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ABSTRACT

A review is presented of the work done by other investigastors
on the effects of inertia couplings in producing flutter in control
surfaces that are not mass balanced, The conclusion is reached that
for the prevention of such flutter complete dynaﬁic balance should
always maintain.

Flexural-torsional flutter is investigated in considerable
detail from the consideration of the dynamical equations for steady
state forced coscillations of the two-dimensional case. A complete
set of response curves for two typical cases are included to show
the types of responses that should be observed in flight with vibra-
tion pick-up equipment. The important fact is brought out that the
rosponse and behavior of the wing at its natural bending frequency
has little or no correlation with the behavior of the wing at the
stability limit of flutter. Curves are presented to show that, for
normel airplanes, the most important paramcters which determine flut-
ter in this mode are (a) the position of the inertias axis, (b) the
torsional frequency, and {c¢) the radius of gyration of the wing mass
about the inertia axis.

The dynamical equations are set up for the cases of flexural-
aileron, torsionsl-aileron, and flexural-torsioncl-aileron flutter
in the two-dimensional case and an example is given of the determina-
tion of the stability limit of a specific example of the first of

these modes.
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ABSTRACT (eontinucd)

An extension of the two-dimensional case to the three-~dimensional
case is presented with particular reference to determining the flexural-
torsionnl flutter speed of a tail surface with vertical surfaces on the
tips of the horizontals. The method of attack is outlined for the
calculation of natural frequencies at zero airspeed to use in determining
the flutter speed.

Statistical date in a graphical form show the variations of
natural frequencies of the various components of airplanes with the
size of such airplanes.

The conclusion is reached that the speed of airplanes should be
restricted to two-~thirds of the critical speed for any mode of flutter,

divergence, or aileron reversal.
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1:01 .

CHAPTER I, INTRODUCTION

1:01, The General Problem

This thesis is intended to cover the basic considerations of
the typesvof flutter mosgt likely to occur in airplane wings and tall
surfaces by giving a brief analysis of the underlying cause of each
type of flutter, a review of the criteria for the determination of
the critical speed, and a discussion of the methods of remedy in
~each case. Other related problems dealing with gerodynamic-elastic-
inertia couplings are similarly discussed.

Flutter may be defined as any oscillatjon of an airplane wing
or control surface in which aerodynamic forces are acting in con-
junction with elastic and inertia forced. It is essential to the
existence of flutter as defined above that there be an aerodynamic
force coupled to the elastic and imertia forces. It is the aero-
dynamic force that provides a source of additional cnergy for the
system. This can be vigsualized by comsidering a simple pendulum
as an osclllating system. If allowed to oscillate without external
excitation, the penduluﬁ swings with an almost constant amplitude
which diminishes only according to the amount of internal friction
in the system. In order to make the pendulum oscillate with a con-
tinually increasing amplitude, it is necessary to introduce an
external exciting force that will act ln the direction of motion of
the pendulum, the exciting force being of sufficient magnitude to
overcome the damping resistance. Such an exciting force in phase

with the motion will increase the energy content of the system.

1,



Thus, when considering types of flutter, it is important that

the aerodynamic exciting force is in the direction of the relative

oscillating motion of the section of wing on which the force acts,

and in phase with the motion.

The types of "binary" flutter of a wing (flutter occurring in

systems with two degrees of freedom) are:

(a)

(b)

(e)

FLgxurQLQA;;Qr flutter, in which a wing of infinite
torsional rigidity bends about a fore-and-aft axis at
the same time that the aileroan rotates about its hinge
lines

Iorsional-Aileron Flutter, in which a wing of infinite
bending rigidity twists about a spanwise axis at the
same time that the aileron rotates about its hinge lineg
Flexural-Torsional Flutter, in which a wing oscillates
in combined bending and twisting, without independent

motion of the aileron.

Meny cases of flutter involve all three of the above modes,

but generally the mode assocciated with the least elastic stiffness

or greatest imertia unbalance ig the important one in any partic-

ular case, Cases of flutter of tail surfaces fall into the game

classification as those given above and can be analyzed by the

methods developed for wing flutter,

1:01



102, Fle al-Aileron Flutt

Ajleron c.g.

Consider a section of wing of infinite torsional rigidity
fitted with an aileron in which the aileron mass is concentrated
back of the hinge line. If this wing is initially at rest relative
to the complete airplane and is then suddenly deflected upward due
to some disturbance, the aileron will tend to lag behind the motion
of the wing to produce a section as shown dotted in Figure A* The
result of the aileron's being drooped is to increase the aerodynamic
1if't on this section, i,e., to introduce an aerodynamic force in
the direction of the motion of the wing. As the wing starts down-
ward from its maximum upward position, the aileron will continue to
swing upward for a while so that, in the downward motion as well,
the aecrodynamic foree due to the alleron will act in the direction

of motion and tond to increase the amplitude. It should be noted

*Note: Figures lettered A, B, C, ctc., are included in the body of
the text. Figures numbered 1, 2, 3, ete., are at the end of the
thesis, following the appendices.

3.
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parenthetically that aerodynemic damping forces are slso present
during this oscillation so that unetable flutter will occur only
when the speed is sufficient to produce in-phase agrodynamic forces
of sufficient magnitude to overcome the damping.

Obviously, this type of flutter is due to the mass unbalance
of the aileron (or, more precisely, to the dynamic mass unbalance).
The effects of mass unbalance were reported in the literature as
carly as 1923, when von Baumhguer and Koning(l gave the results of
wing tunnel tests in which flutter had been eliminated by adding
weights to the paddle balances then used for aerodynamic balance.

Frazer and Duncan(14’15

recognized and commented on the impor-
tance of the product of inertia, but to the best of the author's
knoviledge, Roché(zg, of the Materiel Division of the U. S. Army

Air Corps, first introduced the conception of a dynamic mass bal-

ance coefficient. Consider an aileron, Figure B, mounted on a
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hinge line Y~Y which in turn 1s mounted rigidly on a wing oscillating

about an axis X-X. The inertia forece acting on any element of this
alleron is proportional to the maximum amplitude of the oscillation
of the hinge line at that particular section. If the wing is as-

sumed to oscillate as a rigld beam about X-X so that the hinge line

remeins straight at all times, the inertia force on any element will

be proportional to the distance y, and the moment about the hinge
line of any element will be proportional to Mxy in which M is the
mass of the element. The total moment will be proportional to the

product of inertia of the mass of the ailcron:

«~
ny = L. Bﬂxy

If ny = 0, under the bending assumption as above, there is
no inertia moment to csuse the aileron to lag behind the wing in
its oscillation and consequently no possibility of flexural-aileron
flutter. However, in the types of akleron construction most com-

monly used, J.. does not become zero generally without the additiom

Xy
of mass balancing weights. Therefore, in order to compare the rele
ative values ¢f the product of inertia for warious sized airplanes,

Roché introduced the non-dimensienal "dynamic balance coefficient!:

J
Cab 7 WassS Aren

In Table I (page 6) are listed the values of Gy for all sorts

of control surfaces of a number of airplanes, the date coming from

Roché's paper. For Cgp greater than 0.06, flutter has been observed

in certain cases, It would appoar that any value of Cdb less than

5’
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TABLE I. COEFFICIENTS QF DYNAMIC BALANCE FOR VARIQUS CONTROL SURFACHES
Data from Roché(29, rearranged.
Trailing

Control Edge Can Remarks

Surface Covering

Rudder Metal 0.1958 Excessive tail vibration at various
speeds.

Aileron Metal 0.1521 Left aileron lost in flight.

Rudder Metal 0.1160 Buckled fusclage members in coming
out of dive at 240 m.p.h. with
landing gear exposed.

Rudder Metal 0.1032 Reported tail vibration at 160
m.pah,

Flevator Metal 0.1027 Complete disintegration of alr-
plane at 350 m.p.h.

Rudder Fabric 0.0953 Gave satisfactory results without
perfect balance.

Rudder Metal 0.0851 | Unsatisfactory at 200 m.p.h.

Rudder Fabric 0.0847 No trouble reported.

Aileron Fabric 0.0719 Caused wing flutter through ampli-~
tude of 18 in. Two of crew jumped;
airplane landed 0.K.

Aileron Metal 0.0611 No trouble reported.

Rudder Metal 0.0317 0.X.

Rudder Fabric | -0.0010 Satisfactory at all conditions.

1:02



0.06 is satisfactory for relatively slow airplanes. However, for
fast airplanes, there should be complete dynamic balance, Cdb = 0,
to preclude the possibilities of flutter.

It should be noted that, in developing the idea of Uy, above,
it has been assumed that the wing remains absolutely rigid in the
region of the ailleron so that the hinge line remains straight, In
practice this is not so, the wing will continue to bend through
the region of the aileron so that the maximum amplitude of the
oscillation of any point on the hinge line will be more nearly

2 3

proportional to y© or y” than to y. Therefore, a more rigorous

criterion might he

P T
J§y = Mxy< L0

However, if an aileron is completely mass balanced about the hinge
line at each section individually, both ny = 0 and J%y = 0.
Furthermore, if dynemic balance is obtained by adding a balance
mass forward of the hinge line near the tip of the aileron to the

extent that J.,, = O, then Jiy becomes negative, indicating excesg-

Xy
sive mass balancing {(but not in the least objectionable), There-
fore, it appears that the general use of the coefficient Cyp will
be satlsfactory--somewhat conscrvative,

Theodorsen and GaTTiCk(35 have carried out an extensive
investigation of this type of flutter both by wind tunnel tests
and by calculations of two-dimengional examples. The results of

Graphs II A, B, C, D, E of the Theodorsen-Garrick report secem par-

ticularly significant when interpreted in a manner modified from

7.
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that given. They define the amount of mass unbalance by

~ Aileron mass * Moment arm tc C.g.
= 1:0
*B Wing mass + Semi-chord (1:04)

in which the aileron and wing masses are taken per unit span.

This may be written

{ Aileron wt., per sq,ft.] °{Aileron cha}2 .[ Mass ecc. ]

XB -2 ‘! Wing wt. per sq.ft. Wing ch. Aileron ch. {1:0%)

In general the aileron weight per square foot is about
one half that of the wing. If the aileron weight is token as

one half the wing weight, the following maintainss

Mass eccentricity _ % { Wing chord 1% (1:06)
Aileron chord Bl Aileron chord o

The Theodorsen-Garrick curves show that flutter does not occur

below a certain critical wvalue of Xy, 88 followss

' 1ord Xg Mass eccontricity’
Wiing chord Aileron chord
0.167 (¢ = 2/3)* 0.0025 0,090
0.25 (c = 1/2)* 0.004 0.06/
0.50 {c = O)* 0.018 0.072

*¢ here is Theodorsen's notation, not wing chord as used
in this thesis. For comparison of notations, see Appen-
dix II.

**1f alleron weight per sq.ft. = 0.5 wing weight per sq.ft.
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If the problem is extended to the three-dimensional case in
which the dynamle balance coefficient Gy, has meaning, the value
of Gy for a rectangular alleron of constant characteristics along
the span is

Mass eceentricity

] <0
Ailoron chord (1:07)

1
Cap = 3
The theoretical study indicates, therefore, that to preclude the
possibility of this type of flutter, Cgp should be less than 0,032,
This is in agreement with conclusions reached from flight tests.

Theodorsen and Garrick?s(35

curves show also that, if the
natural frequency of the aileron oseiliation at zero airspeed is
over twice that of wing flexure, a substential amount of mass
unbalance can be tolerated.

However, it should be recognized that generally there are two
possible modes of aileron flutter: “symmetrical," as when both
ailefons move up tégether by stretching the contrel system; and
"anti~symmetrical," as when one aileron moves up‘and the other
dovm at the same time., With rigid control systems of low internal
friction, the flutter will be anti-symmetrical; but with relatively
flexible control systems, either mode may occur depending upon the
circumstances. |

One case of aileron flutter of a biplane of which the author
has close personal knowledge was of the anti-symmetrical type in
which the control stick moved from side to side in the cockpit.

The pilot was able to damp out the flutter by holding the stick in

9.



1:02,

his hand. However, in a glide at about 200 m.p.h. with the stick
free to move without restraint, the flutter became violent and

the wings left the ship, The pilot lgnded safely with a parachute.
The ailerons were not mass balanced in this case.

Unless a control surface has irreversible controls the situ-
ation always arises that the surface may have a natural frequency
of zero with free controls in the anti-symmetrical mode, so that
the only general expedient is mass balancing,

smilg(32, in a wind tunnel investigation of tail flubtter with
particular attention to that of the rudder, found similar results,
namely, that flutter occurs with mass unbalance and is prevented
by complete dynamic balance. He observed flutter with a dynamic
balence coefficient as low as Cdb = 0,002. However, it should be
noted that his model was heavy in relation to the enclosing air
mass so that a small eccentricity would still produce a’relntiveLy
large inertia moment of force. He also found that flutter could be
prevented by restraining the rudder to provide a natural frequency
equal to that of the fuselage in torsion in all cases in which
Cap <0.05.

In Chapter 11X, the eguations are set up for steady state
forced oscillations in the flexural-aileron wode of the two-
dimensional case. These equations may be used to analyze the fol-
lowing types of flutter:

Wing flexure vs. aileron torsion
Stabilizer flexure vs. elevator torsion

Fuselage flexure vs. elevator torsion

10.



Fuselage torsion
Fin flexure
Fuselage flexure

Fuselage torsion

V8o
VSe
VSa

VS,

11.
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elevator torsion
rudder torsion
rudder torsion

rudder torsion



303,  Torsi ~A n Flut
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Figure C

The case will now be considered of a wing of infinite bending
stiffness which may twist about a span-wise axis, Figure G, Again
there exists a means of moving the alleron hinge line up and down
and if the mass of the aileron is principally behind the hinge line;
the aileron will tend to lag behind the motion of the wing just as
in the case of the flexural-aileron flutter., The dowmwardly de~
flected aileron produces an aercdynamic twisting moment that acts
in the direction of the rotational velocity of the wing and hence
increases the energy and amplitude of oscillation at high airplance
speeds. Dynamic balancing eliminates the possibilities of flutter
in this case if the dynamic balance is based on a cocfficient of

the form involving:

" - -
iy = S Mx(x+a) = 0

12,
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in which "a% is the distance from the hinge line to the flexural

axis about which the wing twists. Rewriting equation (1:08},
2
YMx(x +a) = YMx" +ayMx = O
go that for complete dysamic balance,

Tx = Tt _ static balance = - moment of inertia
= - = noe = -

a (5N

Therefore, some statlic overbalance is requisite to eliminate all
mags coupling in torsional-aileron flutter at all speeds. However,
Theodorsen and Garrick(B5 have found that this mode of flutter is
not critical if mass balancing is carried out to the extent needed
for the preventlion of flexural-aileron flutters In genersl, the
torsional frequency of the wing is substantially higher than the
flexural. Furthermore, the friction of the control system has a
definite damping effect to prevent flutter in this mode.

In Chapter IV, the equations are set up for steady state forced

ogcillations in this mode.

13.
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On the basis of a theoretical analysis originally conceived

by.Birnbaum(z’B, in G8ttingen, and developed by Kﬂssner(zz, also
in GBttingen, the critical speed at which any flutter will occur

can be expressed by the formula

v, = 311 {1:11)
W
in whichs:
Ve = eritical speed in feet per second.
v = natural frequency of the wing in the mode which
will give aerodynamic_couplings to the elastic
forces, in radians per second.
1 = gemi-chord of the vibrating portion of the wing -~
feet.
w = Mreduced frequency,” a non-dimensional parameter.
Equation (l:1l) may be expressed in the alternate formss
#ncp
i'Sliare (1:22)
or
#nc " _
w = -VEQ (1:13)
in whichs
n = frequency in cycles per second.
¢p = mean chord of vibration portion of wing - feet.



Kﬂssner(22 has analyzed the characteristics of several airplanes in

which flutter has becn observed, determining the natural frequencics
of the wings in the critical modes by vibration tests on the ground,
and found that, with mass unbalenced ailerons, the reduccd freguency

in all cases was very close to a congtant value:
w = 0.9t 0.12

Table II, page 16, gives the results from Kissner's puper, somewhat
rearranged. It is noteworthy that in 211 cases with metal structure
the flutter had 2 viclous aspect except in the one case of the M-28
which had very rigid aileron controls. The metal structure has much
less internal damping friction than wood and is therefore much more

susceptible to vicious flutter.

15.
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TABLE II,

OBSERVED CASES OF WING-BILERON FLUTTER

(22

Data from Kiissner'™™, rearranged.

1:04

Air- Chord | Crit. Speed Reduced | Rigidity| Wing

plane tm Freq. Vi Freg. |- of Struc- | Aspect
Type n 1/min. | km/hr. o Controls | ture

He 60 2.2 780 350 0,93 - metal vicious

Do 10 1.6 1450 450 0.97 great metal vicious

L 102 1.56 835 290 0.85 small metal vicious
Do 12 1.3 580 180 0.79 small metbal vicious

M 28 1.05 770 220 0.69 great metal mild
DP9 1.5 520 180 0.82 small wood vicieus
He 8 3.0 540 350 0.87 small wood vicious
Ki. 1la 1.3 675 145 1.14 small wood vicious |
s 24 1.18 | 1215 280 0.97 small wood vicious |
Ar 66c 1.65 790 340 0,72 small wood vicious

L 78 1.36 860 210 1.05 great wood mild

He 46¢ 1.4 845 268 0.87 small wood nild

AC 12e 1.4 805 220 0.98 small wood mild

16.




1:05.  Statistical Method for Determining the Critical Speed of

Alleron Flutter

_ . . (14,15
From the thecoretical work of Frazer and Duncen s

(5

H. Roxbee Cox'~ deduced that the critical parameters for wing flute

ter in non-dimensional form are:.

(1) g

l!Oﬁa

PV2802
1
(B) | ~=
pves
(c) -
[
in which:
torsional stiff Lorque
o = rsional stiffness of wing = - o
"o orsona * 55 of Wne angle of twist of eff.tip
lp = flexural stiffness of wing = maxc-bendlng ?oment : sem%~span
lineal deflection of tip
v = critical velocity
f = alr demsity
¢ = wing chord
s = semi-span
§ = wing mass in 1lb./sq.ft.

By plotting the functions (A) and {B) against (C) for airplanes

which have been known to flutter and for other airplanes in which flut-

ter had not been observed, Cox obtained critical values at which flutter

is likely to occur for airplanes with mass unbalanced ailerons as shown

17.



1:05

in Figures 1 and 2* reproduced from his report,
It is interesting to note that these curves closcly approximate
& parabola as would be expected from Kissner's formula, equation

(1:11), in which for constant chord, using the Cox notations

1.1 5 11
.‘}_MHM .a.é.. (1:14)
or
2.5 (1:15)
w2

In conclusion, it is believed that all binary flutter of the
flexural-aileron and torsional-aileron types can be eliminsted by

complete dynamic mass balancing of the ailerons.

*Figures numbered 1, 2, 3, etc., are at the end of this thesis, fol-
lowing the appendices,

18.



1:0 Flexural ~ ional Flut

Even after ailerons are mass balanced as discussed above, there
remains a pogsibility of another kind of flutter if the specd of
airplanes is still further increased. This flutter, called "flexural-
torgsional flutter," arises in cases in which the center of mass of
the wing and the flexural axis are aft of the aerodyncmic centoer.

The fundamental cause of thié type of flutter can be scen from
reasoning along the same line as that above for the ailuron fiutter

by considering a section of wing as shown ln Pigure D, I such a

/ Flexural axis (elastic axis)

|
/»‘"‘J’“N-v-‘%
T,
»1-*_._7_,_“4_4_ ~
\\""—* ---«-»-::'--—..: .-..“"“.:::a&»
et e
/‘ N\%\“
|
Inertia axis
Axis of
aerodynamie centers v
Tigure D

wing is momentarily displaced upward hy any cause whatsoever, it
will tend to twist due to the inertin lag of the center of mass of
the wing. This twist is in the direction to produce an increased
lifting force as the wing moves upward, thereby introducing an
in-phase coupling of the zerodynamic force with the motlion of the

wing.,

19,
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It is apparent that important parameters are particularly:
(a) %he torsional stiffness, (b) the relation of torsionsl stif-
fness to flexural stiffness, and (c¢) the distances of the inertia
axis and flexural axis aft of the quarter-chord axis.

