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ABSTRACT

Measurements of“‘ ice deformation at the surface and at depth in
the Athabasca Glacier, Canada, reveal for the first timme the pattern of
flow in a nearly complete cross section of a valley glacier, and make it
possible to test the applicability of experimental and theoretical con-
cepts in the analysis of glacier flow. Tilting in nine boreholes (depth
about 300 m, eight holes essentially to the bottom) was measured with
a newly developed electrical inclinometer, which allows a great increase
, in the speed and accuracy with which borehole configurations can be
determined, in comparison with earlier methods. The measurements
define the distribution of the velocity vector and the strain-rate tensor
over 70% of the area of the glacier cross section.

The main longitudinal component of flow has the following
general features: (1) basal sliding velocity which exceeds 70% of the
surface velocity over nalf of the width of the glacier, (2) marginal
sliding velocity (not more than a few meters per year) much less than
basal sliding velocity at the centerline (about 40 m yr_l), (3) marginal
shear strain rate near thg¢ valley walls two to three times larger than
the basal shear strain rate near the centerline (0.1 yr_l).

The obéerved longitudinal flow is significantly different from
that expected from theoretical analysis of flow in cylindrical channels
(Nye, 1965). The relative strength of marginal and basal shear strain
rate is opposite to that expected from theory. In addition, the longi-
tudinal flow velocity averaged over the glacier cross section (which

determines the flux of ice transported) is larger by 11% than the
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average flow velocity seen at the glacier surface, whereas it would be
2% smaller if the theoretical prediction were correct. These differ-
ences are caused to a large e;;tent by the constant sliding velocity
assumed in the theoretical analysis, which contrasts strongly with the
actual distribution of sliding. The observed relation between marginal
and basal sliding velocity is probably a general flow feature in valley
glaciers, and may be caused by lateral variation of water pressure
at the ice-rock contact. The oba;erved pattern of longitudinal velocity
over the seétion also shows in detail certain additional features incom-
patible with the theoretical treatment, even after the difference in
boundary conditions (distribution of sliding velocity) is taken into
account. E

Longitudinal strain rate {a compression of about 0.02 yr_1 at
the surface) decreases with depth, becoming nearly 0 at the bed in the
center of the glacier. The depth variation cannot be explained com-
pletely by overall bending of the ice mass as a result of a longitudinal
gradient in the curvature of the bed, and is at variance with existing
theories, which require the longitudinal strain rate to be constant with
depth.

Motion transverse to the longitudinal flow occurs in a roughly -
symmetric pattern of ;diverging marginward flow, with most of the
lateral transpdrt occurring at depth in a fashion reminiscent of exfru-
sion flow. The observed lateral velocities averaged over depth (up to
1.9 m yrul) are compatible with the lateral flux required to maintain
equilibrium of the marginal portions of the glacier surface under
ablation (3.7m yr_l), and are driven by the convex transverse profile

of the ice surface.



Wh’en the measured strain-rate field is analyzed on the basis of
the sténdard assumptionithat the shear stress parallel to the glacier
surface varies linearly with depth, the rheological behavior in the
lower one-half to two—thii‘ds of the glacier is found compatible with a
power-type flow law withn = 5.3. However, the upper one-third to
one-half of the glacier constitutes an anomalous zone in which this
treatment gives physically unreasonable rheological behavior. In a new
method cf analysis, rheological parameters are chosen so as to
minimize the fictitious body forces that appear as residuals in the
equilibirum equations when evaluated for the measured strain-rate
field. This new method requires no a priori assumptions about the
stress distribution, although for simplicity in application, the mean
stress is assumed constant longitudinally. This treatment shows that
the anomalies in the near-surface zone are due to significant departures
from lineaf dependence of shear stress on depth, and gives a flow-law
exponent of n = 3.6, which is closer than n = 5.3 to values determined

by laboratory experiments on ice.
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CHAPTER I

INTRODUCTION

The mechanisms by which glaciers flow, and the resulting
distribution of flow velocity within glaciers, are subjects that have
received wide attention. In spite of recent progress in applying ex-
perimental results and theoretical calculations to the analysis of
glacier flow, direct field observations of flow in glaciers have been
. restricted to the surfacé or to relatively confined and isolated
regions in the interior. Early work on European valley glaciers,
particularly the classic study of Mercanton (1916) on the Rhone
Glacier, revealed the general pattern of velocity at the surface.
Recent borehole experiments, of which the studies by Gerrard,
Perutz and Roch (1952), Sharp (1953), Mathews (1959), Ierier (1960),
Shreve (1961), Savage ard Paterson (1963), and Kamb and Shreve
(1966) are examples, gave the general form of the depth distribution
of ice velocity at isolated locations in a few glaciers.

Up to nO\”V, however, there has been no direct observation of
the internal distribution of velocity across a complete section of a
valley glacier. Thus, there has been no direct measurement of the
total ice flux through any glacier cross section; the distribution of
basal slidirig velocity across a glacier and the effect of the valley
sides on the flow have been objects of speculation subject to only
indirect observational constraint. The primary goal of the present
pProject ié to fill this gap, and to bring to light features of the flow

field of temperate valley glaciers that have not been recognized in



the earlier, less comprehensive measurements, At the same time,
the measurements of flow velocity over a glacier cross section make
it possible to test the re‘cent theoretical calculations of Nye (1965),
which predict velocity for rectilinear flow in cylindrical channels, A
test of these calculations is a test of the adequacy of existing funda-
mental concepts as to the nature of glacier flow. Finally, from com-
prehensive measurements of internal flow velocity, the rheological
properties of the flowing glacier ice can in principle be determined
without many of the unverifiable assumptions about the stress and
strain-rate field that were necessary in the earlier, more limited

work.

