Extremal Problems

in Codes, Finite Sets and Geometries

Thesis by

Moya Michelle Mazorow

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1991
(Submitted May 21, 1991)



i
ACKNOWLEDGMENT
I would like first to thank my advisor, R. M. Wilson, for introducing me to the
field of Combinatorics, for patiently answering all of my questions as I worked
on this thesis, and for his many helpful suggestions and pointers. I also want to
thank my husband Dale for encouraging me to continue with my studies. He has
provided me with love, hugs, and support during my entire time at Caltech. I

dedicate this thesis to my family, Dale and Heather.



iii
ABSTRACT

This thesis covers some extremal problems in the areas of coding theory, finite
set systems, and projective geometry. It was completed under the supervision of
Professor R. M. Wilson.

Bounds on the dimension of a binary linear code C are derived when constraints
are placed on the weights of words in C. It is known if C is a binary linear code of
length a2® and dimension 2%, then C contains a nonzero word of weight divisible
by 2% A code of length 18 and dimension 7 is constructed that contains no
nonzero word of weight divisible by 6. Let p be an odd prime and « a positive
integer. It is shown that if p® is large, then a code of length 6p* that contains
no nonzero words of weight divisible by 2p® has dimension at most [1.95007]2p%.
This is a slight improvement over the known bound. For an infinite family of
even b, codes of length 3b containing no nonzero words of weight divisible by b
are constructed whose dimensions are approximately l—é-b-.

Coloring problems on graphs and hypergraphs are also studied. Let G = K, be
the complete graph on 9 vertices. A coloring C' = {C; : 1 < 42} of the subgraphs
K, is constructed with the property that no edge of G is contained in two K,’s
of the same color. It is also shown if the edges of K,, are three colored then for
large n there are at least 0.4(’;) triangles whose edges are colored differently.

We consider coloring problems in projective geometry similar to the statement
above on triangles. If the points of PG(3, ¢) are partitioned into g + 1 classes,
then there are at most ¢* + 1 lines tranverse to the partition. Also included is a
much easier result that if the points of a projective (n — 1)-space of order g are
partitioned into p = %—1— classes, then there are at most ¢"~! hyperplanes that

are transverse to the partition. In both cases, up to isomorphism, it is shown

that there is a unique partition that achieves the upper bound.
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Introduction and Summary

In this thesis, I present results on extremal problems in binary codes, finite set

systems, and finite projective geometry.

The first topic I present concerns binary linear codes, i.e., subspaces of the
vector space F™ where F = {0,1} is the field of two elements. A code C of
dimension k is referred to as a [n,k] code. For application purposes, one is
interested in the maximum dimension a code C may have subject to the restraint
that all codewords in C have weight at least d, (i.e., all codewords contain at
least d ones). While it may not be critical for practical error-correcting codes,
it is combinatorially interesting to ask for the maximum dimension subject to

other weights not occurring,.

Let S be a set of disallowed weights. Let w(n, S) be the maximum dimension of
a binary code none of whose codewords have weight in the set S. Let w(n, S) be
the maximum dimension of a binary code none of whose codewords have weight
in the set S and which in addition contains at least one word of odd weight. The

following two results have been shown in [7].

THEOREM 2.6. If C is a [4t,2¢t] binary linear code, then C has a nonzero code-

word z with wt(z) = 0 (mod 2t). In fact, w(4t,{2t,4t}) = 2¢t — 1.
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LEMMA 2.18. For a an odd integer and b a power of 2,
w(ab,{ib:1<i<a})=0b-1.

Since we are studying linear codes, we may associate to each code a binary
matrix whose row space is the code. A parity check matrix of a code C is a
matrix whose rows span the dual code of C. Finding a word in a code C of
weight w is equivalent to finding a set of w columns of the parity check matrix
for C that sum to the zero vector. Naturally then we are led to study matrices.
In [7] a form for matrices called binormal form was introduced. It was useful
since a k X n matrix in binormal form has k£ columns summing to the zero vector.
In this paper we generalize binormal form. Before we present the definition we
will need some terminology.

Given integers o,1,n satisfying oz < n, let f; = (f;) be the binary vector of

length n where
5 {1 for (1 — )a+1<t<1a,
t =

0 otherwise.

For ak < nlet A(a,k,n) be the n x k£ matrix whose columns are the f;’s.

DEFINITION: A k x n binary matrix M with ak < n for some positive integer «,
is in a-normal form if

MA(a,k,n) = I.

EXAMPLE. 2-normal form

0111110011001
0 01 0110O0O0O0T1T1T]1
M=|000010O0O011110
11 1100O010O0O0O0TO0
0 011111110010

We develop sufficient and necessary conditions for when a matrix may be

brought into o-normal form by row operations and column permutations.
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LEMMA 1.2. Let a be a positive even integer, and let M be a k X n binary matrix
such that ak < n. If M can be brought into a-normal form by elementary row
operations and column permutations, then the all ones vector, 1,, is not in the

row space of M.

THEOREM 1.3. Let M be a k X n binary matrix of rank k, and assume that
ak < n for some positive integer a. If o is even, assume in addition that 1,
is not in the row space of M. Then M can be brought into a-normal form by

elementary row operations and column permutations.

COROLLARY 1.5. Let M be a k x ak binary matrix of rank k for some posi-
tive integer o. Then M can be brought into a-normal form by elementary row
operations and column permutations if and only if there exists a row of M not

orthogonal to 144 and, additionally, if « is even, 1,1 is not in the row space of

M.

Suppose a subset S C {1,...,n — 1} satisfies j € S ifand only if n — j € S.
Using the results on matrices, I am able to derive upper bounds on codes whose

weight set does not intersect the set S. In particular, I show

THEOREM 2.8. If C is a [4t + 2,2t + 1] binary linear code that does not have

14142 in its dual, then C has a nonzero codeword z with wt(z) =0 (mod 2t 4 1).
In fact, w(4t + 2, {2t + 1,4t + 2}) = 2t.
COROLLARY 2.16.

(1) Ifbis an odd integer, w(3b,{b,2b,3b}) = 2b — 2;
(2) If b is an even integer, b—1 < w(3b, {b,2b,3b}) < 2b— 2.

Notice in Lemma 2.18 that the lower bound is trivial. So it seems surprising

that it is best possible. But if one looks at Theorem 2.6 and Theorem 2.8, both



of these lower bounds are also trivial. In view of Corollary 2.16, it is natural to
ask if Lemma 2.18 holds for any even b. In fact it does not. In [7] the authors
remarked that I had informed them of this, but they did not list my example. (I

was cited under my maiden name Klementis.) The following is an example with
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a = 3 and b = 6 for which the bound in Lemma 2.18 fails to hold.

Let C be the [18,7] code which is generated by

1
0
0

0
0

\o

C OO OO ~O

OO OO OO

OO O OOO

SO OO O+ =

1100 0111
0 0110110
1 0101101
01011011
0 000 O0O0TO0OTPO
0 000 OCOCOO
0 000 O0OOTD O

S OO = HH PO

N N

OO OOOOo

R O OO OO

0

1/

Nonzero words in C' have weights in the set {1,2,3,8,9,10,11}. Thus

For an infinite family of even b, codes of length 3b containing no nonzero words
of weight divisible by b are constructed whose dimensions are approximately 1—;—'3.
Using Theorem 2.6 when b is even and a is odd, one can show that a code of

length ab containing no nonzero words of weight divisible by b has dimension at

most g-lztlb — 2. We improve this bound slightly.

PROPOSITION 2.23. Let p be an odd prime, « a positive integer, and a an odd

integer. If b = 2p®, then

1
w(ab, {tb:1<i<a})< (ilog2

In particular, for large b,

(2a)2a

w(18,{6,12,18}) > 7> 6 — 1.

log,b—1

w(3b, {b,2b, 3b}) < 1.95008.

(2a — 1)2e—1

2b

)e
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The second part of my thesis involves the study of finite sets. Let X be an
n-set and Px(X) the collection of all k-subsets of X. Many problems can be
asked concerning the decomposition of Pr(X) into classes each of which has
some property. Questions of this form have been posed and investigated before,
cf. [4].

A set P C Pi(X) is called a packing of t-sets when every t-subset of X is
contained in at most one element of P. A Steiner system S(¢,k,n) is a special
kind of packing in which every t-set is contained in exactly one element of the
packing. What is the minimum number of classes x(t, k¥, n) needed to decompose
P(X) into classes each of which is a packing of ¢-sets? This is not a new problem.

The case t = 1 was handled by Baranyai [4] who showed

LEMMA 1.11 (BARANYAI). One can partition the k-sets of an n-set into

()

classes in which each element of our n-set occurs at most once.

When the parameters ¢, k,n are such that an S(¢,k,n) exists, investigations
have been primarily limited to partitioning Pi(X) into classes each of which is
an S(¢,k,n), cf. [8, 9, 13, 14, 20].

We show

THEOREM 3.9. If S(k — 1, k,v) exists then the following are equivalent.
(1) A large set of disjoint S(k — 1, k,v) exists;
(2) x(k—-1,k,v)=v—Fk+1;
3) x(k=1Lk,jv—-1)=v—k+1.

We give constructions showing

x(2,4,9) = 42;
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X(2,5,12) = 264.

We also study a related question. Notice that in a partition of Px(X) into
packings of t-sets all k-subsets of a (2k — t)-set are in different elements of our
partition. Our question then could have been phrased as a coloring problem
on hypergraphs. Given a n-set X, define a hypergraph H = (V,£); V is the
collection of k-sets of P, and & is the collection of s-sets. A vertex K is on a
hyperedge E if K C E.

A strong p-coloring of H is a partition C' = {C; : 1 < p} of the vertices of H so
that every edge F satisfies | C; N F |< 1, for all :. An edge with this property
is called polychromatic. If s = 2k — ¢, then x(¢, k,n) is the minimum number of
colors needed to guarantee the existence of a strong coloring of H.

Instead of varying the number of colors and requiring all s-sets to be poly-
chromatic, one may fix the number of colors and ask for the maximum number
of polychromatic s-sets. Let m(p; k, s,n) be the maximum number of polychro-
matic s-sets over all p-colorings of H. Of course if p < (z), one trivially has
m(p; k,s,n) = 0. I am interested in p = (Z) For example I show the following

two results.

COROLLARY 3.15. Assume4 <n,and2< k< 2. Then

m((n;c—l);k,n——l,n) = 2.

COROLLARY 3.17. Assume d is defined by

n _n—d
n—k| n-k

and that for allt, 0 <t < d we have (n —k —t) | (n — d). Then

m((ngl);k,n—l,n) =n—d.
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For fixed k and s it is shown that the sequence

m(p; k, s,n)
is a bounded decreasing sequence. I study its behavior when p = 3,k = 2, and

s = 3. I show for n > 8 that

0.40 < MBi%3n) 4
(3) 7
I conjecture that
lim TQ-Z%M = 0.40.
n—oo 3

In the third part of my thesis, I make the natural generalization from questions
on sets and subsets to questions on vector spaces and subspaces. In particular
one may generalize a coloring of subsets of an n-set to a coloring of subspaces of
P, a projective (n — 1)-space. As for sets I study partitions of the set of k-flats
of P, i.e. partitions of the set of projective (k — 1)-dimensional subspaces. Given
a partition, a s-flat is polychromatic if no two of its k-subflats lie in the same
element of the partition. B. Rothschild and P. Frankl [18] asked if one were
to partition the points of projective (n — 1)-space into ¢ + 1 classes, how many
lines would be transverse to this partition. This is the projective space analogue
to finding m(p; 1,2,n); therefore, let m(p; k,s,n) be the maximum number of
polychromatic s-flats over all p-colorings of k-flats of a projective (n — 1)-space of
order ¢q. I only study mq(gqi_:il—; 1,s,n). The results are summarized in Theorem

4.5 and Theorem 4.12. I state them here in words.

If the points of a projective (n—1)-space P of order q are colored with 3’—7-:_1—1_1 col-
ors, then there are at most ¢"~! polychromatic hyperplanes. Up to isomorphism,

there is a unique coloring which attains this upper bound.
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If the points of PG(3, q) are partitioned into ¢+ 1 classes, then there are at most
q* + 1 polychromatic lines. Up to isomorphism, there is a unique partition that

achieves this upper bound.

In proving Theorem 4.12, I actually proved a slightly different result. Instead
of coloring the points with ¢ + 1 colors, they are colored with r > 1 colors where
r is a divisor of ¢ + 1. A balanced line is a line with equal number of points of
each color. The results are summarized in Theorem 4.10 and Theorem 4.11. I

state them here in words.

If the points of a projective plane of order q are colored with r colors, then
there are at most ¢ balanced lines. Moreover, up to isomorphism, the extremal

coloring is unique.

If the points of PG(3, q) are partitioned into r equal size classes, then there are
at most ¢* + 1 balanced lines. Up to isomorphism, there is a unique partition

that achieves this upper bound.

Although I originally was studying the situation in Theorem 4.12, I think these
two results are worth mentioning.

Let us say how this thesis is organized. In Chapter 1, I develop conditions on a
matrix that will be needed to prove the dimension bounds of Chapter 2. The first
section of Chapter 2 is devoted to definitions and presentation of terminology and
simple results. In Section 2 the disallowed set of weights contains only integers
that are approximately half the length of the code. Section 3 and Section 4 are
devoted to codes when the restricted weight set is all multiples of some divisor
of the length. Upper bounds are developed in Section 3 while lower bounds are

constructed in Section 4.
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In Section 1 of Chapter 3, I state a coloring problem on sets and develop some
bounds. Section 2 summarizes results known on packings. Section 3 concerns
when it is possible to lift a coloring on n — 1 points to one on n points. In
Sections 4 and 5, I give various constructions. Section 6 specializes to colorings
with p-colors and presents lower and upper bounds for m((}); k,s,n) when k = 1
and when s = n — 1. Section 7 deals with k¥ =2 and s = 3.

Section 1 of Chapter 4 is devoted to defining projective spaces. The remaining
sections consider point colorings. Section 2 gives constructions of lower bounds
on my(s;1,s,n) and shows that the construction is optimal for hyperplanes. In
Section 3 bounds are developed that will be needed in Section 4 to prove the

results on optimality for polychromatic lines in 2-space and 3-space.
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1

A Form for Binary Matrices

We wish to develop a form for matrices that will be helpful in studying the
weight distribution of a code. In this section, we wish to familiarize the reader
with a form on (0, 1)-matrices which generalizes one first introduced by Enomoto,
Frankl, Ito, and Nomura [7]. The results will be needed in the next section. First

we need some terminology.

Let M be a k xn binary matrix. Throughout this section r; or ¢; will always be
used to denote the ¢'* row or j** column of M. The weight of a binary vector x is
the number of nonzero coordinates of x. For positive integers o and ¢ satisfying
ai < n, we define the i** block of M with respect to « as the k x a submatrix of
M whose columns are indexed by oz — 1)+ 1,... ,ai. When the choice of « is

unambiguous, we denote the i** block by M;. We have

M; = | ca(i—1)+1 Ca(i-1)+2 *** Cai
| | |

EXAMPLE 1.1. Blocks of a matrix with respect to a = 2.

If

[ e Rl R Y
_ O
OO =
O o
— O
U o R Y
S - PO
o RO
SO PO
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then the blocks of M are

10 1 1 1 1 0 0
0 1 1 1 1 0 1 1
My = 01’M2_ 01’M3‘ 01’M4_ 1 1
11 0 0 1 1 0 1

Given integers «, ¢, n satisfying az < n we denote by f; = fi(a) the 1 X n matrix

with all ones in the it* block and zeros elsewhere. So

fi=(1 ... 1.0 ... 00 ... 0),
fr=(0 ... 01 ... 1 0 ... 0),
and in general
£=(0 ... 00 ... 01 ... 10 ... 0).

For ak < nlet A(a, k,n) be the n x k matrix whose columns are the f;’s. That

is

b !
Ala, k,n) = (fir £ ... f,:_)

DEFINITION: A k X n binary matrix M with ak < n for some positive integer a,
is in a-normal form if

MA(a,k,n) = Ii.
When a = 2 we say binormal form instead of 2-normal form.

EXAMPLE 1.2. Binormal Form

Let £k =4 and n = 9. By definition then

1000
1000
0100
0100

A2,4,9)=]0 0 1 0
0010
0001
0001
0000




12

If

—H O
O = O
OO
O bt el
R e R Y
o O
oo
IR =)
cor o

then

—
= O
o

MA@2,4,9=|0 0

= o O OO

So M is in binormal form.

EXAMPLE 1.3. 3-Normal Form.

P

il
el i
c oo
= e
O = O
OO O
Q= QO
- OO O
= OO
OO OO
=
= O
== 0 O
= O =

Now if {r;,f;) is the standard vector dot product our definition just requires

that
(1.1) (I‘i,f:i) (mod 2) = 5,‘j for all 1 < i,j < k.
Equivalently M is in a-normal form when for all j, 1 < j <k,

")

(1.2) Ca(j—1)+1 T Ca(j—1)+2 + -+ + Caoj =€ = ! )
0

o)

where e; is the binary vector of whose only nonzero entry is in the j®* coordinate.

Once a form has been defined one usually wants to find the sufficient and

necessary conditions for when M is row equivalent to a matrix in that form. For
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our purposes though the order of the columns is unimportant. We will instead
find sufficient and necessary conditions on a matrix M so that there exists column
permutations and elementary row operations that transform M into a matrix M’

in o-normal form. To this end let us make the following observation.

LEMMA 1.1. Let a be a positive integer. A k X n binary matrix with ak < n
can be brought into a-normal form by elementary row operations and column
permutations if and only if there exists a partition of the multiset of columns
into k + 1 sets Sy, 59,...,Sky+1 such that:

(a) |Sil=afor1 <i<k;

(b) {ti = ZCES; c:1<:< k} forms a basis for the column space of the ma-

trix.

