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ABSTRACT

For the first time, we construct a statistical mechanics for the two-dimensional Euler
fluid which respects all conservation laws. We derive mean-field equations for the equi-
librium, and show that they are exact. Qur methods ought to apply to a wide variety of
Hamiltonian systems possessing an infinite family of Casimirs. We illustrate our theory

by a comparison to numerical simulations of Jupiter’s Great Red Spot.
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FIGURE CAPTIONS

Fig. 1 Comparison of a direct solution (smooth curve) of the differential equation (5-65)
to a Monte Carlo calculation (jagged curve) for the same values of the conserved
quantities. The domain is the unit disc with rigid boundaries.

g(c) = 0.2656(c — 1) + 0.7356(o)
energy: 0.01087; angular momentum: 0.09887

Fig. 2 Simulation I: initial conditions. The grey levels denote evenly spaced potential vor-
ticity values ranging from —1.0 (lightest) to 1.0 (darkest).

T =4+ ip; 4 = (0,8r%/3); g =1; ;=0
wp = V X 4, = (1/2){tanh 10(r — 11/15) — tanh 10(r — 14/15)}
R, =4/3; R;=1/3

Fig. 3 Simulation I: long-time vorticity profile from dynamical simulation.
Fig. 4 Simulation I: statistical equilibrium profile from Monte Carlo calculation.

Fig. 5 Simulation II: initial conditions. The grey levels denote evenly spaced potential
vorticity values, extending from —1.0 (lightest) to 1.0 (darkest).

T =4+ Gp; @ = (0,872 /3); B=1; ;=0
Wy = V x ﬁp = f(ra9700) - f(",oyeo +7l')
£(r,6,8) = (1/2){tanh 0.857 (n(r,8,) + 1) - tanh 0.857 (n(r, 9,0) — 1)}

a2
| (5/6)(8 - 8) r—5/61
n(r.6,6) = [ 0.35 ] + [ 0.175 ]

Ro=4/3; R1=1/3

Fig. 6 Simulation II: long-time vorticity profile from dynamical simulation.

Fig. 7 Simulation II: statistical equilibrium profile from Monte Carlo calculation.



Chapter 1

Introduction

The study discussed in this thesis originates from M.C. Cross’ suggestion that the
long-time evolution of the two-dimensional fluid might be described by a statistical equi-
librium theory. That notion derives in turn from some numerical calculations by Marcus

(1988) on a model for the Great Red Spot of Jupiter.

We begin by describing the model (Marcus, 1988; see also Ingersoll and Cuong, 1981).
Jupiter for our purposes comprises a two-dimensional annulus, with rigid boundaries. The
winds of Jupiter are realized by applying to the annulus an external potential, which is
equivalent to some combination of a background shear, potential vorticity, and Coriolis
force. The external potential possesses an orientation, which breaks the equivalence of

positive and negative vorticity.

The initial conditions for the calculation are determined completely by the initial
vorticity field. A typical initial vorticity field involves two spots of vorticify of opposite

sign, placed on opposite sides of the annulus.

We may then follow the time evolution of the fluid. The spot of vorticity with
opposite orientation to the external potential breaks down and disperses, whereas the spot
of vorticity with the same orientation as the external potential remains largely intact. At

long times, only the vortex sharing the sense of the external potential persists.
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Marcus claims that the persisting vortex possesses a number of characteristics that
bear qualitative comparison to Jupiter’s Great Red Spot. In particular, the shape and
vorticity profile of the persistent vortex are consistent with those of the Spot. Of course,
the model used in the simulation is idealized; one could, if one wished, include the effects of
the free surface, bottom topography, planetary curvature, etc. Nevertheless, the simulation
suggests that the basic physics of the phenomenon may well be encapsulated by Marcus’

simplified model.

Our goal in the present work is to ask whether we can predict and explain the long-
time evolution of flows such as the one introduced above without resort to dynamics.
There are two reasons for wishing to accomplish such a task. One is simply pragmatic:
dynamical simulations demand extensive computation and incur substantial error at long
times. An independent method of calculating the asymptotic evolution of a flow provides
a check on the dynamical calculation and might plausibly replace it. The other reason
is that when dynamics are unimportant, we may understand the basic physics through

simpler, static considerations.

The treatment we describe here comprises the most naive application of statistical
mechanics to the two-dimensional Euler fluid. The justification for expecting this kind of

approach to work is merely historical.

After we remind the reader of some basic properties of Euler flow in chapter 2, we
argue in chapter 3 that earlier attempts at a comprehensive statistical mechanics for the
two-dimensional inviscid fluid have been unsuccessful. These failures originate primarily
in the mistreatment of the infinite family of conserved quantities of Euler flow. Chapter
4 lays out the computation that needs to be done, in a manner that highlights the role
of the conserved quantities. In chapter 5, we present two different methods for deriving

the mean-field equations that equilibrium configurations of the fluid must satisfy, and we
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prove the “dressed vorticity corollary.” We derive the Lynden-Bell theory of star clusters,
which ante-dates our own statistical mechanics. We discuss the physical content of these

theories in chapter 6.



Chapter 2

Primer on the ideal fluid in two dimensions

In this section we collect a few standard facts about Euler flow in two dimensions,
to which we shall refer repeatedly in the ensuing text. A transparent derivation of the

properties of Euler flow may be found in Chorin and Marsden (1979).

Notation

@(7) denotes the two-dimensional velocity field; w(7) denotes the (scalar) vorticity

field, defined as

w=V X U= 0zuy — Oyu, (2-1)
We label by Q the region containing the fluid; p is the pressure, p the density.
Fuler equation

Following Landau and Lifshitz (1980a) we observe that in a coordinate system co-
moving with an (infinitesimal) fluid element g, the force on the fluid element is given
by

—]4 pd.S-"z—/VpdV (2-2)
de e

so that Newton’s equation reads

pDi/Dt = -Vp (3-3)
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where D /Dt denotes a covariant (convective, material) derivative. In a stationary coordi-

nate system, the covariant derivative may be rewritten to obtain Euler’s equation

)

D
Dt

Vp (2-4)

2|

1
+ (@& ViT=—~
(@-V) P

When we require the density p to be constant, the equation for mass conservation,

dp L
5?+Vpu—-0 (2-5)

entails the incompressibility condition:
V-i=0 (2-6)
which will be taken for granted in the remainder of our work.

Taking the curl of Euler’s equation (2-4) and using the incompressibility condition,

we readily obtain in two dimensions
Dw/Dt = 0w/ +(€-VIw=10 (2-7)
That is, the convective derivative of the vorticity vanishes.

Stream function

The vanishing of V - # in two dimensions entails the existence of a scalar function

(the stream function) (7) such that
=V X 9P = (8%, -:9) (2-8)

and consequently w(7) = —V2y(F).

Conserved quantities
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For any closed path 97(t) moving with the fluid in time ¢, and whose interior 7 is

contained in the fluid, the circulation

1‘=}£ ﬁ-dZ:/ w d*F (2-9)
an(2) n(t)

is conserved by Euler flow. In fact, in two dimensions, given any function f(w) of the

vorticity field, the quantity [ oty F @ (™) d*7 is conserved by the flow:
9 22 22 ot dw | -
- d*7 f(w(F)) = @7 fllw){ = +%-Vw} =0 (2-10)
at n(t) n(t) ot

If we take f(w) = w?, the corresponding integral invariant is called the “enstrophy,” a
g g phy

term apparently originating in Leith (1968).
Boundary conditions

Ordinarily, we shall assume rigid boundaries: that is, % is assumed to be tangent to
the boundary 9Q of a bounded planar region € containing the fluid. When ) possesses n
holes, we may define the quantities I',, to be the circulations around each of these holes.
We observe (Holm et al., 1985) that together w(7) and I'y,...,T',, uniquely determine the

velocity field .



Chapter 3

Review of statistical mechanics of the two-dimensional fluid

Our discussion throughout will be confined to the two-dimensional Newtonian fluid.

The Navier-Stokes equations for an incompressible fluid

p(0E)Ot + @ - Vi) = -Vp+vV3ig
(3-1)
V-i=90

are thought to be a valid description of a viscous fluid in a variety of physical regimes.
We shall not discuss when and why the two-dimensional fluid is a good physical model for
fluids in a three-dimensional world. We refer the reader to the text by Pedlosky (1987)
for a justification of the two-dimensional model. We remark only that a variety of labora-
tory and geophysical flows display essentially two-dimensional behavior, a nearly invariant
prerequisite for which is rotation of the plane containing the fluid along the perpendicu-
lar axis. The well known Taylor-Proudman column (see, e.g., Tritton, 1988) graphically
illustrates this kind of phenomenon in the laboratory; planetary atmospheres provide a
geophysical setting. The elimination of the third dimension entails several consecutive

approximations, and one must maintain careful control of the time and length scales that

one wishes to describe.

Similar attention to time and lengthA scales is needed to justify the additional approx-

imation of discarding the viscous term in the Navier-Stokes equation to derive the Euler
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equations, which in two dimensions take the form (2-7):
dw/it = -1 -Vw
(3-2)
Vii=0
Later on, we shall give an informal argument that the physics of certain flows may permit
us to neglect the effect of viscosity on length scales of interest. For the bulk of our work,

we shall simply assume that the physics is described by the inviscid Euler equations in

two dimensions, (3-2).

Onsager (1949) first attempted the construction of a statistical mechanics for the
two-dimensional fluid. Since subsequent papers refer to this one with hardly an exception,

we discuss the ideas contained in his paper in detail.

Onsager wants to explain the generic occurrence of large isolated vortices in unsteady
flow. He begins by restricting himself to a subset of Euler flows: those that can be described
by a system of point vortices. The point vortex system consists of a linear superposition

of point sources of vorticity:
/dzm(m =" wib(F-7) (3-3)

Writing V2¢(7) = —wod(7 ~ 75) for a single point vortex with charge wo located at 73,
we obtain ¢¥(7) = weG(7,75). Here G(7,75) is the Green’s function for the Laplacian
on the region containing the fluid, and its form depends on the boundary conditions.
Obviously, G(7,75) corresponds to the potential at 7 due to a vortex at 7. For example,
free boundary conditions yield a logarithmic potential G(7,7p = — 3= log (|7 — 7|/ R) where

R is an arbitrary constant with dimensions of length.

The potential of a point vortex is finite at any finite distance from the source. There

exists no a priori bound on how closely two point vortices may approach each other.
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It had been observed much earlier that the equations of motion of a superposition of
N point vortices can be derived from a Hamiltonian (Kirchhoff, 1877). It is precisely this
feature that leads Onsager to restrict himself to the special case of point vortices. Without
a Hamiltonian, it is not obvious how to construct a statistical mechanics; once one has a

Hamiltonian, no choice in that construction remains.

The Hamiltonian is:

1 - -
H= —5 ;wiwjg(r,-, Tj) (3—4)

and the equations of motion are derived by regarding the two components of the position

vector of each vortex as conjugate variables:

dr; -
wi—=V:xXH 3-5
J dt ¢ ( )
Notice that phase space coincides with configuration space. Using Onsager’s notation, we

write the volume of phase space near some configuration:
dQ) = dzydyy ... dendyn (3-6)

If we demand that the fluid be contained in some compact region of space, we see that

J dQ, the total volume of phase space, is finite.

The boundedness of phase space has a peculiar consequence. Ordinarily, we expect
that, as a function of energy, the volume of phase space available to a system, Q(E),
increases exponentially (Landau and Lifshitz, 1980b). But here, the finite phase volume
precludes this alternative, and the possibility exists that the volume of phase space avail-
able to the system could decrease as we increase the energy. Put another way, if we take
the entropy at some system energy to be given by § = log Q(E), then, above some energy
E,,, the quantity dS/dE, which is formally equal to the temperature T, may be negative.

In this regime, the energy is so high that vortices with the same sign cluster together,
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and vortices with opposite signs repel. The equilibrium consists of two isolated clusters of

vortices.

Addition of the usual kinetic momentum term p?/2m to the Hamiltonian (3-4) would
eliminate the negative temperature regime. The total phase volume would no longer be
finite, and the momentum degrees of freedom could accommodate any energy. Microscopic
degrees of freedom for example, are usually described by a Hamiltonian with a kinetic mo-
mentum, (with the excebtion of spin systems) and can not take on negative temperature.
These remarks emphasize a basic feature of Onsager’s theory for macroscopic vortices in
fluids: the fluid system at negative temperature can not be in equilibrium with molecu-
lar degrees of freedom. Negative temperatures are higher than any positive temperature
and a negative temperature system, on being placed in thermal contact with an ordinary

positive temperature heat bath, will dump all its energy into the bath.

While this analysis does encompass the essential physics of the problem, Onsager
remarks that it can not apply quantitatively to many flows of physical interest. Flows such
as those in the model for the Red Spot discussed earlier involve continuous distributions
of vorticity. But how to approximate a continuous distribution of vorticity by means of

point vortices is not obvious, and in fact, generally not possible.

One way to apprehend the difficulty is to look at quantities conserved by Euler flow.
Consider, for example, the integral of any finite power of the vorticity. For a vorticity field
consisting of point sources, these integrals involve powers of delta functions. Yet in typical
physical models the vorticity field has perfectly well-defined moments, to which we ought

to be able to assign any consistent set of values.

A direct approach to the statistical mechanics of a continuous vorticity field is taken

by Lee (1952). In his statistical field theory, the only conserved quantity is the energy.
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Rewriting the Euler equations in Fourier space, he obtains a Liouville theorem:

dw
S0 =0 (3-7)

E I £

implying incompressible flow in the spectrally decomposed phase space. Lee’s derivation
applies in any dimension; we give here an argument valid in two dimensions only. Using

the stream function 1, we write
A7) =i (yy=la)pe™ W)=Y mPyae™ (3-8)
T =

In using the stream function we have incorporated the incompressibility condition of (2-6);

now we Fourier transform the equation of motion in (3-2) to obtain
Op ==Y (§X Bwghn_g (3-9)
g

Differentiating with respect to wg, we find

0w P
G = 2k x Mz g (3-10)
Setting k = m yields our result. The Liouville equation plays an important role in chapter

four, where it determines the measure on our phase space.

At finite temperature, imposing only energy conservation yields an energy spectrum
of the form E(k) « k, which is ultraviolet divergent. Lee imposes an ultraviolet momentum
cutoff to obtain a finite energy. Lee remarks that in two dimensions conservation laws

preclude ergodic behavior, and in consequence he restricts himself to three dimensions.

Following Lee’s work, an analogous problem involving an infinite set of constants of
motion was stated and solved by Lynden-Bell (1967) in the context of stellar dynamics.
As we shall discuss later, his statement of the problem apparently incorporates physics

inappropriate to clusters of stars, and so his solution is of questionable relevance to the
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systems he was trying to understand; however, when his reasoning is applied to the two-
dimensional inviscid fluid, it is exactly correct. It seems that no one was aware of this
parallel until E. Ott pointed out to us the formal similarity of our equilibrium equations

to Lynden-Bell’s, well after our own work was completed.