A, Field Observations

A cross section of the Athabasca Glacier, Alberta, Canada,
was chosen as a particularly suitable object for study. The geometry
of the glacier in the reach of this cross section and the distribution
of velocity at the glacier surface, as described by Paterson and
Savage (1959), indicate that the velocity field should be typical of
flow fields in valley glaciers having simple cylindrical channels, and
should approximate the pattern of flow expected from the theory of
Nye (1965).

A network of nine boreholes, eight of which penetrated the
complete depth of the glacier (300 m), and a more extensive grid of
surface markers, were placed in the chosen cross seétion during the

summer of 1966. The change in position of the surface markers and



borehole profiles after approximately one year, as determined in
1967, gave the distribution of velocity and strain-rate components
over about 70% of the total area of the section. Incomplete recovery
of the borehole network in 1968 gave less extensive information, but
provided significant data on the time variation of the velocity and
strain-rate field.

Standard field techniques were used for the measurements.,
Surface markers were located by triangulation from points fixed on
bed rock; borehole shapes were determined by inclinometer survey.
A new type of inclinometer, which can be read remotely from the
glacier surface, was developed and used for inclinometry of de-
formed boreholes. This new system represents a great improvement

in efficiency and accuracy cver earlier inclinometry methods.

B. Results

The distribution of ice flow velocity has an approximately
symmetric pattern with the foliowing general features: (1) a basal
sliding velocity which exceeds 70% of the surface velocity across half
of the width of the glacier; (2) a sliding velocity at the margins of not
more than a few meters per year, very much less than the basal
sliding velocity in the central part of the section of about 40 m yr-i;
(3) marginal shear strain rate near the valley walls two to three
times greater than the basal shear strain rate at the valley bottom

1

of about 0.1 yr ~. The contrast between marginal and basal sliding

velocity is probably characteristic of valley glaciers, and transverse



variation of water pressure at the glacier bed is suggested as the
cause, The boundary condition of constant sliding velocity at the ice-
rock contact assumed by Nye (1965) is not appropriate to the
Athabasca cross section. In the theoretical distribution most appro-
priate to the geometry of the Athabasca Glacier, the relative strength
of marginal and basal shear strain rate is opposite to that observed.
As a result, the ratio between longitudinal velocity averaged over the
area of the cross section and averaged over the glacier surface is
not 0,98, as computed by Nye, but is instead 1.11., These differences
are to a large degree due to the drastic difference in the boundary
condition applied in the numerical calculations and the existing natu-
ral boundary condition. Closer scrutiny of the observed velocity
distribution reveals the existence of more basic incompatibilities
related to the non-rectilinear nature of the observed velocity field,
Motion transverse to the main longitudinal component of flow
also takes place. The observed velocity normal to the glacier sur-
face (on the average 3.5 m yr_i) closely balances the observed abla-

1).. The distribution of the transverse

tion rate (about 3.7 m yr_
motions is best described as a roughly symmetric pattern of diverging
marginward flow., Observed lateral velocity averaged over the
glacier thickness ranges up to 1.86 m yr-i. Most of the lateral

flow occurs at depth. It is shown that for the most part the observed
marginward flow is compatible with the lateral flux required to main-

tain the marginal portions of the glacier surface in equilibrium. The

elevation difference between the central part of the glacier and the



margins, about 7 m, is about the proper magnitude required to drive
the observed motions. The symmetry of the pattern is disrupted by
relatively large lateral velocities near the glacier centerline., This
feature of the pattern is probably caused by deviations of the glacier
bed from ideal cylindrical geometry. |

~ Longitudinal strain rate (longitudinal gradient of flow velocity)
varies significantly over the cross section, which is in marked con-
trast to the requirements of existing theories of glacier flow (Nye
1957, 1965). Maximum compression rate of about 0,02 yr—1 occurs
at the surface in the central portion of the glacier; it decreases
toward the glacier bed, and is zero at the bed in the central part of
the channel.

Analysis of the measured strain-rate field for parameters in

a power-type flow law was carried out by two methods: (1) a method
similar to that used in past borehole experiments (e.g. Savage and
Paterson, 1963; Kamb and Shreve, 1966), which assumes a linear
variation of shear stress parallel to the surface, (2) a new method,
which utilizes the gradients of strain-rate components, and for which
the only assumption concerning the stress distribution is longitudinal
independence of the mean stress., Analysis by the first method shows
the existence of two zones within the glacier. In an anomalous near -
surface zone extending to 1/3 to 1/2 of the iglacier depth, the analysis
fails to delineate acceptable rheological behavior. Deeper within the
glacier, the analysis gives results compatible with a power-type flow

law with n = 5.3, Analysis by the second method indicates that the
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anomalous near surface zone is due to dev.iation of the shear stress
from linear depth dependence., The second method, in which no
direct assumptions concerning the shear stress are made, gives a
power law with n = 3,6, The difference in the flow law parameters
calculated by the two methods shows that deviations of the shear
stress from ’§trict1y linear dependence are significant in the inter-
pretation of deformation in boreholes. Calculated effective viscosity
ranges from 6 to 20 bar yr in the volume covered by the strain-rate

measurements.