In Chapter II of thig thesis the whole subject of flexural-
torsional flutter is dealt with in considerable detzil in the
two~-dimensional problem. Experimental results reported by Voigt(37’38’39
and by Theodorsen and Garrick(a5 indicate good agreement between the
flutter speeds calculated by theoretical two~dimensional methods as
here presented and flutter speeds as observed in the wind tunnel. This
experimental check therefore forms the authority in justification of the
subsequent theoretical work by the author.

Iwo cases are studied specifically in which this mode of flut-
ter can occur. Case A is a case in which the elastic axis and inertia
axis ¢opincide at 50% chord. Case B is representative in general of
present-day construction for which the torsional frequency has been
chosen on the lower limit of that found in practice in order to reduce
the flutter specds. See Appendix V for a summary of the parameters of
Coses A and B,

Figures 3 to 10% show the effects of varying the parameters
of the wing of Case B, one at a time. The basic condition of Case B
is represented by the circled point on cach curve. The following
conclusions can be drawn which may be considered to apply to the wings

of present-day stressed skin construction:

*The author is indebted to Lt. Parish and Lt. Jackson(26 for their
asslstance in the preparation of these figures.
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Figure 3 shows that the effect on the flutter speed of
moving the elastic axis fore and aft is relatively small
in that a 5% rearward change in the position of this axis
increases the flutter speed by 30 mep.h. It is note-
worthy that the rearward change of the elastic axis in-
creases the flutter speed but decreases the divergence

speed.

Figure J shows that the effect on the flutter speed of
moving the inertia axis fore and aft is substantial.
With the inertia axis in the region of 40% of the chord,
e 5% motion forward of that axis inecreases the flutter

speed by 100 m.p.h.

Figure 5 shows the result that is obtained under con-
ditions in which the relative distance between the
elastic and imertia axes are fixed. A 5% forward motion
of both axes in this case increases the flutter speed by

80 m.p.hﬂ

Figure‘é shows the effect of wvarying the radius of
gyration of the mass of the wing about the inertia axis
while holding the torsional stiffness constant. An
increase of the radius of gyration from 0.25¢ to 0.30¢

reduces the flutter speed by 30 m.p.h.

Figures 7 and 8 show the effects of varying the torsiomal

and bending frequencies independently. The flutter speed



is almost directly proportional to the torsionsl frequency,
a wmost important parameter. The effect of the bending

frequency is negligible.

() Figure 9 shows the effect of wing weight on the ilutter
speed if the stiffnesses are varied to hold frequencies
constant, In the range of wing weights found in practice
there is only o small effect due to wing weight. It is
interesting to note that if wing weights might be recduced
to below 1 1b./sg.ft. the flutter speed would increase

subgtantiaily.

(g) TFigure 10 shows that the true airspeed of flutter in-
creases with altitude although the indicated airspecd

decrcases somewhat,

In summary, the parsmeters most directly affecting flexural-

torsional Tlutter are:

{a) Position of inertia axis.
{(b) Torsional frequency.

(e) Radius of gyration of mass of wing about inertia axis.

It should be noted, however, that the flexural stiffness of a
wing is important for gemersl considerations in order to c¢liminate
large amplitude responses of the wing tips to gusts, etc., in
flight, even though Figurc 8 shows that flutiter would not occur at

low speeds even with zero bending stiffness.

22,
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Theodorsen and Garrick(35

state that when the bending frequency
is low relative to the torsional frequency, the critical speed of
flexural-torsional flutter cun be predicted by the following squation

in thelir notations

Vf _ /raz . {172/ 1:16
b f k- /2 +a+x,) ( :

Converted to the nomenclaturc of this thesis, the equation

becones:
_ ‘\;),tc /ﬂ( 1 F& + G-FA)
cr. 2 £+GF (1517)
in whichs
¥, = critical flutter speed {ft./sec.).
ﬂ% = npatural torsiomal frequency {rad./sec.).
c = wing chord.
€ = distance of elastic axis back of 25% chord point,
as fraction of chord.
T = distance of inertia axis back of elastic axis, as
fraction of chord.
ip = radivs of gyration of mass of wing about incrtia
axis, as fraction of chord.
po= ratio of wing mass to air mass {see equation 7:27)
The Theodorsen-Garrick formula may be rearranged to show a
relation to divergence speed as follows:
- + (Fw/ip)*
ver = vg /Lt lTE/iE) (1:18)

(1+ Tp/e)

23,



Hence when CﬁF = 0, the flutter speed equals the divergence speed
by this formula. It should be emphasized that this formula is
represented to be only approximate. Applying it to the two cases

studicd in Chapter II, the following results are obtaineds

Casc A. (Notes O = 0)

v
w%?i = 3.6 rad./sec., (by Theodorsen-Garrick formula)
Ver, : A . .
o= 28,6 rad./sec. (by precisec calculations).
(Chapter II)
Cuse B
Vop, = 366 m.p.h. (by Theodorscn-Garrick formula)
Vep, = 37 mep.h. {by precise calculations}.

{Chapter 11}

Based on average positions of the inertia and elastic axes,

Pugsley(26 has given the requirement that at sea level maximun

speeds
1 /T " /,_2‘...,
s /52 200 [55
and
1 /3 / a
v E% 2 0.025 0.20
in whichs

¢ = wing density = &/¢  (1b./sq.ft./ft.-chord).,

1:06

(1:19)

{1520}
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Q.
i

semi~span from root to effective tip (ft.)

mean chord (ft.).

[¢]
il

Chapter VI of this thesis gives a method by which the two-
dimensional problem may be extended to take care of the three-
dimensional problem, including the effects of vertical surfaces
on the tips of the horizontal,

In Chepter VII the procedure is outlined for the calculation

of the ecritical speed of flutter of wings and tails.

25.



1:07

1s - Wing Diver e

If a wing is considered in which the axis of the asrodynamic
centers® is forward of the flexurnl axis, it is seen that the nero-
dynamic forces produce a moment about the flexural axis which twists
the wing in the direction of increasing angle of attack whenesver the
wing is at a positive angle of attack. This aercdynamic twisting

moment is of the form:
) ngscza {1:21)
or, the "aerodynamic rigidity" 1s

2
Mg, cwa?vzsc“ (1:22)
Inasmuch as the elastic rigidity of a given wing is a fixed quantity,
independent of the conditions of flight, it follows that when some

critical flight speed is exceeded,
o, {acrodynamic) > T {elastic) {1:23)

Under this condition, when the serodynamic moment is greater than
the clastic restoring moment, the wing will diverge in torsion.

This critical speed is called, therefore, the "divergence speed,"

*he aerodynamic center of a section is the point about which the
pitching moment is constant and hence the point through which 1if+¢
forces due to changes in angle of attack are taken to act. The flex-
ural exis is defined as the axis along which loads can be applied with-
out twisting the wing and, conversely, the axis about which the wing
twists if pure torsion is applied.

26,



1:07

which, from equations (1:17) and (1:18), can be writtens

vy = D/ﬁ%g (1:24)

(17, shows that the value of D in equation {(1:24) will

HahSon
lie between 5 and 6 when the acrodynamic center is 5% of the wing
chord forward of the flexural axis. The value of D varies inversely
as the distance from the aerodynamic center to the flexural axis.

In Section 2:08 of this thesis, it is shown that the torsional
divergence can be expressed in terms of the torsional frequency

as follows:

i

Y ETH
v = “mzl /% (1:25)

or

Viige :
vy = —AE [ (1:26)

i

7.
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1408, _Alleron Rever ced

A phenomenon somewhat related to the wing divergence is that
of the reversal of aileron control at wvery high speeds so that
the allerons produce rolling koments in the opposite directlon from
what would be normally expected. Considering a wing of a given
elastic rigidity, the angular twist of the wing caused by the asro-
dynanic moment about the flexural aoxis for an angular deflection of
the alleron B can be written:

2
E)priXES_Q B {1:27)
Ty

from which the ratio of angle of twist to ailleron angle is

O i (1:28)
P Ty
bs the speed increases, this rabic increases, so that cven-
tually a condition is reached in which the rolling momont due
to © is just equal to and in the opposite dircction to that due
to B, and consequently there is no net roll duc to deflection
the ailerons.
From equation {1:28), it follows that this speed of aileron

reversal is of the form:

v, = K/’?-tﬁ%a- (1629)

in which K is a non~dimensional constant dependent on the partic-

ular plan-form of the wing and the aileron shape. Hanson(17 indi-

3
cates that the average value is about K = 2 and gives curves showing

8.



the effects of taper and wing characteristies.
In Section 5:02, it is shown that the reversal speed is
related to the divergence speed by the equation (5:33).

VI‘ = vd RSE

The constants Ry and R5 are funetions only of the ratio of aileron
¢hord to wing chord, as tabulated in Appendix III, from which the

table below was determined.

Aileron chord By
Wing chord R5
0.15 2,23
0.20 2.32
0.25 Re43
0.30 255

Using an average value of JRl/Rs = 24, the effect of £ is shown.

£ Eisstic axis r
% chord ¥q

0.05 30 0.54
0.10 35 0,76
0.15 40 0,93
0.174 LRl .00

29.
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Hence, whenever the elastic axis is forward of the 42.4% chord
noint, aileron reversal is more critical than torsional divergence.
However, this is due to the fact that the torsional divergence specd
varies inversely with V& , rather than because of effects of € on
reversal speed because the reversal speed explicitly is not a func-
tion of € but is given by

VG
v = -Z:L:—L’ o-l'au&u

2 R5
or

v = Adre /Ay
in which:
vy = natural torsional frequency (rad./sec.).

= radius of gyration, as fraction of chord.

¢ = chord (ft.)

s

ratio of wing mass to air mass (see equation 7:27).

1}

(6

The reader is referred to the papers by Cox and Pugsley' ,
Duncen end Mctiillan'?, Pugsicy'?®, and Hirst** for further dis-
cussions of aileron reversal and the extension to three-dimensional

cases.,

30,
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:0 Servo Tab Flutter

Another type of flutter is pessible when servo tabs are in-
corporated in the control surfaces which closely resembles the
fluttering of a flag. This case is quite analogous to the tor-
sional-aileron case discussed above except that all motion is
confined to movable surfaces.

Two ecxpedients are available to prevent this type of flutter:v

{a) Use a rigid irreversible tab control system.

(v) Static balance the tab about the hinge line to the

extent indicated by equation (1:10).

The reader is referred to the paper by Dietze(8 should he be
interested in the aerodynamic forces acting for the purpcses of

setting up the dynamical equations.

3L,



CHAPTER II, FLEXURAL-TORSIONAL FLUTTER (TWO-DIMENSIQNAL)

It is essential to the development of the conditions of flut-
ter in this category to first determine the aerodynamic forces and
moments acting on an airfoil of infinite aspect ratic which is
performing an oscillation vertically in combination with an oscil-
lation in angle of attack., In all these studies it will be con~
sidercd that the oscillations represent a steady state condition,
i.e., they have existed with constant magnitude for a period of
time sufficient for all transicent phenomena to have vanished.
Because of the importance of the aerodynamic forces and moments
to this theory, they will be derived here by several methods in
succession.

The dynamical equations will then be set up for the case of
a steady state forced oscillation and methods showm for the
determination of the amplitude of the responses to such forced

vibrations as well as for the calculation of the stability limits.

32.
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2:01, Aerodynamic Forces and Moments due to Apparent Mass of Fluid
Adjacent to a lMoving Plate

It is a well knovm theorem of the aerodynamics of perfect
fluids that the only forces acting on a body or a plate moving
- with constant velocity and at a constant angle of attack are those
associated with the circulation of fluid around the body or plate.
It is essential to recognize that this theorem is postulated on
the basis of a gonstant flow of fluid at a constant angle of attack.
In the case at hand, the plate is performing harmonic motions which
produce changing accelerations and decelerations of the fluid so
that the fluid exerts forces and moments cn the plate, even in the
absence of circulation., This section is devoted to determining
these forces and momenits by the classical method as ontlined in
Lamb(24, (page 83 et seq).

Consider first a plate which is moving in a fluid with an
instantaneous velocity x in the direction of the chord and §
perpendicular to the chord, together with an anguler velocity éh

The fluid is at rest at infinity.

S
i
e
S
L S

33.



At any point on this plate, the velocity of the fluid in the

y direction is

vy = ¥+ x (at boundary)

and in the x direction

v, = 0 (for the fluid, at boundary)

The stream fugction ) is now introduced to describe the

motion of the fluid by the following defining equation:

oY

¥

v Ix

It is seen, therefore, that the complete stream function which

satisfies equations (2:001) and (2:002) is, at the boundary:

2
(U pouma, = &+ fifé-+ const.

The complex potential function ig now introduced and defined

by the equation
$+1d =1 [ Cle~(€ Hn) cﬂze'“z(f “’7)]

in whichs
i = /1
Cl and Cz are. constants to be evaluated

€ and v} are related to x end y by:

34
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(2:002)

(2:003)

(2:004)
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x+ 1y = Zcosh (¥+ i) (2:007)

Equation (2:007) can be expanded to separate the rcal and imeginary

parts, making usc of the relations

cosh iz = <¢Cos 2

i

sinh iz = i sin =z

i

go that the equation becomes
s o~ G s s .
x+iy = % [cosh"g cos¥] + 1 sinh§ vsm'r” (2:008)

where, equating the real and imaginary parts independently

- £ .
x = -?:coshf cos , 1
(2:009)
s |
y =3 sinh § sin M
It is readily seen that § = 0, cosh§ = 1, sinh§ = 0, defines
the boundary of the fluid adjacent to the plate, viz.:
. e
(x),s.zo = % Cos M
> (2:010)
(Y)g.:o = 0
Substituting equations (2:010) into (2:005) givess
. 2 . 2
- C 4] PN .
( \I) >§‘=o % ¥ CosT) + F-@ cos 7} + const. (2‘.011)

which can be altered slightly, using the relation cosg‘q = %M
, ~

35
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to give:

(P Je., =FFcosm+ % @ cos 27 + const. (2:012)

Equation {2:006) can be evalusted on the boundary to be
2 — > ""i “‘23‘-?‘ :l e
(D +1 LI) )’c::o = i {: Gle M+ 02e (2:013)

Using the relation which is well-known in the theory of complex

numbers that,
e*? = cos z + 1 sin z
the equation (2:013) yields the strecam function at the boundary

(\1’ )§=o = G cosm + G, cos 2 {2:014)

Comparing equations (2:012) and (2:014), the constants Cy and Cy

can he evaluated as

C, = %7 (2:015)
o = c® {2:016)
2 T 15 ¢ e
Substituting these values of C; and C, into equation (2:006)
gives
. _ g g ~(erin) |, 2L ~rigHin) )
$+ 1D =1izvye Vo4 i 35 Qe 5 {2:017)

36.
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or
» - AR -
d =y % e sinm + ?% e ] sin 2m (2:018)
= : _‘g q 2 “‘2§ 2 *
q_) = y% e " cosm + CPE e™~3 cos 2| (2:019)

Tt is shown by Millikan(?5 (page 3.3 et seq.) that the potential
function @ bears the relation to the impulsive pressure p; as

follows:

p; = PO+ const, (2:020)

The impulsive force acting on any area dS 1s then, disregarding

the constant in equation {2:020),
af, = pd as (2:021)

The velocity of flow normal to the surface S is given by

_ 9% _ 0¥
v, = 5o, = 55, (2:022)
The total kinetic energy imparted to the fluid must be equal
to the work done by the external forces, hence
T = & [ var {2:023)
2 n i
Boundary

Or, the energy per unit depth of fluid in the two-dimensional case is:
o P =1 .
T = --2#-/@ Q%’ (200%)

37.



in which the integral is performed over the entire boundary in a
positive direction,

The functions ¢ and ) of equations (2:018) and (2:019)
approach zero as § approaehes infinity so that the only integral
that need be considered is that on the surface of the plate,

namely,

2
T = -5—//<@d@ (at € = 0)
o

'On the surface € =0

(Q))g__ = :;’%cosq +€p%§ cos 2)

-0

H

—

& S sinw +q ¢ sin 2wy d
2 81N TP i M dn

1

@k,

e @ 2
(@)E:._o = y%sinh’rcp%g sin 27

Inasmuch as
24t 2

sinz‘qd'q = singz'r]dq =g

and
2

sin‘r} sin Zq d‘q\ =0

38.
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the total kinetic energy of the fluid is

2. 3

For any body moving with a vertical velocity & and an angular

velocity q’) , the kinetic energy may be written
_ 1f 2, a2
T = zl:My + Iq> ]

so that, by analogy, the fluid is said to have an "apparent mags"

per unit span to resist motion in the y direction of

= -'4 (2:028)

This mass my is seen to be the mass of the cylinder of air
enclosing the plate in such a way that the chord forms the diam-
eter of the cylinder, Thigs apparent mass is often called the
"mags of enclosing air cylinder" in the literature om flutter,
and must be added to the mass of the wing in order to obtain the
true cffective mass in the dynamical equations.

By analogy, that "apparent moment of inertia® per unit span

is secn 1o be

4 2
ad G —— G -
T = #1228" = %(32) (2:029)

It 1s a curious phenomcna that, while the apparent mess equals
the mass of the enclosing air cylinder, the apparent moment of

inertia equals only ome fourth of that of the enclosing air cylinder

39.
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O
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if that cylinder were solid, for which
I
I = M(S)

In the analysis thus far, the axis x has been in the chordwise

direcction and the axis y in the direction normal to the chord. It

is instructive now to consider the transformation to o new set of

aXeE.
gy 7

/

The vclocities at the mid-point of the chord are transformed as

follows, changing the notation to that of the figure:

x! = ;Ecosq?+§-sincp .
_ (2:030)
3}' = -x sin(p -%-;}coscp
Equation {2:027) in terms of the new notation becomes:
T = ;—{—3———" o ("?’”%" ot 42 ] (2:031)
R ARt %% ] :

Hence, the kinetic energy per unit span becomes:

R oren . . o
T o= £gC [x2sin2cp+ y2cos?p — 2y sincpcosqp] + %%@2 (2:032)

40.
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It is convenient here to use Lagranget!s Equation” to determine

the forces acting, which, for generalized coordinates q, is

4 (2T _ 9T
ES (--—-aqk) S Q

in which Qk is the external generalized force acting in the direc-
tions of g It is important to note that in applying equa-
tion (2:033) to\the problem at hand, the force Q) would reprusent
the force of the plate om the air. The force of the air on the
plate would be ~Qp.

Consequently, the vertical force of the air on the plate may

be writtens

v qd ;OT 2T
¥ o= - () + =
dt (ay) 3y

The moment of force of the air on the plate is

P o= .4 (9D, 2T
SRR TAY P v

Substituting the value of T given in equation {2:033) into equa-
tions (2:034) and (2:035) lcads to the following results, if we

further require that

X = v = const,

2 r
- npoe - “ . 2 B
Y = . __%.._ L vy cos CP ~ VP cos 2@ - 23@ s:.ncp cog(p ]

M N o s 5 Y 1
“For a ?erlvatlon of Lagraongc's Equation, see Byerly(“, Tlmosnonkoiaé,

Webster 40, or any trestise on classical mechanics. The form used
here is that in which therc is no potential energy.

