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Abstract

In this thesis, an ab tnitio quantum study of both electronic and nuclear
motions of the Hs system is presented. Results of the ab initio calculations
for the lowest four electronic potential energy surfaces of the Hy system are
given, as well as for the electric dipole transition moments between them. The
calculated Rydberg spectra compare well with previous calculations and with
known experimental results. The ground state and the third excited state
surfaces have been fitted using the rotated Morse cubic spline (RMCS) method.
The ro-vibrational eigenstates of H3 on the upper sheet of the Double Many
Body Expansion (DMBE) surface were calculated using a variational method
and a new hyperspherical coordinate propagation method. The full P3 nuclear
permutation symmetry and the molecular Aharonov-Bohm (MAB) (or geometric
phase) effect were included in the hyperspherical coordinate propagation method.
The MAB effect has a profound influence on the bound ro-vibrational states
of the Hs system. The ro-vibrational bound states of Hs in the third excited
2p. 2 A} electronic state were also studied. The Rydberg nature of this electronic
state leads to ro-vibrational nuclear motion similar to that of the Hf ion. The
comparison between the calculated values of the ro-vibrational constants and the
corresponding experimental results suggests that the 2p, 245 RMCS surface still

needs some improvement.
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Chapter 1

Background

1.1. Introduction

Shortly after quantum mechanics was developed in the first part of this
century, it was used in an attempt to understand the rich structures and the
complex dynamical processes of molecular systems. Although the Schrédinger
equation, which fully describes the motion of any molecular system, has been
known for a long time, the number of electrons and nuclei in many chemically
interesting molecules poses numerous difficulties. In most cases this difficulty
has prevented, until recent year, accurate solution of the Schrodinger equation
from being obtained, even though such solutions are of great importance for the
ultimate understanding of these systems from first principles.

With only three electrons and three protons, the Hs system is the simplest
triatomic molecular neutral species. Because of its simplicity, it is an ideal
system for ab initio quantum studies, and has been and is being investigated
extensively via the most up-to-date techniques available, both experimentally
and theoretically. These studies have been very fruitful and have offered many
surprises even for such a simple system. The advance of both the theoretical
and experimental investigations and a comparison of the results obtained with
each other have greatly enhanced our understanding of several fundamentals in
chemistry and our ability to predict chemical structure and dynamics from first
principles.

The potential energy surface of the non-bound ground state of Hj has
been calculated since the beginning of quantum chemistry!~'4. The surface

is genuinely repulsive except for a very shallow van der Waals well of 20
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cm™! at the nuclear configuration where the H atom is about 3.5 A from the
center of mass of the H; diatomic molecule in the collinear configuration!®—16,
The large scale quantum ab instio electronic calculation of Liu® and Siegbahn
and Liu’ are estimated to be of chemical accuracy, about 1 Kcal/mol (or 43
meV) above the non-relativistic Born-Oppenheimer limit. It is still the most
accurate study available today. The fitted potential energy surfaces of the
Liu-Siegbahn-Trular-Horowitz (hereafter LSTH)!3 and the recent double-many-
body-expansion (hereafter DMBE) of Varandas and co-workers!* offer a solid
starting point for the quantum scattering calculation of the H + Hj reaction,
which is the prototypical gas phase atom-diatomic molecule reaction. This-is the
simplest example of one of the most important chemical processes which involves

the breaking of a chemical bond and the formation of a new one:

A+ BC—AB + C (1)

Those scattering calculations!?’~3° have demonstrated that from first principles
we have reached the understanding of quantum dynamics of chemical reactions.

Interest in the electronic excited states of Hs arose from the early

36—42

experimental reports of long-lived H3 species , especially from the work

of Devienne and co-workers3®.

But those studies were not conclusive enough
to demonstrate beyond doubt the existence of bound Hj species in its excited
electronic states. In 1979, in an attempt to study the infrared spectra of the Hy
ion, Herzberg accidentally observed the visible emission spectra of Hy between
the quasi-bound excited Rydberg electronic states in a hollow hydrogen gas

discharge tube3. His experiment unambiguously identified the existence of the

metastable Hs species in its Rydberg electronic states, which inspired many

]44-63 154=75 studies. Reviews on the Rydberg states

experimenta and theoretica
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of Hs have been given in the recent publications of Herzberg’®, Watson’’, and
Gellene and Porter’®.

Both experimental and theoretical studies show clearly that the Hy system
in these Rydberg states behaves like a hydrogen atom, with a tight HF equilateral
triangle ion core plus an electron in a diffuse Rybderg state. The rotation and
vibration constants of the metastable Hs molecule are close to the corresponding

values for the HJ ion**=47.

At the same time, the experiments also show the
intricate interaction between the HZ ion core and the Rydberg electron, which
offers a great challenge to theoretical understanding of such seemingly simple

systems>3-56,

Potential energy surfaces, transition moments
and coupling elements

The electronic energy levels and correlation diagram of Hj in an equilateral
triangle nuclear configuration with an internuclear distance of 1.64 bohr (from the
study of King and Morokuma®) is depicted in Fig. 1. Since the molecular point
group for an equilateral triangle is Djj, all electronic states are labeled according
~ to the symmetry representation of this point group, along with the labels of the
united-atom (UA) limits. For example, the ground electronic state and the first
excited state are spin doublets. They are degenerate, and together form an E'
representation of Djp. Since in the united-atom limit the H; system becomes a Li
atom, these two E’ wave functions will correspond to the 2p,, 2p, atomic orbitals
of the Li atom (with the z axis perpendicular to the plane of the Hj triangle).
We label them as 2p, , 2E’. Applying the same scheme to other excited Rydberg
states, the second excited state is labeled as 2s 2A/, the third one as 2p, 244, and

so on. Studies show that except for the ground electronic state, potential energy
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surfaces of all Rydberg excited electronic states have global energy minima, and
therefore might be able to support bound ro-vibrational nuclear states.

So far, all theoretical studies of these excited Hy Rydberg states were more or
less aimed at explaining the most obvious features of the experimental Rydberg
spectroscopic results. The restricted nuclear geometries in these studies for which
ab initio calculations have been done prevented the construction of full potential
energy surfaces. In this sense, the theoretical study of the accurate rotational and
vibrational structures of the Hz Rydberg states is not possible because of the lack
of potential energy surfaces, even though there is a great deal of experimental
data available on this subject44—47:53-63,76—-78

Since the ground electronic state of Hy is repulsive, and does not support
any bound ro-vibrational states of nuclear motion, any Hj species in the
excited Rydberg electronic states which decays into this ground electronic state
will dissociate. This decay can occur via two mechanisms: radiation and
predissociation. The radiation lifetime is related to the transition moments

79-80  The predissociation process comes

between the initial and final states
from the electronically non-adiabatic couplings between the excited Rydberg
electronic state and the repulsive ground electronic state’® 3%, There are quite
a few experimental studies of the lifetime of the H3 Rydberg states**—53. Since
it is hard to separate experimentally the contributions from the radiation and
predissociation processes, theoretical investigations are in a better position to
address the lifetime issue.

The 2p, 2 AY low-lying Rydberg electronic state is a very special one among
the Hs Rydberg species. From symmetry arguments, Herzberg has analyzed the

decay processes of this state to be the ro-vibronic predissociation into the ground

state and the electric-dipole radiational one into the lower 2s 24} Rydberg
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state*3~ %4, When the H; species in this 2p, 2AY state is rotationless, the
ro-vibronic coupling becomes zero and the only decay channel left is the slow
radiation process to the lower 2s 24} Rydberg state (which has been estimated
to be about 90 usec*®) and to the ground state due to deviations from the
Frank-Condon approximation or via higher order transition moments. Many
experiments have taken advantage of the fact that some useconds after the
generation of the excited Hs species, all H3 molecules in excited electronic states
have decayed away, except those in the rotationless 2p, 244 Rydberg state. This
greatly reduces and simplifies the observed spectrum since the initial state has
been naturally prepared to be in this specific Rydberg state.

As discussed earlier, the radiation and predissociation decay processes
involve at least two electronic states. A full understanding of these processes
is possible only after the potential energy surfaces, the nuclear ro-vibrational
structure and dynamics on these potential energy surfaces, and the electric
dipole transition moment and the non-adiabatic coupling element between the
two electronic states involved are known. This has been the major motivation
for the present work.

In recent years, a chemical dynamical method named Transition State
Spectroscopy (TTS), which involves two or more potential energy surfaces,
attracted a lot of attention®'~2°, For the H3 system, the continuum radiation
absorption spectrum between the ground electronic state and the third excited
electronic state (in the Dg, nuclear geometry, they correspond to one of the
2P,y 2E' states and the 2p, 2AY state) has been studied theoretically and the
results have shown many phenomena that reveal the rich and complex dynamics
between these two potential energy surfaces®1~8%. In these studies, the potential

energy surface of the excited state and the electric dipole transition moment
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between these two states were obtained not from an accurate ab tnitio calculation
but from a less accurate DIM (diatom-in-molecule) method®4, while the LSTH
surface was used for the ground state. Any improvement in the calculation of
the excited potential energy surface and the electric dipole transition moment
will make the theoretical studies closer to reality and improve the comparison
between the theoretical and experimental results.

The potential energy surface of the first excited state of Hsz has also
been obtained by Varandas and co-workers'* using the functional extrapolation
scheme of the DMBE method, since this state is degenerate with the ground
state and together their potential energy surfaces form a conical intersection
in the equilateral triangle nuclear configuration. The dominant non-adiabatic
coupling elements between these two states are also obtained. Because the
DMBE functional extrapolation is valid only in the close vicinity of the
conical intersection, the potential energy surface in regions far away from the
conical intersection might not be accurate!*. So far, the quantum scattering

64=75 of the H + H, system have been carried out on the single

calculations
ground electronic potential energy surface, even though the geometric phase®
induced by the conical intersection between the ground and first excited states has
been demonstrated to have a profound effect on the ro-vibrational level structure
of the upper state (in the absence of coupling to the ground state) and may
be important for the reaction scattering on the ground state at energy above
2.2 eV?1=99 When the total energy of H + H; scattering system approaches
2.75 eV, which is the lowest value of the first excited potential energy surface,
it is necessary to study the Hs scattering process with both electronic potential

energy surfaces included, because the Born-Oppenheimer separation of these two

surfaces is not valid anymore.
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In summary, a consistent and coherent study of the lowest four electronic
potential energy surfaces is necessary in the understanding of:

e the ro-vibrational structure of the metastable Hs 2p, 2 AJ Rydberg species,
and

e the lifetime associated with both the radiation and predissociation processes
for those ro-vibrational bound nuclear states;

e the transition state spectroscopy of Hs between the ground state and the
third excited state;

e the quantum scattering dynamics at high total energy (> 2.75 eV).

Bound ro-vibrational bound states

The calculation of the bound ro-vibrational nuclear states on a single
potential energy surface that supports bound nuclear motion is also of great
importance, as it offers the second part of the quantum study of a molecular
system (the first one being the study of the electronic motion). There are two
reasons for making such studies for Hg. The first is the theoretical understanding
of the ro-vibrational structure of Hj in the metastable Rydberg electronic states.
Comparison between the calculated energy levels and the experimental ones
serves as the ultimate test for the accuracy of the potential energy surface
obtained from the electronic structure calculation. The second motivation is
that bound ro-vibrational nuclear wave functions are needed in the accurate
calculation of both the radiation lifetime and the predissociation lifetime, and
also of other chemically interesting dynamical processes such as the transition

state spectroscopy.



Overview

As the first step toward calculating the lifetimes of the 2p, 2 A4 state of Hg,
we have initiated a quantum study of its electronic and nuclear ro-vibrational
motions. In chapter 2 of this thesis, we present the Schrédinger equation
for molecular systems, and discuss the Born-Oppenheimer approximation to
its solution. The bound molecular ro-vibrational structure and the chemical
dynamics involving single or double potential energy surfaces are also discussed,
along with the effect of the electronically non-adiabatic coupling elements. In
chapter 3, the ab initio calculation of the lowest four electronic state potential.
energy surfaces of Hj is presented. The results for the ground state and the third
excited state have been fitted by an easy-to-use mathematical form. In chapter
4, a variational study of bound ro-vibrational states on the DMBE first excited
potential energy surface is presented. The non-adiabatic coupling between the
ground and the first excited electronic states of Hs has been neglected in this
model calculation. The same study using a hyperspherical propagation method is
presented in chapter 5, with the full identical permutation symmetry embedded
into the calculation as well as the geometric phase®”. In chapter 6, the bound
ro-vibrational levels on the third excited potential energy surface (that for the
2p, 2 A state) are obtained, using a variational method. The ro-vibrational level
spacings are compared with the corresponding experimental values. A summary

is presented in chapter 7.
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1.3. Figure and caption

Fig. 1. Energy level and correlation diagram for H3. The energy spacing of
the Hs energy levels was obtained theoretically for an equilateral triangle
configuration®® and referred to the energy of dissociated products by the

results of a separated calculation®®.
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Chapter 2

Formulation of the Quantum Study of the Hy System

In this chapter, a brief overview of the quantum mechanics of polyatomic
molecules is presented. Several important concepts like the Born-Oppenheimer
separation of the electronic and nuclear motions, potential energy surfaces, and
electronically non-adiabatic coupling elements are discussed. Several dynamical
processes in a molecular system are discussed briefly. It will serve as a starting
point for our present electronic and nuclear calculation. At the end, the exact
forms of the non-adiabatic coupling terms are presented in a molecular body-fixed

coordinate system.

2.1. Born-Oppenheimer expansion

For an isolated molecular system with N, electrons and N,, nuclei, the

Hamiltonian of the system can be expressed in the form!~2
ﬁt=TN+Te+VNe (1)

Ty and T, are the kinetic energy operators of the nuclei and the electrons
respectively. V. is the Coulomb interaction energy between all charged particles.

They can be expressed as

Np h2
2 _ 2
= Y Vi @
A=1
N 2
A h
L = -2
T = 2m % (3)
N,; Nque
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+ j and A B are indexes for the electrons and nuclei respectively. The Q4 and
M, are the charge and mass of the A’th nucleus. R4 and r; are the coordinate
vectors of A’th nucleus and ¢'th electron with respect to a laboratory reference
frame. The Coulomb interaction only depends on the relative positions of all
charged particles and hence is invariant under any rigid translation and rotation
of the whole molecule. In Eq. (1) we have neglected all spin containing and
relativistic terms. For molecules formed by light atoms, these terms are small,
and their effects can be accurately included a posteriors by low order perturbation
methods.

The Schrodinger equation for the molecular system is:
A,9(r, R) = EY(r, R) (5)

This equation is extremely difficult to solve directly because it is a second order
partial differential equation in a 3(N, + N.)-dimensional space. To simplify its
treatment, use is made of the large difference in mass of the electrons and nuclei.

To that effect we define an electronic Hamiltonian IL as
H, =T, +Vy, (6)

For each set of fixed nuclear coordinate variables {R}, there is a set of adiabatic

solutions {| ¢x(r; R)} that satisfy
H. | ¢x(r; R)) = Ex(R) | x(r; R)) (7)

Here r and R represent all electronic and nuclear coordinate variables
respectively. Notice that the wave functions | ¢x(r; R)) and the eigenvalues
Er(R) depend on the nuclear coordinates. The index k represents the set
of all quantum numbers needed to specify the eigenfunctions | ¢x(r; R)). In

general the spectrum FEj of this set of solutions can include a discrete as well
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as a continuous part (for example, in an ionization process). Usually only the
discrete electronic spectrum is considered. This set of functions then forms a

discrete orthonormal electronic basis set that satisfies
(¢x(r; R) | dre(r; R)) = b pr (8)

The integral in Eq. (8) is over all electronic coordinate variables, and Eq. (8) is
valid for all nuclear configurations {R}.
We now expand the total wave function in this electronic basis set of

functions
¥(r, R) = Zx:c ) | ¢x(r; R)) (9)

The coefficients xx(R) in this expansion are functions of the nuclear coordinates
and are called the nuclear wave functions. Using Eqgs. (5) to (9), the set of

coupled equations that the xx(R) must satisfy are easily found to be

{Tw + Ex(R)}xi(R) + D _ Frpr (R)xw(R)
o

+ ; Grer(R)xkr(R) = Exx(R) (10)

where
Fiew(R) = AZ:l(fi’k | *—VA | ¢xr) - Va (11)
Grw(R) = Aiu:l@k | —2;:; Vi | bk (12)

where the integration is over all electronic coordinates. The coupling terms
Fi x(R) and Gg x'(R) are named electronically non-adiabatic coupling terms.
If these electronically non-adiabatic terms are neglected, Eq. (10) gives the

usual Born-Oppenheimer approximation?

{Tw + Ex(R)}xk.0 (R) = Exzo (R) (13)



20

and the total wave function expansion in Eq. (9) reduces to a single term which

is the product of the electronic wave function and the nuclear wave function
Yk (r, R) =Xk (R) | 4e(r; R)) (14)

where v is the set of quantum numbers which describes the nuclear wave function.
It can be discrete (for bound rotational and vibrational molecular motions) or
continuous (for processes of scattering and chemical reactions). The Ex(R) is
named the potential energy surface of the | ¢x(r; R)) electronic state. It acts as
an effective interaction potential between nuclei.

The Born-Oppenheimer approximation enables us to decompose the total
molecular motion into the electronic part and the nuclear part, which are
solutions of two different equations (Eq. (7) and Eq. (13)). It greatly reduces the
difficulties in solving Eq. (5), and is the fundamental building block of molecular

physics.

2.2. Chemical dynamics on a single potential energy
surface or on several non-interacting surfaces
The possible physical and chemical processes of a molecular system involving
just a single potential energy surface (that is, in a single electronic state) are
many. The equilibrium structure of the molecule can be obtained by locating
the global and local minima of the potential energy surface. The surface might
support bound nuclear ro-vibrational states with discrete energy levels. In some
situations, rotational and vibrational transitions can be observed between those
energy levels. If the surface is purely repulsive, or the total energy is high
enough to i)e in the continuous region of the spectrum of the nuclear motion,
the scattering process can be studied to give information on the dynamics of

molecular collision and the breaking and forming of chemical bonds*—23.
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A radiation field can couple two molecular states on two different non-
interacting potential energy surfaces. In the limit of a weak radiation field, the

perturbation coupling strength can be obtained from the famous Fermi Golden

Rule as?*
Xk 9% Oy | Pkt Xkt w1) (15)

where | Xk, #x) and | ¢x: Xk ') are the initial and final total wave functions and
O, is the coupling operator between the molecule and the radiation field. The
electric dipole interaction usually is the dominant term in O,. Again the nuclear
wave functions can be discrete or continuous. The bound-to-bound transition is
what is observed in ordinary spectroscopic experiments, with discrete lines of the
spectrum. The bound-to-continuous transitions provide continuous spectra with
the possibility of some fine structures embedded in the continuous background,
as observed in Transition State Spectroscopy experiments?5-33, So far, the
continuum-to-continuum transition has not received much attention. Although
spectra of this kind are relatively featureless, and experiments are hard to do,
it offers an exciting research field of laser-assisted chemical reactions that might

have great possibilities in the future34—938,

2.3. Chemical dynamics involving two interacting
potential energy surfaces
When the electronically non-adiabatic coupling terms neglected in the Born-
Oppenheimer approximation are important, we must go back to the coupled
equations (Eq. (10)) for the correct solution. In most cases, the coupling
terms are very small, which means that a perturbative treatment can be used.
Furthermore when couplings between only two of the electronic states are

important, as is usually the case when the Born-Oppenheimer approximation
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breaks down, we can employ the two-state approximation and limit our attention
to those two interacting electronic states.

In the case where only discrete total wave functions are involved, the
electronically non-adiabatic terms will shift the positions of the eigen-energies
of those discrete states. Those shifts caused by the electronically non-adiabatic
couplings have been observed in spectroscopic experiments as they introduce
irregularities in the spectral lines39~%!, For the case of continuum-to-continuum
interactions, the electronically non-adiabatic terms can introduce new chemical
reaction channels, and this topic itself is an interesting subject in quantum
scattering studies*2—47,

The case of a discrete bound state interacting with a continuous state
deserves special attention because the coupling will give the bound state a
finite probability to decay into the continuous one and become a quasi-bound
metastable state. This process is named predissociation. We will consider a

simple treatment in order to understand its essence.

Fano's theory of predissociation*®—4°

In the simplest case, there are two quantum states of a system associated
with the Hamiltonian A. One is a discrete and bound state denoted as | én)
and the other one continuous and unbound, denoted as | E). They are not exact

eigenstates of H and satisfy only the following conditions:

(b | dn) =1 (16)
(¢n | E) =0 (17)

(E| E') =6(E — E' (18)

(b | H | $n) = By, (19)

(E|H|E'Y = E§(E — E' (20)



23
(¢n | H | E) = V,(E) (21)
where n designates the set of quantum numbers that label the bound state, and
E is the energy for the unbound state. V,,(E) is the coupling between the bound
and unbound states and is usually very small. We expand the true eigenstate of
H as
| Un(B)) = 4n(E) | 62) + [ Bal(E',E) | B)aB (22
where
B |V, (E)) = E | ¥,(E)) (23)
It satisfies the normalization condition
(Vn(E) | ©.(E")) = 6(E ~ E) (24)
After replacing Eq. (22) into Eq. (23) and using Egs. (14) to (21) and Eq. (24),

the result is

2 | Va(En) |2
| 4n(B) " = (E — E, — A,)? + 72|V, (E,) |* (25)
A, =P %ﬁdE’ (26)

where P means principal part.

We now switch from the time-independent description to the time-dependent
one in order to analyze the decay process. Let us prepare the system in state

| #n) at t = 0. The system then evolves with time as
90 = [(9(B) | 6a) | Wa(B)e /M 7

After a simple and straightforward integral over the energy variables, we find
that the probability P,(t) of finding the system still in the bound | ¢,,) state at

time t is

P, (t) = exp(—t/7,) (28)
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where

13

T 2n| V(E) [P (29)

Tn

The above discussion can be generalized to where one bound state is coupled
with many unbound states | E,m), as happens when the final predissociated
system can be characterized by the set of quantum numbers m describing the

internal states of the fragments. The result is

h
Y, | Vi (Ea) P

Tn (30)

with the coupling between the bound state | ¢,) and the mth unbound state
| E,m) as

n

Vi (E) = (¢n | H | E,m) (31)

The non-adiabatic terms in the coordinate system used are relatively simple
as expressed in Eqgs. (11) and (12). There is one drawback in this formulation,
however, namely that these non-adiabatic coupling terms Fj xr and Ggx are
obtained in a coordinate system that does not take advantage of the simple
motion of the center of mass of the molecule, and of the rigid rotation of the
molecule. Furthermore, the electronic wave functions are usually obtained in
the body-fixed coordinate system of the nuclei. For this reason, body-ﬁxéd
coordinates are used to describe the electronic and internal nuclear motions of
the molecular system. The form of the Hamiltonian operators for the electronic
motion, nuclear motion, and of the non-adiabatic coupling terms for the Hj

system will be present explicitly.
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2.4. The triatomic system Hj,

First we introduce Jacobi coordinates to separate the motion of the center

50-51

of mass from the internal motion . These coordinates are depicted in Fig.