C. Organization of the Material Presented

Chapter II describes the Athabasca Glacier, the study section,
and the relation of the borehole array and surface strain-rate grid to
the glacier geometry. In Chapter III field techniques are discussed.
'In the first section of Chapter IV colordinate systems and notation,
which are used in the discussion of the data and the analysis of suc-
ceeding chapters, are introduced. In the remaining sections of
Chapter IV the primary data are presented and discussed with respect
to the information they give concerning the time variation of the veloc-
ity and strain-rate fields, Chapter V is devoted to a discussion of a
new method by which all of the boreholes were analyzed as a unit to
give a self-consistent velocity and strain-rate field over the complete
borehole array. The distribution of velocity in the cross section is
discussed in detail in Chapter VI. In Chapter VII a new approach to

the problem of determining rheological parameters from an observed



strain-rate field of a medium deforming under the action of gravity
is discussed and applied. The results are summarized and discussed
in Chapter VIII,

For an understanding of the discussion of the primary scientif-
ic results, which is presented in Chapters VI and VII, Chapters II
and IV provide adequate introduction. Chapters III and V will be of
interest to those with specific interest in field techniques and methods
of reducing borehole data to give velocity and strain-rate compo-

nents,



CHAPTER II

THE FIELD EXPERIMENT

The Athabasca Glacier was chosen as being a particularly
suitable glacier for this study. It has a simple geometry, as docu-
mented by excellent seismic results of Paterson and Savage (1963a).
A network of triangulation stations around the perimeter of the
glacief (Reid, 1961) and large scale (1:4800) topographic maps
(Topographical Survey,. 1962) provide an established framework for
the precise location of points on the glacier surface. The accessi-
bility of the glacier minimizes logistical problems.

First a general description of the glacier is presented. A
more detailed discussion is given of the geometry of the study area

and the arrangement of boreholes and surface markers,

A, The Athabasca Glacier

The Athabasca Glacier (52.20 N, 117,2° W)} is located south
of the main highway between Banff and Jasper in the Canadian Rockies
of Alberta. It is one of several valley glaciers originating in the
Columbia icefield, an ice cap of area 285 km'2 lying on the continental
divide 90 km southeast of Jasper, Figure 1 gives a general view of
the glacier and its relation to the surrounding terrain. From the edge
of the icefield at an elevation of 2700 m, it descends, in a distance of
2 km, over a series of three gentle icefalls to an elevation of 2300 m,

The terminus lies at an elevation of 1920 m. The section between the



lowest icefall and the terminus forms a tongue 3.8 km long with a
nearly constant width of about 1.1 km. In this section the glacier
channel has a northeasterly trend and is straight except for a slight
bend 1 km above the terminus. Longitudinal surface slopes over
most of this section range between 2° and 6°. One kilometer from
the terminus the surface slope begins to increase progressively
down glacier, reaching approximately 20° at the terminus, Cre-
vassing, other than marginal crevassing, is essentially non-existent.
The margins are only sparsely crevassed. On the northwest side of
the glacier the surface of the ice is debris-covered out to a distance
of 300 m ffom the margin. The thickness of the debris is typically
less than 10 cm except very close to the margin where it can be
thicker, A weakly developed medial moraine is centered roughly
250 m out from the northwest margin, The zone of debris-covered
ice on the southeast margin extends in 200 m from the margin.
Because of the surface debris the ice margins can be only approxi-
mately identified.

Because of its accessibility, the Athabasca Glacier has re-
ceived considerable attention from scientists, Of particular interest
with respect £o this project are those studies relating to the bed con-
figuration and the geometry of the flow. A gravity survey (Kanesewich,
1963) and electrical resistivity studies (Keller and Frishknect, 1961)
gave general information concerning bed topography. More detailed
information was obtained in a seismic survey (Paterson, 1962;

Patterson and Savage, 1963a). The longitudinal depth profile of the
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glacier shows the glacier surface and bed to be roughly parallel,
maintaining a center-line depth of approximately 315 m for a distance
of 1.4 km below the lowest icefall, A progressive and relatively
smooth decrease in depth prevails below this point except for some
bed irregularities 1.4 km and 0.9 km above the terminus. Trans-
verse profiles indicate that a relatively regular glacier cross
section persists throughout the glacier tongue. Considerable
information concerning surface ice velocity over the lower section of
the glacier was obtained by Paterson and Savage (1963a). Their
measurements show the pattern of flow at the surface to be simple,
with the longitudinal surface velocity ranging from 75 m yr—1 just
below the lonest icefall to 15 m yr_1 at the terminus. The surface
longitudinal strain rate (longitudinal gradient of the surface velocity)

has an average value of -0,015 yr_1 and ranges from -0,103 yr"1

Y.

near the base of the icefall to very slightly extending (+0.003 yr~
Annual ablation averages 4 m of ice over the lower tongue.
The average velocity normal to the surface closely approximates the
average ablation rate indicating that the glacier surface is near
equilibrium,
Temperature measurements (Paterson, personal communica-
tion) show that the glacier is at or close to the pressure melting point,

except within about 10 m of the surface, where the ice is affected by

the sub-freezing winter temperatures.
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B. Field Site