41,
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4 oo 2 2 '2 .
— 14 [¢] il C 4 3 o € - e
M = ~ 5 <p+ —-%—-—- [ + v'slng cos® ~ y singcos® -~ vy cos 2(;_' (2:038)
It is now necessary to make the further assumption thal must

usually be made in studying vibrations, namely, that oscillations

are small, i.e.,

yLv
gL
Whonbc, for small oscillations
7 02 o - . .
Y = - ERS. [y‘- v?‘l (2:039)
4
b oos 242 :
Moo= _rpctw,agc { _‘x} 2:040
! i L%y (2:040)

The mement is taken about the mid-point of the chord. It
should be noted that the second term in equation (2:039) has the
character of a "centripeBal scceleration." In equation (2:040)
only the first term involves s nou-steady state accelerstion.
The second term, containing cp and §9 appears even in caseg of
steady motion. Consequently, the first term of equation {2:040)
is teken as the apparcnt mass contribution to the moment and the

gecond toerm as a steady motion contribution to the mowment.
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In this section of the nnalysis, the acrodynamic forces and
moments are determined under conditions of steady motlon, or in
particular, on the assumption that there arc no effects of vor-
tices shed from the wing. The assumption is continued that the

wing has infinite aspect ratio.

D
QI .
,4*”’//7 relative wing

I

.l

A plone airfoil, as shown, having a vertical velocity at its

mid-point of §m and an angular velocity %, as well as an angular
position @ to the free air stream can be replaced by a cambered air-

foll of such camber that at each point, if @ is small:

Ly, = -%9 (2:041)

in which Y, is the vertical position of the camber line relative to
the chord line through the leading and trailing edge.

Integrating equation (R:041),

{2:042)
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2.
Inasmuch as y, = 0 at x = f%, the constant € = Egé? and the equation
for the camber line becomes
o 2%.,‘;‘2 Zéié. {2.043)
Ye 8v v )

The plane airfoil, as shown above, can be replaced by the
cambered alrfoil below without affecting the aerodynamic forces
and moments inasmuch as the velecities and inclinations of cor-
responding points on the two airfoils relative to the free stream

velocity ore identical.

(25

The 1ift forces on such an airfoil are given by Millikan' 7,

(page 15.6), and Kékméh—Burgers(lg, (page 49, section a). The
aerodynamic forces and moments per unit span under this condition

can be represented completely by two 1ift vectors, viz.:

L, = ujacvg(ga- zg) {acting through forward (2:044)
quarter-chord point)



Lb = 2w§>cv2(%?0 (acting through mid-chord

point)
2 .
Substituting that y = & &
¢ 8v
" 02 o ‘ .
L, = EPE « ¢ {acting through mid-chord
% .
point)

It is important to note that the force L, is taken to act
through the quarter-chord point in all cases of steady motion,
This is the result of a combination of circumstances, namely,

that the following forces and moments are acting:

H

Lift due to circulation :vycvz(qa* g&) (acting at mid-

chorad)}

Moment due to apparent mass = 5419§¥§(q;» 2&} {see og. 2:040 and
4 S 4 subsequent disg-
cussion)
The above comblne to form the quasi-steady 1ift, L., which iz
taken to act at the forward quarter-chord point.

It is worthy of comment, further, that the 1ift Ly {equation
2:045) arises from the Kutta condition that the cgérculation aboub
the airfoil must be sufficient that the flow 1s tangential at the
trailing ocdge. The second term in equation (2:039) is identical
in value to Ly, and arises from apparent mass effects. The total

1ift must include both thesc terms.

45.

2:02

(2:045)

(2:046)



2:0 Summary of ferodynamic ces apd Mome 's’ T

Apparent Magss ond Quasi-Steady Motion

In this section all of the aerodynamic forces and moments
are summarized for the conditions of quasi-steady motion including
effects of accelerations but under the specific agsumption that
there are no effects of vortices shed from the wing, which is taken
further to have infinite aspect ratio. The effects of the shed

vortices will be considered later in Section 2:04.

t 25%
L = xpcvz(r?-z}?l)
At 50% chord
. & 02( ”+ hd
L = 7 -Int Q)
Moment
. _npck o
u 1 P

46.
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Tor Steady State Oscillations

In this method, the airfoil is replaced by a vortex sheet
such that the vorticity is Y(x) = &~ in which aP is the circu-
lation about any element dx. The strength of the vorticity in

the wake is written as Y(¥)

4 Y

It is shown by Kérmén—Sears(l9 that the total 1ift can be

written in the form, for an airfoil of chord c,
L = Ly+Iy+1L, {2:050)
in which®

£
P

o
}

o T PV Y (x) dx (quasi-steady 1ift) {2:051)

v <

Hb ¢

*The notation and directions of positive azes of this thesis differ
from those used by Kdrmén-Sears. The signs for the integrals are
modified to apply to the notation used here.
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g
2
L1 = +§>é% Y, (x) xdx (apparent mass 1ift)
LE
2
L, = 7pvc () dg—- {1ift due to wake
2 2
Je2 02/4 effects)

vie

Similarly, the moment of all gerodynamic forces abhout the

mid-point of the airfoil may be written:
Moo= My o+ My o+

in which:

&
/2
M, = pv Y, (x) xax (quasi-steady
. moment)
-2
c
2
: 2
M, =+ %;»é% Yo(x)(xz - 80 ax (moment due to
4 apparent, mass)
0
2
_ ve (%) d¥
My =+ ﬁE§—~ x(%) 4 (moment due to
ng _ 02/4 wake effects)
2
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The 1ift and moment L2 and M2 shall be ignored for the instant
except to note that M, = Lz‘(%) and hence that the 1ift force L, may
be taken to act through the forward quarter-chord point of the air-
foil, in which case there 1s no added moment.

The distance x along the chord may be expresaed as

x = (%)cos@ (2:058)
dx = .-(«%} sin © @6 (2:0582)

Substituting equations (2:058) and (2:058a) into those previously

written ylelds:

&
L, = -,Qé‘ﬁi Y, sin 6 do (2:059)
(o]
14
L =+~§?-"'—2—‘5l (r 3in © cos © 40 (2:060)
1 4 a—_E ) o |81n [o]5] .
o]
F14
VC2
M, = 42-4—-— Y, sin @ cos 6 48 (2:061)
[e]
t 11
M, = + .)9%3 4 Y cos® @ siu & do - = Y sin © 46| (2:062)
1 16 dt 0 2 // ) )
A 5 d

49-
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To evaluate the quasi-steady and apparent mass terms above,
it is necessary only to determine To(x), ignoring the effects of
the wake. The quasi-steady conditions for the airfoil are the
same as those of Section 2:03, namely, the vertical velccity of
the mid-chord poiﬁt is &m’ the angle to the wind in free stream
is @, the snguler velocity is ‘P

The flat airfoil with the angular velocity &) is replaced by
a parabolically cambered airfoil at zero angular velocity with a

maximum camber in the game manner as in Section 2:03,

yo = 9-;;2 (2:063)
or

Yo - ed 06)

jﬁ- 7% (2:064)

(18

Kermén and Burgers (equation 10.7, page 49) give the

vorticity distribution due to camber at zero angle of attack

. ¥
Y = v (3370?) sin © {2:065)
whence
Y = c@sm ® (due to camber, (2:066)

(P:: ymzo)

Karman and Burgers {equation 7.9, page 38) give the vor-
ticity distribution for a flate plate at an angle of attack o to

the relative wind”

*Note that the positive x direction of this thesis is opposite to
that of Kdrmfn and Burgers so that the signs of x arc reversed.
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= e/2 + X = i l.__i‘__.C__(_)_S___@; .
Y v sina/% 2v sin o g (2:067)

In this analysis, it is assumed that o is small so that sin a = a.

The angle of attack to the relative wind is

@ =P~ = (2:068)

Hence, the vorticity aue to the angle(? and vertical velocity _';rm

is

l + cos @)

Y o= 2v (0 - (due to @ and , with = 0)  (2:069)

The complete vorticity for the quasi-steady condition is then the

sum of the vorticities given by equations (2:066) and (2:069),

_ ., 1+ cos @

Y, = c@sin 6+ 2v (C?- Pz sin © ) {2:070)
Before calculating the forces and moments, it is convenient first to
evaluate the definite integrals which appear in equations (2:059)
through (2:061), namely,

. _ neq _ Im .
Y, sin0 a6 = XL 4 av(p- B (2:071)
(e
ﬂ -
. _ I \
Y sin @ cos 8 d® = + :rv(cin-— -;;-) | (2:072)
(o)
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3 v
Y, cos? @ sin 6 d® = LR+ av (9 (2:073)

~0

Hence, the 1ift forces become:

2 . y,
L, = ﬁ-%-g—'v@ x?cvz (q)-%‘?') (2:074)
R . , \
L, = i‘-ﬁ-"- (vp - %) (2:075)

The moments of the aerodynamic forces, about the mid-chord point,

ares

=
i

2 ®
¥pc R (CP__ZQ) (2:076)
4 v

=
{

, =+ 5o ned (vp - ¥,) - G - 228 0p - )

or

4

wo o= - %g_? (2:077)

It is seen by inspectlon that the forces and moments, L, I,
M,, My, are identical to those listed in Section 2:03, equations
(2:047) through (2:049).

The aerodynamic force L, as defined by equation (2:053) will
now be determined, which force takes into account all the effects
of the vorticity in the wake, under conditions of steady state

oscillations, with a circular frequency ¥ radians per second,

524



2304

in which case it is possible to write the instantaneous values of

ya.ndc?as

y = &y cos Vt+ by sin vt {2:078)

i

a, cos Vt+ by sin Vi (2:079)

However, it is more convenlent to introduce a complex variable

notation hy writing:

y+iyt = § = get’t (2:080)
_ o= = oivt ,
e+ i9' = @ = cpe (2:081)

The variables ;Iand 25, written with the bars, are complex and such
that the instantaneous values of y and ¢ are represented by the
real parts of ; and 7@ respectively. Ei and Eé are complex con-
stents which determine the magnitude and phase of the steady-state
oscillations.

Similarly, the vorticity in the wake may be represented by
Y(E) + ix(¥) = Fg) = g [HE/W) (2:082)

where E is a constant which may be complex and v is the constant
mean horizontal velocity.

Substituting the value of equation (2:082) into equation (2:053)
at the same time that the conception of the complex 1lift vector is

introduced, nanmely,
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o
L+il = L = £ye [ X(F)dF (2:083)
27 2 2 2 Tos 23083
£ - */
2
yields:
<O
~<~——~—i"?>
- - V7 4F
L - g vC l\?t e d
2 (2:084)
| /82 _ P,
2
or, rearranging:
[+ o}
iv
T, = pveE iVt ot Bz ( ) d(

2 (R:085)
VAC S hE!

-
cﬂﬁg
W

Kdrmén and Sears show that the integral above may be expres-

sed as a modified Hankel function, namely,

(dvey . 2¥
(l"c) AL a¢E) (2:086)
(-§)~l J (ggi)2 -1
=)=
whence:
Eé = ~%E"Koein (2:087)



Kdrmin and Sears show further that in order to satisfy the
conditions (a) that the vorticity in the wake must equal the
vorticity shed from the wing, and (b) that the flow is tangential
at the trailing edge, a definite relation must hold between the
constant'é defining the vorticity in the weke and the congtant 55

defining the quasi-steady circulation. (See equation 25, refer-

ence 19.)

eg . __S
2 KO+K1

in which K and K; are modified Hankel functions, and the constant

G, is defined by

- - - vt
+iL' = = pyl = pvG e
LO ik’ L P, pvG e

whence

It must be noted that functions K, and Kl are complex in nature
and hence that there is a phase difference between Eé and Egn As

was shown by equations (2:053) and (2:057), Eé may be taken to act

at the forward quarter-chord point.

Substituting the value of L, from equation (2:074), the result

is obtained that

= = 2 Yo e |f
LO+L2 = wpev [(P«-—‘;—-f&\-;-—H.l-

55.
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(2:088)

{2:089)
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Attention is directed to the relation:

- ¥n 150] .
[@“V“ﬁ = oy,

in which o is the angle of attack of the 75% chord point (in

German, the "hinterpunkt").

The fact [1 %o ] [Kl ] is called the

¢ factor ot T o t— is calle he
Ko + Ky K, + &

"complex lift vector factor" and is written in the Kassner-

(=0

Fingado notation

Ky (359

(wc) + Kl(lo c)

in which A and B are real, positive quantities which are functions
of (%%%)a The original discovery of the fact that this vector is

(34

such a Hankel function is attributed to Theodorsen , who defines

the non~dimensional parameter, "reduced frequency," k; as
kK = %% (Theodorsen'34)

This is identical with the reduced frequency as sometimes used by

Kﬂssner(zz, namely,

w = Y& (Ktissner

{22
o )

However, on other occasions, Kﬂssner(23 uses as the reduced

frequency

w = e (Kﬂssner(ZB)

2:04

(R:092)

{2:093)

(2:094)

(2:095)

(2:096)



Kassner and Fingado 2°

have taken the reciprocal of this parameter,
dropped the factor 2, and cbtained what they call the "reduced

velocity,"

The author feels that the reduced velocity V in the form as defined
by equation (2:097) is more suited to engineering use and has there-
fore adopted its use in the remainder of this treatise.

The values of the components of the vector P are given
graphically in Figures 11 to 13 for the complete range of V from

zero to infinity.

57.
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2:05, Summary of Aergdgnggic Forces and Moments in Steady Siate
nscillations (Two-Dimensional Case)

The forces and moments given by equations (2:074) through

(2:077), and (2:091) may be combined to the following:

At 25% chord

L = npCY osh-ﬁ #* (2:098)
At 50% chord

= #pct = .

L = -—%:-—-ym (2:099)

in which ?m is the vertical acceleration of mid-chord point.

At _75% chord

b xpct =

L = —,"Z—- v o (2:100)
Moment

- st oG —

o= - (2:101)

In all the above equations the barred symbols, f, fJf, 5, _;;,
a, @, etc., indicate complex vectors of constant amplitude which
rotate about the origin with an angular velocity (frequency) of
v rad./sec. The instantaneous value of any variable is the hori-

zontal projection (the real part) of the corresponding complex

variable.,

Eh is the effective angle of attack at the three-quarter chord point.
58,
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The forces and moments given above are in exact agreement with
those given by Theodorsen(BA, Kﬁssner(QB, and Kassner and Fingado(zoe
These same forces and moments reputedly agree with those used by
Lyon and by Cicala, whose papers are listed in the Bibliography,
although the author has not actually verified this sgreement. How-
gver, it should be remarked that many filutter investigotions,
particularly those reported by British writers, have been made
with only partially complete forces and moments. It has heen a
common assumption of many authors to neglect the effects of the

reduced velocity or reduced frequency on the magnitude and phase

of the 1ift acting at the 25% point, as shown in equation (2:098).
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:06.  Dynamical Equations for Steady State Forced Oscillations.

Z Z

’

Vertical soring
k 1b,/ft.

Torsion spring

\ s g
" . / ) He ft.-1b/rad.

A

—C
1

P—
N |
n
Tnertia axis 7 &\\Elastic axis

The oirfolil is taken to be supported at the elastic axis by
o flexural spring of comstent k 1b./ft. and a torsional spring of
constant Mq, ft.-1b./radian, The mass of a unit length of wing is
teken as mp slugs, and the radius of gyration of the mass of the
wing about its center of gravity (inertia axis) is given by ipc.

There will be the following forces and moments acting in
addition to the asrodynamic forces and moments which are sume

marized in Section 2:05:
Elastic Force {acting on elastic axis)
F = - k¥

in which y. is vertical displacement of the elastic axis.

2:06

(2:102)
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Elastic Moment

oy = -(Up)Q (2:103)

{20

Kagssner ond Fingado have found it convenient to introduce the

conception of an "elastic radius of gyration% defined as
7Re2 = Mg (2:104)
Using this, the elastic moment becomes

= - .kwfcz'c'ﬁ (2:105)

Incrtia Force of Wing (acting on inertia axis)

& ©

F, = - my, (2:106)

in which ¥. is the vertical acceleration of the inertia axis.
, 8

- . 2 2=
Moo= - miTet @ (2:107)

There is now a considerable latitude in the choice of co-
ordinates for use in setting up the dynamical equation. For the
present ingtant, it is convenicnt and instructive to use the
vertical displacement of the elastic axis, E;, and the angle of
the airfoil ?§a It is necessary, therefore, to transform all

vertical displacements into terms of 5; and?ﬁ.
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Inasmuch as S;h = Ve -@c(% -£)

E£ =

e
i

L

]
1)
i

Inasmuch as all the forces and moments have been predicated on

the basis of steady state oscillations, it was shown above that the

displacements may be written {see cquations 2:080 and 2:081)

y =
e

H

9

s e1\’“&:
1

- 19t
Cre

Differentiating (2:112) and {2:112) with respect to time:

e
(0]
{

o ly
!

and differentiating again:

i

=<:
i

-8k
i

-~  ivi
chle

- iwt
iOCze

Lo

ivs
-V cie

P gt
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Hence:
52 =t §e
e = ~VJe
(2:116)
L -
¢ = W

-6k
f
i
o
-l

Introducing F as the complex vector representing the external
exciting force, the complete dynamical equation for the force becomes,

if the relations (2:116) are used:

SF =0 = Fay, [ -kt ving+m) - 4% P ]
+§c[ mﬁ\Jz(YF‘f-mL{«\? {-—«E)+/+.‘£.§

+ 4wE (S -2) + 1\7%}] {2:117)

-

: P
in which m; = ﬁ%?— (see equation 2:028).

It is convenient to take moments about the elastic axis and to
introduce ﬁ; as the complex vector representing the external exciting

moment., The dynamical equation for the moment becomes:
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ZM = 0 = ﬁe+§ec[-ﬁiv%mL§$«va2(%~E)—mFVQU"F]
o . _
s {4;?51»5 + 4 EFE e - 130 -g)
e % - &)202} + mF(iF2+G'F’2}\72—kq2] (2:118)

32

Equations (2:117) and (2:118) can be simplified somewhat and

reduced to a convenient form if the following parameters are

introduced:
b=
il
L
VO T
F
wWhence:

E‘.}: = 3, [92+%“ (1+.1.)92]
¢ o [{O»F»f%(f}::a)}a%%mﬂﬁﬁ%-a)-%ﬂ (2:119)
and
_i”j_g_ = 7. { @F+}Ji(;.,g)}oz+é}.‘.’£i?4
o ! 7 pe
N f?ﬂc:ng‘ig_h +0"2)V2 %(62__+ ) + 2yl _g)
+MP(£ - % - }ﬁé ’5} (2:120)



If the reduced velocity V is introduced, the equations can be put
into a form with non-dimensional coefficients which is convenient for

some cases:

— - \22 -
-%—2- = Y #ﬁ%uvru(lﬂ;.)]

+ ¢ +}L%+%‘-¢6~4VZ§~41V§(%-—E)—1V] (2:121)

o

u -
—fm. = ye[ +p.c*F+§/L~5+41VPe]
b
222
PR B ke St S ISR R UL TR S i
e of Ao - Loy g+ v -€)

+ 4ivi5(e2 - %) - 4v2'§sg] (2:122)

65,



-2:07

2:07. Method of Solution of Dynamical Fauations

The general dynamical equations (2:119) and (2:120) for

forced oseillations may be writtem as

F . 1 3+1a .
KF.. = ALYt A e (2:123)
B = L5+ Kygpe (2:124)

om,

in which All’ Ayor Aoy and Ao, are complex functions of the
frequency of the oscillation ¥ and of the parameter %, These
guantities, Kil’ KiZ’ etc., are closely analogous to impedances
that are found in the eguations of electrical engineering, except
that Ziz # Kél, whereas in geusral the electrical cross impedances
are equal, i.e., le = Z2l'

The two equatlons above are linear equations in ;é and in
@b and consequently can be solved by determinants in the usual way,

making allowance for the fact that the constants are all complex.

E —_
Ip A12
. 31‘22 - -
C ] F ry M "y
~ °F iy 422 ~ omp M2
y = T e po g {R:125)
- - A A, ~ A A
Ay A 11820 ~ S10891
Ayp Ay




2:07

=
A1 e
Aa E%; I F
) M - -
_ omp A1 T o fa
?c = = K K K - (23126)
Ay A 11422 ~ f21h12
Ao Ay

The denominator in the equations above, being the determinant
of the coefficients, is often called the "stability determinant¥ in
vibration problems because in gemeral when this determinant vanishes,
the values of §é and @b go to infinity. It is convenient to desig-

nate this determinant as Y

- Ay Ay
A o= (2'.' 127)
A A

Attention must be directed to the fact that A is a complex
quant¥ty, so that for A = 0, both the real and imaginary parts
must be zero.