With this aside to maintain historical continuity, we postpone a detailed explication
of the Lynden-Bell theory, and proceed to describe Kraichnan’s method. Kraichnan (1967)
constructs a statistical mechanics by keeping as his conserved quantities not only the
energy, but also the enstrophy. He truncates the Fourier representation of the Euler
equations to obtain a fruncated dynamics which explicity conserves these quantities, and
for which a Liouville theorem holds in the remaining finite number of spectral variables
(Kraichnan, 1975; Kraichnan and Montgomery, 1980). Since both the energy and the
enstrophy are quadratic in the stream function, this field theory is Gaussian. By the

standard procedure he obtains an equilibrium spectrum of the form:

E(k) = 1/(BK? + o)
(3-11)
Q(k) = k*/(BF® + @)

where o and [ are inverse temperatures conjugate to the energy and the enstrophy re-
spectively. As in the theory conserving exclusively energy, we need a large momentum
cutoff at any finite temperature. For some reason we refer to the theory that conserves

only energy and enstrophy as the energy/enstrophy theory.

Kraichnan justifies the elimination of constants of motion other than the energy and
enstrophy on grounds that the cut off dynamics conserve quadratic constants of motion.
Agreement with point vortex theory is also deduced (we shall show below that this corre-
spondence may only be justified in a very limited regime). The reader will find additional
supporting arguments of an informal nature in an article by Kraichnan (1975). The trun-
cated dynamics, when used properly, is claimed to be faithful to both inviscid and viscous

fluids in statistical equilibrium.
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Within the context of the 1967 theory, the energy/enstrophy theory contains three
parameters: a momentum cutoff, a temperature conjugate to the energy, and a tempera-
ture conjugate to the enstrophy. Each of these quantities is to be finite. If we take the limit
of infinite momentum cutoff with the remaining two parameters finite, we deduce easily

from (3-11) that the energy diverges logaﬂfhmicaﬂy, and the enstrophy quadratically.

A dynamical simulation by Deem and Zabusky (1971) elicited a spurt of publications
in which the predictions of the energy/enstrophy theory are compared to results of dynam-
ical simulation. The comparison is generally quite favorable. We mention two examples.
Fox and Orszag (1973) test by means of numerical simulation an explanation of the Deem
and Zabusky results in terms of the energy/enstrophy theory. They find general agree-
ment with the theory, except for substantial deviations at low and high wavenumbers,
which they attribute either to insufficient relaxation time or to the effect of additional
constants of the motion. The computational technology of fluid simulation has evolved
in the last twenty years, and the extent to which numerical simulation by present stan-
dards would validate these results is unclear. Basdevant and Sadourny (1975) confirm
the energy/enstrophy theory for the truncated dynamics by means of an Arakawa code,
which explicitly conserves energy and enstrophy. These latter authors emphasize that the
energy/enstrophy theory ought only to apply to the truncated dynamics and not to the

full inviscid dynamics.

In all applications of the energy/enstrophy theory to this point the momentum cutoff
is finite. Kraichnan (1975) and Basdevant and Sadourny (1975) point out that by choosing
the following scaling for the energy and enstrophy temperatures one can obtain finite values

for the energy and enstrophy in the limit of infinite momentum cutoff k,,:

B — Tk [2Q
(3-12)
/B — —k§ + k7, exp(—k7, E/Q)
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where kg is an infrared momentum cutoff determined by the finite system size. Note that

this scaling is only possible at negative values of the inverse energy temperature, a.

The need to scale the temperatures as one increases the number of degrees of freedom
also emerges in the point vortex theory. In the mid-seventies a large number of authors
derived and studied mean-field equations for the the equilibrium configuration of a sys-
tem of point vortices (Kida, 1975; Katz and Lynden-Bell, 1978; Lundgren and Pointin,
1977a,1977b; Montgomery et al., 1974, 1979; Ostriker, 1964; Pointin and Lundgren, 1976;
Stodolkiewicz, 1963). The most readable of these papers are those of Lundgren and Pointin
(1977a, 1977b). They derive two limits of the point vortex system as N, the number of
vortices, diverges. The two limits are distinguished by the scaling of the energy with V.
In the “low energy limit,” the energy scales as the number of vortices, whereas in the
“high energy limit,” the energy scales as the square of the number of vortices. For ease of
discussion in what follows, we consider only systems with vanishing total vorticity, except

where otherwise noted.

The low energy limit can apply only at positive temperatures, for reasons that emerge
below, and entails an extensive thermodynamic scaling: for non-trivial results we require
the density to be constant in the limit of large N, with energy proportional to N. This
regime corresponds to the neutral two-dimensional coulomb gas, to which the standard

thermodynamic prescription may be applied.

" The high energy limit obtains at negative temperatures for neutral systems (for non-
neutral systems the high energy limit is also correct at positive temperatures and the
low energy limit is trivial). For the high energy limit to be valid, the area of the system
must be finite in the absence of additional constraints on the phase space, such as angular
momentum (Lundgren and Pointin, 1977a). In the high energy limit, the area of the system

remains constant and the density of vortices diverges as N, with energy proportional to
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N2. Furthermore, because the high energy limit is not extensive, the temperature must be
scaled as 1/N to yield a non-trivial equilibrium. One can derive a mean-field equation for

the spatial distribution of vorticity as N — oo:
w(7) = =9 = {exp ~9/ T} | &7 exp—y/T) (3-13)
Q

where T denotes the scaled temperature. This equation has been deduced by a number of
authors, using a variety of approximations. Lundgren and Pointin (1977b) claim to derive
it rigorously, but a truncation of the frequency spectrum at the very beginning of their
argument depends on an unproven assumption that two particular limits commute. On

the other hand, we expect that (3-13) is nevertheless valid.

Using numerical methods, many authors went on to compare the long-time dynamics
of point vortices with the predictions of this statistical mechanical theory of point vortices.
They obtain good agreement between the long-time spatial distribution of vortices in
dynamical simulations and the equilibrium vortex density profiles calculated from equation
(3-13). We draw attention in particular to Kida (1975), Lundgren and Pointin (1976,
1977a), and Aref and Siggia (1980). The latter authors study long-time dynamics of point

vortices in a shear layer.

In calculating the charge density response function in the low energy limit, Lundgren
and Pointin (1977b) use an approximation introduced by Edwards (1957) in a calculation of
the properties of a neutral plasma at (finite) positive temperature. Edwards approximates
the Jacobian in a change of va,riable;q from particle to collective coordinates, and is emulated
by Edwards and Taylor (1974), Seyler et al. (1974, 1975, 1976), Taylor et al. (1971, 1972,
1973) and others in treatments of the 2-d plasma. The approximation, which they call
the random phase approximation [RPA], is equivalent to that of Pines and Bohm (1952).

RPA is a well-understood perturbative tool which has been used in a variety of physical
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contexts (Kadanoff and Baym, 1962). In the particular case of particles with a Coulomb
interaction, RPA is only valid in a screened phase, where the number of particles within
a Debye screening length, Ap = (2re?n/T)~3, of one another is large (e the charge of
a particle; n the particle density). Under these conditions, charge fluctuations around
the mean charge density are small, justifying a perturbative treatment. A linear-response

calculation of the density-density correlation yields (Pines and Bohm, 1952)
loxl? = nk?/(K* + D) (3-14)

which is to be compared to the enstrophy spectrum of the Kraichnan theory, equation (3-
11). The similarity of equations (3-11) and (3-14) has led several authors to conclude that
the 2-d Coulomb gas possesses the same energy spectrum as the energy-enstrophy theory
of the Euler fluid (Benfatto et al., 1987; Cook and Taylor, 1972; Kraichnan, 1975; the low
energy limit of Pointin and Lundgren 1976; and Seyler, 1976); however, this identification
can in fact be made only in the limited regime in which RPA is applicable. In particular,
whenever the fluid undergoes macroscopic charge separation in equilibrium, RPA breaks
down, and a non-perturbative calculation is required. In the limit of infinite charge density,
the energy spectrum obtained from (3-11) applies only to a homogeneous vorticity field

with no structure on any finite length scale.

We next discuss two mathematical papers that describe rigorous results on the sta-
tistical mechanics of point vortices and Euler flow. Fréhlich and Ruelle (1982) prove
that extensive negative temperature states do not exist in the point vortex gas; Benfatto
et al. (1987) claim that the statistical mechanics of an Euler fluid is given by the en-
ergy/enstrophy theory. We will argue that each of these results, while correct, applies
only in regimes with trivial structure at finite length scales. In both cases, their conclu-

sions depend on using a temperature that is not appropriately scaled with the number
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of degrees of freedom. Their arguments and conclusions can be completely understood

within the context of the earlier studies we have sketched above.

Frohlich and Ruelle treat a neutral collection of point vortices on a torus. They
wish to prove that there can be no negative temperatures in the thermodynamic limit of
Onsager’s point vortex gas. By thermodynamic limit, they mean the limit in which the
volume of the fluid diverges, while the density and energy per vortex cbnverge to finite
values; the temperature, of coursé, remains finite. Whereas Onsager argues that for a finite
collection of vortices there exists an energy at which dS/dE changes sign from positive to
negative, Frohlich and Ruelle show that this energy itself diverges as the number of point
vortices goes to infinity. Consequently, a regime where S decreases as a function of F is

unattainable.

This outcome may be attributed in a simple way to screening. First, let us observe
with Frohlich and Ruelle that the absence of a scale in the logarithmic potential permits
us to rescale the volume of the fluid to a finite value as N — oo. So we may just as well
talk about a limit in which the density diverges, but the energy per vortex remains finite.
We understand the physics of this system very well at positive temperatures: charge fluc-
tuations will be screened, and the long-range potential becomes effectively short-range. At
infinite charge density, the screening length vanishes and the interaction becomes irrele-
vant. Consequently, the thermodynamic limit yields a vanishing mean charge density and
trivial correlations. In fact the sign of the temperature makes no difference here: there
is simply not enough energy per particle to yield charge fluctuations on length scales of

order of the system size.

To see this, think for a moment of N- positive charges contained in a domain 2 and
distributed uniformly in a blob of finite radius. Now, multiply the number of charges

by some factor 7, and ask what would be the energy of a blob with precisely the same
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relative charge distribution. It is not difficult to see that the long range of the logarithmic
interaction entails that the energy scales by a factor 7%. If we were not to rescale the energy,
then the n/N charges would distribute themselves more evenly over (: the normalized
amplitude of the blob would decrease. In any mean-field description, the normalized
amplitude of a charge inhomogeneity will remain constant only if the energy is scaled by

the square of the number of charges.

On the other hand, if we scale the energy in the manner suggested by the high en-
ergy limit, that is as N?, then a new feature emerges. While at positive temperatures
screening dominates since opposite signs attract, at negative temperatures where opposite
signs repel, the screening of the long-range potential is suppressed. Macroscopic charge
inhomogeneities persist (and are in fact unavoidable) in the limit of large N. As discussed
carlier, the scaling of the temperature as 1/N is corequisite to the scaling of energy with
N2, Frohlich and Ruelle eliminate any possibility for negative temperatures and macro-
scopic charge inhomogeneities in the thermodynamic limit by their most basic assumption

of the scaling that constitutes a thermodynamic limit.

Benfatto et al. also predicate their argument on an unnecessary restriction of the
scalings they permit in the thermodynamic limit. These authors once again treat neutral
flow on a torus, represented by N blobs of vorticity with radius ¢ and charge +,/0. Their
Hamiltonian describes a gas of particles interacting with a logarithmic potential which is
smoothed over a length of order ¢, so as to remove the short-distance logarithmic diver-
gence. They construct a canonical partition function with inverse temperature o, where a
is a finite quantity that is not scaled with the number of particles. As N — co at constant
V, the radius and charge squared per vortex scale as ¢ = N~% and o = (27)?/8N respec-

tively. The quantity § must be chosen correctly from the interval (0,3/2ra). Benfatto



19

et al.’s principal result is that for large N, this system may be described by the en-

ergy/enstrophy partition function, with energy temperature a and enstrophy temperature

B.

Benfatto et al. assume that both a and 5 possess finite and positive values. For o fi-
nite, we expect the vortices to be uncorrelated in the infinite density limit. For example, in
the case of periodic boundary conditions, it has been shown by Lundgren and Pointin that
the uncorrelated vortices will have an energy (contributed by the image charges) diverging
as log V, where we have corrected for the scaling of the charge used by Benfatto et al. As
we have observed earlier, the energy/enstrophy partition function yields a logarithmically

diverging energy for this parameter range.

In summary, Benfatto et al. have shown that the low energy limit coincides with
the energy/enstrophy theory for a neutral vortex gas at positive temperature in the dense
limit. This regime is homogeneous, and has no interesting structure at scales on order
of system size. Its behavior on scales large compared to the screening length should be
given simply by a theory that incorporates the energy and particle number as conserved
quantities. For a gas of +1 charges, the sum square charge is sufficient to determine
the latter. Higher order couplings are expected to be irrelevant on these scales. Neither
Frohlich and Ruelle nor Benfatto et al. have anything to say about regimes in which the

fluid has non-trivial structure on length scales larger than the screening length.

We now assume that the proper way to use these stati\stical methods is to take the
limit of an infinite number of degrees of freedom, and scale the temperature(s) in such a
way as to extract the desired energy (and enstrophy). Following Carnevale and Frederiksen
(1987) we review what is entailed by this procedure. As observed above, we can choose
temperatures @ and 3 so that the energy/enstrophy theory yields any consistent total

energy F and enstrophy Q. Values of  are in fact constrained by a choice of value for E.
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An elementary variational argument reveals that the minimum value of Q corresponds to

Qmin(E) = ko E, where |ko| is the system’s smallest wavenumber.

A body of literature investigates the properties of flows possessing the minimum
value of  consistent with a given E. The rationale is a “minimum enstrophy princi-
ple” based on crude arguments about the action of viscosity (Bretherton and Haidvogel,
1976). We shall not discuss “minimum enstrophy vortices” (Leith, 1984) in any detail
here; however, Carnevale and Frederiksen point out that these same flows emerge from
the energy/enstrophy theory. Equation (3-11) determines the distribution of energy and
enstrophy among the Fourier modes. In the limit described by equation (3-12), the dis-
tribution has a very simple form: all the energy resides in the smallest wavenumber ky;
the enstrophy in the smallest wavenumber is exactly Qmin(E) = ko’ E; whatever enstro-
phy is left over sits at infinite wavenumber. This partitioning of the enstrophy carries
a sweeping implication: the energy is sufficient to determine the macroscopic flow com-
pletely. The enstrophy exceeding Qmin(£) disappears completely from the flow at infinite
time, since it drains to infinitesimal spatial scales, at infinite wavenumber. Consequently,
all long-time flows possessing the same energy must be identical. The dependence of the

energy /enstrophy theory on two parameters is illusory.

There is nothing unsound about a one parameter theory; we shall see that the one
parameter theory, which we derive using our formalism at the end of chapter five, comprises
a crude approximation to the full statistical mechanics of the two-dimensional inviscid

fluid.

We have not discussed several relevant issues, for the details of which we refer the
reader to the literature: (1) Dynamical properties of point vortices. (2) Applications of
statistical mechanics to geophysical flows. We expect our work to supersede much of this

literature. (3) Turbulence. We do not concede the relevance of equilibrium statistical
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mechanics to turbulent cascades; however, following Onsager, we do hope that statistical
mechanics may yield a description of turbulent low on length scales of order of the system
size. (4) Dynamical simulation of two-dimensional fluids. A thorough understanding of
numerical computation of inviscid fAluid flow, especially with regard to its faithfulness to
the conservation laws, may be necessary in order to generate simulations that confirm the

predictions of statistical mechanics.
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Chapter 4

Statistical mechanics

Qur construction of a statistical mechanical formalism for the two-dimensional in-
viscid fluid consists of little more than the “cookbook” application of completely standard

ideas from statistical thermodynamics. Landau and Lifschitz (1980b) review these ideas.