In choosing a pafticular portion of the Athabasca Glacier for
intensive deformation measurements, an effort was made to satisfy,
as far as possible, those conditions which would allow a two-dimen-
sional theoretical treatment, similar to that of Nye (1965), to be
applied. The basic geometrical requirement for this type of theoreti-
cal treatment is that the glacier cross section be identical from point
to point along the glaciér, with surface slope constant in magnitude
and direction; in other words, the ice body must have cylindrical
geometry. Simple geometry is not sufficient to guarantee fhat the
internal deformation will also be simple, since complex boundary
stresses could result from variations in the nature of the glacier bed.
Thus in choosing an appropriate transverse seétion of the glacier,
attention was also given to the longitudinal va.riation of the surface
strain rate as measured by Paterson and Savage (1963a). This gives
an indication as to whether two-dimensional flow is in fact present,
With these considerations in mind a section of the glacier centered
0.8 km below the icefall was chosen for study. (See figure ! for
location,)

Figure 2 shows the centerline longitudinal profile of the glacier
over a reach that includes the study area. (Data based on Paterson,
1962,) The longitudinal component of slope of the surface and bed,
and longitudinal strain rate are plotted, The location marked section
A is the center of the region in which deformation measurements were

made. Section A lies at an inflection point in the surface, at which
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the surface slope is 4°, The slope is constant to £ 10% over a length
of 2 glacier depths (600 m) centered at section A. In this vicinity,
the glacier at its centerline is thickening down stream with the diver-
gence between the bed and surface being approximately 2°, Figure 3
shows the transverse profile C of Paterson and Savage (1963a) with
the transverse variation of the longitudinal component of surface
slopes plotted. The width of the glacier here is 1250 m and the maxi-
mum depth 316 m. The longitudinal surface slope varies from 2.8°
to 4.1° across the glacier, The distribution of surface slope can also
be recognized in the topographic map (fig. 4). Although there are
significant deviations of the geometry of this section of the glacier
from ideal cylindrical geometry, the section approximates cylindrical
geometry about as well as can ever be hoped for on a real glacier.

As shown in figure 2, the longitudinal strain rate maintains a nearly
constant value of -0.02 yr_1 over the same range in which the surface
slope was acceptably constant. This gives some indication that the

flow is two~-dimensional.

C. Field Measurements

In the summer of 1966 an array of 9 boreholes and a more
extensive grid of surface markers were established. Boreholes and
surface markers were arranged in an approximately rectangular
grid of longitudinal lines (henceforth referred to as lines and denoted
by arabic numerals) and transverse sections (referred to as sections

and denoted by capital letters) as shown in figure 4. Lines have
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azimuth N 40° E. The spacing of the grid lines is 150 m or approxi-
mately half of the centerline depth, except near the rﬁargins where
longitudinal lines are spéced 100 m apart. The boreholes are in
three sections A, B, C of 5, 3, and 1 boreholes respectively. Each
borehole is named according to its location in the grid. The relation-
ship of these transverse sections to the region of constant centerline
surface slope and longitudinal strain rate is shown in figure 2,
Figure 3 shqws the extent of coverage of the glacier cross section
as determined by Paterson and Savage (1963a). It is assumed that
all of the boreholes, except 4A, penetrated to bed rock, although the
possibility some of them were stopped by debris imbedded in the ice
several meters above the base cannot be discounted. Borehole 4A
could not be‘ continued below approximately 1/3 of the depth of the
glacier because of debris in the ice, In a number of attempts to place
boreholes in the marginal zones of debris covered ice, penetration
below depths of about 20 m proved to be impractical for the same
reason., The surface markers define three additional lines (6, 7, and
8) and three additional sections (D, E, and F). Stakes are also desig-
nated by their location in the grid. The locations of triangulation
stations fixed on bedrock and from which surface markers and toés
of boreholes were surveyed are shown in figure 4.

The choice of 150 m for the spacing of boreholes was arrived
at as a compromise between the desire to resolve the essential
- features of the flow pattern and thé goa/l of obtaining measurements

over a large area. The main concern of these observations is not the
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deformation field on the scale of individual crystals or local structural
features, which would show unpredictable fluctuations in time and
space. Of primary interest is the average deformation over volumés
comparable to the cross section dimensions, which can be expected
to relate directly to the cross section geometry, and to persist in
time. For this purpose a spacing of 150 m was judged to give ade-
quate resolution,

The configuration of the network of surface markers and bore-
holes at a specified time is determined by locating the surface mar-
 kers and surface intersection of the boreholes by triangulation and
tape measure and delineating the shape of the boreholes by making
tilt measurements. For the purpose of achieving good statistics in
the borehole data, tilt measurements were spaced as closely as time
allowed. In deformed boreholes a spacing of 2 m was used.