1. In this new coordinate system, the total Hamiltonian of the internal motion
could be expressed as:

3

R _, R _,
V2 4 Z LG v S
2;1,1- r : rg (32)

ﬁ- h2 . hZ
=1 2“‘

A _ T2 _
T oM "B 9up 'R

M is the mass and R, the position vector of the center of mass of the whole
system, pur and u, are the reduced masses for R and r respectively. The yu; are

the reduced masses of r;.

M=M4+ Mg+ Mz +3m (33)
MsMp

L= —AVs 34

br = M.+ Mg (34)
Mo(M M

R = c(M4 + Mg) (35)

"~ My +Mp + Mc

4y = m(Ma + Mp + Mc)
Ms+Mpg+Mz+m

g = m(MA+MB+Mc+m) (37)

2 My + Mp + Mg +2m

m(Ma + Mp + Mg + 2m)

My + Mg + Mc +3m

(36)

B3 = (38)

If we remove the term related to the motion of the center of mass of the system,
and express the kinetic energy operators in terms of their radial and angular
components, we get:

K2 1 92 h2162r+ 12 N j?
2ur R OR? 2uy r Or2 2urR?  2u.r?

3 2 ) 3 2
K10 Jj?
—_—— ey i 174
+§ T ar?"+§2u 5+ (39)

14 ﬁ =
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Here 1, j, and j; are the angular momenta associated with R, r, and r;
respectively. In space-fixed coordinates, angular momenta are expressed in terms

of the angular variables for the system (¢r,0Rr, @r;Or, Pr; br;)-

2.4.1. Body-fixed coordinates

Since the system is isolated, the square J? of the total angular momentum J
and its projection Jz onto the space-fixed Z axis commute with the Hamiltonian
H and hence could have good quantum numbers. We now define two body-
fixed coordinate systems®2. The body-fixed 1 system is defined by rotating the
space-fixed axis, moved to the center of mass of the molecule, by Euler angles
(¢r,0R,0), where (dr,0r) are the polar angles of R in that space-fixed system.
The z; axis of the body-fixed 1 system is orientated along R. The body-fixed
2 system is then obtained by rotating the body-fixed 1 system by Euler angles
(0,0,%,) where v, is the angle between the RZ and R, r half-planes measured
counter clockwise as viewed from the positive R axis. The 2z, axis coincides with
the 2z; axis (i.e., lies along R) and the z; axis lies in the R, r plane such that the
z, component of r is positive. The body-fixed 2 system can be obtained directly
from the space-fixed one by rotation through Euler angles (¢r,0r, ¢r).

In the body-fixed 2 system, the vector R needs only one coordinate R to be
uniquely specified; the vector r needs two variables, r and the angle +, between r
and R (or z2). The position vectors of the electrons in this body-fixed 2 system
require three polar co;)rdinates each to be specified which we label r;, &, and
4r;- The angular variables we will use to specify the angular momenta appearing
in Eq. (39) are therefore ¢r, OR; ¥ry Yrs Errs Vrrs Eras Tras Erss Trs It is easy
to see that if we change the first three of these angles and keep the rest of them
unchanged, the whole system undergoes a rigid-body rotation and the relative

positions between the particles remain unchanged. These first three angles can
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be considered as the Euler angles of the system which describe rigid rotations of
the system. In what follows, we will drop the R subscript in ¢r, §g and the r
subscript in ¥, Ve.

The total wave function of the system which is a simultaneous eigenfunctios

of H, J2? and Jz will be labeled ¥7M ., It can be written in the form
TM(r, R,r) = 3 Diy o(6,0,9)8% (1, by Yers By 7s) (40)
Q

DAJJ,n(dJ, 8,%) is the Wigner function5® and satisfies the following equations:

32Dijy.a(#,9,%) = J(J + 1)K* Dy (4,0, %) (a1)
Jz D3z a($,0,%) = MAD}; (6,9,%) (42)
T2 Dir.a(8,0,¥) = QhD3y o(9,0,) (43)

The equations that the &/ (v, &, ¥r,, B, 7, 7;) satisfy can be obtained from the

equations above®? and are
T J 57 wd o J
Hia-19-1 + Ha oW + Hy 011904+, = BV (44)

The definition of the operators appearing in Eq. (44) are

A3 a1 = %%’I;l{hz[(n +1) coty + 5‘?:{] — hlcotyL,2 + L%} (45)
£:(J,0) = [(J £ +1)(J )]
=[J(J +1) -0 +1)]? (46)

In order to specify the expressions for the operators ﬁé,mn and I:I({,Q, we

introduce the total electronic angular momentum L of the system:

L= Zj,., (47)
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In terms of it, the system’s total angular momentum is given by

J=1+j+L (48)
I;T({’Q can be written as
2 2 2 2
ﬁgnz_h laz _h_l_azr

’ 2ur ROR 2uy T OF
h2 5 ] N2
- - t -
+ Rz{[J(J+1) 207] ( 5 +co ’76'7 pr

h2 &? ; n2
+ + cot y—— —

2,12 {=( o2 8y sin®~

1
+ 2urk? {Lgfz + (cot? 4 — 1) L2, — cot yL, (Lf’*-_f2 + Ll_>_f2)
— 2h0 cot? v L2 }
1 3
+ g hcot 1 (L2 + L%) — Mooty + o) (L7 - 17%))
1
2p0er? sz ——{LZ; — 2h0L.»}
3 2 2 3 .2
K“ 19 2
T 2ur o2 2tV 49
+§ 2u;r,3r2‘+ 2u,2+ (49)

with ) having (2J + 1) values from —J to J.

2.4.2. Born-Oppenheimer expansion
Following tradition, we define an electronic Hamiltonian in the Body-fixed

2 coordinate system

B=) ————n, ' 0
) ; 2pi v Or2 +;2mr? (50)

and use this H, operator to define an electronic basis set {|¢n(r:s; Ryr, 7))}

which depends on the nuclear coordinates (R, r,v) only parametrically and does
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not depend on the Euler angles (¢,8,%) of the total system. These electronic

functions satisfy

ﬁelqbn(ri; R, T, '7)) = En.(Ra r, '7) [(bn(ri; R; T, '7)) (51)

where n is the set of quantum numbers which specifies the electronic eigenstate.

This basis set is orthonormal and 0-independent:

<¢n (ri; R’ T, '7) |¢n’ (ri; -R’ r, '7)) = 6n,n' (52)

We are not interested in the continuous spectrum of the electronic wavefunction
as we will only consider states in which all electrons are bound. It should be kept
in mind that the masses for electrons are not m but y;, ps and us, although the
difference is really small.

Let us expand the total wavefunction of the system in products of the Wigner

rotation function, the electronic basis function, and the nuclear wavefunction:
(UM (r, R,x)) = Y Diga(8,0,9)|6a(ri; By ) XX (Rors ) (53)
n Q

Let’s put Eq. (53) into the Schrddinger equation Eq. (44) of the total system,
and multiply the result with (¢, (r;; B,r,7)|, then integrate over all electronic
variables. Using the orthonormality property in Eq. (52), we get the equations

which the nuclear wavefunctions |x ' (R, r,v)) have to satisfy.

D {(SmlHE 0-118nx2Y) + (S HE a4 1|8 x )

+bm|Hd albaxa ™} = Elxn™) (54)
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The expanded form of Eq. (54) is complicated:

E-(J,0) .2 9 o
oua R2 —1)cot — :
2urR2 {*[( — 1) coty + aql}lxm )
_(J,Q 3 )
— %ll'(R—Rz_)h Z<¢m| - h.é:; +cotyL,, + Llif2|¢n>lxi,ﬂ 1)
£+(J’ Q) 2 a 7.0+1
g Rl + 1) coty S THXE)
J, Q)
6z_L(RRz " Z "’m""“— + cot YLs, + L% (60) x0T
h? 1 82 hz 1 82 hz ,
{—2NR§6R2 _2Mr;3r2r+2uRR2[J(J+1)—20 ]
K2 B2 92 P 02 -
" +2u (57 +C°t'75;— s Y
hZ
+ Z { ¢m . aR|¢n) <¢m| |¢n>

K2 | b2 b12 2 7,0
ol = (g + 1) e — g (B = L) a5 F )

2 2 2 2
+ 3 {6l — 5 Rlba) + (6l = - 22rig)

Ly 1 OF2
A2 2 32 3
- (2MRR2 + 2u’r2)<¢m|a’72 +cotfy-a—;|¢n)
1
+ 2upR? ($m|LEsq + (cot? y —1)L2 — cotyL,, (LY ? + LY?) — 2h0cot®~L,,

3
— hQcot 7 (L%? + LY?) — h(coty + 37 L7 + L2%) )

1
- L — 2RO L,, |d, n
T o 2 ) } )
= {E - Em(Rsr, '7)}')(1{’;0) (55)
Here Lg:n are the usual step-up and step-down operators in the body-fixed 2

system associated with the total electronic angular momentum L. The integrals
are respect to all electronic coordinate variables in the body-fixed 2 system.

Although the equation is messy, we can still identify that there are three kinds
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of electronically non-adiabatic coupling elements. The first is associated with

2 8 a2
8R? Ar? 384

the change of the nuclear shape. It contains the operators and also
second derivatives in these variables. Elements of the second kind contain L,,,
LY? and L%;, which involve derivatives with respect to the electronic angular
coordinates only. The third kind has terms like Lfgzai,, involving derivatives
with respect to both electronic angular coordinates and ~. The definition of
L%/2 clearly shows that all terms containing L?/2 are related to the relative
rotation of all electrons with respect the fixed nuclei.

The exact treatment is also available for diatomic molecules®*~5¢. Our
treatment actually can be generalized easily for all triatomic systems. Of course,
even though Eq. (55) offers the exact equation of the Hg system, so far, its
complexity has prevented any attempt to obtain an exact solution. The most
important of these electronically non-adiabatic coupling elements are likely to be
those involving derivatives with respect to R, r, and ~, in analogy to the case of

diatomic molecules.
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2.6. Figure and caption

Fig. 1. Jacobi coordinates of Hs. A, B, C and ey, e, e3 are the protons and
electrons of the Hs system respectively. R is defined as the vector from the
center of mass of AB to C. r; is defined as the vector from the center of
mass of ABC to ej, r from the center of mass of ABCe; to e;, and r; from
the center of mass of ABCe;es to e3. The position vector of the center of
mass of the whole system with respect to a laboratory-fixed frame is not

depicted. OXY?Z is the coordinate system of the laboratory reference frame.
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Chapter 3
Ab Initio Calculation

of the Lowest Four Electronic States of Hj

3.1. Introduction

The first step toward understanding not only the structure but also the
dynamics of a molecular system, as mentioned in chapter 2, is to generate
the potential energy surfaces of its electronic states. Furthermore, if physical
or chemical processes involving multi-electronic states are of interest, the
electronically non-adiabatic coupling matrix elements and (or) the radiation
assisted coupling elements (such as the electric dipole transition moment)
between two electronic states are also needed.

Some good global surfaces have been obtained for the H 4+ H, reaction. The
high quality ground electronic state potential energies calculated by Liu! and by
Siegbahn and Liu? (hereafter LS) were fitted by Truhlar and Horowitz® to give
the LSTH surface, which incorporated some scaling to produce accurate diatomic
limits, and for several years provided a standard of accuracy for the field. The
more recent double many-body expansion (DMBE) surface of Varandas and co-
workers? provides another fit to LS’s energy data. Although it has a larger rms
error than that of the LSTH surface, the DMBE surface is believed to be more
accurate at higher energies.

For excited states of the H + Hj system, the number of available ab initio
calculations is sparse and of small scale, although they are of considerable current
interest. Important early work on the excited states of Hs includes the theoretical
study of Rydberg spectra of Hs by King and Morokuma®, Jungen®, Martin”,

Kulander and Guest®, Nager and Jungen®, and Raynor and Herschbach!®, and



39

the series on transition state spectroscopy by Polanyi and co-workers!1—13,
A thorough study of excited electronic potential energy surfaces of Hy was
done by Roach and Kuntz!* using the semiempirical DIM method. Some
recent work on Hs was done by Petsalakis, Theodorakopoulos and Wright!®
(hereafter PTW) and also by Diercksen and co-workers!®. In general, most of the
studies mentioned above were done in some limited range of nuclear geometric
configurations, which were not sufficient to generate the full potential energy
surfaces.

The major terms of the electronically non-adiabatic coupling elements near
the equilateral triangle configuration of Hz between the upper and lower sheets of
the DMBE surface have been obtained through a functional analysis*17. So far
there have not been any direct calculations of the non-adiabatic coupling terms
for any other pair of Hj surfaces.

Reviews of the Rydberg spectra of Hs have been given by Herzberg!®,
Watson!?, and Gellene and Porter?°. Fig. 1 shows the Rybderg electronic states
of Hy and the correlation diagram to its dissociated products. The 2p, 2AY
electronic state has drawn a lot of attention in experimental work because it
has been found experimentally to have a lifetime longer than 40 usec.?? (the
theoretical estimation is about 90 usec.?!). The decay mechanisms of the H,
species in this electronic state have been identified first by Herzberg and co-

2327 as the electric dipole allowed transition to the 2s 24/ state, and

workers
the predissociation to the unbound ground 2p,, 2E’ electronic states. In order
to understand these decay processes, and other dynamical processes involving

11-13,21-22 " we have calculated the

the four low-lying electronic states of Hy
electronic energy of these states using an ab tnitio quantum chemical method,

along with the electric transition dipole moments between each pair of states. It
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is obvious that the potential energy surface of the 2p, 2 A4 electronic state had
the highest priority in our current study.

In the following sections, the general approach to calculating electronic
states in molecular systems by the method we used - Multi reference single and
double excitation configuration interaction (MRD-CI) - is outlined. The choice
of atomic orbital (AO) basis set functions is then examined, the results obtained
are discussed and compared with those of previous studies. Finally, the rotated
Morse cubic spline (RMCS) fits to the potential energy surfaces for the ground

and the third excited electronic states of Hs are obtained.
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3.2. Methodology
3.2.1 General considerations

In the clamped-nucleus Born-Oppenheimer approximation, with neglect of
spin and other relativistic effects, the electronic Hamiltonian operator in atomic
units for a molecule having n electrons and N nuclei in the absence of external
fields, takes the form?8~2% (also see chapter 2)

n N n n N
DUVE=D D Zarii+ X v+ D ZaZeRip (1)
=1 A=11i=1

1>5=1 A>B=1

fr=-

N =

Indexes ¢ and j are used to label the electrons. Indexes A and B denote nuclei
with charges Z4 and Zp. ra; is the electron-nucleon distance, r;; the electron-
electron distance, and Rsp the nuclear-nuclear one. The terms in Eq. (1)
comprise the electron kinetic energy, the nuclear-electron attraction, the electron
repulsion, and the nuclear repulsion, respectively. This Hamiltonian commutes
with all symmetry operations of the molecular point group. The goal is to obtain

solutions to the time-independent electronic Schrédinger wave equation
AV =Ev (2)

This is a partial differential equation in 3n mathematical dimensions. The
eigen-energy FE is the potential energy surface, a function of all internal
nuclear coordinate variables. Although some limited progress has been made
in approaching Eq. (2) by analytical methods3°, this is a very difficult procedure
that is not yet suited to the production of accurate results. Instead, most
methods make (implicit or explicit) use of basis set expansion techniques and
variational approaches. The unknown eigen-functions of Eq. (2) a.rer expressed in

terms of a set of n-particle basis functions {®}. While it is possible to consider
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rather exotic functional forms for the ®, by far the most common approach is
to construct each @ using a product of molecular orbitals (MOs, one—electron

functions) {¢}:
o =P ] (3)

Here a given function @k involves an n-fold product of MOs, to which is
applied the permutation operator P which ensures that the function ® K is anti—
symmetric with respect to exchanges of any two electrons as required by Pauli
principle. The ® obtained in this way are generally referred to as configuration
state functions (CSFs).

The molecular orbitals (MOs) are usually obtained as linear combinations

of a one—particle basis
v = Z CiuXu (4)
7

The one-particle basis functions {x} are often referred to as atomic orbitals
(AOs). As a result, this scheme is also referred to as the linear-combination-
of-atomic-orbital molecular-orbital method (LCAO-MO). The MO coefficients
C are obtained by solving an electronic structure problem simpler than that
of Eq. (2), such as the independent particle (Hartree-Fock self-consistent-field)
approximation. It has the advantage that these approximations generally provide
a rather good estimate of the solutions of Eq. (2) — perhaps 99% of the total
energy or more — thus suggesting that an analysis of the many-electron problem
and (possible) computational schemes for attacking it can be formulated around
them. Since the Hartree-Fock method is an independent particle model, with the
correlation of electrons neglected, the terms “correlation energy ”and “correlation

problem” have been coined by Léwdin®!' to denote respectively the difference



43

between the exact energy obtained from Eq. (2) and the Hartree-Fock energy,
and the problem of computing this energy difference.
The most obvious use of the n—particle basis {®} in solving Eq. (2) is the

linear configuration interaction (CI) expansion
V= Z Ci ® K (5)
K

If the one—particle basis is complete, the use of all possible @ (complete CI) in
Eq. (5) will yield the exact eigenvalues and eigenfunctions of Eq. (2). The
coefficients cx are determined by making the energy stationary with respect to
variations in them, subject to normalization of ¥; any guess at the cx will yield
an upper bound to the true energy.

In practice, a complete one-particle function space is infinite, which means
that the complete CI problem is also infinite in dimension. If we choose a finite,
truncated one-particle space, but approximate ¥ as in Eq. (5) using all the
possible n—particle basis functions, we have a full CI wave function (FCI). It can
be regarded as the exact solution to the Schrodinger equation projected onto the
finite subspace generated by the truncated one—particle basis. The number of all
the possible n—particle basis functions has a factorial dependence on the number
of electrons correlated and the number of MOs. This can create insuperable
computational difficulties for most problems of chemical interest. For example, in
order to obtain the dissociation energy of the No molecules to within 5 kcal /mole
(about 0.22 eV) of the correct one, one requires about 10'* CSFs2°. There are
only a few FCI bench-mark calculations available that follow the advances of

the supercomputer industry®2~37. In real applications, especially in calculations
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aimed at obtaining the potential energy surface of a molecular system, the n-
particle space needs to be truncated as well for the practical reason of limited
computer memory and speed.

A simple way to implement n-particle space truncation is to use the
uncorrelated wave function (which as noted above is a very substantial fraction of
the exact wave function) to classify terms in the n—particle space. If we consider
the Hartree-Fock MOs, all CSF's in the full n—particle space can be constructed
by successively exciting one, two, ... electrons from the occupied Hartree—Fock
MOs to unoccupied ones. For cases in which several CSFs are present in the
zeroth—order wave functions, the same formal classification can be applied to
each reference CSF. It is possible however that the n—th excitation with respect
to one reference CSF is the n'-th excitation (n’ > n) with respect to another
reference CSF. Since only singly and doubly excited CSFs can interact with
the zeroth-order wave function via the Hamiltonian in Eq. (1), it is natural to
truncate the n—particle expansion at this level, at least as a first approximation.
We thus obtain single and double excitations from Hartree-Fock (denoted SDCI)
or its multi-configurational reference analog, multi-reference CI (denoted MR-
SDCI). The accuracy of this scheme of single and double excitation has been
confirmed as good by recent full CI (FCI) bench-mark calculations?®.

Some properties of the truncated CI method are worth mentioning. It is
variational in nature and therefore yields approximate energies which are upper
bounds of the true ones. It can be readily formulated to handle the case in which
the zeroth-order wave function is multi-configurational in character. It is one of

the most widely used schemes in electronic state calculations nowadays.
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3.2.2 MRD-CI method of Buenker

In some cases, even the use of a severely truncated CSF space can give rise
to an MR-SDCI expansion that is too long for practical calculations. There are
several ways to further reduce the dimension of the CSF space®®~%%. Here we

40-44  which we have used

outline the one developed by Buenker and co-workers
in our H3 application. It is based on the individual configuration selection and
energy extrapolation technique.

Since in most cases only several low-lying electronic states are of interest,
the resulting eigenfunctions of those states usually are dominated by a very small
number of CSFs with a very small contributions from the rest of the CSFs. It
is conceivable that the removal of those CSFs with small contributions has a
negligible effect on the final wave functions and their eigen-energies for those
electronic states of interest. This suggests that this set of dominant CSFs can
be used as a set of reference configurations and the full single and double excited
CSFs (generated with respect to this set) can be tested individually to see if
they are important or not. Let us assume that there are N,.; dominant reference
' configurations. First a small CI calculation with this limited set of N,.s reference
configurations is performed and M eigenvalues of interest are obtained. Since this
set of reference CSFs is made out of the dominant CSF's for those M eigenstates,
we expect those M eigenvalues to be quite close to those obtained from the
full MR-SDCI calculation. Then one by one, each generated single and double
excited CSF with respect to the set of reference configurations is tested by being
added to the reference configurations and another small scale CI calculation of

N;ey + 1 CSFs is performed. The variational nature of CI ensures that each

eigenvalue obtained by using N,.; + 1 CSFs is lower than the corresponding
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eigenvalue from the CI calculation with N,.; reference CSFs. Only those CSFs
that are able to lower the energy of any one of these M states by an amount
bigger than a threshold energy (to be chosen at the beginning of the selection
process) are included in the final CI calculation. Obviously, if the threshold is
chosen to be very big, all generated single and double CSFs will fail the test and
be rejected, while if the threshold is zero, all generated CSFs will pass the test
and we return to the situation of a full MR-SDCI calculation. In order to ensure
the convergence of the final CI calculation, the set of reference configurations has
to be chosen to be big enough to include all possible dominant CSFs so that the
final eigenfunction of each state of interest has at least 90% of its contribution
from the set of reference configurations. This is a very effective way of drastically
reducing the size of the final CI space without missing important contributions
from any part of the full single and double excitation CI space.

