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ANALYSIS AND DEMONSTRATION OP THE QUANTILE VOCODER 

ABSTRACT 

A new scheme for speech compression is proposed, implemented and evaluated 

in this thesis. In this new scheme, the spectral envelope of the power spectral density 

of a speech frame is encoded using quantiles or order statistics. The perceptually 

important features of the spectral envelope are its peaks which correspond to the 

formant frequencies. The shape of the spectral envelope near the formants can be 

encoded by a careful choice of the quantiles and quantile orders. Algorithms to 

choose such a set of quantiles and quantile orders are described. It turns out that 

this can be done using very few quantiles. Data compression is achieved chiefly this 

way. 

The quantile decoding algorithm estimates the spectral envelope from the quan- 

tiles and quantile orders. The first step is to set up a flat spectral density approx- 

imation. In this approximation, the spectral envelope is assumed to be constant 

in every interquantile range. This constant value is simply the average power (i.e., 

ratio of the difference in quantile orders to the difference in quantiles) in that in- 

terquantile range. It is shown that the flat spectral density approximation is the 

maximum entropy solution to the decoding problem. The flat spectral density 

approximation is then smoothed by fitting an all-pole or autoregressive model. Al- 

gorithms to determine the parameters of the autoregressive model are described. 

These algorithms involve the solution of a system of linear equations, which has 

a "Toeplitz plus Hankel" structure, followed by a standard spectral factorization. 

The algorithms can easily be extended to pole-zero models as well. 

The information about the spectral fine structure is sent through the parameters 

of the excitation model. A multi-pulse excitation mode1 in cascade with a pitch 
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predictor model has been chosen for this purpose. The theory of the multi-pulse 

model is reviewed, and algorithms to estimate the parameters of the multi-pulse 

model as well as the pitch predictor model are presented. 

Quantization and encoding schemes of variou~ transmission parameters are de- 

scribed. For high and medium bit rate applications, the parameters that need to 

be transmitted every frame are the quantiles, quantile orders, locations and ampli- 

tudes of the excitation pulses, parameters of the pitch predictor model and a gain 

term. For low bit rate applications, the quantile orders are fixed and so need not 

be transmitted. The quantization schemes for the quantile orders and for the gain 

term are shown to be optimal in the sense of minimizing the maximum spectral 

deviation due to quantisation. 

The quantile vocoder has been implemented in software at 4.8, 9.6, 16 and 

24 Kbits/s. In order to test the vocoder, a speech data base of ten sentences 

spoken by one male and one female speaker has been used. The so-called segmental 

signal-to-noise ratio has been used as an objective performance measure to evaluate 

the vocoder at all bit rates. A subjective method for assessing the quality sf the 

vocoder at various bit rates is also proposed and carried out. The results of the 

nonreal time quantile vocoder simulations at 4.8, 9.6, 16 and 24 Kbits/s have been 

recorded and will be played at the end of the talk. The quantile vocoder does indeed 

seem equivalent to or better than other vocoders at the same bit rates, according 

to informal listening tests. 
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CHAPTER 1 

INTRODUCTION 

1.1 History 

The synthesis of natural sounding speech at low bit rates has been a topic of 

considerable interest in speech research. The underlying objective is to transmit 

(or store) speech with the highest possible quality over the least possible channel 

capacity (or storage capacity) with minimal complexity. One seeks to accomplish 

this using digital signal processing techniques. 

Traditional speech coding methods can be divided broadly into two categories. 

They are (1) Waveform coders and (2) Vocoden. The waveform coders attempt 

to duplicate the waveform. To achieve bit reduction, the maveforrn coders are 

designed to be speech-specific. This is done by observing the statistics of the speech 

waveform so as to obtain minimal error while encoding the signal. Thus, the design 

of these coders are based on a statistical characterization of the speech waveform, 

Typically, these waveform coders tend to be independent of speaker characteristics, 

robust in the presence of noise, and are of low complexity. However, they can 

achieve only moderate reduction in bit rate. Examples of waveform coders are 

pulse code modulation (PCM) , differential pulse code modulation (DPCM) and 

delta modulation (DM). Adaptive versions of these coders also exist. For further 

information on this topic, see the collection of papers edited by Jayant [I]. 

The uocoders achieve bit reduction by parameterization of speech information 

according to some physical model of the signal. The speech model that is often used 

is the source-system model (Chapter 2 121 and Chapter 3 [3]). In this model we have 

a linear filter to model the spectral shaping of both the vocal tract and the vocal 

source. In order to achieve very low bit rates, the speech signal is traditionally first 
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classified as voiced or unvoiced. For voiced speech, the source is assumed to be a 

quasi-periodic pulse train with delta functions located at pitch period intervals. For 

unvoiced speech, the source is assumed to be white noise . The filter parameters 

and the pitch period are assumed to be constant over short segments of time. The 

complete model is described in Fig.l.1. The performance of vocoders is typically 

speaker-dependent and the output speech has a synthetic quality. However, they can 

achieve large reduction in transmission bandwidth. Examples of vocoders are the 

channel vocoder ([4]-[7]), homomorphic vocoder ([8]-[12]), and the linear prediction 

vocoder ([13]-[19]). 

So we see that a large gap lies between the performance and bandwidth compres- 

sion capability of waveform coders and vocoders. Some of the attempts to bridge 

the gap have focussed attention on preservation of short-time amplitude spectrum 

in an auditorily palatable way. Such coders are called frequency domain coders, and 

they reduce the bit rate of the waveform coders by taking greater advantage of the 

speech production models without making the algorithm tot ally dependent on them 

as in vocoders. Examples of frequency domain vocoders are the sub-band coders 

([20]- [23]) and adaptive transform coders (1231-[25]). Other attempts to bridge the 

gap between waveform coders and vocoders have focussed their attention on im- 

proving models of speech production and in particular models for source excitation. 

One of the most significant contributions in source excitation modeling is the multi- 

pulse excitation model proposed by Atal and Remde (1261). In this approach, the 

excitation is simply modeled as a sequence of pulses with different, possibly nega- 

tive, amplitudes and at distinct locations. There is no attempt to classify speech 

as voiced or unvoiced. Fig.l.2 describes this model. Other vocoders which employ 

improved source excitation are the voice-excited vocoders ([27]) and the 
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baseband LPC residual vocoders ([28]). In addition to the above mentioned speech 

compression schemes, a variety of other speech coders have been proposed. These 

include correlation vocoders ([29]), spectral envelope estimation vocoders ([30]), etc. 

A brief discussion of the various speech compression schemes is given in Chapter 8 

[2]. An excellent tutorial in speech coding along with a list of references is given in 

P11. 

Despite all these schemes, the synthesis of high-quality speech at low bit rates 

and moderate complexity remains an elusive goal. Progress has been slow for a 

variety of reasons such as incomplete understanding of speech production and per- 

ception, lack of performance measures, etc. There are several approaches that can 

be investigated to improve the performance of speech coders at low bit rates. One 

approach is to investigate improved, yet tractable, models for speech production. 

Yet another approach is to fine-tune the performance of existing schemes, Finally, 

one can investigate newer ideas to carefully manipulate the speech information, with 

newer algorithms, so as to yield better performance at low bit rates. It is this last 

approach that we have taken in our work. 

1.2 Overview 

In our work, we propose a new scheme, the quantile vocoder, for speech com- 

pression. Quantiles or order statistics have been proposed earlier for compression 

of space telemetry data (1321, [33]). It had been shown in this context that quan- 

tiles are an efficient means of data compression requiring hardware of very low 

complexity. We will now discuss briefly the salient features of the quantile vocoder. 

The short-time power spectrum of speech is characterized by a spectral envelope 

and a spectral fine structure. The envelope is due largely to the frequency shaping 



effects of the vocal tract and, for voiced speech, to the spectrum of the glottal pulse. 

The fine structure is due to the excitation. The central idea in our scheme is to 

encode the spectral envelope using quantiles. The peaks of the spectral envelope, 

or the formants, are perceptually very important (Chapter 7 121). The quantiles are 

therefore chosen to 'trap" these formants. It turns out that this can be done using 

very few quantiles. Data compression is achieved mostly this way. 

The decoding algorithm estimates the spectral envelope as follows. It first sets 

up a flat spectral density approximation. Let 8, (= O), 81, e2, . . ., Oq (= A) be the 

quantiles corresponding to quantile orders Eo, El, E2, . . ., Eq. The quantiles are 

all multiples of 2a/N where N is the number of points on the unit circle at which 

the short-time Fourier transform of the speech segment was computed. The flat 

spectral density approximation is then given by 

The flat spectral density approximation is then smoothed by fitting an all-pole or 

autoregressive model l/A(eiw). Thus, if we define C ( w )  = lA(ej")12, then one ap- 

proach to finding the parameters of the autoregressive model would be to minimize 

the distortion measure 

where W(w) is a positive weighting function of w. 

Minimization of the distortion measure E leads to a system of linear equations 

which can be solved to obtain C(w). This system of equations turns out to have 

a "Toeplitz plus Hankel" structure, and can therefore be efficiently solved using 

the block Levinson algorithm (1341). One then obtains ~ ( e j " )  from C(w) using a 
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spectral factorization routine. However, the C ( w )  so obtained is not guaranteed 

to be positive definite, though in practice this is the case most of the time. If 

C(w) is not positive definite, the spectral factorization algorithm will fail. Spectral 

correction routines then have to be used to isolate the roots of C(w) which are on 

the unit circle and to replace them by roots within and outside the unit circle. The 

autoregressive model l/~(t?*) then completely defines the spectral envelope of the 

short-time power spectrum. One can easily extend the decoding algorithm to fit 

pole-zero or autoregressive moving average models as well. 

The information about the spectral fine structure is sent through the parameters 

of the excitation model. A multi-pulse excitation model in cascade with a I-tap 

pitch predictor model has been chosen for this purpose. Algorithms for obtaining 

the parameters of these .models have been incorporated in the quaatile voesder. 

Quantization and encoding schemes for various transmission parameters are de- 

scribed. The transmission parametera for medium and high bit rate applications 

are the quantiles, quantile orders, multi-pulse locations and amplitudes, pitch pre- 

dictor parameters and a gain term. For low bit rate applications, quantile orders 

are fixed and so need not be transmitted. Quantization schemes which are optimal 

in the sense of minimizing the maximum spectral deviation due to quantization 

are developed for the quantile orders and the gain tenn. It turns out that for the 

quantile orders such an optimal quantization scheme is simply uniform quantization 

of the flat spectral density expressed in dB. Similarly for the gain, such an opti- 

mal quantization scheme is simply uniform quantization of gain expressed in dB. 

Simple combinatorial encoding schemes are used to encode the quantiles and the 

pulse locations. The pulse amplitudes, after proper normalization, are quantized 

uniformly. The tap coefficient of the 1-tap pitch predictor model is also subjected 
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to uniform quantization. 

The quantile vocoder has been implemented at 4.8, 9.6, 16 and 24 Kbits/s. 

Using a data base of ten sentences spoken by one male and one female speaker, the 

quantile vocoder is evaluated at all the bit rates. The so-called segmental signal-to- 

noise ratio is used as an objective performance measure. The mean opinion score 

test is used for subjective evaluation. 

1.3 Organisation 

The thesis is organized as follows. In Chapter 2, some basic concepts such as 

definition of a quantile, short-time Fourier analysis, etc. are reviewed. The chapter 

concludes with a brief discussion of the basic idea behind the quantile vocoder. 

In Chapter 3, we outline an algorithm for choosing a set of quantiles to encode 

the spectral envelope of a speech segment. In Chapter 4, a decoding algorithm 

is presented which estimates the spectral envelope from the chosen quantiles and 

quantile orders, Chapter 5 reviews the theory and implementation of the multi- 

pulse excitation model. The details of the implementation of the quantile vocoder, 

such as quantization and encoding of various parameters, at bit rates 24, 16, 9.6 

and 4.8 Kbits/s are described in Chapter 6. Chapter 7 is mainly concerned with 

the evaluation of the quantile vocoder at all the bit rates. Both objective as well as 

subjective measures of coder performance are presented. The thesis concludes with 

a brief summary. 
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CHAPTER 2 

BASIC CONCEPTS 

We begin by defining the quantile for a probability density function ([32]). 

Definition 1: Consider a probability density p(x) with a corresponding cumulative 

distribution function F ( x ) .  Then a quantile x, of order p is defined as the lower 

limit of all p  such that F ( p )  > p. (This order p is assumed to be in the range [0,1]. ) 

We note that if the probability density p(x) is non-zero over any finite interval 

then the quantile x, of order p is simply that value for which F ( x p )  = p. In Fig. 

2.1, the definition is illustrated for such a case. This definition is easily extended 

to power spectral density since the power spectral density, if normalized, is a valid 

probability density function. Thus, we have 

Definition 2: Consider a power spectral density S( f2 )  which is normalized so 
00 

that f S ( f l )  dfl = 1. Let the corresponding cumulative power spectral density be 
0 

n 
CS(f2) = f $(a) dcu. Then a quantile f 2 ,  of order p is defined as the lower limit of 

0 

all p such that C s ( p )  > p. 

Again we note that if S ( f l )  is non-zero over any finite frequency range, then 

the quantile f 2 ,  of order p is simply that value for which Cs(f l , )  = p. Since we 

are processing the signals digitally, the spectral density before digitization, extends 

only upto half the sampling frequency. In addition, one can compute the spectral 

density only at a finite number of frequencies, typically at a set of equally spaced 

frequencies. The definition of a quantile can be easily extended to such a discrete 

power spectral density, as follows: 



t 
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Fig. 2.1 Quantile of order p for a probability density 



Definition 3: Consider a power spectral density S ( w k )  evaluated at N / 2  equally 

spaced frequencies nk = wk fs = 2 a k f s / N ,  where f s  is the sampling frequency. 

We will assume that S(wk)  > 0 for all k.  Further assume that the discrete power 
N / 2  

spectral density is normalized so that t: S(wk)  = 1 .  If there exists a frequency 
k=O 

k 
w, = 2rk, /N such that 6 S(wk)  = p, then w, is said to  be the quantile of order p. 

k=O 

It must be borne in mind that in the case of a discrete power spectral density, 

not all orders p can be realized since the quantiles are restricted to be multiples 

of 2 a / N .  However, it is possible to get as close as possible to any prescribed p by 

increasing N. 

2.2 Short-time Fourier analysis 

A primary assumption that we will make is that the speech signal is quasi- 

stationary, i.e., stationary over short segments of time. Such signals can be repre- 

sented by a short-time Fourier transform. We will briefly discuss this concept in 

this section. (For further details refer to Chapter 6 of [3] and [37]-[42]. ) 

The time-dependent short-time Fourier transform is given by 

where x ( m )  represents samples of the speech signal and w(n - m )  represents a real 

window sequence which determines the portion of the input signal that receives 

emphasis at a particular time index n. We note that the short-time Fourier trans- 

form is a function of w ,  the continuous frequency variable and n, the discrete time 

variable. Fig. 2.2 contains sketches of a typical x ( m )  and w(n - m )  for several 

values of n. 