Configuration determinations for the complete network were
made for the initial state (summer 1966) and the deformed state after
approximately one year (summer 1967), After two years (summer
1968), the locations of the tops of all the boreholes (except 1C) were
determined by triangulation; tilt measurements in only tWo boreholes
(3B, 2A) could be made. A history of borehole operations is given

in table 1.,
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CHAPTER III

FIELD METHODS

The methods used for making surface and borehole measure-
ments were for the most part similar to those which have been used in
earlier borehole experiments. The description of techniques given
in this chapter is thus brief. More detailed description of equipment
and procedures is given in Appendix I. Some elaboration of the dis-
cussion is given when a procedure or piece of equipment is signifi-
cantly different from that employed in the past. Emphasis is given to
the performance of the methods in terms of efficiency, reliability,
and the accuracy of the primary data which they give. An assess-
ment of the errors in the data is particularly important, since the
question of accuracy enters strongly into the possible interpretations
of the velocity and deformation fields,

Surface measurements are first discussed. Some experiences
gained in the use of a recent method of marking and recovering bore-
holes (Kamb and Shreve, 1966) and the results of a newly deireloped
system for borehole inclinometry form discussions of particular

interest in the section on borehole methods.

A, Surface Measurements

Standard techniques were used for the marking and location of
points on the surface of the glacier., Markers were 2 cm by 2 cm
soft wood stakes approximately 2 m in length, Stakes were driven

‘into holes made with a SIPRE ice drill, Stakes for surface strain-
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rate measurements were placed during the period of July and early
August of 1966. The configuration of the stake network was deter-
mined by tape measurements in early September 1966 and again in
July 1967. Absolute locations of selected markers and the tops of all
of the boreholes were determined at approximately the same times
by standard triangulationA techniques,

Surveying was done with a Wild T2 theodolite, which can be
read to 1" of arc. Mauiltiple sightings indicate a standard sighting
error of 3" and a maximum error of 8", Angles were turned from
two stations on bedrock on the northwest margin of the glacier {fig. 4).
The relative location of these stations is known to 2 cm. On the
basis of the length of the lines of sight (324 to 1452 m), the angles
of intersection (65o to 140°), and the sighting error, the standard
error in horizontal position of the point sighted (the top of the stakes)
is estimated to be 3 cm., Elevation of sighted points can be affected
by refraction. To test for any systematic refraction effect, the
difference between the two independent elevation determinations for
a‘given stake was compared with the difference in the squared lengths
of the corresponding lines of sight. It was concluded that any such
systematic effect acting over the distances involved is much smaller
than the observed differences. The maximum valde of fhe magnitude -
of the difference between the two elevation determinations is 10 cm.
A standard error of 3 cm for the vertical location of sighted points is
indicated. An additional error enters when the location of the top of

the stake is related to the element of ice, which the stake serves to
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mark., This source of error is considered after a discussion of the
tape measurements.

Relative positions‘ of all stakes were determined by taping
distances between them parallel to the surface., Distances to all
neighboring stakes on grid lines (ca. 150 m) and grid diagonals (ca.
211 m) were measured with a 300 ft steel tape. Because of the large
number of measurements involved, great care could not be taken to
control accurately the number of suspension points and the tension
in the tape, Nevertheless, repeatability of such distance measure-
ments was within 8 cin,

Comparison of distances between stakes as determined by
triangulation and taping shows that there is a systematic difference
between the two methods. In making the comparison the dif:ferences~
were normalized to a common interval (150 m) and were corrected
for the effects of surface deformation occurring between the time
of taping and triangulation. In the survey of September 1966, the
difference between the taped distances and the distances as deter-
mined by triangulation for 19 intervals had a mean of 23 cm and a
standard deviation of 6 cm. The corresponding figures for the sur-
vey of July 1967, which are based on comparison of 13 intervals,
are 18 cm and 17 cm. Such systematic differences could arise from
an error in the base line distance between the bedrock triangulation
stations, contraction of the tape with respect to its calibrated length
from temperature effects, and deviation of the tape from a straight
line path., The last of these possibilities is considered to be the

dominant contributor. An average angular deviation of about 2° from
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a straight line path would produce such an effect,

The much larger standard deviation of the differences in 1967,
as compared to 1966, was apparently caused by greater errors in
identifying the stakes with points fixed in the ice. At the time of the
tape and triangulation surveys of July 1967, many of the stakes were
not tightly gripped by the ice and were tilted with respect to vertical
as a result of enlargement of the hole by melting. Such was not the
case in 1966, The resulting contribution to the differences comes
from two soﬁrces: {1) the stake is moved in its hole by wind or
melting between the time of sighting and the time at which the stake
is visited to measure the displacement of the top of the stake caused
by tilting; (2) different judgments were made at the time of taping
and the time of triangulation as to the proper position of the stake in
its enlarged ‘hole. It is estimated that the second of these does not
exceed 2 cm, Thus the first source must be largely responsible for
the increase in standard deviation,

By using standard combinational formulae for variances the
following standard errors are computed for the 1966 survey: 3 cm
for absolute horizontal locations as determined by triangulation,

4 cm for relative locations on the surface as determined by triangu-
lation and by taping suitably corrected for the systematic effect re-
sulting from deviation of the tape from a straight path, For the 1967
survey the standard errors similarly calculated are 17 cm for abso-
lute horizontal locations as determined by triangulationv, 24 cm for the

spacing parallel to the surface as determined by triangulation, and
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7 cm for the spacing as determined by the corrected tape measure-
ments. The greater accuracy of the spacing of stakes obtained by
taping as compared to triangulation in 1967 is a consequence of the
dominance of the first of the sources coming from loosening of the
stakes. Such an error has direct effect on the triangulation results.
It affects the tape results only indirectly through the uncertainty
which is introduced in the value of the systematic correction to the
taped distance.