PRrooOF: The forward direction is trivial. For the other direction let M be the
given matrix. By permuting the columns one can consider M to have S; as ité
first block, S, as its second block, etc. Let T denote the matrix whose columns are
t1,t2,...,tx. Since these columns are independent there exists row operations
to transform T into the identity matrix; i.e. there exists A such that AT = Ii.
Let M* = AM. If the 1** block of M* is S}, then S = {Ac : ¢ € S;}. Thus the
columns in the i** block of M* sum to At; = e;. It follows from (1.2) that the

matrix M* is in a-normal form. ]

In Example 1.2, it is evident that the all ones vector is not in the row space of

M. When « is even this is always true.

LEMMA 1.2. Let a be a positive even integer, and let M be a k x n binary matrix
such that ak < n. If M can be brought into a-normal form by elementary row
operations and column permutations, then the all ones vector 1,, is not in the

row space of M.
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PROOF: Let M' be the matrix in a-normal form obtained from M by performing
elementary row operations and column permutations. If 1,, were in the row space
of M, 1,, is in the row space of M’ too; hence, we may assume our matrix is in
a-normal form. Now if 1, were in the row space there would exist a nonempty

set I so that 1, = ), ;r;. Since « is even by choosing j € I we find

(1n,f;) =a=0 (mod 2),

but
Z(ri,fj) = (rj7fj) =1 (mod 2).
el
We remark that this argument does not hold when « is odd. a

THEOREM 1.3. Let M be a k X n binary matrix of rank k, and assume that
ak < n for some positive integer a. If o is even, assume in addition that 1,
is not in the row space of M. Then M can be brought into a-normal form by

elementary row operations and column permutations.

Notice that Lemma 1.2 and Theorem 1.3 together give sufficient and necessary
conditions for being able to bring a k xn binary matrix of rank k, n > ak for some
positive integer «, into a-normal form by elementary row operations and column
permutations. We will postpone the proof until later so that we may state some
corollaries. Corollary 1.4 for the case a = 2 appeared in [7]. Corollary 1.5 gives

sufficient and necessary conditions when n = ok.

COROLLARY 1.4. Let M be a k X n binary matrix of rank k with n > ak for
some even integer a. If n is odd and M has all even weight rows, then M
can be brought into a-normal form by elementary row operations and column

permutations.
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PROOF: The sum of even weight binary vectors has even weight. Now as all
our rows have even weight and as n is odd, 1, cannot be in the row space of
M; consequently, Theorem 1.3 implies M can be brought into a-normal form by

elementary row operations and column permutations. O

COROLLARY 1.5. Let M be a k x ak binary matrix of rank k for some posi-
tive integer . Then M can be brought into a-normal form by elementary row
operations and column permutations if and only if there exists a row of M not

orthogonal to 141 and, additionally, if « is even, 14k is not in the row space of

M.

PRroOOF:

(=) Let M’ be the matrix in a-normal form equivalent to M. Now by definition
of a-normal form we know that the columns of M' sum to 1,4 which in particular
implies each row of M’ contains an odd number of ones. Now if all rows of M
had even weight, elementary row operations and column permutations would not
affect this; thus the rows of M’ would all have even weight. So some row of M
has odd weight. In addition, when « is even, it follows from Lemma 1.2 that 1,
is not in the row space of M.

(<) If k = 1 the single row of M has an odd number of ones; moreover, when
o is even it has at least one zero. The statement is then immediate from Lemma
1.1. So we assume k > 2. Notice that the parity of the sum of two binary vectors
is odd if and only if the vectors had different parities. Now we have assumed
that we have at least one row of odd weight. By elementary row operations we
may then assume that the first k¥ — 1 rows of M have even weight and that the
last row has odd weight. Notice then that the columns of M sum to e;. If the

k** row is never added to the previous rows, then column permutations and row
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operations do not affect the column sum. By Theorem 1.3, the submatrix of M
formed by its first £ — 1 rows can be brought into a-normal form.
If for some j, 1 < j < k — 1, the k** row of the j** block has odd weight, add

the j** row to the k** row. Thus (1.1) implies
(ri,f;) (mod 2)=46;; foralll1<i<k, 1<j<k-1

For 1 < i < k, let t; denote the sum of the columns in the i** block of M.
We have therefore that t; = e; for 1 < ¢ < k — 1. It follows that t; = 1;.
Therefore the set {t;,...,tr} is an independent set of k vectors. By Lemma 1.1,
M can be brought into a-normal form by elementary row operations and column

permutations. |

It is evident from Corollary 1.5 and Theorem 1.3 that:

COROLLARY 1.6. Let M be a k x ak binary matrix for some even integer o that
can be brought into a-normal form by elementary row operations and column
permutations. Then M can be brought into s-normal form by elementary row

operations and column permutations for all positive integers s < a.

Our motivation for introducing a-normal form was to study the weight distri-
bution of codes. So far we have said nothing on how these may be connected to
codes. We do so now. The following was shown in [7]. We include the proof for

completeness.

LEMMA 1.7. Let M be a k X n binary matrix 2k < n in binormal form. For
each binary k-tuple x, there exists a unique binary k-tuple y such that x =
Zle C2i—y; Where the c;’s are the columns of M. In particular there exists k

columns of M summing to the vector of all zeros, Oy.



17

Notice in particular this shows M has rank k. It also shows that the dual of
the row space contains a word of weight k. This is why binormal form is useful

in studying codes with restricted weight sets.

PROOF: Assume M is in binormal form. There are 2% ways to choose a k-tuple
of columns of M so that there is exactly one column from each of the k blocks of
M. We need only show that for each distinct choice of this k-tuple we obtain a
distinct sum. To this end suppose we have two different k-tuples. Since they are
different there is some : so that in the :**-block the columns chosen are different.
Now in the i** row the entries in the two columns of the jt* block are the same
when j # i. We conclude that the sum over our two different k-tuples must differ

in the i** coordinate. O

When o is even any matrix that may be brought into a-normal form may
also be brought into binormal form. In the modified matrix there are k columns
summing to 0. This is unaffected by row operations. Column permutations

simply change which columns sum to 0. We have shown:

COROLLARY 1.8. Let M be a binary k x n matrix with ak < n for some even
integer a > 2. Then if M can be brought into a-normal form there exists k

columns of M which sum to Oy.

We conclude this chapter with the proof of Theorem 1.3.

PROOF OF THEOREM 1.3: As mentioned before, Corollary 1.4 for the special
case of & = 2 was proven in [7]. The proof of Theorem 1.3 is similiar to that

proof. Let M = (m; ;) satisfy the hypothesis. Proceed by induction on k.

k = 1: Now rank(M) = 1 implies that the only row of M has a nonzero number

of ones. If a is even, we know also that the only row of M has at least one zero
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as 1, is not in the row space of M. The result follows since a < n.

k > 2: Suppose the theorem has been proven for lesser values of k, and let us
now show it holds for k. If all the rows of M have even weight, then the columns
of M sum to Ok. If not there is at least one row of odd weight. By elementary
row operations, we may assume that the first £ — 1 rows of M have even weight
and that the k*® row has odd weight. Notice then that the columns of M sum
to ey in this case. In either case by applying our induction hypothesis to the
(k—1) x n submatrix of M formed from the first ¥ — 1 rows of M we may assume
that this submatrix is in a-normal form. Now since the k** row is never added
to the previous rows, the sum of the columns remains e; when M contains an
odd weight row and 0y otherwise. We proceed in a manner similiar to the proof
of Corollary 1.5. If for some j, 1 < j < k — 1, the k** row of the j** block has

odd weight, add the j** row to the k** row. We have then
(ri,i}) (m0d2)=5,‘]‘ foralll_<_i§k, ISjSk-—l.

For 1 < i < k let t; denote the sum of the columns in the i** block of M. So
t; =e;for 1 <: < k—1. Let b; be a vector of length n — a(k — 1) whose jth

entry is m; o(x—1)+;- Notice that the above remarks imply that
wt(b;) =1 (mod 2) for1<i:<k—-1;

and

0 (mod 2) if all rows of M have even weight

1.3 t(bx) =
(1.3) wi(b) { 1 (mod 2) if some row of M has odd weight.

Now b is a 1 X (n — a(k — 1)) matrix with n — a(k — 1) > a. If b satisfies

the hypothesis of Theorem 1.3, there exists a permutation of the columns of
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b, bringing by into a-normal form. By applying this same permutation to the
columns of M beyond the a(k — 1)** column, we find that t; is some vector
whose k** entry is one. Therefore the set {t,,...,t;} is an independent set of
k vectors. The proof is then completed by appealing to Lemma 1.1. It suffices

then to consider only the following two cases.

CasE I: wt(bg) =n — a(k —1) and « is even.

Since « is even, the vector of all ones is not in the row space of M; therefore,
there must exist at least one zero in the k™ row of M. After performing any
necessary block permutations and row permutations we may assume by (1.1)
that (rg,f;) (mod 2) =0for 1 <i <k —1 and that my -1y = 0.

If br-1 # 1,_o(x—1), then bg_; satisfies the hypothesis of Theorem 1.3 so
there exists a permutation of the columns fixing the first a(k — 1) columns such
that the first a columns of bix—; have odd weight. This forces t; to be a vector
with a one as its (k — 1)* entry and a zero as its k'® entry. Permuting columns
€, and cq(x—1) leaves t; unchanged for : # k — 1,1 <1 < k but changes t;_; to
a vector having a one as its k** entry. The set {t; : 1 < i < k} is an independent
set of k vectors.

If by—1 = 1,_q(k-1), then by permuting columns cx and Ca(k—1) leaves t;
unchanged for 1 <7 < k — 2 but changes tx—; and tx. Let € = Mi—1,a(k—1) then
both t;_; and t; have a one as their k** entry, but t;—; has € as its (k—1)*! entry
while t; has e41 as its (k—1)*' entry. We again find that the set {t; : 1 <i < k}

is an independent set of k vectors.

CAsE II: wt(bg) = 0.
Since rank(M) = k, we have from (1.3) that all rows of M have even weight

and that there exists at least one nonzero entry in the k** row of M. After
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performing any necessary block permutations and row permutations we may
assume that (ry,f;) (mod 2) =0 for 1 <i <k —1, mgok—1) = 1, and that the
first entry of by_; is one.

If the first & columns of by_; have odd weight, then t; is a vector with a one
as its (k — 1)°* entry and a zero as its k** entry. Permuting columns ¢, and
Cq(k—1) leaves t; unchanged for ¢ # k —1,1 < ¢ < k but changes t;_; to a vector
having one as its k** entry. The set {ti : 1 < ¢ < k} is an independent set of k
vectors.

On the other hand if the first a columns of bi_; have even weight, then
permuting columns c4(z—1)41 and cqk—1) leaves t; unchanged for 1 <: < k —2
but changes t;_; and t;. Let e = Mi_1,a(k—1) then both t;_; and t; have a one
as their k™ entry, but tz_; has € as its (k — 1)* entry while tj has e + 1 as its
(k —1)° entry. We again find that the set {t; : 1 <4 < k} is an independent set

of k vectors. O
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2

Restricted Distances
in Binary Linear Codes

Let F = Z, be the finite field on two elements. The set of binary n-tuples
form an n-dimensional vector space over F which we will denote by F*. A binary
vector in F™ is often refered to as a word and will be written x = (z;: 1 <: < n).
We will let 1, and 0, denote the n-tuple of all ones and all zeros, respectively.

The weight of a word x is the number of coordinates of x which are nonzero:
wt(x) = |[{¢: z; # 0}
The Hamming distance between two words
X=(21,...,2p) and y = (y1,... ,¥n)
is defined to be the number of coordinates in which they differ:
d(x,y) = {i: zi # yi}l.

If x-y = Y0 ziy; is the standard vector dot product over R, then x - y is the
number of nonzero coordinates in which the words x and y agree. Remembering

that —1 = +1 (mod 2), we find

d(x,y) = wh(x +y) = wt(x) + wt(y) — 2(x - y).
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The parity of wt(x +y) is even if and only if the parities of the weights of x and
y are the same. Let F? denote the collection of even weight vectors; notice this
is an (n — 1)-dimensional subspace of F™.

The dual Ct of a subset C' C F” is the set of vectors orthogonal to C:
Ct={yeF":x-y=0 (mod 2)forall x € C}.

Notice that the dual of a set C is always a linear subspace.
An arbitrary subset C C F" is called a code of length n over F. Elements in
C are called codewords. The minimum distance d of a code C is the minimum

distance occurring between distinct codewords:
d:=min{d(x,y) : x #y and x,y € C}.

For a fixed binary code C the weight set W(C) C {1,... ,n} is the set of all

positive integers which are weights of nonzero codewords in C:
W(C) = {wt(x):x € C\ {0}}.

Similiarly we define the distance set D(C) C {1,...,n} by

D(C) = {d(x,y) : x,y € C,x # y}.

More generally coordinates of the vectors can be taken from any alphabet
instead of from Z,. When the alphabet has cardinality ¢, the codes are called
g-ary codes. We will only be considering binary codes. When the alphabet
chosen is GF(g), the finite field on ¢ elements, many of our initial observations
with slight modifications in the terminology remain true. The proof of our main

results, however, do not generalize to the nonbinary case.
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Codes were originally developed to correct errors that occurred when infor-
mation was sent across a less than perfect channel. Suppose one wishes to send
M messages from earth to a camera located on a satellite. To accomplish this
you associate to each message a set of binary vectors. This set represents how
you might encode your message. For many purposes this is just a single element.
The receiver must have a method for determining which message was sent given
a string of 0’s and 1’s that has been received. Since you want to be able to
distinguish messages, vectors of length at least log, M are needed. When these
messages are transmitted across space it 1s possible occasionally that a single bit
will flip say from a 0 to a 1. One wants to encode the messages so that, even
if errors occur, the receiver will correctly interpret the message. Let C be your
set of encoded messages. Suppose the minimum distance in C is at least 2e + 1.

Then for every two distinct codewords ¢,y we have
{z:d(z,c)<e}Nn{z:d(z,y) < e} =0.

In other words, the spheres of radius e about codewords do not intersect. To
decode the message, the receiver simply chooses the codeword closest to the re-
ceived word. If fewer then e-errors occurred, the message is correctly interpreted.

In view of this, an e-error correcting code is a code C' with minimum distance

d>2e+1.

SPHERE-PACKING BOUND. Let C be an e-error correcting code then

oy (7)<
=0

An e-error correcting binary code that achieves this bound is said to be perfect.

PROOF: Count the number of ordered pairs (x, c) where ¢ is a codeword and x

is a word whose distance from c is at most e. Since the spheres of radius e do not
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intersect this number is at most the total number of words which is 2. Given
a codeword ¢ any word at distance 7 from it is obtained by flipping ¢ of its bits;
there are (':) different ways to do this. So the number of words contained in the

sphere of radius e about ¢ is Y ;_; (7). O

The above is an example of a more general phenomena. If we in any way restrict
the weight set or distance set of a code, we have limited the choice of codewords
we may have and have therefore imposed restrictions on the cardinality of the
code.

We will restrict our attention to a special class of codes, the so called lLnear
codes. In this case the set C' is required to be a linear subspace of F*. If C is a
linear subspace of dimension k, we say C is a [n, k] code. Notice the dual of C
is a [n,n — k] code. We will assume all of our codes are linear. Notice then that
the weight set and the distance set of C' are equal.

Let S be a set of disallowed weights. We want to find the maximum dimension
of a binary linear code of length n whose codewords satisfy wt(c) ¢ S for all

codewords c. For any set S C {1,...,n}, we wish to investigate
w(n, ) = max{dim(C): C CF*, W(C)N S = §}.

In this new terminology the sphere packing bound becomes

w(n,{1,...,2¢e}) <n —log, <§: (?)) .

=1

Equality is possible only if there exists a perfect binary linear e-error correcting
code.
The set of all even weight words in F” form a (n — 1)-dimensional code whose

weight set by definition does not include any odd integers. It is then evident that

FSC{1,3,5,...,2 l”;’lj — 1}, then w(n,S) = n — 1.
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With S as above, any code C' whose codewords all have even weight will satisfy
W(C)Nn S = 0. We wish to study codes that contain words of odd weight and
that satisfy W(C)NS = 0. Let E, be the set of even integers less than or equal

to n; 1.e.,

Let
w(n,S) = max{dim(C): C CF",W(C)NS =0,W(C) ¢ E,}.

A code with dimension w(n, S) and whose weight set intersects S trivially will
be called an eztremal configuration for w(n,S). An extremal configuration for
w(n,S) is defined similiarly. To prove lower bounds for these functions we must
construct codes containing no words in the disallowed set. In the study of @, we
must also show the code has a word of odd weight.

Given one code it is possible to construct other codes in several simple ways.
Given a code C of length n, by adjoining m zeros to all elements in a code C, we
can view C to be a code of length n 4+ m for any nonnegative integer m. If we
apply a permutation to the coordinates of codewords in C, we obtain a possibly
different code. These codes are considered equivalent, and we will not make any
distinction between them. We may eztend a code C of length n to a code of
length n + 1 by appending a parity check bit to all codewords. By adding a
parity check bit to each codeword, we mean adding a 0 or 1 as necessary so that
the weight of the codeword is even. This does not affect the dimension of the
code, but it does affect the weight set. Alternatively we may puncture a code
of length n at any coordinate by removing this coordinate to obtain a code of

length n — 1.

EXAMPLE 2.1. [7,4] HAMMING CODE AND EXTENDED [8,4] HAMMING CODE.
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The Hamming [7,4] code C; is the row space of the matrix

1000111
G=0100011
0 01 0101
0 001110

This is a perfect code. From the definition it is evident that the extended Ham-
ming code C] is a dimension 4, length 8 code which is the row space of the

matrix

G =

o OO~
OO D
S OO
= O OO
o= O
— O =
[ B
ke = O

The weight set of C; is {4, 8}.

EXAMPLE 2.2. [23,12] GOLAY CODE AND [24,12] EXTENDED GOLAY CODE.

Let C* be the code obtained from C; by reading the coordinates from right to
left. Let C* be the extended code of C*. The code

G(24,12) :={(a+x,b+x,a+b+x):a,b € C1,x € C*}
is a [24,12] code with weight set
W = {8,12,16,24).

For details on this construction see [21]. For alternate constructions see [15,
16]. If we puncture this code at any coordinate, we obtain a new code of length
23 whose dimension remains 12. This is the [23,12] binary Golay code; it is a

perfect code. If we extend this code we get back the code G(24,12).

Now suppose we wanted a code C of length 8 with no words of weight 4 or 8.

