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Abstract

To form a liquid crystalline (LC) gel that retains the ability to respond rapidly to
applied fields, it is necessary to work with low polymer concentrations. In turn, to form a
dilute polymer network it is necessary to use very long polymers that are soluble in the
small molecule LC. This research focuses on the synthesis of ultra-long side-group liquid
crystalline polymers (SGLCPs), their properties when dissolved in nematic hosts, and the
self-assembly of a nematic gel using an ABA triblock with an SGLCP midblock and LC-
phobic end-blocks. Typically, LCs are made from small molecules that can be quickly
reoriented. In applications such as artificial muscles, flexible displays, or compensating
films, a more robust LC gel is desired. Prior routes to LC gels, typically using in situ
polymerization, suffer from director misorientation, lack of control over cross-link
density, polymer network inhomogeneity, undesired phase separation, and slow responses
to applied fields. The present research (at the intersection of block copolymers, gels, and
LCs) has demonstrated that an optically uniform LC gel with fast reorientational response
can be achieved using a self-assembling ABA triblock copolymer.

To provide the fundamental underpinning for the design of a self-assembling gel, we
first advanced the synthesis of model SGLCPs that have well-defined length even at high
degrees of polymerization. The polymerization method must provide narrow length
distribution, be applicable to block copolymers, and preferably enable chains of varied
side-group structure to be prepared. These requirements were met by starting from an
anionically produced prepolymer and attaching the mesogen in a second step (a “polymer
analogous” approach). Homopolymers were made and characterized to determine how

polymer structure affects solubility, rheological response, electro-optic response and
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chain conformation. This showed that cyanobiphenyl (CB) side-groups provide excellent
solubility in CB-based small molecule LCs even for SGLCPs an order of magnitude
longer than those investigated in solution previously; that ultra-long SGLCPs have
unprecedented effects on the flow behavior of LC solutions, and that the anisotropy
(R /R //=1.6) is insensitive to spacer length and degree of polymerization.

The size of a polymer is related to the concentration necessary to form a gel network;
however, there have been few studies of SGLCP dimensions in LC solvents. Since it is
the polymer backbone conformation that is of interest, researchers use polymers labeled
on the backbone to avoid scattering from the side groups. Unfortunately in a dilute
solution this provides unacceptably low scattered intensity. Therefore, we demonstrate a
method for measuring the dimensions of an unlabeled SGLCP in a perdeuterated nematic
solvent, in which scattering originates from both the backbone and the pendant side
groups. Since it is the backbone conformation that is of interest, we developed a method
to mathematically account for scattering due to the side groups.

Information gained from homopolymer studies guided the design of ABA block
copolymers for nematic gels. We demonstrated that an optically uniform nematic gel can
form in a small molecule LC even at low polymer concentrations using a triblock
composed of an SGLCP center block and end-blocks that microphase separate to form
physical cross-links. The key to making a dilute gel was using well-solvated, very long
SGLCP midblocks. The necessity of cross-linking very dilute chain ends is prohibitive
using covalent linking, but facile using end-blocks that spontaneously aggregate. In
contrast to prior LC gels, these dilute gels maintain both the optical uniformity and fast

reorientational responses of the small molecule LC host.
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Chapter 1 Background

1.1 Introduction to Liquid Crystals

With the proliferation of modern electronic devices in recent years, more demands
have been placed on the materials making up these devices. For example, a portable
computer requires a light-weight, energy-efficient, and robust monitor that functions
under a wide range of temperatures and lighting conditions. Despite years of research
into a variety of alternatives, twisted nematic liquid crystal displays (LCDs) remain the
predominant solution for many applications [1].

In a typical LCD, a polyimide layer is spin coated on top of a transistor array and
physically rubbed to confer macroscopic orientational order on the liquid crystal (LC).
Although this is an excellent way to orient LCs, this rubbing process often harms the
substrate thin film transistors used in a display. LCD manufacturing could be improved
with a gentler method to control LC alignment.

The goal of this research is to develop the fundamental understanding needed to
design LC materials that will be easier to incorporate into LCDs and to improve their
electro-optic characteristics. This information has been used in the design of a nematic
gel made from an ABA triblock side group liquid crystalline polymer (SGLCP). In a
nematic solvent, the LC-phobic styrene ends of a poly(styrene-block-SGLCP-block
styrene) triblock copolymer microphase separate to form physical cross-links. At a
sufficiently high concentration, these cross-links produced a mechanically stable nematic

matrix.



A triblock copolymer based gel can also be aligned by shear, surface treatment, or can
be left unaligned for use in a light scattering display. A nematic gel of this type can be
heated so that the polystyrene blocks can disengage from the end-block aggregates to
form a viscous fluid. This arrangement produces a thermoreversible nematic gel. If the
electro-optic device were based on a light scattering state, the gel could be heated up to
the isotropic state and quenched into the nematic state to lock in a light scattering,
polydomain structure.

A device that works in a light scattering mode would use ambient light reducing
power requirements and would function under a greater variety of lighting conditions [2].
Furthermore, it would not have a viewing angle dependence like typical laptop displays
[3], would not require polarizers, and could eliminate the need for a rubbed polyimide

layer resulting in a simplified fabrication process.

1.1.1 What s a Liquid Crystal?

An LC is a material that has properties intermediate between a liquid and a crystal
[4]. It flows when subjected to a shear stress but also has some orientational, and often
some translational, order similar to a solid. Amongst LC materials there are two main
classes; lyotropic LCs, which go through phase transitions in response to concentration
changes, and thermotropic LCs, whose phase transitions are determined by temperature.
The presence of LC order is due to a delicate balance of specific molecular interactions
and/or steric effects. In lyotropic systems, the dominant effect is often a steric interaction
where increases in concentration cause the LC molecules to adopt some orientational to

enable them to pack more closely together [5]. In thermotropic LCs, steric effects are



typically less important and often an interaction, such as a dipole moment across a long
series of conjugated bonds, causes the molecules to align. Through these types of
interactions, an LC material can adopt order but still maintain the ability to flow in
response to an applied shear stress. This research will focus on the properties of
thermotropic LCs.

There are many ways in which positional and orientational order can be organized
into different phase structures. Some of the most common LC phases are shown in Fig.
1.1. Above a critical temperature, most thermotropic LC materials lose their translational
and orientational order to form an isotropic phase, Fig. 1.1a. As the temperature is
reduced, a first-order transition takes place as the material adopts some orientational, and
often translational, order. A nematic LC has only orientational order, Fig. 1.1b, and a
smectic LC has both orientational and translational order, Fig. 1.1c,d. Depending on the
relationships between the orientational and positional order, smectic phases exhibit a
number of different sub-classifications. Two of the simplest cases are the smectic A and
C phases. In the smectic A phase, the molecules are arranged into layers and oriented
near the layer normal. In the smectic C phase, the molecules tend to orient at an angle

relative to the layer normal.
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Figure 1.1. Common phases seen in liquid crystals.

In both nematic and smectic phases the molecules have significant mobility and are
not aligned exactly in the same direction but on average align near a direction called the
“director” n, Fig. 1.1. The distribution of the molecular orientations around the director

is characterized by the order parameter
_1 2 1 1.1
S—5<3cos 6,-1), (1)

where 6 is the angle between the 7™ molecule and the director and the brackets indicate
an ensemble average. Typically values of § are 0.6 and 0.8 corresponding to an average
angle of 31° or 21° for a nematic and smectic phase, respectively. In this study, we were

primarily concerned with the properties of nematic LCs.