As mentioned above, the resulting eigenvalues decrease with a decrease of the
chosen threshold energy monotonically. Since the dominant CSFs are included
in the set of reference configurations, the difference between the eigenvalues
obtained using a big threshold and the eigenvalues obtained with the threshold
being zero (full MR-SDCI limit) would be small. As Buenker and co-workers have
pointed out, the eigen—value dependence on the threshold when the threshold
is approaching zero is essentially linear*®=%4. It is possible that by using the
results of two or more CI calculations with different but small enough thresholds,
the eigen—values of zero threshold (MR-SDCI limit) can be obtained through
extrapolation. This gives the eigen-energies at zero threshold without using in
the actual CI calculation a possibly very large CSF space.

These two features of the MRD-CI (multi-reference éingle and double

excitation configuration interaction) method of Buenker and co-workers have
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40-44  The configuration selection

been very successful in many applications
procedure is equally applicable to all types of electronic states in any nuclear
geometry, and the results of the associated CI calculations are seen to be
essentially equivalent to a complete treatment in which all single and double
excitation CSFs with respect to a set of dominant configurations (in those given
states of interest) are included40—44,

The Cray version of the MRD-CI codes we used was supplied directly by

40-44  These codes do not have the capacity of calculating

Buenker’s group
the electronically non-adiabatic coupling matrix elements between two electronic
states, and will have to be modified in the future to permit such calculations.
As pointed out in chapter 1, these elements are needed in treatment of multi-
surface physical and chemical processes such as predissociation and collision-
induced electronic transitions. The electric dipole transition moment between
two electronic states can be handled by this MRD-CI package, with only a small
fraction of the CPU time used, compared with the CPU time used in the CI
energy calculation.

Without going into detail, the flowchart of this package is presented in Fig.

2 with some explanation about the functions. Conceptually, the following steps

are taken in our Hs application:

1. First, Gaussian-Type atomic orbitals (GTO) are used*®. We will discuss

the choice of AOs in detail in the next section.

2. In the second step, the Hartree-Fock Self-Consistent-Field (SCF)
calculation with the AO set is conducted in an iterative manner. The
molecular orbitals (MO) obtained from the SCF serve as the starting

point for the CI calculation.
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3. In the third step, an appropriate set of reference configurations for a
given number of electronic states and a threshold energy are chosen.
This might require several iterations to achieve that good. Then
all single and double excitation CSFs with respect to the reference

configurations are generated and selected.

4. The fourth step is the diagonalization of the electronic Hamiltonian,

including all of the configurations selected.

5. Another iteration of Step 3 and Step 4, with the same set of reference
configurations but a new threshold twice as large as the one used before
is carried out. The extrapolation to zero threshold is performed ‘based
on the CI results with two different thresholds and finally the eigen-
energies of the full single and double excitation (over the set of reference

configurations) CI are obtained.

6. With the resulting electronic wave functions (from the CI calculation
with the first threshold), the electric dipole transition moment between

any two known electronic states is then calculated.
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3.3. Atomic orbital basis set

In papers by Huzinaga®®, Wilson*® and Davidson and Fellert’, there are
good reviews in—depth on the basis set selection for molecular calculations. In
this section, the general considerations for selecting a basis set for an ab tnitio
calculation will be discussed, and several useful concepts introduced. We will
then discuss the criteria of basis selection for our specific Hs application and the

basis set used in our work.

3.3.1 General considerations

All CI methods for electronic state calculations are based on the variational
approach. Although in principle one complete set of basis functions is equivalent
to any other complete set, in reality only finite size basis sets are practical. Since
the computational effort goes up very quickly with the size of the basis set, the
basis set of choice should be flexible enough to produce good results over the
range of molecular geometries of interest on one hand, and still small enough to
leave the problem computationally tractable and economically within reason on
the other hand.

In the early days of quantum chemistry, the basis sets used were usually
of the atom-centered Slater-type orbital form*3. Slater-type orbitals (STO) are
defined as:

X—nlm (ra 0: ¢) - Rnl(r)Ylm (0a ¢) (6)

Ru(r) = (2€)"11/2[(2n)Y) =1 /2= tembr, (7)

where ! and m are angular momentum quantum numbers while Yy, is the usual
spherical harmonics. £&,; is the orbital exponent. The coordinate variables

(r,8,4) describe the position of an electron with respect to the position of
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the nucleus. The main advantages of STO are their short- and long-range
behavior (the form of the exact radial wave functions of H atom is very close
to that of STO-type functions). The major disadvantage is the difficulty of the
numerical integrations required in molecular calculations involving this kind of
basis functions.

In order to overcome this bottle-neck of numerical integrations in the process
of constructing the Hamiltonian matrix, Gaussian-type orbitals (GTO) have been

introduced by Boys*®. They are defined as:

Xnim (T, 0, ¢; a) = Rnl(r)Ylm (0’ ¢) ' (8)
R,.i(r) = N(n, a)r""le"‘"z. (9)
N(n,a) = 2**1[(2n — )]~ Y/2(27) "1/ 42 +1)/2 (10)

n=1+1,1+3,l+5,..

where the !! sign indicates the product (2n — 1)(2n — 3)(2n — 5)..., a is a
conventionally chosen range parameter and N(n, o) the normalization coefficient.
In molecular calculations, the Cartesian coordinate system has been commonly
used and the normalized, primitive GTOs in these coordinates are defined

a3550—52:

kan(:l:, Y,z a) = N(ka m,n; a‘)‘tk:’./m‘""'"'e_Ow2 (11)

N(k,m,n; @) = (2/7)%/4[(2k — 1)1(2m — 1)1(2n — 1)1~ 1/?

olktmtn+3/4)]/2 (12)

Note that (k,m,n) in Eq. (11) are completely different from (n,l,m) in Eq. (8).

Explicitly, the GTOs are of the following types:

s—type:k+m+n=0



X o e~ (13)
p—type:k+m+n=1

X x (z, y,z)e""2 (14)
d—type:k+m+n=2

X (:z:z, y2, 2%, zy, zz, yz)e'"”'2 (15)

The choice of the Cartesian primitive GTOs has been made for the practical
reason of easy coding. However, this choice generates two important
consequences that must be kept in mind. The first is a self-imposed restriction
on the power of r in Eq. (9) for atomic calculation. The power is restricted
to the lowest for each symmetry, n = [ + 1. Only 1s-type GTOs are used to
expand all s-type atomic orbitals, only 1p-type GTOs are used to expand all
p-type atomic orbitals, and so on. Fortunately the combination of many 1s-type
(or 1p-type) functions with different exponents as provides enough flexibility to
compensate for this restriction. The second consequence of the choice of the
Cartesian primitive GTOs is the redundancy in the d- and higher symmetries.
The d-orbitals can be viewed as a proper five-membered d-type orbital set plus

one isotropic 3s-type orbital

(3;:2 —r2, 2% — 4% zy, 22, y::z)e""”'2 (16)

3

(zz +y2 + z2)e—ar3 = p2g—ar (17)

Similarly, the 10-membered f-type orbitals contains three redundant 4p-type
orbitals

2

(79, z)rie™ " (18)

in addition to the proper seven-membered f-orbitals.
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The exponents a and the number of GTO functions are parameters which
need to be tuned to suit a given molecular system under investigation. Although
more tunable parameters result in flexibility, too many can make the problem
untractable, especially if there are too many exponents a which could only be
optimized by a much time-consuming non-linear optimization process. Integrals
involving GTOs cab be completed analytically which is a major reason for their
choice. However because an individual Gaussian-type function has the wrong
behavior both near the nucleus and far away from the nucleus, it is clear that
more GTOs would be required to describe an atomic wave function than if STOs
were used. On the other hand, integrals involving STOs at best are expensive
and, at worse are intractable for molecules.

To some extent the disadvantage associated with the large number of GTOs
(which means many parameters in the basis set need to be determined and
optimized) compared to STOs is reduced by the introduction of contracted

50—~52

Gaussians . In this scheme, the basis function for molecules becomes not

individual Gaussian-type functions, but rather fixed linear combinations like
Xconts (K, m, n) = Z CiXgmn (o). (19)

with the coefficients C; chosen to give a good description of the atomic wave
functions. It is easy to see that this scheme has the advantage of easy integration
of primitive Gaussian-type functions, and at the same time gives a much better
behavior to the basis functions. It also made the final basis set more compact.
It has become a method of choice.

The first task in obtaining contracted basis functions is to choose a good set
of primitive Gaussian-type functions. It is generally assumed that molecules can

be viewed as a collection of slightly distorted atoms. It is therefore natural to
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require that the primitive basis set provide an accurate description of the atoms.
Most Gaussian primitive sets are constructed by optimization of the Hartree—
Fock—Self-Consistent-Filed (SCF) energy of the atoms. This is definitely the
case for the H atom since there is only one electron involved. The first optimized
Gaussian primitive set for atomic SCF energies was published by Huzinaga®3.

54-55  Their results can be

After that, several improvements have been made
used directly for the choice of Gaussian primitives for any new calculation.
Inspection of the optimal exponents of a set of Gaussian primitives reveals
that the ratio between successive exponents of the Gaussian primitives in the
valence region is nearly constant. This fact suggests that an even—tempered or
geometric sequence (that is, a; = a * B*, where a and B are two parameters) of
exponents would represent a good approximation to the independently optimized

t56—57_ This offers a big reduction of the number of parameters

exponent se
needing to be optimized and makes the construction of the basis set much easier.
Comparison between results from independent optimized exponent sets and even-
tempered ones shows good agreements®®~59. This scheme has also become the
method of choice.

There are several ways to obtain the contraction coefficients. Since Slater-
type functions provide better descriptions of atoms, several Gaussian-type
functions are linearly combined together to mimic the behavior of a single
Slater-type function (referred to in the literature as STO-nG scheme)®®. The
orbital exponents for STOs are chosen as the average best exponents from
molecular calculations. The results of the STO-nG expansion will give the
exponents and the the contraction coefficients needed. This method actually

produces rather poor atomic energies. The second way is to obtain contraction

coefficients through a direct optimization of atomic SCF calculations, treating
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those coefficients as independent variables to be optimized. The last approach
is the simultaneous optimization of the Gaussian exponents and contraction
coefficients based on atomic SCF energies. It is quite clear that the first method
is the easiest one (giving rather poor results) while the third one is the most
accurate but the most time consuming one because of the non-linear optimization

procedure.

3.3.2 Selection criteria and the basis set

Our goal is to achieve good descriptions for the lowest four electronic states .
of the H; system. Results from a previous empirical diatom-in-molecule (DIM)
calculation!* show that the lowest five states in the asymptotic region of Hy +

H correlate with the states

Hy (X ') + H(1s)

Hz(X 'T)) + H(2s, 2ps, 29y, 2P:)
and
Ho(b°Z]) + H(1s) — 3H(1s).

It is clear that our basis set of choice should be able to describe the atomic
states of H(n=1) and H(n=2), and the lowest two diatomic states Ho(X 'T7),
and Hz(b 3Z]). In our study, the choice of an appropriate basis set for our Hj
application was determined by the necessity of obtaining the following:

1 . Accurate atomic excitation energies for 1s — 2s and 1s — 2p transitions.

2 . Accurate values for the Hy energy in its ground electronic state X IE;

and excited state b 3T,
3 . A ground-state surface for Hj of accuracy comparable to that of the LSTH

surface.
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4 . A reasonably good agreement with the known Rydberg spectrum of Hj
and the results of recent calculations of PTW!® and Diercksen!®.
Since there are quite a few studies on the H;’ and the Hj systems, both

1-2,60-62 and their Rydberg excited electronic

in their ground electronic states
states®~16:63  the choice of basis sets used in those calculations has guided us in
the selection of our basis functions.

After some experimentation, the basis sets used by Liu and Sieghban? for
the ground state of Hs and by Talbi and Saxon®® for the Rydberg spectrum of
HI were adapted for the present purpose. Those two sets of basis functions have
been proven to provide good descriptions of the electronic valance bond and the
Rydberg n = 2 states of H. The valence (9s/4s) (four s-type contracted GTO
basis functions obtained from nine s-type primitive GTO functions) basis was
taken from LS, and has an outer exponent of 0.06618. Three more Rydberg
s—functions were added, with an approximately even-tempered ratio of 2.4,
giving exponents 0.02758, 0.01149 and 0.00420. The polarization/Rydberg
p—basis was taken from Talbi and Saxon®3?, with exponents 1.6, 0.4, 0.09 and
0.025. Finally, the 6-component d—function with exponent 1.0 was taken from
LS!2. The full basis set, denoted (12s4pld/7s4pld) has therefore 25 contracted
AOs, of which three s—functions and two p—functions are essentially Rydberg in
nature. The parameters of the (12s4pld/7s4pld) basis set are listed in Table 1.

In order to allow for proper dissociation, it was found necessary to place the
full AO set on each nuclear center, for a total basis set size of 75 AOs. This is
because we are interested in mapping out the potential energy surface over a wide

range of nuclear geometric configuration, unlike previous work on the Rydberg

states of Hy with an equilateral triangle configuration (for example, in the study
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of PTW15, a set of diffuse Rydberg AOs were placed at the center of the Hj
equilateral triangle).
This diffuse overlapping basis of size 75 could lead to linear dependence

problems®3,

To minimize the chance of this occurring, we used the HONDO
routine® for evaluating the necessary integrals. The high accuracy of that
routine led to no linear dependence when this basis set was used in our
calculations.

As described in the following sections, the results from basis set calibrations

show that this basis set satisfies all requirements we have set for all four lowest

electronic states over the nuclear geometric configurations of present interest.
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3.4. RMCS surface fitting method

The internal coordinate system of describing the shape of a triatomic
molecule has three variables only such as the three internuclear distances R;,
R, and R3. The energy results of the ab initto quantum calculations at
many nuclear geometric configurations have to be fitted into some easy-to-
use form V(Ry, Rz, R3) in order to be utilized in the studies of the dynamics
of the molecular system. The need for this fitting arises because the ab
initio calculations are sufficiently time consuming and expensive that explicit
calculation of energies (and energy gradients) at every nuclear configurations
needed in the dynamical studies is rarely feasible. In addition, ab‘initio
energy data are not usually accurate enough to be used directly without at
least some adjustment, and surface fitting procedures facilitate this adjustment.
Furthermore, the analytical representation of the potential energy surfaces is
proved to be essential for the visualization of the surface features and of the
surface topological characters that may not be evident from a coarse-grained ab
initio study (especially in the case of high dimensionality).

The surface fitting methods have been reviewed by many authors®*~7° and
recently by Schatz’!. In general, it would be desirable to ask that:

1: the fitting procedure be simpie;

2: the resulting surface be in good agreement with the ab initio energy data
inside the region of nuclear geometric configuration of interest;

3: the fitting functions have the right kind of functional form built into them
such that it only takes a small number of ab tnitio points to obtain the surface
with correct surface features and topology, since the ab initio calculations

are expensive and time-consuming.
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This can go the other way. After a brief exploration of a potential energy
surface and an understanding of its main features and topology, a surface fitting
method can be selected. Then the selection the nuclear geometric configuration
points at which additional ab initio calculations need to be performed will be
guided carefully by this fitting method. This will greatly reduce the number
of points at which expensive ab initio calculations need to be performed, while
ensuring the high accuracy of the fitting”273.

In our present application to the Hg system, the rotated Morse cubic spline
(RMCS)7~7% method is used. It has been shown to satisfy most criteria of
surface fittings’®, with many successful applications’2~73:77-79,

We use the two internuclear distances R; and R, and the bond angle v
between them in the description of the shape of the triatomic system, depicted
in Fig. 3. For a fixed «, we define a swing point P,(R{, R3) in the orthogonal
Cartesian coordinate system formed by (R;, R2) and depicted in Fig. 4. In our
application R} = RS = 10.0 bohr, well into the dissociation region of H57%:7®. For
a point P in (Ry, Ry) coordinates, we define the distance ! and the swing angle
6 with respect to the swing point P, as the internal coordinates instead of using
Ry and R, (see Fig. 4). In this coordinate system, § = 0° corresponds to the ray
at Ry = 10 bohr, with R, variable. It also corresponds to the asymptotic region
of separated H + H;. For § = 45°, we get symmetric R; = R, configurations.
Rays of constant § were chosen at 0°, 20°, 30°,35°,40°, 41°, 42°, 43°,44° and
45° for the ab tnitio calculations. Because of the symmetry of the identical
particles in the Ha system, V (R, Rz,v) = V(R2,Ri1,7), which also leads to
V(,8,7) =V(, £ -0, v). This symmetric property reduces the number of ab

inttio points needed by a factor of 2.
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It is important to note that along a ray of constant § (and for a given bond
angle «), most potential energy surfaces for low-lying electronic states have the
shape of a Morse function, with the parameters of the Morse function depending
on v and #. In order to achieve better fitting accuracy, a generalized Morse

function with five parameters (GMF5) defined by

V = D.{(1-¢e®)%2 -1} (20)
B = B.(1+ A1z + A22?) (21)
z=1-1, (22)

is used to represent the potential energy along such constant ~ and 4 cuts30-8!,

The variables are D, (well depth relative to the swing point, in eV), I, (distance in
bohr from the minimum of the GMF5 function to the swing point), 8y (curvature
parameter in bohr™!), A; (linear correction to 8. in bohr=!), and Ay (quadratic
correction to Bp in bohr~2). Eq. (21) clearly requires that the magnitude of
A1 and Ay should be small for the GMF5 function in Eq. (20) to behave like
a Morse function. Those parameters for a given bond angle and swing angle
De(n,0), l(7,0), Be(,0), A1(7,0), and Ax(+y,0) are obtained by fitting the ab
initio data along the rays of constant (v, 8) cut using the functional form in Eq.
(20) and a non-linear least-square fitting technique’?.

Data points along the swing ray were taken at increments of 0.2 bohr in
R; in the range of 1.0 bohr to 3.0 bohr where the bottoms of the GMF5 curves
of the lowest four electronic states of present interest are located. Typically 7
to 9 data points were calculated per ray (giving the energies of the lowest four
electronic states and the electric dipole transition moments for each point), with
more points added when necessary. A similar treatment was used by Mayne et

al.'?, who interpolated DIM data using a rotated Morse curve approach.
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The Morse parameter data were reflected about § = 45° to generate data at
19 f#-rays, and then the five Morse parameters were interconnected using cubic
splines with a fixed 4. The reason for the reflection is that the correct first
derivatives of the Morse parameters at § = 45° are zero. Only by using data
over 0° to 90° can cubic spline fits give first derivatives at § = 45° equal to zero.
The fit provided a set of five §-dependent parameters (D.(6), etc.), which map
out the (R, R2) space for a given ~. Finally, the spline fits were examined for
smoothness and any nonphysical oscillations were removed. Qur results showed
that only A;(6) and A2(6), the first order and second order corrections to §,(6),
displayed roughness and needed to be smoothed.

Again, because of the P; permutation symmetry of the identical particles,
the choice of the nuclei used to define Ry, R and « is arbitrary and the
potential energy should be the same for all three possible choices of v for a
given configuration. This angle is always in the range of [0°, 180°]. If we always
choose the largest bond angle ~4,,4, and the corresponding two bond distances
as the internal coordinate variables for the description of the triangle, the range
of 4 can be reduced by a factor of % since the 4,4z is in this case bigger than
(or equal to) 60° and less than (or equal to) 180°. For this reason, the v cuts
of our ab initio calculation have been chosen to be at 60°, 90°, 120°, 150°, and
180°. Since we only perform ab initio calculations in the range of  from 0° to
45° out of the full range from 0° to 90°, the number of ab initio points needed
is reduced by a factor of 2. The choice of v gives a reduction factor of % So the
total reduction factor we have achieved is 2 x % = 3. If the full P; symmetry is
implemented, the total reduction factor would be 6. The remaining ambiguity

in our present choice of ¥ and 8 occurs for 60° < vmee < 120°. In this region,



61

there is a possibility that the second largest bond angle might be bigger than or
equal to 60°

Ab initio calculations were made for the two-dimensional mesh of § =
0°, 20°, 30°, 35°, 40°, 41°, 42°, 43°, 44°, 45°, and v = 60°,90°,120°,
150°, 180° and 7 to 9 values along each 4 = constant, # = constant ray. The
potential is assumed to have GMF5 form. For a given v value, the GMF5
parameters for # in the range of 45° to 90° are obtained by reflecting the GMF5
parameters in the range of 0° to 45° with respect to line of § = 45°. After all
values of the GMF5 parameters are known at all points of the (v,6) mesh, a
full potential energy surface can be obtained by two-dimensional cubic spline fit
method in the domain with v € [60°,180°]. and # € [0°,90°]. For any given
nuclear geometry R;, Rz, and Rs, the corresponding variables (I, = Ymaz,8)
can be obtained by a simple transformation. The Morse parameters of GMF5 at
(Ymasz,0) can be computed by a two-dimensional cubic spline methods using the
known values on the nodes of the « and § mesh. The resulting GMF5 parameters
-are then used in Egs. (20) to (22) to compute the potential energy at this nuclear
geometric configuration.

It is not difficult to see that the choice of 7,,.; and the two bond distances
thé.t form 7,4z is unique, and is invariant under any P; identical particle
permutation. For this reason, the RMCS potential energy surface has the correct

P53 symmetry built in.
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3.5. Results and discussion

The results of the ab initio calculations for 560 individual nuclear geometries
are given in an extensive series of tables included as Appendix 1 to this thesis.

Before discussing these results, we present some of the details of our
application of the MRD-CI method to Hs. The molecule was placed in the zy
plane (see Fig. 3), and all calculations were carried out using the point group C,,
even though at some special nuclear geometries the symmetry of the molecular
point group could be higher (Cqy, Dsp, Cooys Coon)- The reason for that choice
is that we wanted the calculated energies to vary smoothly over the full range of
nuclear geometries. In C, point symmetry, the symmetry type A’ is symﬁletric
with respect to the zy plane whereas A” is antisymmetric.

The SCF-MOs were constructed using the occupation (la’)?(1a”)!, which
is the most dominant MO configuration for the 2p, 2A’2’ electronic state when
the molecule is in an equilateral triangle configuration, as is the case for its
equilibrium configuration. Since our first priority is to obtain high quality
results for this state, this choice of occupation configuration will lead to MOs
which are able to offer a good description of this 2p, 2A4 state. At the same
time, this choice of occupation configuration will also lead to a more even-
handed description for the two degenerate 2p.y 2E’ (the ground and first excited)
electronic states for equilateral triangle configurations. Such configurations may
be important for transitions from bound ro-vibrational states of 2p, 241,

Since we have chosen 75 AOs, the SCF step gives 75 MOs as well, as linear
combination of these AOs. If it were necessary to reduce the size of CI space

or to remove possible linear dependencies in the AO basis set, some of the MOs
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could be deleted before the CI step. In our Hs application, we did not find it
necessary to do this and all 75 MOs were kept in the final CI step.