In short, we calculate the expectation value of a quantity ¢ by the rule: average @
over all regions of phase space sharing given fized values of the conserved quantities. Un-
derlying this rule is the basic assumption of statistical mechanics, the ergodic hypothesis,
which postulates that our averaging assigns to each element of phase space an identical

weight.
We dissect this rule into a few discrete steps:

(1) Define phase space variables so that the dynamics preserves arbitrary phase
space volumes: phase space flow must be incompressible. Since the ergodic hypothesis
ascribes weights in proportion to phase space volume, the phase space flow preserves
relative probabilities (weights) in the chosen variables. Equivalently, we need to choose

variables for which a Liouville theorem holds.

(2) Determine those functions of the phase variables C which are conserved by the

dynamics. For a typical particle Hamiltonian, the only such quantities are energy and
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total density. Anything we wish to calculate will be parameterized by these quantities, so

we shall fix them to particular values, C.

(3) Given a quantity ¢ whose expectation in statistical equilibrium you want, cal-
culate its average over all of the phase space in which the conserved quantities take their
chosen values. In this manner, we arrive at (Q)s, the expectation value of @ in statistical

equilibrium.

The recipe we have given is a microcanonical formulation. We might just as well
employ a canonical or grand canonical approach; in the case of interest here it is simplest
to think within a microcanonical framework, but one obtains identical results, no matter
which of the three ensembles one chooses. For purposes of calculation, we shall find the

canonical point of view most useful.

Statistical mechanics is most often applied to dynamics that can be derived, at least
in some limit, from a Hamiltonian. The reason is that (canonical) Hamiltonian dynamics
manifestly preserves phase space volumes. The Liouville theorem follows trivially, almost

tautologically, from the Hamiltonian equations of motion:

o oG _ 0 0H 9 OH _ W)
Oz; Op; Oz;0p; Op;Ox;

In a closed box, the usual many-particle Hamiltonian H(27,p1 ... 2%, pN) with par-
ticle coordinates #; and momenta p; possesses one conserved quantity, the energy, which
coincides with the scalar value of the (manifestly) conserved quantity H. (We do not allow
particles to enter or leave the box). Given a value of the energy Ep, we may calculate

the expectation value of a quantity Q(#3,p1...2N,pN) by integrating over all values of

Z;,Pi,t = 1...N on the manifold determined by the constraint Ey = H(21,p1...2ZN,PN)-

We follow an analogous recipe for the two-dimensional inviscid fluid:
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1) We choose the phase variables w(F), for which a Liouville theorem holds. Our

phase space consists of scalar fields defined on the region containing the fluid, Q.

2) We set the values of quantities conserved by Euler flow. These quantities comprise
the energy, and some infinite set of scalars which determines the vorticity distribution. We

are now restricted to the scalar fields on 2 which share the fixed values for these quantities.

3) We integrate over all fields on the manifold determined by the constraints given

in 2).

The main hurdle we face is in setting up the calculation of 3) in such a way that we

can carry it out. Before we do so, we shall discuss steps 1) and 2) in greater detail.
Hamiltonian formulation of inviscid fluid flow

Just as in the discrete particle case, a Hamiltonian formalism may be used to set
up our approach to statistical mechanics. In fact, any explicit use of the Hamiltonian
properties for our system seems arguably superfluous. Lynden-Bell (1967) sets up the
problem for the collisionless Boltzmann equation without any explicit recognition that his
equations of motion could be recast in Hamiltonian form. The feature of the equations
of motion, which in both cases leads immediately to statistical mechanics, is that they
give rise to a phase space flow that is incompressible. That is, one may derive directly
from the equations of motion a Liouville theorem. We don’t mean to suggest that the
Hamiltonian, as an energy, doesn’t play an important role in the eventual result. For
example, the Liouville theorem for particle Hamiltonians describes incompressible phase
space flow, yet we would not bother to look at the statistical mechanics of phase space
flow, since there the advected scalar, in contrast to the vorticity field in two-dimensional

fluid flow, is passive.
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On the other hand, the Hamiltonian nature of the system deserves some emphasis
for two reasons: first, it underlies the well-known, indeed classic, Hamiltonian dynamics of
point vortices, in which Onsager’s statistical mechanics originated; second, it falls under
the rubric of the “non-canonical Hamiltonian formalism” into which a variety of physical
systems have been collected (see, e.g., Holm et al., 1985), each of which is amenable to the
statistical mechanical program which we are constructing in this work. These systems,
among which are examples of classical and relativistic dynamics in both two and three
space dimensions, each possess at least one infinite family of conservation laws. On these
grounds we have chosen merely to outline very briefly the basic features of the Hamiltonian
formalism for ideal fluid mechanics in two dimensions. A substantial body of literature

exists to which you may refer for details.

Underlying the Hamiltonian description is a symmetry of the physics: the equations
of motion in the form (2-3) are invariant under volume-preserving coordinate reparame-
terizations. This invariance, a kind of Newtonian covariance principle known also as “par-
ticle relabelling symmetry,” can be viewed as a gauge symmetry, and through Noether’s
theorem gives rise to the infinite set of conservation laws of two-dimensional Euler flow
(Salmon, 1982). These same coordinate transformations, which constitute the group of
volume-preserving diffeomorphisms, Diffy-(2), form the configuration space for fluid mo-
tions. Starting from an arbitrary reference coordinate frame, an element of Diffy ()
carries particles in the reference frame to a new configuration which may be labeled by
this group element. Any motion of the fluid is described by the action of a group element
on a configuration; Arnol’d (1978) describes a variational method to derive the motion of

the fluid, which of course must correspond to the Euler equations.

Rather than discuss Arnol’d’s construction, we shall follow the (equivalent) route

of Marsden and co-workers (see, e.g., Holm et al., 1985). (We ignore any technicalities
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involving boundary conditions, etc.) For arbitrary functions F and G of w we define a

Poisson bracket:

oF 6G’} (4-2)
Ty

(F,G}w) = /der‘"w(f'){z-(;,?;

where {f,g}zy = (02f) (8yg) — (0:9) (partialy f), the usual (canonical) Poisson bracket in
the variables z and y. The Hamiltonian is the kinetic energy of the fluid, H = [d?F @% =

— [ d*7 yw, the Poisson bracket of which we take with the field w, as usual:
0w/t = {w, H(w)} (4-3)
which by way of an easy calculation yields Euler’s equations.

In particular, for. any integral of the form Cy = [ d?7 f(w), the Poisson bracket of
Cy with any functional of w yields zero, implying that these integrals would be conserved
quantities for any Hamiltonian system possessing this Poisson bracket. Such quantities
are labeled “distinguished functionals,” by Olver (1986), who argues that because of their
trivial character with respect to the Poisson bracket, they do-not suffice to make the

Hamiltonian system integrable.

Not surprisingly, the Hamiltonian description of point vortices can be viewed as a
special case of this more general formulation, as discussed by Marsden and Weinstein

(1983).
Liouville theorem

Because w is evidently not a canonical coordinate, we have no conjugate variable
with which to write a Liouville equation in the form (4-1). Nevertheless, as we proved in
the historical introduction, we are easily able to write a Liouville equation in the Fourier
components of w. Equation (3-7) demonstrates precisely the incompressibility of phase

flow in the space of wis. Now we observe that the transformation to real space variables
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is trivial: it is merely a linear superposition of wys, with coefficients that do not depend
on the vorticity field in any way. Consequently, we shall obtain a factor in the partition
function, corresponding to the determinant of the transformation between real space and
Fourier variables. Since the Fourier transform is an orthogonal transformation, we may

ignore the trivial constant which we obtain from this determinant.

The conserved quantities make no difference to the particular volume form we use
in the phase space, provided that we restrict ourselves in the functional integration to the
manifold determined by these same constraints. For example, a microcanonical partition

function for a particle Hamiltonian would entail the integral
2(8) = [ ] dpidas 8(8 (53,5 ., 530) ~ ) (4-5)
i

with phase volume form [], dp;dg;. This is the measure on phase space conserved by the
Liouville flow, not the measure on the surface to which the single conserved quantity, the
Hamiltonian, constrains the integration. This surface may be complicated, depending on
the derivative of H perpendicular to the energy hypersurface. In a parallel manner, we
expect a microcanonical partition function for the Euler equatidns to take the form (up
to some overall factor accounting for the change of variables from real space to Fourier
space)

2(8) = [ TLdws 804@) - BY[J6(Ci(0) - G) (4-6)

where [] ; denotes a product over all independent conserved functions of the vorticity.

It is this partition function (4-6), whose properties we need to compute. We carry

out the necessary computations, on the canonical form of (4-6), in the next chapter.
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Chapter 5

Derivation of the mean-field equations

In this section we present two derivations of the mean-field equations. Very similar
to that of Lynden-Bell (1967), the first derivation (Miller, 1990) is combinatorial and
relies on the weakness of the divergence in the Coulomb-type interaction between vortices
at small distances. On very short length scales the vortices may be treated as an ideal
gas of hard-core particles, whereas on large length scales the interaction energetics are
determined entirely by the averaged Coulomb potential of small patches over which the
ideal gas degrees of freedom have been integrated out. This separation of length scales is

the key to the exactness of mean-field theory.

A second and more formal derivation, due to P.B. Weichman and presumably equiv-
alent to the first, may be comforting to those familiar with the standard model mappings
and manipulations used in critical phenomena. The formal device is the Kac-Hubbard-
Stratanovitch transformation which allows one to convert the long-range Coulomb interac-
tion into a purely local square-gradient interaction. The exactness of mean-field theory is a
consequence of the standard wisdom in critical phenomena that interactions of sufficiently
long range give rise to mean-field critical behavior. More precisely, if the interaction in d
dimensions decays less rapidly than r~3%/2) mean-field critical behavior will result. The
Coulomb interaction 72~%, (log(r) in d = 2), clearly satisfies this condition, and decays
so slowly (in fact growing in d = 2) that mean-field theory holds over the entire phase

diagram.
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Both derivations generalize to higher-dimensional models, Lynden-Bell’s being an
example. As will emerge later, Debye-Hiickel theory of the three-dimensional plasma is a
special case of our theory, the limit of a dense point charge distribution (we are indebted

to Daniel Arovas for showing us this relation.)
5.1 Definitions and conservation laws

To begin with, we write the kinetic energy of the Euler fluid in terms of the vorticity

field:
H=1/2 [ EFEOr = -1z [ @7 sV

=ug/fi/ffwﬂmﬁfwﬁﬁ

where (7) is the (scalar) stream function, @(F) = V x () is the velocity field, and

(5-1)

w(7) = V x @(F) = —V2¢(F) is the vorticity field. The Green’s function G(7, ) satisfies
-V2G(7,7) = 6(F — #), is symmetric in its arguments, and in each variable satisfies
the same boundary conditions that 1(7) does. For free boundary conditions G(7,7) =
——51; log Ifﬁfil, where Ry is a reference separation. For an arbitrary vorticity configuration,

we have

W(F) = / &7 G(F, (7 (5-2)

the boundary conditions on G(7, ) ensuring the corresponding ones on (7). For periodic
boundary conditions, we have to be more careful. We require a uniform, compensating
background vorticity in order to define G(7, 7). Equivalently, we demand that the system
be neutral: [ d*7 w(7) = 0. The equation for G(7, ) becomes —V2G(F¥,7) = §(F~7)— &.
The % term ensures that the left-hand side integrates to zero, and removes the zeroth order

Fourier component from the §-function. Neutrality ensures that (5-2) still holds.

Next we discuss the conserved quantities of Euler flow. Incompressibility, V - & = 0,
has been incorporated through the existence of the stream function. The energy was

already displayed in equation (5-1). We suppose the fluid confined to a bounded domain,
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so that the net momentum vanishes. When the region possesses azimuthal symmetry,
the angular momentum will be conserved. Only the component perpendicular to the flow

plane is non-vanishing, and is given by
L= / &2 7 x ()
Q

(5-3)
- 27 p20(F r2g@(7) - i
1/2/nd (M+1/2 /an @

Angular momentum will be conserved only if the domain has cylindrical symmetry.
In that case the last term has the value R*I'/2 where R is the radius of the system, and
F=[_gi- df = [ d*F w(F) is the circulation, which is also a conserved quantity, as we
show below. For an annulus, with inner radius » = R; and outer radius r = R,, things are a
bit more complicated. The last term becomes RgI’o—R%I‘,-, and the difference AT =T',—-T;
arises from a static source of vorticity located inside » = R;, which enforces the boundary
conditions at the inner radius. Irrespective of angular momentum considerations, the

circulation around any impenetrable boundary is a conserved quantity.

One may also consider a boundary that comoves with the fluid, locally adjusting
its shape with the flow so that no fluid breaches it. Incompressibility entails that any
such boundary encloses a constant area. It follows from the vanishing of the convective
derivative of the vorticity, Dw/Dt = 0, that the circulation around the moving boundary is
also constant in time, leading to an infinite set of conservation laws. The most convenient
way to parameterize these conservation laws is, for each real number o, to define the
quantity 2,, the region of fluid on which w < ¢. The area of this region is conserved by

the flow, and the normalized area

27-.' :
G(0) = V@)V = [ 5F 1l - w(P) (5-4)
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is a constant of motion. Here 7(o) is the step function: n(c) = 1 for ¢ > 0, and n(c) = 0

for ¢ < 0. Perhaps more convenient is the derivative

25
ooy =22 = [ L] 5o ~w(m) (5-5)

We may interpret g(o)do as the fractional area on which ¢ < w < o + do.

Now the question arises: does the single variable o suffice to parameterize all relevant
conservation laws? At first glance, it might seem that a single variable is inadequate. Asis
well-known, a region Q¢ which is connected at time 0 remains connected for all time (see,
e.g., Arnold (1978)). In principle, two distinct blobs of vorticity cannot evolve into a single
blob, or vice versa, even though we can easily envision cases where both configurations
possess the same function G(o). Loosely speaking, a full set of conservation laws ought
to specify the number of distinct disconnected domains into which each set {w(¥) = o}
is divided, the topologies of these domains (simply connected, annular, figure eight, etc.),
and the fractional areas of the domains, which are determined by g(o) and also known as

“area integrals.” The flow will preserve each of these properties.

It should be observed that conservation of connectivity differs from conservation of
area integrals in a basic way. Up to sets of measure zero, the topological constraints do
not preclude the vorticity field from taking any particular spatial configuration we wish
to choose. That is, the set of configurations accessible to the topologically constrained
fluid is dense in the set of configurations available to the unconstrained fluid. A ring of
vorticity can evolve into two widely separated blobs, provided the topology is preserved by
a filament of vorticity. Since we generally confine ourselves in this discussion to vorticity
fields with a finite maximum vorticity, a fine thread of vorticity can contribute very little
to the dynamics, especially if the dynamics are in fact dominated by structures on much

larger scales. In contrast, the area integrals do affect the accessible vorticity configurations,
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essentially by rendering the vorticity field itself incompressible. When we alter the value
of an area integral, we find that new vorticity fields arise which cannot necessarily be
duplicated by the action of any volume-preserving diffeomorphism on the original flow.
Of course, through this alteration vorticity fields also arise which can be duplicated by an
area-preserving transform. Our statistical average will range over all accessible vorticity
fields, subject to the conservation laws. Consequently, we neglect the topological laws,
which entail no restriction on the vorticity field, but we take into account explicitly the

area integrals to the extent that they in fact constrain the vorticity field.