1.1.2 Anisotropic Properties

Because LCs exhibit orientational order, their properties are different when measured

in different directions. In a nematic LC, the extraordinary refractive index (n,), for light

4



polarized parallel to the molecular axis, is typically larger than the ordinary refractive
index (n,), for light polarized perpendicular to the molecular axis. This optical
anisotropy, or birefringence, is defined as An=n.-n,. Along with the refractive index, the
dielectric constant, diamagnetic susceptibility, thermal conductivity, diffusion constants,
polarizability and many other properties are a function of director orientation. Similar to
birefringence, dielectric and diamagnetic anisotropy are, respectively, defined as
Ae=gjj—&, and Ay=y/)—¥..

In electro-optic devices, it is these anisotropies, combined with the ability of the
director to reorient, that are exploited. Because of a non-zero 4g, a liquid crystal can
reorient in response to an electric field. An on/off light valve can be created for an

electro-optic device by the proper control of light polarization and director orientation.

1.1.3 Viscous Response: The Leslie-Ericksen Theory

In a nematic liquid crystal the orientational order of the fluid makes the viscous
response to an applied shear strain complex. The stress response is related both to the
orientation of the director and to the rotational velocity of the director relative to an
applied strain. F. M. Leslie [6, 7] and J. L. Ericksen [8, 9] developed a mathematical
model describing the viscous response of a liquid crystal using six viscosity parameters.
If one ignores the effects of distortional elasticity, the stress response, according to

Ericksen’s transversely isotropic fluid model (TIF), is

t,=omn, A, nn, +o,Nn, +a;Nn +o, 4, +osA,nmn, +o,d,nn,, (12)



where the “n”s represent director components, 4; is the symmetric part of the velocity

gradient tensor [10]

A :%(vﬂvﬁ), (1.3)

g

N; represents the angular velocity of the director relative to the fluid vorticity

and vj; is the fluid velocity. By considering the symmetry of the director, Parodi [11]

found that
o,—-a,=o,+a,, (L5)
indicating that only five of the six parameters are independent.

According to Ericksen’s TIF model, if one assumes the motion of the director is
confined to the plane defined by the velocity and the velocity gradient directions, the

viscous response is related to the strain rate, 7, by [12]

' raf) , | \
fxy=5;HO:1_|_(O'“'«—O'“'i}Jsul‘(j?cos‘é’+5(o:3+054+0£6)— % . (1.6)

o, — o, o, -,

This shows that the transient response is a function of the angle @relative to the velocity

gradient direction and will have maxima at +45° and minima at 0 or 90°.



1.1.4 Miesowicz Viscosity Coefficients

Another method for describing the viscous response of a liquid crystal, that is
experimentally simpler, was developed by Miesowicz [13]. The three coefficients 7,, 77,
and 7. describe the viscosity when the director is, respectively, held in the vorticity,

velocity, and the velocity gradient directions by a magnetic or electric field, Fig. 1.2. The

Miesowicz viscosities are related to the Leslie-Ericksen coefficients by [14,15]
n.=Yya, (17)

1, = %(0{3 +a,+a,), (1.8)

and

n, = %(— a,+o,+o). (1.9

These viscosities are sometimes used because they are often easier to measure and can

give more physical insight than the Leslie-Ericksen parameters.
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Figure 1.2. The Miesowicz viscosities are measurement with the director held stationary by either an
electric or magnetic field.




1.1.5 Distortional Elasticity

Since LCs thermodynamically prefer to be macroscopically oriented, there is a free
energy loss associated with deviations from a macroscopically aligned state. For a
nematic LC, the possible distortions can be grouped into three types: splay, twist, and

bend, Fig. 1.3. Each of these distortions can be related to a free energy loss by
1 1 - IRCTI | - -\
F:EK“[V-n] +5K22[n-(V><n)] +EK33[n><(V><n)] , (L.11)

The three constants in this equation are referred to as the Frank [16, 17, 18] elastic
constants. These elastic constants are a measure of the restoring force experienced by a

nematic liquid crystal when subjected to director distortions; therefore, larger constants

result in faster director relaxation dynamics.
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Figure 1.3. Possible distortions for a nematic LC. Each of these distortions is associated with an elastic
constant K;; (splay), K3, (twist), and K3; (bend) in Eq. 1.11.

1.1.6 Liquid Crystal Director Reorientation

If the motions of the director are confined to the plane defined by the velocity and the

velocity gradient directions, similar to Eq. 1.6, and one considers the evolution of the



director in response to an applied electric or magnetic field, or to a shear stress, one

obtains [1]

2
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P IR (1.12).
where @ is defined as the angle of the director relative to the velocity gradient direction.
The first term corresponds to hydrodynamic forces on the director in response to a shear
stress and is obtained by a hydrodynamic torque balance on the director using Eq. 1.2.
The next two terms correspond to the torque due to an external electric, £, and magnetic,
B, field acting on the director. The fourth and fifth terms, derived from Eq. 1.11, are
Frank elastic stresses that function to restore macroscopic alignment to the sample. On
the other side of the equality, the first term describes an inertial force on the director
which is almost always negligible. The last term describes viscous dissipation due to
director rotation where the constant y=(3- ) is called the twist viscosity.

While at first Eq. 1.12 is quite complicated, when it is applied to an electro-optic
system, conditions are usually obtained where there is typically one force in opposition to

the twist viscosity. If small perturbations are considered (i.e., @ is small) the equations

can often be simplified even further.

1.1.7 Tumbling Parameter

If one assumes that director elasticity is unimportant, that the director is confined to
the plane defined by the velocity and velocity gradient directions, and that there are no
external fields, a torque balance on the director using the Leslie-Ericksen theory [12], Eq.

9



1.12 or 1.2, can be used to obtain a relationship between the rate of change of the director

and the shear strain (y)
26 . d
(e, — 0{2)5 = (o, sin> 6 — a1, cos’ 6)8_}; (1.13)

Here it can be seen that the hydrodynamic torque depends on the coefficients ¢, and os.
If the director is oriented along the velocity gradient direction (cos@=1, sin6=0), the
hydrodynamic torque tends to make the director rotate with the vorticity for <0 and
against the vorticity if >0, Fig. 1.4. Similarly, o3 dictates the sense and magnitude of
the rotation of the director when it is oriented along the flow direction, (cos 8=0, sin6=1).
If 035>0 the director will rotate with the vorticity and if ¢5<0, it will rotate counter to the

vorticity.

)

=7

o, >0 o3>0 —

Figure 1.4. In the 2-D Leslie-Ericksen transversely isotropic fluid model, the rotation of the director in
response to a shear stress is governed by the viscous coefficients o, and ;.