Fig. 2.2 Sketches of z(m) and w(n - m) for different n 
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The window w(n) is usually a finite-length window. There are several factors 

which influence the choice of the window w(n) as well as its length. (Refer to Section 

6.1.1 of 131, Section 5.5 of 1351 and Section 3.1 1 of [36] for detailed discussions. ) We 

will illustrate some of these factors using the rectangular window and the Hamming 

window, both of equal length NF, as examples. The rectangular window is defined 

as 

= { 1 i f o < n < N F - l  
0 otherwise 

and the Hamming window, which is a particular raised cosine window, is defined as 

21rn 
ww(n) = (0.54 - 0.46 COB (NF- l )  i f O < n < N ~ - l  

0 otherwise. 

In Fig. 2.3 both these windows as well as their amplitude spectra are shown. 

The amplitude spectrum of a typical window, such as the rectangular or the 

Hamming window, is characterized by a main lobe and several sidelobes. The main 

lobe width is inversely related to the window length and also depends on the details 

of the window shape. To see how the width of the main lobe as well as the sidelobes 

affect the short-time Fourier transform, we recognize the short- time Fourier trans- 

form as the Fourier transform of the product of the signal and a shifted version of 

the window. But multiplication in the time domain is equivalent to convolution in 

the frequency domain. Thus, when the signal Fourier transform is convolved by the 

Fourier transform of shifted window W(dw), it is smeared primarily by the main 

lobe of W(ei"), resulting in a loss of frequency resolution. The sidelobes of ~ ( e j " )  

cause the adjacent frequencies in the signal Fourier transform to interact by either 

reinforcing or cancelling. This kind of "spectral leakagen is also undesirable. To 

ensure that the loss of frequency resolution as well as the "spectral leakagen is kept 

within tolerable limits, we must choose a window whose transform has a narrow 
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main lobe and whose sidelobes are well below the main lobe level. In our examples 

of Fig. 2.3, we observe that the first sidelobe is 13 dB below the main lobe level 

for the rectangular window and 44 dB for the Hamming window. Thus the large 

sidelobes in the case of the rectangular window offset the benefits of the narrow 

main lobe. For this reason the rectangular window is seldom used. In the case 

of the Hamming window the low sidelobes ensure little 'spectral leakagen. The 

frequency resolution, though not as high as in the case of the rectangular window, 

is adequate for speech spectrum analysis. This is why the Hamming window is often 

used in speech. 

We now consider the choice of the window size or length. As pointed out earlier, 

the width of the main lobe of the amplitude spectra of the window is inversely related 

to the window length. So a large window size implies higher frequency resolution but 

lower time resolution. Moreover, when the window becomes large, the windowed 

speech signal can no longer be considered stationary. A compromise has to be 

made. Typically, window sizes of 20-35 ms are chosen. This corresponds to the 

ranges 150-263 and 200-350 for NF at 7.5 and 10 KHz sampling rates, respectively. 

The short-time power spectrum is defined as 

The short-time amplitude spectrum is defined as 

The short-time Fourier transform and hence the short-time power and amplitude 

spectrum can be efficiently computed at equally spaced frequencies using FFT (see 

Section 6.3.1 of (31). The short-time power spectrum of a speech segment is charac- 

terized by a spectral envelope and a spectral fine structure. The spectral envelope is 



determined by the frequency response of the vocal tract and also by the spectrum 

of the glottal pulse for voiced speech (Chapter 6 631). The perceptually relevant 

features of the spectral envelope are its peaks which correspond to the formants 

or vocal tract resonances. In the case of nasals, the spectral envelope is also char- 

acterized by valleys, which correspond to the antiresonances that arise due to the 

coupling of the oral and the nasal cavity (Section 3.1.2d [3]). The spectral fine 

structure, on the other hand, is largely due to the excitation signal. For voiced 

speech, this excitation is nearly quasi-periodic and therefore the spectrum has a 

Ucomb-like" structure. 

To understand how such a fine structure comes about, we consider a very simpli- 

fied model of voiced speech. Assume that the speech signal s(t) as seen through the 

window w(t) can be modeled as the output of a linear filter with impulse response 

h(t), when the input e(t) is a periodic train of delta impulses with period t,. We 

will refer to t, as the pitch period and f, = l/t, as the fundamental frequency. 

where * denotes convolution. Denoting the Fourier transforms of e(t), s(t), w(t) 

and h(t) by E( f) ,  S(f) ,  W(f) and H(f),  respectively, we have 

For each n in the summation, we have the window transform W( f )  centred at n fp 

and weighted by H(n f,), the value of the linear filter transfer function at n f,. The 
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Fourier transform of the modeled speech signal S( f )  is the superposition of all such 

weighted and shifted W(f)'s. Each of these weighted and shifted W(f)'s is referred 

to as a pitch harmonic. If the window transform W( f )  has low sidelobes and a 

mainlobe whose width is comparable to f,, which is often the case in practice, then 

the speech transform S(f) will have a "comb-like" like structure. Thus, using a very 

simplifed model for speech production, we can explain how the envelope and the 

fine structure of the speech spectrum arise. The power spectral density of a 25.6ms 

Hamming-windowed speech segment (10 KHz sampling rate, NF = 256) evaluated 

using a 512 point FFT is shown in Fig. 2.4. 

2.3 Baeic idea behind the quantile vocoder 

Consider the power spectral de~lsity and the cumulative power spectral density 

of a speech segment as sketched in Fig. 2.5. Because of the integration or summat ion 

effect, the finer details of the speech spectrum are somewhat smoothed out but the 

features corresponding to the spectral envelope are still prominent. The peaks of 

the spectral envelope correspond to the steep portions of the cumulative spectral 

density. We can thus efficiently encode the perceptually relevant features of the 

spectral envelope by choosing quantile orders which are spread across these steep 

portions of the cumulative spectral density. The corresponding quantiles are now 

clustered near the formant locations. Fig. 2.5 illustrates this effect. This is the 

basic idea behind the quantile vocoder. 



Fig. 2.4 An example of a short-time power spectral density 
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CHAPTER 3 

CHOICE OF QUANTILES 

In this chapter we will describe an algorithm for choosing a set of quantiles to 

encode the spectral envelope of a speech segment. The quantiles that are chosen 

must convey information about the shape of the spectral envelope at all frequencies. 

We begin by understanding the problems that arise while choosing such a set of 

quantiles. We then discuss methods to overcome these problems. Finally, the 

algorithm, which incorporates these met hods, is presented. 

3.1 Problems that arise while choosing qnantiles 

Consider Fig. 3.1. In this figure, the power spectral density and the cumulative 

power spectral density of a speech segment are sketched. The power spectral density 

has at least three distinct peaks corresponding to  the first three formants. We note 

that the power spectral density at  either of the first two formants is several dB 

above the power spectral density at the third formant frequency. As a consequence, 

only the steep slopes corresponding to the first two formants are prominent in the 

cumulative power spectral density. So if we were to choose q quantiles corresponding 

to equally spaced quantile orders n/q (1 5 n < q), then, unless q is very large, the 

quantiles would convey no information about the shape of the spectral envelope near 

the third or higher formants. It is clear that in order to encode the information 

about the spectral envelope at all frequencies, we need a more sophisticated scheme 

for choosing quantiles. 

Next, let us take a closer look at the power spectral density near the first 

formant. We notice that the pitch harmonic with the maximum amplitude is several 
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Pig. 3.1 Illustration of problems that arise in selecting quantiles 
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dB above the adjacent pitch harmonics. The first steep slope of the cumulative 

power spectral density contains information mostly about this pitch harmonic rather 

than the shape of the spectral envelope near the first formant. So again if we choose 

q quantiles corresponding to equally spaced quantile orders, then unless q is very 

large, the quantiles would convey little information about the shape of the spectral 

envelope near the first formant. 

Thus there are two problems that we face. One is due to the power spectral 

density at the lower formants' being several dB above the power spectral density 

at the higher formants. We will refer to this as the overall dynamic range problem. 

The second is due to the pitch harmonic closest to the formant location's being 

several dB above the adjacent pitch harmonics. We will refer to this as the local 

dynamic range problem. This problem can be very severe if the formant has a 

narrow bandwidth and if the fundamental frequency for the speech segment is large. 

Finzlly we must bear in mind that not all quantile orders are possible, since we are 

dealing with a discrete spectrum. 

3.2 Methods to overcome these problems 

The overall dynamic range of the short-time power spectrum can be reduced by 

preemphasizing the input speech. The preemphasis filter that has been used is the 

second-order filter whose transfer function is 

This preemphasis filter was first suggested by Wong, et a1 in 1431. It approximates 

an ideal frequency response of unity gain from 0 to 0 . 1 ~  and a 6 dB/octave slope 

from 0 . 1 ~  to 0 . 8 ~ .  The frequency response of the preemphasis filter is shown in Fig. 

3.2. 



Frequency 

Fig. 3.2 Frequency response of preemphasis filter 
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For voiced speech frames, one can physically interpret the effect of preemphasis 

as follows. The shape of the spectral envelope is due to the frequency shaping of 

the vocal tract, the radiation at the lips and the shape of the glottal pulse. The 

combined effect of the shape of the glottal pulse and the radiation of the lips, under 

some simplifying conditions, is to cause a 6 db/octave drop in the spectrum of 

the vocal tract transfer function (Chapter 1 1161). Thus the preemphasis of speech 

can be thought of as compensating for this 6 dB/octave drop so that the spectral 

envelope of the preemphasized spectrum is mostly due to the vocal tract alone. 

The preemphasis helps overcome the overall dynamic range problem to some 

extent. In order to further ensure that the quantiles convey information about 

the spectral envelope at all frequencies we use the following approach. The entire 

frequency range (i.e., from zero to half the sampling frequency) is split into distinct 

sub-bands. In each sub-band, a fixed number of quantiles is chosen. This guarantees 

that the perceptually relevant features in each sub-band will be encoded. 

We now address the local dynamic range problem. One way to overcome this is 

to choose quantiles on the basis of the amplitude spectral density rather than the 

power spectral density. The amplitude spectral density has only half the overall 

dynamic range as the power spectral density. In addition, the difference (in dB) 

between the levels of the adjacent pitch harmonics is halved. Thus the steep portions 

of the cumulative amplitude spectral density can be expected to contain information 

regarding the shape of the spectral envelope near the formants and not just the pitch 

harmonic closest to the formant. 

3.3 An algorithm to chooae a aet of qnantiiea 

Each speech segment is preemphasized and multiplied by a Hamming window. 
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In our work, each speech segment or frame is taken to be 256 samples of speech 

at all bit rates. For the 16 and 24 Kbitsls the sampling rate fs  is 10 KHz and so 

each frame is 25.6 ms of speech. For the 4.8 and 9.6 Kbits/s the sampling rate f s  

is 7.5 KHz and so each frame is 34.13 ms of speech. We then compute the short- 

time amplitude and power spectral density as well as the cumulative amplitude 

and power spectrum at N equally spaced frequencies over the unit circle. Both 

the cumulative amplitude and cumulative power spectrum are scaled so that their 

values at frequency f o  = fs/2 is 1.0. In our work N is taken tc be 512 so that the 

spectrum is evaluated at multiples of fN  = fs/N Hz between 0 and f o  (257 discrete 

frequencies). For the 4.8 and 9.6 Kbitsls, f N  = 14.65 Hz and f o  = 3.75 KHz and 

for the 16 and 24 Kbitsls, fN  = 19.53 Hz and f, = 5 KHz. 

Let us first outline the algorithm for medium and high bit rate (e.g., 9.6, 16 

and 24 Kbitsls) vocoders. The frequency range is split into R distinct sub-bands. 

The sub-bands are chosen in the following way. We first locate the frequencies Fl, 

F2, . . . FR corresponding to the R most prominent peaks of the power spectrum. 

( F1+F2] , (Fly ' ,  
The R sub-bands are then chosen to be 0 , 

2 
F3] , ... ' 2 

, f )  . Thus, each sub-band contains one of the R most prominent 

peaks of the power spectral density. The frequencies 0 and f ,  are excluded from 

the sub-bands. In our implementation R = 3 for the 9.6 and 16 Kbits/s and R = 4 

for 24 Kbits/s. 

In order to illustrate how the quantiles are chosen in each sub-band, let us 

suppose that we wish to choose q; quantiles from sub-band a .  Let us also suppose 

that the value of the cumulative amplitude spectrum at the first discrete frequency 

fil in sub-band t is Ei1 and at the last discrete frequency f i ,  in sub-band i is Ei,. 

Then the jth (1 5 j 5 pi) quantile in the ith sub-band is that frequency f,(') at which 
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the value of the cumulative amplitude spectrum is closest to E;, + j(Ei, - Ei,)/(l  + 
9;). In addition to  choosing the quantiles in each sub-band, we also include both 0 

and f, as quantiles. Having chosen the quantiles in this fashion, the corresponding 

quantile orders are now chosen using the cumulative power spectral density. The 

entire algorithm for choosing the quant iles and the corresponding quantile orders is 

described in Fig. 3.3, using a flowchart. 

We now turn our attention to low bit rate (e.g., 4.8 Kbits/s) vocoders. For 

such vocoders there are very few bits per frame. One approach is to use the same 

algorithm as for medium and high bit rate vocoders but to have fewer quantiles 

and quantile orders. A second alternative is to transmit quantiles corresponding 

to fixed quantile orders (based on the cumulative amplitude spectrum). This way 

one need not transmit the quantile orders. In our experience the second alternative 

produces better results. 

In our implementation the quantiles for the low bit rate vocoders are chosen as 

follows. Let us suppose that q quantiles are to be chosen. Note that the value of the 

cumulative amplitude spectral density due to scaling, at frequency f, is Eq = 1.0. 

The fixed quantile orders (based on the cumulative amplitude spectrum) are taken 

Eq 2E, to be - , , . . . E,. The jth quantile is then obtained as that frequency f, at 
a a 
1 

jEq which the value of the cumulative amplitude spectrum is closest to -. 
9 
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CHAPTER 4 

QUANTILE DECODING ALGORXTHM 

In the previous chapter, we described an algorithm for choosing a set of quantiles 

to represent the spectral envelope of a speech segment. In this chapter we describe 

how to estimate the spectral envelope of the speech segment from the quantiles and 

quant ile orders. 