This basic assumption of our work can be justified by several lines of physical ar-
gument. (1) We are interested exclusively in long-time properties of the flow. In the
infinite-time limit the fluid will be kneaded on all scales: infinitely folded and stretched.
A single connected blob of vorticity can give birth to two (apparently) separated blobs,
provided that the two blobs are in fact joined by a thread of vorticity of infinitesimal width.
The finite maximum of the vorticity suggests that the thread can have no dynamical ef-
fect. (2) Topological conservation laws of this type exist in dynamical systems without
constraining ergodicity. For example, phase space flow for any Hamiltonian system may be
viewed as flow of an incompressible fluid of probability density (Reichl, 1980). The volume
of any closed hypersurface in phase space is preserved by the flow, although its shape may
change. Nevertheless, phase space flows can be mizing: the average of the probability
density becomes uniform in phase space. The topology of the particular closed hypersur-
face does not matter. Mixing can be thought of as a source of macroscopic irreversibility
(Reichl, 1980) is accompanied by a loss of information in the evolution from microscopic to
coarse-grained vorticity distribution, which we discuss later. (3) Point vortez systems are
subject to these same topological constraints. For point vortex systems the area integrals
are singular, and their only effect is to set the relative numbers of vortices carrying given

charges. The area integrals no longer prevent adjacent charges from approaching each
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other arbitrarily closely, so that the point vortex gas is compressible; nevertheless, point
vortices yield a divergence-free velocity field, and any curves we draw in the fluid must
maintain their connectivities. But the ergodicity of a system of point vortices has been
amply demonstrated by a number of authors (Kida, 1975; Lundgren and Pointin, 1976,
1977a; Aref and Siggia, 1981). These authors find that dynamical simulation of systems of
point vortices confirms the predictions of statistical equilibrium theory. Kraichnan (1967)

has also argued that the topological constraints have no effect on the flow at long times.

In contrast to conservation of connectivity, the conservation of g(¢) affects the fluid
motion in a fundamental way. The infinite folding and stretching of the fluid at long
times leads to the apparent non-conservation of g(o); nevertheless, the equilibria depend
quantitatively on the g(o) from which we started. We shall find that in general the
initial and infinite time g(o) are not in one-to-one correspondence, as demonstrated by
the “dressed vorticity corollary,” which we discuss later, and their relation to one another

is subtle.
5.2 Mean-field equations: combinatorial derivation

With the above discussion in mind, we proceed to derive the equilibrium statistics
under the assumption that, at most, H, L, and g(o) need to be explicitly accounted
for. For counting purposes we discretize space into a lattice with spacing a, and perform
calculations with fixed a. We shall eventually take the limit @ — 0. Convergence is more or
less ensured by the softness of the Coulomb interaction at short distances. More explicitly,

we define the coarse-grained vorticity field
d’7 ,
w= [ G (5-6)

where boz; denotes the lattice square centered at 7;. The lattice clearly breaks (local)

Galilean invariance, so an associated discrete dynamics can probably not be realized. We



34
are investigating discretizations that preserve Galilean invariance, but we expect them to
yield the same equilibrium statistics. The discrete static energy is perfectly well-defined:
Ly
H, = 2% Zgijwiwj (5-7)
i#]
The matrix Gi; is the inverse of the discrete Laplacian:

= D (Gismi = Gii) = bij (5-8)

n.n. ¥
We need to choose a scale Rg which sets the value of Gpo. A standard choice is to take
Ry x a, which corresponds to Goo = 0, but we shall later require that By be of order
system size, independent of @ as a — 0 (see the discussion following (5-46)). Appropriate

boundary conditions should be imposed.

The canonical statistical configuration average is also well-defined and consists of a
sum over all permutations of the N = V/a? boxes, in which we regard boxes possessing the
same vorticity w as indistinguishable). The permutations are weighted by the Gibbs factor
e~PaMa where 8, = 1/T, sets the average energy. We shall see later that T, must scale
with a. This prescription obviously respects conservation of the function g(o) = N, /N,

which merely counts N,, the number of squares with vorticity o.

In order to carry out the configuration sum, we take advantage of the separation of
scales alluded to earlier. We need to alter the discretization slightly: we discretize the
field w(7) on a finer scale than the matrix G(7,7'). In other words, we satisfy (5-8), but

allow the indices 7,j to run over a lattice with spacing £>>a. We define

1
Heo = 504 Z GiiWiawjp (5-9)
als
where the Greek indices run over the (£/a)? a-cells within each {-cell, which is labeled by

Latin indices. In what follows we shall consider the limit ¢ — 0 for fixed £, then take
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£ — 0 in the end. Since G;; is well-behaved for small |i — j|, this procedure should yield

the correct continuum limit, so long as the bulk correlations are much larger than £.

Equation (5-9) is constructed in such a way that permutations of the ws within a
given f-cell do not affect the energy. We may perform the sum over this restricted set of
permutations explicitly. In order to control the limiting procedure properly, the allowed
values of the vorticity must be discretized as well. A convenient way to do this is to
partition the range [0,1] of G(o) into py uniform intervals of width A, = 1/p, which
will vanish when £ — 0. For small A, we have partitioned the o-axis into intervals
or < 0 < 0+ Aok, where G(ok) = kAy, and g(or)Ao, = Ay with k= 0,1...p,. Strictly
speaking we must assume here that g(o) has compact support; otherwise Aoy and Agy,
could be infinite (i.e., G™}(0) = —oo and/or G7}(1) = +00). I g(c) decays to zero
sufficiently rapidly, we could relax this condition, and allow the support of g(o) to diverge
at the same time that £ — 0. We shall have more to say about what happens when g(o)

does not decay sufficiently rapidly later - this condition obtains for point vortices.

We now introduce the following notation. Let N = V/a®? be the number of a-cells
and M = V/£% = N/n be the number of {-cells. Let v;(ox) be the number of a-cells in
£-cell ¢ with vorticity ok, and let vT(0y) = 3, vi(0ox) be the total number of a-cells with

vorticity ox. Note that 3, vi(ox) = n, 3, ¥T(0kx) = N and that
VT(O'k)/N = Ag ~ g'(o‘k)Aak (5—'10)

The last inequality holds generally, even when the intervals A, are not independent of k.

The total vorticity in £-cell 7 is

_ 1 1
W; = ;; Xk: O'kl/,'(O'k) = ; Za:w,'a (5‘-11)
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The energy (5-9) remains constant so long as the @; are fixed throughout. We now examine
the combinatorial factor that results from distributing vorticity in all possible ways for

given values of {vi(ok)}. This factor is given by:

Wi{vi(ow)} = H T (5-12)

vi (Uk)'

which represents the number of ways of distributing each v;(o,) among the n a-cells in

£-cell ©. The total partition function is
2(g] = & [Wo{wi(or ) e Pe Moo 1i(e0)}] (5-13)

where the trace is over all distinct ways of assigning the {vi(ox)} with fixed {vT(o})}

given by (5-10).

We must be careful to normalize the trace correctly. The Liouville theorem implies
that the correct configuration sum should have uniform measure in the space of fields w(7),

or, on a lattice, in the space of the w;,. Before discretizing g(o), the trace is defined by

frlwia} = H /

where gg is a reference vorticity needed to make Z dimensionless. Upon discretizing g(o)

5-14
-c0 0 ( )

this becomes

wie < T3 (22) =TT 1 (22) ™ 519

o k=1 1,0 Wia

where the sum is now over the discrete values w;, € {0k }%_,. It is understood that appro-
priate §-functions should be introduced in (5-14) and (5-15) to preserve the conservation

laws. In (5-15) they take the form

A(V,g) = HJVT(U’GLZ.- I/.'(ak) H 6,”’2)‘ U.‘(Uk) (5'—16)
k i
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where we remind you that v;(ox) = 2o 0wia,0n- Our final expression for the partition

function then becomes

P v (ox)
2(g) = tr @[] (%) Welvi(ox)}A(w, g)e= "] (5-17)
k

in which the trace is now a free sum over all 0 < vi(or) < n. It is easy to check that when
H =0, (5-17) yields the expected hard-core ideal gas result

N!
Melvr(ont (42) ™)

Z(g,H=0)= (5-18)

Using Stirling’s formula m! ~ v2rm(m/e)™, which is valid for large m, we may further

evaluate (5-17). Define the £-scale entropy by

vT(or)
Se = log[l;I (%‘:—") We{vi(ox)}] (5-19)

We obtain
Aa‘k
Se = or)lo ——)+Nlo n
i Ek:VT( k) g( P g(n)

— > vi(ox)loglvi(a)] + Oflog(V)]
i,k

(5-20)

On defining n;(ox)Aok = v;(ok)/n, and dropping terms of Ollog(N)], (5-20) becomes

A
Sy =—N Z—% ni(ox)loglgoni(ox)]
ik (5~-21)

— —N/dzi-‘/da n(7, o) log[gon(F,0)], as n — oo

Similarly, the logarithm of equation (5-18) has the continuum limit
S(H=0)— —N / do g(o)loglaeg(e)] (5-22)

where we have used equation (5-10). The field n(7, )= [ %’? 6(0 — w(7) , which
£ cell
at T

represents the fine-grained number density of vorticity o at 7, obeys the two constraints

{ [do n(Fo)=1 incompressibility (5-23)

f # n(¥,0) = g(o) conservation laws
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The coarse-grained vorticity at 7 is
o(7) = / do on(F, o) (5-24)
so that the Hamiltonian reads
H— %/dzf’/dzf’/da/do’ on(7,0) o'n(7,0') G(7,7), (5-25)

as n — o0o. We now make the key observation which leads to the scaling of the temperature
with @, and to mean-field theory: the coarse-grained entropy S, diverges as VN = V?2/q?
and is extensive relative to a in the sense that it is proportional to the number of a-
lattice sites. Extensivity ordinarily refers to scaling with the volume V' = V(Q2), which is
independent of a. The energy (5-25) is finite as a — 0, scaling only with V(§2), but as
we shall see shortly, not linearly. Clearly, if 3, is independent of a in (5-13), the entropy
will completely dominate the energy, and (5-22) will ensue for any H. In order to have
competition between energy and entropy, both terms must be of the same order. This

condition entails the scaling

B, =f/d® = T, = Td® (5-25)

where 3 remains fixed as a — 0. The combination BaHe,a then scales as V?/a?, where we

must now address the value of the exponent p.
5.3 Negative temperatures

The neutral lattice Coulomb gas at positive temperature Ty, described by the

Hamiltonian H, in (5-7), but without the a* prefactor,
1
Heou = 5 ; Gijwiwj; Zwi =0, (5—26)

is well understood. The average energy scales linearly with N, the number of lattice

sites. The low-temperature phase consists of tightly bound, oppositely charged dipole
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pairs (we consider the two-species case w; = ¢ or 0 for simplicity). There is a transition
at finite temperature T, (the Kosterlitz-Thouless transition in two dimensions) to a neutral
plasma phase, in which the opposite charges are decoupled, which persists for arbitrarily
high temperature. In both phases, correlations decay on the scale of the lattice spacing
a, (as power laws for T < T, and exponentially for T > T.). The origin of the decay of
correlations is screening: opposite charges attract and interfere with one another, yielding
an effective interaction whose range is finite on the scale of the lattice spacing a. It is clear
that any coarse-grained £-cell will be eﬁ'ectively neutral when £>> a, and that charges in
different £-cells will be uncorrelated. These features violate the assumptions upon which
we base our argument that (5-9) will yield the correct continuum limit, and suggest that

the positive temperature neutral system is not properly described by (5-9).

There is a simpler way to understand the failure of (5-9). Since (5-26) yields an energy
which scales linearly with N, the equivalent hydrodynamic energy (5-9) will scale as Na* =
Va?, and vanish with a. Equivalently, we have the correspondence B,ou; = B.a? = Ba?
so that T = Teouia® vanishes with a at fixed Teoyi. Intuitively, a positive hydrodynamic
energy requires macroscopic flows, on the scale of the system size, while screening implies
flows only on the microscale, invisible on any macroscopic scale. As is apparent from (5-
24), hydrodynamic flows require macroscopic non-neutral regions of vorticity. In a neutral
system, charge can segregate macroscopically only if, by some means, like charges happen
to attract rather than repel. Homophilic charges correspond to reversing the sign of the
energy (5-9) or (5-26), or equivalently of the temperature (5-25), and naturally lead us
to examine negative temperature states of H, .. As we remarked in the historical review,
negative temperatures are inaccessible to systems consisting of real particles, since (the
kinetic part of) the energy is not bounded from above. Crudely, we need to ensure that
J de p(e)exp —¢/T be finite, where p(e) denotes the density of configurations with energy

€. This condition will be satisfied when the energy is bounded from above and below, or



40
when the configuration space is sufficiently constrained to yield at least exponential decay
in p(e).

Since inviscid Euler dynamics is an approximation that neglects coupling between
molecular and hydrodynamic degrees of freedom, it is perfectly consistent for the degrees
of freedom at these respective length scales to be out of equilibrium with each other: the
former at positive temperature; the latter at nega'give temperature. Viscosity, an agent
of diffusive transport, would provide a route for energy to drain from the hydrodynamic
degrees of freedom and excite molecular degrees of freedom, yielding in the long-time limit
a warmer fluid, devoid of macroscopic motion. (More generally, since viscosity preserves
the total vorticity depending on boundary and initial conditions, a rigidly rotating fluid

might result).

In order to demystify the idea of negative temperature, which originated in this
context with Onsager, we may view it simply as a mathematical device for setting the
energy. In the microcanonical ensemble, thermodynamics is inferred from appropriate
averages over the phase space hypersurface at a given energy E. By the standard argument,
we allow E to fluctuate, while we fix only the average energy using the Lagrange multiplier
B to obtain the canonical ensemble, both descriptions coinciding in the thermodynamic
limit. If the density of configurations p(e¢) decays rapidly enough, there is no reason for 3
to be positive. Only by recognizing that any real system will be in contact with positive-
B molecular degrees of freedom do we restrict our attention to positive-3 equilibria. If
contacts between the system of interest and the positive-3 bath are weak, there may arise
a timescale much longer than intra-system equilibration times, but much shorter than
the inter-system equilibration time through the contacts, over which negative-8 equilibria
are a valid thermodynamic description. This separation of time scales occurs in certain

paramagnetic systems of nuclear moments in a crystal, where negative (spin-) temperature
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states have been experimentally demonstrated (see Landau and Lifshitz (1980), chapter

6).

The presence of a separation of timescales may not be easy to establish, especially
as different parts of our system may equilibrate more rapidly through the contacts than
others. It is clear, for example, that viscosity ought to first equilibrate regions with large
second derivatives in the velocity field, so that small-scale structures such as filaments
of vorticity will be rapidly smoothed out, whereas large-scale structures will have longer
lifetimes. We might hope that high-Reynolds number turbulence, in which the dimension-
less parameter reflects the dominance of convective processes over the diffusive effects of
viscosity, might permit such a separation of timescales, particularly when an additional

length scale (such as system size) exists to set the scale for coherent structures.

