N, of the functions in the set are written down and the unknown
coefficients determined by requiring that variation of the energy with
respect to each coefficient be zero. In general there results from
this procedure a set of N equations in N unknowns from which the
coefficients of the expansion or combination can be determined, Of
the two alternatives outlined above, the first is commonly referred to
as the Rayleigh-Ritz method, while the second procedure is known as the
Courant-Trefftz method, Inasmuch as both have been treated at length
(1, 8), no discussion will be introduced here, Suffice to note that
as the eigen-functions satisfy the partial differential equation, an
application of energy methods to the sector plate will naturally lead
to the Courant~Trefftz method.

The theorem of minimum potential energy requires that the
difference between internsal strain energy and the work done by the
external forces be a minimum, i.e., the variation of the potential

energy, V, may be written as

SV =;éz7ﬁa<akvf-jgi)ﬁvv"aﬁFqﬂ9 J/3~7 we 2L LL1ALG
(62)

+.é//,,//,e) WLOIAO + 2 Mg (1, &) WihR)=0

vhere the last three terms are energies due to the externally applied
loads and the variation function has been taken as the solution
itself, w(r,8), in accordanee with the usual procedure,

Now as the eigen functions and the partieular solution satisfy

the partial differential equation over the surface and the boundary
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conditions on the two radial edges exactly, only the line integrals
over the arc remain, While the vanishing of the surface integral is a
great advantage eliminating as it does two integrations, the apparent
simplicity of the remaining integrals is misleading because, as indicat-
ed previously, the eigen functions are not orthogonal and although
there 1s in principle no difficulty involved in carrying out the
integrations, in practice the amount of computation involved is great
enough to warrant investigation of other spproximations, The results
of a three term expansion for a 45 degree sector under a uniform load-
ing using the non-~orthogonal functions are indicated, however, for
comparison with other solutions (Figure 2)., A five term expansion
appears to be the largest mumber of functions that can be handled
conveniently with desk caleulators, Because of the improbability of
their use, none of the formules for evaluating the energy integrals
will be included,

Another way of approximating the deflection would be to satisfy
the boundary conditions at a certain number of discrete points along
the arc, This method was tried for the case of & = 0, 15°, 30°, and
45° using

=l

Yry P (178D (63)

WK 8) = W, (H8) ‘5

oty
where qu(r,B) are the ordered eigen functions, The results were
unsatisfactory and any extension of this method, if attempted, should
be based on Hildebrand's procedure.

The final method which might be tried is to use equation (11),
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assuning A n belongs to a set of integers, and insert it into the
energy oxpression where, of course, there will be two additional
integrations to perform along the radial line &= & because the
boundary conditions have not been satisfied there, Inasmuch as the
functions along r = 1 are now orthogonal except for the interwval of
integration, the computations may be simpler although probably not
enough so as to justify carrying them out at present,

In concluding this section, it may be said that if the
importance of the deflection problem for sectors warrants, the energy
method using the eigen functions as originally proposed may be used,

particularly if adapted to high speed automatic calculating equipment,
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VI THE STRESS SINGULARITY IN A CORNER

Bagic Considerationg

One of the most interesting and practically useful resulis of
this investigation concerns the magnitude of stresses in the vicinity
of a corner bounded by fixed and free edges. While the development is
for the most part given in reference (9), the important features will
be repeated here so that there will be sufficient background to
interpret the experimental data which will be presented.

It will be recalled that the method used in obtaining the eigen
functions consisted of satisfying the partial differential equation
governing the behaviour of thin plates in bending and the Kirchhoff
boundary conditions along the two radial edges, with the possible:
exclusion of the origin itself where r = 0 (equations 14 and 15),
Then, in 8o far as the mathematics represents the actual physical
situation, one would expect to have a fairly correct solution in the
neighborhood of the origin providing the circumferential boundary at
the unit radius was not too close to ihe origin or that there were no
highly irregular or discontinuous loadings in this vieinity,