4.1 Flat Spectral Density Appraarimat ion 

The first step in the quantile decoding algorithm is to set up a flat spectral 

density approximation of the spectral envelope. Let us first consider medium and 

high bit rate vocoders. If the transmitted quantiles (expressed in radians) are 

8, (= 0), B1, 02, . . ., eq (== R )  and the corresponding quantile orders (based on the 

cumulative power spectral density) are E,, El, E2, . . ., E, (= 1,0), then the flat 

spectral density approximat ion is defined as 

It is interesting to note that the flat spectral density approximation of the spectral 

envelope is also the constrained maximum entropy solution to the decoding problem, 

as elaborated next. 

A discrete normal stationary random process with spectral density S ( w )  can be 

shown to have an entropy rate Hs ([44]), where Hs is given by 

x 
1 

Hs = l o g ( G )  + - / log S ( w  ) dw . 
2K 0 

The power spectral density of a normal stationary random process which has quan- 

tiles 8, (= 0), el, . . ., 8, (= R )  corresponding to quantile orders ED, El, . . ., E, and 



for which the entropy rate Hs is a maximum is obtained by solving the following 

problem: 

Maximize j log s ( ~ )  dw 
0 

subject to the constraints 

where U(w) is the step function defined as 

This is an elementary variational calculus problem (see Section 7.3 of [36] for meth- 

ods to  solve such problems) and its solution is given by equation ( la) ,  i.e., the flat 

spectral density approximat ion. 

For low bit rate vocoders, the quantile orders are based on the cumulative 

amplitude spectrum. The flat spectral density approximation So (w) is then given 

by 

Again it can easily be shown that this is the maximum entropy solution to  the 

decoding problem with appropriate constraints. The maximum entropy solution is 

obtained in this case by solving the following problem: 

Maximize j log s ( ~ )  dw 
0 



subject to the constraints 

s0s6(eo) = E, 

I 
In our implementation, El (1 < I < q) is fixed and is given by - . The value of 

9 
Eo, however, is not known at the receiver since it is not transmitted. We find that 

Eo can be set equal to the square root of the flat spectral density approximation in 

the frequency range 0 < w < O1 without seriously affecting the final solution. Thus 

and therefore 
2aE1 

E0 = NO, + 2 r .  

The flat spectral density approximation has nearly the same overall shape as 

the spectral envelope of the speech segment. However, it needs to be smoothed. 

For the purposes of determining the parameters of some excitation models, such 

as multi-pulse excitation model, it is necessary to express the spectral envelope as 

the power spectrum of either an AR model (autoregressive or all-pole model) or an 

ARMA model (autoregressive moving average or pole-zero model). So we will now 

describe an algorithm which smoothens the flat spectral density approximation by 

approximating it in turn with the power spectrum of an AR or ARMA model. 

4.2 Antoregressive smoothing of flat spectral density appraximation 

Consider an autoregressive model H(z) of order M .  Thus, 
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The polynomial A(z)  is referred to as the inverse filter. Because of stability consid- 

erations, A(z) is assumed to be minimum-phase; i.e., all its roots lie strictly within 

the unit circle. The power spectrum of the AR model is given by 

- - 
c, + cl cos w + . . . + cng cos Mw 

Thus, the power spectrum of the autoregressive model can be expressed as the 

inverse of a positive definite trignometric polynomial C(w) ,  i.e., a trignometric 

polynomial C(w) which is positive for all w in the range [0,27r). It is clear that 

given a minimum-phase pqlynomial A(eiU) one can determine uniquely the positive 

definite polynomial C(w) .  The converse is a h  true. The details of this are discussed 

in a later section in this chapter. The important thing to bear in mind at this point 

is that there exists a one-to-one correspondence between the coefficients { a i }  of 

A(z)  and the coefficients ( c , )  of C(w) .  

One approach to determining the parameters of the AR model whose power 

spectrum fits the flat spectral density approximation So(#) is to minimize the 

weighted mean-square error 

subject to the constraint 

Here W ( w )  is a positive weighting function of w. If there were no constraint, then 

the problem would be a standard least-squares problem. If we incorporate the 
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constraint then we have a least-squares problem with linear inequality constraints. 

Algorithms to solve such problems have been described in [45].  These algorithms 

make use of Kuhn-Tucker theorem ( [ 4 5 ] ,  1461) in optimization theory. They are 

iterative in nature though it can be proved that they converge in a finite number of 

steps. For speech codicg applications, these algorithms are much too expensive both 

from a computational as well as the storage requirement point of view. Fortunately, 

the C ( w )  that we obtain by minimizing E without any constraint turns out to be 

positive definite most of the time. So our approach would be to ignore the constraint, 

which is C ( w )  > 0 for all 0 < w  < a, and simply to find the C ( w )  which minimizes 

E. If the estimated C ( w )  is not positive definite, then we modify it using a spectral 

correction algorithm so that the modified C ( w )  is positive definite. Such a modified 

C ( w )  is only a sub-optimal solution but we are willing to accept this because: 

1. If we use the sl; ,la1 correction algorithm described later in this chapter, the 

sub-optimal solution turns out to be reasonably satisfactory. 

2. The need to settle for a sub-optimal solution arises very infrequently. 

3. Such a sub-optimal solution can be obtained without too many computations, 

Minimization of E leads to a set of linear equations which can be described by 

where 

b = [b,  b l .  .. bMjT 



The matrix A has several properties which can be exploited when solving for the 

vector c. 

Property 1 : A is symmetric. 

Proof: ai, = S:(wk) W (wk)  cos iwk cos jwk = aji 
k=O wk=2rk/N 

Property 2 : A is non-negative definite, 

Proof: Consider any arbitary vector x. Then 

2 0 ( since S ? ( W ~ )  W (wk) 2 0 V k), 

so A is non-negative definite. 

Property 3: A can be expressed as the sum of a symmetric Toeplitz matrix T and 

a Hankel matrix H. ( A  Toeplitz matrix is one whose ( i ,  j ) th  element depends only 

on a - j .  A Hankel matrix is one whose ( a ,  j)'h element depends only on a + j. Note 

that a Hankel matrix is symmetric by definition. ) 

Proof: 

hi+j + t i - j  
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Thus, A = T + H where 

T = I t i j ] ( M + l ) x ( M + l )  = [ t i - j ] ( ~ + l ) x ( ~ + l )  = I t j - i ] ( M + l ) x ( M + l )  

=+ a s y m m e t r i c  T o e p l i t z  matriz 

= [ h i j ] ( M + l ) x ( M + l )  = [ h i + j ] ( M + l ) x ( h f + l )  

+ a H a n k e l  m a t r i z .  

Using only the first two properties, one can solve for c by Choleski decomposi- 

tion (1471). This involves Q ( W )  arithmetic operations. But Merchant and Parks 

([34]) have shown that any matrix, such as A, which can be expressed as a sum of 

a Toeplitz matrix and a Hankel matrix, can be solved by a block Eevinson algo- 

rithm which requires O ( M )  arithmetic operations. Block Levinson-type algorithms 

arise in many applications of signal processing and have therefore been investigated 

extensively. For such algorithms, the number of computations as well as storage 

requirement is significantly less than other general matrix inversion algorithms such 

as Gaussian elimination, etc. for large matrices. They also appear to be easily im- 

plementable using VLSI. For this reason, we have chosen to solve for c using the 

Merchant-Parks approach. A brief summary of their technique is given in Appendix 

A. 

The elements of the Toeplitz matrix T and the Hankel matrix H can be com- 

puted directly from the quantiles and quantile orders for the special case when W ( w )  

is of the form S,"(w),  where Y is some positive number. 

cos 2 r i k / N ]  



* ZK(EI-  El-1) A(2+v) ,in ( e l - e l -~  1; 
- 2 

+ 1=1 C( N(0l - sin 7j x i  

cos ( 8  + 1 - 1 1  + x  * a )  ] 
(6 )  2 

for all 0 i 5; 2M. The value of A in the above expression is 1 for medium and 

high bit rate vocoders and 2 for low bit rate vocoders. We also note that 

The coefficients bi of the vector b can also be evaluated as 

N 
A(l+v)  

- - cos ZxiklN 
~ = 9 ~ - , + 1  

A(l+v)  sin ( @ 1 - ~ 1 -  1); 

cos 
N(@r - 81-1) %i sin 7j 2 

for all 0 < i 5 M .  Note that in order to set up the system of equations Ac = b, 

we need only compute hi (0 < i < 2M) and bi (0 5 i < M ) .  

4.3 Spectral Correction Algorithm 

As explained in the previous section, the estimated C(w)  is not guaranteed to 

be positive definite, though in practice this is the case most of the time. So if the 

estimated C(w)  is not positive definite, then it must be modified. In this section 

we will describe such a modification. 

The analytic continuation of C(w)  is given by 
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The simplest modification that ensures the positive definiteness of C(z) is to add a 

small positive constant, enough to ensure that C(w) > 0 for all w. Unfortunately, 

this alters the locations of all the roots of C(z), which correspond to the formant 

locations and formant bandwidths, We would like to avoid this as far as possible. 

Let us examine a situation when a symmetric sequence C(z] becomes negative 

for some portions of the unit circle (i.e., z = dw) .  If any symmetric sequence C(z) 

with real coefficients has a root at z = reia (r < 1)) then it must have roots at 

refja refJa as well. Thus if a symmetric sequence C(z) has no roots on the unit ' r 
circle, then it can be expressed as 

Thus any symmetric sequence which has no roots on the unit circle is automatically 

positive definite. However, if C(z) has any roots at all on the unit circle, then it 

cannot be positive definite. If all the roots on the unit circle are of even multiplicity, 

then C(z) will be non-negative definite. If there are any zeros on the unit circle 

of odd multiplicity, then C(z) will become negative for some portions of the unit 

circle. 

The modification that we propose is the following. If the estimated symmetric 

sequence C(z) is not positive definite, then we locate the roots of C(z) on the unit 

circle and replace them by roots within and outside the unit circle so that the 

modified sequence C*(z) is positive definite. Consider the case (see Fig. 4.l(a)) 

when C(w) becomes negative in the frequency range (-a, a )  where 0 < a < a. 
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Clearly, C(z )  has roots at e*j" and so 

2cos a - z -  z-I 
C ( z )  = ~ ( z )  ( 

2 

C(w) = ~ ( w )  (cos a - COB W 

We want to replace the roots at  e*j" by roots at  r  and (r < 1 ) .  So the modified 

C* ( z )  is then given by 

- ( 1  - rz-l)(l - rz) c* (2 )  = w (2)  
2 r  

We will refer t o  this case where the negative sign region includes w = 0 as case A. 

If, as shown in Fig. 4.l(b), C(w) is negative in the frequency range (al, a2)  

where 0 < al 5 a2 (: a (since C(z )  has real coefficients, this implies that C(w) will 

be negative in the frequency range (-a2,  -al)  as well), then C(z )  can be expressed 

as 

1 - 
C ( z )  = - W ( z ) ( l  - 2 cos crl 2-' + 2-*)(I - 2 cos a2 z  + z2) 

4  ( 104 

C ( W )  = W ( W )  (cos2 w - (COS al + cos a2)  cos w + cos crl cos a2 

We replace the roots at  e i j f f l ,  e*jffa by roots at re**", )eij" (r < 1) .  The modified 

C*(z)  would thus be 

1 - 
C*(z)  = - W ( z ) ( l  - 2r cos a z-' + ~ ~ z - ~ ) ( 1  - 2r cos a z  + r2z2) 

4r2 (104 
1 

cos2 w - ( r  + -) cos cr cos w + ( 1  + r4 + 2r2 cos 2a)/4r2). (10d) 
r 

We will refer to this case where the negative sign region neither includes w = 0 or 

w = a as case B. 



(a)  C A S E  A (b) CASE B ( c )  CASE C 

NEGATIVE SlGN REGION NEGATIVE SlGN REGION NEGATIVE SlGN REGION 
INCLUDES w = 0 INCLUDES NEITHER INCLUDES w = rr 

w = O  NOR w = r  

Fig. 4.1 Three cases of negative sign regions 
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If C ( w )  is negative in the frequency range ( a ,  -a) as shown in Fig. 4 . l ( c ) ,  then 

C ( z )  has roots at eij" and so 

C ( z )  = ~ ( z )  ( Z  + z-l 
- 2 cos a 
2 

C ( w )  = W ( w )  cos w - cos a ) .  
- ( 

We replace the roots at eij" by roots at -r  and -+ ( r  < 1 ) .  The modified C * ( Z )  

is then given by 

We will refer to this case where the negative sign region includes w = R as case C. 

How do we choose the values of r in all three cases and the value of cr in case 

B? We begin by considering case B. We would like to choose values of r and a so 

as to minimize the effect of the modification. One way to do this is to minimize 

x 2 B = 1 / (w-' ( W ) ~ *  ( W )  - w - ' ( W ) C ( W ) )  dw .  
a 

0 

Substituting for C ( w )  and C * ( w )  from ( l o b )  and ( 1 0 d )  we get 

X 
- E = 1 / ( - a +  bcos w ) ~ ~ w  

R 
0 

2 b2 = a  + -  
2 

where 

1 
b = cos al + cos a2 - ( r  + -) cos cr 

r 
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In Appendix B it is shown that for a given r, there exists a unique optimum 

a = a* which is obtained from 

where 

1 1 
p = - - (r + -) (cos al + cos a*) 

4 r ( 1 4 4  
1 I =  - ~ ( ~ + 2 c o s a , c o s  2 a 2 - ( r +  -12). r (14b) 

We note that a, b and hence F are all functions of r +  $, which has a broad minimum 

at r = 1. So the value of a* or E(a*) are not very much affected by the exact 

value of r as long as it is close to 1. We can exploit this weak dependence of B 

on values of r close to 1 by choosing r which is physically more meaningful. The 

value of r determines the formant bandwidth. The closer r is to 1, the narrower 

the bandwidth. Normally for most speech spectra the larger the formant frequency, 

the larger is its bandwidth. An emprical relation between radial pole location r 

and angular pole location a* that was developed in the context of very low bit rate 

formant vocoders [lo], is 

In our work, rather than solve for r and a* from equations (14) and (IS), we have 

chosen r according to the relation 

For case A and case C, we again define as in (12). For case A, substituting 

for C(w) and C*(w) from equations (9b) and (9d), we get 
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For case C, substituting for C(w) and C*(w) from equations ( 1  lb)  and ( 1  ld ) ,  we 

Clearly, in both cases E is an increasing function of ( r  + i) and attains its minimum 

value when r  + ; = 2 or r  = 1. But again we exploit the weak dependence of I!? 

on values of r  near 1 by assigning it a physically more meaningful value. So again 

we use equation ( 1 5 )  with a* = 0 for case A and a* = ~r for case C .  This gives 

r  = 0.982 for case A and r  = 0.982e-0.056" - - 0.8236 for case C. 

We now turn our attention to the details of the implementation. If C ( z )  is de- 

tected to be not positive definite (this detection is done by the spectral factorization 

algorithm, which is explained in the next section), then we determine the roots on 

the unit circle by computing C(w) over a dense grid of equally spaced frequencies 

using an FFT algorithm; usually a 512 point FFT is adequate. But in general, there 

could be more than one negative sign region. 