For a typical LC material, like 4’-pentyl-4-cyanobiphenyl (5CB), both &, and o are
negative [19]. This means that the director will rotate with the vorticity when 6=0 and
counter to the vorticity when 8=/2; therefore under shear, the director will find a steady-
state angle that is typically near the velocity direction. For many LCs [20, 21, 22, 23,
24], such as 4’-octyl-4-cyanobiphenyl (8CB) in the nematic phase near a smectic

transition temperature, <0 and o3>0 causing the director to rotate with the vorticity for
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all 6. Since the director will continuously rotate around 360° this behavior is called flow
tumbling. For discotic LCs [25, 26, 27, 28] or concentrated solutions of oblate polymers
in a nematic solution [29] (see Chapter 4) both &, and ¢; are positive and the director
will find a steady-state angle near 8=0. The last case for a>0 and 3<0 is by definition
not possible since it would result in y=(3-0,)<0. If this were the case then, according
to Eq. 1.12, rotation of the director would not dissipate energy.

To characterize the response of the director to an applied shear strain a tumbling
parameter, A4, is defined as,

:0‘2""053 _"

A (1.14)

o -0 —7
If |Z|<1 then the nematic is flow tumbling and if |/1|>1 then it is flow-aligning with a

steady-state angle of,

6 —lcos‘l(_—lj— an”’ 1+4 1.15
s =5 2 -1l (1.15)

For A>1 the steady-state angle will be near the flow direction (45°<6,<90°) and for A<-1
the steady-state angle will be near the velocity gradient direction (-45°<6,<0°). When
the tumbling parameter is applied to Ericksen’s TIF model it is the only viscous

parameter necessary to describe the rotation rate of the director using
=2 i+ ali-d—-iii:d), (1.16)

where @ is the vorticity tensor, d is the symmetric part of the velocity gradient tensor,
and Dii/Dt =0dn/ot+v-Vn is the material derivative.

Starting with 6=0°, integration of Eq. 1.13 and substitution of Eq. 1.14 yields
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b
tan(@) = i(%j 2 tanh(g\/ s —IJ (1.17)

for a flow-aligning LC (|/1| >1) and

/
tan(8) = (Mj tan(%/\/ 1-2 ) (1.18)

1-1

for a tumbling LC (|/1|<1). This demonstrates how A determines the rotational response

of the director to an applied shear strain.

1.2 Small Molecule and Polymeric Nematic Liquid Crystals

Polymeric materials can be made into LC materials having the same phase structures
as small molecule LCs. In these materials a mesophase forming structure, called a
mesogen, can be attached to a polymer either in the backbone to form a main chain LC
polymer, Fig. 1.5a, or as a side group, Fig. 1.5b,c. In main chain liquid crystalline
polymers (LCPs) such as Kevlar [30], the attractive forces between molecules are so
strong that they only form lyotropic LC phases and decompose before they get hot
enough to form an LC phase in bulk. If the mesogenic units are connected by a highly
flexible spacer [31], liquid crystalline phases can be found in bulk. In SGLCPs the
mesogen is attached at either the side, Fig. 1.5b, or the end, Fig. 1.5¢, of the molecule by
means of a flexible spacer. This acts to decouple the motions of the mesogen from the
backbone giving greater entropy to the system and lowering the glass transition
temperature (7,) making the mesomorphic phases more thermally accessible. Another

advantage of increased mobility is that the entropy of solvation is greater, typically
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making them more soluble in small molecule LCs than analogous main chain LCPs. This

is the reason why this research has focused on SGLCPs.

(2)

ZE
o =T 0T }_{2

Figure 1.5. Schematic structures of typical liquid crystalline polymers. The ellipses represent rod-like
mesogenic groups and the lines represent more flexible spacer or backbone segments.

1.2.1 Solution Anisotropy of Liquid Crystalline Polymers

When a polymer is dissolved in a nematic solvent, the flexibility of the chain
segments is affected by the nematic order. For a main chain polymer, the mesogens are
in the backbone forcing the polymer to become preferentially oriented along the director,
Fig. 1.6a. Since a nematic fluid is symmetric with respect to rotations around the
director, a polymer aligned along the director must also possess this symmetry; therefore
a main-chain LCP will adopt a prolate ellipsoidal, or egg-shaped, conformation [32].
Similarly, most side-on, and some end-on SGLCPs, have mesogens that are parallel to the
backbone and will also adopt a prolate conformation [33], Fig. 1.6b. Lastly, end-on
SGLCPs often have mesogens that are perpendicular to the backbone. This causes the
polymer to have a larger radius of gyration in the direction perpendicular to the director.
This results in an oblate, or disc-like, spheroid conformation in the nematic state. The
same arguments used here for solutions can also be applied to the melt.
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(a) Main Chain (b) Side Chain (c) Side Chain
Prolate R||>R, Prolate R >R, Oblate R <R

Figure 1.6. Schematic drawing of the conformations of liquid crystalline polymers in nematic solvents. (a)
Prolate main chain LC. (b) Prolate SGLCP where the mesogenic groups are parallel to the backbone. (c)
Oblate SGLCP where the mesogenic groups are perpendicular to the backbone.

1.2.2 Brochard Theory Consequences of Chain Anisotropy

The theory proposed by Brochard [34] concerns the effect of the addition of small
amounts of an anisotropic polymer on the viscous response of a small molecule nematic
LC. This theory uses an anisotropic bead-spring model [10, 35] for the polymer in which
the radius of gyration of the polymer in the parallel direction is different from the
perpendicular direction, R//#ZR. This consideration, along with several other
assumptions concerning relaxation processes and viscous dissipation, were evaluated in
terms of the bead-spring model and applied to the Leslie-Ericksen theory to predict

changes in the viscosity coefficients upon addition of polymer

(RLZ_RZ)Z ckT
Sy, = I ( jz' . (119
;/1 RJ_ZRHZ N R ( )

R¢4_Iq4 ckT
Sy, = | r.. (120
4 RJ_ZRHZ ( N j R ( )
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Here, k is Boltzmann’s constant, 7 is the absolute temperature, ¢ is the monomer
concentration, N is the degree of polymerization, and 7z represents a characteristic
polymer relaxation time. By inspection of Eq. 1.19 it can be seen that changes to ) are
always positive for the addition of polymer, but changes to 3 are positive for oblate,
R//<R,, and negative for prolate, R//>R , polymers. The parameters » and  are related

to the tumbling parameter by

A=-12. (121

If

therefore, a prolate polymer will increase the tumbling parameter and an oblate polymer
will reduce the tumbling parameter [29, 36]. If enough oblate polymer is added to a
nematic with £>1, it will induce tumbling. As more polymer is added, A4 will be reduced

to less than -1 and the solution will become flow-aligning again.

The Brochard theory also predicts that the ratio of changes in the Miesowicz
viscosities can be used to estimate the anisotropy of the polymer

J/
ﬁz(%j . (122
Ry \on

c

An alternative way to estimate chain anisotropy that is not explicitly stated by Brochard
can be obtained by taking the ratio of Eqs. 1.19 and 1.20. After some algebraic

manipulation and substitution of Eq. 1.21, one obtains

1=
L=

(1.23)

& — |:§)"1 + 5)13:| — |:(1 — ;L’)/yl - (l — ;'“o )/ylo
= = ( .

R, Sy, = I 1+ 4, )7/10 - (1 + /1)7/1
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where the subscript “o” refers to values for bulk SCB. Although there have been many
studies that estimate polymer anisotropy based on changes in the Miesowicz viscosity
[37], very little research has been done to measure the anisotropy of polymers in solution
[38, 39, 40, 41]. The anisotropy of our polymers was measured using small-angle
neutron scattering (SANS) along with detailed rheological studies. Therefore this is an

ideal system for evaluating Eqs. 1.22 and 1.23.