The CI space of A’ symmetry was constructed using 45 to 49 reference
configurations, depending on the nuclear geometry. The selection threshold
energy used was 2 phartree, and the lowest three eigenvalues of this symmetry
were obtained. This resulted in the generation of 50,000 to 60,000 configuration
functions out of which 5,000 to 6,000 were selected for the final CI calculation.
For the lowest eigenvalue A" calculations, 19 to 32 reference configurations were
employed. Use of a threshold energy of 0.5 phartree resulted in 800 to 3,000
selected configurations out of 20,000 to 40,000 generated.

There are four states of interest, which we label E;, E;, E5 and E,, where
the first three are the states of A’ symmetry and E, is the A" one. Using the
symmetry notation appropriate for the equilateral triangular (Djs;) geometry,
E, corresponds to the ground state 2E’ ( 1a'?1¢'), E; to the state degenerate
with the ground one in the equilateral triangle geometry, E5 to the 24} (1a"%2s)
state and F4 to the 2A’2’ (1a™2p,) state. Although E; and E, are degenerate
in that geometry, the degeneracy is lifted as the triangle is distorted, and this is
what generates the conical intersection between F; and E,.

Electric dipole transition moments between all electronic states were
calculated at most nuclear geometric configurations. We label the moment
between states E; and E; as T;;. The C, symmetry ensures that the
electric dipole transition moments between the antisymmetric E4 state and the
symmetric E;, E5, and Ej3 states have only 2z components, and that the ones
between these symmetric states have no 2 components. Since the electronic wave

functions have been determined by the variational calculation up to a phase factor
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(real electronic wave functions can have a phase factors of +1 only), all electric
dipole transition moments are subject to a possible sign change.

The major portion of the calculation has been done on the CRAY Y-MP
machines of the NSF-San Diego Supercomputing Center and of the NAS program
of the NASA-Ames Research Center, and on the CRAY X-MP machine of the
Jet Propulsion Laboratory. The CPU time on the CRAY Y-MP machines for a
complete calculation at a single nuclear geometry took about 4 to 10 minutes.
The intermediate files generated during a calculation can be as large as 38

Mwords.

3.5.1. Basis set calibration

The first question to be addressed is the quality of the AO basis set we have
chosen. Results for atomic and molecular hydrogen are given in Table 2. With
the basis set of (12s4p1d/7s4pld), the 1s — 2s transition energy is very accurate
(10.2045 eV, which is within 0.0001 eV of the exact value), whereas the 1s — 2p
transition energy is less accurate (10.2118 eV, giving an error of 0.0074 eV) due
to the smaller Rydberg p—basis, but still reasonably good.

The energy of ground-state Hz(X !L7}) is close to that of Liu! and better
than that of LS2. The computed D, at 1.40 bohr is 4.7255 eV whereas the
exact value is 4.7477 eV32, an error of 0.02 eV. The excited state b 3L}, which
has configuration o,0,, is calculated to lie 10.605 eV above the ground state,

compared to the 10.623 eV value of Kolos and Wolniewicz3?

, so this important
valence-shell transition is also accurate to within 0.02 eV.

Tables 3, 4 and 5 show the MRD-CI energy of the four electronic states of
Hj, for equilateral triangular, symmetric collinear and non-symmetric collinear

configurations respectively. In the appropriate point group notation, the

dominant configurations are the following:
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Dsp: Ey: 1a? 1€',  Es: 102 1¢/, Es: 1a? 2p,, E4: 1a7? 2p,;
Deon: Ey: 102 10y, Ej: 102 2s, Ej: mixed, Ey: 102 2p,;

Coov: E1: 102 20, E3: 102 25, Es: mixed, E,: 102 2p,.

In fact, assigning single dominant configurations to F2 and E3 in Doop and Co,
symmetries is oversimplified, since an avoided crossing was found for D,; near
R; = 1.85 bohr and for Coy near Ry = 1.4 bohr and R, = 10.0 bohr (see also
ref. 14).

The lowest-energy conical intersection for the E; surface occurs at R; =
Ry = R3 = 1.973 bohr, and at an energy of —1.572084 hartree. This result
was obtained by GMFS5 fit to the ab initio data in the equilateral triangle
configuration. The reference energy at the swing point P, (Fig. 4) was chosen
to be -1.499994 hartree (or three times the SCF value for an isolated H(1s)
atom with our present 12s/7s,4p,1d basis set. See Table 2). The reason for
choosing this value instead of the theoretical value of -1.500000 hartree is for self-
consistency. When fitting the E5 surface, the reference energy at the swing point
was chosen to be the SCF value of -1.124988 hartree instead of the theoretical
value of -1.125000 hartree for the separated H(2s) + 2H(1s) configuration. For
Ey4, the reference value at the swing point was cheosen to be -1.124718 hartree for
the separated H(2p,) + 2H(1s) configuration.

The minimum of E; energy with ¥ = 180° and R; = 10 bohr occurs at
R, = 1.403 bohr, and at an energy of —1.673019 hartree (GMFS5 fit). This gives
a lowest conical intersection energy with respect to the separated H + H, of
0.100935 hartree or 2.747 eV. For comparison, the corresponding energy for the
LSTH surface® is 2.756 eV and occurs at R; = Ry = R3 = 1.981 bohr. For the
DMBE surface* the corresponding values are 2.749 eV and 1.973 bohr. These

results are listed in Table 6.
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The saddle point in the collinear nuclear configuration for the E; surface
occurs at Ry = Ry = %R:; = 1.758 bohr, and at an energy of 0.440 eV (or
10.1 kcal/mole) (GMFS5 fit) with respect to the energy of the separated H + Hy
configuration (at R; = 1.403 bohr, Ry = 10 bohr and R3 = R; + Ry = 11.403
bohr, or the GMF5 fitted minimum point of F; along the cut with v = 180°
and 6 = 0°). We use this energy difference as the collinear barrier height of the
H + H, reaction?~%. For comparison, the corresponding values for the LSTH
surface® are 0.425 eV (or 9.80 kcal/mole) and 1.757 bohr, and for the DMBE
surface*, 0.418 eV (or 9.65 kcal/mole) and 1.755 bohr. These results are listed in
Table 7. As a result, the lowest conical intersection energy and the corresponding
geometry are in good agreement with accurate published values. For the saddle
point in the collinear configuration, our calculated barrier height and its location
also agree well with the corresponding values of LSTH and DMBE surfaces.

The E; — E. transition energy for symmetric collinear configurations,
corresponding to o, — 2s, can be obtained from the analytically-continued
DMBE function®*, giving 5.728 eV, and from the DIM calculation of Roach and
Kuntz'4, who obtained 6.292 eV at R; = 2.0 bohr. The present data from Table
4 show a value of 5.555 eV. At R; = 1.76 bohr the three calculations are in better
agreement, giving 6.379 eV (DMBE), 6.466 eV (ref. 14) and our value of 6.529
eV.

The E{ — E, transition energy for equilateral triangle configurations,
corresponding to ¢/ — 2p., has been computed by Diercksen et al.'® as well as
by PTW1, Using R; = 1.633 bohr and CI spaces of 15290, 22570 and 47060
CSFs, Diercksen et al. obtained transition energies of 2.17, 2.21 and 2.11 eV,
respectively. Our data at E; = 1.633 bohr give 2.23 eV and PTW obtained 2.24

9

eV. From the experimental spectrum!?, we estimate that the vertical transition
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at By = 1.633 bohr should occur at about 2.15 eV, so that our present E,
energy appears to be too high by about 0.08 eV. Possibly another more diffuse
p—function in the basis set would help to correct this error. However, in general
our Criteria. for accurate multiple surface energetics have been met.

The squares | T;; |? of the electric dipole transition moments between states
E; and E; (i = 21, 31, 32, 43) for equilateral triangle geometry (Dsp) are given
in Table 8. Allowed transitions in Dsj; occur for ¢ — 2s (Ts; and Ts2) and
2s — 2p, (T43). It can be seen that the E; — E; electric dipole transition
moment between two degenerate states is not zero since the calculation is carried
out in C, symmetry and the description of the two states is not quite equivalent
(see also Table 3, where the C, energies are not perfectly degenerate), but this
transition moment is nevertheless very small. | T43 l2 increases with R;, as
expected (since it should become 9.00 a.u.? in the limit of B, — o). Its value
of 7.24 a.u.? compares well with the PTW one of 7.23 a.u.? at 1.64 bohr. If the
same method of estimation is used as in PTW1%, both results from PTW and the
present work lead to the same lifetime of about 70 us for the 2p, — 2s electric
dipole radiation process. In Table 8, | T3, |2 and | Tsq |2 are almost identical.
They would be exactly identical if D3, symmetry instead of C, symmetry had
been used in the wavefunction calculations. Their sum at 1.64 bohr is 5.12 a.u.?
while PTW obtained 4.89 a.u.2. One reason for the difference is that the present
calculation employed a larger basis set than that of PTW. Another is that in the
current treatment we located Rydberg AOs on each nucleus, whereas PTW used
a single set located at the center of the triangle.

In conclusion, the basis set we have used does satisfy all the selection criteria
set previously and gives good results for our present study of the low-lying

electronic states of Hs.
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3.5.2 General features of the potential energy surfaces

and of the electric dipole transition moments

In this section, the features of these four potential energy surfaces and of
the electric dipole transition moments are discussed in details in some specific

nuclear configurations.

3.5.2.1 Equilateral triangle configurations (Ds;)

More detailed studies of the ab initio results reveals some interesting points
in the equilateral triangle nuclear configuration. In Table 3, the energies of the
lowest four electronic states are listed. These results are plotted in Fig. 5. In
Table 9, we list all non-vanishing and some vanishing components of the eiectric
dipole transition moments between these four electronic states for this geometry.

Although C, is the only symmetry embedded into the calculation, when
three nuclei form an equilateral triangle, the full molecular symmetry group Dsy,
associated with this geometry will manifest itself in the results of the electronic
calculations via the following features:

1. The 2p,, 2E' (E; and E,) states are degenerate, but this degeneracy will
not be exact due to the intrinsic inaccuracies in the calculation.

2. The electric dipole transition moments T4y, T4z from the 2p, 244 state to
the 2p,, 2E' states vanish due to symmetry reasons, and should be close to
zero in the actual calculations.

3. Because of the degeneracy of the 2p,, 2E’ states (under the symmetry of an

equilateral triangle), they can always be written as:

| 2p; 2E') = cosp | ¢1) + sing | ¢) (23)

| 2py 2E') = —sinp | ¢1) + cosp | $2) (24)
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| #1), | ¢2) are solutions of the electronic wave equation with the same
energy, which form another E’ representation of the Dsp group. The phase
angle ¢ is not determined by the variational method alone, and can have an
arbitrary value. For two calculations with different inter-nuclear distances,
the relative phases of these two electronic calculations is random, which
in turn causes the z and y components of the electric dipole transition
moments (T3, Taz, and Tay) to vary greatly (see Table 9). Even so, the

D3; symmetry ensures that:

e The magnitudes of Ts;, T3z, and T2; do not depend on the phase ¢
and thus should change smoothly with the inter-nuclear distance.

o | Tay | =| Tsz |, | Tsu(z) | = | Ts2(y) |, and | Ts1(y) | = | Ts2(2) |.
Due to the approximations involved, these relations will not be fulfilled

exactly.

All of these features are confirmed numerically by the results in Tables 9
and by Figs. 6 and 7. Since the molecular properties are more sensitive to
the quality of the molecular wavefunctions than are the energy eigenvalues, the
results of the electric dipole transition moment calculations offer another strong
indication that the wavefunctions obtained are of good quality.

The results of the GMF5 fit shows that the E; and E; states have a potential
well of 1.962 eV at Ry = R, = R3 = 1.973 bohr. The corresponding values for the
E3 state are 9.721 eV and 1.604 bohr, and for the E, state, 9.558 eV and 1.642
bohr. The E3 and the E4 states have much deeper wells in comparison with that
of the E; and the E, states. At the equilateral triangular geometry with an inter-
nuclear distance By = Ry = R3 = 1.64 bohr (corresponding approximately to

the equilibrium geometry of the metastable (2p, 24%) state), the ab initio energy
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spacing between states 2s 24 and 2p 244 is 1299 cm~! while the best value
previously calculated by PTW? is 1422 cm™! and the experimentally estimated
value for the energy difference between the minima of those two states!®19 is
1256 cm™!. Because R = 1.64 bohr is not the location of the real minimum
of the E3 curve, the estimations of energy differences between the 2s 24/ state
and the 2p, 2AJ state at 1.64 bohr is not appropriate to be compared directly
with the experimental value of 1256 cm™!. The bottom of the Es equilateral
triangle curve is located at 1.604 bohr and that of the corresponding E, curve
at 1.642 bohr (GMFS5 fit). These two values agree with the experimental values
of 1.606 bohr and 1.640 bohr very well. The corresponding energy difference is
1374 cm™1!, which is still a better result than that of PTW. One more p-type

Rydberg function in the AO basis set might give a better agreement.

3.5.2.2 Collinear configurations (Coy)

The energies of E;, Es, Es, and E4 in symmetric collinear geometries
(Ri =Ry = %Ra) are listed in Table 4. Figs. 8a and 8b show the good agreement
between our present ab initio results and that of the lower sheet of the DMBE
surface?. The bottoms of the curves for the DMBE surface and for our E; GMF5
fit are located at By = R; = %Rs = 1.755 bohr and 1.758 bohr respectively, an
almost perfect agreement. Even in this collinear symmetric stretch mode, the E,
state still has a deep well of 7.62 eV for R; = Ry = %R3 = 1.519 bohr (GMF'5 fit).
Following the C..,; symmetry argument, the electric dipole transition moment
between the E; and E, states is supposed to be zero, with which our Ty results
agree. Since the upper sheet of DMBE surface did not include the effect of
avoided crossings of that state with other states, its behavior is quite different
from our ab tnitio results (see Fig. 9). The behavior of our results are in good

agreement with those obtained by PTW1%, As can be seen from the ab initio
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results in Fig. 9, an avoided crossing occurs around R; = Ry = 1.8 bohr. This
is also demonstrated by the sudden decrease of the electric dipole transition
moment T4o(z) as R increases form 1.7 bohr to 1.9 bohr (see Table 10). An
even more abrupt change occurs in T43(z) around the some location, although
the energy behavior does not show any obvious changes (see Fig. 10).

In the non-symmetric collinear configuration with R; = 10.0 bohr and R;
variable (y = 180°, § = 0°), which corresponds to the asymptotic H + H,
situation, the potential curves of the F; and E, states are parallel to each other
(see Table 5), with almost the identical GMF5 Morse parameters. Both curves
give well depths of 4.707 eV around R; = 1.403 bohr. The corresponding aceurate
value for isolated H (X '£7) from Kolos and Wolniewicz®2 is 4.7477 eV at a bond
distance of 1.401 bohr. Our basis set calibration full CI results for Ha(X 123‘)
gives 4.7255 eV at a bond distance of 1.40 bohr. These three sets of data agree
with each other reasonably well. The electric dipole transition moment Ty
between these two states varies little with the diatomic bond distance and has
a value between 0.74 a.u. and 0.75 a.u. (as can be seen from Table 11). For
comparison, the electric dipole transition moment of an isolated H atom, from
1s — 2p, is 0.745 a.u.. This excellent agreement confirms that our calculated E;
and E, states are very close to the theoretical predictions of separated H(1s,2p,)
+ Ha(X 17}) states.

In the DIM study of Roach and Kuntz'4, using only information obtained
from diatomic energies, they have shown that for a separated H + H, system,
the repulsive potential energy curve for H(1s) + Hz(b *Z}) intersects those
potential curves for H(2s,2p,,2p,,2p,) + Ha(X 123‘) around a diatomic bond
distance of 1.45 bohr. They have also shown that the potential energy curves for

H(2s,2pz,2py,2p:) + Hz(X 'SF) intersect the curve for H(1ls) + Hy(B 'T7)
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around a diatomic bond distance of 2.2 bohr, and the curve for H(1s) + Hx(c 3I1,,)
around 2.4 bohr.

In the presence of the full interactions of the triatomic Hj, many crossings
are avoided among the electronic states meﬁtioned above. From our ab initio
data along the ray of v = 180° and § = 0° (see Table 5 and Fig. 11), the change
in the nature of the E; state with diatomic bond distance across the region of the
avoided crossing around 1.4 bohr can be seen clearly. Its potential energy curve
has a sharp downward turn with increasing R;. The electric dipole transition
moment T4s between the E4 and E, states also has a sudden change in the same
region (see Table 11). The calculated value of | T42(2) | is around 2.5 a.u. before
the crossing and drops below 0.002 a.u. after that, while the corresponding value
for the H(2s) — H(2p.) transition is 3.00 a.u., and the values for the H(2p, 4)
— H(2p,) transitions vanish according to symmetry argument.

The potential energy curve for the F3 state is relatively smooth, although
there are some very sudden changes in | T43(z) | for R; > 1.2 bohr which are
due to the properties of this state. The most probable reason is associated with
the fact that there are several states nearly degenerate with the E; state in the
separated H + Hs nuclear configuration. This near degeneracy could extend
down to 1.2 bohr, in which case there could be avoided crossings between the E;
state and these other states. This is expected to cause large changes in the E3
wavefunction but not in its energy. As shown below, these wavefunction changes
result in rapid fluctuations in the electric dipole transition moment for this state.

By studying the dominant coefficients of the MOs for the E2 and E; CI
wavefunctions in the Ry range from 1.0 bohr to 2.1 bohr, we found five kinds
of CI wavefunctions with unique patterns of dominant MO coefficients. Here we

label them as S;, S3, S3, S4 and Ss. S; can be associted with the asymptotic
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H(2s) + Ho(X 1T}) state, S; with the H(2psy) + Hz(X 'ZF) state, and S, with
the H(1s) + Hy(b 3X]) state. The S3 and S; states have different characteristics,
but we were not able to assign them to the known asymptotic states of the Hj
system. The investigation of the F; and E,4 states also confirmed that the E;
state correspondes to the asymptotic H(1s) + Ha(X 123’) state, and the E,
state correspondes to the asymptotic H(2p.) + Hz(X ') state at v = 180°
and 6 = 0°. The electric dipole transition moments between the S;, So, S3, Sy
and S; states and the E, state vary relatively slow as functions of R;.

For R; values of 1.0, 1.1 and 1.2 bohr, E; is of the S; kind and Ej is of
the S, kind. This explains the smooth variations in the values of | T42(2) | and
| T43(z) | in this region of R;.

At R; = 1.3 bohr, E5 becomes the S; kind and E3 the S3 kind. This gives
| Taz2(z) | 2 value of 0.756 x 10™3 a.u. and | T43(2) | a value of 0.942 a.u..

At R; = 1.4 bohr, FE5 becomes the S5 kind and Ej the S5 kind. This crossing
can been seen in the values of these two electric dipole transition moments.

At R; = 1.5 bohr, E; becomes the S4 kind and E3 remains in the S, kind.
This gives | T42(2) | a sudden drop from 1.52 a.u. to 0.152 X 102 a.u..

At R; = 1.6 bohr, F is still of the S4 kind and E3 changes into the S3 kind
once again. This gives | T43(2) | an increase from near zero to 1.31 a.u..

For R, in the range from 1.5 bohr to 2.1 bohr, E5 does not change character,
which explains the smooth variation of | T42(2) | as a function of R;.

For R; in the range from 1.6 bohr to 2.0 bohr, F3 remains type S3 and so
the variation of | T43(2) | is also smooth.

At R, = 2.1 bohr, E; changes into the S; kind and causes a drop in
| Tas(2) |-
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As shown above, we have established an one-to-one correspondence between
the sudden changes in | T42(2) | and | T43(2) | and the changes in the nature of
the E5 and Ej states. The full association of the E5 and Ej5 states at v = 180°
and § = 0° with the theoretical asymptotic states such as H(2s,2p,,2p,) +
Hy (X 'T}) and H(1s) + Ha(b°T}) requires further analysis of the wavefunctions
of the E5 and Ej states, which are in the form of linear combinations of MOs

(which themselves are in turn the linear combinations of AOs).

3.5.2.3 General features of the F; and F; states

Because the number of ab initio calculations is large, let us limit our scope
to the bond angle v = 60° for the discussion of general features of the F5 and
E5 states. For ~ values of 90°, 120°, 150° and 180°, the behavior is more or
less the same. The potential energy curves of the E5 state with v = 60° and ten
different @ values are depicted in Figs. 12a to 12j. The plots of the same nature
from Figs. 13a to 13j are for the curves of the F3 state.

In the equilateral triangle geometry (v = 60°,0 = 45°), the E, state is
degenerate with the ground state F;, and has a shallow well at an internuclear
distance of 1.978 bohr. When 0 decreases, the well depth also decreases and
disappears at § = 42°. After that, the curve becomes purely repulsive. When
0 reaches 30°, one more feature appears around R; = 1.5 bohr, signaling an
avoided crossing. At this v = 60°,0 = 30° cut of the E; potential energy
surface, the internuclear distances are not too large, and the interaction between
the two electronic states involved in the avoided crossing is strong. For this
reason, the transition from one state to another is smooth over a wide range
of nuclear geometries. When @ further decreases, the nuclear configuration
approaches the separated H + H; asymptotic situation and the interaction

between the two states involved in the avoided crossing becomes weaker. As
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a result, the transition from one state to another becomes more abrupt in a
small region of nuclear configuration. Because the wave function of the E, state
(which correlates asymptotically with the H(2p,) + H(X 'L}) state) is anti-
symmetric with respect to the plane of the molecule, it will not be involved
in the avoided crossing since E5 is symmetric with respect to that plane. The
possible asymptotic states responsible for this avoided crossing are the H(1s) +
Hz(b 3T}) repulsive state, and the H(2s, 2p,,2p,) + Ha(X 1T ) states.