Clearly then C has no words in common with the extended Hamming code of
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length 8. Thus the space spanned by C and C; has dimension equal dim(C) + 4.
So C has dimension at most 4. We will use binormal form developed in the
previous chapter to show in fact that C' has dimension at most 3.

We would like to make a series of observations on the behavior of the functions

w and w. Notice it is immediate that
(2.1) w(n,S) <w(n,S).

LEMMA 2.1. If m > n are positive integers, and S C {1,... ,n}, then
(1) w(m, $) < m —n+w(n, S);
(2) w(m,S) <m-—n+ w(n,S).

PRroOOF: We proceed by induction. Notice that both statements are true for
m = n. We consider an upper bound first for w(m,S). Assume the result has

been shown for codes of length m — 1. Let C be a binary linear code of length

m satisfying W(C)N S = . Let
Cm = {V = (’Ul,... )vm-—l) : (Ul,... ,’Um._.l,O) c C}

The dimension of C'y, is at most one less than the dimension of C. Furthermore,

since W(Cp) N S = §, our induction hypothesis implies that
dim(Cr) <m—-1-n-w(n,9).

Let m > n and assume the result on @ has been shown for codes of length m —1.
Let C be a binary linear code with length m and dimension m —n+1+w(n, S).
Assume C contains at least one word of odd weight and satisfies W(C)N S = 0.
Since dim(C) > 2, there exists a word ¢ of odd weight that is not the vector of

all ones. Choose i a coordinate of ¢ such that ¢; = 0. Let

Ci = {('Ul,... sy Vi—15Vi41,y- - ,Um) . (’01,... ,'Ui_l,o,'UH_l,... ,Um) S C}
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Clearly C; contains a word of odd weight and satisfies W(C;)NS = 0. Repeating

our argument above we arrive at a contradiction. U

LEMMA 2.2. Let n <m and $ CU C {1,... ,n} and T C {n+1,... ,m} be
given. Then

(1) w(n,8) < w(m,SUT);

(2) w(n,S) < w(m,SUT);

(3) w(n,U) < w(n,S);

(4) w(n,U) < w(n, S).

PROOF: Let C be a extremal configuration. We may view C as a code of length
m by adding on m —n zeros to the end of each codeword. The codewords in this
new code C' all have weight at most n; thus, it satisfies W(C') N (SUT) = 0.

The last two are immediate. ]

LEMMA 2.3. Let S C {1,2,... ,n} and let e represent the least even integer in
S and m the least integer in S, then

(1) m—1< @(n,S);

(2) max{m —1,e — 2} < w(n,S).

PROOF: The set of all even weight words of length e—1 form a ( e—2)-dimensional
code. The set of all vectors of length m — 1 form a (m — 1)-dimensional code.
The weight set of both codes intersect the set .S trivially. The result follows from
Lemma 2.2. |

PROPOSITION 2.4. Let S C E, and suppose that C is a binary linear code of

length n such that W(C)N S = 0 then either dim(C) < w(n, S)orl, g Ct.

ProoF: If 1, € Ct, then all codewords have even weight. For any odd weight

word x the code generated by C' and x has dimension 1 + dim(C). Since the
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sum of a word of even weight and a word of odd weight has odd weight, our new
code has no new words of even weight. We thus have created a code of a higher

dimension whose weight set intersects the set S trivially. O

Putting this together with (2.1) we have
(2.2) If S C Epthen, w(n, S) = w(n, S).

LEMMA 2.5. Let n be a positive integer. Let S C {1,2,... ,n — 1} satisfying
j€ Sifandonlyifn—j € S. Then

(1) w(n,SU{n})+1< w(n, S);

(2) w(n, SU {n)) = w(n, S) ~ 1

(3) if n is even, then w(n,SU {n})=w(n,S)-1.

PROOF: Let C be a code of length n with W(C)N(SU{n}) = 0. Since 1,, € C the
code C; generated by C and 1, has dimension dim(C)+1. Assume W(C;)N S is
nonempty. Then there exists j € S such that either j € W(C) or n—j € W(C).
Our hypothesis on § implies that n —j € S. Soj € W(C)NSorn—j €
W(C)N S. This contradicts our choice of C. Therefore W(C;)N S = §. We have
shown dim(C) +1 < w(n, S). If W(C) € E,, then W(C;) € E, which implies
@w(n,SU{n})+1 < w(n,S). Let C be a code of length n with W(C)NS = §. Let
C’; be the subcode of C' that does not contain 1,. Now dim(C) — 1 < dim(C,)
and W(C3) N (S U {n}) = 0. Suppose that C contains a word of odd weight.
When n is even, removing the even weight vector of all ones does not change

this. m

Let C be a [n, k] binary code. Then we may choose a set of k generators for
C. Any k X n matrix G whose row space equals, C is called a generator matriz

for C. Conversely, given a k xn (0,1)-matrix G, its row space is called the code
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generated by G. If G has rank k then the code generated is a [n, k] code. A
parity check matriz for C is a matrix H which is a generator matrix for the dual

code of C. From the definition of the dual we know HG® = 0. So
C ={xeF": Hx' = 0}.

From this it is evident that C' conmtains a word of weight w if and only if there
exist w columns of H summing to zero.

We can find information then about weight distributions by observing prop-
erties about parity check matrices. We wish to make use of binormal form as
presented in Chapter 1. If M is a k x n binary matrix 2k < n that can be
brought into binormal form by elementary row operations and columns permu-
tations, then by Corollary 1.8 there exists k columns of M that sum to the vector
of all zeros. In other words if C' is the code whose parity check matrix is M , then

C contains a word of weight k.

2. Forbidding Words of Weight about in.

We are interested in determining w or @ when our codes have length 2b and
contain no words of weight b. The case b a positive even integer was investigated
in [7]. There results are cited below as Theorem 2.6, Corollary 2.7 and the case k
even in Theorem 2.10. We provide an alternative proof for Theorem 2.7. Theorem
2.8 considers the case where b is odd. We postpone the proofs of Theorem 2.6,

Theorem 2.8 and Theorem 2.10 so that we may state some corollaries.

THEOREM 2.6. If C is a [4¢,2t] binary linear code, then C has a nonzero code-

word z with wt(z) = 0 (mod 2t). In fact, w(4t, {2t,4t}) = 2¢t — 1.
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COROLLARY 2.7.
w(4t, {2t}) = 2¢;
w(n,{2t}) =2t -1 for 2t — 1 < n < 4¢;
w(n,{2t}) <n-—2¢ for 4t < n.

PRrOOF: The first statement follows from Lemma 2.5. The lower bound for the
second statement comes from Lemma 2.3, while the upper bound is a consequence

of Lemma 2.2 where S = {2t} and T = {4t}. Lemma 2.1 immediately implies

the last statement. O

Now we have already noticed that w(4t + 2, {2t + 1}) = 4¢ 4 1. So in the case

where b is odd we should study w instead of w.

THEOREM 2.8. If C is a [4t + 2,2t + 1] binary linear code that does not have
14¢42 in its dual, then C' has a nonzero codeword z with wt(z) = 0 (mod 2t+1).

In fact, w(4t + 2, {2t + 1,4¢ + 2}) = 2¢.

COROLLARY 2.9. Let t > 1 then

(4t +2,{2t +1}) =2t + 1;
w(n,{2t +1}) = 2¢ for 2t <n < 4t + 2;
w(n,{2t+1}) <n-2t-1 for 4t +2 < n.
PRrOOF: The proof follows the same lines as the proof of Corollary 2.7. U
THEOREM 2.10. Ifk > 2 then
(2.3) w2k, {k,k—-1}) =k -1;
(2.4) w2k, {k,k+1}) =k -1

Since for k even this was noted in [7], we will only include the proof here for

k odd. As above by appealing to Lemmas 2.1, 2,2, and 2.3 we find:
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COROLLARY 2.11. If £ > 2 then

win,{k,k+1}) =k -1 fork—1<n <2k
win,{k,k+1})<n—-k-1 for 2k < n;

win,{k—1,k})<n—-k-1 for 2k < n.

COROLLARY 2.12. If £ > 2 then

w2k —1,{k—1,k}) =k —1;
w2k —-1,{k—1,k,2k—1}) =k — 2;

w(n,{k—1,k})=k—2 fork—1<n<2k—2.

PROOF: Notice that Lemma 2.1 combined with Theorem 2.10 tells us

w(2k —1,{k — 1,k}) < k — 1. For the lower bound, let

C = {v = (v;) such that vg_; = vk = -+ = vgp_1 }.

This code has weight set W(C) = {1,2,... ,k—2,k+1,... ,2k—1} and dimension

k — 1. This proves the first part. Now this together with Lemma 2.5 shows

w2k —1,{k—1,k,2k - 1}) =k — 2.

Now for the third part we know by Lemma 2.3 that there exists a code of dimen-

sion k — 2 with no words of weight ¥ — 1 or k. From Lemma, 2.2,

w(n, {k = 1,k}) < w(2k —1, {k — 1, k, 2k — 1}).
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LEMMA 2.13. Let t be a positive odd integer, then

w(2t, {t - 1}) <t

w(2t, {t+1}) =t

PROOF: If t is an odd positive integer and C a [2t,t+ 1] binary code, then there
exists a [2t,%] subcode D of C containing only even weight words. So D has no
words of weight ¢. By Theorem 2.10 then D contains a word of weight ¢t — 1 and

a word of weight ¢ + 1. The lower bound is trivial. O

COROLLARY 2.14. Let t be a positive odd integer, t = 3 (mod 4) then
w(2t, {t—1})=t.

PrRoOF: By Lemma 2.13, it suffices to construct a lower bound. Let C be the
code generated by the set {w;:1 < i<t~ 2}U{z} where

1 whenj€¢,t—2+1:,2t—3,2t—2,

0 otherwise,

wi = (v;) v,-:{

and
0 whenjet—-1,¢,...,2t -3,

1 otherwise.

z; = (v;) v; ={

C' is generated by

L, I, 1 1 00
i1 0 0111/

Now C'is a [2t,1 — 1] code with W(C) = {t + 1} U {4u : 1 < u < 11}, Since
t—1=2 (mod 4) we conclude W(C)N {t — 1} = 0. The code C has only even
weight words. Since ¢ is odd t — 1 is even. Adding any word with odd weight to

C increases the dimension by one and does not add any new even weight words.

O
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We conclude this section with the proofs of Theorems 2.6, 2.8, and 2.10.

PROOF OF THEOREM 2.6: The lower bound follows from Lemma 2.3. To prove
the upper bound assume that C is a [4t,2t] binary linear code. If 14, € C, we
are done so assume not. The dual code is also a [4t, 2t] code. We distinguish two

cases.

Case I: 14, ¢ C+.
By Corollary 1.5, the generating matrix of C1 can be put into binormal form.
Therefore by Corollary 1.8 there exists 2¢ columns of the parity check matrix of

C summing to 02;. There exists a word of weight 2¢ in C.

CASE II: 144 € C+.

Let yi,...,¥2¢ be a basis for C. Then as all codewords have even weight
e; & C. Let D be the code generated by e1,y1,...,y2¢—1. Now a codeword of D
has even weight if it is in C; otherwise, it is of the form e; + ¢ for some codeword
¢ € C. In which case it would have odd weight. Since 14; & C clearly 14, ¢ D.
Also it is immediate that 14; ¢ DL. The code D then satisfies the conditions of

Case I, so it contains a word of weight 2¢. Since 2t is even the word must actually

lie in C. O

PROOF OF THEOREM 2.8: Let C be a [4¢ + 2,2¢ + 1] binary linear code with
lygyo ¢ CL. If 14449 € C, we are done so assume 14¢42 ¢ C. We can then apply
Corollary 1.5 to the parity check matrix of C. Since the parity check matrix of
C can be brought into binormal form, Corollary 1.8 implies there exists a word
of weight 2¢ + 1 in C. Hence w(4t + 2, {2t + 1,4t + 2}) < 2¢. The lower bound

follows from Lemma 2.3. O]

PROOF OF THEOREM 2.10: To obtain the lower bounds consider the code C
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where

C={(v1,... ,V2k) : Vk=1 =V = -+ = Va}.

The code C is a [2k, k — 1] binary linear code with no words of weight &, k — 1,
or k + 1. Naturally if we succeed in proving our assertion then by appealing to

Lemma 2.2, we will have shown:
w2k, {k -1,k k+1}) =k - 1.

When £k is even the results have been shown in [7] so we will only consider the
case where k is odd. To complete the proof of (2.3), it suffices to show that if C
is a [2k, k] binary linear code then C contains a word of weight k or k — 1, while
for (2.4) we need a word of weight k or k + 1. Let C be a [2k, k] binary linear

code with k£ odd. It suffices to consider the following three cases.

CAsE I: 1,1 ¢ C and 14 ¢ Cc+.

Theorem 2.8 implies C' has a word of weight k.

Case II: 1,3 € C+.

Let y1,...,¥k be a basis for C+. Then as 153 € C+ we may assume that
Y& =13;. Let D be the code generated by y1,... ,yr-1, and let M be a generating
matrix of the code D. Now M is a k — 1 by 2k binary matrix of rank & — 1 that
does not have 154 in its row space. Therefore as M satisfies the hypothesis of
Theorem 1.3, it may be brought into binormal form by elementary row operations
and columns permutations.

Let a be the sum of the two columns of M “left over” after putting M into
binormal form. Let A be the matrix formed after performing the elementary

row operations needed to bring M into binormal form, and let ¢; and c; be the
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above distinguisned columns of A. Notice that A also generates D. By Lemma
1.7 there exists a set S of k — 1 columns of A summing to Ox_;, and a set S5 of
k — 1 columns of A summing to a. Since we are dealing with binary vectors, the
sum of columns in the set S = S, U{c;,c;} is Ox—1. Now the matrix M' formed
by adjoining a row of all ones to the bottom of A is a generating matrix of Ct.
As k is odd, observe that the columns of M’ corresponding to the columns of A
in the sets S; and S sum to O in M'. Since M' is a parity check matrix of C,

the code C' contains a word of weight £ — 1 and a word of weight k + 1.

CASE III: 15 € C and 15 ¢ CL.

Let yi,...,¥x be a basis for C. Then as 15; € C, we may assume that y
=19%. Let D be the subcode of C generated by yy,...,yxr—1, and let M be the
generating matrix of the dual code of D. Now M is a (k + 1) x 2k binary matrix
of rank k£ + 1 with at least one row not orthogonal to 15;. Let M’ be the matrix
formed from M by adjoining two columns of zeros. Clearly there exists at least
one row of M' not orthogonal to 15;. Since M’ contains a column of zeros,
M’ does not have 15449 in its row space. As M' then satisfies the hypothesis of
Corollary 1.5, it may be brought into binormal form by elementary row operations
and columns permutations. By Corollary 1.8, there exists k + 1 columns of M’
summing to Oz4+3. So depending on whether or not the columns of zeros were
used there exist k,k — 1, or k + 1 columns of M summing to 0;,,. Thus, by the
definition of M, there exists a word z € D C C with wt(z) € {k,k—1,k+1}. If
wt(z) = k = 1, then wt(1x +2z) = k F 1. The word 1% + z is in C. ]
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3. Bounds on w(n, {n — k, k,n}) for n < 2k.

In Section 2, we have investigated the case n = 2k namely w(2k, {k,2k}). We
would like to use these results to consider what happens when n < 2k. The value
of w depended on among other things whether or not k was even or odd. So we

will necessarily need to distinguish cases.

PROPOSITION 2.15. Let t be a positive integer, and let n be an integer satisfying
2t+1 < n <4t
(1) Ifnis odd, w(n,{n —2t,2t,n})=2t—2;

(2) If niseven, n—2t—1<w(n,{n—2¢2tn})<2t-2.

PROOF: Let C be a[n,2¢t—1] binary linear code with no words of weight n—2t, 2¢
or n. By adding zero coordinates, we may view A = (C,1,,) as a code of length
4t. Since it has dimension 2¢, Theorem 2.6 implies there is a word in A of weight
2t or 4t. There is clearly no word of weight 4¢; thus, the code A contains a word
of weight 2¢. This word cannot be in C so it must be of the form ¢ 41, for some
¢ € C. But then C contains a word of weight n — 2¢. The lower bound follows

from Lemma 2.3. O

It is immediate then that by choosing t = b and n = 3b that

COROLLARY 2.16.

(1) If b is an odd integer, w(3b, {b,2b,3b}) = 2b — 2;
(2) Ifb is an even integer, b—1 < w(3b, {b,2b,3b}) < 2b—2.

PROPOSITION 2.17. Let t be a positive integer, and let n be an integer satisfying

2t +2<n<4t+2. Then

n—2t—2<w(n{n—-2t—1,2t+1,n}) <2t—-1;
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furthermore, when n is odd,
n—2t—2<wn{n-2t—-1,2t+1,n}) <2t - 1.

PRrROOF: Let C be a [n,2t] binary linear code with no words of weight n — 2t —
1,2t +1 or n. Proceed as in the proof of Proposition 2.15. If n is even, assume C
contains a word of odd weight. If n is odd, the word 1, has odd weight. The code
A is a [4t + 2,2t + 1] code which contains a word of odd weight. By appealing to
Theorem 2.8 we reach a contradiction. As before, the lower bound follows from

Lemma 2.3. Ol

Using a result called Olson’s Theorem [17] on elementary p-groups, it has been

shown [7] that

LEMMA 2.18. For a an odd integer and b a power of 2,
w(ab,{tb:1<i<a})=b-1

One can ask the question,“What happens if b is only required to be even?”
The technique does not generalize if b is not a power of 2. In fact we can exhibit
11b

cases of dimension ~ = when a = 3. The first case of interest is 6 = 6. Let us

first introduce an intermediate code. Consider the set
Ay = {f : GF(16) — GF(2): f a linear transformation}.

The coordinates of binary vectors of length 15 can be indexed by the nonzero el-
ements of GF(16); therefore, by identifying f with the images under f of nonzero
elements we may view A4 as a binary code of length 15. Since GF(16) is a 4-
dimensional vector space over Gf(2), we have that A4 is a [15,4] code. All nonzero

vectors in A4 have weight 8. Let

C = {(Wl,Wz) TWp € A4,W2 € Fa}
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If z,,2,,23, and z4 are generators for A4, then C is generated by

Z,,232,23,24,€1,€2,€3.