Furthermore, it will be remembered that not only was there one
solution which satisfied these two radial boundary conditions, but an
infinite set of them. Suppose for the moment that the set is complete
and that any deflection function may be expressed in an infinite series
of these eigen funections, and further, let the series be differentisble
as required, It will, therefore, bé possible to compute the stress

anywhere in the plate and, in particular, near the origin, For the
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sake of presenting this intuitive argument, consider the case of the
support stress, where 6 =0,
Since, for constant thickness plates, Mg , the reacting

moment, and 0y s the reacting surface stress, are proportional,
(=Yad/)

2/.2 ?
the series for the stress along the root will be made up of terms of

0”‘9:

the form (see 54, 54a),
a5 (1,00 :/‘(/"’a—ﬁ si2 (b log r) + &5 C0S (6 /ag'/‘)] (64)

For small values of r, that is for the stress near the origin or
corner, the term in brackets is bounded by some constant, say M, A
bound on the series for the root stress may now be written, where

Kn(i) is an arbitrary, real constant

/05 (/;0)/\ I)/O_(/)/+ (2)/ - ‘/'/5’,4/ /+ :)/d;:,)/*/f;e)/(!;f)/*'”

o % = ) 2 @G’

< A, A7+ Ky /"*’/‘72 F A P AT et

V) e G~ 7,
//Z’()M(’)+/{ 770+ a T TR

)

) @) — (2) Gy - o
*(hy P+ Ay Py +]

Then, inasmuch as the eigen values have been ordered,
O < (Gu-dp) <(Qy-d2)< » <« , the behavior of the absolute

value of the root stress near the corner is of the order
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G5 (r+0,0)) ~ zp (65)

vhere 8o is the lowest eigen value for a given opening angle. The
same type of behavior with r may be shown for any value of &,
although the constant of proportionality will be different,

It is next interesting to examine the significance of the
previous expression and in particular the values of the exponent of r,
In the vicinity of the corner, it appears possible to obtain a bound
on the stresses which tends to zero, a constant, or infinity depending
upon whether a, is greater than, equal to, or less than unity, although
it should be remembered that 0" is defined as a stress per unit length.
Inasmuch as it can be showm that the eigen equation (16) is continuous
in both the real and imaginary parts of A , it is permissible to
construct the curve shovmn in Figure 3, where a,, the minimm eigen
value, is plotted versus the opening angle, o, It is seen that a, is
continuous through unity and hence the postulated states of stress may
oceur,

Upon reflection, onet!s intuition may not be too badly offended
because the unit value for a, occurs very close to 90°%, and it does
not seem too unreasonable to expect finite stresses at the root if the
opening angle is acute, and on the other hand to expect a high stress
for an obtuse sngle, This latter effect shows up in the fact that the
stress singularity becomes stronger as the opening angle is increased,
which again seems reasonable,

Before proceding further with a discussion of the singularity,
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there are some items of mathematical and physical interest which will
be brought out. It has been emphasized previously that the origin may
possibly be a singular point —- and indeed, for cases of a2-< 2, the
eigen equation (16) makes no sense exactly at the origin, inasmuch as
(14) and (15) become infinite in the limit as r—= 0. Nevertheless, for
all finite values of r > € > 0, however small, (64) is perfectly
valid and gives the true character of the singularity, while (65)
gives the bound,

The trigonometric variation in the stress, or the deflection
also for that matter, is somewhat unusual inasmuch as the value of the
stress, or deflection, passes through zero an arbitrary number of
times, depending upon &€, A close examination of this oscillatory

character and an investigetion of the zeros and maximums of

sin
cos

the first zero will occur at r < 1/10 for 7/2 € < 77 and the

(b log r) will show, however, that for the lowest eigen functions,

second zero at r< 1/100, so that the aggravated oscillatory character
does not manifest itself until very near the origin where the solution
must be restricted anyhow because of the singular point,

Some concern naturally arises as to the amount of root reaction
which is taken out near the corner. It develops that the positive and
negative sections of the trigonometric variation cancel out in such a
way that there is no resultant contribution at the origin, This fact

may be shown by considering the integrated root reaction, Using (64)
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ro)dr r f [ac; + b ]J//?(b/og/’) + facy- be, , [cos (b /ag/’)j
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and as a > 0, the percentage reaction near the origin referred to the
total root reaction is less than & « 90 ,

Furthermore, additional analysis shows that in nearly all cases,
the behavior of (64) closely approaches the bound given by (65) which,
for practical purposes, permits the absolute value signs to be removed
from (65).