We will treat each negative sign region one by one. ]In the case A type situation, 

where C(w) is negative in the frequency range ( - a ,  a ) ,  the modified C*(z)  is given 

by 
( 1 - rz-I) ( 1  - rz) 

C*(z)  = C(z )  
r(2 cos a  - Z - 2 - 1 )  ' 

The value of r  here is 0.982. The coefficients of C'(z) are computed using polynomial 

division and multiplication routines, In the case B type situation, where C(w] is 

negative in the frequency range ( a l ,  a*) and ( - - a 2 ,  - a x ) ,  the modified C*(z )  is 

given by 

( 1  - 2r cos a* z-' + r2z-2)(1 - 2r cos a* z + r2z2) 
C*(z )  = C(z )  

r2(1 - 2cos al z-I + z - ~  ) ( 1  - 2cos a2 z + z 2 )  (20) 

where a* and r  are given by equations ( 1 4 )  and ( I S ) ,  respectively. In the case C 

type situation where C(w) is negative in the frequency range (a ,  -a ) ,  the modified 



C* (z) is given by 

(1 + rz-"(I+ rz) 
C*(z) = C(z) -- 

r(z + z-I - 2 cos cr) ' 

The value of r here is 0.8236. 

4.4 Spectral Factorisation Algorithm 

The final step in the quantile decoding algorithm is to obtain the coefficients 

of the inverse filter A(z) from the estimated C(w).  We need an algorithm which 

would check to  see whether the estimated C(w) is positive definite and if so would 

determine a minimum-phase polynomial such that 

(If the estimated C ( w )  is found not to be positive definite then it is sent to the 

spectral correction routine for modification.) This problem is called the spectral 

factorization problem and there exist many techniques in the literature (1481, 1491, 

[50]) for solving it. The technique that we have chosen is due to Friedlander ([50]) 

because it is very simple, easy to code, and can be implemented using a lattice filter. 

A brief description of this algorithm is given in Appendix C. 

4.5 Choice of model order M 

We will now discuss the issues that are involved in the choice of the model order 

M .  We will first show that the weighted mean-square error E, defined by equation 

(4), is a non-increasing function of M. To prove this we first express E in matrix 



not ation. 

where 
N / 2  

do = x W ( w k )  
k=O 

w k = 2 x k / N  

and A, c and b are as defined in equations (Sa), (5b) and (5c). 

Recall that A is non-negative definite and therefore has only non-negative eigen- 

values. So det A, which is the product of the eigenvalues, is also non-negative. Let 

us assume that for some M = MI, det A > 0. Denote the A, b, c and E for 

M = MI by AM,, bMl , CM, and EM,. Thus 

The optimum CM,, denoted by ck, ,  is obtained by solving equation ( 5 ) ,  i.e., 

c;, = A& bMl . 
The optimum EM,, denoted by E&, is therefore 

Next, let A4 = MI + 1. Again we denote the A, b, c and E for A4 = MI + 1 by 



where 

eT = [ e ,  el . . . e ~ ,  ] ; 
N/2 

ei = S:(wk) w (wk) cos iwk cos ( M ,  + l)wk ; 
k=O wk=2rk/N 

Let us further assume that AMl+x is non-singular. Making use of a standard matrix 

identity ([54], pp. 656), we have 

where 

Using another standard identity ([54], pp. 650), we have 

det AM,+1 = (d - eTAGle) det AM1 

and so 
det AMl 

r =  > 0. 
det AM1+l 

The optimum denoted by EL,+,, is given by an expression similar to equa- 

tion (22). 

Eh1+, = d o  - bLl+lAG1+lbhll+l 
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We now substitute for A&+, from equation (24) and for bwl+l from equation 

(23h) in the expression for EM,+l. Thus 

Therefore, EL,+, < EL, since r > 0. 

Thus, we have proved that the mean square error E is a non-increasing function 

of model order M. Note that Ekl, ,  = EL, iff b L I A G l e  = j. This can be 

satisfied, for a given M I ,  only by a very specific flat spectral density approximat ion. 

In our experience, this has never happened. So, in practice, one could expect 

EL1+, < EL1.  This implies that by increasing M, the power spectrum of the AR 

model can be made to fit the flat spectral density approximation with arbitarily low 

error. However, as we go on increasing M, it has been observed that the matrix 

A becomes more and more ill-conditioned. We can explain this phenomenon as 

follows. 

A measure of ill-conditioning for symmetric positive definite matrices that is 

often used is the ratio of the largest eigenvalue A,,, to the smallest eigenvalue A,;, 

of A. This is called the condition number of the matrix A and is denoted by n. For 
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any positive definite matrix, it is well-known that that ([51]) 

Xmoz 2 max all 
O<l<M 

Xmin < min all 
O<l<M 

all 
Amos , O<I<M and so K = -- - 
Amin min all' 

O<I<M 

Clearly, the numerator is a non-decreasing function of M and the denominator is a 

non-increasing function of M. So the condition number has a lower bound that is 

a non-decreasing function of M. It is therefore possible for K, to  be large for very 

large M. 

Thus, there appears to be a conflict. If we want the power spectrum of the AR 

model to approximate the flat spectral density approximation closely, then we need 

a large M. On the other hand, if M is large the condition number of the matrix A 

could become large and so the vector c obtained by inverting A may be unreliable, 

We need a small M to avert this. In practice a value of A4 = 10 appears to be a 

good compromise. The physics of speech production also suggests that since there 

are typically four or five formants in the 0-5 KHz range, a model order of 10 would 

be appropriate on this ground alone. 

4.6 Choice of the weighting b c t i o n  

We turn our at tent ion to the choice of the weighting function W ( w ) .  We would 

like to  choose a weighting function which emphasizes the peaks of the flat spectral 

density approximation. This is because the peaks which correspond to  the formants 

are the perceptually more important features. Moreover, the flat spectral density 

approximation fits the spectral envelope better near the peaks. A convenient choice 



of the weighting function would be some non-negative power of the flat spectral 

density approximation itself; i.e., W(w) = S,"(w) for all v 2 0. 

As v is increased, there would be greater emphasis on the peaks, and so we could 

expect a better match between the power spectrum of the estimated AR model and 

the flat spectral density approximation near its peaks. However, as u is increased, 

we have observed that the condition number n, defined in the previous section, 

also increases. This can be explained as follows. We will make use of the bounds 

for the maximum eigenvalue A,,, and minimum eigenvalue Amin of the matrix A, 

mentioned in the previous section: 

= max S,Z+"(wk) cos2 luk 
O<iSM 

k=O 

where S,,, = max So(wk) and a is a positive constant. Similarly, 
O<k<N/2 

Amin < min all 
OS1Shl 

N/2 

= min C s ~ + " ( w ~ )  cos2 1wt 
O<I<M kzO 

wk=2%k/N 

Amas CS~;: S O K = -  2 
Xmin N/2 min t: S$+"(W;) cos2 1wk 

OSl<M k=o 



Let us denote by L ( v )  the lower bound for n. Let us suppose that for u = v,, 1 ,  

causes the lower bound to  be achieved; i.e., 

uL- l (uI )  = min cos2 fwk 

wk=2xk/ iV 

Let us again suppose that for u = v2 > ul ,  l2 causes the lower bound to be achieved; 

So(ws) 2+va 
U L - ' ( V ~ )  = min (-) cos2 lwk 

Ol1SM L=n s m a z  

Then 

( since !??f?d < 1 V k ) 
s m a z  

We conclude that L(u2) > L(ul) .  Note that for the equality to hold, we must 

have l l  = l2 and So(wk) = Sm,, for all wk, which is a very unlikely situation. 

So in practice, L(u) ,  the lower bound of the condition number n, is a strictly 

monotonically increasing function of u.  So we can expect the condition number n 

to be large for very large values of the model order M. 

Here there is a conflict again. We would like a large value of u so as to obtain 

a better fit near the peaks of the flat spectral density approximation. But if the 
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computations must be reliable, then the condition number n cannot be too large, 

and so it would be safer to  choose a small value of u. In our implementation we 

have taken the safe route and chosen u = 0 or W ( w )  = 1; i.e., no weighting is used. 

4.7 Smoothing of flat spectral density appraximation using ARMA mod- 

els 

Consider an ARMA model H(z )  which is given by 

where A(z )  is assumed to  be minimum-phase; i.e., all its roots lie within the unit 

circle. We will also assume that D(z)  is minimum-phase. The power spectrum 

of the ARMA model can be expressed as a ratio of positive definite trignometric 

polynomials: 

L 
C ei  cos iw  

- - i=O 
M 
C ci  cos i w  

Since we can always multiply the numerator and denominator by an arbitary 

nonzero scale factor, we can assume without loss of generality that e,=l. 

One approach to  obtaining the parameters of the ARMA model is to solve for 



the {ei) and {ci) by minimizing 

subject to  the constraints 

As in the case of the estimation of C ( w ) ,  we will just minimize E2 and ignore the 

constraints. Minimization of E2 gives rise to a system of linear equations in the 

A4 + L + 1 unknowns, i.e., in the {ci) and {e;). These equations can be expressed 

in matrix form as 

(G*? :) (:I = (;) 
where 

and A, c and b are as defined in equations (5a), (5b) and (5c). The estimated 

E(w) and C ( w )  are, however, not guaranteed to  be positive definite and may require 

spectral correction as discussed earlier in Section 4.3. Finally, one obtains D(z )  and 

A(z )  by spectral factorization. 
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It has been our experience that the ARMA smoothing of the flat spectral density 

approximation does not offer any significant improve~nents in the estimation of the 

spectral envelope over the AR smoothing. This is perhaps due ta the fact that 

the flat spectral density approximation fits the shape of the spectral envelope well 

only near the peaks and rather poorly near the valleys. Besides, the complexity of 

the ARMA smoothing algorithm is much higher than the AR smoothing algorithm 

since there are more unknowns to be solved for. It is for these reasons that we have 

chosen to use AR smoothing and not ARMA smoothing in our implementation. 

4.8 Summary 

We now summarize the various steps involved in the quantile decoding algo- 

rithm. The first step is to aet up the flat spectral density approximation, which is 

given by equation (la) for medium and high bit rate vocoders and (lb) for low bit 

rate vocoders. The flat spectral density approximation is smoothed using an AR 

or ARMA model. AR smoothing is preferred since it involves fewer computations, 

and the results are only marginally inferior to ARMA smoothing. In order to de- 

termine the coefficients of the denominator polynomial of the AR model A(z), we 

first estimate the coefficients of C(z) = A(z)A(z-I). This is obtained by minimiz- 

ing the distortion measure E, which is defined by equation (4). This reduces to 

solving equation (5), which is a Toeplitz plus Hankel system of equations. Such a 

system of linear equations is efficiently solved using the block Levinson algorithm. 

The estimated C(z) is not guaranteed to be positive definite and may require to be 

modified by a spectral correction algorithm, though in practice this happens very 

rarely. Finally, A(z) is obtained by spectral factorization of C(z). A suitable value 

for the model order, i.e. degree of A(z), is M = 10. No weighting of the distortion 
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measure is employed. 

The results of the quantile decoding algorithm when applied to four speech 

frames are displayed in Fig. 4.2 and Fig. 4.3. Each speech frame has 256 samples 

at 10 KHz sampling rate. In Fig. 4.2, for each speech frame the frequency range 

(0-5 KHz) is split into 4 sub-bands and 3 quantiles are chosen in each of them using 

the algorithm for choosing quantiles for medium and high bit rate vocoders, which 

was outlined in the previous chapter. Thus there are 14 quantiles, including 0 and 

a, that are used to represent the spectral envelope. In Fig. 4.3, the same four 

speech frames are used and for each speech frame the frequency range is split into 3 

sub-bands and 3 quantiles are chosen in each of them. Thus there are 11 quantiles, 

including 0 and a, that are used to represent the spectral envelope. In both caes,  

the power spectral density of each Hamming-windowed preemphasized speech frame 

is computed using a 512 point FFT (N = 512), plotted and overlaid by a scaled 

version of the spectral envelope estimate. The scale factor is chosen such that the 

total power under the spectral envelope estimate is equal to the total power under 

the power spectral density of the Hamming-windowed preemphasized speech frame. 

It is clear from the figures that one can obtain a reasonably good estimate of the 

spectral envelope using few quant iles. 



Power spectral density 
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Fig. 4.2 Spectral envelope estimate using 14 quantilee 
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Fig. 4.3 Spectral envelope estimate using 1 1  quantiles 
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CHAPTER 5 

REVIEW OF THE MULTI-PULSE EXCITATION MODEL 

In this chapter we will review the theoretical and implementation aspects of 

the multi-pulse excitation model. Our treatment here is largely a summary of the 

papers due to Atal and Remde ([26]), Atal and Singhal([55]), Kroon and Deprettere 

(1561) and Berouti et al([57]). Other relevant contributions in this area are [58]-1591. 

6.1 Multi-pulse excitation model 

In order to motivate the multi-pulse model for excitation, we first examine the 

earliest model for speech production and the problems associated with it. In this 

model for speech production (see Fig. 1.1), every speech segment is classified as 

voiced or unvoiced (pp. 40, [3]). For voiced speech, the excitation is a quasi-periodic 

pulse train with delta functions located at pitch period intervals. For unvoiced 

speech, the excitation is white noise. The linear filter accounts for the shape of the 

spectral envelope of the short-time spectrum of the speech segment. In the previous 

chapter, algorithms to estimate an all-pole filter from the quantiles and quantile 

orders which represent the spectral envelope of the preemphasized speech spectrum 

were described. So the linear filter in the quantile vocoder is simply a cascade of 
1 

the all-pole filter - 
1 

4 2 )  
and the deemphasis filter ---- , which is the inverse of the 

HPb) 
preemphasis filter E'(z) defined in Chapter 3. A gain term G is also incorporated. 

This gain term is chosen such that the energy of the impulse response of the linear 

filter is equal to the energy of the speech frame. Thus, the transfer function of the 

linear filter used to  represent the spectral envelope is Q(z )  = 
G 

A(z)H,(z) 

This model for source excitation was widely used because it was considered the 

only way to synthesize speech at bit rates around or below 4 Kbitsls. However, 

it is extremely difficult to produce high quality speech using it, even at high bit 
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rates. The problem lies in the rigid classification of the speech segment as voiced 

or unvoiced. Often there are more than two modes in which vocal tract is excited 

and often these modes are mixed. For such speech segments it is a difficult task to 

clwify them as voiced or unvoiced. Moreover, accurate pitch estimation for voiced 

segments can also be very difficult. Furthermore, for voiced speech segments, there 

is evidence to suggest that there is more than one point of excitation during a pitch 

period ([60]). In addition to the main excitation that occurs at glottal closure, there 

is evidence of secondary excitation even after glottal closure (1601). This suggests 

that the excitation of voiced speech should consist of several pulses in a pitch period 

and not just one at the beginning of the period. 