Inasmuch as all the work involved in solving these equations
deals with complex numbers, it is eppropriate to summarize the
methods used in performing the arithmetic operaticns of multiplication

and division. Given two complex numbers, z) and 2z, defined as

670
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- 16
= = 1
z) a + by rye (2:128)
- i®
Z, = aptiby, = Tpe 2 {(2:129)
P — -.' » { .
23, = (ala2 - blb2) + 1(alb2 + azbl) {2:13Q)
z Ty 3
A o ghyter-e) (2:131)
742 2
in whichs
r =+ a2+ be
- ~1b
& = tan (a)

Consider first the case where F hag a definite value and
M = 0. Inasmuch as the vector F ig a vector rotating in the complex
field, with angular veloeity V', it is convenient to soive the
gquations at the instant of time when F lies along the positive real

axls. Hence, it is convenient to let %; = +1, whence, for M= 0,

i

!
t |
t>4§?| C*hg
et

y

i
}s

for

=B
1
&)
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The vector diagram can now be drawn to show the magnitude

and phase relations between y, ?, and the exciting force F.

Imaginary
24
cpc
8

1+ @

A

v
ol 1

0 71 > 3 Real

The maximum displacement of y is represented by the length
of the vector §. The phase‘anglg Gy indicates that y reaches its
maximum value at a phase ®y ahead of F,

The method when applied to moments is identical in procedure
to that outlined above. The response due to the combination of a
force and a moment is the'sum of the individual responses, in which
the complex nature of the responses is considered.

It was mentioned above that in general whenever A = 0, the
responses become infinite., With the equations for flexural-torsional
flutter as they appear here, there are four combinations of the
frequency Y and the veloecity-chord ratio % such that A = 0, namely,

1. When v = O;ytwo frequencies exist, V) and G%, such that

A = 0. These ere called the "natural frequencies" at

gero velocity.

69.



2:07

2. When V=0, there is a speed Vg such that A =0,

This is called the Ydivergence speed."

3, When V= \é and v = Vo ,Which have such a value
I'. hd

that A = 0, the condition is termed "torsional-flexural

flutter,"
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2:08. Critical Speed of Torsional Divergence

The critical speed of torsional divergence is easily ob-
tained from equations (2:119) and {2:120), setting ¥ = 0,
For V=0, V=%, P =1, the dynamical equations for forced

osc¢illations become

E__ - \;2} ~ [ 4* .
o = ¥, [ 1| + Qc | - 992 (2:132)
= -
- Se | WR _ A ¢ :
e = T O |- " ] (2:133)
Hence the torsional divergence speed occurs when
R 2 2
vV »-AX.@"’ = 0 '
7 Y & (2:134)

2
pe
so that

o

= 14° /% (2:135)

v
divergence 2 o

It should be noted that 7}&3 is clogely related to the
torsional frequency at zerc alrspeed as given by equation {7:38)

so that

Viipe
L Bl /% (2:135a)
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2:09, UNormal Modes of Vibration at Zero Veloclty

An important part of the present technique in wibration
studies of airplanes is that of determining the natural fre-
quencies of vibration on the ground at zero velocity. The tech-
nique is relatively straightforward and simple. Consequently it
is enlightening to consider the dypamical equations developed in
Section 2:06 with particular reference io the ground obsecrvations
at zero airspeeds.

At v = 0, equations (2:119) and {2:120) become:

F .~ [ N3 1y ,
A EARRCEY. L ] +cpc[ { F+F‘“’3§”€)H (2:136)
e - Q 1,1 J

3‘;?: v, |V {UF+?‘(Z’€)}J'

¢ L(e*
P(a

N

The normal modes and natural frequencies are obtained by
setting the determinant of the above equations equal to uero and

solving for the frequency V.

2 4 < 2 1y 4« 2, R L 172 €
un 9 _\};\)2[‘1)(1+F)+1F+o§4).1(5_§ 5%5):,

+\)4[(1+%@{ +q% 1(5 %4—%}}_{6‘ ;FL

«\is—'

a)-}zj

(2:138)
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This equation is of the form
ad - p? \{2 +m? \{4 = 0 (2:139)

so that

2 21 b Vo2 o farf ,
Vo o= Y (R:140)
1 L 2a
The above equations are somewhat meaningless because of the
large number of parameters involved. It is thereforc believed to
be more appropriate to consider two specifie examples, giving
definite values to € and o, and the other paramcters as neccssary.
. - P - -
Cagse A, &= O.25;¢ﬁ% =03 ip" = 0.100; v)= 1.00; wa-lOaO
This case represents the condition in wihich the elastie axis
ig located at the mid-chord point {i.e., 25% back of forward quarter-
chord point) and the inertia axis coincides with the elastic axis.
This case is unusual end not found in gencral practice, but it is
significant 4in that 1%t will be shown later that flexural-torsional
flutter can occur even in this case without a coupling between the
elaptic and inertia forces.
The dynamical equations (2:136) and (23137} become
= - 2 o
i
L=y | ¥ -1a07) +o (2:141
g, el 1 4
T — 2 21
— = + Voo i 2: 14z
G o ga[ 0.1030 J (2:142
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Obviously the determinant of the coefficient of 5; and %b vanishes
when either

;
Vo= L4 N 0.954
/1.10 1

or

Ve A

s i = 3,115
/0.1031 1

Equations {2:141) and (2:142) are in such a form that the
introduction of an exciting force F produces only a response in }ég and
of a moment ﬁ; only a response in e, Consequently, 5; and<§b are the

“normal coordinates" in this particular case and F and M/c are the
corresponding "normal forces." However, in general it is not the

case that }é and.%b are normal coordinates; it was because Case A

was specifically chosen with £ = 0.25 and a§|: 0 that thls maintains.
This statement can be generalized somewhat further, namely, that §g

and ?m are normal coordinates only whenever:

poy = £-E (2:143)

Case B. €= 0.10; @y = 0.05; i = 0.0625; 7\2 = 0,505 fu 6.00

This case has been chosen to be closely representative of the

parameters of wings of present-day aircraft.

i
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The dynamical equations (2:136) and (2:137) become

;F‘F. = .5;,3 [ \’;.2 ~- 1.16’7;":} + c.p'c [(}WO'?S%’d} {2:144)
1, - - ,
‘(’;;3’" = Y, [0.0’75»"‘2] + e i_ 0.50 \{2 - 090’1363\%} (2:145)

Setting the determinant of the cocfficients of ;ﬂ and g‘?c Z2CT0

yields an equation in V2 .

1
<

A= 0,08039% - 0,65699°° + 0,501 {2:146!

whence:

V4 8.180 E{QVQ + 6.227\{‘% = 0

1

V2 o \712 [ 4.090 + /4.090% - 6.227 | Vf‘ [ 4,090 £ 3.240 ]

The two values of V' fulfilling equation {(2:146) arc then

V2 = 7.330 vf

and

V- 0.250 ¥

The normal coordinates azre now obtained by substituting the
values of V' above into equations (2:144) and (2:145), setting

F=0andil =0,
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Vo= 7,330\{2 (v= 2mv)

By {2:144) with F = 0O

- QOO o o7
§2~1.16792

Y
Ge

By (2:145) with ¥ =

o

Ve _ 0.50 42 - 0.0736392

= k ¥ 0.0722
ge 0.0750%

o

Usezg = 0,072
QC

Note, therefore, that vibrations in this mode are such that

so that the nodal point occurs at 7.2% of the chord aft of the

elastic axis, i.e., the nedal point is at 42.2% chord.

7 = o5y’ (V= 0.9220)

By (2:144) with F = 0

o

0.07500°
2 2 5 = (approx.) -8
\:’L - 1,167

‘%‘35‘”
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By (2:145) with M = O

0.50 8% - 0.0736¥°
0.07500%

= w6,85 (Use)

1§:E5i

In vibrations in this mode, the nodal point is 6.5¢ ahead of

the leading edge, (6.85c forward of the elastic axis), since:
y +6.856 = 0
Vo T 08¢

Therefore the normal coordinates for the configuration of Casc B are,

for zero velocity

Y, =¥ -0.072 (Oscillates with natural  (2:147)
422¢ e ?n frequency V= 0.9229i)
and
b = 3y + 6,85§G (Oscillates with natural  (R:148)
-6,5¢ e frequency Vv = 2»71\&)

To sct up the equations in true normal coordinates, one should
use the force and vertical displacement at the point 0.422¢, =nd the
force and vertical displacement at the point 6,5¢ ahead of the leading
edge. If thic set of coordinates is used, there would be no cross
responses at any frequency at zero airspeed, i.e., a forcc at 0.422c
would produce no displacement at -6.%5c, and vice-versa. A4 force at
0.422¢ produces vibration in one normal mode, and a force at -6.5¢c in

the other.

1o
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However, in cbserving vibration phenomena on the ground, it
is easier to conceive of one mode of vibration as essentially vertical
motion and the other as essentially angular. Thercfore, although
subsequent studies of forced vibrations for this case will be carried
out using the forces to produce the normal modes, the responses will

be determined for -5; and 7@. The advantcge of using forces to

«4R22¢
produce normal modes is that sach response curve at sero velocity

has only one poak.
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2:10. Responses in Steady State Forced Oscillations as Function

of Airspeed

' {
Von Schlippe“31

has shown that, for certzin types of flutter,
it is possible to determine the critical speed of flutter by ob-
serving the amplitudes and frequencies of forced oscillations in

(26 made a theoretical study of the method

flight. TFrazer and Jones
and concluded that “the critical speed for flutter cammot ia general
be estimated satisfactorily by wvon Schiippe's method unless some
measurements of maximum forced amplitude corresponding to airspeeds
close to the critical speed are included." Further objections were
raised to carrying out forced oscillation tests in flight after the
Junkers Ju 90 crashed, which crash was believed to have been caused
by a failure in the electrical circuit controlling the eccentriec
vibrator, which permitted the vibrator to imcrease its speed
indefinitely.

The work of this thesis indicates that it is unwise to at-
tempt to produce forced oscillations in flight but that foreed
vibration tests in wind tunnels should provide an excellent method
for determining aerodynamic forces.

It is the purpose of this section to determine, by direct
computation, the variations of the responses with freguency and with
airspeed in order to demonstrate certain fundamental characteristics
of this type of flutter, It is expected that response curves of the
type presented here should be of value in facilitating the interpre-

tation of observations of amplitudes and frequencies of wing and tail
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vibrations ir flight without mechanical vibrators. It is believed
that gusts are present in the air to produce momentarily forced
oseillations at any frequency for which the wing has a susceptibility,
so that flight test results should agree qualitatively with the
results presented here,

The exelting forces applied will be those which produce
normal modes at zero velocity, as was discussed in Section 2:09.
‘The forced oscillations will be calculated for a number of airspecds

for the two cases A and B of Section 2:09,

Case £, € = 0.25507 = O; 1F2 = 0.1005 Y = 1.00; 1= 10.0

The substitution of these quantities in equations {2:119)

and {2:120) yields *he following equationss

I

E =3 [\?2 + 04iv I P - 1,100V |
mF 113 <

1 o
- ?.. n ot 2 il o "“;
s v §a3 4 - e
+ ge {., 0,15y %{1 + P) = C.h ?2 P - ealwfé {2:149)
[T B .
i, = + 0, A4
Shng ym | O.1iv S P
e 2 v A v2 o 2 3
¥ 1 -w{ pu—y -es ey e
+ e [V‘l + 0,021V L - F) - 0.1 Ty F - 0.1031¥ j! (2:150}

The subscript m as in 5; and ﬁ; denotes the mid-chord point.
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The two equations above are solwved by the methods outlined in
Segtion 2:07. A representative calculation for this case is given

for & . = 2.0 in Appendix IV to show in detail the method followed.

el

The results are plotted in Figures 14 to 30. In order to eliminate
the effect of the magnitude of the force, all curves are plotted in
terms of the static deflections which are designated by the subscript o.

Figures 14 and 15, which are presented first, show the responses
and phases for the airfoil as a one degree of freedom system in the
§ coordinate with the torsional deflection prevented by restraint,
The curves are characteristic of forced coscillations with damping, and
show that at the eritical flutter speed, %VB.z 2.87, the oscillation
in this mode is almost critically damped. The frequency for maximum
amplitude remains essentially constant at V= O»95Vi.

Figures 16 and 17 show the corresponding curves for the response
of ”@ to a moment in which the mid-chord point is prevented from moving

by the addition of restraints. These curves show seweral features

of note:

{2) The freguency of maximum amplitude decreases with air-
gpeed. This is due directly to the fact that the
second term of equation {2:150) contains the expression
{%iz « 0,1 i;-?},which is a determining factor in the
frequency for maximum amplitude. It is significant that
when this fastor {‘{2 - 0,1 %g P) =0 at V=05 {(i.e.,

P = 1.0); torsional divergence ceccurs.
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{b) The value of @/ :SS increases with airspeed at zero
o

frequency and becomes infinite at divergence speed.

{c} The damping of the torsiomal oscillatioin by the air is
much less than that of the vertical oscillation. This

is believed to be an important and significant fact.

Figures 18 to 30 show the reosponses and phases for the coupled
system with two degrees of freedom. It is significant to note in
Figure 18 that the vibrations around W/ Vl = 1 are very highly damped
and that at a frequency about \}/\}1 = 2,8 a pnew hump has formed for
the value of v/cv’l = 2.0 which will increase at higher speeds to
produce flutter. This is av indication that the original {requency
in bending is of little significance in this type of flutter. 0Ob-
servations in flight intended to detect the incipient stages of flut-
ter should be made at frequencies near the natural torsional frequency,
but watching for increasing vertical amplitudes.

Figure 20 again shows the characteristics of the torsional
oscillations (a) reduction of resonant frequency with airspeed, {b) the
small amount of damping.

Figures 22 to 26 show the cross respouses, which at zero airspeed
are zero due to the fact that 3; and :?? ¢ are normal coordinates at zero
airspeed. The response of 3; to o moment is much greater than that
of @c to a force.

In Figure 26 are replotted the curves for the restrained and
coupled systems at v/c Vl = 2,0 to show a particular point, namely, that

the coupled system acts to increase the damping in vertical oscillations

82.
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at %7»3 = 1,0, but to decrease the damping in torsion at Vyvi = 2.8,
Again this points to the significance of the torsional freguency and
the relative unimportance of the bending frequency.

Figures 27 to 30 give the respounses and phases of § {0 a motion
of § , and vice-versa. These indicate what the ; motion will be, for
example, if the i;is given a steady state oscillation by any means.

It is curious that the conditions for flutter instability are repre-
sented by points that arc guite unspectacular in their positions. How-
ever, it is significant that at flutter the response of § to the motion
of 5 is the reciprocal of the response of E;; to the motion of y and the
phase angles are equal ond opposite. This condition is only true at
flutter.

In Figure 31 are plotted the values of the frequency for the
maximum amplitude of response as a function of airspeed. The bending
moede at a frequency in the neighborhood of ¥V =)y is entirely damped
out above vfc;ﬁ = 2.0, Above v/c»i = 2.0 the bending mede picks up a
frequency which essentially coincides with that of the torsion. It
is believed that these curves again point to the rc¢lative unimportance
of the bending frequency in flexural-torsional flutter. Calculations

(35

by Theodorsen and Garrick show that the eritical frequency for
flexural-torsional flutter usuwally is about two-thirds the natural

torsional frequency at v = 0,

i

Cage B, £
V?l

2
0.10;3 G},: 0.05; in = 0.0625;11 = 0@50;}»21 6,003

H

10% rad./sec.3 ¢ = 7.5 {1,

The parameters choscn for this case are closely representative
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of those which maintain for present day alrplanes, as was noted in
Section 2:09, The normal modes at zero velocity were found in
Section 2:09 to be produced by {a) an oscillating vertical force at
the 4R.2% chord point, and (b) an oscillating vertical force at the
point 6.5 chord lengths forward of the leading edge. It was also
noted in Section 2:09 that the normal coordinates at zero veloclty
were the verticel displacements (a) of the 42.2% chord point, and
{b) of the point 6.5 chord lengths forward of the leading edge.
However, in this present section the respouses shall be evaluated
for (a) the vertical displacement of the 42.2% point, called y
and (b) the angular dispiacement,i?, because these coordinates have
more tangible meaning in gencral.

The substitution of the parameters for this case into

equations {2:119) and (R:120) yieldss

= J | 987 + 0,667V TP ~ 1,167

=5 |t
o

i

L

2 -
+ ge| - 0.667 3-’32 P ~ 0.2667i ""% P~ 0,1667w.‘% + 0,075\’2

- ¢

and

I 0075\22+0066711§ :l

c

84
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] {2:151}

- 2 . -
+ <9c 493 - 0.0667 Y-g P - 0.026671»7% P+ oﬁ066'?;w% - 0~0736302]

(2:152)
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If the substitutions are now made that

y =y + 0,072 @c
ye y.422c (?
M . =
Dguge . & _ g5 L
emp cm,. il
M. N 7
JA22e e r
CmF cmF + O.C02mF

the equations become

¥ - v 2
oow—— = + Oa u“ P - 9 ‘J
g N4 422« [987 6671 a 1.,167 :l
= [j o ‘Y F v <
+ @ ‘?‘: - 00667, E‘E P - 0@21871\)’0‘ P - 0411.66710‘6' - 0.0ll’ J
(2:153)
ize - ) vy 2.*
R A [_Og0667iﬂ'3 P+ 0,075y _J
' JARZ2C
+’ ?c [493 - 0'0667 """’2" P - 000219»1\;5 P + 0096673‘.\’7‘8’ b 05068239 ‘}
c
{2:154)
ﬁ"{’éc = 3 { 6761 ~ 450210 = P + 8 owz]
o 422¢ ) ¢ )
2 - *_.
P+ 1.208iv {; + 104761\7% PJ (2:155)

+ Qo L+ 4,501 Y
C
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i |
~h22¢ - 3 f + ivE?P - 00&1
o T jope |72+ 0:1UTVTF - 00100 |

- 2 - , -
,@[}%~04uvﬁp+ommﬁw§~mw%m%9

+
- 00069ov2] .
When a force 54122 is applied at the 42.2% chord point, it
produces moments
tg. 5 - 6.9 F,AZZC
g | F
'4220 &4-25::0

When a force F 6.5 1o applied at the point 6.5 chord lengths

forward of the leading edge, the following moments results

— —

M = 0+ F
“64 50 "65 5C
i F_
4220 _ 6.92 6.5
Gl

The dynamical equations can therefore be written in the fol-
lowing form in which F Lz indicates the application of a force at
the 0.422¢c point and N 422e = O

86.
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i

+

+

Equations

H

2:10

|

+ 977 + 096501»'%? - 1.166\22]
AL

o

s <3 Y3 S .
?c [ - 0,650 :2 P - O.2133iv’z P - O.l’?[»,b:l.v-a- (2:157)

e \ wIF 1
71200 [m + 0.01661VE T 0.0014»;2_‘

- 2 -
c [ 72 - 0,0166 -‘1—2— P - ogr:aw,w.‘é D+ o.oo’zgwg-
¢

- 0.0099602] (2:158)

(2:157) and (2:158) are of the form

F.QZQ - = ol .
My = Ay doze T A e (2:159)
Fgsc .7 = - -
f;; S =AY yone t B (2:160)
T

so that the responscs are obtained by the determinants as explained

in Section 2:07, viz.t:

F -
when __:,422, = 1 = 0
’ &
ml? ”60)3
- &
y = %2 (2:161)
&
- Iy
ge = - —% (2:162)
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A2 (2:163)

- & .
* ~%; (2:164)
A

&
(¢
i

when v = ( by restraint; - =
' y.422c 4y ?

L

@c e (21155

when‘(;.) = 0 by restraint; total — = 1; by equation (2:151)

Ty

L :
(987 + 0.667WEP ~ 1.16W")

vy = (2:166)
The responses and phases for all the above are plotted in

Figures 34 to 49%, For reference in atudying the curves, note that

Critical Speed - Flexural-Torsional Flutter 549 ft./sec. (374 m.p.h.)