While it is physically impossible to obtain an infinite or
unbounded stress, it is believed that its occurrence merely reflects
plastic flow or some other phenomenon which is no longer represented
accurately at the origin by the mathematics of the problem, A
somewhat similar case occurs in hydrodynamics, The incompressible flow
around a sharp corner gives an infinite velocity whereas actually the
velocity is finite when the mathematical formulation of the problem
is extended to include the effects of viscosity, It should also be
mentioned that it is somewhat disturbing that the unit value of =&,

2
does not occur at exasctly 90°, particularly as the deviation, which
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amounts to approximately a half a degree, is a function of Poisson's
ratio, ¥V ., This matter is not altogether understood, but as will be
shown, experimental date taken to check the stress singularity and its
variation agree too well with the predicted chgracter of the singularity
to discard the result on what may turn out to be a physical or mathemat-
ical triviality,.

Before turning to a practical application of (65), a similar
behavior in the shear should be pointed out., In a similar manner as
before, as the shear is essentially the third derivative of the

deflection, it may be shown that
-2
|74 ~ cr® (66)

The singularity is stronger and occurs at approximately 60° and here
it must be admitted thet so far not even an intultive explanation as
to why such a phenomenon should occur at this acute angle can be
presented, although it should be remembered that Vj is defined as the
shear per unit length,

It furthermore appears at first glance that the integral of the
shear is not even finite for o > 60%, If so, this would contradict
the laws of statics and it was deemed advisable to consider the equilibe
rium of verticel forces for the complete sector, No difficulty was
found in this respect, however, when due consideration was given to the
trigonometric terms,

Before concluding these general remarks upon the mode of stress
singularity, it is desired to include a comment upon the effect of

load distribution upon the singularity. So far, one is to expect that
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(65) will give the character of the singularity provided that the
loading is regular or smoothly varying, If vip is the particular

solution for a given loading, then for the root stresses,

a'z“'/

GG (r—>00) < To, (©+0,0) + Kr (67)

If dép(r—’-o, 0) has a stronger singularity than the second term, then
the stress will be strongly affected by the load, In the particular
cagse of a uniformly loaded plate it was shown that wp'“ r4, and hence
0, (r->0, 0) = 0., Consequently, the order of the stress singularity

for uniform loads is of the order

a2y )~
G (r—+00~XKr"

Such considerations give one a better appreciation of the effect of
type of loading and some idea of the relation between a "reguler® and

uniform load,

A Practical Application

In order to apply the above to a practical case, for example a
swept rectangular plate of constant chord (Figure 4), one may attempt
to extend the representation for the root stress in many ways. One

originally proposed(9) was of the form
Qe(dz)"'/

riro) =& (E* 7 [1-65) (63)

which satisfies the singular behavior properly near Ol(r->-0) and

02(r~>-c). The constant of proportionality, K, was found to be
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by equating the applied moment about the root to the integrated root
reaction, Mo is the applied moment of the load on the plate about the
root and ¢ is the root length 0102.

The root stress variation has been calculated according to (68)
for a constant chord rectangular plate at various angles of sweep and
the results presented in Figure 6 along with some experimental dats
for the case of 60 degree sweep, The deviation in magnitude of the
two curves is due to the fact that (68) is based upon the bounding
stress with the constant determined from the total applied load, The
test data show a reverse curvature with negative area near the leading
edge which permits a higher concentration of positive area near the
corner in the actual cése which in turn raises the stress concentration
factor above that predicteds The main value of (68) is that this
particular formula is very easy to use and may be easily extended to
delta configurations, such ag shown in Figure 5, inasmuch as the only
parameters which enter are the opening angles and the applied moment,