In thé determination of displacements over the interval
between the surveys, accounf must be taken of possible drift of the
stakes with respect to the ice., Stakes had to be reset several times
between surveys because of ablation. This introduced errors fesulting
from uncertinaty in the original location of the stake in an enlarged
hole, and lo§vering of the stake along a non-vertical line. The com-
bined horizontal error from these sources is estimated to have a
maximum value of 13 cm. There is considerable uncertainty in re-
turning a loosened stake to its original elevation with respect to the
surrounding ice because of two possibilities: the stake was not
initially driven to the bottom of the hole in which it was set; once a
stake has floated off the bottom, the hole may freeze closed. The
errors resulting from such vertical drift cannot be evaluated, but
they probably amount to less than 50 cm.

| Consideration of the errors in absolute location of the markers
in 1966 and 1967 and the errors from horizontal drift gives a standard

error for horizontal displacement of approximately 20 cm. The
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errors in relative location of points for 1966 an;i 1967 for tape
measurements and the horizontal drift error give a standard error of
0.0007 for the extension of lines between the stakes.

Because of the unknown contribution of vertical drift, a stand-
ard error for vertical displacement cannot be estimated as above,
A roug’h, estimate of this error can, however, be gained by comparison
of the vertical displacement as determined on two different markers
at nearly the same location. There are only four locations where
such comparison can be made, A standard error of about 35 cm

is indicated.

B. Borehole Methods

The method of boring and recovering boreholes used on the
Athabasca Glacier was essentially that developed and used by Kamb
and Shreve (1966) on the Blue Glacier, Washington. Holes were
bored with an electrically powered thermal drill ("hotpoint"). The
thermal drills used for initial boring are cylindrically symmetric, so
that penetration of the ice is along an essentially vertical line, A
hole approximately 7 cm in diameter is produced. After initial
boring of the hole, a stranded stainless steel aircraft cable, weighted
at the bottom, is lowered down the hole to serve as a marker for later
recovery of the borehole. Recovery is accomplished by use of a
special thermal drill ("cable-following hotpoint") which is threaded
onto the aircraft cable and is thus constrained to folloQ it, as long as

it is held taut from the surface. The cable-following hotpoint also
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produces a hole of approximately 7 cm diameter,

Recovery of the last few meters of boreholes (Fhe length of the
weight plus the distance it was lifted off the bottom of the original bore-
hole) can not, in general, be accomplished. In the Athabasca Glacier
holes this distance was 2 to 3 m. Weights were lifted off the bottom to
avoid possible adverse effects of a strong shear zone on the weighted
cable system. Such a zone could exist in the immediate vicinity of the
bed. |

This ‘method can be expected to give more detailed information
of the ice motion than is possible with holes cased with aluminum pipe.
‘In addition it has considerable operational advantages over the older
method of thermal boring, in which the borehole is cased by continually
adding sections of pipe at the surface as the hotpoint penetrates the ice,
A problem frequently encountered in the old method is that seizing of
the borehole casing somewhere along its length prevents further pene-
tration of the hotpoint (Meier, 1960), This is eliminated as a source
of trouble in the new method. Since the power cable also serves as the
only mechanical link between the surface and the hot point, the hot
point can be rapidly lowered into or raised out of the hole, eliminating
the necessity of 24 hour drilling and also facilitating replacement of
hot points in the event of a failure. In addition a minimum of para-
phernalia is involved. The time require\d for initial boring or recovery
of a 300 m borehole varied from four to eight days. The employment
of aircraft cable as a borehole marker also seems grgatly to increase

the probability of successful recovery of a borehole at a later time,
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The problems of pipe buckling and breakage, and freezing within the
pipe, are avoided. ‘

The basic pfpoblems which arise with this method of borehole
recovery are the danger of blocking a hole by tangling of the hotpoint
suspension cable around the aircraft cable, and the possibility of not
being able to follow the aircraft cable because of breakage. Breakage
can occur when the rate of extension of the‘ cable by ice deformation
exceeds the rate at which the cable can relieve the resulting tension
by pulling in additional cable from the surface. Both of these prob-
lems are particuarly accute in the Athabasca holes. Tangling presents
a clear danger because of the great depth of the boreholes. The cold
winters cool the upper 10 m of the ice to an extent which greatly in-
hibits the slipping of the aircraft cable through this zone.

In 1966 nine boreholes (accumulated length 2520 m) were
marked with aircraft cables, for later recovery. All of these holes
were completely recovered in 1967, except for the lowermost 100 m
of one hole (hole 1C). The loss of the bottom of hole 1C was caused
by cable tangling. No cables were broken by ice deformation, although
considerable strain (up to 0.8% elongation) had accumulated in the cab-
1es’ over the year interval, as indicated by the relaxation of the cable
as it was freed from the ice by the cable following hotpoint (fig. 5). In
1967 seven of the boreholes were marked with cables as before. How-
ever, in 1968 only two holes were successfully recovered. Four air-
craft cables had been broken within 10 m of the surface and a fifth

cable, while not broken, was damaged in a manner which prevented
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passage of the cable-following hotpoint. The performance of this
method is described and discussed in greater detail in Appendix I..
Some modification is required in order to make it a completely
reliable system.