Critical Speed - Torsional Divergence 645 £t./sec, (440 w.p.h.)

Figures 34 and 35 for the one-degree-of-freedom cases exhibit
many of the same characteristics as those discussed previously under

Case A, namely,

*Ihe author is indebted to Lt. Perish and Lt. Jeckson'?® for their
assistance in the preparation of these figures.
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(2) Flexural oscillations have no change in resonant
frequency with airspeed and arce hignly dawped at

ailrepeeds approaching that of flutter.

(b) Torsional oscillations have decrease of resonant
frequency with airspeed and are less highly damped

than the flexursl oscillations.

The curves for the toupled system, Figures 36 to 49, are also
similar to the corresponding curves for Case A and bear out the same
conclusions that vibrations in the range of 30 rad./scc. are highly
damped while those around 60 rad./sec., are not.

A curious phenomenon arises in this case, in which the exciting
forces are not applied to correspond to the elastic forces. The
torsional divergence for the coupled system occurs when the coef-
ficient of @h in equation {2:152) equals zero at zero frequency, How-
ever, When'§;422c = 0 by restraint, torsional divergence occurs when
the coefficient of ¢ in equation {2:158) equals zero at zero frequency,
which is at v = 494 £t./sec. {337 m.p.h.). Also, at this speed, which
is lower than the critical flutter speed, the phase relation between
§8£229 and §64220 for the coupled system at zero frequeney jumps 180°
and indicates a form of instability. I+ may be noted in Figure 36 that

at v = 332 m.p,h, the response of ; s very small at zero frequency.

i
JS22e
At speeds higher than v = 337 m.p.h., the application of a force F 422
o ALA
in one direction requires for equilibrium a response ; in the opposite.
Figure 50 shows for Case B the same general phenonema as were

discussed above for Case A, namely, that the curve for the bending

89,
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frequency for maximum amplitude at low airspeeds has little or no

relation to the frequency at flutter.
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2:1l. Determinstion of Criticsl Speed for Flex

urel-Torsional Flutter

It acntioned cbove in Section 2:07 that

G o
Wiws

condition for fluttcr is that the doterminant A of

of the digolecencents in the dynanlcal

.. s 4\ 3 ~ 1 1. i LI
uatdons (2:119; and (R:3 that for a

saen in og

which 01, £, UF,rL,'q, and ip ere

the structure and veight distribution,

P

’ - . T i Ty o«
only of V, v/c, and P, in which P ig

Conseguently, the determinant 4

the problem 1z essentially to find

makes both the real

The most naive method for the solution of
) (34 .. L
presented by Th uor,cn , which ig applicable to

with two or three degrees of freedom.

dynamical egquations mey

and (2:122), in which vV =nd V may be conside:

the
equations equals
given
fixed quantities
a function of V =

sud dlmeginary parts of A equal sero

S R
CAUL S

In using thi

mathematiceal
the ceoefficients
zero. L1t is
wing, in

snd known from

the coefficients are functions

7/ GV

is a function only of v and v/c¢ and

what combination of Vv and v/c

problem ig that

flutter problem

s mothod, the

be nut in the form of cguations (2:121)

rod the independent

variables. 1t is significant that with the cuvations in this form
the two variabloes have beon separasted in the coefiicients so that
the equations may be wrilttons
oy I
i - i \"j o - __i ~ n
= = s e BT v) | + c B (v
G Vo | 7S b ‘311(\/) | t ©e )!2(\/)
.ml' L \7 4 -
A
- 4.
M, - MR 2
-’ ping . g b T .
7 o= oy 0B, (V) G | sk B, (V)
I s R N~ < .

In the above equations, B B J wd B, are

functions only of V.

simultaneously.

2:11

(Rs167)

(2:163)



Hence the determinant is

This determinant is & complex function which can be separated into

ite real and imaginary parts:

in which:

Ag

in which:

Re [
Im [

Setting AR and ﬂT zero ylelds two equations in real variables only,

namely,

for AR =

] meuns "real part of"

] neans "iwaginacy part of "

re | B..
..

- :512521] Re [ BB,

2:11

lL B11B2o- 512321J

(2:169)

(2:170)

(2:171)

(2:173)
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which 1s of the foru

# ~
YA Vi
— -7--7 B(v) + (V)

i
<

where E(V) and F(V) are real functions of V. fherefore, by assigning

o , g . o - R
a range of values to V, a two-valued curve is obtained for V7 as a

?
runction of V.

For & = 0O
or b

yhich is of the form

B %LG(V) = 0 (2:176)

in which G(V) is a rcai function of V. By assigning a range of
values to V in this casc, a single valued curve ig obtained for Vv
as a function of V.

The critical conditlon for flutter instability is given by
the intersection of the curve defined by (2:174) for by = O with
that defined by (2:176) for AI = 0, Thig is illustrated in Figure 32
for Case A in which flubtter ocours at VV»? = 2. 24 Vo= 1,28

v/ev = 2.87.
v/¢ 1 7

I

ct

is apparent that the principle outlined above is applicable

to the solution of the determinant equation in goeneral. There is,
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however, for the pariicular cose of flexural-torsiomal flutter another

o3

mothod of delermining tho valves of Vo ond Vo suci that the detorminant

is zero, which wes develoncd by Hasener and fingado .

e
3

Kassner ond Fingodo ™ stert with dynumical equetions using

<, the vertical displacement of the three-guarter chord point, the

o h H 4 £ »

"hinterpunkt,? os one coordinate incsmuch as the main 11ft force is a
i 2

function of o - (8oe cquation (£:098). Furthermore, siuce the only

. ]
1ift forece containing P acts fthrough the quertcr-chord point, the
moment equation is independent of P if moments cre talien about the

quarter-chord noint.

1

Upon the substitution of

—— — l P
= 3 4- - "
T, T (2 €) ge
and
:‘” s ﬁ — -‘; >
1.250 je Fec

equations {2:121) and (2:122) are transformed into

7 - , v ( -
Y - u,( 1 - ""*"r“) - {1 - ’ZFJ‘VP)
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e
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In the equations in the form above the coefficients of y,

? are functions that are separated inte tuo groups:

() functions of the dimensions, weight distribution, and

frequency ratio \?h/VV,
1

{b) functions of the reduced velocity V.

~
{

I 20 o .
Kasener and Flngado( therefore propose the following parameters

to represcnt the functions in group (a):

\7‘
Vj = WL - ) ' (2:179)

z = 5 (2:180)
poll = =)
2
Vi 2 2 E+ah Y
+E° - 8&) - + () 3 L
H{__a,?_(r) 2) F - (& d“) (2)}1"32
w o= 5 -
V
f*(l"'{f?)
(r:181)
With the substitution of the three paramcters FU’ z, w, into the
dynemiczl equations (2:177) and (2:178), the equations becoine, chang-
ing the signs in the foreco equation,
- -jir = ¥ [ O 4iv§)1 +  Gc [ H(E - a) ¥ iVl - 41V§i]
Na h P - el ’
™,
(2:132)
M ose y' l + —} & [" o 4 } ( )
L z + = ¢ | W+ i - 22163
o, > JVL 4 -Jy e LoD
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The determinant of the cocfiicicnts in (2:132) =and (2:183) is thercfore

e r 1 '“"'..; v 1Y g B 2 - E + ﬂ] 2. 3
L= YJ L.(l - 4iVP) (v - iVz) + rg(w bz 2) + 5 (2:134)

]IS
B

The complex 1if't vector factor P may be written as defined by

"

equation (2:093)

where A and B are positive rcal guantities, functions only of V. The

determinant may then be soparated into its real and imaginary parts

_ - T 7 VA S S TN S |
by = L w(1 -~ 4VB) - 4V7hz + i (v b 7 2) PE-s 1 (2:185)

== T e - ] -z* 2els
b= [ — LVAW - V(1 - 4VB) + ! J (2:186)

The stability limit is dcfined mathematically by the condition
that &H = AI = 0+ Taken together, the two cquations above definc a
curved surface in the PJ, %y W space such that each point on the
surface corresponds to a unique value of the reduced velocity V.
The air velocity couputed from this reduced veloclty and fregquency
gives the critical speed of the wing.

It is neccessary, then, to determine first for a particular design
the values of the paramecters FU’ 2y, and w. It is to be noted tast the
parametersALﬁq', z, and w can be expressed ag lineal functiocns of the

quantity f L

- -y
5 QJ « lHence, if everything excopt v© ic held
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COnstant,l/FJ, 7z, and w will lie on a straight

v spacc. Two mointe on this line can Lo

Vo= 0 and then V=92, These polnts
it should be noted tnat there is no counection
and the valucs & and B ool the complex vector P

.
24

coprdinate £ the points are tabulated below.

2

(rkl

located

are designated

n
ce
fod

lins

in the 1/})),
by setting first
and B slthough

betueen pointa A and B

Point A 0

Inosmich as the noluts 4 snd B lic on a
of 1/}d at wny peint C is given by
ARG
(L = ()
e ———
s P
—r
The designabtion AC  nmenns the di

vectorially. By plotting the horizontol wroje
the wz plane on which ~re¢ also pnlobted conto

1 2  L+rao, 2 1
aint B a0 _]_-_ 6 + _ 4 _{F L JS T R 1 e ——
Point I Og 7 (¢ ch) ; -——l-2 ip P

ection of

= A - 1B. The
W
2 2

straigh

t; -

t line the veolue

(2:187

atance from A to C, considered

this line AC

urs corresponsing to

constant values of P} on tite surice defined by (2:185) and (2:186),
one can determine on the two-dimensionsl chart, Figure 5la, reproduced

from Kagsner and 11ngauo( , bae poilnt © at

7.

which the line

and surface



intersect in space such

When the value of }L’ is thus
frequency of oscillation by returning to

equation (2:179) from which

ao that

i RS-
A
2T e

The value of V for the point C is
supplementary curves, Figure 510, Using

<:11

(2:188)

obtained, ons can determine the

the definition of Fk',

2:190)

obteined from the set of

this value of V and the

frequency V from equation (2:190), the critical velocity for flutter

3

is given

g

£

v = Vve

-~

& detriled cxplanation ol

4y
laliis

in Section 7:04, znd in

Fligure B.

5L, in the Case
1t is instructive

o note

metiods of attack, one using the

(2:168) and the other the dynamical egquations (2@

28,

(2:191)

procedurc of using this method

Figure 52 1s given a reproeseniative

the general difference in the two

dynamical equations (R:167) and

o

182) and (2:152).



Both smethods recognize the fact that each coellicient of y and«? can
be seperated into independent functlons of v and V, the tvo variables
whica remcin ofter the porwactors of the wing are given fixed volues,
The first method combines the wing prramcters with the functions
of V t¢ obtain® , B , B , »nd B , vhich then become complicoted
12 22 22
functions of the wing parsmeters and V but leave the function of V
extromely simple.,
The second method combines the wing paramcters with the

functions of W to cbiazin IA‘, z, end w, whlch arc real functions

that remzin lineal in the quantity -————s—= . The functions of
1-V”

V, which are complex and complicated, are independent of the wing

o
e}

parcmeters and thus may be nlotted on hart to use for all wings.
The dircet and naive attock by the seccond method would be to write

equations (2:121) and (2:122) in the form below.

F — :: i Yy e ~ 1 cvpm [ vy _‘:‘_f-- l
—Z 7 Yt ‘*1‘”] " go [L’:Lz -~ AVQ(V) + 4iVP(g - 2)]

= };;8- [ 612 + fq,}.gi?a]

+ c;;n:, [ G, \\.?) - AVQ(V)E 4+ 4LVP(ES - (2:193)

K
Ny Lo
| S

i&efmmtbascn(ﬂ ﬂﬁ(&ﬁ?)am:mmlfmmtmnsoftm:ﬁmmwmw

and the wing parsmeters. Thoe function Ciq is o function only of the
I

wing poarameters, not of ¥ or V. The functions T an

)

<

Q are complox



functions of V alone. T = (1 - 4ivP).

The determinant of the coefficients of the above equations
can be written

[(311 41\;'}5“’} L(:lQ - iVQ + 4iVI(E - %)J

A
» L 45UD " . e v o iV
Cyp /+H..«175] LLQQ ~ iVQe + 4iVP(e - -2-)5 + ——«2]

Multiplying the first rwo by € and subtracting 1t from the second

row docs not change the value of the determinant, which becomes

= = 10
[(311 1 43.\/7?] [01;3 - 3VQ + 41VP(E - )

A =
- | -G RRA'
(810 = Op€ ] [Con - Cpp8 + &
Multiplying the first column by ( E—-%ﬂ and gubtracting it from the

second does not change the volue of the determinant, which becomes

- R r 1 — |
C., + .L - C:, 5 + T e IR I
’_ i1 < ]}12 6,7 ~8) - 1vg ]
A -
] B L & ¢ v
o - i &€ ;1:-
[Ci? 6 € ] | Cop + S0+ O 555 - 5 *

100.

(2:194)
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Expanding:
5= W } % T le]
. 2
“:l ~ -L.:I'.."‘ é"-—-s\
- Q| Cyo 5 Cyo CJ.l( —— ,:j

- iV |“c.. +1]

(O " 1] [Cppt 011(% -2) ]

[ G2 ~C11] [Oap o, - ¢, (5 ] (2:197)

The Kagsner-Fingade functions PJ , 2z, and w arc in such a Jforu that
the above equation for the determinant transforms to equation (2:184),
vhich lends itself nicely to solution.

Figurc 33 containg the polar diagrams in the complex plane for
the equilibrium of forces and moments for Case A at the stability
limit. At the stability limit y rcaches its meximum value 35° ahead
of qD and the magnitude of ¥ is 0.505 times that of $e. The diagram
of the equilibrium of forces shows that the elastic force, El(y) is
relatively small in this case. The ilnertia force of the wing In{;:)
and the acrodynamic force due to angle Ae(?) are the largest forces.
The. largest moments come from the elastic moment El(?'), the inertia
moment, In(?ﬁ), and the aerodynamic moment due to @, Ae(cp). The

apparent mass contribution to the moments Ae('qi) ig negligible.
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2:12., The Treatment of Structural Damping

In the previous scetions, it has becn assumed that the wing
structurce is purely clastic and that there i1s no structural doemping.
In the casc of flexurnl-torsional flutter off meteol wings, the struc-
tural damping is swall. However, in cases vhere structural damping
is dmportant, Lt wmay be accounted for in a relatively simple nmanner
Several investigators have Jound that magnitude of the structural

damping force ig = function only of the disnlacement and not of the
p EN

1_..

velocity, while the phase of the damping is the same as that of

velocity. Inagsmuch as the clastic forcc is also a function of dis-

placerment, the structural forces nmay be written in the form
Flagtic force = - Ky

Structural friction = - ihky

or
Total structural foree = - ky(l + ih)
The friction coeffficient h is identicel in notation and mean-
i 3 y tlamoi U sed ’ (‘)1 1 i j
ing with the "damping number! I used by Kassner ™™, snd with the

coefficicnt g used by Theodorsen and Garrick '™ . The dynamical

equaticns (2:119) and (2:122) will remein the sane excont for the
D21 ) e 2R e .
47(1 + ihy) for V)" in the fores equation, and

7)2 92(3_ + ih,
1 2

L . . - . 21
method of analysils is then the sanme ns before, hassner( hog

substitution of

o < 52, , ; .
fer N V" in the woment egquaticn. The vhole

presented o grophicesl metnoa for determining ohe stability iindit for

this casc. Hovever, the work imvolved in Kossner!'s method to account
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2:12

for dameing is more complicetod then that in the Yassner-fFingerdo
method without damping., It is believed Lo be easier to calculaote
this casc by the first method of Sectlon 2:11 rather then by Kissner's

inasmuch zs the dynamical couatlon may be writtens

(2:198)

- e : N Ty
i - lr T ll(\s’, - 1512(\)
: :
i

2 ) &
1 + i ~
m V(L :ml)

u )
B M D

=

{
o
*—w)
—~
-}
-
}
7
L ¢
H
& "
+
jsel
"
OV
~~
<
2

(2:199)

-+
-
o
<
B

2. . e
cm V(1 + ;Lhz) 1+ ih, 1+ ih, -

Consequently, cguations (R2:167) through 2:176) will all apply

in the c¢ase of structural damping if cone

, - 1
replaces by ——2luw~

renlaces

) —_— . o1
T sy by .

renlaces BP'J_ VY —— T

he L in,

~

-t
~

replaccs B,

o
N
.
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CHAPTER III, IFLEXURAL-ALILERON TFLUTTEER (TWO—DIMENSIONAL)

The aerodynemic forces and moments on a two-dimensional airfoil

(34 and

in a perfect fluid have been determined by hoth Theodorsen
Kussner(23 for the case of steady state oscillations of the airfoil
vertically combined with the ailleron torsionally. In this chapter,
the results of both of thesc investigators will be presented, converted
to a commen bagls of notution wileh ig conglstent with that of Chapter II.
The dynamical equations will then be set up for the case of steady
state forced oscillation which may be sclved by the methods explained in
Chapter II.
The complex vector notatlon which was explainced in detzll in

Section 2:04, eguations (2:078) to (2:083), will be continued through-

out this chapter.
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3301

Acrodynamic Forcos and Moments in Steady 3State Oscillations

oo
[
=

B s

— e — Y

_____ 2_4_/_

> y

AL

Making the substitutions ncted in Appendix IT into cquation

23

SVIIL of Th@odorsen(JA or equations (41) and (42) of Kﬁssner(‘
3 2

gives the following for the total aerodynamic forces per unit spon:

_— - o
E Y| - 4ivEF+ w7
L -
e[ B, LT+ ivI(LF 4y - vzzﬂ {3:01)
L o~ c 3 4
From equation XIX of Theodorsen()“, or equations (41) and (42) of
(23 |, W o a -, .
Klssnor™ ™, tue total hinge mowment due to air forees per unit span is
3, — - A
ar o=y [J.»ﬂ} R -8 v’
en - Y e 40
L
ol 2 D s Y -
— RiBg - j Bolg 2 2
toBe| - L= B avEl S0F L, o0 JYog g v :0
i) T Th Tt iy 2 Rig t Ry (2:02)

The factors By, floy foy wte., cre functlons only of the ratio of

P

ailleron chord to wing chord snu are tobulated in Appendix IIZ.
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:02. Dynamical Equations for Steady State Forced QOscillations
V1L

Notations:
mF mass of wing plus aileron per unit span
my aileron mass per unit span
¢ C distance from aileron c.g. to hinge line
ilc radiug of gyration of aileron about c.g.

2 . . . -
ﬁazc k  torsional stiffness-aileron control.

—-»10'0 ﬁ

s

TTT T

If F represents the vertical exciting force applied to the
wing proper, and ﬁﬁ the exciting moment applied to the aileron, the

dynamical equations become

I

YF =0 = F+4T -uy- ymF + mlsc‘l (3:03)
and
— - 2R - 2t . )2 202
= oo + ¥ - . - m K
§.M§3 0 MB + 'Iﬁair Moo kB + ym@ie - B (67 + i%)c
(3:04)
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o

Puiting in the velues of L and lg .  from equations (3:01) and (3:02)

yields the following equations, with some rearrangement, noting that

2 k
Ve
1 D
F2 E— [171._2&+/+1VP— 1+w:|
mL\? \%
— 2...\- X e - .
+ Bc [ - RlV P - R31v - RydVpP + (h‘q*l + _n.A) ] (3:05)
lig - =
;;:;;5 =y - RgiVP + (Piﬁi + RAi]
“’72 \f’2|~'~ RiR RoR
— 5 + R 2 o
+ Be —_L\;EL_ + Ry gV© 28 VT + RByyiv + o iVP
2 2
i {hm; P Rl”H (3:06)
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3:03, Fuample of Flexural-iileron Flutter

Case C-1. T = 0.203 rkﬁ 10; Pl = 1,03 = Q0.08;
2 2 y

il = 0,063 Gi" + il“ = 0,010; ‘Yﬁz = 0,001,

This case has been chosen with parameters that are fairly
representative of present day counstruction except that the aileron
is not mass balanced. In terms familiar te enginecering practice,
the characteristics of the ailerons are as follows:

Ai}gron ch?rd = 0,20
Wing chord

Alleron weight per sg.ft. - 0
Wing weight per sq.ft. ot

Ut

Adleron c.g. aft of hinge ~ 0.0
Aileron chord i

Cqp (assuming vectangular aileron) = 0,20

Aileron radius of gyration aboui c.g. 0.10
Alleron chord ' ‘-

Aileron naturel freguency ~ .
poon . I = 1.00 {(in vacuum)
Wing natural freguency

The dynamical cquations are for this cases:

2
7 - . -
= ¥ |10 =5+ 4IVP - 11 |

m vV Y

+ Bel| - 2.199 V9P - 0.1424 iV - 0.2975 iVF + 0.0Qlél] (3:07)
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4
1 4o

—f =y [ﬂ+ 0.09161 ~ 0.,01272 iVE
om V" .