While it is again to be emphasized that the formula is intended
to give bounds for regular loadings (a concentrated load near the center
of the root would, of course, not be admissible), it is interesting to
show a comparison with some experimental data(13) taken for a triangular
plate with a 60 degree swept leading edge and various trailing edge

angles when the load is concentrated at the tip. It should be
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mentioned that this root stress date was taken, not exactly along the
root (H = 0) line, but along a parallel line 1/10 inch outboard.
The experimental date has therefore been extended to the root line by
following the method outlined in Appendix II, and hence no experimental
points are shown on the curve, This comparison of the theoretical and
experimental data is presented in Figures 7 through 13 shows surprisingly
good agreement considering the simplicity of the formula, As was to be
expected, the mode shapes are predicted best in the immediate vieclnity
of the two corners.

For design purposes, an infinite, increasingly large value of
the stress can not be tolerated, and the question arises as to the way

of applying the theoretical resulis. One method which may be used is
oz 2
&%

where 0 is the design stress for the given plate with root chord ¢

to first compute the design stress concentration factor A=

and thickness t under the applied moment M, about the root. This value
of k* will establish an upper bound above which the material is assumed
ineffective, and the area above this value of k¥ and under the curve

of k vs ;%f will represent the amount of stress which must be taken
into the support elsewhere, This area is labeled Ajin Figure l4. The
suggested design eriterion is to replace Ay with an equivalent area
beneath the k¥ bound ss indicated in A2 of Figure 15,

Such a requirement leads to

%
Pt  qot?
o

From which, using (68), it is found that
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A typical design curve is shown as the heavy line on Figure 15, For

the case of the constant chord rectangular plate swept 60 degrees and

a design stress of q; = 20000 psi, é? is found to be 0,056 for k¥ =4,17.

Another type of approximation from which it appears possible to
obtain a closer fit over the entire range of the root has been tried,
In this connection note again that the experimentsl data in Figure 13
shows a reverse curvature that the previous formula can not hope to
mateh, For this reason the complete eigen expressions for the root
stress , equation (53), which retains the trigonometric variations may
be used. By requiring continuous D(l) behavior of both the shear and
moment and fulfilling the laws of statics for a linear combination of
gsay the lowest three eigen functions, it is possible to approach the
mode shapes somewhat closer with reasonsble computation., In view of
the extreme simplicity of the previous formula, however, further work
upon this extension does not seem warranted at this time,

Another application of the singularity which seems to possess

some merit is its possivle utility in computing deflection modes of
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triangular plates, As the deflection is essentially two integrations
of the stress, one merely assumes that the deflection of each free

a (0+1
edge is proportional to /7 where O is the angle the free edge
makes with the root, One of the constants of proportionality is fixed
by requiring the deflection of the two edges to be the same at the tip
of the triangle and the other is determined by the loading condition,
Even a linear interpolation between the two free edges has been found
to match experimental data within 15 to 20 per cent for some favorable
cases., This application to approximste deflection patterns is not

intended to be complete but rather to suggest a possible approach

particularly for qualitative answers,

The Swept Rectangular Plate

As a final remark upon the connection between the sector
results and approximate work, an interesting similarity to a hydro-
dynamic analogy has been observed. In Figure 3, a second (dashed)
curve of;é%% versus & has been presented, and it is seen that it lies
fairly close to the curve of aZQX) versus &, especially for the larger
included angle, Indeed, the correspondence is exact at a=7, It
develops that this ;%; variation is the exponent of conformal trans-
formation between rectilinear flow and the flow around a corner of 24X
jncluded angle., A new approach to the bending of a swept rectangular
plate is immediately suggested and while again it is not within the
scope of the sector study to investigate this new field, it is felt
that some ideas are perhaps new enough to be included at this time,

Consider for the moment an unswept cantilever rectangular plate
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(Figure 15) with the usual assumptions postulated in thin plate work,
Suppose in addition the moment per unit length in the x direction, M&,

is arbitrarily teken to be zero.