1.2.3 The Importance of High Molecular Weight

Many researchers have studied the effects of polymers dissolved in LC materials. A
typical example of this can be found in the work of Coles et al. [42, 43, 44, 45, 46]. They
found that the viscosities 3, 7,, and 77, increased rapidly upon addition of polymer. All
three viscosities seemed to vary exponentially, by an order of magnitude, and 77,, and
1, by about two orders of magnitude, after the addition of about 20 wt % polymer. These
findings demonstrate the main concern associated with the use of polymers in nematic
solvents. In order to get fast reorientational responses, these viscosities need to be small.
With such a large change in viscosity only a small amount, ~2 wt %, of polymer could
more than double the reorientational response time of a display, making such a system
useless.

Most experiments on nematic solutions have been done using homopolymers with
molar masses around 20,000 to 50,000 g/mol [47]. Simply examining high molecular
weight SGLCPs represents a new area of research and the use of triblock copolymers

with long SGLCP blocks currently remains unexplored. Thus, this research into high
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molecular weight block SGLCPs has produced results that were previously unattainable
and has demonstrated new phenomena with the potential to improve electro-optic

devices.

1.3 Synthesis and Characterization of Side Group Liquid Crystalline

Polymers

1.3.1 Polymerization Techniques

The orientational order of an LC material reduces the entropy of dissolution making
the dissolution of polymers in small molecule nematic LCs more difficult [48] as
compared to an isotropic solvent. Finkelmann [49] suggested that the best way to get
good solubility is to use polymers having a structure similar to the nematic solvent.
Matching the mesogen of an SGLCP to a nematic solvent is relatively easy using radical
polymerization or condensation polymerization techniques. The disadvantages of these
techniques are that they produce polydisperse polymers, especially at high molecular
weights, and cannot be used to make a homologous series of polymers with matched
backbone lengths. These techniques also cannot be easily used to make well-defined
block copolymers.

The preferred method for obtaining an SGLCP with a narrow molecular weight
distribution is to use anionic polymerization.  This technique provides a low
polydispersity and can be used to create block copolymers. The main problem with this
technique is that the types of monomers that can be used are limited. To avoid this
problem, the polymer analogous approach is taken where the mesogen is attached to a

previously synthesized polymer backbone having the desired polydispersity and degree of
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polymerization, Fig. 1.7. This method allows one to use mesogens that would normally

interfere with anionic polymerization.

Figure 1.7. The polymer analogous approach. This method involves first making a functionalized polymer
backbone and, in a second step, attaching the desired mesogen. This has the advantage of being able to
attach a wide variety of mesogens and the ability to make well-defined block copolymers.

To pursue the polymer analogous approach to create the desired SGLCPs, a suitable
functionalized polymer backbone had to be found. 1,2-Polybutadiene can be made with a
functional pendant vinyl group on every other backbone carbon atom. Although there are
many ways to attach a side group to a vinyl group, a method must be chosen which
proceeds very close to completion and has few side reactions.

Two different methods for attaching the mesogen were used in this research. In the
first method, the pendant vinyl groups were hydrolyzed to an alcohol using hydroboration
with 9-borabicyclo[3.3.1]nonane (9-BBN) followed by oxidation under basic conditions

(Appendix A2). Then, a mesogen with an acid chloride group was attached to the
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pendant alcohol. Since this method contained three steps that involved the polymer, it
was difficult to prevent cross-linking reactions from occurring. In the second method, a
siloxane functionalized mesogen was attached directly to the pendant vinyl groups of 1,2-
polybutadiene (Appendix A3). This attachment method did not go as far to completion
as the acid chloride method, but since only one step involved the mesogen it was a more

reliable method and, consequently, was used to create ABA triblock SGLCPs.

1.3.2 Objectives

Research into SGLCPs has been going on for years and there is a very large body of
information on the subject. When one considers high molecular weight SGLCPs, the
amount of research is much smaller. Furthermore, since creating high molecular
SGLCPs with a small polydispersity index (PDI) requires either a living polymerization
technique or a separation technique, such as fractionation, very little research has been
done in this area. Consequently, there are still large gaps in the physical understanding of
the interactions between polymers and LCs.

Furthermore, the primary goal of this research was to produce a new type of nematic
gel using ABA triblock SGLCPs. By using a pre-formed self-assembling polymer
network instead of a randomly cross-linked photo or thermally initiated system, excellent
control over the physical characteristics of the gel can be maintained. These gels are
intended for use in an electro-optic device requiring fast reorientations of the nematic
director. Thus, we desire to use as little polymer as possible so that the reorientational
response does not become too slow, as in a polymer melt [50]. The amount of polymer

necessary to create a gel is dependent on the length of the center block. This distance can
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be increased by choosing a mesogenic group that makes the backbone less flexible, or by
simply making very high molecular weight polymers.

There were several obstacles that needed to be overcome to achieve the goal of an
ABA SGLCP nematic gel. Firstly, we had to develop synthetic techniques that could be
used to create telechelic block copolymers with a wide variety of mesogenic groups.
This was accomplished by using a polymer analogous approach. Secondly, we had to
extend these methods to very high molecular weight polymers so that a dilute gel could
be formed. Thirdly, the polymers were characterized in a homopolymer form to see how
the mesogen structure affected the polymer conformation, physical size, compatibility
with nematic solvents, and electro-optic properties. Fourthly, since the director
reorientation rate of an electro-optic device is usually slowed down by the addition of
polymer, it was necessary to determine how a very high molecular weight polymer
affected the viscosity of a nematic. This included studies of the effect of a polymer on
director reorientation under an applied shear strain. Lastly, once a functional gel was
obtained its properties were studied and compared with the results from the

homopolymers to determine structure-property relationships.
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Chapter 2 Synthesis and Phase Behavior of Liquid Crystalline

polymers

2.1 Introduction

Polymers are often used in electro-optic liquid crystalline materials, such as polymer-
dispersed liquid crystals [1, 2], polymer-stabilized liquid crystals [3, 4], compensating
films [5], and electro-mechanical actuators [6, 7]. The use of polymers in these systems
depends upon such factors as their solubility, birefringence (4n), electro-optic response,
and rheological properties. Experiments performed by Gu et al. [8] found that the effect
of side group liquid crystalline polymers (SGLCPs) on the twist viscosity of a liquid
crystal solution was dependent on the spacer length between the backbone and the
pendant mesogenic groups. The rheological response of an SGLCP in the melt or in a
nematic solution also depends upon its conformation. If a polymer has a smectic phase, it
is likely to have an oblate conformation in all its mesomorphic phases; however,
Mattoussi and Ober [9] have shown that this does not necessarily apply to a mesomorphic
solution, they found a prolate conformation in a nematic solvent for an SGLCP that had
an oblate conformation in the melt [10]. The present precisely defined series of polymers
is well suited for characterizing the effects of a dissolved polymer on an LC host and for
studying the relationships between chemical structure, phase transition temperatures, and
polymer conformation. The characterization of this polymer series will be essential for

studies [11, 12] that test the predictions of the Brochard theory [13].
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The theory proposed by Brochard [13] predicts how the addition of a polymer to a
nematic liquid crystal will affect its orientational and rheological response to an applied
shear stress. In these theories the anisotropy of a liquid crystalline polymer in a nematic
solvent determines its effect [14, 15] on the Leslie-Ericksen [16, 17] viscosity
coefficients. In Kempe et al. [11] (Chapter 4) we demonstrated that the addition of ~7.5
wt %, of the high molecular weight polymers used in this study, could change the
viscosity coefficients sufficiently to cause a solution with calamitic, or rod-like,
mesogenic units to align near the velocity gradient direction rather than near the velocity
direction.