If the aircraft cable were to migrate normal to itself, as
would tend to happen if the cable were curved and under tension,
the changing configuration of the cable would give an erroneous picture
of the ice ‘deformatiori, On re-entry into a borehole, after a 1 year
interval, rates of hotpoint penetration significantly greater (up to six
times) than the normal penetration rate in solid ice frequently oc-
curred. This shows that the original borehole had, in part, remained
open, and that the cable had not migrated significantly.

Tilts in initial and recovered boreholes were determined by
inclinometer surveys. The originally drilled boreholes were checked
for verticality by making tilt determinations every 15 to 20 m. The
instrument used for these measureménts was. an optical inclinometer
(Parson Survey Company), and is a proven insf‘rument identical in
mechanism to the inclinometers used previously on several glaciers
for similar measurements (e.g. Savage and Paterson, 1963). The tilt
survey of the deformed boreholes was done with a newly developed
electrical inclinometer which can be read remotely from the surface.
A detailed description of this instrument is given in Appendix I. (See
also figures 6 and 7.) The rapidity and ease with which it can be used
allow a much greater density of data to be taken than is possible with”

. earlier methods. Measurements were taken at 2 m intervals, giving
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approximately 150 tilt determinations for the deeper boreholes., Each
such set of measurements can be made in about 5 hours. The sub-
stantial scatter in the tilt readings so obtained (figs. 11 and 12) indi-
cates that a high density of data is essential for an adequate deter-
mination of the borehole configurations,

Tilt magnitude measurements for a deformed borehole fall in
- a band approximately 1° in width. The root mean square deviations
from a mean curve is typically 0.5°, which is distinctly greater than
the instrumental error of 0.1°. The scatter is similar in initial and
deformed boreholes after one or two years. This indicates that it |
probably is not a feature of the flow, but rather of the experimental
technique. It is "noise" introduced by the way the boreholes are
drilled, recovered, and measured. This is discussed further in
Appendix II.

Because the spacing of measurements is much less than the
scale of the depth variation of the general trend of tilting defined by
the data, a tilt profile can be established through a smoothing pro-
cedure., The value of the tilt at a given depth can be established to
within 0,07° (standard error). The method of smoothing and the
statistical analysis giving standard errors are discussed in Chapter
IV and Appendix II.

The scatter in the azimuth of tilt is affected by two additional
factors., One is that as the tilt magnitude becomes small the azimuth
of tilt is undefined, This is respons.ible for the extremely large

scatter in azimuth which occurs near the surface for several bore-
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holes. The well defined band of 40° width shown by all the boreholes
in their deeper portions,‘j as measured in 1967, is an expression of a
possible =* 20° error in azimuth caused by friction in the compass
needle bearings. Modification of the inclinometer compass mecha-
nism preceding the 1968 field season considerably reduced this effect,
as is seen in the 1968 azimuth data for boreholes 2A and 3B, where

the band width is approximately 10° to 20°, (See figure 12.)
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CHAPTER IV

DATA

The displacement of surface markers and the change in shape
of boreholes prévide the basic data for the calculation of the internal
distribution of velocity. For the purpose of discussion here and cal-
culations in later chapters, coordinate systems and notation are first
introduced, The data are then presented as they relate to surface
velocities, surface stl;ain rates and borehole configurations. Dis-
cussion concerning the spatial distribution of velocity and strain rate
is brief, Where appropriate a more detailed qualitative discussion of
particular features is given, in order to relate aspects of the qﬁanti—
tative consideration of flow quantites in Chapter VI and VII to features
of the surface data. Quantitative consideration of the temporal vari-
ation of velocity and strain rate, in so far as is possible, is made in
this chapter.

In addition to the velocity and strain-rate data, the measure-
ments on surface markers give useful supplementary information on
the present surface configuration and ablation rate. The computed
elevations of surface markers corrected to the ice surface show that
the elevation of the ice surface on September 9, 1966 was 3 m lower
than the surface elevation as given by the topographvic map (Topo-
graphic Survey, 1962y, Surface slopes computed from the surface
markers and the topographic map are in good agreement., Average

ablation over the borehole array was about 3.7 m yr-l.
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A. Coordinate Systems and Notation

Several different c:oordinate systems were used in the reduction
of the data. The following systems are defined.

(W,S,U) coordinate system is a system used by Paterson
(1962), Coordinates, in this system, of all stations in the Athabasca
triangulation network (Reid, 1961) were computed and tabulated by
Paterson (1962). It is thus a convenient and useful frame of refer-
ence for determining absolute 1ocations of surface markers, The X5
or S axis is horizontal and has an azimuth of S 9. 25° W; the x, or
W axis is horizontal and normal to the X, axis in a westerly direction;

x, or U axis is upward. Station 1 has a location of (2000.00 m,

3
2000,00 m) in the horizontal plane; the Xy = 0 plane is at an elevation
of 6000 ft,

(X,Y,Z) coordinate system has X axis horizontal in the
direction of the average surface velocity (N 36. 9° E), Y axis vertical
downward, and Z axis horizontally across the glacier so as to make
the system right handed. The origin is left unspecified and is chosen
for convenience in the specific application. This system will be use-
ful in the presentation and discussion of the inclinometry data, since
the initial boreholes are parallel to the Y axis.