2
B \V4 -
0,01 —— + 0,01651 V2 + 0,00699 VQF + 0,01059 iV

i Nz

+ Be

+ 0.000946 iVP - 0.01056] (3:02)

an 0.00697 VQF) in the

The presence of the terms (+ 0.01651 V
cocfficient of Ec in equation (3:08) shows that the natural frequency
of the aileron increases with airspeed, whercas in Chapter II it
wes found that the natural frequency of the wing torsion decrcased

with airspeed.

The above eguations m=zy be written in the form:

2

i Y LA 1 f-s
P - - _1_ . -t .)) . - : }

;:j;g v [_10 o F Bll(v) pe Bls(v) (3:09)

= 2

I‘JI:: _ - . P \; . —

) 2_ =y . B,_‘ (V} + BC l 0,01 o + B (V) J (3:10)

cm. Y 31 - Ve 337

da

The procedure to calculate the criticsl speed for flutter is
identical to that given in Scetion 2311, egquations (2:167) through
(2:1776). 1In Figure 53 =rc plotted the curves corresponding to
Ay = G and AI = 0. Instability for this casc occurs between

‘ 2 2
\72/ »ﬂ2 = 1.135; V = 0,322; v/c v, = 0.343 and Vv / VT = 1,432
1 - 1

V = 1.063; V/C‘Vl = 1,27, It is noteworthy that this flutter insta-
bility occurs at a substantially lower speed then in Case A for

flexural-torsionsl flutter in which v/C\RL = 2.87.
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Case (-2, (Parancters same as Case 0=l except 711 =

i.€., no elastic support on aileron.)

In gensral, allerons can oscilliote in one of two ways, either
symretrically or anti-symmetrically. In the anil~LymH€tilbq— oscil-
laticons the elasticity of the control system does not enter and the
allercon may be consldered as having no elasiic support.

Figure 54 gives a plot of the curves for Ay = 0 and 47 = O for
this case. Flutter instability occurs between V/ \E = 0.9553

V= 0.20; v/ev

“e

2
LT 0.196 and V/ \71 = 2.62; V = 1,665 v/ev, = 2.69,
- R
The lower limit for flutter is lower for Case C-2 than for C-1,
indicating that the more critical conditicen is that for anti-symmetrical

flutter.

Figures 55 and %56 contain the polar diagrams in the complex

&

plane for the equilibrium of forces and moments for Cases C-1 and

2 at the lower stebility limit, In Case C-1, the alleron angle B
is ~pproximately 909 ahead of y in rhase and of considerably greater

negnltude so that the vertical motion of the alleron trailing cdge

ig eight times that of the main wing, In Case C-2, the zileron angle

B is approximetely in phasc with y and of such magnitude thaet the

mid-point of the allcron is cssentially siotionary.

In Casc C-2, it secms of particular significance that the

. s
inertia moment of force duc to B approximetely cguals thot of y. The
moment of force due to F avises from the masz moment of inertia about

rises from the mass

&)
l‘-:q' ’
2

the hinge line, The moment of forece due to

unbnlance of the aileron. A eritcrion of flutter of thiz type might be,

110,



therefore, for the two-dinensionsnl problem

rss scoentricity in per cent of chord Ty
Aileron radiue of gyratior in per cent of chord i z_r a2
1 1

Thig criterion csn be approximated in the three-dimensional case for

surfaces geometrically similar in shape by

Product of Inertia

Ratio
Moment of Inertia

This ecriterion has in fact been suggested by Smilg(32 whe found it

significant in consideriag the flutter of rudders.
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CHAPTER IV, TORSIONAL-ATLERON FLUTTER (TW0 DIMENSIONAL)

4301, Rerodynamic Forces and Moments due to Steady Statc Oscillations

Theodorsen(34 and Kﬂssner(23 have derived independently these
forces and moments based on the theory of airfoils in perfect fluids,
and are in agreement on the results. It secms appropriate here only
to present the results in a form consistent with the remainder of this

thesis.

Elastic axis

Making the substitution of the notation listed in Appendix II

. : . (34 :

into equation XX of Theodorsen =, or equations (41) and (42) of
(23 . . w -

Kissner =, the following moment about the wing elastic axis is ob-

tained of all the air forces acting on the wing and aileron per unit

SDAN
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wir 0 — . .V iy figc g 3 v = A -
= ]l dv (e~ =+ VI{(E =4 =2) 4+ 4 X7 4 4iveE De (= - ]
Go| wle-d s FE g 2 LF b aviTed-e)

)

- Be L - R, _Y.T - lv.::’:(i-ré - Ra€) + (_1,/ + I, €)
Cc ’ -
2 = R ,
TRy =5 PE - RIVEPE (4:01)
1 &R
(34

From equation XIX of Thecodorscn' ', or equations (41) and (42)
of Klssner*™, the total hinge moment® due to alr forces per unit

span iss

‘\_V._..f
o,
5
+
R
Q)
-
<
| I |

U - 2 -
Boir - % IV S R
L gc - RS .C_;’- J_\).a i Ry b Rgi (2 -&)

em,
_ _ 2 r Rr;ﬁg) —— ] R+ R'} 2 2

+ Be |- Yo - ivY R+ (=8P L o L8V P v
L 10 7 c |11 ( 4 ) J L o 12 J

The values of the B functions are given in Apvendixr ITITL,
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4302, Dynemical Equations for Steady State Forced Oscillations

'—4-§ ’ ~ [T
B " o1 3 - - 1':' '
B ~ \\nprlng uunstunt‘ﬂ ¢k
j’ o~ AN
N , 2R
Spring conslant ‘rh ¢k

These equations can be sct up easily by writing the expression
for the potential and kinetic energy and applying Lagrange's Equation
a8 explalined in Byerly(A. The result 1s in exact agreement, of course,
with that which would be obtained from the accelerations and forces.
Note that i and iF apply to complete wing, iucluding alleron.

The potential energy is

N P .214
L I R (4:03)

: 2 L2 2 [ .2 : 2 1.z
™o %.. i mF(lF + G”E-x ) - ml JL ll + (‘f‘ - T~ £+ O‘l) }.J @
gl 3 . ) 2 2t 12
+ & ST gt ] i,
2 my { (4 T - &+ cl) ¢ d‘lfj } +omydy (CF + B)

(4:04)
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Or
~ - N
1‘*‘51{ (1% + o )0 + 2a { (iﬂm_f!—ﬁ)FLQ g
T R SR e B S AR e N 4
02
ml(il2 -+ %z)fi ] (4:05)
Lagrange's Equation is
d o (1-V) oV i )
- T + o= (Y‘ I external generalized force (£:06)
dt aql, G = cerresponding to Gy

The external goneralized force corresponding to P is the sum of

and the cxciting force M .

e

the air force MCP .
air

2T 2 P oo {1202 L |
- = : + + d A Lo e £ i 2 (7
: em (i @ Iet cm 3 01(4_ T £ Ul)i i (4307)
?
2V _ 22 ‘
aq-) = ke Y‘ (? (4-’08)
whence
[ T . . .
e Pair 2 PR LR P
T T T T M rer)er e e

F
o
P

A

) ~ Yoo
+ _u,{i'“h 2 T £ + } 120G



The external gener:clized force corresponaing to § 1s the

gun of the air force Mﬁ _and tne exciting force Mpe
“air

&
-3
1
O\
=
"o

| [3' 10 (- T ay) ] ¢+ (il‘f3 * 512) ﬁ] (4:10)

o
T e

2n 2B (4:11)

Icy
> |
i
N
0

o
o
=
=

whence

e i - . . .l 2272
h a_- E, . - 1(’. n i 4 3 : o
..ALK,) + - = By Lll ; cr}_(4 ~T - Et0)G AT B+ gy

{4:12)

Combining cruations (4:01) =nd (4:02) with (4:09) =2nd (4:12),

. . = LT B Qo ‘ .
at the seme tiwe writing ¢ = ive, ¢ = -V P, ecte., the cqui-

Jibrium equations for steady stote forced oscillations beconed

M, _ : B ‘ ‘ o
5;;,;5 = Ge [}"’% c M -4 Ly PeH iu%(%-6) - L’,ri\?%PE(é——&)

7t

_ 2 2 _E+ 3 4 < ) < 7
v {5’ 2 '32”“”(11?*0‘1?)))
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4:02

M J—
B - 2 { 2 3 )
— = - + 2o - V(R
o, 9c t_ Vi L Gi(4 U~ € *CTi) } (17 + 345)
v v T 1l
4 BS C_20+ lvg{xig } ABP(E &)]]
2 2 2 iR 2 RAR
N y . L.L.L8 : VJ/ J.\-28-—-\‘
+5C[‘71 R T - - It G PR
3{ ('2+0'2)+R}] (4:14)
AR A 1 12 314

The solution of the above equations is carriad out by the

method explained in Section 2:07.
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CHAPTER V, FLEXURAL-TORSIONAL-ATLERON FLUTTEE  (TWO-DIMENSIONAL)

5301, Dynamical Eguation for Steady State Forced Uscillation

The dynamical equations for this mode of flutter with three
degrees of freedom can be written by collccting suitable terms from
the two-degrees-of-frecdom cuses, cquations (2:119), (R2:120), (3:05),

(3:06), (4:13), {4:14), in which F, N, ﬁg are the external exciting

forces and moments.,

Force Equation:

F - - —_ - —_ -
e + A c + A [¢ A3
i T fade T MR T A (5:01)
Moment about elastic axis:
i, e -
— = 1 v. t AssqCc + As.Be (5:02)
om 21 “o2% 23 5:02
L
Moment of aileron about hinge:
-
o AqTe T oAgfe o Aggbe (5:03)
L
The coefficients Eil’ Eiz, .o 353 are all complex in nature

ond are functions of v and v/c, and of the clastic and weight

distribution of the wing, as follows:

T



5:01

2 — 2
n +4ivE P - (1 530/
11 \{ Wt AivE P (L +p)V (5:04)
B, = e v Gee) VP T v TEG o) - LYY (5:05)
12 F 4 j 02 B ' c 2 c
I (@ +8) v - R YoF - ivL(eF +E) (5:0
A = (¢ R -k, Y P-ivI(RP+ER 5:06
13 1o R 1.2 c et s
hnad - r< v o 7y
Ayy 7 Y -£) }V FAiv o PE (5:07)
— ) - 2 2 . 2
— RV - + O + &7 . § + .é. l \%
Ao T {le- p ) 2 32
v v Y V‘2 B
+ iva (; -£) + "J.\)' P{E %) -4 5 PE (5:08)
(R < CA.
- 2r { 3 . . )
i SN ‘ol -tT-E4+g ) S FR 4RE
23 A LR TR N SR )
2/. = . V‘.- - . e
+ ;;\mﬁ - RlPa) + 1\’3(“6 - Ry€ - EnPE) (5:09)
- . 2 - v =
A‘Bl - (0‘1 ’.}l i *) v - ESIV 6- P ()._‘_ )
- i 2 2 3 ]
AB::Z -V L })u] { i 1 O.lt/l -~ T-%+ Of“ )} ).ur, R E:;
.&8 C—:,? E— X .lL(;’_ 8 ;5: b /-.J.l
- 2 .2 2 H.By ’ RoRy oy
= Vour Yok + L8 F) 4 1yl n 4+ 28
%33 TPl t g P Ve %\ A
2f 2, 2 ~ } .
- \!7 ‘L P/l\d-l ¥ Gi— ) + 1'\.12 \5:.}.2)
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The functions R, X, «o0 R, are functions only of the ratio
Le

BN o

of aileron chord tn wing chowd and are tabulsited in Apvendi I1I,
R
The dynamical equations in the above Loim are well suited to
the calculation of resasonses under forced oscillations. However,

~ 1

£ it is desired to determine only +the ceritical flutter sveca which
J r

e

ig defined by the condition that the determinsot of the ceofficlents

vanishes, it is more convenicnt to use the cquations in thoe form below.

Porce Bquation:

v}
v
D

R R P i )
...._..-..-'.5 poud [B.L}- + -”v-—-,‘g—«i:h y‘e + Blp ?C + I 1 c (‘3: lj)
oy, v° -

Moment wbout elastic axis:

Moment of aileron about hinge:

-

Mg — - e -
ﬁ_ﬁwf - B .y + chc +! B_.
CmL\) - 31 e 32 L 33

The coefficients Biys Byos «es B33 arce functions only of the
reduced velocity V and of the welght characteristice of the wing, as

follows:




- {Li+ }u.) - 4AVP

./“"‘

O piat (2 _g) - 4% - 4ivP(E - g) - iV

; -

4 )

n

g Y —
- RV L5 s T+ R
Gphy Y R,V iv( 21 PB)

9 a8
- { + O bR F V(R SR N =
{P'l "1 1) “L/f Y00 4 )
RoRg —
+ LV ol Z P
( 11 4 )

(5:18)

(5:19)

(5:23)

(5:24)



The deterninint of thoe coefficients of ¥y or ©C» and B¢ in

equations (4:13) to (4s15) is then

\7 ju 3 [2 o
\7‘-‘

o

!

[

- {=
' {\) W}A E.'L.’Lﬂ‘ qz PEL Ty T L337)
(<

T oL _ 2 -
v 'B8,.B, + B B _ + 7 B_B
1_L o) 0 —33 33 ll

- e LA i

T

#

- 2“ - .
-5 B B
”3 32 ‘Yh 1” 21 - 13 33

ne
=
s}
=
he
jes)]
}._J
W)y

5 s B
2] i ;?3

y]
ws}

(5:25)

31 732 733

When thic eguation for A 1s broken up into its resl and

1 Bl

R . ' \ s oy - " . . “ &
imaginary parts, the real part will be a cubic equation in ( \7l b/ V)

: . . , : . . . R 2 .
snd the imaginary part & yuadratic equation in ( 71 B/ V). Flutter
occurs when the curves - -for &, = 0 cross those for /.fst = 0. The theory

3t R *

of the determination of the roots is stroightforward although the cal-

culations involved are tedious.

122,



v
.t
O
™

The speed at which there is reversal of sileron control can

be determined from the dynemical equations derived in this section

and in previous sections. The freguency is taken as zero for

- 3

thege calculutions and P = 1, For the condition of three degrees of

freedom, without external exciting forces F or ¥ |
3 =) 9
&

o

C

F - . - 2 - V2 = ' v2 "N
'ﬁ'x]': = 0 = ye [},L\i:} + <?C [— 4_75] + Be {:—* ol Z-?' (5:26)

- 2 2 2 — ' 2 N
. M -— ,_,...v - 2 ._.-vv‘ N o 1 Y
+ z’\)\'\‘)l ll 4, '2 b ‘3(' | 02(1\5 R].E) 1)02’7)\ ‘

{(5:27)

cron 1s given a definite displecement B,

)
v’._ > is TN e
B L (5, - 5,2) R, - R
= . - - RV (5:29)
E ﬂ) 4 v ‘r/\w\} C
&)\;\\ 7’) ) "':3'6 L _ ,__.J:.;.)‘...D._..—..

(e
<
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Note that the divergence speed is defined by equntion {2:135) as

so that

‘i oy o
I8} o Vd )
(-

v

Substituting eguation (5:30 into equation (5:26)

55
z R

ji .

y 1 v

ru *Rli"z'f“z'
1 ! i %
L7 | 1

or

R- T
-2 _ R Jd_ 2
Yo € 1 y2 | ¥ 1
B 2 2 P

o

o
B3
g
s

The critical specd of alleron reversal may be defined as

I's

that speed at which y = O, or
{57
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It is interesting and significant that the reversal spoed is

independent of the position of the elastic axis.



CHAPTER VI, EXTENSION QF METHOU OF ANALYSIS TO

THREE-DIMENSIONAL CASE OF FLEXURAL-TORSIOWAT, FLUTTER

The develonment of the stability criteria for the throe-
dimenslonal case will be carried out here in 2 manner similar to
thal for the two-dimensional case in Chapter I3, Coertain of +the
(14

k4

basic conceptions of the reports of Frazer znd Duncan Duncan

4.
(10 - , (11 . . e
, cnd Duncan and Lyon wiil be uscd, but a distinct

and Collar
difference existe in the ecercdynamic forces used in this thesis
from those used by thcvabove carlier investigators. In many respects,
this section parallels thie work of Theodorsen and Garrick(Bﬁ.

It is belicved by the author that the tail surfaces with the
vertical surfaces at the tips of the horizontal are relatively
susceptible to flutter in the {lexural-torsional mode. Consequently

this chapter will include the cffects of the moss of the tip surface.
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6301, Dynamicel Equations for Frec Oscillations et Stability Limit

It is explicitly assumed in this section that at the stability

limit the wing oscillates

(a) with a constant circular frequency \J in all portions;

(b} with constant amplitudes (i.e., no damping);

(c) with all portions of the wing in phase in bending along
the elastic axis;

(d) with 211 portions of the wing in phase in torsion; bhut

the phnzse for the bhending and torslon may differ.

Under the above conditions, it is possible to choose two

gencralized coordinates

Zey = vertical displacement (upward of the elastic axig

atv the tip
q% = angular displacement of the tip scction.

The complex vector notation will be uscd in the same manner as
was done in Section 2:04 in which, for example, the actunl displacement

Ze at any instant is the real part of the complex quantity B
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The sprnwise distribution of deflsction ol the elestic axis

is taken as

(6:01)

S
It
S
]
P
tofe<t
S

and the variation of twist along the svan og

02)

B o R FE) (6
in which

= gemi span

(5]



601

It is cssumed in this section that the aerodynomic forces per
length of span of o wing arc identlcal to those of the two-dimensienal
cagse, Thig ig definitely an sgsumption, but its validity is es-
sentiall& substantiated by reccat work by Dr. ¥illiam R. Sears (unpub-
lished) on the wrke cffccte in the three-dimensional oscillating wing.
The totel cerodynamic force per unit span is the following, from

Secetion 2:05:

e 7 ~§_‘i_ | VS - 4ivg P
— PO ‘ 2 e 7 \
+ oG - ZE - \73(-;1. )+ 4 LBk hiv Y P -g) +ivl (6:02)
4 ¥ c* o o

The total cerodynamlc mouwent per unit span aboutbt the clastic axls is

" ) "
Y (:/L - 5)2 \7“] (6:04)

Imasmuech 2s 1t hos been postulated that the oscillation is
considered to be o steady stute oselllation, it is possible to
replace the Lift end moment. along the span by an equivalent 1ift

and moment applica at the tip such that
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3, = ZC lrz—? } J.j/

Je R

The function

T
I

is rigorously a function of v/ew at cach point
on the span. However, inocsmuch as this function 1s a relative
constant, it will be taken ag a constant along the span ond having a
value corresponding i V/CPV at the effective chord.
4
In the substitution of eguations (6:01) to (6:04) into (6:05)
and (6:06), a number of integrals are involved which shall be defined
as follows:
2 g v 3. y
I, = fff’ = I, = [(&)wd
’/ o ® ’ 0
- c \,2 < dy - —
I, (&t = I
)

T = C yhpR dy
R ~= c - & e
8 o &
¢ nay be t
o ¥y

takken ag any
the chord

reference chord. It ls desirable to take it

he aileron, or at the /5% span station.