The behavior of the E3 state is more complicated. In the 6 range of 45°
to 42°, the potential energy curve for this state has a deep well, with a Morse-
function-like behavior along the R, bond distance. In Fig. 13d (6 = 42°), the
ab initio data for B; = 1.0 bohr and 1.2 bohr were not calculated, so were the
ab initio data for R; = 1.0 bohr in Fig. 13e (6 = 41°). At 6 = 41°, a new
feature appears around R; = 2.4 bohr. This feature becomes more pronounced
at § = 40° and the slope of the curve for large R; becomes small. When 4 reaches
30°, the potential curve does not have well in the range where our ab initio data
are available. At § = 20°, again there are two features in the potential curve
with a transition point at Ry = 1.8 bohr. At # = 0°, the potential curve has
a very nice Morse shape up to B; = 2.0 bohr. From the limited amount of ab
initio data available, we are already able to see the significant complexity in the
potential energy surface of the E3 state. We have attempted an understanding
of what asymptotic states are involved in the fine surface features, but without
success. Calculations involving higher energy surfaces may be required for this
purpose.

For v = 90°,120°,150°, and 180°, the main features of the F5 and Ej5 states
are similar to those they display for v = 60°. Since the energies of all states

have weak dependencies on v when 4 is close to 0° (approaching the separated
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H + H limit), we have restricted ourselves to display the variations of E5 and
E5 with ~ for the single value § = 45° (see Figs 14a to 14e). Again an avoided
crossing in F; around R; = R, = 1.8 bohr is seen for « in the range of 150° and
180°.

In conclusion, more ab initio points are needed for a better understanding
of these two surfaces, and more importantly, more electronic states need to be
calculated. For our present research interest, we are content with thé results
obtained so far.

It is obvious that the RMCS surface fitting method is not appropriate to
be applied to fit the potential energy surfaces of the F5 and E3 states because
of their rich and complicated features resulting from several avoided crossings
among several electronic states. More elaborate methods will be necessary in
order to fit these two potential energy surfaces34—35,

The only electric dipole transition moment which displays reasonably
smooth behavior is T4; between the E; and F4 states. Since it is a combination
of both electronic states plus a electronic dipole operator, the T,; surface will
have more features and variations than the potential energy surfaces of either
the Ey or E4 states. For the rest of the electric dipole transition moments
involving the E5 and Ej states, the situation is more complicated. Fortunately,
in ordinary applications, these electric dipole transition moments are only needed
in a very limited range of nuclear configuration. A localized fit to the electric
dipole transition moments will suffice for most practical needs.

The potential energies of the E; and E,4 states on cuts of constant 4 and
0 display a very simple Morse-like behavior. The RMCS surface fitting method
has been applied to obtain the RMCS potential energy surfaces for both states.

The results are discussed in the next section.
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3.5.3. RMCS surfaces for the F; and FE, states

The potential energy surfaces for the lowest state of A] symmetry (E;) and
the lowest state of AY symmetry (E,) display simple functional properties and
can be described easily using the RMCS potential energy surface fitting method.
In the following, we will first discuss the GMF5 non-linear fits to the ab initio
energies of the F; and E, states along the constant (v, #) cuts and the quality of
the fits. Then the full three dimensional RMCS fits to the F; and E, states and
the quality of the RMCS fits will be discussed. At the end, the surface features

and topology displayed by the Ey and E4 RMCS surfaces will be presented.
3.5.3.1 GMF'5 fits along the constant (v, 4) cuts

Since the data points at which ab initio energies are calculated were
chosen to be along the cuts of constant (v, #), the GMF5 non-linear fitting was
straightforwardly done. The reference energies at the swing point P, (see Fig.
3) are chosen to be -1.499994 hartree for E; and -1.124718 hartree for E; (see
section 3.5.1 also). The quality of those fits was monitored in two ways. The
first is the rms of the difference between the ab initio data and the values of
the fitting function. The second is the maximum deviation of the values of the
fitting function from the ab snitio data. If some ab instio points were too far away
from the fitting function, then they were removed and a new GMF'5 fit was done.
The resulting maximum rms deviation was less than 2.3 meV and the maximum
deviation was less than 3.5 meV in the fitting of the E, energies for all constant
(7,0) cuts. For the E; state, the rms deviation was less than 2.4 meV and the
maximum deviation was less that 4.6 meV.

The Morse parameters D, (7,8), l.(7,0), Be(7,0), Ar(v,0), and Az(v,0) are

the results of the GMF5 fits. For a given « value, after all 10 sets of GMF5
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fits were done, the smoothness of these parameters with respect to 8 was tested.
If the parameters displayed excessively large fluctuations we went back to the
GMF'S5 fit step and made some adjustments, trying to reduce these fluctuations.
After one or two iterations, the resulting Morse parameters became reasonably
smooth.

The GMF5 parameters obtained are depicted in Figs. 15a to 15e (for the
E, state) and in Figs. 16a to 16e (for the E4 state) with a fixed v = 60°.
The behaviors of these parameters are similar for v = 90°,120°, 150°, and 180°.
The first three parameters D,, l. and (. are smooth functions of 8, but \; and
A2 display some rapid fluctuations. The results for A; and A, and their one-
o statistical error bars from the GMFS5 fits are depicted in Figs. 15d and 15e
(for Ey) and Figs. 16d and 16e (for E4). Since they are first and second order
corrections to ., their effect in the GMF5 function is minor. For the same
reason, they are very sensitive to the locations of the ab initio points. This
kind of non-physical fluctuation of A; and A2 as functions of # was minimized by
choosing the smoothest curve going through almost all of the error bars. (except
for a small number of points). We can see that the smoothed A; and A, curves
as functions of 8 usually do not pass through the centers of the error bars. Our
results show that the smoothed GMFS5 fits are still in good agreement with the
ab initio data in the region of the nuclear geometry configurations for which they
were calculated. Of course this hand-smoothing did decrease the accuracy of the
GMF'5 fits, but since the effect of A; and Ay is more prominent in the region
far away from the bottom of the GMF5 curve (that is, high potential energies)
which is of less chemical interest, this degradation of the fitting quality is not

too serious for the practical applications of those surfaces.
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The behavior of these five Morse parameters at § = 45° is of importance.
For the E, state, because of the conical intersection between the F; and E,
states in the equilateral triangular configurations, the discontinuity of the first
derivatives of those GMF5 parameters at § = 45° in Figs. 15a through 15e is
well justified. For the E; state, the first derivative of 8. (see Fig. 16¢) with
respect to @ is not zero. For a potential energy surface with a global minimum
at v = 60° and 6§ = 45°, that derivative should vanish. The reason it did not
is presently unknown. It is possible that the curve representing the variation of
B with 8 for v = 60° in the neighborhood of 6§ = 45° has a sufficiently large
curvature to require a § grid finer than the one used. Additional calculations are
needed to elucidate this point.
3.5.3.2 Three dimensional RMCS fits

With this set of smoothed GMF5 parameters known at all nodes of the two
dimensional (v, 8) mesh, the three dimensional RMCS potential energy surfaces
for the Ey and Ej states were then coded into Fortran subroutines in an easy-
to-use form.

For all constant v = 60°,90°,120°,150° and 180°, the rms deviation for
RMCS E4 surface is less that 6.6 meV, and for that of E; it is less that 4.4 meV.
This means that even after the hand-smoothing of the A; and A, parameters as
a function of 8, the fitting quality is still reasonably good.

It has been discussed before that there is a two-fold identical particle
symmetry reduction left that has not been implemented in our calculation. In
the case of two bond angles of the Hs molecule bigger than (or equal to) 60°,
there are two ways of obtaining the potential energy from the RMCS surface.
The permutation symmetry of identical particles requires those two results to

be equal. But the RMCS method does not have this property of the potential
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surface built in and the two choices of 4 and the other two internal coordinate
variables might lead to different RMCS energies for lack of self-consistency.

We used the maximum bond angle as v to resolve the ambiguity, and the
resulting surface does have the full P; symmetry. The drawback of this scheme is
that the fitting accuracy is decreased. Even though for 4 = 90°,120°, 150°, and
180°, the RMCS energies are still in good agreement with the ab initio ones, for
~4 = 60°, the agreement decreases. For example, for a set of ab initio points of the
E, state along the cut of v = 60°,8 = 0°, the GMFS5 fit is very good, with a rms
deviation of 0.6 meV and a maximum deviation of 1.6 meV. For a given nuclear
geometry configuration on this cut with R; = 2.0 bohr (which corresponds to
R, = 2.0 bohr, R, = 10 bohr and R3 = 9.27 bohr), the three bond angles of
the triangle have values of 105.6°, 60°, and 14.4°. Choosing the maximum bond
angle one uses v = 105.6°, § = 5.2°, and / = 8.03 bohr instead of v = 60°, § = 0°,
and ! = 8.0 bohr to evaluate the E4 RMCS energy. Even though both sets of
values describe the same nuclear geometry configuration, the first set leads to a
RMCS energy 82.7 meV away from the ab tnitio result while the second set leads
to a RMCS energy less than 1.6 meV away from the ab snitio value.

This problem can be solved in two ways. The first is to use a coordinate
system which implemented the full P; identical particle symmetry. This will
remove the two-fold redundancy and the ambiguity left in our RMCS fitting
procedure. The difficulty with this procedure is that our present ab initio data
might not be located at the best positions in the new coordinates for an easy
and good fit. The second is to fine-tune the current RMCS surface fit in order
to achieve the self-consistency of the surface. Since the ambiguity occurs in the
range of 4y = 60° to v = 120°, in which the Morse parameters change noticeably,

it would be desirable to obtain more ab tnitio points for « values in addition to
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~ = 60°, 90°, and 120°. Furthermore, the two dimensional cubic spline fit used
in the (v, 8) mesh gives the fitted X(,0) (any one of the five Morse parameters)
zero second partial derivatives along the normal directions of the «, 8§ boundary
at § = 0°, 0 = 90°, v = 60°, and v = 180°, but not necessarily zero first partial
derivatives. It is conceivable that the correct boundary conditions should be zero
first derivatives for the Morse parameters along the normal directions of the (v, §)
boundaries. It is apparent that the boundary conditions for the RMCS fit should
be correctly built in with some changes in the two dimensional Morse parameter
evaluation step. This will make the RMCS fit more accurate, especially, more

consistent in the region of v ranging from 60° to 120°.
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3.5.3.3 Quality of the RMCS fits

In order to address the quality of the three dimensional RMCS fits to the
ab initio results of the E, and E, states, we did the direct comparison between
the energies of RMCS fits and the ab tnitio ones. For the E, state, we also did
several comparisons of the ab tnitio results and the RMCS ones with the known
LSTH and DMBE surfaces. Surface features in some selected nuclear geometry
configurations are also presented and compared.

For the E; RMCS surface, we compared its values with the ab tnitio results
at 560 nuclear geometries. The results of this comparison are given in Table 12.
The rms deviation is 24 meV (0.55 kcal/mole) and the maximum deviation is
0.27 eV (6.2 kcal/mole).

We also did the same kind of comparison between the ab initio data and the
LSTH and DMBE surface, and between the E; RMCS surface and the LSTH and
DMBE ones. The results of these comparisons are also listed in Table 12. The
average difference between the ab inito energies and the corresponding LSTH
values is 0.051 eV (1.2 kcal/mole), the corresponding rms deviation is 0.059 eV
(1.4 kcal/mole) and maximum deviation 0.34 eV (7.8 kcal/mole). The closeness
between the values of the average difference and that of the rms deviation means
that the present ab inito E, surface is more or less parallel to but 0.05 eV above
the LSTH one. The individual energy differences for all 560 individual nuclear
geometries confirm this conclusion with few exceptions. The average difference
between the present ab initio energies and the corresponding values of the DMBE
surface is 0.053 eV (1.2 kcal/mole), the rms deviation is 0.057 eV (1.3 kcal/mole)
and maximum deviation 0.12 eV (2.8 kcal/mole). This set of data shows that
the present ab inttio results agree better with the DMBE surface than with the

LSTH one. It is worth mentioning that when the E; RMCS surface is compared



83

with the ab initio data, the average difference is 0.7 meV, much smaller than the
two previous average values. This is expected to be the case since the RMCS
surface is a fit to the set of ab tnitio data.

The comparisons between the Ey RMCS surface (with the same set of nuclear
configurations for which we did the comparison between the ab insto surface and
the LSTH and DMBE surfaces) with the LSTH and DMBE ones show similar
trends, with an increase of about 4% to 5% in the corresponding rms values.

Since the saddle point of the ground electronic potential energy surface in the
collinear nuclear geometry configuration has a very important role in the study
of the chemical dynamics of the H + H, system, we list its location, the barrier
height, and the two corresponding force constants in Table 7. The complete
definitions of those quantities can be found in refs. 3 and 4.

All surfaces have a very similar location for the collinear saddle point,
ranging from 1.755 to 1.758 bohr. The barrier heights of the E; RMCS surface
and the ab initio surface are about 22 to 25 meV higher than the corresponding
DMBE value, or 5% to 6% higher. The two force constants for all surfaces agree
among themselves quite well. This means that these potential energy surfaces
have similar shapes in the vicinity of the saddle point. The comparison shows
that the present ab snstio results and also the E; RMCS surface furnish a fairly
good description of the collinear saddle point.

The E; state is degenerate with the E, state for the equilateral triangle
configurations. Together they form a conical intersection in the vicinity of
this geometry. The behavior of the E, and E; potential energy surfaces is of
importance for quantum reactive scattering calculations at high energy (> 2.75
eV), for the study of the possible ro-vibrational states on the E potential energy

surface, and also for the decay processes from the upper Rydberg states to these



84

two low-lying Fy and F, states. We did the GMF'5 fit and also the ordinary three-
parameter Morse fit to the ab inito data for equilateral triangle configurations.
For comparison, the same fits were conducted for the calculated energies at the
same set of nuclear geometry configurations for the LSTH, DMBE, and the E;
RMCS surfaces. The parameters obtained for these two fits are listed in Table
13.

The first three GMF5 parameters of the E; RMCS surface (D,, R, and
Be) are the same as the corresponding values of the ab initio surface, while
the Ay and As parameters might be different for these two surfaces, since the
values of the £y RMCS surface were obtained from the ab inito ones after
smoothing. Because the latter parameters represent higher order corrections
to B, the corresponding values for these four surfaces are all small but differ
from each other. Comparatively the fitted values of parameters D., R, and S,
for these four surfaces agree with each other quite well. The well depths of the
E; RMCS surface and the ab initio surface are 0.03 eV smaller than that of the
LSTH surface, and 0.038 eV smaller than that of the DMBE surface. For the
fitted D,, we can easily obtain the energy of the minimum point (E, in Table
13) in the equilateral triangular configuration with respect to that of the H +
Ho configuration. It is worth mentioning that because of the slightly different
choices of the energies of the H 4 Hj; reference configurations used (see footnote
f of Table 13), the values of E, for these four surfaces agree better with each
other than they would if the same H + Hj reference energy were used. The
equilibrium distances of the £y RMCS surface and the ab initio surface are 0.003
bohr smaller than that of the LSTH surface, and 0.004 bohr larger that that of
the DMBE surface. The corresponding 8. values are about 0.04 larger that those
of the LSTH and DMBE surfaces.
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The three-parameter Morse fits show the same trends displayed in the GMF5
fits. With only three parameters, the Morse fit is less flexible, and the fitting
quality is lower than that of GMFS5 fit. The three-parameters Morse fit gives a
larger well depth D,, a smaller equilibrium distance R, and a larger exponent
Be-

For the E4 RMCS surface, we compared the RMCS values with the ab initio
results at 560 different nuclear configurations. The average deviation is 0.3 meV
(7 cal/mole), the rms deviation is 24 meV (0.551 kcal/mole) and the maximum
deviation is 0.25 eV (5.70 kcal/mole). The maximum deviation occurs at the
point of nuclear configuration with v = 60°, § = 45° and R; = 1.0 bohr. For
such a small R,, the E; state has a high energy and also changes steeply with
R,. The RMCS fit is not flexible enough to fit this point well. These deviations
for the E4 RMCS surface are very close to the corresponding values for the E,
RMCS surface (Table 12) when compared with the ab initio data.

The dominant feature of the E4 surface is the deep well for equilateral
triangular energy configurations. The same GMF5 parameters for the equilateral
triangular configuration for the E4 surface are listed in Table 14, together with
the results of the three-parameter Morse fit.

Since this surface does support ro-vibrational bound states of the three
protons, we will discuss the calculation of the corresponding low-lying energy
levels in chapter 6. The comparison between these ro-vibrational energies and
experimental values will serve as the ultimate test for the quality of the £, RMCS
surface.

In conclusion, the RMCS fits of the E; and E; potential energy surfaces
display the correct behavior and surface feature characteristics for the two most

important regions of nuclear configuration space, namely the equilateral triangle
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and collinear configuration regions. They offer a good representation of the
present ab inito data. Since the RMCS fit is simple and very flexible, both
RMCS surfaces can be modified easily when new ab tnitio data of higher quality

become available.
3.5.3.4 Contour plots of the E; and F; potential energy surfaces

The equipotential plots of both RMCS surfaces in the Cartesian coordinates
of the bond distances R; and R, with constant bond angle « are shown in Figs.
17a to 17e (for the E, state) and Figs. 18a to 18e (for the E, state).

The general features of the E; RMCS surface agree well with those of LSTH®
and DMBE* surfaces. The contours of E; in Fig. 17d (y = 60°) have a,‘sha,rp
turn for R; = Ry (or § = 45°) because of the conical intersection between the
E,; and E, states. Contour lines with high energy are not as smooth as those
with low energy, because the effects of fluctuation of the A; and A, parameters
obtained from GMF5 fits are more prominent in the high energy configuration
region.

The deep global well of the E4 RMCS potential energy surface is clearly
depicted in Figs. 18a through 18i. The equipotential contour lines should be
perpendicular to the line of Ry = R, (or § = 45°) for accurate potential energy
surfaces. In Fig. 18d (v = 60°), this requirement is not exactly fulfilled. One
reason for this is because of the no-vanishing first derivative of the parameter
PBe as a function of § for v = 60° and 6 = 45° (see Fig. 16c), the second reason
might be the inconsistency of the RMCS fit to the Hs system mentioned before.

The E; potential curve and the corresponding DMBE one in equilateral
triangle configuration are depicted in Fig. 19. The comparison shows that

the Ey RMCS curve is not as deep as the DMBE one. These two curves are
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nearly parallel to each other near their energy minimum locations. The DMBE
curve varies more slowly with internuclear distance when this distance is large
comparatively. This is an indication that the GMF5 fitting function dose not
have the correct long range behavior of a potential energy surface built into
itself.

The equipotential plots of both states are also plotted in a symmetrized
hyperspherical coordinates®®. In the hypersperical coordinates, the Cs,
symmetry of the potential energy surfaces of Hs can be seen clearly.

We first briefly introduce this symmetrized hyperspherical coordinates. Let
Ag, Apg, A, of masses m,, mg,m, be the three atoms of the triatomic system,
and (A, v, k) be any cyclic permutation of (,3,v). This notation satisfies the
requirement that no extra attention has been paid to any given atom.

Let us define #/ » as the internuclear vector between A, and A, and R’ A as
the vector of Ay with respect to the center of mass of A, A, complex.

A mass-scaled coordinates introduced by Delves?%:37 is then defined as

.ﬁA = a,\ﬁf\ (25)
= ay 7 (26)

Hxve 1 Hixveyd
a) = (—EE)1 = (22253 27
(Bhemyt _ (Bas) 2"

mym,m
=G ) (28)
my +my, + my
where the effective masses are defined by

bt = mpt £ mt (29)
Bawe t =myt+my (30)

The shape of the instantaneous triatomic triangle is fully specified by the internal

coordinates Ry, ry, and the angle v, between I:’.‘,\ and 7).
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The hyperspherical coordinates are defined by
p= (B} +r3)} (31)

wy =2 arctan(%) (32)
A

The coordinates (p, wx, ) describe the shape of the triatomic system.
The angles (wx,vx) are interpreted as the spherical polar angles in the abstract
internal three dimensional space in which a point P has the Cartesian coordinates

(XA,YA,ZA) defined by

X, = psinw)cosyy - (33)
Y\ = psinw,sinyy, (34)
Zx = pcoswy (35)

Since 0 < wy < m and 0 < 4, < 7, these internal angles parametrize the
surface of a hemisphere. Only the half-space of positive Yy coordinates provides a
one-to-one correspondence between points in the nuclear geometry configuration
space and a point in this three dimensional internal space. In order to visualize
the variation of the potential energy surfaces with the internal angles (wr, M), 2
mapping of the hemispherical surface onto a plane is defined. Consider the plane
polar radius g and plane polar angle t as parameterizing the plane of the figures.

These plane polar coordinates are defined from the internal angles (wa,va) by

g = w) 0

IA

o< (36)

IA
o NIy

=7 O<w<2r (37)

The central point in such a plot is the intersection of the Z, axis with the

hypersphere of radius p. The curve wy = 7 is a circle in this mapping centered
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on the Z) axis. We call this the north pole view because it is a certain projection

of the spherical surface onto a plane tangent to the sphere at the Z, or north
pole.

The south pole view is defined similarly to the north pole view, except that

the projection is onto a plane tangent to the sphere at the negative Z, or the
south pole. The mapping is defined by replacing wy with 7 — w, in Eq. (36).
We also wish to define a similar mapping of the sphere onto a plane tangent
to the sphere at the Y, axis. This axis is the Cj, axis of the potential energy
surface and a view from this axis shows all regions of the internal configuration
space simultaneously and also shows the symmetry of the functions plotted. It

is called the equatorial view.

Figs. 20 (for the E; state) and 21 (for the E4 state) are equipotential
plots of the potential energy surfaces on planes defined by constant Y,. The
Csy symmetry is clearly displayed. Fig. 20a shows a local maximum of the E;
surface at the center of the plot at which the nuclei form an equilateral triangle
and the Fy and FE, states have a conical intersection. Fig. 20b and 20c show
the familiar Y-shape structures shown by LSTH and DMDE surfaces. Fig. 21a
clearly shows a very deep global potential well located at Yy = 2.16 bohr.

Figs. 22 and 23 are the north and south pole views of the E; surface with
p = 6.0 bohr. Together they show the three possible channels of the H(1ls) + Hy
reaction. These surface features are very close to those displayed by LSTH and
DMBE surfaces. The jaggedness displayed by the contour line of energy 4.0 eV
in Figs. 22 and 23 is related to the fact that the corresponding region of internal

configuration space lies outside the region for which ab initio calculations were

performed and is reached by extrapolating those ab initio values.