The reader may find it useful to think about positive and negative temperatures in the
context of nearest-neighbor ferromagnetic spin models. There, negative temperature equi-
libria are the usual positive temperature equilibria of the corresponding nearest-neighbor
anti-ferromagnet. Statistics of the high-energy states of a ferromagnet are simply those
of the low-energy states of the antiferromagnet. In general, a sure sign of the existence of
negative temperature states is an energy that remains finite when T" — +o00. This energy
is the unweighted average of the energy over all states, and the system can never achieve
energies larger than this particular energy unless T becomes negative. We observe that
the thermodynamics are continuous through T' = +o0, (8 = 0), not T = 0. The latter

corresponds to the ground state for T — 0%, and to the most excited state for 7 — 0.

In contrast to the ferromagnet, where interactions are short-ranged, the negative
temperature states of the Coulomb gas do not have energies that scale linearly in system
size. This property returns us to the question of the value of the exponent p in eq. (5-

26). An easy calculation reveals that rescaling the number of lattice sites by a factor a
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yields an energy rescaling factor o (modulo log(a) corrections that are unimportant in
this argument). In a general dimension d, the energy rescaling factor is @?/9+1. So long
as decreasing the coarseness of the mesh in (5-9) does not affect the macroscopic vorticity
distribution, (an assumption basically equivalent to convergence as a — 0), the energy
He,. will scale as N2a* = V2. The combination §,H¢,q scales as V2/a?, i.e., p = 2. This

value corresponds to the scaling for S;, confirming that we have made the correct choice

for 3,.

Returning now to (5-21), (5-25) and (5-13), the partition function reads

Z(g)= Nh'_x}xoo tr™ exp —N{/‘p*/da n(F, o) loglgon (7T, o)] 52)
+ @) [ @7 [ 7 a@amo

where the trace is over all fields n(7, o) subject to (5-23). It is now clear why mean-field
theory is valid: in the limit N — oo the trace will pick out the minimum of the quantity
in braces. The average of the field n(7, o), which we denote by no(7, o), is determined by

minimizing the functional

d*7
~G V ——1log(Z) = Fln] = 3 / /da n(7, o) log[gon(7, o)) 55
+/2) [ &7 [ o7 s@pre )

subject to (5-23). In order to derive a differential equation from (5-28) we use Lagrange

multipliers to enforce the constraints. Define
dz —
Gln,u, N = Fin - [ do u(o) [ n(F,0)

—/——/\(i’)/dan(ra)

where the constraints (5-23) determine (o) and A(7). The required differential equation

(5-29)

is obtained by differentiating (5-29) freely with respect to n(7, o) and setting it equal to



43

zerao:

oF
= = P, 1
6n(7-'., 0_) 0 log[qo Tlo (T7 0')] +

+3 / &7 awo()G(F, ™) - Blu(o) + A7)

(5-30)

where wo(7) =< w(F) >= [do one(F,0) is the equilibrium vorticity field. Define the

equilibrium stream function
W) = [ &7 67, o() (5-31)
which, since (5-31) is a linear relationship, is just the average < 1(7) >. We then have
aon0(F,7) = exp{—1+ B(o) + FAGF) — Boo()) (5-32)
The function A(7) may be immediately eliminated by integrating both sides over o
b {-APB+1} = [ do exp ~Bloyo(?) - u(o)] (5-33)
so that

exp ~Alovo(F) — u(o)] an
[ 4o’ exp ~Blo’4a(7) — ("] (5-34)

A differential equation for 1p(7) may be obtained by multiplying both sides of (5-32) by

’no(F, 0’) =

o and integrating:

Jodo exp —Blopo(F) — (o))

wo(7) = =V (7F) = 5 5-35
0= =) = T exp Bleio(P o) (5735)
and the function u(o) is determined by integrating (5-34) over all space:

g(o) = —
)= ]V Taocxp~Blobe® = alo]
Equations (5-34),(5-35) and (5-36) constitute a complete equilibrium description of the

system. § determines the energy 1 [d?7 wo(™)o(7) and may take on any real value. The

above equations are implicit, nonlinear, and contain in principle a continuous infinity of
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free parameters u(o). When there are only a few species of charge, they may be simplified
considerably; however, we postpone discussion of specific cases.

5.4 Mean-field theory: Kac-Hubbard-Stratanovitch transformation

We now turn to the second derivation of the mean-field equations. This time we
introduce appropriate Lagrange multipliers into the statistical mechanics from the out-
set. Unlike the multipliers introduced in (5-29), which constitute merely an exact method
for solving constrained differential equations, statistical Lagrange multipliers allow us to
remove constraints on the partition sum directly. In the mean-field limit the two construc-

tions coincide because only a single state contributes to the partition sum.

In standard fashion, we introduce into the Hamiltonian a Lagrange multiplier p; for

each conserved quantity, Q;[w]:
] = 8] - 3 wiQlo]] (5-37)

The partition function consists of an unconstrained trace: Z = tr¥ exp . The value of a

conserved quantity may be obtained from the appropriate free energy derivative

g = ?,1— < Qi[w] >= —0F/0u; (5-38)

where F' = —(8V )~ log(Z). Conservation of g(o) leads to a term
Ho== [dono) [E o0 -wtm =~ [E ety -39
with the function (o) to be determined from the functional derivative
9(0) = —6F [6() (5-40)

An alternative formulation of this term is obtained by associating, to each n = 1,2,3,...

a Lagrange multiplier y, with the corresponding power of the vorticity Q, = [ d*7 w™(7):

Hu== pnln (5-41)
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We observe that the u, are the Taylor coefficients of u(o)

p(o) = pno" (5-42)
n=1
and corresponding to (5-40) we have
2 < >= / do o™g(c) = —BFdun (5-43)

so that < §,, > are the moments of g(o).

Angular momentum conservation is incorporated by means of a term
My = — / &7 h(F)(7) (5-44)

where h(7) = —Zar? + heg:(F), and hes:(F) contains any external fields that might couple
linearly to the vorticity field. For example, the Coriolis force in the 3-plane approximation
yields hezt(7) = Br3. The derivative —0F/Oa yields the first term in (5-3). To obtain the
contribution to I from the circulation, observe that R2T, — R?T; = R2Q; + (R% — R}
where 2; is calculated from (5-40) or (5-43) and I'; is enforced by an imaginary point
vortex at the origin, of strength I';. The latter appears as an additional external field
hy(7) = T1G(0,7) in (5-44), which may be seen most simply by separating out a static
contribution, I'1§(7), to the vorticity field in (5-1), and dropping the self-energy term

proportional to I'%.

The complete Hamiltonian now reads
= 2p / &7 / &7 G(F, 7 Yw(F(7)
2 (5-45)
-8 [ G ww® -8 [ &7 @

and z = trv [exp —’H] is now a free trace over all vorticity configurations w(7). Equation
(5-45) is the Hamiltonian for a continuum, continuous spin Ising model, with exchange

constants G(7,7), spin weighting factor u(c), and external magnetic field h(7). More
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typically, for applications to critical phenomena, G(7, ') is short-ranged (e.g., G(F,7) =
—§(F — #)V?), and p(0) is a low-order polynomial, Bu(o) = ;ro? + uo* (the ¢* model).
We are not restricted to analytic forms for p(o). The usual Ising discrete measure arises
from the choice exp fu(o) = 1[6(c — 1) + 6(o + 1)]; whenever the function g(o) consists

of a series of §-functions (a finite number of charge species), so does exp Bu(o).

We now introduce the Kac-Hubbard-Stratonovitch transformation. The idea is the
following. All of the terms in H, except for the first, are local. We may convert the first
term into one that is purely local at the cost of introducing a new field (7). The basic

formula we use is

exp-;- gAijSiSj = j_lv I:I [:: di; exp {-—% %;(A"l),-ﬂ/),-gbj - Z z,b,-s,-} (5-46)
where A is any positive definite matrix, {s;} any set of real or complex numbers, and
N = det(27A)? is a normalization factor. If A is negative definite the same formula holds
with 1; replaced by #%; in the exponent on the right-hand side. We shall apply (5-46)

with A;; = —871G;; and s; = fBw;a® (see (5-7)).

Since G;; is the inverse of the negative Laplacian operator —A;;, G will be positive
definite except, perhaps, for the eigenvalue corresponding to the constant eigenfunction. If
conducting boundary conditions are used, the é-function 6;; has no constant component,
so —A;j is positive definite and invertible and this problem does not arise. For periodic
boundary conditions we must be more careful. In that case, the constant component, Gy
of G;; is arbitrary, and we choose it to be positive. This choice is equivalent to demanding
that H[w] be positive for a uniform vorticity field w(7) = constant # 0, which may be

ensured by requiring the reference separation, Rg, to be larger than the system size so

that —il; Ioglfﬁfl is always positive. The constant Gy does not affect the physics, since
it only sets a reference energy, which corresponds to an additive term %GOSE and vanishes

for periodic boundary conditions where €; = 0.
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With proper choice of G, we have the representation for the discretized Coulomb

energy
1 -
exp —%ﬂaa“ > Gijwiw; = tr¥ [eXP{+§ﬂa S GV iihs — B Y piwi}] (5-47)
iJ 1,4 i

where tr¥ = N7, [ dys, N = det(2x871G)%, and B = B,a? as before. We have
incorporated a rescaling of the temperature with lattice spacing. (5-47) is valid for § < 0.

For B, > 0, i1); must be used in place of ¥; in the exponent. By construction

(G Vi == Y (bixsj — i) + (GoN) ™ (5-48)

nn. §

where the constant term is present for periodic boundary conditions (we shall see shortly

that it is canceled).

Now define the Laplace transform
-— w -_—
exp fW(r) = / do exp —ploT — p(o)] (5-49)
— 00
in which the variable T may be complex. The partition function may be written
1 _ -
Z=tr¥exp {580 ) (G ity + 5 Y Wit — hil} (5-50)
ij i
In the continuum limit we have %(G™1);; — ~V28(F— 7) + (GoV) ™!, yielding

Z = tr¥ exp — B,V F[¢] (5-51)

where

7wl = - [ 5 {2e-v2u) + Wiwin - o}

o
— 2
“w L/ F 0]

B = fB.a® has again emerged as the natural temperature variable. Mean-field theory

(5-52)

results as the coefficient SV = BN in (5-51) diverges as a — 0. The saddle point of (5-52)
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determines the free energy, here a maximum, since 3 < 0.‘ For § > 0 we replace ¥(7) by
nZJ(i-') and seek the minimum; however, as is common in steepest descent calculations, we
shall always find the saddle point to be at real values of uz;(i') We shall write the free
energy in the form (5-52) and remember to seek the appropriate extremum depending on

the sign of 3.

We proceed to derive the mean-field equations from (5-52). The extremum, 1g(7),

is given by the equation

Tl 0=-vinm+ 5 [ S EF o)

s9(M)
S 0do exp —_ﬂ[a(«mm — h() = p(o)] (5759
JZo0 4o exp ~Blo(3o(7) ~ A(7) — p(o)]
and the averaged vorticity field is then given by
(P =<0 >= -8 =-Tu@+ - [Fud 659

(5-54) implies that %o(7) = [d*™ G(F,)wo(7), which yields & [ £F yo(7) = Oy /V.
9= d*7 wo(F) vanishes whenever the 'g'lg' term is present as we remarked following
(5-46). Evidently, we may discard the 1/Go term. Equations (5-53) and (5-54) reduce to
the previous result (5-35), with the exception that here we have added a field A(7), which

could have been trivially included in (5-35). Finally, the constraint equation is

§FW) _ [ 27 exp—Blo(do(f) = () ~ p(0)
bu(o) ~ ) V I, do exp o (a(7) - h(7) — (")

which is (5-36). An equation for angular momentum conservation can be similarly obtained

(5~55)

9(o) = -

by differentiating the a-dependence of i(7) (see (5-44)):
1
<L>=-3 / d* 7 r’wo(7) + R2Qy + (R — R, (5-56)

This derivation, although requiring the introduction of the a-lattice, made no use of the
{-lattice. The results of both derivations coincide, verifying the irrelevance of interactions

between vortices below the microscopic scale £.
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It is amusing to see the averaged flow potential, ¢o(7), emerge as the Kac-Hubbard
transformed vorticity variable. The origin of ¥4(7) lies in the form of the energy, which
may be writf;en 1 [ d*7 w(F)Y(7), similar in form to the coupling term in (5-47), and in the
relation w = —V?2¢ which minimizes the exponent in (5-47) for given 9: mean-field theory
enfofces this relation on average. It is also interesting to see, from the first derivation
of the mean-field equations, the interpretation of the integrand of the spatial integral in

(5-55) as the microscale vorticity distribution function n¢(7, o) (see eq. (5-34) and (5-58)).
5.5 Dressed vorticity corollary

A key observation is that, except for ;, the vorticity conservation laws are all

violated on the macroscopic scale. If we introduce the dressed distribution function

0 = [ £F 800 - () (5-57

then except under very special circumstances, we will find that g4(c) # g(o). Since
gi(o) will be the distribution function observed on any finite 1ehgth scale, we see. that
it is (expe'rimentally) impossible to infer g(o) from the equilibrium state alone. At first
glance, this loss of microscopic information would apparently make a theoretical prediction
impossible in the absence of any knowledge of the initial conditions: information about

initial conditions is absent for geophysical flows like the ones on Jupiter.

Fortunately, knowing only gs(o), we may make some partial predictions based on
the following dressed vorticity corollary (Miller, 1990): the averaged vorticity field, wo(7),
is the mazimum energy solution (corresponding to 7 — 0~ or § — —oc) of the mean field
equations with constraint function g4(o). For the maximum energy solution, g4(o) = g(o):

the constraint function is unrenormalized.
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To verify this claim, we consider the generalization of (5-34) to include A(7):

o exp—Bol(F) — A7) + Bu(o) )
"R 9) = Tt exp ~Bo 90 = (7] + Tao) (5-58)

where the constraints (5-23) hold. As f — —o0, we expect that for each 7, no(7,0)
becomes peaked in o around the maximum of the exponent o[¢)(7) — h(7)] — u(o). That

is,

i n0(7,0) = (0 — weo() = nes(F;0) (5-59)
where wq,(7) satisfies
2 (ea (7)) = Yool) ~ () (5-60)

(for B — 400 we would look for the minimum rather than the maximum). We find that
Woo(F) = —Vipoo () = / do ono(F, o) (5-61)

and by assumption
d*r .
94(0) = 572 Roo(F, 0) (5-62)

which establishes that we(7) has the same constraint function as wy(7).