6:01

(6:05)

(6:06)



In taking care of the inertia and elastic forces, additionul

integrels arise

- Aod

I mpf 1?
S

: . ep OF

Lo (co)mF“ﬁ*iF
_— 2 2.2

- e _,.(;'..,, v I QX
Iil Q%R lT(G%' + iF ) >

The effective tip forces due to inertia are then

?b ~
inertia - 2 2=
A ML o D — \Pg C
8 19\; Z@t IlO ¢ 0

M

¢ 8
[®]

To account for the elastic forces rigoreusly it would be

necessary to set up an integral exprcecssion in which the effective

elastic force at the tip would be

/ —.
- - B dAZO -
F t ¢ 2 e " bJI ( d V‘{i' ) % C'd'y
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6:01

and
"
Moy © Py = GIp( dyz)qady (6:10)
or
Fio1o s - pr [ afr dy
relastic o T = Y .
S By, [W f - (6:11)
8
and
Tf ey I aF 1 ay
Cleleastic - % ] m..J Fo— (6:12)
S S2 d(-‘é’-)z S

However, if the assumption is made further that the functions
£(y/s) and F(y/s) in the vibration at the criticsl speed are the same
as at the normal modes without alr forces present, a simplification

i8 possible and the elastic forces may be writien

¥

elastic

e S0 — \7 o .
8 Iy ™ Zey (6:13)

Mela%tic - . R e ‘

¢ i Y 94 (6:14)
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in whichs:

G:01

V = frequency of primary bending mode (in vacuum)

"
i1

frequency of primary torsional mode with

clastic axis restraincd {in vacuum)

With these asswnptions the dynamical equations become:

Force Fguations

- 2 :
QO = zZg, L.Ig(\7

2 N .
- Li )+ mLOV

e

o 0. =
{1, - )]

P LUt 4 vRd - T (R —g) + 4 P - 1
P, (“ LoV + m v { 15(4_ E) 4 AlVIA C P(2 £) + I ]

Moment Fuuation:

_ 2 2 [
0 = zet - Ilov + mLOV 1 - I

— oy s

o]
o

L
(4

£
/

e

(6:13)

+ 4V2§i3}}

S
-£) - ..’PJ.JPIA‘E, f]

. e 2y o R e R L o (e . Lyl
6, Il,l.( Vo~ wty o+ ‘nLo\» 1 4L,V PEd 41\717(}5-4)\2 -.6)

+ I, e< - % + 33:)}} (6:14)

The method of solution in the general case would imvolve the evaluation

of all the integrals, El to 111, after which ecguations (6:13) =and

(6:14) could be golved by the general method cutlined in Section 2:11.



6:02. Special Case - Uongtant Chord-Constant Weipht per Unit Span-

Concentrated Tip Welght

The integrals of the previous section simplify considerably
under the assumption thet ¢ = const., and np = const., plus a
concentrated mass at the tip Mv. In this section, the functions

(y/s) and F(y/s) are taken us

Y R 1,v.3
£l = 2 (L - s <L) 15
& = 257 -z (6:15)
which corresponds to the deflection curve of a uniform cantilever
beam with a concentrated force at tip, and
-2]: puas l *
F(%) = (6:16)
which corresponds to the angular deflection curve of a uniform
rod with a concentrated moment at the tip. The integrals of
Section 6:01 become
e £3.2 .
I, = I, )" o ¥
1
1 A 5 &y .
H9€" - 687 ¢+ £) T
A
o)
" : L9 i .
I, = I, = £4 = 0,242 (6:17)
1 2 120
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T = O - / (”; ‘{'; - §j ;) .E;.. d B _1:.1: o ().275
3 4 L “ 40

W
If_ = Lo a -'*:?' (6: QO)
4 dou »

in which:

MV = total mass of veritical surface fastened to tin of wing

g ¢ = dighance of ¢.g. ol verhical surface aft of alastic axls

v
1, F radiug of gyration of vertical surface about c.z. of surface.

An interegting result is obtained ii the aporoximation is

made that
T. R N = 1 , m T L I, = T o 18 = 0,3 ( 6: 23 )

and the substitution is made into equations (6313) and (6:14),
[

rultiplying the equations through by s/\ﬁg at the same Lime. The

gguations becomet



6:02

2
V.

0 = [{0.3 mos b ) (L - \71 ) + 0.3 ntJS(ZL - A.iva'}J

03 sl - (B - ) + AVP + 43‘.&515(% ~€) + iV H (6:24)

goment Lguatlon:

O = EEE S - LO.j ‘.IlFGiFS 4 Mv(rv.) + 0,3 HKLS% - (-;%* -—6) - Ligf:i,ﬂ
| — N Al 7

N

> o Lo 2 o, R 2.
) % 0.3 my(le + O@ Jo + Mv(lv +-d},) f

~

+ 0.3 m s [ WTE + 4iV(PE - L)k -g) +e” 2 & 2
BE] /4, 2 2 3&‘

N
(6:25)

The following puraometers will be used for the threo-dimensional
case, which are analogous to those of the two-dimensional coge in

Chapter I1:

D02 mps b Il
o 0.3 m 8
Lt

(6:20)

0.3 me-g - M oA
0,3 HTG}L ) M. g3,

0.3 mps + iy (6:27)
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0.3 iy +
':) ) ) ﬂ,
) ~A AL
\’: s L -—-413' s (f): le))
= {15 - CF )

. . ) = e X
FBauations (6:24) and (6:25) reduce tos

Forece Fauation:

- B \)1“ = ¢ -
0 = g, | -~ - 40P+ (1 + W) J
-V
5o | L) v v o o g) ¢ v (6:30)
Qe -pg, - (4 -~ £) + LV°P LLVPLT - ) + 1 5830

0 = =# -«Ma - (;;% —6) - Z;'LVFE«:)

- [ 2V < , 0 o
+oge| =M -——jzﬁ“ il rad) +ef 2 &y i— + 4P g
b £

WP N . e
+ AVPE(S ~ ) - V(3 - a):l (6:31)
It is seen that equations (6:30) snd (6:31) are identica

to (2:121) and (2:122) with signs changed and with F = M = 0.

Therefore, a good first approximation can be had for the critical
; (20 .

flutter speed by using Kossner-Fingado charts and the values

of V” T, » %,1} as defined in (6:29), in which the wing mass is
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tuken as the wass of tho ouber 0.3 of the wing plus the vertical
surface, and the alr wase o the enclosing =ir moss around the outcr

0.3 of the wing., This is in agreoment with Theodorsen and Garrick(35

vho dindicate that, in general, the chord and scetion propertics of

ot

the 3/4 span point may be used in estimating flutier speed.,
+ X £ o
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CHAPTER VXI, PRGCEDURE FOR THE PRELTMINALRY PREDICTION

OF VLUTTER SPEEDS

7:0L. Introduction

Thie chapter has been proparcd to scrve os = gudde in the
carrying out of calculations and toste to deterwine the eritiecal flut-
ter speeds of a typical transport airplane,

It is anticipated that the ailerons of the airplane will be
mass balanced by elements to provide complete static balance. The
elevators, with no leading edge aercdynamic balonce, will be dyman-
ically balanced by a welght moving inside the fin to the extent that
the product of inertis is zero about the hinge iine and centerline
of the airplane, Zach rudder will be dynomically balanced for the

upper and lower portions independently to the cxtent that each portion

01

will have the product of inertias zero about the hinge line and stabilizer

chord plane, With the above procedures for static balance, the mass
couplings of the movable control surfaces will be eliminated so that
the possibilities of fiubtuvcr are excluded in the medes of aileron-
wing flexure, aileron~wing torsion, elevator-stubilliizer {lexure,
elevator-stabilizer torsion, elovator-fuselage torsion, rudder-fin
flexure, rudder-stabiliszer flexure, rudder-fuselage torsion,

The modes of flutter which require snecial investigation are
primarily wing flexure-torsion and stabilizor flexure-torsion. Further
attention must also be given to the pogsible occurience of rudder-

fuselage side bending when the vibration charascteristhics have been



measured. This latter mode of vibration can be investigated by the

methods of Chapier I1I.

The principal body of this chapter deals with the msthod of
coleulation of the flexural snd toresional charuwcteristics of the wings
and tall to use in ectimating the flexural-torsionsi flutter speeds

4. . g - TS - . (20
by the method of Kessnor-Fingado .

(33

29
(32 and 8titz 77, together

Statistical date published by Smilg
with other detn from seversl sources, are presented in Figures 57 to

66 of the measurcd vibration frequoncies of a number of airplanes. It

7:01)

lg anticipated that these data will afford o cheek of the characteristics

of the new ailrplancs in comparison to the trend of design.
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7302

7202, Wothod of Canlculation of Primary Flexural Mode of Vibration

of Wings sand Teoils

The rigorous solution of the problem of the vibration of a

wing in flexure at zere alrspeed involves the determination of o

deflection curve of vibration such that at every point on the boanm,

g WS0s = L ® 2ln 7:01
ayl{? 2 a f" ( )

in which:

E = Young's modulus ol ¢lasticity

I = moment of inertia of cross-gectional ares

w = welght per unit spon

-

leration of gravity

aCC

o
o

5151
i
)

.

z = deflection {upward)
¥y = mecasure of distances along span

t = time

The soluticn of equation (7:01) explicitly is possible in
general only by methods of successive aporoximation which are tedious
and difficult. However, a mcthod is available which lends itself

nicely to solution of problems such as this, known as Rayleigh's Method.

(7

A complete discussion of this method is gilven by Dgn Hartog (pages
167 to 182), and Times hcnko(aa, (Chapter III). The essence of this
method is the fact that the kinetic energy of the beam at the instant

of zero deflection 1ls equal to the potential energy of bending at

the instant of maximum deflection to which must be added the assumption

141,



that, all points on the besm nre vibrating at one freguency, and in
vhise, It should be noted that, when the true dellecction curve for
the normzl mode is used, the above assumption is rigorously true.

Raylcigh's contribution wus the fact that the above assumption is

SR}

approximately true for any reasonable form of the deflection curve.

Ecnce, expressing the deflection at ony point along the spen

7 o= (u) cos vt

HOZ .
the velocity is

~‘v(z)maxosin vt

in vhichs
the maximun deflection of any point,

( Z)Hl&}( .

civeular frequency of vibration, in rad./scc,
8 3

th

v

<Lowom values irvespective of time,

Hence, considering cnly m

z) = v(z)

max.

Inasmuch as Rayleigh's method is concerned only with the
L3 . . e
naximum values of 2 and z, henceforth the notation 2 and z is used
without the designation Mmex." which is imnlied in all cases, 1t

L]
being noted further thot the maximum values of 2z and of z do not

occur at the same instunt of time, but rather are disnlaced at 90¢

in time teo each othor,

142,
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The total kinetic energy of the beam is

Or, using the relation of equation (7:04)

i8]

Kin = =—- wz'2 dy

The total potential energy of bending is,

jo
e
N

Fot =

R

B1($5)° ay
}7’

“

Equation these cnergies of equations (7:06) end (7:07), the

frequency is given by

/”(dza

E ) “ay
1R
2 / dy
Vo= g
sz dy

in which the integration is carried out along the span.

143.
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7202

A reasonable assumption for the deflection curve is given
(7:09)

by
i 47 o Loyyh
g7l B(L):]

N
i

in which:
digtance from tip in rect

semi-span in fect (from root to tip).

y —~

Differcntiation equation (7:109)
("7:10)

-y /('Z(') (z)

2L

"y
dy™

the ecircular freguency in radians per gecond is given by,

so that

ped

¥\ 4
EI( ;:) Y dy
("7:11)

V .
1 L - JEYURT)
W L 1- §5 + §(L) J dy

L

The evaluation of the integrals of cqguation (7:11) ccn be
phically by plotting and planimetering the curves

performed gra
wr
i

furetion of 3

as o

L)% as

£

function of y.

)4]2 as o
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It

at five stations along the wing will provide

accuUracy.,

In the casc
at the tipeg of the

into account the

It

for the g

during the vibration.

or,

in whichs:

Feie

8

PR AR

[SENNN

Kin =

y S

S v o

o ”v 0
or -
5 £

deflection ot stabilizer tip

glope of s

tabilizer ot tip

s helleved that the evaluation of the above guantities

o freguency of reasonable

cets of vorticel surfaces,

totel welght of {in and rudder

welgiltt per

stabilizer

vertical diptance

unit heirht of fin and rudder

semi-onan

145

horisontel, & nodificntion muist be made to take

tabilizer and further to assume that the fin remsing stiff

to stetlon on fin frow centerline

of & tzll conliguration with the vertical surfaces

reasonable Lo use cquation (7:09) ag the deflection curve

The kinetic cnergy of the vertical surface ieg,

(7:12)

(7:13)



7:02

Y = (7:14)

The integrals can be evaluated by planimetering the arcas under

the following curves:

ek .‘ B - 03 - »
{a) h.vj.({»)4 for stabilizer as a function of y, the distance
-AJ

from gtabllizer tip.
— N A
b) w L_l - %? %(%)4:] for stabilizer as a function of y.

p . . . . . T
(¢) wy! for fin as a function of y', the verticnl distance

from stabilizer centerline.

It is believed thut the evaluation of functions (2) and (b)
at four stations on the stobilizer and of function (e) ot three
statlons cn the fin ie satisfectory. The weight of the elevator should
be inéluded in the running welght w of the horizontal tail. The weight,
of the rudder should he similarly included in the vertical tail. The
welght of the elevator dynamic balance should be included in the weight
of the verticel tail W.

The freguencies énlculated here are ths fr&quencieg that would

be observed vibrating the wing or tail in o vacuum, The bending frequency
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that would be obgerved in practice would be

V.o p—
bending 1
/ 1+ =

The value of H‘ ronges Trom 5 to 10 se that the bending

frequency is penerally 5% to 107 lower than \]] .

s AS
I A



7:03

e e

7:03, Method of Calculatlon of Primary Torslensl Mode of Wing cor Tail

"
113

Thesce caleuletions can best be mede using Raylelgh's Method
vhich was described in principle in Sceticon 7:02.

It has been found that the normal torsional mode of vibration
of &« wing is such that the inertis axis of the wing is nlso the nodal

. e - . (35 C s e

axis (sec Thoodorsen and Garrick‘’”). It is therefore neces spary to
determine first the inertia axis along the spon at several points
and then to chocsge o nodal axis which 1s straight and coincides with

the average of the lnertiz axis.
l

The kinetic encrgy is,

Kin é* ) im ,; dy (7:15)
,sgj CP B
in which:
. d
- &

@) = angular displaccement at any stotion nlong span

y = welght per unit spon

i, 7 radius of gyration o0 wing mass abeut nodal exis in

fraction of chord

y = Jdistance from wing tin

g acceleration of gravivy.

_L’j'r‘ »



In & manner snalogous to that of cquation (7:04) one can write,

¢ -ve

so that

-,
.

Kin = N //WﬁﬁjT?cz dy

To obtain the potential energy 1t is necessary to use the

equation for the twist of a shect metal shell, nanely,

ae Jp
é? :

Q@ = torque

P = pevinster

& = enclosed srea of ghell
t = thickness of shell

G = shear modulus of alagiticily

S

In cases where the shoet thickness 1z not constanit arcund

the perimecter, the value of P/t ghould be obtained by,

i

I

1
ch
-
(:“hTJ
Sy
+
+
i =
s

in which P is the amount of the perimcter whi

149,

cerrosponds to .

7:03

(7:16)

(7:17)

(7:18)



The element of poituntial euergy due o

vhence,

Pot = .'}_'. Q .(_ig (]_y
2 dy

Fliminating Q from

results

1 (}g&bE éﬁfg dy
2 ‘J dy r/4

Equating (7:22) te (7:17), gives an expression

the frequency,

LACG
T/t

dy

?
e

!/wqfiFgczdy

A reascnable cquation for the tor

vibrations iz,

)

in which

-
.

Glstancs from ving tip

ol O AT SR S s
senl-gpan from root to Tip.
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equation (7:21) by using (7:18),

an eloment of spen dy is,

(7:21)

there

(7:22)

which determines

sional deflection under

(7:24)



7:03

Substituting equation (7:24) in (7:23) gives,

LARG
2 P/ %
\/’ e ol /
2 & T (7:25)
w(L—y)ZiF“cddy

dy

The integrals of equation (7:25) can be ovaluated by pluni-

metering the arec under the curves of,

2 1 '
(2) %éﬁ? plotted us a funcition of y
P / J

¢ 2. A& X . o
(o) wi{l-y) 1F’c2 plotted ws a function of y.

In the caze of a tail configuration with the vertical surfaces
at the tlps of the horiszontal the calculations can be made in a man-
ner identical to that above, modified for the effcct of the vertical

surfeces., Equation (7:25) then becomes:

AAZG e
ay
2 JP/t

2 Tk (17:26)

r~ . 8 .
! w{ Ly 2i 2“c:'£dv “+ V.3 2c'dL2 ]
i HATY i J v

i

in which the integrols nre evnluated along the stebilizer only and,

Wﬁ = total weight of fin and rudder
(iy¢) = radius of gyration of fin ond rudcer about the nodal

L = semi-gspan of stabilizer (from root to ting.

x



The nodal axis of the stabilizer at the root may be taken to
pass through the center of gruavity of the root section. The nodal
axie at the tip should be taken through the center of gravity of the
combined weights ol the verticuzl tall surface and of the outer 30%
of the horizontal tall.

In caleulating the inertia axis (e.g.) of the horisontal tail
the weight of the elevotor should be assumed to be distributed along
the elevator hinge line., The weight of the elevator dynamic balance
at the end of the elevator should be included in the welght of the fin
and should be assumed to be concentrated at the elevator hinge line
for all calculation.,

In caleulating the radius of gyration of the mass of the
horizontel tail, the mass of the clements of the elevator should be

taken in their true chordwise positicns,
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7:04

7:04. Method of Calculaticon of Criticzl Sypsed of Torsional-Flexural

Flutter

The method recommended for this calculation is that developed

(20

by Kassner and Fingado The parcmeters needed for this investiga-

tion are:

Vi = primary flexural frequency obtained in Section 7:02.

(rad./sec.).

V., = primary torsionsl frequency cbtained in Section 7:03
£

(rad./scc.).

The following characteristics of the wing are needed for the
staticn at 75% of the distance from the centerline of the eirplane

to the tip:

¢ = wing chord (ft.)
£c = distence of elastic axis back of 25% point (ft.)
pe = disbence of inertia axis back of clastic axis (ft.)
ti = radius of gyrotion of mase of wing about inertia axis (ft.)

w o = wing weight per uniu spen (lb./ft.)

From the above parameters, the follewing additional parnmeters

can be calculated:
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in which:

i3

Further, the "elastic radius of gyration" is determined by

y, . gcg
4,
5 '
¢ x 0.002378 + 32.2
16,641 <% (2t sea leval)
o2

W

16,641 —= (at altitude)

(o]
oofe}™

= density ratio

the relations

The eritical specd can now be determined, using Figure 51.
A typical determination is illustrated in Figur
Point A is located by going vertically a distance & on the
. parabolic curve, and nessuring horlzontally from thislpoint a d;stance

77“ to the left. In many cnses, it will be found that the point 4
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(7:27)

(7:272)

lies off the sheel a substantial distance but this has no adverse cffect.
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Point (B} is located in o manner similar to that for A, Ly

going vertically o distaence <E‘+CIT) to the parcbola and thon to the
A
Left o distance iFZ.