The multi-pulse model (see Fig. 1.2) was proposed by Atal and Remde (1261) 

in order to overcome the above-mentioned problems. In this model for speech pro- 

duction, the excitation is simply taken to be a sequence of pulses for all speech 

segments. No attempt is made to classify a segment as voiced or unvoiced. Thus 

the difficulties associated with accurate pitch estimation and voiced-unvoiced classi- 

fication are avoided. Using this model, we can synthesize speech sounds with little 

audible distortion by employing more excitation pulses. If the number of pulses 

is increased to an arbitarily large value so that there is a pulse at every sampling 

instant, then it would be possible to duplicate the original speech waveform, At the 

same time, many speech sounds can be synthesized with fairly good quality using 

very few pulses. Thus, the model is flexible enough to be used even in low bit rate 

vocoders. The linear filter again accounts for the shape of the spectral envelope of 

the short-time spectrum of the speech segment. 

An improved multi-pulse model (see Fig. 6.1) was proposed by Atal and Singhal 

(1551) as well as Kroon and Deprettere (1561). In the improved multi-pulse model, 
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the periodic nature of voiced speech segments is exploited by incorporating a pitch 

predictor. Thus, in this model the speech is synthesized by passing multi-pulse 

excitation through a cascade of the pitch predictor and the linear filter. The most 

general form of a pitch predictor model P(z) used is 

where M,, represents the distance between adjacent pitch samples, and pl,  p2 and 

ps are scale factors (1611). This predictor is called a $-tap predictor. When pl and 

p3 are set to zero, P(z) reduces to a 1-tap predictor, 

In our work we have chosen the 1-tap predictor since it requires fewer bits than the 

3-tap predictor to encode its parameters, and the stability of the model can easily 

be ensured by restricting lpl < 1. 

Though the pitch predictor helps improve the speech synthesis for voiced seg- 

ments, it is not of much value for obviously unvoiced segments. However, in order 

to avoid a voiced-unvoiced classification, the pitch predictor is used for all speech 

segments. For unvoiced segments, the estimated value of M, will be some random 

number and the estimated p will be very small so that the pitch predictor has little 

effect on the synthesized speech. It must also be emphasized that unlike the earliest 

model for speech production, accurate estimation of pitch is not necessary. This 

is because the pitch predictor is used here mainly to exploit the periodic nature of 

voiced speech. Errors in the estimation of pitch could reduce the effectiveness of 

the pitch predictor in bit reduction but will not impair the intelligibility or even the 
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quality of the synthesized speech significantly. 

6.2 Eetimation of parametere of multi-pnlee model 

Let us assume that the speech segment which is being modeled has NF samples. 

Let the number of excitation pulses be Np (N, < NF) which are located at nl, 

n2, . . ., n ~ ,  with amplitudes al ,  a2, . . ., a ~ , .  The locations and amplitudes of 

these pulses are the parameters of this model. We will assume that the pitch 

predictor is completely determined. Algorit hrns to estimate the parameters of the 

pitch predictor, i.e., p and Mp, are described in Section 5.3. 

6.2.1 Baaie idea behind the algorithm 

The basic idea underlying the algorithm is illustrated in the block diagram 

of Fig. 6.2. The cascade of the pitch predictor and linear filter produces the 

synthetic speech samples 4(n) in response to mult i-pulse excitation. The synthetic 

speech sample 2(n) is compared to the original speech sample z(nj to produce 

an error signal g(n). This error is not perceptually meaningful and is therefore 

passed through a perceptual weighting filter to produce a subjectively meaningful 

measure of the difference between the synthesized and original speech waveforms. 

The weighted error is squared and averaged to produce a mean-squared error g. 

The locations and amplitudes of the pulses are chosen to minimize the error g. 

6.2.2 Perceptual weighting of error 

The perceptual weighting filter needs further explanation. The error between 

the speech signal and the synthetic speech signal can be thought of as noise in- 

troduced by the speech coder. The primary goal must therefore be to choose the 

locations and amplitudes of the pulses so as to make this noise inaudible or to 
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minimiee its loudness. The loudness of the noise, as perceived by the human ear, 

is determined not just by its total power but by the shape of the power spectral 

density of the noise and the speech signal. If the noise spectrum lies under or near 

the peaks of the spectrum of the speech signal, then the noise is reduced in perceived 

loudness and can even become completely inaudible. In other words, the human 

ear can tolerate larger errors in the formant regions in comparison to that tolerated 

in the frequency regions between formants. This phenomenon is called auditory 

masking ([62]). 

The masking properties of the human ear suggest that the noise should be 

frequency-weighted prior to minimization. This is accomplished easily by passing 

the noise through a filter which deemphasizes it near the formants. Thus, if the 

spectral envelope is represented by the linear filter Q(z ) ,  then a suitable perceptual 

weighting filter would be 

where I' is a fraction between 0 and 1. This is because Q(I'z) has broader resonances 

than Q(z) and so the magnitude of the ratio has a minimum at every formant 

frequency. The value of I' is determined by the degree to which one wishes to 

deemphasize the formant regions in the error spectrum. Typical values lie in the 

range 0.8-0.9. In our work, we have chosen I' = 0.9. Fig. 6.3 shows an example 

of the power spectra of the linear filter Q(z) and the corresponding perceptual 

weighting filter Pw(z) for I' = 0.9. 

6.2.3 Error minimisation procedure 

Let us denote the first NF output samples of the perceptual weighting filter, 

when excited by the NF-point speech segment, as u(O), u(l) ,  . . ., u(NF - 1). Let us 

also denote the first NF samples of the impulse response of the cascade of the 
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pitch predictor, linear filter and the perceptual weighting filter as u(O), u ( l ) ,  . . ., 
u(NF - 1). 

Ideally, what we would like to do is to determine the pulse locations nl, n2, . . ., 
nNP and the corresponding amplitudes a,, a2, . . ., aNP which minimize the weighted 

mean-square error 

This can be done as follows. For a given set of pulse locations, minimization of 5 

with respect to a,, a2, . . ., arvP simply gives rise to a set of linear equations which 

We can easily be solved to obtain the optimum pulse amplitudes a;, a;, . . ., ah>. 

then evaluate the error ~ ( a ; ,  a;, . . . , akP, n,, %1 . . . , nNp) for every set of locations. 

The optimum set of locations is of course the one which results in the smallest error. 

It is clear, however, that such a procedure would be prohibitively expensive 

computationally. We therefore settle for a suboptimal solution which is less expen- 

sive to compute. One such solution, suggested by Atal and Remde ([26]), has been 

found to be very promising. We will first outline this solution before discussing the 

details of its implementation. 

In this approach, we obtain the pulse locations one by one. Let us assume that 

( i l  (i) (i) j pulse locations nl , n2, . . ., n j  and the corresponding amplitudes a, , a2 , . . . , a, 

are known. The ( j  + l)'h pulse location is obtained as follows. We first set up the 

error measure 

We will leave the range of summation unspecified for the moment. The range will 

be described later in this section. For a given nj+l, we see that g,+, is minimized 



when 

Substituting for a,+l from the above equation in equation (S), we get the minimum 

Here only the second term depends on n , + ~ .  Thus, the ( j  + I ) ' ~  pulse location 

that results in the smallest ~ i + , ( n ~ + ~ )  is that value of nj+l for which pfnj+, )  - 
i  

aY1#(ni, nj+l )  is a maximum, where 
i= 1 

# ( a ,  k )  = v(n - i )v(n - k) 
n 

p ( i )  = u(n)v(n - a ) .  
n 

This can be done very rapidly if we compute and store p(i) and # ( a ,  k )  for all t and 

k before estimating the pulse locations and amplitudes. 

Having determined the ( j  + 1)'" pulse location ni+l, we reoptimize all pulse 

amplitudes by minimi~ing 

(;+I) (it-1) with respect to a l ,  a2, . . ., a;+l. Thus, the new pulse amplitudes a, , a2 , . . ., 
a ] ' ! )  can simply be obtained by solving the following linear equations: 



Note that while the pulse locations are obtained one by one, the pulse amplitudes 

are optimized simultaneously after estimating each pulse location. 

We now turn our attention to  some practical details. Let us first consider the 

range of summation for n in the equations (5)-(11). One choice is to set the causal 

sequences u(n) and u(n) to eero for all n 2 NF. Then the range of summation can 

be extended from -w to  +w. We now make the observation that 

We also note that # ( O ,  m) = #(O, -m) = 0 for all m 2 NF, since u(n) is zero for all 

n 2 NF. SO one only needs to compute and store #(0, O), #(0, l ) ,  . . ., #(O, NF - 1). 

We also note that #(O, m) can be interpreted as the autocorrelation of the sequence 

u(n). Similarly, p(m) can be interpreted as the cross-correlation between u(n) and 

u(n). For this reason, the algorithm employing this choice of the range of summation 

is called an autocorrelation-type algorithm. Autocorrelation and cross-correlation 

of sequences with only a finite number of nonzero terms are efficiently computed 

using the FFT (Chapter 11, [35]). Thus, for the autocorrelation-type algorithm, we 

require 2NF storage elements and, as usual for FFT-based techniques, T NF log, NF 

arithmetic operations. The value for T depends on the particular implementat ion of 

the FFT and usually lies in the range 2-4. For typical frame sizes such as NF = 256 

samples, this computational and storage requirement can easily be met. 

A second choice is to  sum from n = 0 to  n = NF - 1. No assumption is made 

here about u(n) or u(n) for n 2: NF. The algorithm employing this choice of the 

range of summation is called a covariance-type algorithm. The p(i)'s are directly 
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obtained using (1 I), i.e., 

NF-1 
p(i) = u(n)u(n - i). 

Since #(i, k) = #(k,i), only the value of #(a, k) for 0 < i < k < NF - 1 need be 

computed and stored. An efficient method for computing all the values of 4(i, k) is 

to first compute 

and then, for k in the range 11, NF - 11, to use the recursion 

Equations (12) and (13) follow directly from the definition of #(a, k) in equation (8). 

For this choice of range of summation, we require 0.5NF (NF + 1) storage elements 

for the #(a, k)'s and another NF for the p(i)'s. We would require 0.5NF(NF + 1) 

multiplications for the #(a, k)'s and another 0.5NF(NF + 1) for the p(i)'s. For typical 

frame sizes such as NF = 256, this amounts to 33152 storage elements and 65792 

anult iplications, which is a very heavy computational burden. 

One way of getting around this problem is to divide the frame into L subframes 

NF NP of size XF = - and estimate = - pulse locations and amplitudes in each sub- 
1; L 

frame. (For this, we assume that L divides both NF and Np.) Note that the u(n)'s 

and hence the #(a, k)'s are the same for all subframes. So we require 0.5XF(FF + 1) 

storage elements and 0.51VF(XF + 1) multiplications for the #(i, k)'s. 

Here, however, u(n) needs to be evaluated every subframe. For the first sub- 

frame u(n) is simply the first 7ifF output samples of the perceptual weighting filter 

when excited by the first XF-point speech subframe. But for the subsequent sub- 

frames, u(n) is the first NF output samples of the perceptual weighting filter when 
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excited by a difference signal. This is the difference between the corresponding XF- 

point speech subframe and the synthetic speech output generated from the memory 

of the cascade of the pitch predictor and the linear filter from previous subframes. 

The p(i)'s thus have to be computed for each subframe. 

- - 
For each subframe we require xF storage elements and 0.5NF(NF + 1) multi- 

plications for the p(i)'s. Since we are estimating the pulse locations and amplitudes 

in each subframe one after another, the storage requirement for the p(i)'s for the 
- - 

entire frame is still xF, but it would require 0.5LNF(NF + 1) multiplications. For 

typical values such as NF = 256 samples and L = 4 subframes, the total storage re- 
- - 

quirement for the entire frame is thus rF +0.5NF(NF+ 1) = 2144 storage elements. 

The total number of multiplications would be 0.5(L+ l)TYF(TVF + 1) = 10400. Thus, 

both the storage requirements as well as the computational complexity have been 

considerably reduced. 

We have considered two distinct choices for the range of summation. In the first 

choice, which led to the autocorrelation-type algorithm, the range of summation of 

NF extended from -oo to +GO after setting u(n) and u(n) to zero for all n 2 NF. 

In the second choice, which led to the covariance-type algorithm, the range of 

summation extended from n = 0 to n = NF - 1, and no assumption was made about 

u(n) or u(n) for n 2 NF. Since no assumption was made about u(n) or u(n) for 

n 3 NF, the covariance-type algorithm gives better results than the autocorrelation 

type algorithm, as expected. However, for typical frame sizes, both the storage 

requirements as well as the computational load are very high for the covariance- 

type algorithm (unlike the autocorrelation-type algorithm). To ensure that storage 

requirements and computational load are within reasonable limits for typical frame 

sizes in the covariance-type algorithm, we divided each frame into L subframes and 



estimated Rp = 5 pulse locations and amplitudes in each subframe. 
L 

For medium or high bit rate vocoders, the number of pulses per frame N, is 

large and so there is no difficulty in choosing Np to  be a multiple of L. For low 

bit rate vocoders, where Np is very small, this can be very inconvenient. When 

Np is small, it has been our experience that the autoconelation-type algorithm is 

only marginally inferior to the covariance-type algorithm. Thus for low bit rate 

vocoders, the autocorrelation-type algorithm seems appropriate, while for medium 

and high bit rate vocoders, the covariance-type algorithm seems appropriate. In 

our implementat ion, we have chosen the aut ocorrelation-type algorithm for the 4.8 

Kbits/s and the covariance-type algorithm for the 9.6, 16 and 24 Kbits/s vocoders. 

Another aspect of the multi-pulse algorithm of practical relevance is the tech- 

nique used to solve for the new set of pulse amplitudes after estimating every pulse 

location. The new set of pulse amplitudes after estimating the ( j  + l)'h pulse loca- 

tion is obtained by solving equation (11). Thus 

where 

It is easy to see that g?l+l is a symmetric matrix, since 

(a, k)lh element of q$+l = 4(ni, nk) 

= 4(nc, n;) 

= (k, i)lh element of 4j+,. 



It can also be easily seen that dtJ+l is non-negative definite since for an arbitary 

j + l-dimensional vector x, we have 

Hence, we can invert #j+l using the so-called Choleski decomposition ((471). This 

would involve O(js) operations. However, by relating #j+l to h, and hence #& to 

),:', we can reduce the computational load to O(j2). To see how this can be done, 

we first note that 
44 q 

#j+l = ( 
qT #(nj+l, nj+l) 

where 

Using a standard matrix identity (1541, pp. 656), we have 

+ t T  --14i1q 

-tqT#il t 
where 

i 
Using equations (17) and (18), one can compute #i:l in just O(j2) operations. 