To prove that weo(F) = wo(™) we argue as follows. It is easy to see that weo(7) is
the result of maximizing the energy (5-45) alone, subject to the constraint g4(o’), while
wo(7) is the result of maximizing the sum of the entropy and energy (5-28) or (5-29),
with constraint g(o). We claim that wo(f-’) yields the same energy as w(7); that is,
the maximum possible energy subject to the coarse-grained constraint gi(o). Suppose
wo(7) were to yield a smaller energy. Since wy(7) and we,(7) have the same constraint
function g4(o), they are related by an area-preserving diffeomorphism: there exists some
function M : V — V with unit Jacobian such that W (F) = wo (]\Zi (7). We define
fo(7,0) = no (]V.-i (7),0), which yields the same entropy and satisfies the same constraints

(5-23) as no(7,0), but has first moment [do g7g(F,0) = weo(F). Intuitively, we view
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M() as a reshuffling of the f-cells in the argument leading to (5-21), in which we keep the
a-cell microstructure within each £-cell fixed. But since weo(7) has a higher energy than
wo(F), it is clear that 7io(7, o) has a higher free energy (5-28), than no(7, o). This deduction
contradicts our assumption that no(7, o) gave the free energy maximum. Provided we,(7)
is a unique energy maximum, we may conclude that wo(7) = weo(7), which establishes the

corollary.
5.8 Single charge fluid and point vortices

We illustrate the formalism with a simple example. We consider the case of two

charge species, o = 0 and o = ¢, on fractional areas of 1 — @ and a respectively:
g(0)=ablc-g)+(1-a)i(c), O0<a<l (5-63)
We require just a single (relative) chemical potential, Myt
exp Bu(o) = exp{Buy}8(c — q) + 6(c) (5-64)

which, from (5-53), yields the mean-field equation

wo(7) = ~V4po(7)

_ -1 (5-65)
= 4{ 1+ exp —B[g(to(7) — M(7)) - uq]}
with the single unknown p, determined from
2 =
o= / d—‘; wo(F)
! (5-66)

= /%Tj {1 + exp — B[q(vo(F) ~ A(7)) — Ha] }_l

We may simplify further to the point vortez limit which we define as the limit in which the
fractional area a — 0, but the total charge ag = Q remains fized. In the limit a — 0 it

is clear that we may neglect the 1 in the denominator on the right-hand sides of (5-65,66)
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(we require exp —B[g(vo — k) — pg] 3> 1 in order to ensure that the integrand of (5-66) be

small). We obtain

exp g = of [ 2 exp Ba(o(r) - h(P) (5-67)

and hence
wo(F) = — V4o (7)
exp Bt (7) — h(7)] (5-65)
J 4F exp Blyo(7) — h(7)]

where 3 = Bq is a new rescaled temperature variable, which should remain fixed as ¢ — oo

in order that a well-defined limiting profile wo(7) exists. This requires that T = T'Qa~1!
diverge as @ — 0. The reason is that point charges tend to collapse unless the temperature
is very high: a hard core no longer keeps them apart. Note that we have taken the ¢ — 0
limit before the o — 0 limit, so that the mean-field equations are valid at each step.
We might instead consider a simultaneous limit, in which case we have the appropriately
rescaled temperature

T = T/d?q (5-69)
We might envision maintaining a?q, the charge per a-cell, fixed as a — 0, yielding a finite
number N = Q/a%q of point charges in this limit, with 7 « 7. This scaling was treated
rigorously by Frohlich and Ruelle (1982), in the limit V — oo, with n = N ]V fixed. They
obtain a fluctuating thermodynamics with positive temperature equilibria only. It thus
emerges that in order for mean-field theory to hold, we must allow a?q — 0, and N — 00,
at fixed 7', yielding an infinite density of particles each with infinitesimal charge. We

obtain the “point charge” limit described by (5-68).
5.7 Kraichnan energy/enstrophy theory

Another example worth discussing, because it arises so often in the literature, is the

energy/enstrophy theory (Kraichnan, 1975). Here we make the choice

#(o) = $pp0’ (5-70)
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We find (for Bu2 < 0),

W(r)=—-72/2u; + 2—15 log(—27/Bus) (5-71)
and hence
719 = =3 [ F {79008 - 2w - ne)?) (5-72)

where we have dropped the trivial constant in (5-71). Let us restrict ourselves to A = 0
for simplicity. For 8 > 0 and gy < 0, we find 1 = 0 as the only consistent minimum
(recall that in this case 9 ought to be replaced by 7). For 3 < 0 and L2 > 0, we seek
the maximum, and the problem is well-defined only if t < Ao, where Xy =~ 115 is the
smallest eigenvalue of the negative Laplacian consistent with the boundary conditions.

The mean-field equation for )y,
1 :
V24ho(7) + ;;d’o(?"') =0 (5-73)

is basically an eigenvalue problem for u,, which is evidently not a free variable. 42 can
take on only the degenerate value ps = 1/)Ag, and consequently Po(T) = Ar,(7), the
normalized eigenfunction associated with Ag, multiplied by an arbitrary amplitude. The
order parameter is then wo(7) = (AgA)Yo(7), and the energy is E; = AgA2? which is

determined by the single free parameter A:

Yo(F) = VEo /2o (7);  wo(F) = vV Eolo® () (5-74)

For a square box of side L, with 4 vanishing on the boundary, we have

¥ = (2/L)sin (%) sin ()5 0<ey<i (5-75)

with A = 272/L?. This stream function yields a blob-like shape centered on (L/2,L/2).

The constraint function g(o) is given by

&7 exp 3 palo — wo(PP?

S R A ey

(5-76)
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a non-trivial distribution of vorticity (observe that [do g(o0) = 1, as we expect). By

introducing the dressed distribution g4(o), this expression can be rewritten in the form

> exp 3Bpafo — o'
— d ! ! 2 =
R (5-77)
which may be inverted to yield |
d2 -
su(0)= [ GF 8o - wo(m)
2 (5-78)

= = dO” 0" eXp %5#2 [a-_—-z’]
/_m RV ry

Note that g4(o) has compact support while g(o) does not.

5.8 Lynden-Bell theory

To conclude this chapter, we connect our work to that of Lynden-Bell (1967) and to
the Debye-Hiickel theory of electron systems. We must first agree to give up our interpre-
tation of the theory as describing Euler’s equation, which can not be simply reduced to
Coulomb form in higher dimensions. The derivation of the mean-field equations is valid
in any dimension, so long as G(7,7) is replaced by the apprépriate higher-dimensional
Coulomb interaction between point charges, and the temperature is scaled as 3 = Bea
(see (5-5)). The mean-field equations derived here may then be used to describe equilibria
of three-dimensional Coulomb systems with continuous charge density, characterized by
g(o). In particular, the point charge limit, described by (5-68), turns out to correspond to
the Debye-Hiickel theory for electrolytes (Debye and Hiickel, 1923). In its quantum gen-
eralization, Thomas-Fermi theory, Boltzmann factors are replaced by free-electron Fermi

functions. .

The derivation is very simple. The local charge density n(7) is assumed to be gov-

erned by the local electric potential ¢(7) via the Boltzmann distribution:

n(#) = exp Bled(7) — ] (5-79)
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with the self-consistent relation

n(F) = —V24(7) (5-80)

(e denotes the electron charge). Here ¢(7) includes both externally applied fields, such
as charged impurities, and those fields originating from the induced electron density. The
chemical potential y is eliminated in favor of the average density
d*r

ne= | — n(F) = exp By = no/ / —— exp fed(7) (5-81)
which upon substitution yields the analogue of (5-68). The validity of this self-consistent
theory requires that ¢(7) vary slowly on the scale of the average separation between
charges, and becomes exact in the limit of infinite density (compare with the discussion

below (2-69)).

The theory developed by Lynden-Bell is based on the collisionless Boltzmann equa-
tion for a gravitating mass distribution. We examine the distribution function f(7,7,t),
which denotes the probability density at time ¢ for finding a particle at ¥ with momentum

p. The time evolution of f is assumed to be given by the Boltzmann equation

+i‘1’

7

III

of _
+ 5 =0 (5-82)

%l\
Qfl\

Ds
Dt

where now the convective derivative is with respect to a 2d-dimensional space. We have

the relations .
7'.‘

1l

P
F=~V4(7,1) (5-83)
470 = - [ 6770
where d2%r' = d%7d4p’, ¢(7,t) is the gravitational potential at 7 due to the mass distri-

bution f, and G(7,7") is the appropriate d-dimensional Coulomb interaction (like charges
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attract at positive temperatures in gravitational systems). The total energy (kinetic plus

potential) is given by

E = / d47d?p 1p? (7, P) — & / d*rd*ir' f(7,p)G(F, 7 f(7,5) (5-84)
with the constraint function

9(o) = /d“r (o - f(7, 1)) (5-85)

Since ' is an unbounded variable [ g(co)do is unbounded (the divergence is at small o);

however, we do have the normalization

/ do og(o) = / d*r f(7p) =1 (5-86)

We are therefore lead to consider the Boltzmann factor exp —fH with, in an obvious
shorthand,

H=-% / d&*rd*r’ fGf - / d*r hf - / d**r plf] (5-87)
where h(p,7) contains the %pz term in (5-84), and any other “external fields” we might
wish to add. The Kac-Hubbard-Stratonovitch transformation to the new field »(7,p) is
now straightforward. Since the Coulomb interaction G does not depend on momentum,
we use the identity (5-46) with w(7) = [ d?p f(7,5). With the definitions 8 = Ba2? and

- R -
exp W (r) = / do exp —fBoT — u(o)] (5-88)

- 00

as before, the functional to be minimized becomes
1 - 1 .
FO = 5 [ #7900 - 3 [ W@ -aER] (-39

We may define

no(7.5,0) = exp B[ ((7,7) - h(7,)) - p()]
) P J22, do’ exp —B o' (¥(7, 5) — h(F,P)) — (0]

(5-91)
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which we interpret as the coarse-grained equilibrium distribution function for charge
species o at the coarse-grained phase space point (7, §). The resulting mean-field equations

can be written

— V2 (F) = — / 5 / do ono(F, 5, ) (5-92)
and the full equilibrium distribution is given by
fo(7, D) = /da ono(7, p,0) (5-93)

with constraint function

g(o) = / d**r no(7, 7, 0) (5-94)

These expressions correspond to the mean-field equation of Lynden-Bell (1967).
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Chapter 6

Summary and conclusions

We now turn to a discussion of the physical content of the theories we have derived
in the last few chapters. It is instructive to start with an account of the physics of the
Lynden-Bell model. As we have remarked earlier, the origin of the connection between

Lynden-Bell’s statistical mechanics and our own is the fundamental equation of ‘motion:
=+ ==0 (5-82)

Obviously, we recover the Euler equations if we throw out explicit dependence on the
momentum in (5-82). An additional feature common to both the Euler fluid and stel-
lar clusters is the existence of a scalar field, the evolution of which is described by the
equation of motion, and which interacts through a long-range potential. The Coulomb
potential governs the interaction of the vorticity in the fluid, and the mass density in the
gravitational system. In both cases, the equation of the motion says that the covariant

derivative of the scalar field vanishes, giving rise to the infinite family of Casimirs.

The collisionless Boltzmann equation describes the motion of point masses interacting
by a gravitational potential, provided we do not permit the masses to collide. This motion
is Hamiltonian: 7 and § constitute canonical coordinates; the introduction of collisions
destroys the Hamiltonian character unless details of the interaction of nearby particles are

added. Collisions, by permitting the merger of particles and inelastic scattering, further
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introduce source and sink terms into the Boltzmann equation, giving rise to a covariant
derivative that no longer vanishes: the evolution of the mass density becomes dissipative.
The collisionless Boltzmann equation represents an idealization of the motion of stars in
which we view the discrete collection as a continuous medium, described by a continuous
mass density f(7,p,t). This idealization is only consistent to the extent that we may

neglect collisions for the time scales in which we are interested.

In fact, the collisionless regime is of considerable interest to astrophysicists (Bin-
ney and Tremaine, 1987; Spitzer, 1987). In studying the formation of, say, an elliptical
galaxy from some ancient distribution of stars, they estimate the “collision time,” which
sets the time scales for which we may view the dynamics as described by a collisionless
Boltzmann equation. Lynden-Bell asked the question: can statistical equilibrium theory
for the collisionless dyna;mics yield the observed structure of stellar clusters? That is:
(1) is it possible that the dynamics determining the mass and velocity distribution in a
galaxy occur within the time for which collisions between stars can be neglected, and (2)
if so, then do the collisionless degrees of freedom of the system equilibrate in this process.
Antonov (1962) had already argued that, in a physically significant regime, an isothermal
system of gravitating point masses within an isolating spherical shell has a negative specific
heat, and collapses catastrophically. If statistical mechanics was to have any bearing on

the problem, equilibration of all degrees of freedom had to be excluded.

Lynden-Bell (1967) tried to answer his question by constructing a statistical mechan-
ics for the collisionless Boltzmann equation, obtaining generalizations of our mean-field
equations; however, a lengthy and convoluted chain of results has lead many workers, in-
cluding Lynden-Bell, to conclude that the simple answer is no. (Less simple answers exist,
and not surprisingly, are more, well, complicated. See Tremaine et al. (1986)). It emerges

that in an infinite volume, which most people seem to believe constitutes an appropriate
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physical boundary condition for galactic evolution, the mean-field equations have no solu-
tion. The star cluster can always achieve greater entropy by expelling a negligible mass to
large distances, and increasing its density in a hot central core. Conservation of the mass
distribution g(o) can’t prevent this “violent relaxation,” since the density can increase in
the spatial dimensions, accompanied by a compensating decrease in the velocity dimen-
sions. Astrophysicists must then explain how features of purely dynamical origin prevent
complete equilibration, since observed galaxies evolve well into the collisional regime, and

have evidently not collapsed.

Within a finite volume, it turns out that, at least for points, one encounters negative
heat capacities and collapse under what are considered appropriate physical boundary
conditions. Lynden-Bell and Wood (1968) have claimed that finite cores rescue the system
from these pathologies. We know of no effort to determine the extent to which equilibrium
statistical mechanics is useful under these circumstances, which, in any event, may not be
physically significant. We feel that the statistical mechanics of self-gravitating systems is
in an unsatisfactory state of affairs, not necessarily because of error, but because it has not
been stated in the clarity and completeness we have come to expect in most applications

of statistical mechanics (for a partial review, see Padmanabhan (1990)).

Our reason for discussing the Lynden-Bell theory in such detail is that we wish to con-
trast the Euler fluid with stellar mechanics. As Katz and Lynden-Bell (1978) have demon-
strated (without reference to the inviscid fluid), in a finite volume the two-dimensional,
attractive, single charge species point vortex gas does not display the negative specific
heat that is characteristic of the stellar thermodynamics. Nor is the single species finite-
core gas subject to collapse in infinite volume, since here we have only spatial, and not

velocity, degrees of freedom. In fact, in two dimensions, we see no reason why solutions to
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the mean-field equations should not exist for any consistent set of values of the conserved

quantities.

But the differences run even deeper. In fluid mechanics, it has long been observed
that in certain physical regimes the Euler equations, equations of non-dissipative motion for
a continuous medium, yield a (surprisingly?) correct description of the long-time behavior
of real, viscous fluids. That is, the Euler equations don’t seem to be themselves aware of
when they’re not supposed to be valid any more. Marcus, for example, has successfully
modeled a variety of non-trivial long-time laboratory flows by means of inviscid dynamics
(Marcus, 1988, 1990, unpublished; Sommeria et al., 1988, 1989). Onsager (1949) proposed
that statistical mechanics of inviscid flow could explain turbulent phenomena. Aref and
Siggia (1981) claim that inviscid statistical mechanics models the turbulent shear layer.
In the case of fluids, it seems that the collisionless approximation can be extraordinarily

effective, for reasons that we do not entirely understand.

We should like to informally propose a mechanism that explains how inviscid statisti-
cal mechanics could usefully describe the long-time behavior of certain stationary wiscous
flows. Our notions rely on a separation of time scales. Without wishing to assign any

blame, we attribute some part of our thinking to Aref and Siggia (1981).