Peint B is located from point (B) by drawing a line through (B)
parallel to the sicping line designated ot the endg Py and Pp.

e —
(B)E = -;iPhPm (7:29)

A line is now drawn through points A and B and extended to
el

the right. The point C is located in the figure on the right by

guccessive approximations such that the value of M) cerrespondin
8 f ¥

te the point C is equal to,
"
= AB ‘
e (7:30)
AC
—Pe B
By AR is meont the distance from A to B, and by AC the
e —
distance from A to 0, It should be noted that AB and AC  have

vector characteristics so that the ratio becomes negative whenever

- ) e

AB is in the direction apposite to  AC,
Point (C) is located in the figure on the left by going

horizontelly from point C to the curve having the value of P}

calculated by equaticn (7:30). The value of the "reduced veloeity" V

ig obtained from the point (C) by the constructicn shorn.

The frequency »f the vibrotion ot the criticzal spsed is obtained

from the ratio of lengths 4C and BC by the expression:
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‘iG . ,
= \%LJ/%E (rad./sec.) (7:31)

The critical speed of flutter is given by:

Vev  (ft./sec.) (7:32)

<
Hi

in which v ig the freguency cobtained by equation (7:31).

In the case of a tall coniiguration with the vertical
surfaces at the tips of the horizontal, the method above must be
expanded to take into account the effects of the vertical tail,
The development of the method outlined below is presented in
Chaptor VI, Scetion 6:02.

The following freguencies sre necded:

v, ®  primary flexural frequency obtained in Section

7:02 {rad./sec.)

Vo & primary torsional frequency obtained in Section

7:03 (rad./scc.)

The following characteristics of the stabilizer are needed
for the station at 85% of the distance from the centerline of the

airplane to the cesnterline of the fin:

¢ = horizontal tzil chord (ft.) on tropezoidal plan-
form without rcauction for cut-out.
gc = distance of elastic axis back of 25% point (ft.).

velght of horizontal teil per unit span (1b./ft.).
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W. = total weight of vortical teil per side (1b.)
(including clevator balunce weight)

distance of incrtic axis of horiszontal teil back of

S
o]
it
o

elastic axis of stabilizer (£t.)"

¢.¢c = horizontel distance of c.g. of vertical tail

v
(including elevator balasnce) back of clastic axis
of stabilizer (£t.)
0.20 w, ub, + W 0. »
Op 7 b (7:33)
0.30 wys + W,

s = genmi-span of tail frem centerline of fuselage to
tip (£t.)

ikc = radius of gyration of mass of horizontal tail about

e

L8
sy

nodal axis of horizecntal (£t.)
i.¢ = radius of gyration of verticnl tail, including elevator
balance weights about nodal axis of stabilizer (£t.)

A 1R v s R
. 0.30 wysi + Wl
1F2 - h=th Vv (7:34>

0.30 wps + Wy

_ o Wy
fL = 16,641 . (7:35)
02 _
\%
»,/) = ~——-—-2—- . 11_‘, (7:36)

*In celeulating the inertia axis of horizontel tail the weight of the
cleovator should be assumed to be distributed along the clevator hinge
line. The weight of the dynamic bhalance weight at the end of the ele-
vater should be included in the weight of the vertical tall. The ele-
vator dynamic halance weight should be considered tce be concentrated at
the elevator hinge line.

#%#In calculating the rvadius of gyration the weights of the elements of
the elevator should be taken in their true chordwise positions.
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The critical speed can be determined for the tall by the
E . R 2 4 . . . ) .
KassnernFlngado(&o chart, Flgure 51, using the parameters Vis C, £,
O iF’ A and?) as defined above, in the manner described above,

The divergence gpeed of the wing or tail can be obtained

directly from the parameters of Section 7:04 by equation (2:135).
C
v, = TJ%_, /,gw (£+./sec.) (7:37)

Inasmuch ag the torsionsl freguency may be written

YV

v, = L (7:38)
b i
i

the divergence speed is also

Vst /Y
Vg © Z . /"EJ (7:39)

The aileron reversal speod can be obtained by equation (5:33)

R,
v poisy =, ld_ ) 1*“2‘ 84

e

(7:40)

Values of B and kg are tubulated in Appendix ITI.
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7:05, Statisticul Dato of Vibration Freduencics

Date published by Smilg(32 =nd Stitz(33 on the mezsured natural
frequencics of various airplanes ave plotted in Figures 57 to 66,
together with other dota available to the author from various sources.,
In meny cascs the span was considered the most important parameter
against which to plot the freguency.

The variation of freguency with spon of o cantilever bemm can
be determined from the equation for the bending frequency of a uniform
(7

beam given by Den Hertog'!, (page 172),

, /Tf“ (7:40)

—
AWV
i}
o3
o
na

L = MAss per unit apan
L = span of centilevor
E = modulus of clasticity

I = moment of inertia cf arua

If a family of beams of the smme moterial cre teken in which goomotric

similarity is maintained, the following relations will apply:

t
'
i

—

L./ |
=) (7:41)
O

e
I

Liye :
Lo g (E"‘) (’7242)
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Subs T1UUs1ng inte eguation (7:38), considoring B invariant,

there results:
v |
Vi - (7:43)
0

Hence the freguency varies laversely as the cpan., This same relation
holds for all the frcegucncies throughout the airplane, assuning
Cgeonctric similarity. The deviaotions of the points arce a measure of
the deviations of the airploncs from o single base of geometric
similarity.

Vhen the vibration charazsteristics of an girplanc have been
determined experimentolly, these charocteristics should be used in
preference to those calculated by the methods of Scetions 7:02 and

7:03. If the bending frequency fb ig known in cycles per nminute, it

should be converted to radians per second as follows:

Vy (rad./sec.) = £ (cy./min.) ?% ("7:44)
L

The frequency, V, used threuginout the calculations is obiained from
.

\)b, taking into aceount the

V- o A /j 4 __-l_-__ .
1 b, e (7:45)
or, approximately

- 5 1l ‘
v = \/b ( 1L+ ..-...._) (7: l;_,O)
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V% (rad./scc.) = £ - gﬁ (7:47)

It has becn found, generelly, that wings osclllate in the torsional

mode at zero airspecd with tiue nodal point close to the inertia

o
ct

axis. Where this is the cesc the quantity Y] can ke estimated

&

with ressonable sccuracy by the expression
T (7:48)

or
T = ﬁwi(l + Wi_) 3 (7:49)
\? ‘: 5 T . dy

in whichs:

i = mass radius of gyration of wing section in fraction

H
i

of chord.

3 o o o o . .
It was found that the effect of the apporent mass on the torsional
moment of inertic is smsll in general so that equation (7:48) ney be

written without the inclusion of the apparent mass term.

[
o
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CHAPTER VIII, CONCLUSIONS AND RECOMMENDATIONS

The art of the dynamics of alrplane structures has now reached
the stage where it is possible to determine from the dimensions and

characteristice of the silrcraft components & qualitative criticel speed
i

2t which flutter is Llikely to occur. This critical spoed may represcnt
only an approximuiion, but even an approxiuation is o great advance
over the condition which has mointoined watil very recontly when
certain precautions heve been followed blindly and without specific
knowledge of thelr effcctivencss to prevent flutter at a given speed,
The anarchy of fthis ignorance should and can be eliminated now.

The questinn has often been put, "How close to the critical
speed is it safe to Fly?"  The author Tecls that the answer is that
no airplone should be flown al speeds higher than two-thirds of the
critical speed for any mede of flutter, divergence, or aileron reversal,

Tae respense curves czleulated in this thesis show that, at
specde lower then tuo--thirds of the flutter speed, the responses are
highly damped throughout. (Note the response curves for v/cvl = 2.0
of Casc 4, and for v = 256 m.p.h. for Case B.) In that reclm there is
great safety. However, st speeds greater +than two-thirds of the critical
spceds, large respenses begin to appear. These responses may easily
cause structural foilures even at speeds substantially below the so-
called critical speed of flutter instability.

X o} L . . .
Cox =nd Pugsle - show that the maxirum aileron rolling

moment occurs at a speed U,.73 times the speed of aileron reversal.

At speeds above this point, the aileron control diminishes rapidly.

16z,



8:00

reaching zore at the reversel speed. Inasruch as the aileron control
force per unit of ailoren deflcetlon increases as the square of the
alrspeed, the siloron responsc in terms of rolling moment for o given

pilot exorticn is slready vepidly dininishing at speeds as high as

3.73 times reversnl apeed. reason, 1t is believed that

should uot exceed two-thirds of the reversal speeds.

airplanc spe

th

t 18 noteworthuy that 1t ls now cowmon practice to restrict

i~

accelerationg in nancuvers to two-thirds »f the design load factors
of eirplancs. These scecelorations are the extremes, the average
acccleration will seldon excesd one-fourth of the design load f&étor.
Simdllarly, cpceds should be restricted to two-thirds of the critical
spaeds of flutter and related phenowmena,

The szuthor fofcsees that research and preogress must be made in
three distinet ficlds in ordcr thot this dynamical technology may keep
abreast of the advances in the speeds of alreraft:

L. Besearch should be carried out with three«dimensiona
medels in wind tunnels () to further check the serodynamic forces
acting, (b) to determine the effects of sponwise differences in vibra-
tion characteristics, and (e) te determine the effcects of structural
damping. It is believed thot this resesrch should be done by the method
of steady-stete forece opeillations, nmeasuring the amplitudes and phases
at speeds below the critical speed,

2« The technigue of determining vibration characteristics

1,

should be iaproved. ~tleular, mechanical vibrators should be

developed capable of oxciting pure torsicnal vibrations in wings and

tails cn the ground. Algo, vibration pick-up cquipment should be

163.
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developed to determine pure torsiocnal vibraticans of small angular
amnlitudes. It i1s believed that this can be accomplished with elcctrical
lincel pick-ups connected in opnosition.

3. Structural research should be carried ocut te develop now
methiods of congtruction thet will provide, (2) greater torsional

positions of the inertis axis, and (e) reduced

rigidity, (b) more for

moments of inertia of the wing and t2il uessces about the incrtia axis.
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ATPENDIX II, KOMENCLATURE

The author has cndeavored to choose o nomenclature in this
thesis which would nove 2 direct meaning to the practicing aeronautical
chgineer, insofar as suéh is possible., For this reason, he has used

he wing chord as the fundamentsal measure of length, as is doen by
(20
]

Kagsner-Fingado rather than the semi-chord ss is done by

von Karman~5ears{lg, Kﬁssner<23, and Theodorsen(BA‘ The =zuthor has
therefore adhered o the nomenclature of Kassner—Fingado(EO insofar

a8 1t applies, with the excepticn that he has used ¢ for wing chord,
t for time, k for the clostic constant of vertical support, whereas
Rassner-Fingado use t for chord, v for time, snd ¢ for the elastic

constant., The nomenclature generally used in Chapter IT to Chapter VII

is as follows:

¢ = srng cherd (t.)
€ = distance of elustic axis back of 0.25¢ point, as fraction
of chord.

of elastic cxis, as fraction

P
b
-~k
W@
o
=
&
o
-
G

G%» = distence of inerti:
cf chord,

iF = oredius of gyrotion of wing mass cbout inertis axis, as

fraction of chord,

i = mass of wing per £i. spen (including aileron).

my, = mass of enclozing alr cylinder per ft. span.
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HOMENCLATURE (continued)

niieron chord
wing chord

ratics

g. of ailleron mess back of hinge line, as
fraction of wing chord.
redivs of gyration of aileron mase about aileron c.g., 28
fraction of wing chord.

A - - i £ o
eileron mass per [f. span.

it
1

w

L
bending stiffness (1b./ft.)
torsional gtiffuness (£t.1b./rad.)

- g 10 — i 1\(
"elastic radiust® = & / Mg
c k

true airspced (ft./sec.)

circular frequency of oscillaticon (rad./sec.)

JE

i
natural bending frequency as measured at zero airspeed
(rad./sec.)
natural torsicnal freguency ns neasured at zero airspeed
(rad./scc.)
reduced velocity = -=

complex 1ift vector, see Figures 41 - 13.

JIL
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App.

NI YT AT T : \
HOMEWCLATUIE (continved)

Il to V unly:

yo=
¢ =
i

In Chapters

vertical displacement (un)  (£4.)
anguilar displucencnt of wing.
angular displacenent of ailercn relotive to ving.

vertical disvlacoment of clastlic axis.

vertical dlsnlaccment of 0.422¢ point.

nement sbout cleagtic axis.

aileron moment about hinge axis

VI end ViI only:

disteace fure and aft  (£t.)
distance sprmwise (ft.)
vertical displacement (up) (£t.)

angular displacencnt.

whout this thesis, all complex gquuntities are barred, such

L, ¥, I, Ay, etee; in order to attrect particular attention

to thelr complex character. Furthernore, .1l variables which are per-

o

steacy state

forming sinusoldal vardations such as forces and displacenente in

sscillavlions are represented by complex vectors rotating

in the complex pione with frequency Vo such that the real part of the

175.
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HOMENCLATURE ( continued )

complex vector at sny Instont of tisc represunts the actual force
" (7

or dipplacement ot that instunt.  (8ee Den Hortog'', prge 3)

grivatives with regpect te time nre represcented by the

176.



NOMINCLATURE (continued)

App. II

A table of equivalents comparing the notation used by the

suthor

Wing chord

Aileron chord

Velocity

Frequency (circular)

Upward displacemcnt

Wing angle

Aileron angle to wing

Lift {up)

Moment about elastic axis

yoment about 0.25¢

Aileron hinge moment

Complex 1ift vector
P

Reduced freguency

The Author

TC

3 ™} 61

= |
=

MO.ZSC

=1

with that of Theodorsen and Kissner is given below.

e e ]
Theodorsen(34 Kﬁssnar(23
b 21
(1-c)b 271
v v
) \%
T 41tV
@ __Beivt
B - Cei\?t
~P 4K
M, —
- Mé
MB N :
C (1+T)/2
k:“‘)b/"f—* =ivl,/v’“‘

ek

*Note: Theodorsen's k is not equivalent to K#ssner's w but rather

w = ik = i/2V.
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NOWMENCLATURE {continued)

Table of Bguivalents (continucd)

e e SR U e
! . PYAR
The Author §Thoodorsen(" K#issner
Reduced velocity ; V= v/ev P 1/2k i/20
| | ;
| . ' ; i
| Mass of wing per unit span : T, : M -
i - i !
{ ; !
- a . a — 2/ , .b2 ;
Mass of air cylinder i HL : #pCT/4 ; o —_— :
| i
Ratio mF/mL g YL | 1/x —_
, ; |
: . %
Alleron mass per unit span | m i — _—
H i
{ !
|
L 2(e -1/4) | a -
: ?
c/2 | b —-
g
?
r M r L ad '
(L2 -7) ; c —
|
2 o i X ——
~ v } .
: { (o}
g |
2 H it i X ———
& o/ | .
i i
| :
| N . -
: i
2 /7. 2 N ?. -
- i - G / Do -0
(Ll POy )LL/DF} B
=~ w P
Vi h
j
‘(]\\P //"i e 4 CT% ;'i Cl..) —_— ;
: T ¥ ol
! !
| |
MiVv1 w |
/. 2 A - .e
T G )y /ey |
? i
LR U S |




The Auvthor

| Theodorsent s 3

A Ta s Tt v s H
NOEEACLATUEE (contiuucd)

Table of Egulvalcents (contimued)

(e Y/ !
\TA' + .‘_10)/}» !

App. IT

iy
- L2
Kﬁssnor( -

q;lz/l6w2
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VALUES OF R TUWCTIONS®

Aileron Chiord - v
Wing Chord
0 0.15 |  0.20 0,25 0,30 0.50
Ry 0 1.92200 | 2.19928 2.43600 2.64300 3.27324
|
Fr O | 0.19424 1 029748 0.41.35¢ 0454058 1.13662
By 0 1 0.09406 G.14238 0.19550 0.25231 0.5000
! .
Ry 0 | 0.005725  0.01161 0.02004, 0.03119 0.10610
i | |
Rg 0 | 0.08567 0.12552 0. 16667 0. 2078, 0.35610
Pry 0 | 0.002680 | 0.005315 | 0.008966 | 0.013648 | 0.04215
! !
! |
Rg 0 | 0.00612 j 0.01272 0,02250 | 0.035% 0.13662
R, 0 | 0.00992 | 0.02004 0.03446 0.05343 0.17805
g o 10,0099 f 0.01651 0,038 0.03156 0.05783
Fqq 0 E 0.00457 | 0.01059 0.02021 0.03410 0.14208
| %
Rys 0 % G.000L7 | 0,000558 | 0,001348 | 0.00277 | 0.02048
! ! |
Rifig/4 || O | 0.00294  0.00699 0.01370 0.02376 | 0.11180
3 i |
i i ’
RoRg/h || O 1 0.000297 | 0.000946 | 0.002325 | 0.004860 | 0.07764 |
H i i .

#Calculated from the values
functions of Kissner

and. ¢@

Revised 6-8-39,
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?£3the T functions of Theodorsen and Garrick(
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APPENDIX. IV, I'YPICAL CALGJLA’P TN oF RESPONSE IN STEADY STATE OSCT LLATION

{ S

=2,0 v - io

Y P : 3 Shes
" .Case A. O i i M

.\\

; » 2 {
Dyaamical Hquations:

. : My ’.'.9 K2
MU 3 f d I ".’.—' ' * : P },.:. .-q g -~ §E%
g & .~.i Y050 _.,_'1‘Jo * 3.0 1vF - 1,}?:\;' e 90 iv(l - ?) - 160 F

: 5c +2,0 ivF:I + cpo [100#0.3 iv(l-?)-%?aOlO}lV]

g e

.yl*/V‘=“V./207_'__,'. S el Oji" L g2 e e e e Wl s e B0 [Lagt
* M e e e @) 1,000 | ia32 | 0.728 | o.865 | 0,625 | 0,508 04579 | 0.565 | 0,560 | 0,534 | 0.5u6 |“0.539 | o530 |
Tt A_ il g ol 0.1723 | . 0.1886 | 0.1793 ] ov.‘165o 10,1507 0. 1373 0. 1‘26& .0.121-- 0,165 | 0.1078| Q.,_iooz o;QS7i e
AETR sl )] 2000|183 | 1728 | 1,665 | vites | 1508 | w57 | 1,565 | 1560 7#65*#7 BRSNS
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Tolmee o oL D e aea e e R i B g i L T
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s T i B ey 1 v B g b s e e e
qrwa ekl o | ke | 06 | oo | - .5
a0 F)|-160.0 | ik | 3190k 2110.5 | -105.3

8B |83 g6z gt
: 7 : ' : A 1A e M f‘ifggos 05 a9z i
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APPENDIX_ V

SUMMARY OF CHARACTERISTICS OF SPECIFIC CaSES STUDIED

Case A B Cc-1 C-2
Type of Oscillation Flex. tors. | Flex. tors. || Flex. ail. |Flex. ail.
¢ (ft.) ¢c 7.5 c c
2 0.25 0.10 - -
CS‘F 0 0.05 - -
1 2 ” I ~
ip 0.100 0.0625 - -
vf‘ 1.00 0.50 - -
Pv 10.0 6.00 10.0 10.0
\)1 (rad./sec.) Vl 31.41 3 \?1
. - - 0.20 .20
o - -
I 1.0 1.0
il - b Océ% 0006
m.° - - 0.001 0

i8z.




JApp. V

SUMMARY OF CEARALCTERISTICS OF SPECIFIC CASES STUDIED (continued)

Case A B C-1 C-2
Natural frequencies
at zero airspeed
V "bending" (rad./sec.)|{ 0.954 vy 28.9 - -
y "torsien” (rad./sec.)l 3.115 A 85.6 - -
v (upper) - - 1.13\71 0.99 »3
vy (lower) - - 0.85 v, 0
Critical flutter
(lower 1limit)
{ ft./sec. | 2.87v.c 549 0.343 V,¢| 0,195 e
Vor 1 1 L
’ . m.p.h. - 37, - -
d Aeee ) 3
o (rad./sec.)| 2.26 v 57.2 1.07 0.98 v
v 1.27 1.28 0.20 0.322
Critical flutter
(upper limit)
Vor @0 o) 1.27 e R.69 wc
Vor 1.196 \?l 1.62 \)l
v 1.06 1.66
Torsional divergence
ft./sec. | 3.16 Ve 645 - -
fS!
m.p.h. - 440 - -
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