This concludes our discussion of the multi-pulse algorithms. We briefly summa- 

rise the various steps in the two algorithms below. 

Autocorrelat ion-type algorithm: 

Step 1: Compute v(n), the impulse response of the cascade of the perceptual weight- 

ing filter, the linear filter, and the pitch predictor, for 0 < n < NF - 1. Then, defin- 
m 

ing v(n) = 0 for all n > NF, compute and store #(O, m) = t: v(n)v(n - m) for all 
-47 
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0 .< m 5 NF - 1. The computation can be done rapidly using FFT-based techniques 

(Chapter 11, [35]). Note that #(i, k) = #(O, li-kf) and that #(0, m) = #(O, -m) = 0 

for all m > NF. 

Step 2: Compute u(n), the output of the perceptual weighting filter when excited by 

the Np-point speech segment, for 0 5 n < NF - 1. Then, defining v(n) = u(n) = 0 
m 

for all n > NF, compute and store p(m) = C u(n)v(n - m) for 0 < m L_< NF - 1. 
-w 

The computation can again be done rapidly using FFT-based techniques as above. 

Note that p(m) = 0 for all m > NF. 

Step 3: The first pulse location nl is simply that value of m (0 < m < NF - 1) for 

which p(m) is a maximum. The corresponding pulse amplitude estimate is given 

The ( j  + I ) ' ~  pulse location nj+l (1 < j L_< N, - 1) is obtained as that value of rn 
i 

(0 < m < NF - 1) for which p(m) - rn) is a maximum. The new set of 
i= X 

pulse amplitudes is obtained using equation (14); i.e., 

where aj+l, #j+l and pj+, are as defined in equations (14a)-(14c). The inversion of 

the matrix #j+l can be done rapidly using equations (17) and (18). 

Covariance-type algorithm: 

Step 1: Compute v(n), the impulse response of the cascade of the perceptual weight- 

ing filter, the linear filter, and the pitch predictor, for 0 < n < XF - 1. Compute 
- 
NF-1 

and store #(a ,  k) = C v(n - i)v(n - k) for all 0 < i < k < EF - 1. This is done 
n=O 

efficiently using equations (12) and (13) (with NF replaced by NF). 

Steps 2 and 3 below are performed for every subframe in the frame. 



Step 2: For the first subframe, u(n) is defined as the output of the perceptual 

weighting filter when excited by the first 7\fF-point speech subframe. For the sub- 

sequent subframes, u(n) is defined as the output of the perceptual weighting filter 

when excited by the difference between the corresponding XF-point speech sub- 

frame and the synthetic speech output generated from the memory of the cascade 

of the pitch predictor and the linear filter from previous subframes. Compute u(n) 
Ri.-1 

for 0 5 n 5 NF - 1 and also compute and store p(m) = I7 u(n)v(n - m) for 
n=m 

0 5 m 5 N F - 1 .  

Step 3: Same as in the autocorrelation-type algorithm (with NF replaced by NF 

and Np by Np). 

6.5 Estimation of parameters of pitch predictor 

The parameters of the 1-tap pitch predictor are M, and p. One approach to 

estimating the pitch predictor parameters is illustrated in Fig. 6.4. The perceptually 

weighted error is passed through the inverse of the pitch predictor to produce a new 

error ~ ( n ) .  The new error ~ ( n )  is squared and averaged to produce a new mean 

square error 5. The parameters of the pitch predictor are chosen to minimize Z. 

However, the locations and amplitudes of the excitation pulses are unknown at 

this point in the process. In fact, the algorithm for estimating the pulse locations 

and amplitudes, described in the previous section, assumes that the pitch predictor 

parameters are known and have already been determined. So, for the estimation of 

M' and p, we use some a priori estimate of the excitation. A simple but adequate 

one is to assume that the excitation is an impulse of unit strength located at n = 0. 

Let us denote the first NF samples of the impulse response of the cascade of the 



Fig. 6.4 Block diagram of procedure for estimating pitch predictor parameters 
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linear filter and perceptual weighting filter as @(O), @(I) ,  . . ., v(NF - 1 ) .  As in the 

previous section, we denote the first NF output samples of the perceptual weighting 

filter, when excited by the NF point speech segment, as u(O), u ( l ) ,  . . ., u(NF - 1). 

Then v for a given p and Mp is given by 

For minimum V ,  we must have 

Thus, for a given M,, the optimum p = p4(MP) is given by 

Substituting in (19), we get z*(M,), the minimum z for a given M,, a,s 

where 

The first term in equation (21) for s*(M,) does not depend on M,. The optimum M, 

is thus simply that value for which g1(Mp) is a maximum. Note that in evaluating 

the denominator for consecutive values of M,, one can exploit the simple recursion 

relation 
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The search for the optimum distance Mp between adjacent pitch pulses is re- 

stricted only to the range in which pitch periods usually lie. In our work, the range 

chosen was 22 to 149 at all bit rates. At a 7.5 KHz sampling rate, which is the 

sampling frequency for the 4.8 and 9.6 Kbits/s vocoders in our implementation, this 

corresponds to the range of 50.3 Hz to 340.9 Hz for the fundamental frequency. At 

a 10 KHz sampling rate, which is the sampling frequency for the 16 and 24 Kbits/s 

vocoders in our implementation, this corresponds to the range of 67.1 Hz to 454.5 

Hz. 

We now summarize the procedure for estimating p and Mp. We first compute 

~ ( n )  and u(n) for 0 < n < NF - 1. The optimum Mp is that value of M, in 

the relevant range for which zl(MP), given by equation (22), is a maximum. The 

corresponding optimum C( is computed using equation (20). 
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CHAPTER 6 

QUANTIZATION AND BIT ALLOCATION 

In this chapter we consider the quantization and encoding of the various param- 

eters that must be transmitted every frame in the quantile vocoder. For high and 

medium bit rate vocoders, the parameters that must be transmitted every frame 

are the quantile orders, quantiles, locations and amplitudes of the excitation pulses, 

pitch predictor parameters and the gain G of the linear filter Q(z ) ,  all defined in 

the previous chapter. For low bit rate vocoders, the quantile orders are fixed and 

need not be transmitted. So the parameten that must be transmitted every frame 

are the quantiles, locations and amplitudes of the excitation pulses, pitch predictor 

parameters and the gain. A block diagram of the implementation of the transmitter 

and receiver of the quantile vocoder is shown in Fig. 6.1. We begin by considering 

the quantization and encoding of quantile orders. 

6.1 Qnantisation and encoding of qnantile orders 

An accurate estimation of the spectral envelope is certainly necessary for the 

synthesis of good quality speech. But errors that arise due to the quantization of 

quantile orders result in some error in the estimation of the spectral envelope. Thus, 

one suitable criterion with respect to which we can develop an optimal quantization 

scheme is to minimize the maximum spectral deviation due to quantization. 

We will now define the term spectral deviation more precisely. The spectral 

deviation AS(€) due to a perturbation At in some transmitted parameter [ is 

defined as 

where p is a positive integer and S(E, w) is the estimate of the spectral envelope. 
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The spectral deviation can thus be interpreted as the logarithmic difference in the 

estimates of the spectral envelope due to quantization, averaged over all frequencies 

with equal weights. Another related term is the spectral sensitivity q ( ( )  with respect 

to the transmitted parameter (, This is simply defined as the absolute value of the 

ratio of the spectral deviation A S ( ( )  to the perturbation A[ in the limit as A( 

tends to zero; i.e. , 

A similar criterion and definition of spectral deviation and spectral sensitivity (with 

summations replaced by integrals and p set to 1) was used by Viswanathan and 

Makhoul ([63]) to study the quantization properties of the transmission parameters 

of linear prediction coders. A similar study was also made by Gray and Markel 

([MI) using p = 2. 

In the quantile vocoder, we claim that the spectral deviation A S ( € )  in the final 

estimate of the spectral envelope can be approximated by the spectral deviation 

ASo(<) in the flat spectral density approximation for the same perturbation A t  in 

the transmitted parameter (. This can be justified as follows. We first observe 

log 
S ( C ,  wk) = log g(t,wk) + log SO(€ + A<, wk) 

S ( €  + A€,  ~ k )  So(€, wk) S ( €  + A € ,  ~ k )  

= - log T ( ( ,  W L )  + log 
So(€, wk) 

So(€ + A€,  wk) 
+ log T ( €  + A€,  wk) 

where T((, w k )  is the ratio of the flat spectral density approximation to the esti- 

mated spectral envelope; i.e. , 
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Recall that the estimated spectral envelope is a smoothed version of the flat spectral 

density approximation. The smoothing is accomplished by determining an autore- 

gressive model whose power spectrum fits the flat spectral density approximat ion. 

For very large model orders, this fit is very good and so T((, wk) fit 1 for all possible 

values of ( and wk. As a result, T(€, wk) is not sensitive to small changes in the 

value of the transmission parameter C for all wk; i.e. , 

However, as explained in Section 4.5, we cannot have large values for the model 

order in practice due to computational limits. The approximation in equation (5) 

is therefore less accurate in practice, but is still a reasonable one. Hence, for small 

A f ,  we have 

log S ( ~ ,  wk) fit log so((, ~ k )  \J wk. 
S o ( €  + A€, ~ k )  

Substituting in equation (I), we have 

as claimed. As a result of this, the spectral sensitivity, defined in equation (2) ,  can 

also be written as 

We now turn our attention to  developing a quantization scheme which would 

minimize the maximum spectral deviation (i.e., max AS(€)). One approach is to 
C 

quantize the quantile orders using some non-uniform quantization scheme. In order 

to reduce the spectral deviation due to  the quantization of the ith quantile order 

E;, we assign more steps near those values of Ei where the spectral sensitivity with 
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respect to Ei is higher and fewer steps near those values of Ei where the spectral 

sensitivity is lower. 

Equivalently, we can form a new set of parameters {ti) from the quantile orders 

( E ; )  using some nonlinear transformation and then subject that to uniform quan- 

tization. Uniform quantieat ion of the transformed parameters would be optimal 

only if the spectral sensitivity with respect to the transformed parameters were a 

constant. Otherwise, we can assign more quantization steps near those values of 

the transformed parameter where the spectral sensitivity is higher and fewer steps 

in the lower spectral sensitivity region. This would then lead to a smaller spectral 

deviation. So the problem of developing an optimal quantization scheme is equiva- 

lent to finding the transformation such that the spectral sensitivity with respect to 

tne transformed parameters is a constant. Note that since this constant is arbitary, 

such a transformation can be found only to within a multiplicative const ant. 

Consider the following transformation: 

€0 = 10 log,, E o  

27~(E; - Ei-1) ti = 10 log,, 1 < ; < q .  
N(ei - 6i-,) 

Note that the transformation merely gives the flat spectral density approximation 

expressed in dB. For this, 

and 



Thus, the spectral sensitivity with respect to the transformed parameters is given 

= a constant 

= a constant 1 < i < q. 

Hence, the transformation defined by (9) and (10) is the required one. 

We note that while the quantile orders lie between 0 and 1, the transformed 

parameters are not restricted in range. But since we know that 1E;, = 1.0, we can 

fix one end of this range arbitarily. In our implementation, the maximum of all the 

{ti) was set to zero. Usually the flat spectral density apprcximation has a dynamic 

range of not more than 30 dB. So the other end of the range is fixed at -DR dB 

where DR 2 30. The complete quantization scheme can be summarized as follows: 

Step 1: Compute ti for 0 < i < q from the quantiles and quantile orders using 

equations (9) and (10). 
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Step 2: Let f,,, = m v  ti. Then compute = m=(ti - emas, -DR). 
s 

Step 3: The parameters ti which lie in the range [ I D R ,  01 are quantized uniformly 

and transmitted. 

The quantile orders can be computed from the transmitted parameters as 

follows: 

Step 1: Compute 

Step 2: The quantile orders (a) are then obtained by normalizing {E;). That is, 

E;. = E;/E, for all o < a < q. 

In our implementation of the 9.6 Kbits/s and 16 Kbits/s vocoders, we have 

a total of 11 quantile orders (q = 10). The value of DR is taken to be 30 and 

the quantization step size used in the uniform quantizer is 2 dB. Thus, each 6; is 

encoded using 4 bits. We see that a total of 44 bits are required to encode the 

quantile orders every frame. In 24 Kbits/s vocoder, we have a total of 14 quantile 

orders (q = 13). The value of DR is taken to be 63 and the quantization step size 

is 1 dB. Here each is encoded using 6 bits. Here a total of 84 bits are required to 

encode the quantile orders every frame. 

6.2 Encoding of quantiles 

2a 
The quantiles (8;) themselves are all multiples of -. The first quantile is 8, = 0 

N 
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and the last quantile is 8,  = 7r. The intermediate quantiles satisfy the inequality 

The set of intermediate quantiles can be considered as an output symbol of a source, 

whose ( f - 1)-bit symbols have exactly q - 1 ones and the remaining zeros. Clearly, 

there are (9-1) symbols, so it would require Bq = [log2 (!::)I bits to encode each 
9-1 

symbol ([sl denotes the smallest integer greater than or equal to z), Thus, the 

total number of bits required to encode the quantiles is Bq bits. 

In our implementation, N = 512 at all the bit rates, The total number of 

intermediate quantiles (= q - 1) that were used to encode the spectral envelope at 

4.8, 9.6, 16 and 24 Kbits/s are 8, 9, 9 and 12, respectively. Thus, the total n ~ m b e r  

of bits Bq required to encode the quantiles for every frame is 49, 54, 54 and 67 bits 

at 4.8, 9,6, 16 and 24 Kbits/s, respectively. 

6.3 Encoding of pulse locations 

It is the autocorrelation-type mult i-pulse algorithm that is used ta estimate 

the pulse locations in our implementation of the 4.8 Kbits/s vocoder. In the 

autocorrelation-type multi-pulse algorithm, the estimated pulse locations nl, n2, 

. . ., n ~ ,  are all distinct integers that lie between 1 and NF (= the total number of 

samples in the frame). These pulse locations can always be arranged in increasing 

order and can therefore be encoded using BI = bog, (%)I bits (as explained in 

the previous section). The total number of samples in each frame is NF = 256 and 

the number of pulses estimated in each frame is N, = 9 in the 4.8 Kbits/s vocoder. 

Thus, the total number of bits per frame required to encode the pulse locations is 

Bl = 54 bits. 
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It is the covariance-type multi-pulse algorithm that is used to estimate the 

pulse locations in our implementation of the 9.6, 16 and 24 Kbits/s vocoders. In 

the covariance-type multi-pulse algorithm, each frame is divided into L sub-frames, 

NF each containing NF = samples. In each sub-frame, X ,  = 5 pulse locations 
l.4 & 

are estimated. Thus we require 1 ( 2 )  bits to encode the pulse locations in 
I 

each sub-frame and BI = L bits for the entire frame. At all three bit 

rates used with the covariance-type algorithm, there are NF = 256 samples per 

frame and L = 4 sub-frames; hence, we require XF = 64 samples per sub-frame. 