We emphasize first that our statistical mechanics is meant only to be a macroscopic
description of fluid properties. That is, we have nothing to say about correlations on
scales small compared to the finite system size. We don’t concede, for example, any
but the most qualitative connection between the equilibrium properties that we hope to
predict, and turbulence. The turbulent cascade, which we expect to dominate the small
| scales, constitutes a strongly forced and dissipated stationary state, and there is simply no
reason to expect the turbulent scales to be in detailed balance. In an infinite volume, we

would expect any forcing and dissipation to lead to the k~5/3 cascade to small wavenumber
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and the k=3 cascade to large wavenumber, as suggested by Kraichnan (1967), or to the

trivial long-wavelength properties suggested by Forster et al. (1977).

We maintain that the finite size of the fluid container introduces a new scale into the
problem. It allows us to envision a situation in which wavenumbers of the order of inverse
system size are in equilibrium with each other, while much larger wavenumbers are out
of equilibrium, their behavior being dominated by the energy cascades. Whereas small-
scale correlations would be determined by properties of the forcing, correlations on larger
scales might not be affected by small-scale forcing. Central to this picture is the notion
that the time scale for equilibration of long-wavelength modes be small compared to the
characteristic time scale for the forcing and dissipation of these modes by communication
with the short wavelengths. The self-consistency of our picture at long wavelengths is sup-
ported by the dressed vorticity corollary, which shows that, in equilibrium, we may ignore
short-wavelength properties and focus on averages of the vorticity field over some scale
determined by the system size. Any localized turbulence or viscosity-mediated diffusion

that acts to smear the vorticity on this scale has no effect on the macroscopic flow.

A small-scale forcing of the kind we envision here may be a feature of some geo-
physical flows, where small-scale atmospheric storms drive the large-scale dynamics. In
addition, it may be appropriate for certain laboratory flows, such as Swinney’s spots

(Sommeria et al. (1988); Marcus, personal communication).

As the above remarks no doubt convey, we do not have an adequate understanding
of the applicability of a statistical mechanical theory such as ours to fluid flows in general.
In particular, the entire theory is based upon a presumption of ergodicity. We expect
that there are many situations, such as steady laminar flow, for which this presumption is
most certainly wrong. On the other hand, even small amounts of turbulence or externally

induced noise could serve to open up all significant parts of phase space, so that flow
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becomes, effectively, ergodic. For example, Marcus (1990) finds that an axisymmetric
ring of vorticity is a steady ﬂov? in his dynamical simulation; however, when subject to
an asymmetric perturbation ten orders of magnitude lower in relative vorticity, the flow
destabilizes and evolves to a single blob. In other simulations, he finds that steady flows
consisting of a number of separated blobs can be further mixed if he throws in filaments
of vorticity, causing the blobs to merge and shed vorticity. Presumably, noise introduced
by small-scale turbulence or other processes could play an analogous role in paring down

the class of stable flows.

We have emphasized earlier that a number of authors have numerically demonstrated
ergodic behavior for point vortices. An intrinsic property of point vortex methods is
that they preserve their (singular) values for the area integrals exactly. Their behavior
may suggest that for a continuous vorticity field, a simulation faithful to the ideal Euler
fluid would also be ergodic. (It is also possible that the apparently ergodic behavior of
point vortices merely reflects cumulative numerical error). It could be that the smoothing
effects of dissipation stabilize flows that are not true long-time stationary states of the
Euler equations. We have seen that when we take the envelope of a finite temperature
equilibrium flow, we obtain a zero temperature flow. Thus, viscosity might act locally to
reduce the temperature, creating by its local smoothing effect stationary flows that are not
in global equilibrium. Finally, Marcus (1990) draws a distinction between “filamentous”
and “non-filamentous” flows, defined by the presence or absence of small-scale filaments of
vorticity. He finds that non-filamentous flows remember their initial conditions, in contrast
to filamentous flows, in which only conserved quantities seem to matter. Perhaps any truly
dissipationless flow ought to be filamentous and consequently ergodic, since viscosity would
n)t be present to remove the small-scale filamentation. We would hope that our remarks
apply also to high-Reynolds number flows, where filamentation could occur on many more

length scales than can be accommodated in any present-day numerical simulation. (These
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small-scale filaments should be distinguished from the microscopic filamentation discussed

below.)

The objection might be raised that, in fact, the fluid never achieves a stationary state.
For any finite time, the fluid is still evolving at some non-zero length scale that vanishes
only at infinite time. Consequently, the fluid motion can not be ergodic. We believe that
this objection is of a formal nature. We would characterize the non-stationary behavior
in a different manner: at any finite time, the fluid is still relaxing to an asymptotic
equilibrium that will have structure at all length scales. It is the asymptotic state that
maximizes the entropy and represents the long-time vorticity configuration that follows

from the assumption of ergodicity.

The consistency of this characterization depends upon the irrelevance of short length-
scale structures to the macroscopic vorticity configuration at long times. We would argue
that Marcus (1990) has observed just this irrelevance in his dynamical simulations. By
careful control of the short-wavelength cutoff, he demonstrates that the long-time macro-
scopic vorticity configuration is achieved before the enstrophy has reached the smallest
scales of his numerics. If he increases his numerical resolution, Marcus obtains the same
long-wavelength vorticity configuration, even though the simulation may now be continued

to longer times in which structure at still smaller scales has emerged.

The long-range potential governing the interaction of vorticity is an additional factor
suggesting that small-scale structures ought not to affect the macroscopic dynamics of a
fluid near macroscopic equilibrium. Because of the long range, we may calculate the
dynamics contributed by a small-scale structure to other structures at long distances by
using the average of the vorticity over some small area. A similar feature emerges in the

statistical mechanics: in equilibrium, it is only the average of the vorticity field over small
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length scales that affects the macroscopic structures. Indeed, this is precisely what leads

to the dressed vorticity corollary.

These remarks also pertain to the divergence of integrals of the gradient of the vor-
ticity in our statistical equilibria. In any statistical mechanical system, one can define
quantities that are finite for some class of initial conditions, but that diverge in statistical
equilibrium. The defect lies not in statistical mechanics, but rather in the choice of quan-
tities at which to look. For the Euler fluid, we would argue that the diverging integral
vorticity gradients, which may be viewed as reflecting the length of the boundary between
regions on which the microscopic vorticity field takes different values, are completely ir-
relevant to the macroscopic long-time flow. Our statistical formulation is consistent with
many possible microscopic shapes for the vorticity field. It provides no useful information

about them, and in turn, they don’t matter to the macroscopic equilibrium at all.
J

Further difficulties arise in trying to test the theory by current numerical methods.
Dynamical simulation of inviscid fluids is by no means a well-understood subject: in
fact, appreciation of the constraining properties of the conservation laws has been sorely
missing in this field. Even the very best studies seem to assume that the macroscopic
enstrophy ought to be conserved at long times, whereas we have argued that it should
not be conserved. Nor has anyone checked his simulation to ensure that he has controlled
the vorticity distribution at the microscopic level. For example, let us suppose our initial
conditions involve both positive and negative vorticity, and that the predicted equilibrium
based on the nﬁcroscopic vorticity distribution consists of spatially separated regions of
positive and negative vorticity. We expect that, in evolving from initial to long-time
state, regions of positive and negative vorticity might be at times well-mixed, with some
of the vorticity again separating out asymptotically. Yet because of finite resolution, the

numerical method could easily cancel the positive with negative vorticity in the well-mixed
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intermediate stages, yielding a long-time vorticity distribution consistent with the initial
conditions, but incorrect nevertheless. We would be unable to distinguish the failure of
statistical mechanics from the failure of the simulation. (Notice that point vortex methods
are not subject to this objection, since the methods explicitly conserve particle number
and charge). In view of these realities, our recent preliminary comparison of predicted
equilibrium flows with Marcus’ dynamical simulations yields remarkable agreement (see

Appendix B).

Certainly, possibilities exist for a numerical method that correctly incorporates the
conservation laws. String theorists have uncovered a truncated dynamics that seems to
converge, as the number of Fourier modes increases, to Euler dynamics (Fairlie and Zachos,
1989; Hoppe, 1989). As the number of modes increases, so does the number of conservation
laws. (This literature was related to us by A. Rouhi, who independently discovered the
truncated dynamics.) Efforts are underway to design a computational method based on the
truncated dynamics (Rouhi and Meiron, personal communication). Perhaps this method

will eventually confirm our equilibrium predictions.

We close by pointing out that there exist a variety of dynamical systems sharing the
essential features of the Euler fluid that allowed us to construct a statistical mechanics.
We refer the reader to Holm et al. (1985) for a partial listing of systems with an infinite
family of Casimirs. One particularly interesting example might be the “meteorological
primitive equations,” describing three-dimensional rotating, stratified, compressible flow
of an ideal gas (Shepherd, 1990). Possibly of interest to astrophysicists would be the

relativistic generalization of the Boltzmann equation.
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Kirchhoff' observed that the equations of motion for point vortices in a two-

dimensional, inviscid, incomprehensible? fluid can be derived from a Hamiltonian:

- aii _ & :
H = —;w;wjlog[r,-—rjl; w,'-;i—t- =Vi XH (1)

The conjugate variables are the coordinates of the ith vortex z;,y; and we use the notation

—

T=Vxt=(0y9,-0:9); w=Vxi=-V2 (2)

where w is the (scalar) vorticity field, @ is the velocity field, and 1 is the stream function.
A substantial body of work is based on the premise that the properties of this system,
the point vortex gas, have implications for the flow described by the Euler equations®. In
particular, given a Hamiltonian, it is natural to ask about equilibrium properties, using

the methods of statistical mechanics.

The evolution of large-scale coherent structures (or blobs) is an oft-noted feature
of two-dimensional fluid flow. The notion that blobs might be a simple equilibrium phe-
nomenon was suggested by Onsager?!. He pointed out that in bounded regions and at

high energies the vortex gas, with Hamiltonian (1) and all |w;| = wqy gives rise to clusters
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of vortices of the same sign. Onsager argued that the bounded phase space implies that
above a certain energy the number of states available to the gas decreases as a function
of energy, giving rise, at least for a finite number of vortices, to “negative temperature”

states.

While interest in this system has surfaced on many occasions since Onsager’s
proposal®, unresolved problems remain. For example, questions have been raised as to
whether negative temperatures and blobs persist in the thermodynamic limit®. Onsager
himself was uncertain how the statistics of point vortices applied to the more familiar
situation in which initial conditions specify a continuous distribution of vorticity. A re-
lated issue concerns the proper treatment of the infinite number of integrals of motion in
two-dimensional Euler flow: [, d®7 w™() for integer n, where Q is the region containing

the fluid. These quantities are conserved since
i/ & () = / &7 o (72 1 g ) = 0. 3)
For n = 2, this integral is known as the enstrophy.

The point vortex model represents a singular case of Euler flow, since constants of
motion with n > 1 involve powers of delta functions. A natural way to go about eliminating
this defect is to write down a partition function incorporating the constraints as is usual

in statistical mechanics :
2= ls 2 n
[Pvem [[Er-7F0 + Tawr) @)

where the constants a,,n > 1 and 1/7T are Lagrange multipliers. In taking this approach,
Kraichnan discarded all constants of motion except for the energy and the enstrophy’;
however, integrals of other powers of the vorticity cannot be neglected in the study of

long-wavelength properties of Euler flow in a compact domain.
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In this paper we construct a theory of statistical equilibrium for the two-dimensional
Euler fluid which incorporates all constants of motion. The equilibria generically feature
blobs. We find that in a fluid evolving from some initial condition to statistical equilibrium,
only the energy and integrals linear in the vorticity appear to be conserved. All other
constants, including the enstrophy, are found to be altered. This situation reflects the fact
that averages of such quantities over a finite area need not coincide with their unaveraged

values.

A symmetry of the Euler equations enables us to include all constants of motion
in our statistical mechanics. The invariance of physical quantities under smooth area-
preserving coordinate reparameterizations (the group of area-preserving diffeomorphisms)
leads, in two dimensions, to local conservation of vorticity®. Integrals over 2 of any smooth
function of the vorticity are conserved by the flow; these quantities are the Casimirs of the
theory®. Equivalently, we may say that the vorticity distribution function, G(w), which
yields the measure of the subset of 2 on which the vorticity takes on a value less than w,

is preserved by the flow.

The preceding assertions follow from the Hamiltonian formulation of the Euler equa-
tions described by a number of authors®1%11, Qur equilibrium statistical mechanics
will be obtained by averaging over all configurations of the fluid which share the same
G(w) and energy'?, with a weighting arising naturally from the Hamiltonian!®. As in
many applications of statistical mechanics, we can not rigorously justify our assumption

of ergodicityl4.

We now sketch the construction of our theory. For ease of presentation we consider
only the very simplest case: two-dimensional Euler flow in a disc  of radius 1. We impose
free boundary conditions so that the only role of the boundary is to make the volume finite;

consequently we take —=- log |7 — 7| as our Green’s function. We also require that our
q y ox 108
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vorticity distribution G(w) be such that the magnitude of the vorticity is bounded by some

lemaa:-

Our Hamiltonian takes the form!%!! M = 1 [ d%7 @?(7). This non-negative quantity
is the kinetic energy of the fluid once we rescale 7 to be dimensionless and set the density

to 1. We integrate by parts and ignore the contribution of the boundary to obtain
H=-1 [ a7 / &7 w(Fw() log |7 — 7. 5)
4 Q Q

We next write down a canonical partition function: [ DIwexp{—H(w)/T}. The super-
script g refers to the fact that we integrate over configurations that have a given vorticity
density function g(w) = dG(w)/dw. For purposes of counting states, we need to regularize
our functional integral. We do so by incorporating a lattice spacing, a. Our Hamiltonian

becomes:

4
H® = —Z—WZw;wj log|/; — 7| +  (self-energy) (6)
i#]

where the 7,j take values on a lattice of side a in the region 0, and the w; are averages
of w(F) over lattice boxes of side a. The total self-energy scales as a?log(a®) and so its
contribution to the Hamiltonian vanishes as @ — 0. Up to a factor of a, our regularized
Hamiltonian looks like that of the point vortex gas (1), but it is distinguished by the

underlying lattice, which is required in order to impose the conservation laws.

To understand the effect of the regularization of the partition function on the func-
tional integration, it is easiest to consider an example. Take g(w) to have the form
(r - a)f(w) + af(w ~ 1), where 7 is the area of Q. That is, G(w) describes a vortic-
ity distribution with the property that the area upon which the vorticity takes the value
1 is a; the vorticity vanishes elsewhere. Then with lattice spacing a we obtain N = 7 /a®
lattice points, upon which the vorticity takes value 1 on a/a? points and value 0 on the

remaining points. The functional integration varies the vorticity field over all possible



76

ways of allocating the a/a? 1’s and N — a/a? 0’s among the N lattice sites, with each
site occupied by exactly one 1 or 0. It is clear that G(w) is approached exactly as a — 0.
The limiting process, in which N — oo at constant total system volume and the distance
of closest approach of two vortices a — 0 at the same rate, distinguishes our system from
the point vortex gas. For a continuous G(w), we slice the range of the vorticity field into
intervals, and choose the relative numbers of lattice sites on which the vorticity falls within

a given interval, so as to converge to G(w) in the limit of vanishing lattice spacing.

We now outline our argument that the partition function converges to a well-defined
and non-trivial limit as the lattice spacing vanishes. In fact, we can derive an explicit
condition that the equilibria must satisfy. The reason we can do so is that, for a certain
class of vorticity distributions, we can prove that a mean-field theory is exact, as one
might anticipate from the long-range nature of the interaction. This class of vorticity

distributions consists of those for which |w|mez is finite.