The weight set of C'is W(C) = {1,2,3,8,9,10,11}. We have shown

7 < w(18,{6,12,18}).

This does not fit the pattern of Lemma 2.18.

We have seen in Corollary 2.16, that
If b is odd, then w(3b, {b,2b,3b}) = 2b — 2,
which is also nothing like the situation in Lemma 2.18. In fact when b is odd
this is typical.
PROPOSITION 2.19. Ifa > 3 and b > 3 are odd integers, then

a+1

20-2<w(ab,{ib:1<i<a}) < b—2.

PROOF: Let k = %’—11). By Lemma 2.2,
w(ab, {1b:1 <1 < a}) <w(ab, {k,ab—k,ab}).

If a =1 (mod 4), then k is odd. The proof is completed by letting & = 2t + 1
in Propositon 2.17. If a = 3 (mod 4), then k is even in which case the proof is
completed by letting k¥ = 2¢ in Proposition 2.15. The lower bound is the trivial

lower bound we found in Lemma 2.3. ]

The value of w(ab, {tb: 1 < ¢ < a}) apparently depends on the exact value of

a and on how b factors; the primary differences seem to concern b’s factors of 2.
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PROPOSITION 2.20. Let b be a positive even integer and a > 3 an odd integer,

then

a+1

b—1<w(ab,{tb:1<i<a}) < b—2.

ProoOF: The proof is identical to the proof of Proposition 2.19. We need only

notice that since b is even, k = kzl'—lb is even. The lower bound is the trivial

bound found in Lemma 2.3. O

When a and b are even it follows from Lemma 2.2 and Theorem 2.6 that
) ) ab ab
w(ab, {ib:1<i < a}) Sw(ab, {5,ab}) = - 1.

We would like an upper bound on w(ab, {tb : 1 < i < a}) that is essentially a
multiple of b that improves the upper bound of Proposition 2.20.

In [7] it was shown:

LEMMA 2.21. Suppose that n = ab where b is a power of an odd prime and a is

even. If C is a code of length n such that D(C)N{2tb:1<: < a/2} =0, then

1 o1
<
IC| <2 Z ( Z_ )
=0
It is immediate then that

COROLLARY 2.22. Let a and a be positive integers, and let p be an odd prime.
Then for b = 2p®

P! ab—1
(2.5) w(ab,{ib:1 <i<a})<log, (2 Z < i )) .

1=0 ¢

The proof of Lemma 2.21 makes use of the following bound appearing in [10].

THEOREM (FRANKL). Suppose k = p®, for p an odd prime, oo > 1. Let C be a
code of length £ such that k f w for all w € D(C). Then

(2.6) cl< (“)

0<i<k—1
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In his paper, the author conjectured that (2.6) holds for all positive integers k.
By taking the base two logarithm of this we would get a bound on the maximum

dimension of a linear code which contains no codewords of weights congruent to

0 (mod p%).

PROPOSITION 2.23. Let p be an odd prime, a a positive integer, and a an odd

integer. If b = 2p®, then

. _ 1 (2a)?e log, b —1
1< < - .
w(ab,{ib:1<i1<a}) < <2 log, (2q — 1)2e—1 + 20 b

In particular, for large b,
w(3d, {b,2b,3b}) < 1.95008b.
ProOF: In Corollary 2.22 we found that

po—1 ab—1 ab—~1
w(ab,{ibzlsiSa})S10g2<2i§=:0( i >>31°g2<2pa<p“~1)>'

It suffices to show that this last quantity is bounded above by

1 (2a)%e 1log, p®
=1 — .
(2 0% (Ga 11 T4 pa ) 2P

Let d denote the difference:

(1 (2a)%° 1log, p* o ofab—1
d:= (210g2 (Za — )51 + 1 o 2p® —log, | 2p po—1))

The binomial coefficient can be estimated using Stirling’s formula for a positive

integer k:

klef = (k*v2rk)(1 + )

where ¢; monotonically decreases to 0 as ¥ — 0o. Therefore:

@ - kk(m"j";)m_k VEHm =B T e:flefem_k)‘
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We assume that m > k. Since ¢ is a decreasing function in k, we have

1+¢€, 14 ¢ 1

< = < 1.
(I+e)A+emi) ~ T+e)(1+ €m—k) 14 €m_i

For ease of notation, let

.= 1+ e2at—1
(14 e—1)(1 + €2at—1)

Then since log z is an increasing function in z, we have

1
d > logy v/a(2a — 1)m + p*logy(1 — ;{;) —log, €.

Since p® > 3, the second term in the above expression is an increasing function
in p*. Thus

8
d > log, V157 + log, o7 > 1.

4. Lower Bounds on w(ab, {ib:1<i < a}).

The case b odd was handled by Corollary 2.16, the case b a power of 2 by Lemma
2.18. In this section we provide lower bounds on w(ab, {ib : 1 < i < a}) for
even b. In particular we provide infinite families of even b which fail to satisfy
Lemma 2.18. To prove lower bounds it suffices to exhibit a code of the desired
dimension whose weight set does not intersect the particular set in question. Let
us introduce some codes (see [15, 16, 21] that will be used to build codes of

length 3b.

(1) Let A, be the code generated by the m x (2™ — 1) matrix whose columns

are the nonzero binary vectors of length m. A, is a [2™ — 1,m] binary
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linear code of constant nonzero weight 2™~1. Its dual is the [2™ —1,2™ —
1 — m] Hamming code.

(2) Let G(24,12) be the extended Golay code of length 24 and dimension 12
which we presented in Example 2.2. It is known that its weight set is
{8,12,16,24}. Let G'(24,12) be a subcode of G(24,12) of dimension 11

that does not contain the vector of all ones.

First of all, we would like to generalize our construction of the code of length

18 that did not meet the bound in Lemma 2.18.

PROPOSITION 2.24. For2<r < 1”—_?%*1 andm >3, let b=2m"1 _r. Then
b+m —2r +1 < w(3b, {b,2b,3b}).

So if m — 2r + 2 is positive, we have exhibited an even b that fails to satisfy

Lemma 2.18.

PRroOF: Consider the code
C := {(w1,W2) : Wi € A, Wy any vector of length 2™ — 3r + 1}.
A nonzero word in A,, has weight 2™~1. The weight set of C is then

W(C)={:,2" 1 +i:0<i<2m! —3r+4+1}.

PROPOSITION 2.25.

13 < w(30, {10, 20, 30}).
Let b > 18 be a positive integer such that b= 2 (mod 8), then

116 - 14

T Sw(3b,{b,2b,35}).
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PROOF: Write b = 8r 4+ 2. Consider the code

C:={(wy,...,Wry1):

w; € G'(24,12) for 1 < i < r, w41 € {06, (1,1,1,0,0,0)}} .
Its words have weight congruent to 0,3 (mod 4) and are smaller than 16743 < 2.
When b = 10 use G(24,12) in place of G'(24,12). O

PROPOSITION 2.26. Ifb > 14 is a positive integer such that b = 6 (mod 8), then

b —
1-1—5_29' < w(3b, {5, 2, 35}).

PRrROOF: Write b = 8r 4+ 6. Consider the code
C = {(Wl,. .. ,WT+2) :

w; € G'(24,12) for 1 <i <1, Wyy1 € Ag, Wopp € {03,(0,0,1)}}.

Nonzero codewords in C' have weight congruent to 0,1 (mod 4). The largest

weight is 16r + 9 < 2b. O

PROPOSITION 2.27. Let b be a positive odd integer, b > 3. If 5b = Tt + m for
0<m«<7. Then

156 — 3m

—— < w(5b, {b,2b,3b,4b,5b}) < 36 —2;

furthermore, if b > 3,b = 3 (mod 4) and m # 0 we have,

156 4+7—3m

- < w(5b, {b, 2b, 3b, 4b, 5b}) < 3b — 2.

PROOF: Let

C .= {(Vl,... ,vt,Om) tV; € A3}
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Now C is a [Tt + m, 3t] binary linear code whose weight set is
W) ={4w:1 < w <L t}.

Since 4b > 4t, we have 4b ¢ W(C). Since b is odd, this is sufficient to show
W(C) N {b,2b,3b,4b,5b} = 0. Now if b = 3 (mod 4) and m # 0, consider the
code generated by C and (07¢,v) where v is a word of length m and weight 1.
All of our additional codewords have weight w =1 (mod 4), the largest of which
has weight 4¢+1. Now 4t +1 < 4t + B'—s?’-ﬂ’— < 3b. The last inequality follows since

b > 11 implies ¢ > 7. Our new code then has no words of the undesired weights.
O

By using G(24, 12) viewed as a code of length 25, we have
12 < w(25,{5,10,15,20,25}) < 18.

These lower bounds are all at least 2b. From Lemma 2.2, we immediately find

then

COROLLARY 2.28. Let a > 5 and b be positive odd integers, then
2b <w(ab,{tb:1<i < a}).

From our constructions in Proposition 2.25 and Proposition 2.26 we know we
can construct codes of length n = 3b where b = 2p* for p an odd prime and
o 2 1 for which the dimension is &~ 1le. In view of Proposition 2.23, we see there
is room for improvement.

We conclude with some questions.

(1) Is w(18,{6,12,18}) =8 or 77

(2) For a = 3 and b = 2p, do we in fact have that w(3b, {b,2b,3b}) < 2 or
possibly w(3b, {b,2b,3b}) ~ %b?
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(3) For a > 5 and b as above, can we construct a code close to the upper
bound?
(4) For a general odd a and a general even b is it true that

w(ab, {ib:1 < i <a}) < 27
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3
Colorings of Sets

Let k,s, and n be positive integers. Let X be an n-set, and let V = P;(X) be
the set of all k-subsets of X . For p a positive integer a p-coloring of V is a partition
C = {C; : i < p} of the k-sets of X. A k-set A has color 7 if A € C;. Unless
stated otherwise we will assume all elements of our partition are nonempty; thus,
p < (2) With respect to C an s-set S is polychromatic if no two k-subsets of S
have the same color, i.e., [SN C;| < 1 for all i. A coloring for which all s-sets
are polychromatic is called a strong coloring on s-sets. Given an integer p, we
wish to p-color the k-sets of X so as to maximize the number of polychromatic
s-sets; let m(p; k, s, n) be this maximum. Let v(k,s,n) be the minimum number
of colors needed so that every s-set is polychromatic. We remark that we have
just defined a vertex coloring of a hypergraph whose vertices are the k-sets of X

and whose hyperedges are the s-sets of X.

Our primary interest is not in the study of y(k,s,n), but in the study of the
function m((fc), k,s,n). We mention v because m( (z), k,s,n) = (Z) if and only if
v(k, s,n) = (3), and because historically much time has been devoted to finding
v(k, s,n) for specific choices of our parameters.

Strong v(k,k 4 2,n)-colorings are useful in constructing codes of constant
weight and minimum distance 4, cf. [5, 8, 9]. For the coding question, one

wishes to have most of the color classes being as large as possible. The question
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posed here differs slightly since we wish to minimize the number of colors with
no restrictions imposed on the cardinality of the color classes. In this chapter,
we develop some bounds on y(k, s,n). We also construct partitions to find exact
values of y(k,s,n). Many of these bounds and constructions may be found in
[5].

Notice that the study of y(k, s, n) is uninteresting if £ = s or s = n. Also since
for s > 2k every pair of distinct k-sets can be completed to an s-set, this case is

also uninteresting. We have just seen:

PRrROPOSITION 3.1.

(;) <2tsm=(})

1 ifk=s,
v(k,s,n) =< (7) ifs=n,
(Z) if 2k < s.

We will assume that 2 < k£ < s < min{2k,n}. Define ¢ to be the difference
2k — s. Now for any two A and B we have |[AU B| = |A| + |[B| — |A N B|. This
implies that [A N B| > ¢ if and only if [A U B| < s. It is evident then that a
coloring of the k-subsets of X is a strong coloring of the s-sets if and only if no
two k-sets of the same color intersect in ¢ or more points.

Let G be the graph whose vertices are the k-subsets of X. Two vertices are
adjacent if and only if their set intersection is at least ¢. We find then that
our question is equivalent to the classical problem of finding the polychromatic
number of the graph G; i.e., finding the minimum number of colors needed to
color the vertices of G so no two vertices of the same color are adjacent. A proper
coloring of G is a coloring of the vertices so that no edge has both ends the same

color. Let x(t,k,n) be the polychromatic number of G. We have then that for
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2<k<s=2k—t<min{2k,n}

X(t’ k’n) = 7(k72k - t‘)n) 2 (2]9];‘ t)-

Assume C is a proper coloring of G. This imposes restrictions on the individual
elements C; of our partition. We will say that a ¢-set is covered by C; if it is a
subset of some element of C;. In a proper coloring of G a t-set can be covered
by at most one element of C; for each . Each t-set is contained in (Z:tt) sets of

size k; therefore, it is evident that

x(t, kym) > (Z::)

Let C be a proper coloring of G. The coloring C' induces other colorings. The
complement of the coloring C' is the partition of (n — k)-sets of X formed by
assigning a set A the color of its complement A°. The external structure of C
at z is the partition of k-sets of X \ {2} obtained from C by removing from
elements of C' all blocks on z. Notice that C is a proper coloring of the graph
whose vertices are the k-subsets of X where two vertices are adjacent if and only
if their intersection is at least ¢t + 1. The contraction of C at a point z € X is
a coloring of (k — 1)-sets of the set X \ {z}. A block B is of color : if and only
if BU {«} is in C;. Sets of the same color then intersect in no more than ¢t — 1
points.

By considering these partitions we have shown:

LEMMA 3.2.

x(t, k,n) = x(n —2k +t,n — k,n);
X(t, k, n) Z X(t) k) n— 1);

X(t - 17 ka Tl) Z X(ta ka n),
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xE+1,k+1,n+1)2>x(tkn).
Given a coloring F = {F; : ¢ < p} of (k — 1)-sets of X we can naturally add
a point oo to all the blocks and obtain a partition of the k-sets on co. If two
blocks of the same color did not intersect in (¢ — 1) or more elements before,

two blocks of the same color now do not intersect in # or more elements. Now if

D = {D; :i < m} is a partition of the k-sets of X, the set
C={F;U{o0}, D;::<p}U{D;:p<i<m}

is a partition of the k-sets of X U {oco}. If we are fortunate we may choose D
so that no two k-sets of the same color of C intersect in ¢ or more elements. Of

course we would like both p and m small. We always have
x(t, k,n+1) < x(t, k,n) + x(t~ 1,k —1,n).

This bound is not very good.

LEMMA 3.3.

x(k—=1,k,n)<n.

PROOF: Let our set X be the set of integers mod n. For 1 < i <n let
Cit={ A€ P(X):) j=i (modn)y.
jEA
We claim that C' = {C; : ¢ < n} is a partition of Pg(X) into packings of (k — 1)-

sets. Let B € Py_1(X). If BU {s},BU {j} € C;, then s = j (mod n). This

implies s = j. M
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2. Packings.

The problem of finding the polychromatic number of G naturally leads us to ask:

What is the maximum number of k-sets of an n-set no two of which intersect in

t or more points?

Let D(t,k,n) represent this maximum. We are trying to find the maximum
number of pairwise disjoint Py(Y) for Y € Pi(X). This is a packing problem.
If Pis a set of k-sets that satisfy this property, we say P is a packing of t-sets
by k-sets. We will present a few of the properties of this function, for a more
thorough survey see [3]. Since each of our colorings is a packing of t-sets by

k-sets evidently |C;| > D(t, k,n); therefore,

(3.1) x(t, k,n) > D—(;(-'ﬁ—n;

Let P be a packing of the ¢-sets of an n-set by k-sets. Elements of P are
usually called blocks. Each t-set is in at most one block while each block contains

exactly (’tc) t-sets. We conclude then that

()
D(t,k,n) < L2,
(¥)
Equality is possible if and only if each t-set is contained in a unique k-set. A
packing which achieves equality is an example of a Steiner system.
A t-(n, k, \) design is a pair (V, B) consisting of an n-set V of points, a collection
B C Py(V) of blocks so that every t-set is on exactly A blocks. By arguing as
above we see that there are exactly A(7)/ (lt“) blocks. A symmetric design is a 2-
(n,k, ) design with n > k and k(k—1) = A(n — 1). In other words, a symmetric
design is a 2-design with equal number of points and blocks. It is well known

that in a symmetric design every two blocks intersect in exactly ) points.
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A Steiner system S(t,k,n) is a t-(n, k, 1) design. Existence of an S(¢, k, n) then
gives a packing with ('t’)/ (’t‘) blocks. Clearly any packing with this number of
blocks is necessarily a Steiner system. If an S(¢,k,n) exists then by deleting a
point and considering blocks on that point we have an S(t — 1,k — 1,n — 1).

It is known that

(3.2) D(t,k,n) = D(n — 2k +t,n — k,n);
(3.3) D(t,k,n) < D(t,k,n—1)+D(t -1,k —1,n —1).
If a S(t, k, n) exists, then (3.3) is actually an equality, cf. [3].
Notice that D(2, k,n) is simply the maximum number of pairwise edge disjoint

complete subgraphs of Ky in K,. Each point is on at most [ﬁ J k-sets of our

packing. As there are k points per block and n points total we find the trivial

D(2,k,n) < [% l:j“

It has been shown by Kirkman and Schéheim [3] that

peam =[5 |57 -

where € = 1 for n = 5 mod 6 and 0 otherwise.

upper bound:

We can easily argue that

4 when k=3,

D(z’k’3k'3):{3 when k > 4

It 1s of course possible to have two disjoint blocks, but then there can be no
others in our packing. So we assume all our blocks intersect. We can clearly
have at least two blocks in our packing. There are k — 2 points off these blocks.

Every other block in our packing is on at most one element of these two blocks
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so it is on at least k£ — 2 points off these blocks. We realize immediately then if
k > 4 it is possible to add a third block to our packing but no more, and if k = 3
it is possible to add two more blocks to our packing.

A hypergraph (X, E) is almost regular if the degrees of distinct vertices differ
by at most one. So the configuration just described is then a hypergraph where
the degrees are all one or two. Now suppose 3|(3kk_ 3). Is it possible to partition
the k-sets of a (3k — 3)-set into (3kk_ 3) /3 classes so that in each class elements

intersect pairwise in at most one point?