The value of X ,  is 6 at 9.6 Kbits/s, 9 at 16 Kbits/s and 13 at 24 Kbits/s. Thus, the 

total number of bits Bt required to encode the pulse locations for the entire frame 

is 108, 140 and 176 bits at 9.6, 16 and 24 Kbits/s, respectively. 

6.4 Quantisation and encoding of pulse amplitudes 

Let the largest magnitude of all the pulse amplitudes be am,, and let the number 

of bits used to encode each pulse amplitude be B, bits. Then the pulse amplitudes 

are all multiplied by a;:,(l - z - ( ~ P - ' ) ) .  This ensures that the pulse amplitudes 

are in the range !-(I - 2-@~-')), (1 - ~ - ( ~ p - ' ) ) ] .  The scaled pulse amplitudes are 

then quantized uniformly using a quantizer step size of ~ - ( ~ p - ' ) .  The scaling is 

compensated by modifying the gain G of the linear filter Q(z) .  The modified gain 

G' is thus 

In our implementation, 4 bits are used to encode each pulse amplitude at 4.8, 

9.6 and 16 Kbits/s, while 5 bits are used at 24 Kbitsls. There are 9, 24, 36 and 52 

pulses per frame at 4.8, 9.6, 16 and 24 Kbitsls. Thus, a total of 36, 96, 144 and 

260 bits are used per frame to encode all the pulse amplitudes at 4.8, 9.6, 16 and 



24 Kbits/s, respectively. 

6.6 Qnantisation and encoding of gain 

The modified gain G' can be considered as a parameter of the linear filter Q(z) 

which accounts for the spectral envelope of the speech segment: 

One can define, as in equation (I), the spectral deviation AQ(€), in the power 

spectrum of the linear filter Q(z) , with respect to a perturbation A( in some 

parameter ( of the linear filter. Thus, 

The parameter ( could be one of the quantile orders or the gain or any function of 

them. 

As an aside, we note that any quantization scheme for the quantile orders which 

minimizes the spectral deviation in the spectral envelope estimate also minimizes 

the spectral deviation in the power spectrum of Q(z). This is because 

where ( is one of the quantile orders or some function of them. Hence, 

Thus the quantization scheme proposed in Section 6.1 for the quantile orders is 

optimal not only in the sense of minimizing the maximum spectral deviation in the 
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spectral envelops estimate but also in minimizing the maximum spectral deviation 

in the power spectrum of the linear filter Q(z). 

Referring to our prior considerations, if the parameter ( is the modified gain 

GI, then 

and the spectral sensitivity with respect to G' is therefore 

q(G') = lim AQ(G1) 
acl-ol AGf 1 = l$l* 

Now as before, the optimal quantization scheme for G' is first to transform the 

gain and uniformly quantize the transformed parameter. The transformation, as 

explained in Section 6.1, must be such that the spectral sensitivity with respect 

to the transformed parameter is a constant. Consider the transformation f = 

20 log,, G', so that G 5 s  expressed in dB. Then 

- log 10 -- 
10 

which is a constant. So the transformation is the required one. 

In practice, the modified gain G', expressed in dB, is seldom below 0 dB or 

above 200 dB and is therefore limited to the range [O, 200(1- 2 - B ~ ) J  dB, where BG 

is the number of bits used to encode the gain. If G' is below 0 dB, then it is assumed 

to be 0 dB. If it is above 200(1- 2 - B ~ )  dB, then it is taken to be 200(1- 2-B") .  It 
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is then quantized uniformly using a step size of 200.  2-Bc dB. The number of bits 

used to encode the gain in our implementation is 1 1  at 4.8 and 9.6 Kbitsls and 13 

at 16 and 24 Kbits/s. 

6.6 Quaatisation and encoding of pitch predictor parameters 

The pitch predictor parameters are M' and p. As explained in Section 5.3, 

the value of M' is restricted to the range [22, 1491 at all the bit rates. So it takes 

exactly 7 bits to encode M,. But the magnitude of p must be less than one to ensure 

stability of the pitch predictor. Thus, if Bp bits are used to encode p, then p is 

actually restricted to lie in the range [ - ( I  - 2-(Bp-1)), ( 1  -2-(Bp-1))).  If p has a value 

greater than ( 1  - 2-(Bp-1)), then it is assumed to be ( 1  - 2-(Br-1)). If p has a value 

less than - ( I -  2-(Br-1)) ,  then it is assumed to be - ( I -  2-(Bp-1)). The parameter 

p is quantized uniformly using a step size of 2-(Bp-"). In our implementation, 6  bits 

are used to encode p at 4.8 Kbits/s and 7 bits at 9.6, 16 and 24 Kbits/s. 

This concludes our discussion of the quantization and encoding of various pa- 

rameters in the quantile vocoder. A table of bit allocations at bit rates 4.8, 9.6, 16 

and 24 Kbitsls is displayed in Fig. 6.2. 

6.7 Results 

The spectral envelope estimate and the synthesized speech waveform of the 

quantile vocoder for a typical speech frame at bit rates 4.8, 9.6, 16 and 24 Kbits/s 

are displayed in Fig. 6.3-6.6. Fig. 6.3 has two parts. One part contains the power 

spectral density of a Hamming-windowed (see Section 2.2) preemphasized 256-point 

speech frame overlain by a scaled version of the spectral envelope estimate at 24 
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Kbits/s. The scaling factor is chosen so that the total power under the spectral 

envelope estimate is equal to the total power under the power spectral density of 

the Hamming-windowed preemphasized speech frame. The second part contains 

the speech waveform of the same 256-point speech frame and is overlain by the 

synthesized speech waveform at 24 Kbits/s. Figs. 6.4-6.6 are similar except that 

the corresponding bit rates are 16, 9.6 and 4.8 Kbits/s, respectively. 
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CHAPTER 7 

EVALUATION OF THE QUANTILE VOCODER 

In this chapter, we consider the evaluation of the quantile vocoder at various 

bit rates. Ideally, we would like a performance measure that is not only subjec- 

tively meaningful but also repeatable; i.e., the same performance measure must 

be obtained on repetitions of the same experiment. Unfortunately, such a perfor- 

mance measure does not exist for evaluating the quality of the speech produced by 

a vocoder. 

Objective measures of vocoder performance (see Appendix E of [65]) are repeat- 

able. They usually are refinements of the conventional signal-to-noise ratio. These 

refinements have been proposed to ensure that the objective measures are more 

representative of the quality of the synthesized speech. Despite these refinements, 

objective measures can never be completely descriptive of perceived speech quality 

and so can only partially describe the performance of the vocoder. 

Subjective measures of vocoder performance (see Appendix F of [65]) are directly 

related to the quality of the synthesized speech and are therefore truly meaningful. 

However, they are not repeatable and therefore not very reliable. The reliability 

can be improved only by using a large speech data base, a large number of subjects 

and more complicated test procedures to assess the quality of the vocoder. Even 

then complete reliability cannot be guaranteed. 

Thus both objective and subjective performance measures have their shortcom- 

ings. So in practice, both are required in order to assess vocoder performance 

properly. We begin in Section 7.1 by first describing the experimental details that 

are involved in setting up the speech data base as well as in recording the compressed 

speech. In Section 7.2, an objective performance measure, the so-called segmental 
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signal-to-noise rutio, is defined and is used to assess the quantile vocoder at all bit 

rates. In Section 7.3, a formal subjective evaluation is proposed and carried out. 

7.1 Experimental details 

In order to evaluate the quantile vocoder, ten sentences spoken by one male 

and one female speaker were used. The sentences are a subset of the grammatical 

sentences listed in [66]. The sentences, each about 4 seconds long, were spoken 

through a microphone, lowpass filtered up to 4.8 KHz, and digitized at a sampling 

rate of 10 KHz using a 12 bit AID converter. The speech samples are all thus 

integers that lie between -2048 and 2047. The sentences were digitized at the 

Speech Laboratory at Indiana University. The digitized speech data were then 

transferred by ta2e to an 80 Mbyte disk in the Acoustic Signal Processing Facility 

at Caltech. 

For both 4.8 and 9.6 Kbitsls, we require speech sampled at 7.5 KHz. A method 

for conversion of sampling rate by a rational fraction ZlM (both Z and M are 

integers) is described in Fig. 7.1 (see Chapter 2 of [67]). In this method, the speech 

samples are first passed through an Z-fold sampling rate expander; i.e., each input 

speech sample is padded through a lowpass filter. This filter approximates an ideal 

response of Z in the frequency range [O, min(a/t ,  r/M)], and is zero elsewhere. 

Finally, the output of the lowpass filter is passed through a M-fold sampling rate 
-th 

compressor which picks every A4 sample and discards the rest. In our application, 

the sampling rate conversion from 10 KHz to 7.5 KHz was accomplished by choosing 
- 
L = 3 and M = 4. The lowpass filter used was a linear phase FIR filter which 

was designed by the Parks-McClellan algorithm ([68]). The designed filter had a 

deviation of 0.08 dB in the passband 10, 0.231~) and an attenuation of -40.65 dB in 

the stopband [0.251~, r]. The filter length was 201. After data compression, the 
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Fig. 7.1 Sampling rate conversion by a rational fraction L / M  



-96- 

sampling frequency has to be reconverted to 10 KHz before conversion to analog. 

This was accomplished by choosing t = 4 and M = 3 and the same lowpaas filter. 

The complete speech recording sequence is shown in Fig. 7.2. The synthesized 

speech sentences, which were stored in an 80 Mbyte disk, were converted to analog 

by a 16 bit D/A converter using an external 10 KHz clock. The output of the 

D/A is a staircase waveform and is smoothed using a 8-pole Butterworth filter with 

cutoff at 5 KHz. It is then preamplified and recorded on a high quality low-noise 

tape. The recording can be monitored using headphones or speakers connected to 

the preamplifier. 

The recording was done using the Dolby noise reduction scheme so as to reduce 

the effects of tape noise. The synthesized speech samples, as do the original speech 

samples, lie between -2048 and 2047. However, the D/A used has 16 bits and can 

therefore accept speech samples that lie in the range -16384 to 16383. So before 

recording, the speech samples can be scaled up by a factor less than or equal to 16. 

The advantage of scaling is that while it does not affect the degradation introduced 

by the data compression, it improves the signal-to-(output device) noise ratio. In 

our experience, a scale factor of 8 is adequate to ensure clean recording. 

7.2 Objective evaluation of quantile vocoder 

An important and widely used objective measure of vocoder performance is the 

segmental signal-to-noise ratio (see Appendix E.2 in [65] and also 1691-[71]), denoted 

by SNRSEG.  The segmental signal-to-noise ratio is expressed in dB and is defined 

as 

SNRSEG = E[SNR(m)]  

where SNR(m) is the conventional signal-to-noise ratio in dB for segment (or 
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frame) m, and the expectation is in practice a time average over all segments of 

interest. In our work, all the segments in the ten sentences have been included 

in computing the S N R S E G  for each speaker at every bit rate. This performance 

measure is preferred for vocoders to the conventional signal-to-noise ratio because 

it takes into account the fact that the same amount of noise has different perceptual 

effects depending on the signal level. 

Fig. 7.3 contains a table of values of S N R S E G  at 24, 16, 9.6 and 4.8 Kbits/s. 

At each bit rate, the segmental signal-to-noise ratio for the male speaker, the female 

speaker and the overall average is presented. The segment size used in computing 

the S N R S E G  is just the frame size. Thus for 16 and 24 Kbits/s, the segment size 

is 2 5 . 6 ~ .  For 4.8 and 9.6 Kbitsls, the segment size is 3 4 . 1 3 ~ .  

A plot of the SN R  and the speech power (in dB) for each segment versus the 

segment number is given in Fig. 7.4 at all the bit rates for a sentence spoken by a 

female speaker. This gives us a rough idea of the fluctuation of the signal-to-noise 

ratio from segment to segment in a sentence at various bit rates. 

7.3 Subjective evaluation of quantile voeoder 

In this section, we will describe a formal subjective test in order to assess the 

quality of the speech synthesized by the quantile vocoder at various bit rates. This 

test is referred to  in the literature as the mean opinion score test. Our treatment 

closely follows the one given in Appendix F.l in [65]. Another excellent reference is 

the paper by Daumer ([72]). 

In the mean opinion score test, several subjects are recruited and each of them 

classifies the synthesized speech on a 5 point scale for speech quality or speech 
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impairment. Thus, the speech quality is judged as excellent, good, fair, poor or 

bad. These categories comespond to speech impairment which is imperceptible, 

just perceptible but not annoying, annoying but not objectionable, or very annoy- 

ing and objectionable. These categories are also associated with numbers, so that 

judgements can be on a scale o f ,  say, 1 to 5. The five scale steps for speech quality 

and impairment and the associated number scores are presented in the form of a 

table in Fig. 7.5. 

The scores from these tests are averaged over all the subjects, speakers and 

sentences spoken by each speaker. This pooled average judgement is called the 

mean opinion score (MOS) for the ensemble of listeners, speakers and sentences. 

Since MOS values are very difficult to duplicate in repetitions of an experiment, 

the standard deviation of the MOS value across the population of subjects, 

talkers and sentences is very useful in assessing the repeatability of any MOS rating. 

In our work, we have used the ten sentences spoken by one male speaker and 

dne female speaker and six subjects to obtain an MOS rating at all the bit rates for 

the quantile vocoder as well as for 7, 6, 5, 4 and 3 bits/sample (10 KHz sampling 

rate) p-255 law (Section 5.3.2, [3]) PCM coders, as an initial comparison of our 

vocoder. The output speech samples of the p-255 law PCM coden were obtained 

as follows. The input speech data, which lie between -2048 and 2047, are first 

passed through a p-255 law compander. Thus, if x, is the input speech sample, 

then the companded speech sample Z, is given by 

- sign(xn) -2048 
2, = 255 1zn1 

log 256 log ( l  + 2048 ). 

We note that Z, also lies between -2048 and 2047. The companded speech sample 

is then quantized uniformly using 7, 6, 5, 4 and 3 bits. After quantization, the 

companded speech sample 2, is expanded according to 
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- sign($,) .2048 !%,I log 256 
2, = 

255 { = P ( -  2048 1 - 1). 

Finally 2, is rounded off to  the nearest integer to produce the output speech sample 

of the p-255 law PCM coder. 