My = 5/32M ax?—) =0

which of course implies

% _ _ ) %
3y=3 8x*
and hence
%W
— 2
Mz "D//"Z)) 312 (70)

from which the deflection may be calculated, It also follows directly

that

pry = 24 2F VM x = 2(%,4)
x (8242 Y2 X ? 4 (71)
which, for the homogeneous case, means the bending moment must satisfy

the Laplacian equation in the region, It so happens then that the

beam equation
M;(:DC’/D(Z"X) (72)

satisfies the differential equation and the boundary conditions, where

it is to be noted that é——‘?al.ong the root is zero which implies that

)
the stress distribution 1Z’uniform or, what is the same thing, that
the stress concentration factor is unity.
The lines of principal stress are now parallel to the coordinate
system and the direction of maximum principal stress is the flow or
streamline in the hydrodynamic analogy. It is desired to find the

variation of M, or streamline spacing along the line 0102 when it is
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not perpendicular to the free edges, This will give the stress
distribution, or with proper normalization, the stress concentration
factor for a swept plate, Now such a procedure as outlined, perhaps
on & somewhat intuitive basis, required the conformal mapping formula of
the rectangular plate into a swept rectangular plate and while the
transformation is the well-known Swartz-Christoffel one, its analytie
representation in convenient form is impossible for most practical
purposes. It may be briefly noted, however, that at least one example,
the flow in a channel about s 270 degree corner has been graphed
numerically by Bergman(14).

As the basic desire is for a rapid -~ and probably approximate
solution for stress distribution, suppose an approximate mapping is
considered in which one assumes the flow in the immediate vicinity of
the corner is determined solely by that corner, The mapping is then
given very quickly and easily by the simple incompressible flow from
infinity around a corner of 2 & degrees in an infinite medium, Using
the notation indicated in Figure 15, where the z = x + iy =ret?
system is used in the rectilinear plane and w =1 +-iv==f>si¢ in the

transformed plane, the connection between the two is given by

B = g 2 - (73)
and hence
z Z
;(==/92u1f06.£;gf r=0 2
Z % 7P
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Because of the symmetry of the flow, or principal stress, lines
sround the corner, the variation of Mk with/o along the root or

@ =o line is very easily found as

”

N _ TP / /Ozaz*’
- 20 2 7 74
EYZ [7# rtern* L2 [z
which is essentially of the form
oMx -;Z.g“/
G0 Ko (74)
The similarity of (74) to the previous result, equation (65), is
-ﬂ’

immedistely apparent where o is to be associated with azﬂf).
Remembering the agreement as indicated in Figure 3, the analogy is
substantiated, with the deviation between the exponents probably due

to the fact that the conformal mapping is approximate as is the initial
assumption of MY:: 0. This latter formula would also be expected to
hold only in that region near the corner,

There is one added advantage which is gained by considering the
flow analogy in that one can get a fairly clear physical picture as to
the regions of influence of the singularities, In Figure 15, an
attempt has been made to show this characteristic which is born out by
experimental data, namely, that the line of principal stress, SS, which
bisects the perpendicular distance between the leading and trailing
edges at the tip, when carried in to the root, separates the trailing

edge effect from the rest of the plate,
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In conclusion, it is felt that the flow analogy may be quite
useful in gaining a physical feeling for the stress behavior in swept
plates and that further work with this analogy might well lead to
approximate formulas appropriate to representing the stress and
distributions sufficiently well for engineering accuracy and preliminary

studies of overall characterisiics,
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VII CONCLUSIONS

In summarizing the work presented herein, there are only two
points which should be emphasized,

First of all, an exact solution for the bending of a cantilever
sector has nol been established because the infinite set of noﬁ-
orthogonal eigen functions has not been proved complete, BEven had the
completeness been established, there would still remain the necessity
of calculating the defleetion for a practical case, As previously
noted, this is difficult to do, Notwithstanding the failure, however,
it is believed that if the importance of the problem warrants, the
deflection could be obtained if automatic computing equipment were
available, For ordinary applications, however, relaxation methods are
recommended,

Secondly, inasmuch as the eigen functions seem intuitively
correct for describing the phenomenon, because of their method of
derivation if for no other reason, one feels justified in taking
advantage of their characteristic behavior as a basis for approximate
solutions, In particular the eigen function associasted with the lowest
eigen value has proved extremely valuable as a guide to predicting
root stress, and possibly deflection, distributions, One's intuition
in the matter of the minimum eigen values and their importaence has been
subgtantiated and reinforced by both experimentsl data and a the-
oretical analogy, and it is believed that the possibility of expressing
the mode of stress singularity in a corner may prove of wider utlility

than the contemplated use for the analysis of swept missile wings of
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high solidity.