Baranyai showed, cf. [3]:

LEMMA 3.4.. Let ay,...,a, be natural numbers such that 3 ., a; = (Z) then

the edges of (X, Pi(X)) can be partitioned into almost regular hypergraphs
(X, E;) where aj = |Ej|.

A vertex in (X, Pr(X)) will have degree [k—zL] or Lk—zLJ

Specializing to the case n = 3k — 3 > 9 and a; = 3 for all 7, this work shows
that there exists a partition of the k-sets into classes of size three in which each
element of X has degree one or two. It is unfortunate that this is not sufficient
to show the existence of a strong coloring of order (3k,: 3)/ 3. This is apparent

when one realizes that the hypergraph
({1,2,3,4,5,6,7,8,9},{{1,2,3,4},{1,5,6,7},{3,4,8,9}})

is an almost regular hypergraph with the appropriate parameters, but it is not
a packing of 2-sets. In Section 5 we will exhibit strong colorings for n = 9 and

n = 12 that do achieve this lower bound.
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3. Lifting Packings.

Two Steiner systems S(¢,k,n) on the same n-set are disjoint if they have no k-
sets in common. There can be at most (’,:___:) disjoint Steiner systems S(t, k,n). If
such a set exists it is called a large set of disjoint S(¢, k,n). We have seen already

that

LEMMA 3.5. If1 <t < k <n then

x(t, k,n) > (Z:z)

with equality if and only if a large set of disjoint Steiner systems S(t,k,n) exist.

LEMMA 3.6. Let Y be a (v— 1)-set. Assume X\ = #’_—Tt—_—’f;—l— € Z. If P is a collection

v—1
of -A—((—‘k—'il k-subsets of Y that is a packing of t-sets, then P isa (t—1)-(v—1,k, A)

)
design.

PROOF: Assume we have such a collection. For A € P,_;(Y), let r4 be the
number of blocks in P containing A. We wish to show that r4 = A. Let N; be
the number of ordered pairs (A, B) such that A € P,_,(Y) and A C B € P. By

definition then

N1= Z TA.

AEP,_1(Y)

Alternatively, if we fix B € P, there are ( tfl) choices for A.

k
v, )

So the average value of r4 is A.
Fix A a (t — 1)-subset of Y. Let N3 be the number of ordered pairs (z, B) so
that = ¢ A, but {z} UA C B € P. Trivially then

N2 Z(k—t-l—].)T'A.
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Now for every z ¢ A, AU {z} is a t-set, so it is contained in at most one block

of our packing;
v—t k—t

Implying r4 < A W
We will establish next that the there are packings satisfying the hypothesis of
Lemma 3.6.

PROPOSITION 3.7. If an S(t,k, v) exists then

(1) x(@, k) > (320);
(2) D(t, kv —1) = 255 (fi);

(3) X(t’k’v - 1) 2 (Z:: :

v
i

PROOF: The first inequality is a restatement of Lemma 3.5. Notice if an S(t, k,v)
exists, then A\ = k_i—;TIST is the number of blocks on a (¢ — 1)-set; thus, it is an

integer. The contraction of an S(¢,%k,v) at a point is an S(¢,k,v — 1) so from

(3.3) we find

A v—1
D(t, kv —1) = (t—l).
Item (3) follows from statement (3.1). O
Now since x(, k, n) is an increasing function in n we have:

COROLLARY 3.8. If a large set of disjoint S(¢,k,v) exists then

Xt B v) = x(t, kv — 1) = (Z:i)

Sometimes it is possible to have the converse of Corollary 3.8.

THEOREM 3.9. If an S(k — 1,k,v) exists then the following are equivalent.

(1) A large set of disjoint S(k — 1,k,v) exists;
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(2) x(k=1,k,v)=v—k+1;
3) x(k—1,k,v—-1)=v—k+1.

PROOF: By Lemma 3.5 and Corollary 3.8, it suffices to show (3) implies (1).
To this end, let C = {C; : ¢ < v — k + 1} be a partition of the k-subsets of a
(v —1)-set Y into packings of (k — 1)-sets. We wish to extend this to a partition

of the k-sets of Y U {oo} whose elements are packings of (k — 1)-sets.

By Lemma 3.6 and Proposition 3.7 the packing C; is a (k — 2)-(v — 1, k, ”'Z'k)
design. It is natural then to extend our coloring to k-sets of ¥ U{oco} by defining
S={S;:i<v—-k+1} by

S;i=CiU{TU{oo}:T € Pr_1(Y) and T ¢ B for all B € C;}.

By definition of our coloring C, each (k — 1)-set of Y is covered by at most one
block of each color. Our extension, therefore was chosen so that each (k — 1)-set
of Y is covered exactly once. Now if we are given a (k — 1) set U U {oo}, then

U is a (k — 2)-subset of Y. There are then 23%* blocks of C; containing U. So

there are v — k points in Y\ U whose union with U is contained in a block of C;.
We conclude then that there is a unique point z of ¥\ U so that U U {z} is not
contained in a block of C;. We have then that each S; is an S(k — 1, k, v).

It remains to verify that these are actually disjoint S(k — 1, k,v). We started
with a partition of Px(Y). For T a (k — 1)-subset of Y, there are v — k k-sets
of Y containing T each of which must be in a different element of our partition.
Therefore, there is a unique color ¢ with TU {0} € S;\ Ci. O

We would like to know what other parameters guarantee that a packing can

be lifted. We notice

PROPOSITION 3.10. If P is a packing of 2-sets by (n+1)-subsets of a (n? 4-n)-set

with exactly n? blocks, then P is completable to a 2-(n?+n+1,n+1, 1) design.
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PRrROOF: By Lemma 3.6, P is a 1-(n? + n,n + 1,n) design. Let B be a block
of P. Each point of P is on n — 1 other blocks. Thus there are n? — 1 blocks
intersecting B. Because P is a packing of 2-sets, no two blocks intersect in two
or more points. This shows that every pair of blocks intersect in a unique point.
The dual PL of P is the configuration whose points are the blocks of P and
whose blocks are the points of P. We have shown P+ is a 2-(n?,n,1) design.
Let us define an equivalence relation on the blocks of P1. Two blocks A and B
are equivalent if and only if A = B or AN B = {. The equivalence classes then
partition the blocks of PL into n+ 1 parallel classes each of size n. Now in P this
means there is a partition {C; : 7 < n + 1} of the points into sets of size n such
that for each C;, a block of P intersects C; in exactly one point. We conclude

that the collection

PU{C;U{o0}:i<n+1}

isa2-(n?+n+1,n+1,1) design. O

Notice however if we start with a set of packings of 2-sets of a (n? + n)-set by
(n 4 1)-sets although we can lift each color seperately to a packing of 2-sets by

(n + 1)-sets, there is no guarantee that this lifting will give disjoint packings.

4. Packings of Points and Pairs.

Now let us return to our study of x(t, k,n). Proofs of existence of large sets
of Steiner systems are not excessive. The special case t = 1 was handled by
Baranyai. Notice for the existence of an S(1,k,n) it is necessary and sufficient
that k£ divides n. When ¢ = 1 we are asking for the minimum number of classes

into which Pj(X) can be split such that any two sets in any class are disjoint. In
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such a coloring since there are at most L%J k-sets of each color we need at least

[(3)/1%]] colors. As a consequence of Lemma 3.4 Baranyai showed [3]:

LEMMA 3.11 (BARANYAI). One can partition the k-sets of an n-set into

()]

classes in which each element of our n-set occurs at most once. In our notation,

k) = | ()]

COROLLARY 3.12. For k > 4,

x(2,k,2k) = (2’“; 1).

PROOF: With a little thought, one finds D(2, k,2k) = 2. The lower bound then
follows from (3.1). But by Lemma 3.2, x decreases as t increases so x(2, k, 2k) <
x(1, k, 2k). O

Let us consider now partitioning the triples of an n-set so that every 2-set is
contained in at most one block of each color. Our first nontrivial case of study is
then n = 5. By Lemma 3.2 x(2,3,5) = x(1,2,5). The latter quantity is known
to be 5 by Baranyai’s result. A well-known result of Cayley [3] is that there
are two disjoint S(2,3,7), but there are not three disjoint ones. By Theorem 3.5
then, x(2,3,6) > 6.

CONSTRUCTION: x(2,3,6) = 6.

Take as our 6 points {0,1,2,3,4,5}. Define C = {C;} by

{0,1,2} {0,1,5} {0,2,3}
C) = {2a374} Cy = {17273} Cs = {2747 5}
{0,4,5} {3,4,5} {0,1,4}
{0,2,4} {0,2,5}

{0,1,3}
_ _ {1,3,4} _ {1,2,4}
R s B (X S S

{1,2,5} {0,3,4}.
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This construction shows that 6 colors is sufficient.

CONSTRUCTION: x(2,3,7) = 6.
Since x(2,3,6) is a lower bound for x(2,3,7), it suffices to give a coloring of the

triples of 7 points using 6 colors. Take as our 7 points {0,1,2,3,4,5,6}. Define
C = {Ci} by

{1,2,4} {3,5,6}

235 {046 {025

{3,4,6} {0,1,5} {0’1’6}
Ci={0,4,5} Cp={1,2,6} Cs3= {1’2’3};

ORI R

{1,5.6) {2,4.5) {1,4,5}

{1,3,6}

I s
HTeay GTEEg 4T L

wsep 0> ;

Notice in this construction that two distinct blocks of the same color intersect
in a unique point. Let us define a partitioning E = {E;} of the 4-sets of an
8-set {0,1,2,3,4,5,6,00}. A 4-set not on oo is in E; if its complement is in
Ci. A 4-set B on oo is in E; if B\ {oo} € C;. Blocks of the same color
intersect in at most two points. So x(3,4,8) < 6. However by Lemma 3.2
x(3,4,8) 2 x(3,4,7) = x(2,3,7).

x(3,4,8) = 6.
For many years the primary focus was in developing recursive constructions

to show the existence of large sets of Steiner Triple Systems, STS(n)= S(2, 3, n).

It is straightforward to show that a necessary condition for the existence of STS
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is that n = 1,3 mod 6. It is well known that these are also sufficient conditions
[11]. In a series of papers J.X. Lu [14] gave constructions for large sets of disjoint
STS(n) for n = 1,3 (mod 6),n > 7 for all but a finite number of admissable n.
L. Teirlinck has constructed large sets of disjoint STS(n) for the finite number
of cases which Lu was unable finish [20].

For other systems not much is known about existence although nonexistence
has been demonstrated in numerous cases (see [13]). In 1982, however, Chou-

inard [6] constructed a large set of $(2,4,13). So by Corollary 3.8,
X(2,4,13) = x(2, 4,12) = 55.

Now for n = 1,3 (mod 6),n > 7 there is a large set of S(2,3,n); therefore, by
Theorem 3.9 if » = 0,1,2,3 (mod 6),n > 7 we know x(2,3,n). If n = 4 mod 6,
then D(2,3,n) = %. So x(2,3,n) > n, but by Lemma 3.3, n is also an
upper bound.

For n = 5mod 6 we can again invoke Lemma 3.3 to conclude that n is an
upper bound. Because y is an increasing function in n, it is also immediate that
n — 11is a lower bound. We exhibit a partition of the triples of an 11-set into 10

packings. That this is possible has been noted in [5].

CONSTRUCTION: x(2,3,11) = 10.

Let our set X be Z;o U {c0}. Let a be the cyclic permutation (01 ... 9). Since
3 and 10 are relatively prime the orbits of a on P3(Z10) each have order 10.
Furthermore, there is a unique representative of each orbit whose elements sum

to zero mod 10.

Define

B :={{a,b,c} € P3(Z10): a+b+c=0mod (10)} U{2,4,9} \ {4,7,9}
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and

M := {00,7,9} U {00,2,6} U {0, 1,8} U {00, 3,4}.

For 0 < i < 4let C; := {a'B,a'M,a'{00,0,5}}. For 5 < i < 9 let C; :=
{a'B,a'M}. Our base sets were chosen so they contained one element out of
each orbit. We assert that this is a partition of the triples of X such that no two

triples of the same color intersect in two or more elements.

T. Etzion [8, 9] has constructed a family of n = 5 (mod 6) for which there
exists a partition of the triples using n — 1 packings. It is conjectured that for
any n = 5 (mod 6) there exists a partition of the triples of an n-set into n — 1
packings of pairs.

We summarize these results.

LEMMA 3.12.

(5 ifn=25;
6 ifn = 6;
6 ifn="1T;

x(2,3,n) =< 10 ifn =11

n—2 ifn=1,3 (mod 6),n > 9;
n—1 ifn=0,2 (mod 6),n > §;
\ n ifn =4 (mod 6).

Now since x(1,2,6) = 5, it follows that x(3,4,6) = 5. Similiarly since
x(3,4,7) = x(2,3,7), we know x(3,4,7) = 6. In the last section we saw
x(3,4,8) = 6. Let us now consider n = 9. Kramer and Mesner [13] have
shown that there are at most five pairwise disjoint S(3,4,10). By Lemma 3.5

and Theorem 3.9, we conclude that x(3,4,9) > 8.

CONSTRUCTION: x(3,4,9) = 8.

Let our nine points be Z7 U {z,y}. Let a be the cyclic permutation taking ¢ to
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¢ + 1 that fixes z and y. Since 7 is prime each orbit of o on the 4-sets, 3-sets,

and 2-sets of Z; has cardinality 7. Define Cy by

(2,3,4,5} {1,3,4,6} {1,2,5,6} {0,3,5,6} {0,1,2,4}
{z,0,1,6} {z,1,3,5} {z,2,3,6} {z,0,4,5}

{y’1?2, 3} {y, 0’ 27 5} {y7 1?47 5} {y’ 0’47 6}

{$7 y? 0’ 3} {x’ y’ 274} {$7 y75’ 6}'

For 0 <7 <6, let

Ci:={o'T: T € Cy}.

Let

Cr = {a’{2,3,5,6},0’{y,1,2,4} : 0 < j < 6}.

The blocks in Cj contain an orbit representative for all orbits except those con-
taining {z,3,5,6} and {y,1,2,4}. So we have partitioned the 4-sets. Since our
blocks in Cy and C7 pairwise intersect in at most two points, C' = {C; : 0 < i < 7}

is a partition of the 4-sets into packings of 2-sets.

5. The Chromatic Number x(2, k, 3k — 3).

We have already seen x(2,3,6) = 6 which is not (g)/D(2,3,6). In this section
we would like to give constructions for £ = 4 and k¥ = 5. We have shown that
D(2,k,3k — 3) = 3 for k > 4. We know then for k > 4, x(2,%,3k — 3) > @
When this number is an integer, is equality possible? We demonstrate that for
the first two cases k =4 and k = 5 it is.

We first describe our method. Choose p a large prime so that p is a divisor of

3k—-8
g—k—l. We also require that £ > n — p. Let our n-set be
3 q p

Z,U{0;:1<7i<n-p}
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We denote by o the permutation (01 ... p — 1) that cyclically shifts : to 7 + 1

and fixes oo; for all j. Since p is prime, the orbits of o on the set P;(Z,) have

cardinality p for each j, k—n+p < j7 < k. Each orbit will have a unique element
whose sum over its elements will be 0 (mod p).
3k-3

What we would like to do is to chose £—23’°p starter colors, so that we have

exactly one representive out of each of these orbits. By applying our permutation

o repeatedly, we will obtain a coloring of the k-sets each of which packs 2-sets.

For k = 4 and k = 5 we describe the starter blocks. To the best of our knowledge

this was not previously known.

CONSTRUCTION: x(2,4,9) = 42.

Use p=1T.
{001,002,0,3} {001,375)6} {001,002,0,2}
Cl = {001,1,2,4} 02 = {001,0, 1,2} C3 = {002,1,5,6}
{374)576} {002,2,476} {273’476}
{002,0,2,3} {001,002,0,1} {001,2,4,6}
Cy = {002,4,5,6) Cs= {0,2,3,4} Cs= {002,0,3,6}
{001,0,1,4} {1,8,5,6} {0,1,4,5}

CONSTRUCTION: x(2,5,12) = 264.
Use p=11.

{010,1,2,8} {001,0,1,3,7} {001,1,2,5,7} {001,2,5,7,8}
{01,3,6,7,10}  {001,2,4,6,10} {o01,0,3,4,10} {c01,0,3,9,10}
{4,5,8,9,10} {1,4,5,8,9} {2,3,6,8,9} {1,4,6,8,9}

{01,0,3,6,8} {001,1,2,3,10} {001,2,3,5,8} {oos,1,5,9,10}
{01,2,4,7,9})  {001,4,5,6,7}  {0,3,4,8,10}  {1,3,4,6,8)
{0,1,5,9,10}  {0,4,8,9,10}  {1,2,4,6,7} {0,2,5,7,8}

{001,0,6,7,9} {001,1,3,8,10} {001,1,3,6,7} {001,2,6,8,10}
{1,2,4,9,10} {0,2,4,6,10} {0,2,4,7,9} {0,4,7,8,9}
{2,3,5,7,8} {0,1,5,7,9} {4,5,6,8,10} {0,1,2,3,5}
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{001707374a6} {001)1a374a 7} {00173, 8,9, 10} {001,0,6,8,9}
{3,5,7,8,10}  {2,5,7,8,9)  {2,4,5,7,10)  {1,2,4,5,6}
{0,1,2,9,10} {0,1,5,6,10} {0,1,6,7,8} {0,2,3,7,10}

{01,4,5,8,10}  {001,1,4,7,8} {001,3,5,6,10} {oo1,4,6,8,9}
{1,3,7,8,9}  {0,3,7,9,10}  {1,2,4,6,9}  {0,4,5,7,10}
{0,2,5,6,9} {0,2,4,5,6} {0,4,5,7,8) {1,2,3,7,9}

{01,3,4,8,9} {01,2,5,9,10} {001,0,1,5,7} {o01,1,8,9,10}
{0,1,4,7,10}  {2,3,4,6,7}  {0,6,8,9,10}  {2,5,6,7,8}
{1,2,5,6,8}  {0,1,3,8,10}  {2,3,4,5,8} {0,3,4,6,9

6. Some Values of m((}); ¥, s,n).

We now shift our attention to the study of m(p; k, s,n). If there are fewer than
(2) colors, then there can be no polychromatic s-sets. It is obvious that if p >
v(k, s,n), we may have all s-sets polychromatic. If 2k < s < n,andp = (2), there
will exist two k-sets of the same color; these will be contained in an s-set. Putting
these together we find m((}); k,s,n) = (7) if and only if x(2k — s, k,n) = (3)-

Actually by Lemma 3.2, we have

S n . . 8
m ((k),k,s,n) = (3) if and only if x(n—s,n—k,n)= (k)

We have seen that the latter is possible if and only if a large set of disjoint

S(n — s,n — k,n) exists. For example, Baranyai’s Theorem gives us
? p b g

(3.4) m<($:i)ﬂw%ﬂk—LM):M.