In this study a model series of large SGLCPs was synthesized. The backbone of the
polymer was synthesized using living anionic polymerization, for low polydispersity [18,
19, 20, 21], and the mesogen was attached in a second step [22, 23, 24, 25]. This
approach allowed the synthesis of high molecular weight, low polydispersity polymers
with identical degrees of polymerization but different mesogens. Similarly, a single
mesogen was attached to polymers with a length from DP=200 to 1150.

Prior to this study the longest 1,2-polybutadiene that had been reportedly converted to
PBOH had DP=900 [26]. Making high molecular weight polymers was difficult since the
kinetics of the reaction were greatly reduced, the polymers were less soluble at all stages
of the reaction, and most importantly, cross-linking reactions were not eliminated they
were only minimized.

Pronounced odd-even effects associated with alternation between parallel and
perpendicular mean orientations of the mesogens relative to the polymer backbone with

increasing spacer length have been observed for certain backbone structures (especially
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acrylates) [27, 28, 29]. In the present system, the melt and solution thermodynamics only
exhibit weak odd-even effects as the spacer length was increased.

Along with melt studies, solution studies included the determination of solubility in
nematic solvents and determination of the refractive indices (n. and #n,) of the solutions.
Since these polymers have cyanobiphenyl mesogens, excellent solubility was found in the
nematic solvents 4-pentyl-4’-cyanobiphenyl (5CB), 4-pentoxy-4’-cyanobiphenyl
(50CB), and in the eutectic mixtures E7 and E44 [30]. In the 5CB solutions, the small
changes in the refractive indices upon addition of polymer indicated that the order
parameter of these solvents was not significantly affected.

Solubility of a polymer in a nematic solvent at high molecular weights was a
significant achievement. The additional order of a nematic fluid reduces the entropy of
solvation and often results in only slight solubility of low molecular weight polymers. In
this system the similarity of structure resulted in the solubility of polymers an order of

magnitude larger than those typically used by other researchers.

2.2 Polymer Characterization

The synthetic details for PBCBx, Fig. 2.1, series of polymers will be published in

Macromolecules [31] and are given in appendices A1.2.1, A1.2.3 and A1.2.4.
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PBCBx

O
oo =
0 X-1

Figure 2.1. PBCBx denotes a 1,2-polybutadiene backbone, with a cyanobiphenyl mesogen. The “X” in the
polymer name indicates the size of the spacer where X+4 is the number of atoms between the mesogen and
the polymer backbone. In these experiments X=4 to 8.

The present development of a synthetic approach and examination of phase behavior
(in the melt and in nematic solutions), provides a foundation for coordinated studies of
chain conformation (showing the present polymers are oblate with R /R //~=1.6) [32] and
rheology (showing that access to high polymers with DP>100 reveals unprecedented

effects of dissolved SGLCPs on the flow behavior of LC solutions) [11, 12].

2.2.1 Multi-Angle Laser Light Scattering

Gel permeation chromatography (GPC) was carried out on two PLgel 5 mm mixed-C
columns (Polymer Labs) connected in series with a DAWN EOS multi-angle laser light
scattering (MALLS) detector and an Optilab DSP differential refractometer (both from
Wyatt Technology). No calibration standards were used and dn/dc values were obtained
for each injection assuming 100% mass elution from the columns. The molecular weight
distribution of the final SGLCP verified that a final PDI<I.16 could be achieved starting

with prepolymer having PDI<1.04, Table 2.1.
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Butadiene

Predicted Measured Pre-

Polymer Pre-Polymer
M, M, PDI Polymer

Sample M,

(g/mol)*  (g/mol) PDI

(g/mol)

PBCB4 388,000 540,000 1.16 63,000 1.04
PBCB6 78,000 92,000 1.14 11,500 1.03
PBCB6 364,000 427,000 1.13 54,000 1.04
PBCB6 420,000 504,000 1.09 63,000 1.04
PBCB7 437,000 525,000 1.09 63,000 1.04

Table 2.1. MALLS results. * The predicted molar masses were based on 100% attachment of the mesogen
to the 1,2-polybutadiene pre-polymer backbone. Since multiple samples of each polymer were made and
the physical properties measured were the same, the predicted molar masses were used throughout the text.

The predicted molar mass was based on 100% conversion of vinyl group to alcohol
and 100% attachment of mesogenic groups with no cross-linking of the polymers. When
compared with the actual molar mass determined by MALLS, the measured was always
higher than the predicted molar mass. The higher this discrepancy the higher the PDI. If
the primary cause of the increase in PDI was intermolecular cross-linking then the values

of the measured molar masses were consistent with the measured PDIs of the samples.

2.2.2 Melt Properties

A series of polymers PBCBx (x=4,5,6,7,8) were made using a 1,2-polybutadiene
prepolymer with a molar mass of M;,=63,000 g/mol. The transition temperatures and

phases of these SGLCPs were determined using a Zeiss polarized optical microscope
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(POM) with a Mettler FP82 hot stage and a differential scanning calorimeter (DSC)
(Perkin Elmer DSC7). For the PBCBx polymers a characteristic nematic marbled texture
was seen under POM. This present observation of a nematic phase is in accord with the
phase behavior of PBCBS reported by Sanger and Gronski [26].

In the PBCBx series, the nematic phase exists between a glass transition (7,) and an
isotropization transition (7)), Fig. 2.2. As the spacer length was increased (PBCB4 to
PBCBS) the range of this nematic phase broadened as 7, decreased and T}, increased.
Longer spacers increase the mobility of the side chains, increasing their entropy and
therefore causing 7, to decrease with increasing spacer length. Similarly to 7, the
enthalpy of the nematic-isotropic transition (AH,;) increased with spacer length. In
contrast to AH,;, the change in heat capacity at the glass transition temperature was

insensitive to spacer length (4Cp=0.30+0.02 J/g-°C).
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Figure 2.2. Effect of Spacer length for PBCBx polymers in comparison to Sanger [26] for similar
polymers. (a) Transition Temperatures T, and T,,. (b) 4H,; showing a small odd-even effect.

The increases in both AH,; and A47,; with spacer length accord with known effects of
increasing the spacer or alkyl tail length on SGLCPs [33, 34, 35]. In WAXS studies by
Sanger and Gronski [26], an increased spacer length was found to promote the formation

of a smectic phase in PBCBI11. In our system a longer spacer increased the strength of
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the nematic field increasing AH,; and T,;, but even for PBCB8 no smectic phases were
seen.

For the largest spacer used, PBCBS, there were a total of 12 atoms between the
polymer backbone and the biphenyl group, which makes it somewhat surprising that a
smectic phase was not seen. Other researchers using cyanobiphenyl-based SGLCPs with
silicon atoms on the backbone [36] or on the spacer [37] found smectic phases with 4 to 9
atoms and 7 atoms, respectively, in the spacer. Percec and Lee [38] synthesized a system
of polymers where a cyanobiphenyl mesogen was attached using ether links connecting
the methylene spacer to the backbone and to the mesogenic unit. They also found
smectic phases for polymers with 7 or more atoms in the spacer. The presence of silicon
atoms or ether links makes these spacers flexible decoupling the mesogen from the
backbone which should favor the more disordered nematic phase. Therefore it must be
the greater incompatibility of the spacers containing siloxane or ether groups and the
cyanobiphenyl mesogen that favors the formation of smectic LCs relative to PBCBXx.