In conclusion, it should be pointed out that there is no reason
why the same method of developing both the set of eigen functions and
their approximate behavior could not be extended to corners of thin
plates under different boundary conditions, For instance, the case of
the stress in a corner bounded by two clamped edges, which is quite
easy to set up, may well be of interest in other fields of applied

elasticity,.
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68
EXPLANATORY NOTE FOR FIGURES 16 THROUGH 42

The figures which follow present the plate deflections and
characteristic and support loads for selected values of the opening
angle, As an illustration of the typical eigen deflections and load
distribution along the supported edge QA (Figure 1) and the circum-
ferential edge AB (Figure 1), a few calculations have been made, taking
the value of Poisson's Ratio U =0,3, for values of the opening angle,
namely, & =7/4, 7/2, 374, and T,

The first few eigen values A,, and the corresponding eigen
constants A, and By have been tabulated in Table I,

The quantities shown in the following graphs, along with the

applicable reference equation are as follows:

Quantity Reference Equation
Deflection along AB 24, 25
Shear V_.(6) along AB 42, 4L2a
Moment ﬁr(e) along AB 43, 43a
Deflection along OB 24, 25
Root Shear Vy(r) along O4 53, 53a
Root Moment My(r) along Q4 54, 548
Concentrated load ?.Mrg(l,e) at B L6, 46e.

The quantities shown in the subsequent curves are intended for

gualitative use only, as it has been found that for quantitative

purposes much greater accuracy is required than is possible to

present satisfactorily on graphs.
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FIGURES 16-22
DEFLECTIONS AND LOADING CONDITIONS FOR THE

EIGEN FUNCTIONS FOR VARIOUS OPENING ANGLES

FOR THE CASE OF & = 7/
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FIGURES 23-29
DEFLECTIONS AND LOADING CONDITIONS FOR THE

EIGEN FUNCTIONS FOR VARIOUS OPENING ANGLES

FOR THE CASE OF a‘=77/2
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FIGURES 30-36
DEFLECTIONS AND LOADING CONDITIONS FOR THE

EIGEN FUNCTIONS FOR VARIOUS OPENING ANGLES

FOR THE CASE F A = 3T/L
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FIGURES 37-42
DEFLECTIONS AND LOADING CONDITIONS FOR THE

EIGEN FUNCTIONS FOR VARIOUS OPENING ANGLES

FOR THE CASE OF o =7
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APPENDIX I
SOLUTION OF THE COMPLEX EIGEN EQUATION

As was indicated in Section III, a detailed description of the

method for solving the complex eigen equatidn

L0/+ V) 3+ A0 — (/- € - 16
] + 0 + ) COSRA (/- cos 2a) X o (16)

is desired, After setting
RAA =t p27) F+ Lo "n =2, 4y 6y 4 4 s

which, as A = @#4&  implies that
uE=Paa - T
) = Lbor
The new vériables are introduced into (16) and after the real and

imaginary parts are separately equated to zero, there result the two

simultaneous transcendentel equations

20/-W anv743FJ7 2+ 127T)

= )=5)
Sira = — F+Y (RX)
S/ o
2
207-2) 20-Y) ., a,][(/xv‘nﬂ')—w—/ Sr2Y + D7
2 FrY D)
Cosh co = Ckak 2ot) Claod
cos

These equations are most conveniently solved by an iteration

procedm, using the following recurrence relation:
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_ 20/-0) 2 | 2t 12 7T) ‘ B
SO M ey = [ Frv o4 (Rox)R o 5177 @y