90

Figs. 24 and 25 display plots of the equatorial views of the F; and E,
RMCS surfaces respectively. In Fig. 24, the local maximum of the £; RMCS
surface is located at the center of the plots and correspond to equilateral triangle
configurations. The presence of three separated H(1s) + Hy channels is clearly
demonstrated in Fig. 24c where p equals to 6.0 bohr. Again for the contour
line of energy 4.0 eV, the jaggedness is due to the same kind of extrapolation
as the one mentioned in the previous paragraph. In Figs. 25a and 25b, a local
minimum of the E; is located at the center of the plots. In Fig. 25c where p
equals to 6.0 bohr, the surface features are similar to that in Fig. 24c, except
now they correspond to that of three separated H(2p,) + Hy channels instead.
The jaggedness of the high energy contours (with contour energies 12.5 eV, 13.0
eV and 13.5 eV) is once more due to extrapolation into regions of the internal
configuration space outside that in which ab initio calculations were performed.

In conclusion, the RMCS potential energy surfaces of both the E, state
and the Ey4 state are obtained and coded into an easy-to-use form. The surface
features are all reasonable, and in the case of the E; state, in good agreement
with those from LSTH® and DMBE* surfaces. The GMF5 functional form has
been satisfying in our application. Future efforts need to be directed toward
the consistency of the two dimensional Morse parameter cubic spline fit in the
(7,0) mesh with correct boundary conditions. Because a surface in the RMCS
form has a high degree of flexibility, it can be shifted, scaled easily, using only a
much smaller number of better ab ¢nitio energies, to obtain a new and improved

potential energy surface.
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Table 1

(12s/7s, 4p, 1d) Gaussian-type basis set.

orbital i & C;

1s 1 837.22 .000112

2 123.524 .000895

3 27.7042 .004737

4 7.82599 .019518

5 2.6504 .065862

6 .938258 .178008
28 1 .372145 1.00000
3s 1 .155838 1.00000
4s 1 .066180 1.00000
5s 1 .027580 1.00000
6s 1 .011490 1.00000
Ts 1 .004200 1.00000
1p 1 1.6 1.00000
2p 1 40 1.00000
3p 1 .09 1.00000
4p 1 .025 1.00000
1d 1 1.0 1.00000




98

Table 2

Selected results for the CI energy® for H and H,,

using the (12s4pl1d/7s4pld) basis set.

Species R® Energy Reference
(bohr) (hartree)

H(1s) -0.499998 This work

H(1s) -0.500000 exact

H(2s) -0.124992 This work

H(2s) -0.125000 exact

H(2p) -0.124723 This work

H(2p) -0.125000 exact

H; (X 'Z}) 1.40 -1.173652 This work
-1.173704 Liu, ref. 1
-1.1733 LS, ref. 2
-1.174474 KW, ref. 82

H, (b ) 1.40 -0.783904 This work
-0.784150 KW, ref. 82

a. Atomic energies are SCF orbital energies; molecular

energies are full single and double excitation CI energies.

b. Internuclear distance for Hj.
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Table 3

Electronic potential energies (in hartree)

for equilateral triangle geometries®.

R® £ E; Ej E,°
1.0 -1.286448 -1.286430 -1.280663 -1.258265
1.2 -1.441703 -1.441650 -1.415028 -1.398848
14 -1.518046 -1.518017 -1.468988 -1.458043
1.6 -1.554349 -1.554268 -1.482113 -1.475586 -
1.633 -1.557748 -1.557719 -1.481972 -1.475958
1.64 -1.558556 -1.558507 -1.481895 -1.475980
1.8 -1.569022 -1.568989 -1.474258 -1.471001
2.0 -1.571945 -1.571928 -1.455205 -1.454669
2.2 -1.568548 -1.568561 -1.430550 -1.432079
2.4 -1.561349 -1.561420 -1.403023 -1.406783
2.6 -1.552813 -1.552907 -1.375206 -1.380527
2.8 -1.544312 -1.544450 -1.347990 -1.354630
3.0 -1.536907 -1.536859 -1.322044 ~1.329407

a. The origin of energy is that of the three electrons and the three protons at infinite
separation. The energy of three separated H(1s) atoms is -1.500000 hartree with respect to
this origin.

b. in bohr. R]_ = Rz = R3 = R.

c. this state is antisymmetric with respect to the zy plane.
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Table 4

Electronic potential energies (in hartree)

for symmetric linear geometries®.

R® By E, E; Es
1.0 -1.434609 -1.301948 -1.283374 -1.283540
11 -1.510762 -1.353007 -1.336663 -1.336849
1.2 -1.564466 -1.384957 -1.370293 -1.370514
1.3 -1.601646 -1.403383 -1.390318 -1.390402 -
14 -1.626915 -1.412905 -1.400325 -1.400933
1.5 -1.643011 -1.416094 -1.403978 -1.404503
1.6 -1.652252 -1.415210 -1.402812 -1.403312
1.7 -1.656114 -1.413906 -1.398229 -1.398664
1.73 -1.656952 -1.413952 -1.396053 -1.396637
1.75 -1.656479 -1.414190 -1.395340 -1.395903
1.78 -1.656513 -1.416482 -1.392451 -1.393023
1.8 -1.656594 -1.418199 -1.301131 -1.391509
1.9 -1.653957 -1.431787 -1.385831 -1.382534
2.0 -1.649371 -1.445225 -1.377716 -1.372591
2.2 -1.636000 -1.465544 -1.358956 -1.350585

a. The origin of energy is that of the six particles (three electrons and three protons) at
infinite separation. The energy of three separated H(1s) atoms is -1.500000 hartree with

respect to this origin.
b. in bohr. R1=R2=R3=R.

c. this state is antisymmetric with respect to the zy plane.
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Table 5

Electronic potential energies (in hartree)

for non-symmetric linear geometries®.

R® B E; Es Ey
1.0 -1.622411 -1.247049 -1.246984 -1.247192
1.1 -1.648203 -1.273168 -1.272737 -1.272967
1.2 -1.663273 -1.287824 -1.287778 -1.288010
1.3 -1.670766 -1.295267 -1.295108 -1.295499 -
14 -1.673020 -1.297438 -1.297381 -1.297734
1.5 -1.671435 -1.309302 -1.295808 -1.296085
1.6 -1.667258 -1.331377 -1.291770 -1.291910
1.7 -1.661156 -1.350706 -1.285466 -1.285818
1.8 -1.653795 -1.367858 -1.278349 -1.278448
1.9 -1.645634 -1.383097 -1.270268 -1.270237
2.0 -1.636842 -1.396687 -1.261682 -1.261512
2.1 -1.627985 -1.408843 -1.254054 -1.252511

a. The origin of energy is that of the six particles (three electrons and three protons) at
:nfinite separation. The energy of three separated H(1s) atoms is -1.500000 hartree

with respect to this origin.

b. in bohr. The geometry is such that R; = R, R; = 10.0 bohr
and B3 = R; + R; = R + 10.0 bohr.

c. this state is antisymmetric with respect to the zy plane.



102

Table 6

Lowest conical intersection energy and

its corresponding geometry.

E, LSTH® DMBE?
Re 1.973 1.981 1.973
E¢ 2.747 2.756 2.748

. See ref. 3.
. See ref. 4.
. R1=R2=R3=Rinbohr.

. The lowest conical intersection energy with respect to that of the separated H + H,
configuration. For the LSTH and DMBE surfaces, the accurate H + H; energy is used
as the reference. For the present ab initio surface, the energy at the nuclear configuration
with By = 1.402 bohr, R; = 10 bohr and R3 = R; + R; = 11.402 bohr is used instead. The

difference between the second and the first of these reference energies is 0.040 eV.
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Table 7

Saddle point properties

of the E; potential energy surface.

Liu® LSTH®* | DMBE° RMCs? ab initio®
R, (bohr)® 1.757 1.757 1.755 1.758 1.758
E,p(eV)® 0.425 0.4251 0.418 0.440 0.443
k, (eV/bohr?)® 2.90 2.93 2.95 2.90 2.90
ko (eV/bohr?)e -1.6 -1.57 -1.54 -1.46 e

. The saddle point geometry is described by Ry = R; = -;—Rs = Ryp. Egp is the barrier
height of the saddle point. k, is the force constant for the symmetric stretch mode defined
by g, = -‘2@(R1 + Ry — 2R,p). k, is the one for the asymmetric stretch mode defined by
9. = 3(R1 — R2).

. Seeref. 3. The barrier height is defined as the difference between the saddle point energy

and the accurate value®? of the H(1s) + Hz(X 'Z}) energy.
. See ref. 4. The barrier is defined in the same way as in footnote b.

. Present results for the E; RMCS surface. The barrier height is defined as the difference
between the saddle point energy and the energy at the nuclear configuration defined by
R; = 10 bohr and R; = 1.402 bohr (at which value of R, for the given R the present ab
initio calculation has a minimum, so does the £y RMCS surface). The accurate Kolos and
Wolniewiez5? equilibrium internuclear distance is R; = 1.401 bohr, and has an energy
0.040 eV below the present one.

. The data in the ab tnitso column are obtained from the results of the one-dimensional
GMFS5 fits. The definition of the barrier height is the same one defined in footnote d.
The k, value was not calculated for lack of proper fit in the asymmetric mode to the ab

initio data.
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Table 8
Square of the absolute value of the electric dipole transition

transition moment | T;; |° (in units of a.u.?) of Hj

for the equilateral triangular geometries.

R (bohr) | Ta1 [* | Tay [* | Tsz [* | Tus [*
1.2 0.009 4.20 4.20 6.92
14 0.018 3.38 3.42 7.02
1.6 0.030 2.70 2.68 7.18
1.633 0.032 2.59 2.60 7.22
1.64 0.033 2.54 2.58 7.24
1.8 0.047 2.12 2.12 7.34
2.0 0.061 1.70 1.70 7.51
2.2 0.071 1.32 1.30 7.56
2.4 0.077 1.07 1.05 7.73

a. T;; is the transition dipole vector between i and j states. The indices (1, 2, 3, 4)

refer to states E;, E;, E3 and E4 respectively.
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Table 9

Absolute value of the component of the electric dipole transition moment?® (in a.u.)

between the four calculated electronic states for equilateral triangle geometries.

R® | Tq1(2) | | Taz(2) | | Tas(2) |

1.0 432(-3) .194(-3) 2.61

1.2 541(-3) .120(-3) 2.63

14 483(-3) .489(-3) 2.65

1.6 .809(-3) 546(-3) 2.68

1.633 557(-3) 922(-3) 2.69

1.64 830(-3) 378(-3) 2.69

1.8 647(-3) 538(-3) 2.71

2.0 497(-3) 732(-3) 2.74

2.2 140(-3) .100(-2) 2.75

2.4 904(-3) 556(-3) 2.78

2.6 152(-2) 153(-3) 2.80

2.8 150(-2) 206(-3) 2.81

3.0 710(-3) 758(-4) 2.82
R [ Ts(z) | | [Taa(y) | | [Tsalz)| | [ Taz(y) | | [T2alz) [ | | T2a(y) |
1.0 2.25 .944(-1) .927(—1) 2.26 .586(~1) .521(-1)
1.2 .199 2.04 2.04 .198 .916(~1) .182(-1)
1.4 .161 1.83 1.84 159 131 227(-1)
1.6 1.22 1.10 1.09 1.22 .202(-1) 172
1.633 1.21 1.06 1.08 1.21 .235(-1) .179
1.64 1.38 .801 .803 1.39 .909(-1) 157
1.8 .362 141 141 .361 .189 .103
2.0 .372 1.25 - 1.25 371 .207 .135
2.2 424 1.07 1.06 421 .194 .182
2.4 474 918 917 472 .161 .225
2.6 .446 .812 .814 444 .148 .226
2.8 .443 702 .700 439 111 .226
3.0 .388 639 .632 .385 .104 .196

a. T;; is the transition dipole vector between i and j states. The indices (1, 2, 3, 4) refer to

states Ey, E, E3 and Ey respectively. .432(-3) means .432x1073,

b. in bohr. R, = Ry = R3 = R.
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Table 10
Absolute value of the Z component

of the electric dipole transition moment® (in a.u.)

from E4 to Ey, E3, and Ej; for symmetric collinear geometries.

R? | Ta1(2) | | Ta2(2) | | Tas(2) |
1.0 0.130(-5) 2.68 0.656(-5)
1.1 0.227(-5) 2.69 0.505(-5)
1.2 0.853(-6) 2.68 0.361(-5)
1.3 0.675(-6) 2.69 0.464(-5)
1.4 0.278(-5) 2.68 0.160(-4)
1.5 0.517(-6) 2.65 0.175(-5)
1.6 0.202(-5) 2.57 0.548(-5)
1.7 0.151(-7) 2.22 0.199(-5)
1.8 0.558(-6) 1.24 0.142(-6)
1.9 0.195(-6) 0.513 2.68

2.0 0.137(-5) 0.260 2.66

2.2 0.111(-6) 0.879(-1) 2.49

a. T;; is the transition dipole vector between i and j states.
The indices (1, 2, 3, 4) refer to states E;, E, E3 and E; respectively.
.432(-3) means .432x1073,

b. in borh. R1 = Rg = %R;; = R.
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Table 11

Absolute value of the Z component of the electric dipole transition moment® (in a.u.)

between E4 and E,, F>, and Es for non-symmetric collinear geometries.

R? | Taa(2) | | Taa(z) | | Tas(2) |
1.0 0.743 2.46 0.436(-6)
1.1 0.743 2.45 0.872(-6)
1.2 0.742 2.55 0.469(-7)
1.3 0.741 .756(-8) 0.942
1.4 0.741 1.52 0.186(-6)
1.5 0.747 152(-2) 0.104(-7)
1.6 0.740 702(-3) 1.31
1.7 0.751 388(-3) E

1.8 0.751 282(-3) 0.208
1.9 0.749 .190(-3) 0.284
2.0 0.748 .158(-3) 0.310
2.1 0.756 935(-3) 0.128(-2)

a. T;; is the transition dipole vector between i and j states.
The indices (1, 2, 3, 4) refer to states E,, E;, E5 and E4 respectively.
.432(-3) means .432x1073.

b. in bohr. R; = R, Rz =10.0 bohr, and R3 = Ry + R,.

c. not available.
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Table 12

Comparisons of the E; ab initio and

RMCS surfaces with the LSTH and DMBE surfaces.

(eV) (eV) (eV)
ab initio — LSTH 0.51(-1) 0.59(-1) 0.34
ab initio - DMBE 0.53(-1) 0.57(-1) 0.12
ab initio - RMCS 0.70(-3) 0.24(-1) 0.27
RMCS - LSTH 0.50(-1) 0.62(-1) 0.38
RMCS - DMBE 0.52(-1) 0.59(-1) 0.20

. Average value of the difference between the potential energy surfaces identified in the first

column for the 560 nuclear configurations at which the ab initio surface was calculated.
. Root mean square value of the difference defined in footnote a.

. Maximum of the absolute value of the difference defined in footnote a.
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Table 138

Fits of the E, ; potential energy surfaces for equilateral triangle configuration.

A. GMF5 parameters®.

LSTH® DMBE °© RMCS ¢ ab initio
D, (eV) 1.992 2.000 1.962 1.962
E. (eV) 7 2.756 2.748 2.747 2.747
R. (bohr) 1.976 1.969 1.973 1.973
Be (bohr™1) .726 .732 72 772
A1 (bohr~1) .036 027 -.045 -.045
A2 (bohr~2) .022 028 .046 .049

B. Morse parameters

LSTH?® DMBE ¢ RMCS ¢ ab initio ©
D, (eV) 2.030 ; 2.039 1.976 1.978
R, (bohr) 1.932 1.924 1.935 1.932
Be (bohr™?) .825 .831 .822 .828

a. See text (Eqs. 20 to 22 of section 3.4) for the definitions of the GMF5 parameters.

b. The fit used the LSTH energies at the same set of nuclear configurations as in the GMFS5 fit
of the ab initio data. The reference energy is the theoretical value of three isolated H atoms.
The values of D, and R, for the LSTH surface (not obtained from a Morse function) are
1.992 eV and 1.981 bohr®.

c. See footnote b for the selection of the nuclear configurations and choice of reference energy.
The values of D, and R, for the DMBE surface (not obtained from a Morse function) are
2.000 eV and 1.973 bohr*.
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d. See footnote b for the selection of the nuclear geometry configurations. The reference
energy is chosen to be three times the value of the present SCF H(1s) energy with the
12s4p1d/7s4pld basis (see Tables 1 and 2), which is about 0.2 meV above the theoretical
value.

e. The reference energy is the same defined in footnote d.

f. The energy of the minimum point with respect to that of an separated H + Hj configuration.
It is not one of the GMF5 parameters, and has been listed in Table 6. For the LSTH and
DMBE surfaces, the accurate H + Hy energy®? is used as the reference. For the E; RMCS
and the ab initio surfaces, the energy at the nuclear configuration with R; = 1.402 bohr,
Rz = 10 bohr and R3 = R; + Rz = 11.402 bohr is used instead. The difference between the

second and the first of these reference energies is 0.040 eV.
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Table 14

Fits of the F; potential energy surface for equilateral triangle configuration.

A. GMF5 parameters®

RMCS ® ab initio ©
D, (eV) 9.558 9.558
E. (eV) ¢ 2.747 2.747
R, (bohr) 1.642 1.642
Be (bohr~1) .575 575
A1 (bohr™1) .084 .084
A2 (bohr~2) .027 .043

B. Morse parameters

RMCS ® ab initio °
D, (eV) 9.623 9.632
R, (bohr) 1.658 1.656
B. (bohr~1) 614 623

. See text (Eqs. 20 to 22 of section 3.4) for the definitions of the GMF5 parameters.

. The reference energy is chosen to be the sum of the present SCF energies of H(2p;) +
2H(1s) with the 12s4p1d/7s4pld basis (see Tables 1 and 2), which is about 0.2 meV above
the theoretical value. '

. The reference energy is the one defined in footnote d.

. Energy of the minimum point with respect to that of a separated H + H; configuration. E,
is not one of the GMF5 parameters (see Table 13). The energy of the ab tnitio E; surface at
the nuclear configuration with B; = 1.402 bohr, Ry = 10 bohr and Rs = R; + Ry = 11.402
bohr is used as the reference energy. This is higher than the accurate energy reference3? by

0.040 V.
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3.8. Figures and captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1. Energy level and correlation diagram of Hz. The spacing of the Hj
energy levels was calculated for an equilateral triangle configuration® and
referred to the energy of dissociated products by the results of a separated

calculation®.

2. Flow-chart of the MRD-CI programs. The name of each individual

routine is listed along with a brief description of its function.

3. Coordinate system used in the MRD-CI program. P; is the ¢th proton
of Hy. The three protons are all in the x y plane. The bond distance R,
between P, and P3, R, between P; and P», and the bond angle v between

them are used as the variables describing the shape of the triangle.

4. Internal coordinate system used in the RMCS surface fitting scheme. In
the Ry, R, Cartesian coordinates, P, is the swing point with R, = R} and
Ry = R3. A point P can be described by the swing angle 6 and the swing

distance ! with respect to the swing point P,.

5. Potential energy curves for equilateral Hs. R is the length of the side
of the triangle. In equilateral configurations, the E; and E, states are
degenerate with each other. The energy origin is that of the accurate H +

H, value obtained by Kolos and Wolniewiez?2.

6. Magnitude of the electric dipole transition moment Ts; between the E,

and E) states for equilateral Hs. R is the length of the side of the triangle.

7. Magnitude of the electric dipole transition moment Ts; between the E,

and E; states for equilateral Hs. R is the length of the side of the triangle.
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8. Comparison between the DMBE ground potential energy surface
(EPMBE) and the present ab initio results. The molecule is in a symmetric
collinear configuration with R; = Ry = -21-R3, corresponding to v = 180°
and § = 45°. The energy origin is defined in the caption for Fig. 5. Fig. 8a
displays the energies, and the differences between them are depicted in Fig.

8b. The energy origin is that of Fig. 5.

9. Comparison between the upper sheet of the DMBE surface (EDMBE) and
the present ab tnitio results for the E, state. The molecule is in the same

nuclear configuration as in Fig. 8. The energy origin is that of Fig. 5.

10. Potential energy curves for the F, and E3 States. The molecular

geometry is the same as in Fig. 8. The energy origin is that of Fig. 5.

11. Potential energy curves for the F5 and E5 states. The molecule is in a
non-symmetric collinear configuration with Ry = 10 bohr and B3 = R; + R,

corresponding to v = 180° and § = 0°. The energy origin is that of Fig. 5.

12. Potential energy curves for the E, state. The nuclear configuration is
given by v, 8, and R;. + is fixed at 60°. 4 varies from 45° to 0° in the plots

of Figs. 12a through 12j. The energy origin is that of Fig. 5.

13. Potential energy curves for the Eg3 state. The nuclear configuration is
given by v, 8, and R;. + is fixed at 60°. 8 varies from 45° to 0° in the plots

of Figs. 13a through 13j. The energy origin is that of Fig. 5.

14. Potential energy curves for the F; and E3 states. The molecular
geometry is given by «, 6, and R;,. 0 is fixed at 45° which means that
R; = Ry. v varies from 60° to 180° in the plots of Figs. 14a through 14e.

The energy origin is that of Fig. 5.
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15. GMF5 parameters for the E; state as functions of 4. ~ is fixed at
60°. All curves are symmetric with respect to § = 45° because of identical
particle permutation symmetry. In Figs. 15d and 15e, A; and A, and their
one-o statistical error bars in the GMFS5 fits are given. The curves in Figs

15d and 15e are the smoothed A; and A, used in the E; RMCS surface.

16. GMF5 parameters for the F, state as functions of 8. ~ is fixed at 60°.

See the caption for Fig. 15 for details.

17. Two-dimensional equipotential contour plots of the £, RMCS potential
energy surface. The molecular geometry is given by two bond distances R;,
R,, and bond angle «. « values are chosen to be 15°, 30°, 45°, 60°, 75‘;, 90°,
120°, 150°, and 180° in plots of Figs. 17a through 17i. The contour energies
are in the range [0.5 eV, 6.0 eV] with increments of 0.5 eV. All contour plots
have an outermost contour with an energy of 6.0 ¢V and an innermost one

of 0.5 eV. The energy origin is that of Fig. 5.

18. Two-dimensional equipotential contour plots of the E; RMCS potential
energy surface. The molecular geometry is given by two bond distances R;,
R;, and bond angle . The values of 4 are 15°, 30°, 45°, 60°, 75°, 90°,
120°, 150°, and 180° in the plots of Figs. 18a through 18i respectively. All
contour plots have an outermost contour with an energy of 10.0 eV. The

energy step used for all plots is 0.5 eV. The energy origin is that of Fig. 5.

19. Potential energy curves for the equilateral triangular configurations of

the DMBE and E; RMCS surfaces. R is the internuclear distance.

20. Two-dimensional equipotential contour plots of the E; RMCS potential
energy surface in hyperspherical coordinates®® with constant Y, (see Egs.