In general, we will not restate the results in this new terminology.
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Let X be an n-set. Given a partition C = {C; : i < (})} of the k-sets, we
naturally obtain a partition P = {P; : 7 < (})} of the (n — k)-sets of X. Let
S be a polychromatic s-set, and let U be its complement in X. Every k-set in
S is complement to an (n — k)-set containing U; conversely, every (n — k)-set
containing U has its complement in S. So S is polychromatic with respect to C
if and only if every (n — k)-set containing X \ S is in a different element of P. We
will say an (n— s)-set U has property CH if no two (n —k)-sets containing U have
the same color in P. Then finding the maximum number of polychromatic s-sets
if the k-sets are colored with (}) colors is equivalent to coloring (n — k)-sets of

X with (Z) colors so as to maximize the number of (n — s)-sets having property

CH.

LEMMA 3.13.

n if n is even;

m(n-—l;n—2,n—1,n)={n_1 if n is odd

PROOF: If n is even, this follows from Baranyai’s Theorem; if n is odd this
same theorem shows that n — 1 is an upper bound on m. Assume n is odd; we
will construct a coloring with n — 1 polychromatic (n — 1)-sets. By Baranyai’s
Theorem, we can partition the edges of K, _; into n — 2 perfect matchings,
{P; : i < n —2}. Define P,_; to be the set of edges on our nt® point. We have
then an (n — 1)-coloring of the edges of K. This coloring contains exactly n —1

points with property CH. |

Let us find some lower bounds.

LEMMA 3.14. For s < n,

s n—s+1 when k = 2;
ik >
m((k)’ ,s,n) - (n——s+1)[ - } when k > 3.

s—1
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PROOF: Let X be an n-set. Suppose we have a partition the points
n
P:i<|—— 1
(Peis| ]+

such that |P;| = s—1if¢ # lﬁj +1. We will defineamap f : ()k() —={1,...,(})}
whose inverse image will be our coloring. Let S an s-set be a superset of P;.
There exists a point ¢ ¢ P; so that {z} UP1 = S. Let {K; : ¢ < (})} be the
collection of k-subsets of S. Define f(K;) = ¢. For each y ¢ S and for each
k-subset K; on z, define f(K; U {y}\ {z}) = ¢. The k-subsets of S U {y} \ {z}
have distinct images under the map f. So far we have n — s + 1 polychromatic
s-sets. Many k-sets have not been colored. In fact, we have only colored k-sets
which have at least £ —1 points in P;. When 3 < k we have not assigned colors to
k-sets that have at least k¥ — 1 points in P; for 2 < j < {ﬁJ . By repeating the
above argument and arbitrarily coloring any uncolored k-sets, we have a coloring

with the asserted number of polychromatic s-sets. U

COROLLARY 3.15. Assume4 <n,and2 <k < 5. Then

m((nzl);k,n——l,n> = 2.

PROOF: We need only show the upper bound. Assume we have been given
a (";1)—coloring of the k-sets of an n-set which supports three polychromatic
(n — 1)-sets. So there exists an (n — 3)-set U and three distinguished points
T1,Zg,z3 so that the sets S; = UU{z; : j # ¢} are polychromatic. If any k-set in
U had the same color as a k-set of U U z;, then S; would not be polychromatic
for j # 1. Let T; = {K, : o € I'} be the collection of k-sets on z; that are not on
z; for j # i. Elements in this collection being contained in S; for j # : must all

have different colors. Moreover elements of T} and 7% must have different colors
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since they are contained in S3. There are then at least 3(’,::3) + (";3) colors.

G957

This implies 0 < k(2k — n). O

That is

Let us momentarily continue to consider the special case of s = n — 1. State-
ment (3.4) completely handles the case when n — k divides n. Let us examine

the case when n — k does not divide n. Define d by

n _n—d
n—k| n-k

Let X be an n-set and P = {P; : 1 < (”;1)} a coloring of the (n — k)-subsets of

X. There are (}) of these subsets being partitioned among (";1) sets. Since

@ __n

("3 n—k

there exists an ¢ such that
n—d
n—k

|P;] <

We may assume without loss that ¢ = 1. Count the number of ordered pairs
(z,U) where z is a point in U € P;. Let 7; be the number of points contained

in exactly j elements of P,. We then have

|P1]

(n—E)IP| =)

J=0

By our choice of P; we find that m; < n — d. Every point is on (";1) k-sets, but
we are only using this many colors. A point satisfying property CH must be on

exactly one element of P;. There are at most 7; such points. We have shown
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LEMMA 3.16. Ifd is defined by

then

m((n;1>;k,n—1,n) <n-—d.

COROLLARY 3.17. Assume d is defined by

n __n—d
n—k| n-k

and that for allt, 0 <t < d we have (n —k —t) | (n — d). Then

m<<n21>;k,n——1,n) =n—d.

PROOF: Let S be a d-subset of an (n — 1)-set Y. Every (n — 1 — k)-subset of

Y has between 0 and n — 1 — k points in S; furthermore, given any t-subset of
S with t <n —1—Fk, it can be completed to an (n — 1 — k)-subset of Y. This

proves the Vandermonde convolution formula

S (5000

Let X be an n-set. Fix a d-set S of X. For each ¢, 0 <t < d, since (n —k —1t) |
(n — d) Baranyai’s Theorem implies there exists a partition of the (n — k — ¢)-

subsets of X \ S into (nZ;ii_ﬁl) parallel classes. Say

n—d-—1
= 1 < .
P {Pz’t Z_(n—k—-t—l)}

For each t-subset T'C S and for : < (n’fl'i;i t) define

Ci,T———{TUA:AEP,',t}.
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The collection

n—d-—1

= i . <
C {Cz,T TePt(S)al—(n__l_k_t

)forOStSd}

defines a partial coloring of the (n — k)-subsets of X. By the Vandermonde
n—1

convolution formula there are ( E ) elements in C. Furthermore, C was defined

so that each point in X \ S satisfies property CH. O

What fraction of the s-sets can be polychromatic?

LEMMA 3.18. For fixed integers k, s satisfying 1 <k < s,
(n —s)m(p; k,s,n) < nm(p;k,s,n —1).

PROOF: Assumen >s. Let C = {C;:: < (Z)} be a coloring of the k-subsets of
an n-set. Count the number of ordered pairs (S, U) where S is a polychromatic s-
subset of the (n—1)-set U. For each choice of U, there are at most m(p; k, s,n—1)
choices for S. Alternatively, the number of (n — 1)-sets containing a fixed s-set
is exactly (n'iiis) Equality is possible if and only if for every (n — 1)-set U the

coloring restricted to U supports m(p; k, s,n — 1) polychromatic sets. U

This is fact shows that the sequence

{m<(2)(;§,s,n>}°°

n=s

is a decreasing sequence of positive real numbers bounded above by 1.

CoROLLARY 3.19. If m((}); k,s,n) = (7), then forall ,s <1 < n

w(nes =)

Lemma 3.18 together with Corollary 3.15 implies:

n—1

If4 < n and 2k < n, then m(( k

);k,n~1,n+1) <n+41.
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PROPOSITION 3.20. Let (Z) = p > 2 and write (Z) = pa+ b where 0 < b < p,

then

m(p; b, ,7) < ;( )( e 1yt

This is an equality when k = 1.

PROOF: Let C = {C; : i < p} be a p-coloring of the k-sets of X. We define the
support A of a set S to be the set of colors that S nontrivially intersects. The
number of polychromatic s-sets in C' is then at most

B(C)= Y_ ]]lc.l

AEP(Z) IEA

If £ =1 this is the actual number of polychromatic s-sets. Our bound as stated
in the lemma is achieved by evenly distributing the k-sets between the p colors.
It remains to justify why no other distribution with exactly p nonempty colors
would provide a larger upper bound.

By assumption there are at least two colors. Suppose there exists two colors
with the difference in their cardinality being more than two. Without loss of
generality assume that |Cy| — |C3] > 2. Let A € C;, and let I be the set of
integers from 3 to p. Create a new p-coloring F' that differs from C only in that
A € F, instead of F;. We then find that

B(F)-B(C)=(Gi|-Ic2|-1) >, [[lcil>o.
AEP3—2(I) ]EA
It should be remarked here that we have in no way shown that the best way to

color the k-sets comes from an evenly distributed coloring. O

COROLLARY 3.21.
lim m(s;1,s,n) s_'

n— 00 (n) 53.
8
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7. Polychromatic Triangles.

In this section k¥ = 2 and s = 3. We will view our 3-colorings as edge colorings of
K,,. We want to find the maximum number of polychromatic triangles. Let C be
a 3-coloring of the edges of K, that supports m(3; 2,3, n) polychromatic triangles.
Let M be the number of monochromatic triangles and N the number of triangles
that are neither monochromatic or polychromatic. Let g;,7;,b; respectively be
the number of edges on vertex ¢ of color green, red, blue respectively. Each
triangle has associated to it a degree sequence (21, z3,z3) which is the sequence
of numbers describing the number of red, green, and blue edges of the triangle.
Consider the coloring obtained by merging the red and blue colors together to
purple. We can count the number of triangles that have one purple edge and
two green edges or two purple edges and one green edge. Each such triangle
has exactly two vertices which lie on one purple edge and one green edge of the

triangle. There are then

i (Tl-—l-—g,

er—l

such triangles. We find then
3m(3;2,3,n) + 2N = —Z(g,(n— 1—g)+rin—1—r)+bi(n—1-0)).

This together with M + N +m(3;2,3,n) = (}) implies

ProprosIiTION 3.22.

(3.5) m(3;2,3,n) = 2M + (" : 1) = Z(g, 174 8).

As a consequence we immediately find

m(3;2,3,n) < 2M + ﬁ’%_—l—)
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Notice that the number of polychromatic triangles on vertex 7 is at most r;b; +
rigi + gib;. The remaining vertices form a (n — 1)-set; thus,

(3.6) m(3;2,3,n) < rib; + rigi + gibi + m(3;2,3,n — 1)

Now the sum ri(n — 1 —r1) 4+ byg; is at most r(n — 1 — ) + (bl-i;gl)z _

2
(”_1_T1)£3r1+"_1). So every vertex is on at most g"—;l—L polychromatic trian-

gles. Equality implying there are equal number of edges of each color on that
vertex. If we count the number of ordered pairs (z,T) where z is a vertex on a

polychromatic triangle T, we find

PROPOSITION 3.23.

m(3;2,3,n) < % [91—;-'1—)2J .

Suppose vertex : were on exactly r;b; +r;g; + ¢;b; polychromatic triangles. Let
R;, B;, G; respectively be the set of other ends of red, blue, green edges on z.
The color of edges from one of these sets to another is then determined. Poly-
chromatic triangles are either on x, have one vertex in each of these three sets,
or are contained in one of these sets. In which case the number of polychromatic

triangles is at most

(3.7)  ribi +rigi + gibi + ribigi + m(3;2,3,7;) + m(3;2,3, ¢;) + m(3;2, 3, b;).
Let us consider a few small examples. We have seen already that

(3.8) m(3;2,3,4) = 4.

We claim that

m(3;2,3,5) =T.

By Proposition 3.23, m(3;2,3,5) < 8. Suppose C is a 3-coloring of the edges

of Ks that supports 8 polychromatic triangles. By (3.6) and (3.8) all vertices
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must have degree sequence 2,2,0 or 2,1,1. Let : be a vertex of degree sequence
2,2,0. Our inequality in (3.6) is then an equality. We may then use (8.7)
which implies there are at most 4 polychromatic triangles. All vertices then
have degree sequence 2,1,1. By (3.5) we have 8 = 2M — 5. It suffices then
to construct a coloring with 7 polychromatic triangles. Let the red edges be
{0,1},{2,4}, {0, 3}, the blue edges be {1,3},{1,4},{0,2}, {3,4}, and the green
edges be {1,2},{2,3},{0,4}.

By Lemma 3.18 we have
For n > 5, m(3;2,3,n) < 0.7(7;) .

Of course to color an n-set with three colors, one could always divide up the
points into three nearly equal sets S; and view these as vertices of a triangle. All
edges from S; to S, would be blue, all edges from S; to S3 would be red, and all
edges from S, to S3 would be green. The sets themselves would have their edges

colored best possible. By induction we find for u > 2

u—1/qu __
m(3;2,3,3%) > §—(Z———1—2
By Lemma 3.18 we have for n < 3%
m(3;2,3,n)2.25+ 3 .
(3) 3u -2

This is not the best way. Instead divide the points into four sets .5; of about
the same size. Since m(3;2,3,4) = 4 we can color the edges between sets in
such a way that any triangle with each of its vertices in a different set S; is
polychromatic. Using this idea we find for u > 2

4%(16% — 1)

3;2,3,4%) >
m(aa) )_ 15
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This implies for n < 4* that

m(3;2,3,n)

(3)

> 4+ m

Being more careful we find

m(3;2,3,6) > 12,
m(3;2,3,7) > 20,

m(3;2,3,8) > 32.

By considering cases and using arguments similiar to the ones used for n = 5 we

find these are all equalities. Thus for n > 8

m(3;2,3,n)
o

We conjecture that asymptotically the best coloring comes about by dividing the

4
-

points into 4 nearly equal sets as above.

CONJECTURE.
m(3;2,3,n)

lim TS5 gy
n—oe (3)
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4

Projective Geometry

Thus far we have restricted our attention to sets. It is natural to generalize
to vector spaces. In this section we characterize specifically what type of vector
spaces we wish to consider, and we give some basic results.

A projective geometry P is a triple (P, L, I) consisting of a set P of points, a
set L of lines, and an incidence relation I C P x L that satisfy:

(P1) every pair of points are on a unique line;

(P2) every line contains at least three points;

(P3) P contains a set of three points which are not collinear;

(P4) for X1, X5, X5 distinct points and £;, £3, £3 distinct lines with X; on £; for
all ¢ # j, if £ is a line not incident with X that intersects ¢, and ¢; then

¢ intersects ¢;.

Of special interest are projective planes which are projective geometries that

satisfy:
(P5) every pair of distinct lines contain a common point.

Notice (P5) implies (P4) and that the point common to two distinct lines by
(P1) is necessarily unique.

It is well known [11] that

LEMMA 4.1. The class of projective planes is the same as the class of symmetric
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designs with A =1 and k > 2.

If we write ¢ + 1 for k we say our projective plane has order ¢q. Notice since
each line contains at least three points we may assume ¢ > 2. We will sometimes
refer to lines of our projective planes as hyperplanes.

Projective geometries may be constructed fairly easily. For K a skewfield,
let V be an (n + 1)-dimensional vector space over K. We define the incidence
structure P(n, K) to be the collection of all subspaces of V with incidence being
subspace inclusion. Let rank(U) denote the rank of a subspace U in V, that is
the cardinality of the largest independent set of vectors in U. The projective
dimension of U in P(n, K) is one less than its rank in V. In particular P(n, K)
has projective dimension n. Elements of P(n, K) of projective dimension i —
1 are called i-flats. Elements of projective dimension 0, 1, 2, and n — 1 are
called respectively points, lines, planes, and hyperplanes. Let P, ;(K) be the

substructure of P(n, K) consisting of the points and lines of P(n, K).
LEMMA 4.2. If n > 1 then P, ;(K) is a projective geometry.

PROOF: For U, W subspaces of V we define U N W to be the largest subspace
contained in U and W and U 4 W to be the smallest subspace containing U and

W. Since K is a skewfield subspaces of V satisfy the modular law:
rank(U + W) + rank(U N W) = rank(U) + rank(W).

Let U and W be distinct points then U N W = 0. By the modular law we then
know that U + W is a line which is necessarily unique. A line ! having rank
two contains two independent points U and W so it contains the distinct points
U,W,U + W, ie. every line contains at least three distinct points. Since V is a

(n+1)-dimensional vector space over K and n+1 > 3 there exists three collinear
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points. Let X3, X2, X3 be distinct points and [y, /s, I3 distinct lines with X; on
l; for all 2 # j. Let [ be a line not incident with X that intersects I at Y and I3
at Z. There exists a,b,c,d € K so that Z = aX; + bX,,Y = cX; + dX3; hence,
ac™Y — Z € I; N l. We have shown that (P1)-(P4) hold.

We have exhibited two ways to construct projective geometries. In [11] it is

shown:

LEMMA 4.3. If the number of points of a projective geometry P is finite, then

either P is a projective plane or P & P, 1(K) for a unique n and a unique K.

If K is a finite field, then K has ¢ elements where ¢ is a power of a prime;
furthermore, it is unique up to isomorphism. We denote the unique field on ¢
elements by GF(¢q). In view of Lemma 4.2 for n > 3 a projective geometry of
dimension n and order ¢ is P(n, q¢) := P(n, GF(q)).

It is natural to ask coloring questions on P; we ask the same questions as we
did on sets but replace the expression m-set by m-flat. To develop our trivial
bounds we need to be able to determine the number of k-flats of an s-flat.

Let V be a rank m vector space over GF(q). The number of rank s subspaces

of Vis

[m] _@m =D -1 (g™ 1)
s lg (=g =1)---(¢* =1)

This is the Guassian number of m choose s over GF(q), cf. [19]. It is a polynomial

in ¢ of degree s(m — s). The number of rank ¢ subspaces of V' containing a fixed

m-—8

rank s subspace of V is [ A

] . It must be remembered when dealing with
q

projective spaces that the projective dimension of a projective space is one less
than its rank.