-/

' 20(/-2) {,am,,"'/?#) ol swev s j
costy &,,,, —[WJ’ a )R ~ @iy | [ €9

. As an aild to selecting the first trial wvalues, one may consider

the dsymptotic behavior at large values of n for which it is found that

2, 2 s
cosu coshes ~ [ 2T [ ()]

» ZW'K/ v)s/f?or][ _a_)]
SH7Z L SI7 GO 2o (5 2) 2r

Squaring and adding the two, observing that for large values of cu,

sinh o = coshcu
2l 2 2 2 2
A “’]N 21~ D) 17" [ 2 oo ]

[2 < (RA)Z 3+ ) ] 7"+ (5)

from which it is found that, asymptotically,
2 2

~ 27/7 V) s177%x o 27 (1- V)57 A .jz

“ /07k[ (70 (342 ][’“(ﬂ‘)]j o 2 ey 1

It also follows that

2/7 — )
/.(/U“~Z‘a/7 LA (75:,) = - Zar /(,e )

Using thia iterative process, it is found that the convergence
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is _qui'be_ rapid exq'ept for thé lowest eigenﬁalues corresponding to
n =2, 4,A6, +es which is to be expectéd. The asymptotic representation
is fairly accurate in itéelf for the larger values of n, sey of the
order of 20. | '

For the smaller values of n, A is very sensitive and it has:
proved necegsary to consider the case more carefully, particulaily
with respect to obtaining upper and lowsr bounds on its walue.

The iterative formé of the complex eigen equation may be written

2
SHIAL | SO _ 4R L L2 (rrY)sneAH
P77+ AL oS - /{’ 2 /{/ T3 o (A)
2 2
Losh co = z’/ff[//a,‘nﬂ)—w'f]—/g, . LR SRV +% (B)
= cos D RT3+ - Y)

Next recall the boundary conditions peculiar to this problem,
nemely, that the deflection and slope at » = 0 be finite, Then as

+1
A = a + ib and W~/"A s this requires a > O or

w
@ = —%’7—— 2> O == u+rT 2O (c)

(It should be remarked im passing that the negative integers =2, <4,
~6, +es 5 making nT+ it <0 correspond to an outside solution where
the aforementioned boundary condition is not imposed,)

In order to restrict the value of M further, turn to a consider- -
ation of (A). As —‘i’%ﬂ is never negative, it must follow that |
/%ﬁ— is never positive, But then as a consequence of (C),
gin M < 0, This deduction leads to the conclusion that -7 < 0O

for n > 2; and that if n =0, SIZ/M < 0, which is of course impossible
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unless .. assumes the particular values * 1T (which could actually be
consideréd under the n = * 2 case), Finally, sin u %0 for finite cu .

It may therefore be concluded thaet for these particular boundary
conditions the roots in the finite complex plane have been restricted
ton 2 2, - T < U<0,

4s an aid to the actual calculation of these lower roots, which
are somewhat elusive, se_veral inequalities can be established which
are necessary conditions for the exiétence of roots, or sufficient
conditions for non-existence,

First, as , from (A)

28
b S / A

51y & AT 400 (0)
Second, as coshcwo > 1, it is evident from (B) that

2
- /f,z[éu * 22 77) —a)f]—/{: > c08

or

P
(’7"7) (77') 7}22 /{fz z ﬁ.f/{; cos

’

So for "zﬂ"S/u<0

2 /{‘7 2
(7+ 5) = iz [o0sp] 7 52 5s # () ()

and for -—77‘</4L\<——Zﬁ'—

2 2 2 K
(v '+ i fcos] < o 2+ (3 (%)
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As an example of the use of these equalities, consider the case
of or =37y for n = 6,

0. 0943 (6+ - 2. %462
o5k o = (674 % ) (77")
Ly co
S pL = — 04986 (6 + 7 ) 77 - = 2b
SImb e 7
F: th —<2
vom (4) wi S co </