(33) through (35) of section 3.5.3). The contour energies are in the range



Fig.

Fig.

Fig.

Fig.

115

[0.5 eV, 3.5 eV] with increment of 0.5 eV. The outermost contour has an
energy of 3.5 eV. The values of Y, are 2.6 bohr, 1.0 bohr, and 0.0 bohr
respectively for Figs. 20a, 20b, and 20c. The energy origin is that of Fig. 5.

The small closed contour in the center of Fig. 20a has an energy of 2.0 eV.

21. Two-dimensional equipotential contour plots of the E; RMCS potential
energy surface in hyperspherical coordinates3 with constant Y (see Eqgs.
(33) through (35) of section 3.5.3). All contour plots have an outermost
contour with an energy of 10.0 eV. The energy step for all plots is 0.5 eV.
The energy origin is that of Fig. 5. The values of Y} are 2.16 bohr, 1.0 bohr,
and 0.0 bohr respectively for Figs. 21a, 21b, and 21c.

22. North pole view of the E; RMCS potential energy surface at p = 6.0
bohr. The mapping is defined by Eqs. (36) and (37) of section 3.5.3. The
contour energies are in the range [0.5 eV, 6.0 eV] with increments of 0.5 eV.

The energy origin is that of Fig. 5.

23. South pole view of the E; RMCS potential energy surface at p = 6.0

bohr. See the caption for Fig. 22 and the text for other details.

24. Equatorial view of the E; RMCS potential energy surface. The p values
are 2.0 bohr, 3.27 bohr, and 6.0 bohr respectively for Figs. 24a, 24b and 24c.
See the caption for Fig. 22 and text for other details. The contour energies
are in the range [3.5 eV, 10.0 €V] in Fig. 24a, [1.0 eV, 6.0 eV] in Fig. 24b
and [0.5 eV, 6.0 V] in Fig. 24c, with increments of 0.5 eV. In Fig. 24a, the
two innermost contours have an energy of 3.5 eV. They indicate that there
is a shallow valley between them and a local maximum at the center of the
plot. The same features can be seen in Figs. 24b and 24c. In Fig. 24c,

the valley has been pushed to the edge of plot, and has been separated into



Fig.

116

three local valleys. They correspond to the diatomic bonding in the H + Hy

configuration. The energy origin is that of Fig. 5.

25. Equatorial view of the E4 potential energy surface contours. The p
values are 1.0 bohr, 2.16 bohr, and 6.0 bohr respectively for Figs. 25a,
25b and 25c. The contour energies are in the range [25 eV, 45 V] with
increments of 5 eV in Fig. 25a, [5.5 €V, 10.0 eV] with increments of 0.5 eV
in Fig. 25b, and [10.5 eV, 13.5 V] with increments of 0.5 eV in Fig. 25c. See
the caption for Fig. 22 for other details. Fig. 25b shows a deep minimum
at the center of the plot. Fig. 25c has features similar to those seen in Fig.
24c. The three local potential valleys correspond to the diatomic bonding
in the H(2p,) + Ha(X? X }) configuration. The energy origin is that of Fig.
5.
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Integral evaluation
HONDO program
Integral matrix
YELLOW transformation
SCFYEL SCF-MO program
Matrix transformation
STONEY program

Configuration generation

PARKEU and selection

Final Cl Hamiltonian
RUMPLE matrix generation
GRIZZLY Cl matrix diagonolization

and threshold extrapolation

Electric dipole

COYOTE transition moment

Fig. 2
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Chapter 4

Calculation of the Ro-vibrational Bound States of H;

in Its First Excited Electronic State

4.1. Introduction

In this chapter, the ro-vibrational bound states of Hj in its first electronically
excited state are calculated via a variational method under the assumption that
its electronically non-adiabatic coupling to the electronic ground state vanishes.
In the future, the effect of such coupling must be included.

First a general review of the methods that treat ro-vibrational bound
states of triatomic systems is presented. Then an outline of the Tennyson and
Sutcliffe method is presented in section 4.2. Section 4.3 contains the results and
discussions.

It has been known for a long time that the ground electronic state potential
energy surface is repulsive and therefore does not support any ro-vibrational
bound states of the nuclear motion. Before the present work on excited electronic
states (see chapter 2) of Hs, there were no reiiable excited potential energy
surfaces except the DMBE one of Varandas and co-workers! for the first excited
electronic state. If one neglects the non-adiabatic coupling between this state and
the ground state of Hs, this surface does have a potential well which supports
bound ro-vibrational nuclear motion. There have been no definitive experimental
observations of those bound states. The theoretical results of those bound states
will be able to provide clues and guidance for the experimentalists®3. Also the
DMBE surface served as a test ground for ro-vibrational state calculations before
we obtained the 2p, 2AY potential energy surface which is of great theoretical

and experimental importance. This was our initial motivation for this study.
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Later, it turned out that because of the geometric phase*~¢ related to the conical
intersection”~® between the ground and the first excited electronic states (or
the molecular Aharanov-Bohm effect), we developed a hyperspherical coordinate
propagation method for the study of ro-vibrational bound states on this DMBE
surface which made us realize the impact of that geometric phase, in the studies
of both the bound state!®:1! and the scattering states!213,

The last decade has seen the recognition that the theoretical calculations
are of importance for the understanding of the ro-vibrational motion of triatomic
molecules!®. The real drive behind such calculations are the impressive progress
in the laser spectroscopy of small and medium sized molecules and the availability
of the supercomputers. The problem to be solved may be stated very simply:
given a potential energy surface, what are the ro-vibrational energy levels and
their associated wavefunctions, including the high energy ones which harmonic
approximations are invalid?

The concept of potential energy surface is the most fundamental one in
chemistry. Potential energy surfaces are usually obtained by some kind of
analytical fitting of the results of ab instio electronic state calculations at a
finite number of nuclear configurations'®. More and more potential energy
surfaces are becoming available due to advances in quantum chemistry and
in supercomputers. In order to test the analytical potential energy surfaces,
one of the best ways that we know is that if they support bound states of
nuclear motion, they should produce the same energy level results as those
observed spectroscopically. This approach is very fruitful in studies of diatomic
molecules because of the simplicity of those systems. The spectra of triatomic (or

polyatomic) molecules are of higher complexity, which makes the experimental

assignment of the ro-vibrational lines in those spectra much more difficult than
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in the case of diatomic molecules. For this reason, results from theoretical
calculations will be very helpful in order to understand the complicated results of
spectroscopy. Furthermore, if analytical representations of the dipole (or higher
moment) surfaces are available, tests of these representations can be made by
comparison with experimental transition moments. It is possible to calculate
fully coupled ro-vibrational energy levels of triatomic molecules from the first
principle with an accuracy (0.1 cm™!) that is competitive with experimental
data from high resolution laser spectroscopy!®17.

Most of the techniques used for the study of the ro-vibrational motion
are of the variational type'*. The Rayleigh-Ritz variational method is applied
straightforwardly. Given a Hamiltonian H and some expansion basis set Y;, the
secular equations

M
<t |H-E;|) Cigp>=0 (1)

k=1
are solved for the eigenvalues E; and the eigenvectors C!. If we denote the
eigenvalues for M expansion functions in increasing order by EM, EM . EM.

then MacDonald’s theorem!® states that
EM' <EM < EM! (2)

This theorem shows the advantages and disadvantages of the variational method.
The great advantage is that all the eigenvalues are upper bounds of the
corresponding exact eigenvalues. The main weakness is that in order to ensure
the convergence of a certain number of eigenvalues, we might need a much large
number of expansion functions than the number of eigenstates wanted, which
in turn makes the numerical diagonalization of the Hamiltonian matrix very

demanding.
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Returninig to the secular equation Eq. (1), the choice of expansion functions
is crucial if the dimension of the matrix is to be minimal. Before this problem can
be addressed, it is necessary to chose the coordinate system which will be used
for the problem. In the laboratory fixed axes system, a molecule with N atoms
is described by 3N coordinates x. Because the molecule is an isolated system,
the motion of its center of mass is simple but not relevant to our interest and can
be removed, and the square of total angular momentum and its Z component
commute with the Hamiltonian H. As a result, it is usual practice to introduce
three Eular angles o, 3,v to describe the orientation of some “molecule-fixed
axes” relative to the laboratory fixed frame. The remaining 3N — 6 coordinates
will describe the internal motion of the molecule. There are of course infinite
ways to define the molecule-fixed axes and the internal coordinates.

Having decided on the definition of the coordinate system, it is necessary
to derive the form of kinetic energy operator T in terms of these coordinates,
which is quite complicated. Sutcliffe was the first one who demonstrated a
straightforward method to derive the kinetic operator T of a triatomic molecule
in any internal coordinate system!®. His effort was followed by that of Handy
which takes advantage of a computer algebra program and also treats tetra-
atomic molecules as well?°,

In practice, the normal coordinate system has been used along with an
expansion function set involving the direct product of three harmonic oscillator
functions?!. Difficulties occur when higher vibrational levels are required where
the associated wave functions sample the anharmonic regions of the potential
energy surface far away from the potential minimum, or when the triatomic

molecule is linear or quasi-linear in which case the kinetic energy operator in

this body-fixed coordinate system has a singularity. In order to overcome this
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problem Carter and Handy introduced an internal coordinate system of two
bond lengths and the bond angle between them?2. The expansion functions are
chosen to be the product of two Morse oscillator functions for the motion of
two bond lengths and the associated Legendre polynomials for the motion of the
bond angle. Tennyson, Sutcliffe, and co-workers introduced Jacobi coordinates
(more commonly used in scattering calculations)?®. Their expansion functions
also have the form of a product of two Morse (or harmonic) oscillator functions
and an associated Legendre function.

In the bond-length-bond-angle coordinates of Carter and Handy and the
Jacobi coordinates of Tennyson and Sutcliffe, the Hamiltonian is sufficiently
simple and all motion on the potential energy surface can be treated without
approximation. Both methods are straightforward, robust and easy to use, with
many applications of high quality results to triatomic systems!4:1%:17,

Besides these variational approaches using products of known analytical
functions, Burden and Cuno have tried SCF-type numerical basis functions in
the studies of H,O, OCS and CHZ systems?%. This approach provides a compact
and flexible way to construct expansion functions and ensures the convergence
with a comparatively small basis set. In the studies of van der Waals complexes,
Born-Oppenheimer type separation has been commonly used to separate the
radial and angular motion of the van der Waals bonding25-27.

In recent years, the techniques for ro-vibrational motion of triatomic systems
reached another level of sophistication. In the usual variational methods of
Carter and Handy, and Tennyson and Sutcliffe, the expansion functions are
products of known analytical functions of single center type (Harmonic or Morse

oscillator functions with few tunable parameters), which are not flexible enough

to treat very highly excited states with very large amplitudes of motion, which
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might cover more than one minima of the potential energy surface (so-called
“foppy” molecules). The convergence for the highly excited floppy states is
not good enough even for very large basis sets. Several techniques have been
introduced to overcome this difficulty. The Gaussian distributed basis (GDB)
method developed by Hamilton and Light?® uses many localized Gaussian basis
functions. Their centers are placed all over the interesting part of a potential
energy surface by following physical intuition. This method greatly extends
the flexibility of the basis functions. It keeps the advantages of the usual
variational method, while using localized Gaussian basis functions and acquires
a certain degree of simplicity in the finite difference method. The discrete
variable representation (DRV) developed by Lill, Bacic, Light and co-workers

29-31 calculations and

has been shown to be very effective both in scattering
bound states studies32~3¢, The combination of GDB and DVR leads to a
substantial decrease in the computational effort as compared to that required
for more usual basis sets such as direct products of orthogonal functions. They
have proved to be very effective, especially for the studies of highly excited
states of “floppy” triatomic molecules. With their collocation method, Yang
and Peet demonstrated a non v#riational approach to the bound solutions of
the Schrodinger equation3”. This collocation method is easily implemented, and
the construction of the Hamiltonian is very simple and does not require any
evaluation of integrals over the basis set. Combined with the GDB method,
Yang and Peet were able to treat highly excited vibrational states of the Ar-HCI
system with the same accuracy achieved by the DVR-GDB method?8.

For triatomic systems having identical nuclei (like H;’, Hj), it is desirable

to take advantage of the full P; nuclear permutation symmetry. Carter and

Handy and Tennyson and Sutcliffe have shown that for basis functions which are
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products of 1D functions, it is easy to embed the P, permutation symmetry
of the AB, systems into the basis functions but very hard for the full Ps
permutation symmetry?®. In order to implement the full P; symmetry into
the basis set, hyperspherical coordinate systems are used in the calculation of
the bound ro-vibrational states of triatomic systems!1:36:39:40 When viewed in
symmetrized hyperspherical coordinates*!, potential energy surfaces of identical
triatomic systems demonstrate a Cs, geometrical symmetry, which allows the
easy implementation of the full P; nuclear permutation symmetry. More details
are given in the next chapter where we discuss one of the implementations
of symmetrized hyperspherical coordinates for the ro-vibrational bound state

calculation.
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4.2. Methodology
In this section, the variational method developed by Tennyson and Sutcliffe
is outlined. More detailed information is available in their original papers?342.
Within the Born-Oppenheimer approximation, the Hamiltonian for the

nuclear motion of a triatomic system is

3 h2 )
H=—Z—in+v, (3)

Zm;

i=1
where V,zq is the Laplacian for the ith nucleus of mass m; and laboratory frame
position coordinate x;, and V is the electronic potential energy surface, that acts
as the effective interaction between the nuclei and depends only on the relative
(or internal) nuclear coordinates.
4.2.1. Removal of the motion of the center of mass

The first step in the construction of any ro-vibrational Hamiltonian is the
removal of the overall translation of the center of mass. To do this, a new set of

coordinates may be introduced

R = X1 — X4, (4)
r = X3 — Xg, (5)
3
X=M"12m,-x,-, (6)
=1
where

M=m;+mg=mq+ms+ms (8)

Xq = m;l(mg){z -+ m3x3). (9)

r is the diatomic bond vector and R is the vector connecting the diatomic center

of mass to the third atom. The position vector of the center of mass of the whole
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complex in the laboratory frame is X. These coordinates are shown in Fig. 1.

Using the chain rule of differentiation, we get

3
Z,_,l,j.vi- =M"'Vk+u VR + pg V2 (10)

1=1
with effective masses
maoms
SR 11

_ my(mz + ms)
(my + ma + m3)

Kd =

(12)

Removing the center of mass motion and expressing the Laplacian operators in
polar coordinates, one obtains the space-fixed Hamiltonian

h? 3? h? 82 12 j?
~ ————R — r+ +
2uR OR? 2uqr Or? 2uR? 2uqr?

+V, (13)

where 1 and j are the angular momentum operators associated with vectors R
and r respectively. The total rotational angular momentum operator is given by

their sum
J=1+] (14)

4.2.2. Body-fixed coordinates

Although the space-fixed representation has been successfully used for
several ro-vibrational calculations, it is generally desirable to work with a body-
fixed frame, which has the advantage that vibrational and rotational coordinates
can be easily identified, along with the Coriolis terms that couple them. The
resulting coupled-channel equations are usually simpler than those derived from
the space-fixed Hamiltonian.

There are many ways to define a body-fixed frame. In the case of triatomic

systems, we chose it to be such that the z-axis of the body-fixed frame is along
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the direction of R, and r is in the x-z plane with a positive projection on the
x-axis. Fig. 2 depicts these axis. Three Euler angles «, 8 and « fully specify
the orientation of the body-fixed frame with respect to the space-fixed frame. In

this body-fixed frame
A=K, +RK, +V(R,1,0), (15)

where 0 is the angle between R and r. The vibrational kinetic energy operator

is

. KR 82 KR 82
v<T T 2uRAR2 2,udr5_13r )
| 1 1 8 /. 8
) (y,RZ + udr2> sind 80 (smo%) ’ (16)

and the vibration-rotation kinetic energy operator is

1 2 2 cot?d  cosec?9\ _,
Ky = 3 R (I + I3) + (uRZ = m2}
cotf h 1 7/ cotf
t gLl + ILIL) + J— (% e )Hy, (17)

where II,, II,, II, are the components of the total angular momentum J that
only acts on the Euler angles e, 8, 4 which rotate the space-fixed frame to the
body-fixed frame. o and f are the polar angles of R in the space-fixed frame.
< is the angle between the R Z, ace—fixea 2and R, r half-planes measured counter
clockwise as viewed from the top of the R vector.
4.2.3. Basis functions

After the form of the Hamiltonian has been obtained in the body-fixed
coordinates, a set of basis functions is chosen. Of these six coordinates, four
are angular variables: the three Euler angles o, 3, v and the angle § between

vectors R and r. The other two are the radial distances R and r.
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A suitably symmetrized angular basis set for the variational calculation is
chosen to be:
|7, M, 5, k) =(1 + 8,0) ™/ 27/2{@,4 () Diy (e B,7)
+(~1)70;,-k(8) D3z, (@, ,7)} (18)
where 6; o equals 1 when k& = 0 and zero otherwise. DI{J, x{a, B,7) is the Wigner
rotation function?® and O, x(6) is the associated Legendre function‘. pis a
quantum number which is associated with the parity of the system with respect
to inversion through its center of mass; it that can assume the values 0 or 1
(see below). J is the total angular momentum quantum number, with M and
k being the quantum numbers of its projections along the space-fixed z axis
and the body-fixed z axis respectively. j is the quantum number of the angular
momentum associated with the diatomic vector r. | JMjk) is the simultaneous
eigenfunction of the angular momentum operators J2, 32, jz, Jz. p, J, M are
good quantum numbers for the triatomic system. The allowed values of 5§ and &

k=(0,1,...,0 = 1,J) (19)
7=k, |kl +1, k| +2,...) (20)

The quantum number p is defined by requiring that the total parity of the spatial
wavefunction under inversion through the system’s center of mass be (—1)7*7.
Let us consider two special' cases. When J = 0, M and k have to be zero as
well. p also has to be zero since in this case the system has even parity. 7 now
is the only quantum number left and can assume the values 1, 2, 3, .... etc. The

angular basis function in this case is very simple:
|0,0,7,0) = 5)

= 0,,0(0) (21)
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which is just the ordinary Legendre polynomial P;(cosf,).

If we consider the situation of J = 1 and even total parity, then p = 1. For
this value of J, k can be 0 or 1. For k£ = 0 and p = 1, the right hand side of Eq.
(18) vanishes. Therefore, the only appropriate value of k is 1 and the angular

basis becomes

l .7> = 2—1/2{91',11)%/{,1 - 91',—1D11\l,—1} (22)

even

where j can assume the values 1, 2, 3, ... etc. If we consider J = 1 and odd total
parity, we must have p = 0 and k can be 0 and 1. The angular basis function

will be

l j’k’>odd = (1 + 5’6,0)‘1/2 2-1/2

{GJ',kDgf,k + 91',—kDXl,—k} (23)

The basis functions for the two radial variables R, r are chosen to be product

of analytic Morse oscillator-like functions:

W7, B) = = Hon(r) Ha(B) (24)

m,n = {0,1,2,3,4,...}

where
H,(r) = B'/? N, aexp(—y/2)yl=+D/2 L2 (y) (25)
4D,

= 26
; (20

= w.(F 172
ﬁ we(ZDe) (27)
o = integer part of A (28)

y = Aexp[—f(r — r¢)] (29)
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Npn,oLZ is the normalized associated Laguerre polynomial®. An equivalent
definition is valid for H,,(R). The parameters y, r., w, and D, are the reduced
mass, equilibrium separation, fundamental frequency and dissociation energy
associated with the corresponding radial coordinate. In practice, r,, w,, and D,
are usually treated as variational parameters and optimized accordingly.

4.2.4. Symmetry considerations

If two or all three of the nuclei are identical particles, then the wavefunctions
of the triatomic system have to form representations of the nuclear permutation
symmetry group (P or Ps). It is desirable to embed the nuclear permutation
symmetry into the basis functions. This not only ensures that the final
wavefunction obtained from the variational calculation has appropriate nuclear
permutation symmetry properties, but also decomposes the Hamiltonian matrix
into smaller independent sub-blocks, which in turn require much smaller
computational effort.

It is difficult to embed the P; permutation symmetry of As-type molecules
consisting of three identical nuclei in Tennyson’s method without destroying the
simplicity of constructing the basis functions in the form of direct products of
basis functions in angular variables and the radial variables*2.

On the other hand, the P, permutation symmetry of ABz;type molecules
can be easily built in (see Eq. (18)). Since the potential energy function of such
a molecule is invariant under an interchange of the two identical B atoms, the
Hamiltonian does not couple the angular basis functions of even j with angular
basis functions of odd j, and we can treat these two cases separately*2.

Even though we treat an As-type system with only the P, symmetry
embedded into the basis set functions, a fully converged result is still needed to

satisfy the Ps symmetry. This symmetry should manifest itself in the degeneracy
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of the energy levels and in the shape of the eigenfunctions if plotted in a set
of appropriately symmetrized coordinates. If an eigenstate obtained by using
even basis functions is nondegenerate, it must belong to an A; irreducible
representation of P;. If an eigenstate obtained by using odd basis functions
is nondegenerate, then it generates an A, irreducible representation of Ps.
If one eigenstate of even basis functions and another of odd basis functions
are degenerate with each other, together they must form an E irreducible
representation of Ps.
4.2.5. Basis set selection

As for all variational methods, the basis set of choice should be flexible and
large enough for the problem at hand, and also as compact as possible in order
to reduce the computational effect. In the Tennyson and Sutcliffe method, the
basis functions in the internal coordinates have the form of the products of three
one-dimensional functions. There are three schemes to select the basis set. The

first one is that any basis function with quantum numbers j, m, and n for which

Nrmaz 2 (30)

J,m_n
L; M, N,
is satisfied is selected. Here N,,q5, L;, M,,, and N,, are selection parameters.
For example, we may chose Ny,q; = 1, L; = The rationale behind this scheme is
an energy consideration, since the basis functions with larger quantum numbers
tend to contribute more to the higher eigen-states. The second scheme is to select
basis functions directly according to the value of the diagonal matrix element of
the Hamiltonian (j,m,n | H | j,m,n). The lowest number LBASS of basis
functions can be selected in this way in a manner consistent with number of
eigenstates desired. The selection parameters (Nmazs Lj, My, Nn, LBASS)

can be tuned independently so that the final effective selection criterion can be
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either the first scheme or the second, or even some kind of combination of both.
Finally, basis functions can be selected manually if necessary.
After basis selection is done, the Hamiltonian matrix is constructed by both

analytical and numerical means. Tennyson*®

went to special pains to optimized
his code for evaluating the necessary numerical quadratures, and this is a very
important features of this code. The eigenfunctions and eigenvalues are then

obtained after a straightforward diagonalization of the Hamiltonian matrix.
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4.3. Results and discussion

The code we used for the variational state calculation is called TRIATOM,
and was obtained from the CPC Program Library of Queen’s University, Belfast,
Northern Ireland®. We initially made small test runs on Sun workstations and
a micro VAX. The major part of the calculations was done on the SCS-40 mini-
supercomputer of the San Diego Supercomputer Center (SDSC). The code itself
was highly portable. The modifications made to suit each computer system were

minimum.