Let P be a projective geometry of dimension n — 1 and order ¢q. Throughout

this section this will mean that if n = 3 then Pisa2—(¢?+¢+1,¢+1,1) design
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otherwise P = P(n — 1,q). Let C = {C;} be a coloring of the k-flats of P. An
s-flat S is said to be polychromatic with respect to C if no two of its k-flats have
the same color.

We are interested then in the following questions.

(1) What is the minimum number v,(k,s,n) of colors needed to color the
k-flats of a projective (n — 1)-space of order ¢ so that all s-flats are poly-
chromatic?

(2) If p is fixed, what is the maximum number m(p; k, s,n) of polychromatic
s-flats possible?

As in the case of sets these questions are uninteresting when k = s or s = n.

Now to have any polychromatic s-flat we need at least [Z]q colors. It is imme-

diate that for 1 <k <s<n
(1) [1], < valkys,m) < 71,
(4.2) if p< [Z]q then my(p; k,s,n) = 0.
If n = 3 then we may assume k = 1 and s = 2. Since P is a projective plane

every two points determine a line so we need ¢? 4+ g + 1 colors. For n > 4 let

A, B be two k-flats of P. We have
rank(A 4+ B) = rank(A) 4 rank(B) — rank(4 N B) < 2k
where equality holds only if AN B =0 € V. We conclude

If1 <k <2k<s<n, then v4(k,s,n) = [Z] .
q

The study of v,(k,s,n) is only interesting when s < 2k. If in a coloring of the
k-flats there were two k-flats of the same color whose intersection was contained

in a (2k — s)-flat, there are necessarily s-flats that are not polychromatic. This
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is analogous to the situation on sets. Let us restrict our attention momentarily
to s = 2k — 1. We want then a partition of the k-flats into disjoint sets of k-flats.
A (k — 1)-spread is a set of k-flats such that each point is incident with exactly
one element of our set. A (k — 1)-partial spread is a set of k-flats such that each
point is incident with at most one element of our set. To find ~,(k,2k — 1,n) we
want to partition the k-flats into the fewest number of (¥ — 1)-partial spreads.
The cardinality of a (k —1)-spread then provides an upper bound on the number

of disjoint k-flats.

=]

Yo(k, 2k —1,n) >

gk—1
A (k — 1)-parallelism is a collection of (k — 1)-spreads that partition the k-flats.
So equality is possible above if and only if a (k — 1)-parallelism exists. A. Beu-
telspacher [2] showed for n = 2'*!, § = 1,2,... that PG(n — 1,¢) admits a
parallelism of lines. R. Baker [1] has shown if n is even, then PG(n—1,2) admits

a parallelism of lines.

2. Point Colorings.

Let C be a coloring of the points of P a projective (n — 1)-space of order gq.
Evidently it is uninteresting to require all s-flats to be polychromatic. We wish
then to consider the function my(p;1,s,n) where 2 < s < n. There are no

polychromatic s-flats unless there are at least [8] colors; as in our study of

1lg
sets, we restrict our attention to this extreme case. In this discussion if P is a
projective plane although we are not restricting our discussion to P(2, q) we will

still refer to P as having dimension two as well as referring to points as 1-flats

and lines as 2-flats. For 2 < s < nlet p = 9;—__—11. Then p is the number of
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points on a s-flat as well as the number of (n — s + 1)-flats in P containing a
fixed (n — s)-flat. Over all p-colorings of the points of P, what is the maximum
number of polychromatic s-flats supported by a coloring?

We first construct a lower bound by describing a color. We proceed recursively
on the difference n —s. Let U be a (n — s)-flat. Color U recursively: if n —s < s
color U arbitrarily; otherwise, color U so as to obtain the maximum number of
polychromatic s-flats. There are p (n—s+1)-flats in P containing U. Two points
not in U have the same color if and only if they lie in the same (n — s + 1)-flat

on U. We call this coloring Cy. If s > j define my(p; 1,s,5) := 0.

s
LEMMA 4.4. Forp= 1=,

(1) me(p;1,8,8) = 1;
(2) mq(P§ 1,s,n) > mq(p; 1,s,n—3s)+ qs(n—s).

THEOREM 4.5. If the points of a projective (n —1)-space P of order q are colored

n-—1

with p = £—=L colors, then there are at most g™~ ! polychromatic hyperplanes.
p="17 poly yperp

Equality is achieved only by those colorings C'x where X is a point.

In our notation this becomes

qn-—l -1 —
my(—giLn—1m) =¢""

PrOOF: Let C'= {C; : ¢ < p} be a p-coloring of the points of P which supports
b polychromatic hyperplanes. If some color is not used then there are clearly no
polychromatic hyperplanes; furthermore, if there exists a unique point of some
color every polychromatic hyperplane must contain this point so there are at
most p polychromatic hyperplanes. Now p < ¢! for ¢ > 2 so we assume that,
there are at least two points of every color. There are % = ¢gp+1 points in P

which are being p-colored. Since p # 1 there are at most ¢ points of some color.
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Call this color red. We have seen there are at least two red points; let X be one

of the red points. We distinguish two cases:

CASE 1: The red points are not collinear.

For n = 3 there are at least two lines on each red point that contain another red
point. These lines are not polychromatic so there are at most ¢—1 polychromatic
lines then on each red point. Assume n > 4. There are at least two lines £, w on

X each of which are incident with at least two red points. Any hyperplane on ¢

n-—2

or w is not polychromatic. Each line is contained in exactly [n-—a

] hyperplanes.
g

n—3

Since the lines £ and w span a rank 3 space, there are exactly [n_ A

] hyperplanes
q

containing the span of £ and w. Now the number of polychromatic hyperplanes
on X is at most the number of hyperplanes on X not containing £ or w which is

qn—l -1 qn—2 -1 qn——3 -1

_ -2 -3 —2
qn—2_1——2qn—3_1+qn——4_1_qn —qn <qn :

CASE 2: The red points are collinear.
Let £ be the line containing all the red points. The number of polychromatic
hyperplanes on X is at most the number of hyperplanes on X not containing £

which is
qn-—l -1 qn—2 -1
qn—2_1 - qn—3_1 =49

n—2

Since a line either intersects a hyperplane in a unique point or is contained in the
hyperplane, equality is possible only if every hyperplane on X not containing ¢

is polychromatic.

By counting ordered pairs (Y, w) where Y is a red point on a polychromatic

line w we find there are at most ¢"~! polychromatic hyperplanes with equality
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if and only if there are exactly ¢ red points, the red points lie on a line £, and
every hyperplane not containing ¢ is polychromatic.

Assume that C supports exactly ¢"~! polychromatic hyperplanes. We wish to
show that for some point X we have C' = Cx. Our argument above then implies
that some color class contains ¢ + 1 points while the others all contain ¢ points.
Relabeling if necessary we may assume that |Cy| = ¢+ 1. The points of C; lie in

a line for if not there would be at most
|C1|(q"_2 _ qn—3) — qn—-l _ qn—3

polychromatic hyperplanes. Therefore our supposition on C' guarantees that for
each k > 1 the points in Cj lie in a unique line. Denote by [; the unique line
covering the points of Ci. For k > 1 let Xy := I \ Cr. Any point in Cy for k > 1
lies on exactly ¢"~2 polychromatic hyperplanes.

We pause for a lemma:

LEMMA 4.6.

6Nt #0 foralll <i,j <p.

PROOF: As all lines intersect in projective planes this is immediate if n = 3.
Throughout the remainder of our argument we may assume that n > 4. Assume
there exists a j € {1,... ,p} and k € {2,... ,p} \ {j} for which £; N £, = 0. Let
Z € Cx. Then since Ci C £ we find that Z ¢ £;.

We conclude that the space II spanned by Z and ¢; is a 3-flat. In a plane any
two lines intersect; hence, because £; N €, = @ we have £ ¢ II. Now Z € ¥4
implies the space spanned by II and ¢; is a 4-flat. Any hyperplane containing II
respectively £; contains more than one point in C; respectively C} so it is not

polychromatic. So on Z there are at most

qn—l -1 qn—2 -1 qn-—3 -1 qn—4 -1

qg—1 g—1 qg—1 qg—1
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polychromatic hyperplanes. ]
We are now in a position to complete our proof of Theorem 4.5.

COMPLETION OF PROOF OF THEOREM 4.5: We assert that our coloring is sim-

ply Cx,. In Lemma 4.6 letting j = 1 we find for all k € [2, p],
W%Ekﬂﬂl=€kﬂC’1=({Xk}UCk)ﬂCl= {Xk}ncl

which implies X € Cy, for every k € [2,p]. Applying Lemma 4.6 again this
time with 7 = 2. We find for all k € [3, p]

D# LNl =({ X} UC)N({X2}UCy) = {Xi}U{X2}.

This last equation shows that X; = X, for all £ € [2,p] which is sufficient to

prove our assertion. O

3. Balanced Lines.

We have shown then if we (¢ + 1)-color the points of a projective plane there
are at most g% polychromatic lines; moreover, we have shown up to isomorphism
what the coloring must be. In this section we wish to study the number of
polychromatic lines in more detail. We will state our definitions for a general
n, but our results will be concerned with n = 3 and n = 4. We actually solve
a slightly different problem. Throughout this section r # 1 denotes a divisor of
g + 1. If the points of a projective geometry P are r-colored, a line with equal
number of points of each color is referred to as a balanced line. Polychromatic
lines are simply balanced lines when r = ¢+1. Let ¢(n, ¢,7) denote the maximum

number of balanced lines over all partitions C = {C; : i < r} of the points of P.
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So

(n,q,q+1) :=my(g+1;1,2,n).

Let ¢*(n,q,r) denote the maximum number of balanced lines over all partitions

C = {C; : i <r} of the points of P where |C;| = L ['ll]q for all . Notice if n is
odd then trivially we have ¢*(n,¢,r) = 0 since the cardinality of a set must be

an integer. Evidently

¢*(n,q,7) < p(n,q,7).

Let d be a divisor of r. Given a r-coloring of the points of P we may partition
our colors into d classes each of size r/d. We naturally then obtain a d-coloring,.

Any line that was balanced with respect to the r-coloring has remained balanced.

We find then that

o(n,q,7) < ¢(n,q,d);

e*(n,q,7) < *(n,q,d).

Throughout this section, C' = {C; : i < r} will be a partition of the points of
P a projective (n — 1)-space of order ¢ with c¢; being the cardinality of C;. For
X = (z;) € Z" denote by N(m,x) the number of m-flats of our geometry with

exactly x; points in class C;.

LEMMA 4.7. For2<m<n-1

(1) S N(m,x) = [2],;

(?) Tezil(mx) = [27]

(3) Exailes = DON(m,x) = eilei =1) [175] 5
(4) ifi # j then ) z;zjN(m,Xx) = cicj [:;é]q;
(5) if 3o;2: # [ 7], then N(m,x) = 0.
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PrOOF: The first equation simply counts the number of m-flats in P. The
second equation counts the number of ordered pairs (6,.5) where 6 is a point in
the intersection of an m-flat and the color class C;. The third equation counts
the number of ordered triples (6, «, S) where § and a are distinct points in C;
that lie in an m-flat S. The fourth equation is obtained similiarly but we require
that o be in C; instead of C;. The result follows since every two distinct points
determine a unique line and any flat containing these points necessarily contains
this line. If n = 3 instead of saying m-flats we should technically say lines
since our projective geometry may not be P(2, q), but regardless of this abuse of

notation the result still holds. O

At this point let us provide some motivation. To acquire an upper bound on
¢(n, g,r) we wish to make use of the equations in Lemma 4.2. Let C be a coloring
of the points that supports ¢ or ¢* balanced lines and assume that any m-flat
with z; points of color ¢ has at most f((z;)) balanced lines. Then since each

n- 2] m-flats we have

balanced line is contained in exactly [ 2
q

m— 2

i } CEED WO
(4.3)
2 ] 1 (rs0,7) < 3 FONm ),

m—2

To proceed then we need to obtain an upper bound f(x) on the number of
balanced lines in a m-flat with partition x; moreover, our function f(x) needs
to be one for which we can evaluate or bound the righthand side of the above
equations. Preferably in light of Lemma 4.7 we would like f to be a quadratic in
the variables z1,... ,z,.

Given a coloring C of the points of a projective (n — 1)-space we are naturally

given a coloring of the points of any subset S of our points. The set S inherits



86

some structure from the geometry. A line in S will be a set of ¢ + 1 points in §

which are collinear in P.

LEMMA 4.8. Let S be a subset of our points whose intersection with color class

C; is s;. The number of balanced lines in S is at most

rsi(g" ! — 1)
-1

If1 and j are distinct the number of balanced lines in S is at most

rS; [ rs; J
g+1|g+1

with equality if and only if each point of S N C; is on exactly ﬁ"f balanced lines.

Moreover if r # ¢ + 1 then the number of balanced lines in S is at most

r?s;i(s; — 1)
(¢+1)2—r(g+1)

PROOF: Each point is on %—1— lines. Count the number of ordered pairs (X, ¢)
where X is a point in SNC; on a balanced line £. Each balanced lineon X € SNC;
is on exactly 1%1 points of SNC;. Since lines have at most one intersection there
are at most
Sj
[(q-kl)/rJ

balanced lines on X. The result follows by counting the number of ordered pairs
(X,2) where X € SNC; N1l and ! is a balanced line in S. Now assume r # ¢ + 1
then each balanced line contains at least two points of each color. We count the
number of ordered triples (X,Y,£) where X and Y are distinct points in SN C;
on the balanced line £. For each balanced line there are £t (4EL 1) choices for
the ordered pair (X,Y). Alternatively each of the s;(s; — 1) ordered pairs are

covered by at most one line. O
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COROLLARY 4.9. For n even

(¢" — 1)
@(n,q,r) < W

For n odd

n-—1 2
2 (q - 1)
p(n,q,r) < g -

PROOF: Now assume we have been given an arbitrary coloring C of the points
of our projective (n — 1)-space with ¢; points of color 7. Let n be even then since
there are %1—1- points there exists distinct ¢ and j so that ¢; + ¢; < 2((;%;)1;). By
Lemma 4.8 then there are at most
rieic; _ri(eite) _(¢"=1)
2 = 2 = (2 2
(g+1) 4(¢+1) (¢*-1)

balanced lines supported by C. The proof if r = 2 and n = 3 will be postponed

until Corollary 4.13. Assume then r > 3 and n is odd. If for all distinct ¢ and j

2¢(¢" 1 -1
citej > Q((‘;_l)r Ly,
then
r—1
" -1 2¢(¢g"1-1) 2¢(¢"" 1 - 1)
2 = 2= it r > ————=+r.
po e el ;(c+c+1)+(c +¢1) o b

So we may assume then that there exists distinct colors 7 and j so that

2¢(¢" "' = 1)

. <
“TGS T Ty

By Lemma 4.8 then there are at most

rrec; et o) o a(@0 - 1)
(¢+1)2 7 4g+1? 7 (£-1)°

balanced lines supported by C. [
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If we know ¢(n,q,r), we may actually improve the above bounds slightly.
Assume for m > n we are given an r-coloring of the points of P(m — 1,¢q). By
counting the number of ordered pairs (¢, S) where £ is a balanced line on a n-flat

S, we find

[™], e(n,qr)
(m,q,r) < —= Z .
=1

Before we proceed any further let us modify our construction of Cy; to obtain

constructions of r-colorings. We proceed recursively to define a coloring of the
points of our (n —1)-space. Let U be a (n—2)-flat. Color U recursively: if n = 3,
color U arbitrarily; otherwise, color U so as to obtain the maximum number of
polychromatic lines. Let {H; : i < ¢ + 1} be the set of hyperplanes on U. A

point off U is in some plane H;. If j satisfies

L 6D i)

r r

then the point is given color ;. Compare this coloring with Cy in Section 2.
To distinguish this from Cy, denote this coloring by Cj. Every line whose
intersection with U is trivial is a balanced line. If we define ¢(1,¢,r) := 0 and

©(2,q,r) := 1, we have shown:

forn >3 w(n —2,q,7) + q2"'4 < o(n,q,r);
(4.4)
for n even ©*(n—2,¢,7) + "t < p*(n,q,7).

For n = 3 our lower bound and our upper bounds are equivalent. We will
show that our construction above yields the unique example of a coloring with the
maximum number of polychromatic lines in this case. Notice that this is basically
the same result as Theorem 4.5. We will postpone the proof of uniqueness until

the end of this section. Precisely we have:
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THEOREM 4.10. Forr # 1 a divisor of ¢ + 1

©(3,q,7) = ¢*.

Equality is achieved only by those colorings we denoted C% where X is a point.

Notice our recursion for n odd implies

0 q2n-—2 -1
4.5 ' 4y Z 1 1
(4.5) e(n,q,r) 2 ¢ pr—
while for n even it implies
2n
gc" -1
(4.6) plna,r) 2 L8,

The dominant term in both cases is ¢>”~%. Our upper bounds also have dominant

2n—4

term being ¢ , which of course is the dominant term in the expression for the

number of lines contained in P.

THEOREM 4.11.

¢ (4 a,r) =¢" +1.
Equality is achieved only by C} where £ is a line.

THEOREM 4.12.

mg(g+1;1,2,4) = ¢* + 1.
Equality is achieved only by Cy where £ is a line.

We will postpone the proof of these theorems until Section 4. For each x =

(z; : i < r) an ordered partition of ¢ + ¢ + 1, define

2r 29(¢* +q+1)
g(x) := T;T; — .
= T D, &, T g
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Now by Lemma 4.7, we know

"2 -1 2r 2¢(¢* +¢+1) [n
x)N(3,x) = ciCi — .
;g() (3:%) ¢—1 (r_l)(q2+1)l<§<r ’ ¢ +1 [3]7

The maximum of such a function occurs when all the ¢; are all about equal subject
to the fact that they are integers and must sum to 95__;11. Suppose instead that
¢y —cz 2 2. Take a point from C; and put it into C, to create the coloring
C' = {C!}. I claim the sum increases.
E c;c'j = 2 cicj+ecr—cp—1> Z cicy.
1<i<j<r 1<i<j<r 1<i<j<r

Thus

q* ifn=3
0 Zoow @0 <{ (0, any it
Equality is possible only if all the C;’s are as equal as possible.