. 0./886 s & (0./1886)
6‘//?/,«)\<——77,—-/6+77,) < — sl <O

) 0. 3690

which implies

o
~0.1175 < - <0

-e

s
-1 < 25 < -0,8825

From (E), which is applicable =0.1175 < % <0

R
(6+ 7)) —10.60 fecosue] > 26.70 + (2 )
which is impossible for anyco ,

AL
Proceeding to (F) which is valid in -1 < 7 < -0,8825,
obtain

(6‘-/-———) + /0.60 [cospn] < 26./0 +(

which implies that at least co

Z 9,68, and cosh cw > cosh 9,68,
from (B)

Now
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. 2 2
Jeos uc | o cosh (9.68) < 24462 + 0,0943(%) -,0943(6+%5)

< 2,462 + 0,943 ( ;,.‘*i)z

As both sides are monotonic inceressing inw with the left hand side
increasing faster, and as the minimum value ]cQS/AI in the interwval

is 0,9326, it follows that
009326 cosh (9068) \< 20462 + 000943 (905)

which is clearly impossible and hence the conclusion is that there are
no complex roots for n = 6, (It develops that there is an extra pair
of real roots,) ‘

. The eigenvalues are then‘ordered according to their absolute
values, including the real roots of (16) in their proper places, This

information is sumarized in Table I,
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APPENDIX II

EXTENSION OF THE EXPERIMENTAL DATA OF

REFERENCE 13 TO THE ROOT LINE

Ihasmuch as it is physically impossible to place strain gages
exactly along the root line while at the same time providing ample
support rigidity for the case of a clamped edge, the test data of
Reference 13 was taken along a 1ink parallel to the root and 1/10
inch outboard from it., Several strain geges (Baldwin-Southwark, type
A-8) were distributed al&ng this line and aligned to measure the
strain perpendicular to it,

Had the gages been mounted exactly on the root line, they
would have measured, directly, the maximum principal strain because
it is perpendicular to the root, In certain cases of swept plates,
however, the direction of principal strain changes in the 1/10 inch
to the gage line, and it becomés nécessary to investigate the amount
of error introduced in using the gage line data as root line data,

The location of the root and gage linés for the cases where the
aforementioned effect is important is indicated in the following

sketch, where the obtuse angled corner is expanded greatly.
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Streamliine or alrectors of
PRX TN rIICipal ST, o

Locus of corrstaryf /7rax 1rum?
procipal stairn, €p

The strain relation at a point is given by

&y * & Ep— €
. y 7 ot #
5} = P + > 445,295

and thus

e = Zf /= d&ZSa?gf “424]

o /%aﬁ£¢

If, in accordance with the remerks made earlier in this report under
the discussion of the hydrodynamic analogy, the direction of maximum
principal stress near the corner is given by the streamlines around
the corner, the slope of streamlines and hence the direction of the

stress may be shown to be

i;%} =:72V7162/',§§;)é{)7
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and hence the inclination of the direction from the horizontal is
..__17'__5
(7~ )6 -
It may further be shown that for OA > 4 inch, the angle between
& and &, , ¢, is of the order of 10 degrees or less and hence may
be considered a small angle so that

e _ 2y, p2 €2
€£—K/+¢)// & 5;)

Then as &, +&,= €57 €2 , 1t may be shown that to the same order in ¢
Eo _/r @I~ ¢2.§7..
Ep Eg
where

- 7

D =(/= 25 )(A-0)

It is now assumed that the loci of maximum principal stress or
gtrain lines are circles about point 0. It might be remarked that this
assumption is supported by test data from Reference 15 and the solution
for siress presented in this report, Also it may be noted that
deviations from a circle are not too important in any event because of
the small distences of the gage from the root, to which the data is to
be extrapolated,

Finally, the ratio —éfz > O with the equality holding only along

£
the root line, hence

Eo < 1+ @*%)
€¢
and if the principal strain €, is the same at A

€ = €g S (/+ P°) €e
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and hence the root stress, 0;

G < 2% 1+ (- %) (a-6) ]

In the case of a trailing edge swept 60 degrees for example,
the principal strain at the root and 7 inch from the origin may be of
the order of 3 per cent more than the strain measured at the gage
line, with the percentage decreasing as the distance from the origin
is increased,

For most purposes, this deviation may be neglected and the gage

line strain may be considered the actual root line strain,