The mean opinion score test is administered as follows. Each speech sentence 

synthesized by the quantile vocoder at 4.8, 9.6, 16 and 24 Kbits/s as well as by 

the 7, 6, 5, 4 and 3 bits/sample (10 KH1; sampling rate) p-255 law PCM coders is 

recorded in a random order. A tape containing ten such sentences spoken by one 

male and one female speaker is provided to the subject who assigns a score between 

1 and 5 for each sentence. The subject is allowed to listen to any sentence as often as 

he or she desires. The MOS rating and the associated standard deviation for both 

the male and the female speaker as well as the overall MOS rating are determined 

for the quantile vocoder at 4.8, 9.6, 16 and 24 Kbits/s and for the p-255 law PCM 

coder at the five quantization levels corresponding to 70,60, 50,40 and 30 Kbits/s. 

The results are presented in the form of a table in Fig. 7.6. 

The conclusions of the subjective evaluation tests can be summarized as follows. 

The MOS rating for the 4.8 Kbitsls quantile vocoder is higher than the MOS rating 

for the 30 Kbits/s (3 bits/sample) p-255 law PCM coder for the male speaker but 

lower for the female speaker. The overall MOS rating for the 4.8 Kbits/s quantile 

vocoder is marginally higher than the overall MOS rating for the 30 Kbitsls p-255 

law PCM coder. The MOS rating for the 9.6 Kbits/s quantile vocoder lies between 

the MOS ratings of the 30 and 40 Kbits/s p-255 law PCM coders for both the 

male and the female speaker. The MOS rating for the 16 Kbitsls quantile vocoder 

lies between the MOS ratings of the 40 and 50 Kbitsls p-255 law PCM coders for 

both the male and the female speaker. The MOS rating for the 24 Kbits/s quantile 
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vocoder lies between the MOS ratings of the 50 and 60 Kbits/s p-255 law PCM 

coders for both the male and the female speaker. 



Bit rate MOS 

/ (Kbits/s) (Male) 
I 

I I 
I 

MOS I 1 ~ M O S  I QMOS 

(Female) 

~ M O S  

(Male) 

Pig. 7.6 Results of the subjective evaluation tests 

MOS 

(Female) (Ovt rail) (Overall) 
! 



- 106- 

CHAPTER 8 

SUMMARY AND CONCLUSIONS 

In this thesis, a new speech compression scheme, the quantile vocoder, was 

investigated. The basic idea behind this new speech compression scheme is the 

encoding of the spectral envelope using quant iles. Algorithms to reestimate the 

spectral envelope from the quantiles and the quantile orders were developed. A 

multi-pulse excitation model in cascade with a 1-tap pitch predictor model was used 

to model the excitation. Algorithms to estimate the parameters of the excitation 

model were reviewed, evaluated, and implemented. Quantization schemes for the 

transmission parameters of the quantile vocoder were developed. The quantile 

vocoder was implemented at 4.8, 9.6, 16 and 24 Kbits/s. The segmental signal- 

to-noise ratio, an objective performance measure, and the mean opinion score, a 

subjective performance measure, were used to  evaluate the vocoder at these bit 

rates. 

The performance of the vocoder at 4.8,9.6, 16 and 24 Kbits/s, based on the seg- 

mental signal-to-noise ratio, the mean opinion score and informal listening tests, has 

been found to be very promising, especially at 4.8 Kbitsls. But further development 

is necessary, especially at low bit rates, before the quality of the speech synthesized 

by the quantile vocoder becomes accept able for many commercial applications. 



-107- 

APPENDIX A 

Merchant-Parke method for solving Toeplits plus Hankel eyetern of equations 

In this appendix we will briefly describe an efficient method for solving Toeplitz 

plus Hankel system of equations. This method is due to Merchant and Parks ([MI). 

The central idea in their method is to convert the Toeplitz plus Hankel matrix into 

a block Toeplitz matrix and then employ block Levinson algorithm ( [ 5 2 ] ) .  

We first introduce some notation. Let A be any (M + 1) x (M + 1) matrix 

and c be a (A4 + 1) dimensional vector. Define the ezchange operator J as the 

(M + 1) x (M + 1) matrix 

Define the following: 

AT = transpose of A. If AT = A, A is said to be symmetric. 

Ax = cross transpose of A around main cross diagonal. If Ax = A, A is said to be 

persymmetric. 

T = Toeplitz matrix, i.e. {TIij = t(i - j), a function of i - j only. 

H = Hankel matrix, i.e. {HIij = h(i + j), a function of a + j only. 

Note that J2 = I = identity matrix, and JAJ = AT" = AxT. The operations (.)= 

and (.)" commute. Further, if B is any other (M + 1) x (M + 1) matrix, then 

(AB)" = JABJ = JAJ JAJ = A~'B". 



Note that a Toeplitz matrix T is persymmetric and a Hankel matrix H is symmetric. 

We define a (2M + 2) x (2M + 2) interleaving operator Q such that 

1 i f i = 2 r ,  j = r ,  O < r < M ;  
1 i f i = 2 r + 1 ,  j = M + r + l ,  O < ~ L M ;  
0 otherwise. 

Note that QTQ = QQT = I. If we operate on a (2M + 2)-dimensional vector p 

with Q, then Q simply interleaves p, and P&f+,+l for 0 < r < M. That is, 

Now let us consider a Toeplitz plus Hankel system of equations 

Write (Al) as two different equations: 

T c + H J . J c = b  

JTJ - Jc + JHc = Jb 

or in matrix form as 
T HJ 

(JH JTJ)  (:I) = (?). (A31 

Since T is persymmetric JTJ = TTr = TT. Denoting HJ by TH, we note that 

T z  = (HJ)T = JTHT = JH. SO (A3) can also be written as 

We now note that the matrix TH = HJ is a Toeplitz matrix with {TH), = h(M + 
i - j). Each block matrix in (A4) is thus a Toeplitz matrix. Finally, using the 

interleaving operator Q on (A4), we get 



What we have now is 

where 

We have thus converted the Toeplitz plus Hankel system of equations ( A l )  into a 

block Toeplitz system of equations (AS).  

The block Levinson algorithm can now be applied. The block Levinson recur- 

sions can be summarized as follows: 

Step 1 : 

x0 = yo = (i ) , ro = P1 = R ; l b ,  VZ = R.. 
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Step 2 : For 1 < t < M, 

i-1 

( b )  ~p = =C &-jcj 
j=o 

(e) Vz t- Vz - EzZBz 

(f)  g = (v,TX)-l(ii - ep) 

Step 3: The elements of c, i.e, c,, c l ,  . . . cnl can be directly read off PM+l. 

This completes our brief discussion of the Merchants-Parks algorithm. 
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APPENDIX B 

Evaluation of optimum a in spectral correction algorithm 

The error measure that we seek to minimize in the spectral correction algo- 

rithm is given by 

1 1 
where a = 1 + cos al cos a* - -(r + -)2 - cos2 a 

4 r (B2) 
1 

b = cos al + cos cr2 - ( r  + -) cos a. 
r (B3) 

In this appendix we will show that there exists a unique optimum a for a given 

r ( r  < l ) ,  which minimizes E. We will also obtain a closed form expression for the 

optimum a. 

This appendix is divided into three parts. In the first part, we will show that 

the optimum a=@* must satisfy the cubic equation 

el cosS a + bl cos a + al = 0 (B4) 

where cl, bl and al are all functions of r, al and a2. In the second part, we will 

show that equation (B4) always has a unique real solution for a*. In the third part, 

we will present a closed form expression for this real solution. 

Part 1 : Derivation of equation (B4) 

For minimum 2, we must have 

So let us evaluate the first two derivatives of F with respect to a. 

d F  db d a 
--- = 6- + 2a- 
d a  d a  d a  

1 
= b(r+ -)sin a + 4 a s i n  acos  a 

r 
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Substituting for a and b from equations (B2) and (B3),  we get 

d';E 
- = sin a( cl cos3 a + bl cos a + al ) 
da 

where 

1 
bl = 4 + 4cos al cos a2 - 2(r + - ) 2  

r 
1 

al = ( r  + -)(cos al + cos a2). 
r 

The second derivative of F with respect to a can now be expressed as 

bZF 
- = cos a( cl cos3 a + bl cos a + al ) + sin2 a( -3cl cos2 a - bl ). (B9) da2 

From (B5) it is clear that the first derivative vanishes at a = 0, a = A and at those 

values of &=a' which satisfy the cubic equation (B4). Let us now examine whether 

the second derivative becomes positive at these values of a. At a = 0, 

1 1 
= 4cos al cos a2 - 2(r + - ) 2  + ( r  + -)(COB al + cos a2)  

r r 

Thus we see that a = 0 is not a minimum. At a = A, 

1 1 
= 4 cos al cos a2 - 2(r + -)' - (r + -)(cog a1 + COB a2)  

r r 
1 1 

< d - Z ( r + - ) ? + Z ( r + - )  ( s i n c e / c o s a l ~ ~ l , ~ c o s a 2 ~ ~ 1 )  - r r 
1 

= 4.5 - 2(r + - - 0 . 5 ) ~  
r 



which is again less than 0. So a = ~r is not a minimum. Finally, consider an a = ar* 

which is a solution of the cubic equation (B4): 

12 cos2 a* - 4 - 4 cos a1 cos a 2  + 2(r + 
1 > 12sin2 a*cos2 a* (since Icosalcos a21 < 1, ( r + - )  > 2 i f r <  1 )  
r 

2 0. 

Thus, we have shown that any a=&* which satisfies equation (B4) minimizes F .  

Part 2 : Uniqueness of a* 

Consider the cubic polynomial f (z) defined by 

Now 

1 1 1 1 
f (1) = -(r + -)2 - COB a1 cos a 2  - -(r + -)(cos al + cos a2) 

2 r 4 r 

1 1 1 1 
f(-1) = --(r+ -)2 +COB altos a2 - -(r+ -)(cos al f c o s  a2)  

2 r 4 r 
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So, clearly, there exists at least one value x = x* in the interval [-I, 11 for which 

f (x)=O. We next show that the other two solutions of f (x)=O are complex rather 

than real: 

1 1 1 
f (z) = Z" +(' + -)2 - 1 - COS COS a 2  + -)(cos + C 0 8  a2) 

r r 

= (2 - x*)(x2 + x*x + w). 

By equating coefficients of x we get 

1 1 > - ( r+  -)2 - 1 - 1 (since Icos alcos a21 < 1 ) 
2 t 

But the discriminant of the quadratic x2 + x*x + w is 4 ( d 2  - w), which is negative. 

So the quadratic has no real roots. We conclude that the cubic equation 

has only one real root which lies in 1-1, I]. There is only one real solution a = a* 

which satisfies 

cl cosS a + bl cos a + a, = 0. 

Part 3 : Closed form solution for a* 

We now proceed to give a closed form expression for z*, the real root of f (x) = 0, 

which is the same as cos a*. The closed form expression has been obtained using a 

standard method for solving cubic equations ([53]): 

COS a* = X* 



where 
a 1 1 1 p = - = --(r + -)(cos al + cos a2) 
c 1 4 r 

1 
I = 5 = - - (2+2cos  a,cos a2 - ( r +  --) . 

c1 2 2> 



Friedlander's spectral factorisation algorithm 

We are given a polynomial C ( z )  where 

C i  where & = R-; = - 1 5 ; 5 M 2 

and R, = c,. 

Let us temporarily assume that C ( z )  is positive definite. Such a positive definite 

polynomial can always be expressed as 

M 
where A ( z )  = C aiz-' is a minimum-phase polynomial; i.e., the roots of A ( z )  all lie 

i=O 
within the unit circle. This kind of factorization is called the spectral factorization. 

The spectral factorization problem is simply this: Given C O ,  c1, . . . , C M ,  solve for 

a,, a l ,  . . . , aM. The approach that we will describe is due to Friedlander ([SO]). In 

this appendix we will describe only the basic idea behind the algorithm. For further 

details of implementation the reader is referred to [50]. 

Any positive definite sequence such as { R - M , .  . . , R M )  can be thought of as 

an autocorrelation sequence of a moving average random process {yt) which is 

generated according to 

where {e,) is a sequence of uncorrelated random variables with zero mean and unit 

variance. One can easily verify that 

0 otherwise . 



We define the covariance matrix RN as the (N + 1) x (N + 1) matrix whose ( i ,  j)th 

element is Rj,i (0 5 i < N, 0 5 j < N). Thus, for N sufficiently larger than M, 

Note that the covariance matrix RN is positive definite because if n is any non-zero 

(N + 1) dimensional vector then 

We also note that RN is Toeplitz, symmetric and has a banded structure. The 

Choleski factorization ([47]) of the matrix RN can be expressed as 

where 



I 

Note that Rg has all real elements and it is upper triangular and also has a banded 

structure. 

1 

As the size of the matrix N increases ( N  -+ oo), the top row of Rk matrix will 

converge to the coefficients of A(z): 

lim $M-; f l  = a ;  
N-w 

O<i<M. ( c1 )  

Friedlander explains this observation as follows. We can express the R,-'s as 

Now the top row of RN can also be expressed as 

For sufficiently large N, 

Comparison of (C2) and (C3) validates (Cl). 

The convergence rate of the algorithm depends on the location of the roots of 

A(z). The closer the roots are to the unit circle, the longer the algorithm will take to 

converge. This difficulty, however, is inherent to the spectral factorization problem 

and is not caused by the specific technique that we have used. The convergence can 

be checked by finding out how much the parameter values { $ i , N ) ,  which correspond 
I 

to the top row of the Rz matrix, change with each iteration. 

However, in our application the estimated C(w) is not guaranteed to be positive 

definite. If the estimated C(w) is not positive definite, then the matrix RAT will not 
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be positive definite, either. As a consequence, at least some of the T/J~,;'S, which 
1 

are the diagonal elements of the matrix R i ,  will become zero or imaginary. Thus 

we can always detect when C ( w )  is not positive definite, so that we can use the 

spectral correct ion routine. 

So in practice as we run the algorithm on the estimated C(w) ,  any of these three 

situations can arise: 

1. C(z) is positive definite and has roots not too close to the unit circle. In this 
1 

situation, the elements of R i  are all real and the algorithm converges within a 

specified number of iterations N,,,. ( The value of N,,, in our implementation is 

400.) 

2. C(z) is positive definite but some of its roots are close to the unit circle. In 
1 

this situation, the elements of Rk are still real but the algorithm does not converge 

in fewer than N,,, iterations. To speed up the algorithm, we add a very small 

constant to C(z) and run the algorithm again. The value of this small constant in 

our implement ation is 0.001 lcol. 

3. C(z) is not positive definite. This situation is detected when some of the diagonal 
1 

elements of the matrix R i  become zero or imaginary. So the sequence C(z) is sent 

to a spectral correction routine (see Section 4.3) to be modified. The algorithm is 

rerun on the modified C(z), which is guaranteed to be positive definite. 

This concludes our discussion of Friedlander's spectral factorization algorithm. 
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