Experiments by Shibaev et al. [34] using a cyanobiphenyl-based mesogenic group
with a polymethacrylate and a polyacrylate backbone found smectic phases only at larger
spacer lengths. They found smectic phases for spacers of 8 (but not 5) atoms in
polymethacrylates and 14 (but not 8) atoms in acrylates. Since these systems use both an
ether and an ester bond to link the mesogens, the flexibility of the spacer must be similar
to our system. For the polymethacrylate system, smectic phases were formed with 8
atoms in the spacer; therefore, the cyanobiphenyl mesogen must be more incompatible

with the polymethacrylate backbone than with the ethylene backbone of PBCBx.
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In SGLCPs an odd-even effect is often seen as the length of the spacer is varied. In
some acrylate [27] and methacrylate-based [28, 29] SGLCPs a strong odd-even effect
results from the “hinge effect” where the mesogenic group alternates between a parallel
and perpendicular orientation relative to the polymer backbone. In our SGLCP series,
only one property, AH,; displayed an odd-even effect: the change in enthalpy was
greater from x=4 to 5 and 6 to 7 than from 5 to 6 or 7 to 8, Fig. 2.2. Even though odd-
even effects typically decrease with spacer length, work by Craig and Imrie [28, 29] saw
them in 7,; and A4S,; for polymers with up to 15 atoms between the mesogen and the
backbone and attributed it to the “hinge effect.” In our systems the longest spacer had 12
atoms, therefore the absence of any strong odd-even effects suggests that these polymers
had the same orientational relationship between the backbone and the mesogen. Neutron
scattering results presented in Chapter 4 confirm that this is the case (the orientational

tendency is transverse with R /R //=1.6 for the PBCBx series).

2.2.3 Solution Properties: Transition Temperatures and Solubility limits

The solubility of these polymers was checked in a number of common small molecule
LCs. Samples of 5CB, E7, and E44 were purchased from Merck. All other small
molecule LCs were purchased from Aldrich. Solutions were prepared by dissolving the
polymer and LC in dichloromethane and then removing the dichloromethane under
vacuum. The insolubility of our nematic polymer in the smectic LC 4’-octyl-4-
cyanobiphenyl (8CB) was expected since smectic materials are most compatible with
other smectic LCs having similar layer spacings [39]. Due to large differences in

mesogen structure, the polymers were also insoluble in N-(4-methoxybenzylidene)-4-
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butylaniline (MBBA). Once the phase and structure of the polymer and the solvent were
matched more closely, good solubility was obtained. The polymer was found to be
soluble in the cyanobiphenyl-based nematic LCs and in the eutectic mixtures, SCB,
50CB, E7, and E44 [30].

The ability of these polymers to dissolve in cyanobiphenyl-based nematic LCs at high
molecular weights is a significant property. The additional order of a nematic fluid
reduces the entropy of dissolution of the polymer reducing its solubility relative to
isotropic solvents. Solubility issues often limit the choice of polymer and solvent,
forcing experiments to be conducted at low molecular weights or at low concentration.
The excellent solubility of our SGLCPs gives us the opportunity to extend research on
SGLCPs in LC solvents to high polymers (DP>1000).

The effect of PBCB6 on the phase transition temperatures of the small molecule LC
solvents was to increase T;, Fig. 2.3. In 5CB the polymer also caused the formation of a
biphasic region in low concentration solutions (<10 wt %); but at 50 wt % the LC
transitioned directly from the nematic to the isotropic phase, Fig. 2.3a. In SOCB, a small
biphasic region, ~0.5 °C, smaller than the symbol size in Figure 2.3b, was visible only
when heating the sample. Since the 7,; of SOCB was closer to the 7}, of the polymers
and possibly because of a slightly better matched in the structure, it transitioned into the
isotropic state more quickly. In SOCB the addition of polymer not only increased the 7,
but it also decreased the temperature of the melting point. When the solutions of SOCB
were cooled through the freezing point, small amounts of polymer phase-separated at the

grain boundaries of the crystals.
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Figure 2.3. Phase diagram for solutions of 420 kg/mol PBCB6 dissolved in cyanobiphenyl-based small
molecule liquid crystals. Phases were determined by DSC and POM. Similar results were found for
solutions of the other polymers in this series, PBCBx. (a) T, indicates the transition from one nematic
phase to a biphasic nematic/isotropic phase. And 7, indicates a transition from biphasic to an isotropic
phase. (b) T, is the transition from a nematic to isotropic phase with a small biphasic region only visible
while heating. T, is the melting point of the crystalline phase.

The eutectic mixtures E7 and E44 are composed of mixtures of cyanobiphenyl-based
LCs, primarily SCB and SOCB. These mixtures have a biphasic region, and the addition
of PBCB6 (having a higher 7)) increased the temperatures 7,; and 7., Fig 2.3a. The
presence of a biphasic region is a common occurrence in solutions of polymers dissolved
in small molecule nematic LCs [40, 41, 42]. Significantly, miscibility was observed over
a wider temperature range in the nematic phase than the nematic temperature window of
the host LC itself. In general, the addition of polymer increased the temperature range of

the nematic phase (decreasing T, Fig. 2.2a, or T,,, Fig. 2.3b, and increasing 7,;, Fig 2.3a).

2.2.4 Effect of Polymer on the Refractive Index of a Nematic Solution

The refractive indices of solutions of 420 kg/mol PBCB6 in 5CB were measured
using an Abbe refractometer [43] equipped with a bandpass filter for 633 nm light.
Alignment of the liquid crystal was obtained by washing the surfaces of the prisms with a

solution of 1% lecithin in chloroform to promote homeotropic (perpendicular) alignment.
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Since the liquid crystal was birefringent, light entering this phase was split into two
beams with different polarization states. Therefore, the ordinary and extraordinary
refractive indices , n, and n,, could be determined. Instead of a single transition from a
light to a dark state, two transitions from bright to dim and from dim to dark were seen
[44]. When the solution went through 7,;, a biphasic region was encountered in which
the refractive index of the larger isotropic phase was easily discerned. Since the
polymer-rich LC phase was present in significantly smaller quantities and was poorly
aligned, it was difficult to measure its refractive indices. The uncertainty in
measurements below 7,; was smaller than the symbol size in Fig. 2.4, but in the biphasic

region the uncertainties were much larger, as indicated.
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Figure 2.4. Effect of dissolved polymer 420 kg/mol PBCB6 on (a) refractive indices and (b) birefringence
of solutions in 5CB. At temperatures above 35 °C, the solution was biphasic with the largest fraction in the
isotropic phase. For temperatures below ~32 °C, within experimental uncertainties, the birefringence of the
solutions was the same as bulk S5CB.