Suppose we can find f so that

Ef(x)N(?’ax) < EQ(X)N(3?X)'

Using this together with (4.5) and (4.6) will show the numeric bounds in Theorem
4.10, Theorem 4.11 and Theorem 4.12. Uniqueness will necessarily be handled

separately.

COROLLARY 4.13. Assume 2|(¢+ 1) and that the points of a projective (n — 1)-
space have been 2-colored red and blue. Let H be a projective plane with z, red

points, and x5 blue points. Assume z; < 927+1 Define f by

(0 ifz; < 41,
4.’0,’!1}.’—1! _ifm <$ < 12"1
4s _ g2—1 2 =Ti> "o
(4.8) f =9, £ g2 41 24
- —1 if 4= < <5 -1,
L2
[ ¢? 11"‘17"'1::“.
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Then the number of balanced lines in H is at most f(x) < ¢2. Equality is possible
only if z; = -‘12—2"1 for some 1 and each point in H N C; is on exactly g balanced

lines.

PROOF: We remark that ¢ must be odd and that necessarily z; +z, = ¢ +¢+1.
There are also at least two points of each color on a balanced line. By symmetry
we may assume that z9 < 12—;—“ In view of Lemma 4.8 we need only concern
ourselves with z5 > 927+1 In Lemma 4.8 we found that the number of balanced
lines in H was at most
)
g+1

For z; = 92—;'1 the claim is evident since E_-%-T < 1. Notice the bound f(x) = ¢2
can be attained only when each red point is on exactly ¢ balanced lines. Now if
z2=92—é+—1—+mwhere()§m§1—;—3then

[(q—fzf)/_zJ 1422

which implies there are at most

Ag=Ver _ 5y 2mlg=1)
q+1 g+1

balanced hyperplanes. O

COROLLARY 4.14. Assume 3 <r < q+1 is a divisor of ¢+ 1 and that the points
of a projective (n — 1)-space have been r-colored by C. Let H be a projective

m-flat with z; points in color class C;. Choose t so that =, > z; for all ;. Let

T:={1,2,...,r}\ {t} and define

0 ifz; < -"% for some 1,
(49) f(0) =

D2 (77 2ui e, i<j Ti®j  otherwise.
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Then the number of balanced lines in H is at most f(x). Furthermore if z; > 41
for all 1 # t and H supports exactly f(x) balanced lines, then there exists an

integer d such that for i # t z; = dﬂ"—r'—1 and each point in H N C; is on exactly d
balanced lines in H.

PRrROOF: For r > 3 there are (r—2—1) > 1 choices for ¢ and j. Applying Lemma
4.8 to each pair and adding the resulting equations yields the appropriate upper
bound. As each term is nonnegative equality is possible only if we have equality

term by term. O
In the following f(x) is to be taken as in Corollary 4.13 or Corollary 4.14.
LEMMA 4.15. Let x = (z; : © <r) be a partition of ¢> + ¢ +1 satisfying z; > 9%

for all ©. Then
f(x) < g(x).
Equality is possible only if
{zi} ={+*— }.

PROOF: Assume we have been given a plane whose points are partitioned into x

q+1 q+1 q+1 g+1
—}o 1,q

r{qr+

and z; > 9—# for all i. Let z; > ; for all i. Since the number of points in a plane
is ¢*+¢+1 which we are coloring with r colors, we have z; > g(q—jl—)— +1. Without
loss of generality ¢ = 1. Define s := ¢°+¢+1—z; then s =37 z; < g(—’%(—ﬂ.

We distinguish two cases.

CASE 1: r = 2.

4zy(q? +q+1—wz)—2q(q +q+1)
2 +1

2
For 1‘;—1 <z < 97—1 since r = 2 is a divisor of ¢ + 1 we necessarily have ¢ > 3

g(x) =

which implies
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Now .
+1 -1
8q2(9——2 — :Ez)( 2¢ 132) <0

£ = 9(x) = e <

Equality is possible only if z, = 1';—1 Now if 9% <z, < 927+1 — 1 then

¢“+1  ¢+1

000 > g(g g, L) - £E1

= Fi1

>¢® - 1= f(x).

If zg = 927"'1 then

F(x) = g(x) = ¢

CASE 2: r > 3. By the Cauchy-Schwartz inequality

(Z wi>QS(r—1) 3 a2

2<i<r
Therefore

2
(E2<i<r ‘”i> — Daci<r H (r —2)s?
D 2 2(r — 1)

2<i<j<r

We should also note that

r
E Ti;T; = I E z; + E ZT;T;.
2

1<i<j<r 2<i<j<r

Now

f(x) —g(x)

_ 4(g+1)* —qr) o
T (r=D(r=2)(g+1)%(? + 1) 2 =i

(@ + 1?(7* ~1) (=rs® +rs(¢ + ¢+ 1) = (r = Da(¢* + ¢ +1))

2r’(¢’ + ¢ +1) S_(r—l)(q+1)] [8_(r—1)(q+1)q
T (r=1%¢" +1)(g +1)? r r '

2<i<y<r
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By supposition, %l <s< (—r—:_—l)—s,—q_*'—l)g. Equality is possible only if z; is
constant for all : > 2 and s = gr_—ur(ttl_) or s = Lr—"—ll&gilﬁ O

We complete this section by showing that C% where X is a point is the unique
optimal coloring of points in a projective plane, optimal being defined with re-

spect to balanced lines.

PROOF OF THEOREM 4.10: If r = ¢+ 1 we have already shown this in Theorem
4.5; hence, we assume that r < ¢+ 1. Let H be a plane whose points have
been r-colored by C' = {C;}. By (4.5) we may assume C supports ¢* balanced
lines. Each color must contain at least 9# points or else there would not be any

balanced lines. Let z; = |C;|. Now by (4.7) and Lemma 4.15 we may conclude
¢ < f(x) <g(x) < g%

Our inequality being an equality implies that for 2 < r < ¢ + 1 without loss of
generality, H has been colored with C' = {C;} where

|C'i]={ q-"%—i—l forv=r,

qg-}'l for ¢ # r.

Fix 7 # r. There are ql‘—:—l + 1 points in C so each point in C; is on at most ¢
balanced lines. Since there are exactly ¢ balanced lines in our plane, each point
in C; is on exactly ¢ balanced lines and one line having ¢ points in C; and one
point in C,.

Let X and Y be distinct points in C; and let m be the unique line on X having
one point in C,. Let Z be this unique point on m in C,. Assume Y is not on
m. The line on Y and any point of m N C; \ X is then necessarily balanced.
Consider now the line on Y having a unique point in C,. This line must intersect

m since H is a plane. We’ve just argued that it cannot be on a point of m N Cj;
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therefore, it must be on Z. So far we have shown each point in C; lies on line
on Z having ¢ points in C;. If r = 2 we are then done, otherwise choose t # j,r.
Now j was arbitrary so each point in C lies on exactly ¢ balanced lines and one
line having ¢ points in C; and one in C,. Let T be a point in C;. All lines on
T must intersect the line m. We have shown that if they intersect m in C; they

are necessarily balanced. So a line on Z and a point of C; must have g points in

C:. We conclude that C' = C7,. O

4. Projective 3-space, PG(3, ).

In this section we prove Theorem 4.11 and Theorem 4.12. We are considering
then r-colorings on the points of PG(3,¢) so as to maximize the number of
balanced lines.

To prove the upper bounds, it suffices to prove that for f(x) and g(x) as

defined in the previous sections we have

Y FEINE,x) <Y g(x)N(3,x) < (¢ +1)(¢* +1).

By (4.5) we know the last inequality is true and that it is attainable only if
each color class contains an equal number of points. We will need the following

observation.

LEMMA 4.16. Let C = {C; : ¢ < r} be a partition of the points of PG(3, q)
so that for some ¢ we have |C;| = (_Q_Lh’rl#_ﬂ_)__ Then C supports at most ¢* — 1
balanced lines or each plane contains at least 9—;’:—1 points of C;. If r = ¢+ 1 and
|C;| = ¢?, then C supports at most ¢* balanced lines or each plane contains at

least 1 point of C;.
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PROOF: Assume that points in C; are colored red, and assume H is a plane with
1< 1%1- red points. Let C support 3 balanced lines. There are no balanced lines
in H. Let u = g% Let A be the set of points that are neither red or in H.

Then A satisfies
A= +j— (@ +1)u<@-1-Pu<L(g+1-u)g®?—qg+1)—qu—1)—2.

Each balanced line on a red point of H lies on ¢+ 1 — u points in 4. Thus there
are at most g2 — ¢ balanced lines on each red point of H. In PG(3, ¢) lines are
either contained in a plane or intersect it uniquely; consequently, each red point
not in H lies on at least ¢ — u points in A. There are at most ¢ — 1 balanced
lines on each red point not in H. Let N be the number of ordered pairs (X,%)
where X is a red point on a balanced line £. We have shown

%lﬂé ICi\ H|(¢* -1) +|Cin H|(¢* — q) = g—}l(q"—l)*j(q-l)-

For r = ¢+ 1,|C;| = ¢%, and j = 0, a similar argument shows that C supports
at most ¢* balanced lines. ]
PROOF OF THEOREM 4.11: The lower bound follows from (4.6). Assume we
have been given a coloring C' = {C;} of the points of PG(3, ¢) with
2
¢“+1)(qg+1
o = (L]

for all i. We may assume that C' supports 8 > ¢*(4,¢,7) > ¢* + 1 balanced lines.
Now if x = (x; : ¢ < r) is an ordered partition of ¢®> + ¢+ 1 then by Lemma 4.16

N(3,x) = 0 unless z; >

g? for all 5. So by (4.3), (4.7), and Lemma 4.15 we

have
(¢+1)(g* +1) < (¢+ 1B <D FX)N(3,x)

<D 9(ON(3,x) < (¢4 1)(¢* +1).
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We have established that ¢*(n,q,7) = ¢* + 1. Assume we have a coloring that
achieves this bound. So if N(3,x) # 0, then f(x) = ¢g(x) and any plane with
partition x contains exactly f(x) balanced lines. From Lemma 4.15 it follows
that we have planes of only two types. A plane is said to be of type I; if it has
partition x = (z;) with

qgt—l +1 fore=jy,
T = +1 o
¢t= for i # j,
and it supports exactly ¢* balanced lines. A plane is said to be of type II; if it
has partition x = (z;) with
{ 4 g2 fori=j,
T; =

gil for ¢ # j,

T

and it supports exactly 1 balanced line.

So C supports exactly ¢* + 1 balanced lines only if all planes are of type I; or
II; for some j. Assume this is the case, we wish to distinguish some line ¢ and
prove C' is the coloring Cj.

Let a;j be the number of planes of type I;, and §; be the number of planes of

type II;. Every plane is of one of these types so
pe 1, p

T

Y ai+B) =0+ +q+1
1

By counting the number of ordered pairs (¢, H) where £ is a balanced line on a

plane H we also know

Y (dPaj+B5) = (¢* + 1)(g + 1).

Combining these equations yields

T
Y=+,
1

D Bi=g+1.
1
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Thus there exists jo and a plane of type II;,. Let £ be the balanced line on this
plane. We assert C' = Cj.
Let af be the number of planes on £ of type I; and ﬂf be the number of planes

on £ of type II;. Every plane on £ is of one of these two types so

D (eb+8)=q+1.
1

Fix 5,1 < s < r and count the number of ordered pairs (X, H) where X is a
point in H N C, and H is a plane on £. If X is on £, then it is in every plane on

¢; if it is not on £, then it is on a unique plane on £. So we have

2
1
qjl(q+1)+q (qr+ )1

- (——-——q(qj D | 1yal 4 (9——11 +¢°)B; + Z(gg'q;waf + q,.iﬂf)-

J#s
Combining these two relationships we have:
~¢’ 1 g+1
(4.10) ot +q2ﬂf+2—7—a§ =
i=1

For every s,1 < s < r we have then that
ra =k (mod ¢?)

where k = Y| af is constant. The integer r is invertible mod ¢? since r # 1 is a
divisor of ¢ + 1 implies r and ¢? are relatively prime. Therefore, ot is constant
mod ¢2. As o! is a nonnegative integer bounded above by q¢ + 1 we actually
have that of is constant. By (4.10) then we find ¢ is also constant and these
constants satisfy:

g+1

r

(4.11) of + Bt =
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By our choice of ¢ we know that fo # 0. So for each j, 1 < j < r we have
at least one plane of type II;. If r = ¢ + 1, then we immediately see that our
coloring C is C. Otherwise r < ¢—1. In this case label our planes on £ H; where
for 1 < < r we assume the plane H; is of type II;. Now recall by our definition
of planes of type II; that if X is a point off £ on a plane of type II;, then X is
in C;. Consider a line in PG(3, ¢) that intersects £ trivially. It necessarily then
contains B¢ > 1 points of each color. We need the following claim whose proof

will be given later.

CLAM 4.17: Each line in PG(3,¢) is either balanced, monochromatic, or is
two colored with a unique point of one color. Furthermore, each plane of type
I; contains -"% monochromatic lines while planes of type II; contain qu2+_1)_
monochromatic lines.

Assuming our claim then our line is two colored or it is balanced. We distin-

guish two cases:

CASE 1. r>3:

As we have at least three colors on this line. That is to say every line that
intersects £ trivially is a balanced line. There are ¢* such lines. Since £ is chosen
as a balanced line and our coloring supports exactly ¢* + 1 balanced lines any
line other than £ that intersects £ nontrivially is not balanced. Our planes on ¢
then all must be of type II; for some j. There are then by (4.11) exactly 9%

planes of type II; for each 1 < j < r. We have then that C = Cj}.

CASE 2. r = 2.
Let v be the number of lines in C;, 7 the number of lines in C,, x the number

of lines that have ¢ points in C;, and o the number of lines that have ¢ points
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in C3. The number of unbalanced lines is then
vtuto+7=¢"4+2¢+4q.

An edge in C; is an ordered pair (X,Y") of distinct points X,Y € C;. Count the

number of edges in C;.

1 q+1 (¢®+1)(g+1)
(3 (@) (3 ) o= (5 )

(?+1)(g+1)
g+1 q N 4 (T2
( 5 )7‘-{—(2)0—{—(2 (¢F+1)= 5 .

Solving these equations we have

_alg+1)”

v+T=u+4+0 9

Every monochromatic line is in a unique plane H; for some . Let us count the

number of monochromatic lines. Each plane of type I; contains '1% monochro-

g(g+1)
2

matic lines while planes of type II; contain monochromatic lines. The

number of monochromatic lines is v + 7.

zz:(qﬂe Q(Q'f'l)ﬂz) a(g+1)?°

J=1 2

Since ozf and ﬁf are constant and by (4.11) their sum is 9-42—:—1— we conclude

ﬁf:q———;—l for j =1,2.
As before this implies C = Cj. ]

PrOOF OF CLAIM 4.17: Let H be a plane of type II,. Since we have a unique
balance line which covers exactly -q% =z;pointsof C;NH for1 <:<r—1,

we have that the points of C; for 1 <7 < r —1 are collinear. Since lines intersect
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uniquely all of our line must be two colored or contained in C,. There are then
exactly ﬂ%ll monochromatic lines.

Let H be a plane of type I, then by Lemma 4.10 C|g = C% for some point
X. There are then exactly 9%1 balanced lines, and all lines are two colored,

balanced, or monochromatic. O
Let us now consider my(q + 1;1,2,4).

PROOF OF THEOREM 4.12: By (4.6) it suffices to consider the upper bound.
Let C = {Ci : i < ¢+ 1} be a coloring of the points of PG(3, ¢) that supports
B > ¢* + 1 polychromatic lines. If for some distinct 4,5 we had |C;| + IC;] < 247,
then by Lemma 4.8

¢t +1<B<|CIC) < ¢*.

So we may assume that for all distinct 7,7 we have
ICi| +1C5] > 2¢* + 1.

Now fix j7; since
g+1

doICi > 2¢* +q—|Cjl(g - 1)

i=1

we find
(¢ —-DICi| > ¢*(g—1) - 1.

Equality is possible only if |C;| = 2¢® + 1 — |C}| for all ¢ # j. Thus

2 .
lelz{q fa#2,
3 if¢g=2.

Our choice of j was arbitrary so relabeling if necessary we conclude that one of
the following occur

(1) ¢=2and |C1| =3,|C2 = |C3| = 6;

(2) [C1l = ¢%|Cal = ¢* + 2, and |Ci| = ¢* + 1 for ¢ & {1,2};

(3) |ICi|l=¢*+1for1<i<qg+1.
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Assume we have the situation of (1). Each point is on seven lines. If the points
in C; are not collinear, then each point in Cj is on at most five polychromatic
lines. This gives a total of at most fifteen polychromatic lines. Assume the points
in O are collinear. There are four planes on this line each of which by Theorem
4.5 contain at most four polychromatic lines. Every polychromatic line must
contain a point in C, thus there are at most sixteen polychromatic lines in this
situation.

So we either have the case where all colors classes contain equal number of
points, or we have the slightly skew case. As in the proof of Theorem 4.11, if all

planes have at least one point of each color

(@+1)(¢* +1) < (¢+ 1B <Y fFINBX) <Y g(x)N(3,%) < (g+1)(g* +1).

We therefore have equality; the last inequality being equality implies that all
color classes contain equal number of points. By appealing to Theorem 4.11 we
are done.

So assume there exists a plane H with no points of some color. By Lemma
4.16, we necessarily have HUC; = § and HUC; # 0 otherwise. Let |HUC}| = ;.
Now since 1 < z; <|C;| < ¢? + 1 for j # 1 and the sum Eg:; z;j=¢*+q+1,
we may conclude that the most unevenly distributed partition has one element
equal to ¢ + 1, one element equal to 2, and g — 2 elements equal to 1. We have
seen in the proof of (4.7) that a sum of the form Y z;z; increases as the z;’s

approach their average. We have then that

2 + > +q—2
1)) =

Z ziz; > g((0,¢%> + 1,2,1,.. 5 ,

1<i<j<g+1

which implies g(x) > 0 = f(x). In this case we find

(@+D(¢* +1) < (@+1)B < Y FEINB,X) < Y g(x)N(3,%) < (¢ +1)(g* +1).
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We conclude if some plane contains no points of one color, C supports fewer than

¢* + 1 polychromatic lines. O
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