4.3.1. Application to the HF ion with J =0

The ro-vibrational motion of the H} ion has been extensively treated by
Tennyson et al.47*%. Since this triatomic ion has some resemblance with the
Hs system in which we were interested, we repeated their calculation for total
angular momentum J = 0 in order to gain experience in using this code. We
adopted the same values of the parameters r., w,,, D,,, Re, wr, and Dg, they
used?’, as listed in Table 1. The HI potential surface used in our calculation
is the one included in the TRIATOM package for code testing®®, and different
from (simpler and better than) the one used in previous publications®?. As a

47.48 would

consequence, the optimized parameters in these published calculations
not be optimal for the test potential energy surface we used, our results should
not be in perfect agreement with those calculations.

The potential energy surface of ground electronic state for HY has a deep
smooth rounded well that can support many bound states of ro-vibrational
nuclear motion. Figs. 3 and 4 show some cuts of this surface. Because of this

property, the method of Tennyson and Sutcliffe is appropriate for this system.

In our calculation, the zero of the potential energy surface was chosen to be the
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energy of 2H(1s) + H*. There are other natural choices of zero for this potential
energy surface, such as the energy of Ho(X 1 3°F) + H or HJ (X 2T) + H(1s).
Since we were only interested in the lower vibrational eigenstates, any choice of
zero would be equivalent to any other one both conceptually and practically.

The convergence tests are listed in Table 2, which show that the lowest
ten eigenstates with even j basis functions and the lowest five eigenstates with
odd j basis functions are converged to 0.1 cm™!. For the largest basis sets, the
size of the basis sets are the same as those used previously by Tennyson and
Sutcliffe*”48. The eigenenergies are listed along with the latter in Table 3. To
permit a better comparison, the energy origin was taken to be the ground ro-
vibrational states of each calculations. The energies of the levels clearly show
the degeneracy of the results obtained by using even and odd j basis functions,
which makes it possible to do symmetfy assignments for those eigen-states. The
difference between Tennyson’s results and the present ones ranges from 5 cm™!
to 60 cm™!. This can be attributed to the use of different potential energy
surfaces and Morse parameters, that were not optimized in the present work.
The quanta for the asymmetric stretch mode vg and the symmetric one v4
resulting from our calculations are 2518.5 cm™! and 3175.3 cm™!. They agree
much better with the experimental values of Oka®! (vg = 2521.56 cm~') and
of Ketterle and co-workers®? (14 = 3178.29 cm™!) than the corresponding ones
obtained by Tennyson and Sutcliffe*”*4%, namely 2494.4 cm™! and 3185.32 cm ..
We attribute this better agreement to the improved potential energy surface we
used.
4.3.2. Application to Hs with J =0,1

For the Hj system, if the coupling between the ground electronic state and

the first excited electronic state, (which is degenerate with the ground electronic
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state in equilateral triangle nuclear configuration ), is neglected, the potential
energy surface of the first excited electronic states would support bound ro-
vibrational states. The corresponding potential energy surface has been obtained
by Varandas et al. using the functional extrapolation in the double-many-body-
expansion (DMBE) schemel. The upper manifold of DMBE surfaces is shown in
Figs. 5 through 8. The striking feature of this potential energy surface, which
is quite different from the ground potential energy surface of the H;' ion, is the
cone-shaped tip at the bottom of the well. As the function of the internuclear
distance R of equilateral configuration, both surfaces display the same Morse-like
smooth behavior (see Figs. 3 through 5). The cone-shape feature comes from
the well-known conical intersection between the ground and the first excited
electronic states of H3"~? for motion in the X, and Z, directions as seen in
Figs. 7 and 8. No bound ro-vibrational states on this excited pbtential energy
surface have been observed experimentally so far. There are some indications
that the quasi-bound ro-vibrational states which would exist in the absence of
coupling to the ground electronic state will predissociate by ro-vibronic coupling
to that state?3.

We used in our bound ro-vibrational state calculations those upper manifold
of the DMBE surfaces. The zero of energy chosen was that of three isolated H
atoms in their ground state. For the same reason as in the case of the Hy ion,
the choice of zero of energy is of no major importance.

The first step was to optimize those Morse parameters r,, Wres Dr,, R, wg,
and Dpg, used in the radial basis functions. Basis sets of small size were used
for this purpose. Since it had been showed previously by Tennyson et al. that
the optimized parameters for even j basis functions are more or less the same as

42,46

those for odd j basis , and also that the Morse parameters are not sensitive
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to the total parity of eigenstates, we only did the optimization in the calculation
with even j basis functions, for J = 1 and odd total parity.

For the J = 0 case, the optimization was done using a basis set defined to be
Nmaz =1, M, =8, N,, =8, L; = 16 which resulted in a total number of basis
functions equal to 576. The lowest five states were monitored with respect to the
tuning of the Morse parameters. By varying one parameter with the others fixed,
a one-dimensional optimization was conducted manually. After the optimized
value was found for this Morse parameter, it was then fixed and the next Morse
parameter was optimized in the same fashion. After the last parameter was
optimized in this one-dimensional manual scheme, another iteration was started
over again with the first Morse parameter. After two or three iterations, the
variation of the eigenenergies for the lowest five state became very small and the
optimization was stopped. The final optimized parameters for J = 0 are listed in
Table 4. It is important to keep in mind that optimization in multi-dimensional_
space is generally difficult, not to mention how much more difficult it would be
if done manually. Because the optimization process is actually done in this way,
in a finite portion of the six-dimensional parameter space, with only limited
guidance from physical considerations, it is quite possible that a local minimum
may be accepted as the global one since there is no sure indication that the global
minimum has been reached. This is a well known problem in global optimization.
Fortunately, the larger the basis set, the less sensitive the results are to changes
of those parameters.

For the case J =1, a basis set with Njpae =1, M,, =6, N, =6, L; =15
and a total of 382 functions was used in the Morse parameter optimization. For

J = 1, the lowest twelve eigenenergies were monitored during the parameter
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tuning. The same optimization scheme was used as in the case J = 0. The
results of the optimized parameters are also listed in Table 4.

With the optimized Morse parameters, the size of the basis sets was increased
in order to test the convergence of the eigen-energies. As mentioned before, the
cone-shaped potential energy surface was not an ideal system for the use of
Morse-type radial basis functions. The eigenenergies converged very slowly with
basis set size. We analyzed the importance of each basis function for a given
basis size carefully, and let the results guide us to achieve a more sensible way
of increasing the size of the basis set. The convergence test results for J = 0
are listed in Table 5, which shows that the energy levels are not well converged
as for Hf. The results of the convergence tests for J = 1 are similar to those
for J =0, so they are not given in tables. In general the lower states are better
converged than the upper ones. Even with basis sets of size more than 1000, the
eigenenergies did not appear to be converged at all. The calculation turned out
to be limited by the amount of computer memory we could access at that time,
which was 3 64-bit Mwords. This prevented us from further increasing the basis
set size to achieve the convergence of those eigenenergies.

The final results for Hs are listed in Tables 6 through 8, with the sizes of
basis sets in the range of 1104 to 1542 and SCS-40 CPU times ranging from 10
to 30 minutes.

For J = 0, the degeneracy of states for even and odd j basis functions was
identified with errors ranging from 0.7 cm™! to 62 cm™!. So the last E symmetry
assignment was quite tentative. It is interesting to note that no As-type states
were identified among the lowest ten states calculated.

The eigenfunctions are expressed as an expansion in basis set functions.

It is hard to visualize these wavefunctions by examining those coefficients of
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those expansions. Although the cone-shaped behavior of the potential energy
surface prevented us from using the harmonic approximation in the two nuclear
coordinates describing motions away from equilateral triangular shapes, we could
still try to understand the nature of the A;-type states.

Let us assume that the motion of the symmetric stretch is independent
of that of the asymmetric ones and also assume that all A;-type states are
excitations in the symmetric stretch mode plus the ground state motion in
the asymmetric stretch modes. Using the Morse-type function to describe the
potential energy along the symmetric stretch, the spectra of the symmetric mode

is described by the well known form53 as

E(v) = hw.(v + -;—) — hwexe(v + %)2 (31)

v=0,1, 2,....

Here w, is the oscillation frequency, and w.x. is known as the anharmonicity

constant. Let us define the first order and second order differences as

6'(v) = E(v +1) - E(v) (32)
= hwe — 2hwexe (v + 1) (33)
v=1, 2,
and
82 (v) = 81 (v + 1) - 6'(v) (34)
= —2hw,Xe (35)
v=2 3,

In Table 9, all A;-type eigenenergies are listed along with the corresponding 6!

and 2. The result for 6! has the right behavior of getting smaller between higher
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excited states. For the lower levels, 62 is constant as predicted by Eq. (35). At
least the lowest five states can be understood with such a simple model, with
the symmetric excitation quantum v,4, being equal to 1617.15 cm™! and the
anti-symmetric excitation quantum vg equal to 4571.27 cm™1!.

For J = 1, the convergency is about the same as that for J = 0. When J is
small, the coupling between rotation and vibration is small. If that coupling is
neglected, then the eigenenergies would be the same as the ones for J = 0 except
that each state is now triply degenerate (2J + 1). If the coupling is turned on
slowly, the triple degeneracy will be lifted gradually. From Tables 6 through 8,
we can see that an A;-type singlet state for J = 0 corresponds to three states for
J =1, one Ax-type with odd parity and one E-type(doublet) with even parity.
An E-type doublet for J = 0 corresponds to six states for J = 1, one E-type
doublet with odd parity and two E-type doublets with even parity. The grouping

in Tables 6 through 8 shows this feature clearly. Using the well-known form?34
F(J,K) = B,J(J +1)— (B, — C.)K? + ... (38)

we were able to estimate B, to be 30.6 cm~! which leads to the equilibrium
bond length of the equilateral triangular H3®* as 1.975 bohr which agrees with
the position of the bottom of the potential energy well at 1.973 bohr.

Finally, let us consider the shapes of the ro-vibrational wavefunctions
to see if the final converged calculations yield wavefunctions with the right
P; symmetry. We plotted the wavefunctions in a system of symmetrized
hyperspherical coordinates*!. Fig. 9 contains contour lines of the wavefunctions
for H with total angular momentum J = 0 and basis set size of 880, and
Fig. 10 for Hs with J = 0 and basis set size of 1363. The plots show that

the variational wavefunctions do not display the exact P; symmetry property,
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even for the highly converged states of HY. The reason for this behavior is
that in general, the convergence of the eigenvector with basis set size is slower
than that of the eigenvalue in a numerical eigenvalue-eigenvector problem. In
order to get the right symmetry with a reasonable number of basis functions, the
symmetry has to be embedded into this basis set before the variational calculation
is performed. It is difficult to achieve that with Tennyson’s code without seriously
compromise its efficiency, we developed a new method, which is described in the

next chapter.
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4.5. Tables'
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Table 1

Parameters of the Morse-like functions

in R and r for Hf and J =0.

Coordinate D.(a.u.) we(a.u.) re(a.u.)

R 0.230 0.0085 1.711

r 0.205 0.0118 2.10
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Table 2

Convergence tests® for Hf and J = 0.

Even j basis functions

M,,=9, N,=7, L;=14

M, =10,N,=8, L;=14

Mp,=11,N,=8, L;=18

Npasis = 340 Npasis = 616 Npasis = 880
-7.067955 -7.067967 -7.067967
-6.816079 -6.816119 -6.816119
-6.750378 -6.750437 -6.750437
-6.590602 -6.590784 -6.590786
-6.567921 -6.568055 -6.568060
-6.512097 -6.512965 -6.512967
-6.441278 -6.441708 -6.441708
-6.367264 -6.367514 -6.367530
-6.338421 -6.338839 -6.338893
-6.290215 -6.290872 -6.290870

0dd 5 basis functions

M, =10, N,=10, L;=15

M,,=10,N,=8, L;=15

M,,=11,N,=8, L;=19

Npasis = 381 Niasis = 616 Nbasis = 880
-6.816137 -6.816141 -6.816141
-6.568061 -6.568066 -6.568067
-6.513084 -6.513112 -6.513113
-6.367650 -6.367662 -6.367664
-6.317290 -8.317270 -6.317277

. The numbers given are the lowest eigenenergies in 10* cm™!. The origin of energy

is that of the 2H(1s) + H* configuration.
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Table 3

HF J = 0 bound state energies®.

Even j basis 0dd j basis
Tennyson’s present Symmetry Tennyson’s present
results results results results
0.00000 0.00000 Ay
0.24944 0.25185 E 0.24943 0.25183
0.31911 0.31753 A,
0.47250 0.47718 A,
0.49583 0.49991 E 0.49580 0.49990.
0.55453 0.55500 E 0.55449 0.55485
0.62768 0.62627 A,
0.69444 0.70044 E 0.69433 0.70030
0.72350 0.72907 A,
' A, 0.74513 0.75069
0.77403 0.77710 A,

a. The energy is in 10* cm™? and its origin is the ground ro-vibrational state energy.
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Table 4

Optimized parameters for the Morse-like functions

in R and r for H; with J=0and J=1.

Coordinate D.(a.v.) we(a.u.) re(a.u.)
R 0.230 0.0130 1.96
0.262 0.0100 2.01
r 0.262 0.0122 2.09
0.232 0.0102 2.32
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Table 5

Convergence tests* for H;, J =0 and j even

M,=15, N,=13, ;=16

M, =16, N,=13, [,=18

Mp,=19, N,=19, L;=26

Niasis = 757 Niasis = 1067 Nbasis = 1368
-0.824614 -0.826261 -0.827333
-0.662336 -0.664153 -0.665618
-0.512776 -0.514696 -0.516372
-0.376072 -0.377987 -0.379855
-0.369457 -0.369877 -0.370206

-0.253486 -0.256018
-0.236860 -0.237305
-0.134838 -0.140441
-0.119736 -0.120358
-0.049332 -0.053411

a. The numbers given are the lowest eigenenergies in 10* cm™1!.

The origin of energy is that of 3H(1s).

1




a

b.

g}

(=9

[
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Table 6

Bound state energies® of H3 for J = 0.

State even 5° even ;° odd j¢ odd j5°¢
assignment Origin I¢ Origin II¢ Origin 14 Origin II¢
(VAn vE,l)

0,0,0 -8.27333 0.00000 A,

1,0,0 -6.65618 1.61715 A,

2,0,0 -5.16372 3.10961 A,

3,0,0 -3.79855 4.47478 A,

0,1,1 -3.70206 457127 E -3.70130 4.57203

4,0,0 -2.56018 5.71315 Ay

1,1,1 -2.37305 5.90028 E -2.36592 5.90741

-1.40441 6.86892 A,
-1.20357 7.06976 E -1.14159 7.13174
-0.53410 7.73923 Ay

. In 10® ecm™!.

Npaz =1, Mp, =19, Ny = 19, L; = 28 and Npq,is = 1368.
. Nmas =1, My =12, Ny = 12, L; = 23 and Nyqsi, = 1104,
. The origin of energy is that of 3H(1s).

. The origin of energy is the calculated ground ro-vibrational state energy.




230

Table 7

Bound state energies® of H; for J =1 and even total parity.

even j ' odd j
M,.,=12, N,=12, [ ;=22 symmetry M,,=16, N,=16, L;=21
Niasis = 1112 Niasis = 1413

A2 -8.21206
A2 -6.59660
A2 -5.10612
A2 -3.73977
-3.64495 E -3.64513
A2 -2.49187
-2.32024 E -2.32090
A2 -1.34863
-1.15258 E -1.15155
A2 -0.46950
A2 -0.23097
A2 -0.10195

a. In 10® cm™!. The origin of energy is that of 3H(1s).
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Table 8

Bound state energies® of H; for J =1 and odd total parity.

even j§ odd 5
M,,=14, N,=14, L ;=20 symmetry M,,=15, N,=15, L;=21
Noasis = 1542 Npasis = 1497
-8.22467 E -8.22659
-6.60765 E -6.60940
-5.11495 E -5.11718
-3.74344 E -3.74620
-3.68313 E -3.68423
-3.62973 E -3.63233
-2.47708 E -2.48225
-2.35299 E -2.35378
-2.30491 E -2.30696
-1.25477 E -1.27558
-1.16935 E -1.16786
-1.12307 E -1.11498
-0.47488 E -0.48178
-0.08479 E -0.09701

a. In 10% cm™

1

. The origin of energy is that of 3H(1s).
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Table 9

Analysis of the A;-type eigenenergies of Hs; for J = 0.

energy 61 62

-8.27333

-6.65618 1.61715

-5.16372 1.49246 -0.12469
-3.79855 1.36517 -0.12729
-2.56018 1.23837 -0.12680
-1.40441 1.15577 -0.08250
-0.53410 0.87031 -0.28546

a. In 10°® em~ 1.
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4.6. Figures and captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1. Laboratory-fixed coordinates x;, X2 and x5, Jacobi coordinates r and R,

and position vector X of the center of mass G.

2. Coordinates in the body-fixed frame. The Z axis is along the R vector
and the X axis is chosen in such a way that vector r is in the XZ plane and

has a positive projection along the X axis.

3. Potential energy curve for the H;’ ion in its ground electronic state*®.
R is the internuclear distance for an equilateral triangle configuration. The
minimum of the curve is located at R = 1.65 bohr. The origin of energy
is that of HY + 2H(1s). The potential energy surface has been cutoff near
R = 4.0 bohr.

4. Equipotential contours of the ground electronic state potential energy
surface for Hi*°. The symmetrized hyperspherical coordinates used are
defined in ref. 41. The two-dimensional contour plot corresponds to
Yy = 2.17 bohr. The origin of energy is the same as that of Fig. 3. The

equipotentials are equally spaced by 0.5 eV in the range [-9.0 eV, -6.5 eV].

5. DMBE potential energy curve of Hs in its first excited electronic state
for equilateral triangle configurations. R is the internuclear distance and
for these configurations, is proportional to the coordinate Yy defined in ref.
41. The minimum of the curve is located at R = 1.973 bohr. The origin of
energy is that of H(1s) + Hz(X 'ZZ,r,).

6. Equipotential contours of the DMBE potential energy surface for the
first excited state of Hy for Yy, = 2.60 bohr. See ref. 41 for the coordinates

used. The origin of energy is the one defined in the caption for Fig. 5. The



Fig.

Fig.

Fig.

Fig.
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contours are in the range [3.0 eV, 6.0 eV] equally spaced by 0.5 eV, with the

innermost one having an energy of 3.0 eV.

7. DMBE potential energies for Yy = 2.6 bohr and Z), = 0.0 bohr in the
symmetrized hyperspherical coordinates*!. EPMBE is the DMBE potential
energy for the ground state of Hy and EPMPE s that for the first excited

state. The origin of energy is the one defined in the caption for Fig. 5.

DMBE DMBE
Ey E;

The conical intersection between and can be clearly seen at

Xy =0.

8. DMBE potential energy for Yy = 2.6 bohr and X, = 0.0 bohr. See

caption for Fig. 7 for other details.

9. Contour plot of the wave function ¥ for the lowest J = 0, A;-type Hi
ro-vibrational state, in symmetrized hyperspherical coordinates*!. Depicted
is a cut at Y, = 2.17 bohr, for which the ground electronic state potential
energy function of Hj has a global minimum (at X3 = Zx = 0). The
maximum of the wave function was set equal to 1.0, and contours for ¥ = 0.9

to 0.1 in steps of 0.1 are displayed.

10. Contour plot of the wave function ¥ for the lowest J = 0, A;-type Hj
ro-vibrational state, in symmetrized hyperspherical coordinates*!. Depicted
is a cut at Yy, = 2.588 bohr, near which the first excited electronic state
potential energy function of Hs has a global minimum (at Y, = 2.60 bohr,
and X = Z) = 0). The maximum of the wave function was set equal to

1.0, and contours for ¥ = 0.9 to 0.1 in steps of 0.1 are displayed.
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Fig. 1
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Fig. 2
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Chapter 5

Calculation of the Ro-vibrational Bound States of H,
in Its First Excited Electronic State Using the

Hyperspherical Coordinate Propagation Method

5.1. Introduction

In this chapter, a propagation method in hyperspherical coordinates for
obtaining the ro-vibrational bound states of triatomic molecules is presented
and applied to the Hy system in its first excited electronic state with the
DMBE potential energy surface of Varandas and co-workers!. This method
successfully incorporated not only the full nuclear permutation symmetry of
Hsz, but also the molecular Aharanov-Bohm effect described by Mead and
Truhlar? (also called the Berry's geometric phase®) induced by the conical
intersection between the potential energy surfaces of the ground and the first
excited electronic states of Hj. The eigenenergies of those bound states (without
inclusion of the geometric phase) are in good agreement with those obtained in
the previous calculation described in chapter 4 by using the variational method
of Tennyson and Sutcliffe*®. The effect of the geometric phase is shown to be
very important as it significantly changes the quantum numbers, eigenenergies
and the wavefunctions of those bound ro-vibrational states.

The motivation for this method is two-fold. As discussed in chapter 4, it is
not trivial to incorporate the full P; nuclear permutation symmetry of Hs into
the variational calculation of ro-vibrational eigenstates, even though it is highly
desirable to do so. The reason is that the basis functions used efficiently in those
variational methods*~® do not form irreducible representations of the Ps nuclear

permutation symmetry group. In order to produce such representation, the
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internal coordinate system should treat the three identical nuclei in an equivalent
manner. Hyperspherical coordinates, in one of several variations, have been
recently used in quantum scattering calculations’~!® and ro-vibrational bound
state calculations of identical atom triatomic molecular systems2°~23, and permit
easy inclusion of the full P; nuclear permutation symmetry.

In equilateral triangular geometries, the ground and the first excited
electronic states of Hs are degenerate with each other. When the nuclear
geometric configuration deviates from the equilateral triangular shape, the
degeneracy is lifted. As Longuet-Higgins, Herzberg and co-workers2¢~27 have
pointed out, the effect of the conical intersection causes the real-valued electronic
wavefuncti