The validity of mean-field theory is a consequence of four factors: (i) the strong
constraint imposed by the conservation of a G(w) of this type; (ii) the independence of
the range of the potential on the lattice spacing a; (iii) the smoothness of the potential

away from the source; and (iv) the mild divergence of the potential at the source.

Our proof divides into two steps. The first step is to argue that given a G(w), we can
-approxima,te the energy to within accuracy ¢ by considering only structure above a fixed
length scale £. We obtain the Hamiltonian H* given by (6) but with £ replacing @ and the
w; now averages over boxes of side £. The scale £ is determined by |W|maz and e; we allow
¢ and £ to vanish at the end of the calculation. Then H* approximates the energy to the
desired accuracy uniformly over the set of configurations allowed by G(w). A consequence

of uniform convergence is that we do not care about correlations on scales smaller than 4,
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so long as we satisfy the constraints imposed by G(w). We take £ — 0 at the end of the

calculation. For notational simplicity we shall not write this limit explicitly.

Our second step is to calculate the entropy S of a system with a given vorticity
field and lattice cut-off a by regarding lattice points within a distance £ of each other as
independent. The entropy is dominated by the large number of isoenergetic configurations

of the (£/a)? vortices, and may be explicitly calculated.

We may view g(o) as determining the total number of squares of side a on which
the vorticity takes a value very close to 0. We define the quantity p(o,T) as the den-
sity of squares of vorticity o within a distance £ of 7. p must satisfy two conditions:
(c1) [, do p(o,7) = 1 which enforces incompressibility; and (c2) Jo @7 p(0,7) = g(o),
which correctly normalizes the density. Note that w(7), the vorticity density, is given by

122, do op(a, ).

Now we can write the partition function in terms of p:

/Dpexp -a™? {H(p)/T - 5(p, y)} (7

here T = a™?T and S(p,g) = a~25(p,g) is the logarithm of the number of ways of
generating p, given a vorticity density function g regularized with cut-off a. Since we may
regard the (£/a)? vortex squares of side a that lie in a box of side £ around 7, and that

yield p(a, ), as uncorrelated, we obtain the entropy of an ideal gas:

5(p,9) = - /Q &7 [ do plo,log (o, ()

which does not depend on a. The quantity in braces in (7) then does not depend on a, and

in the limit of vanishing lattice spacing the integral is concentrated where this quantity is
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minimized. Stationary points of this quantity occur at:

p(o,7) = exp { - 2o+ u(a)}[ [ ot e { - Z(m + u(a'>}r1 (9)

where p(0) are Lagrange multipliers implicitly defined by the constraints (¢2). Using (2)
we see that mimima of (7) correspond to minima of the free energy:

o0

FI(y) = /dzf'{(ﬁ,p)?/z + Tlog/ do exp { - -%%b(f') + y(a)}} (10)

~o0
where 9 must satisfy the boundary conditions. Equation (10) is the free energy for a
generalized Ising model with logarithmic interactions; it can be independently derived from
the Hamiltonian for the two-dimensional Euler fluid using a Kac-Hubbard-Stratanovitch
transformation!®, where the constraints are imposed upon the Hamiltonian by Lagrange

multipliers.

We can draw several conclusions from our argument. (1) It was necessary to require

that T vanish along with the lattice spacing. It is T that determines the energy. (2) It

!

is easy to see that for a neutral system where g is symmetric about the origin, ¥ = 0
minimizes F9(4) for T > 0. There are no non-trivial solutions with non-negative T in this
case. (3) In general, the vorticity density function gq derived from the w(7) that yields

the above minimum is not the same as g. We know that

{o o]
/ P27 w() = / do 0g(c) (11)
Q —o0
but no other moment of the vorticity is necessarily the same for both g and g,.

Put another way, suppose our fluid evolves from smooth initial conditions with vor-
ticity distribution G, a “bare” vorticity distribution. The evolving flow is stretched and
folded, a process that effectively disperses the smoothly distributed vorticity into smaller

and smaller scales. Asymptotically in time ¢, a measurement on scales large compared to
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the arbitrarily small scales into which the vorticity is dispersed will yield a distribution
G4(t) that will converge to G4, the “dressed” vorticity distribution, as ¢ — co. Since Gy
measures averages, it need not coincide with G,. The energy and one-body integrals are

conserved, since they are long-wavelength properties.

Although G, in general differs from G, a trivial consequence of our arguments is
that, at a given energy, G4 yields the same equilibrium solution as G. Furthermore,
the given ene;rgy turns out to be precisely the maximum energy compatible with Gj.
It follows that the configuration would be dynamically stable!®. In other words, if we
consider the process of solving equation (10) to obtain the dressed distribution from a
given bare distribution and energy as a mapping, then G4 is a zero-temperature fixed
point of the mapping. A physical implication of this result, which we call the “dressed
vorticity corollary,” is that for a fluid in statistical equilibrium, coarse-grained quantities
suffice to determine the equilibrium. This observation suggests that our equilibria might
persist in the presence of a viscosity acting to smear the small scales. An equivalent way
of stating our result is that the long-time dynamics of an inviscid fluid will evolve to a
configuration that is a global extremum of the energy, subject to satisfying the long-time

(dressed) vorticity distribution.

We work out a simple example to show the relation of our work to previous results.
We use same form of the distribution G as in our example of functional integration, and
consider for convenience Dirichlet boundary conditions on a disc, with T < 0. We find
from (9)

aexp {_‘Q/J/T‘I'Nl(aafz} _
(r — a)exp po(a,T) + aexp {—¢/T + pa(e, T)}

wT(7) = -V = (12)

where the chemical potentials o1 (e, T) are used to enforce (c2). This equation describes

the statistical equilibrium of an inviscid fluid with our specified vorticity distribution and
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temperature T, and is new in this context. A related, but distinct, equation has been
derived by a number of previous authors for point vortices using a mean-field argument?.
Their equation is a special case of ours, as we can see by taking the limit @ — 0, at the
same time scaling the vorticity so as to keep the total circulation constant. Fixing T less

than —1/8, the mean-field collapse temperature for point vortices®, we obtain
ST =~ = fexp—§/TH [ &7 exp—d/T)" (13)

Here &T(7) denotes the normalized density of points. For 0 > T > —1/8r, the solutions
of (13) collapse to a point® in contrast to the solutions of equation (12), which remain

continuous and finite!®.

We remark that conservation laws and fields linear in w(#) do not affect our formula-
tion, which we expect to be applicable to a wide variety of Hamiltonian systems possessing
infinite families of Casimirs, among them many of those described in Ref. 9. In particular,

it may be relevant to the two-dimensional guiding-center plasma’.

More generally, a G with |w|ma., unbounded may be physically relevant. Our -mean-
field argument may fail in this case, because S diverges as a vanishes, the energy no longer
necessarily converges uniformly in ¢, and/or the self-energy contribution can no longer
be ignored. These considerations lead us to expect that G exist such that T is finite as
the lattice spacing @ — 0. Such regimes are of interest because we could couple them to

thermal (e.g. molecular) degrees of freedom.

We learned after this manuscript was submitted that equation (12) and its gener-
alizations had been derived earlier by Lynden-Bell in the context of stellar dynamics!?.
There the particles interact by a gravitational potential. The equation of motion is the
collisionless Boltzmann equation, and the conserved density is a function of both space and

velocity degrees of freedom. Interpretation of the Lynden-Bell equilibrium is problematic
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in stellar dynamics, since in contrast to two dimensions, in three dimensions equilibria do

not exist under physical boundary conditions.

The origin of this work was the suggestion by M.C. Cross that Marcus’ dynamical
simulations'® of Jupiter’s Red Spot might be explained in the terms of statistical mechan-

ics. We hope in the future to address the application of these methods to the Spot.

The author would like to thank M.C. Cross and P.B. Weichman for advice and
discussions. The author received partial support from the Shell Foundation and the NSF

under grant number DMR-8715474.
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Appendix B

Statistical equilibrium calculations for Red spot-like flows

The mean-field equations that we derived in chapter 5 depend in a complicated
way upon a large number of parameters. We don’t know of a practical way to solve
them directly, except in very simple cases. For a single species of point vortex in a disc
with Dirichlet boundary conditions, an analytic solution is well-known (Ostriker, 1964;
Stodolkiewicz, 1963; Montgomery et al., 1979). For up to two non-zero charge species, a
relaxational algorithm for axisymmetric equilibria (effectively a one-dimensional problem)
has been developed by M.C. Cross. In the single-species point charge limit, Smith (1989)
has employed a Newton continuation method that applies to (asymmetric) two-dimensional
charge distributions. When required to deal with a large or infinite number of charge
species, which is ordinarily the case for a physical problem, we are currently unable to
compute equilibria by means of a deterministic, well-controlled algorithm. Rather, we
must resort to stochastic methods, in particular Monte Carlo. We have not tried hard
to work out an alternative solution method, and see no reason to conclude that, simply
because we know of no better way to solve the equations, none exists. On the other
hand, Monte Carlo can not be considered completely satisfactory for our purposes, since
extracting useful information in the general case seems to be rather time-consuming. We

are grateful to M.C. Cross for suggesting the use of Monte Carlo methods in this system.
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We begin with a summary of the Monte Carlo computation method, since readers
with a fluid mechanics background might not be familiar with the technique. By Monte
Carlo, we refer to a class of rejection sampling methods related to the Metropolis algorithm
(Metropolis et al., 1953). These methods are based upon a stochastic dynamics that evolves
the system toward a statistically stationary equilibrium state. The artificial dynamics is
designed to sample the Boltzmann distribution exp —3H, with statistics improving in time
(or number of steps for a discrete dynamics). The stochastic dynamics needs to be chosen

so that (1) it is ergodic; and (2) it satisfies detailed balance:
W(X,Y )exp—fH(X) = W(Y,X)exp —SH(Y) (4-1)

where W(X,Y') is the probability that the system moves to state Y at the next step, given
that it is currently in state X (Kalos, 1986). We may divide W(X,Y') into two independent
parts: the conditional probability P(X,Y) that a move from X to Y is proposed, given
that the system is in state X, and the conditional probability that a proposed transition
(or move) is accepted, A(X,Y). If, as is customary, we choose P(X,Y) constant for a set
of Y related to X by an elementary move, and zero otherwise, then W(X,Y) = A(X,Y).
A variety of choices for W(X,Y') are possible; the canonical Monte Carlo (Metropolis)

method stipulates

W(X,Y) = max{1,exp —fH(Y)/ exp -BH(X)} (4-2)

Once our Monte Carlo dynamics has relaxed the system to equilibrium, we may cal-
culate sought-after quantities by averaging over the configurations given by the dynamics,
provided we are careful to average only over configurations separated by sufficiently many

time steps that the correlations between them are small.

A closely related “microcanonical” Monte Carlo method has been suggested by

Creutz (1983). He partitions the energy between the system of interest and an additional



86

degree of freedom, the “demon.” Moves are restricted to the phase space determined by

conservation of the sum of the energies of system and demon.

Our calculations (Miller, unpublished) have made use of both canonical and micro-
canonical methods. We treat the emergy and angular momentum separately. We have
found it convenient to calculate with either (1) microcanonical moves separately in both
energy and angular momentum; or (2) canonical moves in the energy but microcanonical
moves in the angular momentum. Generally speaking, calculations either way agree in the

regimes in which we expect them both to work.

Since the long-range interactions and boundary conditions lead to a time-consuming
particle calculation, we compute the energy of a fluid configuration by solving the the
Poisson equation. We use a square lattice of sites contained within an annulus. Each move
consists of independent exchanges of two pairs of lattice sites, each lattice site randomly

chosen on the lattice.

Time limitations on our Sparcstation have confined us to a crude 32 x 32 square
lattice, many of whose sites don’t even fall within the annulus. A test case on a disc
in which we compare a numerical solution by Cross’ method to the Monte Carlo result
(figure 1) yields pointwise agreement of the vorticity fields to within about 8%. While
Monte Carlo on such a coarse grid yields satisfactory results for the paraméter values used
in this calculation, for regimes in which the vortices are more tightly packed the error
involved in the energy calculation becomes so large that the results only have qualitative
value. N umericél work on larger grids is in progress, and until and results described below

can only be viewed as indicative of the true equilibrium solutions.

We turn now to the Red Spot, which for our purposes coincides with the persistent

spot of cyclonic vorticity in Marcus’ dynamical simulations (Marcus, 1988, 1990). Marcus
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carries out his calculation on a flat annulus with rigid boundaries. The effect of planetary
curvature and rotation is incorporated by the f-plane approximation (Pedlosky, 1986).

On the §-plane, we may define a potential vorticity, wp:

wp(7) = w(F) + Br

The Euler dynamics on the §-plane advectively conserve the potential vorticity wp, and
not w. For our purposes, we may account for the 8-plane by adding to the Hamiltonian

an external potential —Gr3, and by replacing w with w, in our statistical mechanics.
p g P

All parameters for both the dynamical and statistical equilibrium calculations are
determined uniquely by the initial conditions. We refer the reader to Marcus (1990) for
a full discussion of the numerical methods which produce the long-time vorticity profiles
shown in figures 2 and 5. He uses a spectral collocation method, and claims that the
energy, circulations and angular momentum are conserved to within a negligible fraction
of the numerical error of our own calculations. We are grateful to Changhoon Lee for
providing us with the simulation results shown in figures 1, 2, 4, and 5. Figures 1 and
4 show the potential vorticity profiles for two distinct initial conditions. Figures 2 and
5 show respective long-time stationary solutions obtained by dynamical simulation from
these initial conditions. Figures 3 and 6 show the results of the Monte Carlo calculations
described above. We draw your attention to the fact that, in these statistical equilibrium
calculations, there are no adjustable parameters. All conserved quantities are determined

by the initial conditions.
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FIGURE CAPTIONS

Fig. 1 Comparison of a direct solution (smooth curve) of the differential equation (5-65)
to a Monte Carlo calculation (jagged curve) for the same values of the conserved
quantities. The domain is the unit disc with rigid boundaries.

g(o) = 0.2656(¢ — 1) 4+ 0.7356(0)
energy: 0.0108r; angular momentum: 0.09887

Fig. 2 Simulation I: initial conditions. The grey levels denote evenly spaced potential vor-
ticity values ranging from —1.0 (lightest) to 1.0 (darkest).

T=1i+1dy; 4=(0,8r%/3); B=1 T;=0
wp = V X tp = (1/2){tanh 10(r — 11/15) — tanh 10(r — 14/15)}
R,=4/3; R;=1/3

Fig. 3 Simulation I: long-time vorticity profile from dynamical simulation.
Fig. 4 Simulation I: statistical equilibrium profile from Monte Carlo calculation.

Fig. 5 Simulation II: initial conditions. The grey levels denote evenly spaced potential
vorticity values, extending from —1.0 (lightest) to 1.0 (darkest).

=14+ dp; @ = (0,8r%/3); 8=1; ;=0
wp =V X 1, = f(r,0,00) — f(r,0,00 + )
f(r,8,6) = (1/2){tanh 0.857 (17(7', 9,0) + 1) — tanh 0.857 (n(r, 9,0) — 1)}

~ 2
~ | (5/6)(8 - 8) r—5/61°
n(r,8,0) = [ 0.35 } + [ 0.175 ]

R,=4/3; R;=1/3

Fig. 6 Simulation II: long-time vorticity profile from dynamical simulation.

Fig. 7 Simulation II: statistical equilibrium profile from Monte Carlo calculation.
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