Solutions of up to 10 wt % polymer were compared to bulk SCB. The change in 4n,
n,, and n, due to the addition of polymer, was less than the experimental uncertainty for
temperatures below ~32 °C, Fig. 2.4. In Figure 2.4b near T,;, a larger 4n is seen for the
solutions of 10 and 5 wt %. This behavior was expected since the polymer had a

significantly higher 7, than 5CB and served to stabilize the nematic phase [45, 46].
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Coles and Bancroft [47] using a cyanobiphenyl-based SGLCP dissolved in E7
demonstrated that changes in An correlated with a reduction in the order parameter and
K;;. In our system the negligible changes in 4n upon addition of polymer indicated that

the order parameter was not significantly affected except near 7.

2.3 Conclusion

Using a cyanobiphenyl-based mesogenic unit in these SGLCPs confers excellent
solubility in nematic cyanobiphenyl-based small molecule LCs even with high molecular
weight polymers. This allowed us to explore concentration and molecular weight
regimes that were previously unexplored. Because of this similarity in structure, the
addition of polymer to 5CB did not change An for temperatures below 32 °C. This
indicated that even up to 10 wt % polymer, the order parameter of the solvent was not
significantly altered which allows parameters, such as the frank elastic constants, for bulk
5CB to be used as an estimate for the solutions.

Studying solutions of model polymers in LCs allows us to evaluate the effects of
polymers on a nematic host as a function of molecular weight and spacer length. Since
this series of SGLCPs extends to chain lengths an order of magnitude larger than that
previously investigated in LC solutions, it has revealed new phenomena that were
previously inaccessible; such as flow alignment of a calamitic LC near the velocity
gradient direction [11, 12]. This also provides a way to evaluate the effect of a dissolved
polymer on the Leslie-Ericksen viscous parameters as predicted by the Brochard theory
[13], and to compare the rheologically predicted anisotropy with the anisotropy measured

in small-angle neutron scattering experiments [11].
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Chapter 3 Physical Properties of Perdeuterated 4’-Pentyl-4-
cyanobiphenyl

This chapter is composed of the text and figures of a paper that was co-authored by
Michael D. Kempe and Julia A. Kornfield at the California Institute of Technology and
Shin-Tson Wu and Qiong-Hua Wang at the University of Central Florida [1]. The
synthesis of the deuterated SCB was performed in California, the bulk of the material
characterization was performed in Florida, and the data analysis was performed jointly.
The text and figures presented here were reprinted with permission from Journal of
Applied Physics 92(12), 2002, pp 7146-7148. Copyright 2002, American Institute of

Physics.

3.1 Relevance of Deuteration to Electro-Optics

Liquid crystal (LC) optical phased arrays (OPA) have been developed for laser beam
steering, electronic lenses and network switching [2,3]. The performance of an OPA is
determined by the LC material employed, such as birefringence, viscosity and elastic
constant. To steer a high power laser, the absorption of the LC cell, including LC
medium, substrates and electrodes, plays a crucial role. The absorbed laser light is
converted to thermal energy which heats up the LC material. If the resultant temperature
exceeds the LC’s clearing point, the light modulation capability vanishes.

In the visible spectral region, most LC materials are transparent. However, in the mid
(3-5 um) and long (8-12 um) infrared (IR) regions, some strong molecular vibration

bands exist [4] For instances, the CH, CH, and CH; bands overlap closely in the 3.4-3.6
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um range, and the CN absorption band occurs at 4.45 um. The overtones (second and
third harmonics, etc.) of these vibration bands occur at near IR (1-2 um) region where
A=1.55 um is a common wavelength for telecom light switch. To clean up the 3-5 um
window, post-deuteration in the side chain of some LCs has been attempted [5]. The
deuterium (D) atom has a larger atomic mass so that the CD stretching occurs at a longer
wavelength than that of the CH band.

In this chapter, we report the physical properties of a perdeuterated 4'-pentyl-4-
cyanobiphenyl (D5CB) liquid crystal. The mesogenic properties of DSCB remain very
similar to 5CB. However, its IR absorption is substantially reduced. This opens up a

new possibility for high power laser beam steering in the near and mid IR regions.

3.2 Effect of Perdeuteration on Electro-Optic Properties

The 5CB was obtained from Merck and used as is, and the synthesis of D5CB is
described in section A4. The phase transition temperatures of D5SCB and 5CB were
measured using a high sensitivity differential scanning calorimeter (DSC, Model TA-
Q100). Results are listed in Table 3.1. The melting and clearing point of DSCB is about
1-2 °C lower than that of 5CB. The dielectric and elastic constants were measured using
an APT-III instrument devised by Displaytech Table 3.1. D5CB has a slightly smaller
dielectric anisotropy along with its lower clearing temperature. From mean field theory,

[6] the LC dielectric anisotropy (A4¢) is linearly proportional to order parameter (S) which

is related to clearing point (7,.) as S=(1-T/T.) . For most LCs, /~0.25 and is insensitive to
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molecular structures [7]. Thus, DSCB is expected to exhibit a slightly smaller A¢ than

5CB.

Nematic K1 1 K3 3

Phase °C) & & A& oy Ny KoKes

D5CB  21.4to32.1 18.1 6.6 11.5 7.34 8.6 1.17

5CB 22.5t034.2 19.1 6.3 12.8 9.96 11.8 1.19

Table 3.1. The measured phase transition temperatures, dielectric constants, and elastic constants of SCB
and D5CB. 7=22 °C.

The refractive indices of D5CB and 5CB were measured at 7=22 °C for A=546, 589
and 633 nm using a multi-wavelength Abbe refractometer (Atago, Model DR-M4).
Results are listed in Table 3.2. Similar to A&, the LC birefringence (An=n.-n,) is also
linearly proportional to S [8]. Thus, DSCB has a slightly smaller 4n than 5CB at all the

wavelengths we studied.

Wavelength e SSB An e DiCB An
546 nm 1.7336  1.5387 0.1949 1.7241 1.5386  0.1855
589 nm 1.7233  1.5337 0.1896 1.7140 1.5340 0.1800
633 nm 1.7140  1.5297 0.1843 1.7048 1.5303 0.1745

Table 3.2. The measured refractive indices of 5CB and D5CB. T=22 °C.

The major advantage of DSCB over 5CB is its cleaner and lower IR absorption. Two
IR spectrophotometers, Perkin-Elmer Spectrum-One and Cary-500, were used for these

studies. For the mid- and long-IR absorption measurements, two sodium chloride
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substrates were used. The LC cell gap was controlled at d~8 um and the measurements
were made at 7=22 °C, in the nematic state. For the interest of identifying the red shift
originating from deuteration, we only compared their relative transmission. Experimental
results of SCB and D5CB are shown in Figs. 3.1 and 3.2, respectively.

In Fig. 3.1, two major absorption bands (CH and CN) occur in the 3-5 um (3300 to
2000 cm™) region and several absorption bands in the 8-12 um (1250 to 833 cm™) region.
The CH, CH, and CHj stretching vibration bands overlap closely in the 2800-3100 cm™
range with a strong absorption intensity. As compared to Fig. 3.2, the CH/CH,/CHj
absorption of the 95% perdeuterated D5SCB is reduced substantially. The remaining
absorption centered at ¥=2901cm™ is due to residual alkyl CH bonds, Fig. A4.2, and the
absorption due to the aromatic CH bonds (3000 to 3100 cm™) is almost completely
eliminated. The alkyl CD absorption band shifts to v=2099 ¢m™ which is very close to
the strongly absorbing CN band centered at 2225 cm™. To further remove the strong CN
band, other polar groups such as F or CF; can be considered [9]. However, absorption
from the aromatic CD stretching overlaps the CN stretching which would still reduce

transmission at this frequency.
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Figure 3.1. Measured IR transmittance of 5CB. Cell gap~8 um. T=22 °C. The four designated vibration
frequencies are 1604, 1492, 812 and 540 cm™, respectively.
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Figure 3.2. Measured IR transmittance of D5CB. Cell gap~8 um. T=22 °C. The five designated vibration
frequencies are 1575, 1391, 837, 691 and 500 cm’, respectively.

Figure 3.1 shows some absorption in the 1800 to 2000 cm™ range which are the
overtones resulting from the aromatic CH bonds. In contrast, these bands are absent in

DS5CB. Due to the absorption frequency shift, DSCB exhibits a much cleaner and smaller
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absorption than 5CB in the 800 to 1300 cm™ region. At A=10.6 um (1=943cm™, a key
CO; laser wavelength), DSCB has a much lower absorption than 5CB.

Liquid crystals have been used as light switch and variable optical attenuators for
fiber-optic communication at A=1.55 um [10]. A lower absorption would enable an LC
device to tolerate a higher power laser beam. We have compared the absorption spectrum
of DSCB with 5CB in the 1-3.2 um range. Since the absorption is relatively small in this
spectral region, a 1 mm thick quartz cell was used for such experiments. For such a thick
cell, it is impossible to align the LC employed. To avoid light scattering, the cell was
heated to T~50 °C so that the LC is in the isotropic state. The measured results are plotted
in Fig. 3.3. The dark and gray lines represent the measured optical density of DSCB and

5CB, respectively.
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Figure 3.3. Measured optical density (OD) of D5CB (dark lines) and 5CB (gray lines) in the near IR
region. Cell gap=1 mm. T~50 °C.

From Fig. 3.3, DSCB exhibits a much lower absorption in the near IR region. Several
overtone absorption bands observed in SCB are either eliminated or significantly reduced.

For example, the A=1.7 um band which is the second harmonic wavelength of the strong
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3.4 um CH bands is absent in DSCB. Since most of the CH bonds in 5CB are replaced

by CD, the 1.7 um band no longer exists in D5CB.

3.3 Conclusions

In conclusion, the perdeuterated SCB preserves the major mesogenic properties of
5CB while exhibiting much lower absorption in the near and mid IR regions. This new
LC compound would extend the useable range of high power laser beam steering to mid
IR and enhance the power handling capability of LC devices for telecommunication at
A=1.55 um.

A perdeuterated 4'-pentyl-4-cyanobiphenyl (DSCB) was synthesized and its physical
properties evaluated and compared to those of SCB. D5CB preserves similar physical
properties, such as phase transition temperatures, dielectric constants and refractive
indices, to SCB. An outstanding feature of DSCB is that it exhibits a much cleaner and
reduced infrared absorption. Perdeuteration not only extends the useable range of liquid
crystals to mid infrared but also significantly reduces the absorption in the near infrared,

which is essential for telecom applications.
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Chapter 4 Polymer Chain Anisotropy in a Nematic Solvent

4.1 Introduction

When a polymer is dissolved in a nematic host, it adopts an anisotropic conformation
which is coupled to the nematic order of the liquid crystal giving rise to rheologically
complex behavior. The Brochard [1] theory describes how, in a dilute solution, the
anisotropy of the polymer affects the six Leslie-Ericksen parameters used to describe the
viscosity of a nematic material. Numerous rheological studies have been performed to
test the qualitative validity of the Brochard theory [2, 3] or to obtain estimates for the
chain anisotropy [4, 5, 6, 7]. In the work of Yao and Jamieson [7], electrorheological
measurements of solutions of a side-group liquid crystalline polymer (SGLCP) in a
nematic solvent were used to obtain estimates of the polymer chain anisotropy using the
Brochard theory. They found that as the molecular weight is increased the anisotropy,
R /R /), increases. Despite interest in the anisotropy of SGLCPs in nematic solutions,
very little research [8, 9, 10] has been performed to test the validity of the Brochard
theory.

Two predominant types of chain conformations are found for SGLCPs: a prolate
spheroid conformation with both the backbone and the mesogenic units aligned near the
director, and an oblate, or disk-like, spheroid conformation with the backbone
preferentially perpendicular to the director. Theoretical descriptions [11, 12, 13, 14] of
the sense of the anisotropy and its magnitude predict a molecular weight dependence for

low molecular weight and constant anisotropy at high molecular weight.
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Although there are numerous theories and experiments designed to predict the
dimensions of an SGLCP in a nematic solution, very little work has been done to measure
the anisotropy of a liquid crystalline polymer in a small molecule nematic. In principle,
the backbone anisotropy can be measured using small-angle neutron scattering [15]
(SANS) or X-ray scattering [2, 16, 17]. In practice, the lack of data on polymers
dissolved in nematic solvents reflects the difficulty of obtaining adequate scattering
intensity to perform these experiments. Solution studies were performed with a relatively
low concentration of about 5 wt % polymer, as opposed to a 50:50
deuterated/hydrogenated polymer mixture in melt studies. Furthermore, the effects of
scattering from the bulky side chains are typically eliminated by only labeling the
backbone (deuterium labeling in SANS or silicon atoms for SAXS). Unfortunately, this
results in an order of magnitude lower effective concentration of scatterers [18, 19, 20].

To maximize the contrast in neutron scattering experiments it is possible to label
either the entire polymer or solvent molecule with deuterium. The problem with these
two approaches is that the effects of scattering on the mesogenic groups must be
accounted for to determine the backbone conformation. Using an end-on SGLCP based
on a poly(methylsiloxane) in which the terminal ends of the mesogenic units were labeled
with deuterium, researchers [20, 21, 22, 23] observed a prolate conformation. With the
same polymer labeled on the spacer near the backbone, an oblate conformation was
observed [24]. When scattering results from deuteration of the mesogenic units, a larger
radius is measured parallel to the director [20, 21, 22, 23, 24]. Unless the polymer is
large, this leads to an erroneous determination of the polymer anisotropy. Casquilho and

Volino [25] suggested that the results of labeling on different parts of the mesogenic unit
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could be extrapolated to the case for labeling on the backbone only. Unfortunately, this
method requires a series of differently labeled polymers making this method impractical.
Therefore a method to account for scattering on partially or fully labeled SGLCPs is
needed.

In this work, we use the solvent labeling approach to eliminate the need for labeling
the polymer and demonstrate a way to account for the scattering from the mesogenic
units. The SANS pattern of a series of low polydispersity polymers differing only in their
molecular weight reveal an anisotropy that increases with molecular weight. Once the
scattering due to the mesogenic units is accounted for, the backbone anisotropy is found
to be independent of molecular weight. In addition, backbone anisotropy is found to be
independent of spacer length in the side group over the range probed, x=4 to 8 in Fig. 1.
By demonstrating a way to measure the polymer anisotropy in solution we provide direct
measurements of chain anisotropy. This is required to test the relationships between
chain anisotropy and the effect of polymers on the flow behavior of nematic LCs. [26] In
turn, the results will reveal the relationships between polymer structure, conformation,

viscoelastic response, and electro-optic response.

4.2 Materials

The details of the synthesis 