(x,y,2z) coordinate system has z axis parallel to the Z axis.
The x axis, instead of being horizontal as .is the X axis, is taken
parallel to the ice surface at the center of the borehole array, which

has a slope 3,99, The surface intersection on 8 September, 1966 of

borehole 1A is taken as the origin. Essentially all of the analysis of
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deformation was done in this coordinate system.

The (x',y',z') is a set of loc‘al systems defined for each
point on the glacier surface. y' is taken normal to the local surface;
x' is normal to y' wifh azimuth identical to the X and x axes,
and z' is chosen to give a right-handed coordinate system, The
origin is placed at the instantaneous ice surface. Surface strain-rate
determinations from tape measurements are best considered in this
system.

For discussions in which a specific coordinate system is not
considered, coordinates (:x:1 ’XZ’X3) are used,

The following vector and tensor quantities are defined with
respect to the system —(xi ,xz,x3): the components u, of velocity —V’,
the components éij = —%(u. .+tu. .) of strain rate é, the components

1] RER

)} of rotation rate © , the components Tij of stress,

w ——1-(11 - u

ij =2 i,) i
the components g, of the gravity field E If the position of the
glacier surface along the x, axis is written as x; = x;(x1 ’XZ)’ then
the Xy (x3) component of surface slope is defined to be

s 8.8

ay(xy,x5) = 8><;Z/E):s<1 (013(x1,x3) = 8x2/8x3). It represents the tangent
of the angle between the %y (x3) axis and the intersection of the sur-
face x; with the (x3-x2) plane. In practice, surface slope
is calculated by a finite difference with Ax1 (Ax3) being approxi-
mately equal to the depth of the glacier, thus giving an average sur-
face slope appropriate to the scale of the field experiment. If the
trace of a borehole at time t is described parametrically by

b b b b .
31 = Xi(.XZ’t ) x3 = x3('x’2,t) ‘then the Xy (x3) component of tilt or
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. re s . _a.b _ a.b
projected tilt is defined as Yi(XZ’t) = 3x1 /é)x2 (y3(x2,t) = 8x3/8x2).
I"1 = ’can"1 Y (', = taun“1 Y. ) represents the angle between the x

Xy 3 B 2
axis and the trace of the borehole when viewed along the X3 (xi)
axis.

The above quantities are denoted in a specific coordinate sys-
tem of interest by replacing the numeral subscript with the corre-
sponding axis variable; for example, if the (x1 ,xz,x3) coordinates
are identified with the (x',y',z') system, then the above quantities

are denoted U1 €1 15 T

w o etc, For convenience
x'x"? Cx'x 1 Yxl’ o »

x'x"? "x
the components of velocity with respect to the systems (x,y,z) and
(x',y',2') are written (u,v,w) and (u',v',w') rather than with the

subscript notation.

B. Surface Velocities

The locations of surface markers on the glacier were computed
from the triangulation measurements using plane trigonometry.
Initial locations of surface markers in (W,S,U) and (x,y,z) coordi-
nates are given in table 2. Magnitude and direction of the average
velocity of markers, and the interval over which the average was taken

are given in table 3.

Areal Distribution

Velocity averaged from September 1966 to July 1967, and nor-
malized to one year, ranges from 31 m yr"1 to 54 m yf_i over the

area where theodolite measurements were made., The azimuths of
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the velocity vectors average about N 36. 9° E and deviate from this
quantity by less than 2°, ‘{Direction of average surface slope is ap-
proximately N 40° E.

Transverse variation of longitudinal velocity u at sections
A, B, and C is shown in figure 8. The centerline of flow, as defined
by the maximum (in a transverse profile) o’f the longitudinal com-
ponent of velocity, falls approximately 1/2 way between borehole lines
1 and 2. In section A the transverse velocity profile can be extended
essentially to the northwest margin on the basis of tape measure-
ments, These measurements indicate that the longitudinal velocity at
stake 8A is 11 m yr—1. Extrapolation of the velocity profile indiéates
that near the margin a zone of decreased velocity gradient must exist
if there is not to be negative (up glacier) velocity at the margin.
Similar extrapolation at the southeast margin leads to the same con-
clusion. Omn both sides of the glacier the marginal sliding velocity
can be no greater than a few meters per year,

The y component of velocity v ranges from -2.6 m yr_1
to -5.6 m yr-l, The range is a result of transverse variation in
longitudinal surface slope and ablation rate. On the southeast side
of the glacier v is generally larger because of a lower longitudinal
surface slope and a higher ablation rate when compared to the north-
west side. The average normal velocity v' of 3.5 m yr-l closely

balances the average ablation rate of approximately 3.7 m yrul.



31

Time Variation

At three locations (holes 1B, 3A, and 5A) the longitudinal
component of velocity over two different time intervals (9/8/66 to
- 7/13/67 and 9/8/66 to 7/28/6 7) can be compared. In these locations

he average longitudinal component of velocity was respectively

149 myr t, 1.06 myr !, and 1.22 m yr™! greater during the

second time interval as compared with the first. The standard
_error for the above quantities is 0.35m yr_i. The average velocity
during the latter two weeks of July 1967 was 50 = 15% greatér than
‘the corresponding average over the interval 9/8/66 to 7/13/67.
| Average velocity over the interval 9/8/66 to 7/28/67 was 2 to 3%
greater than during the interval 9/8/66 to 7/13/67, Such temporal
velécity variations have been observed on several glaciers. The
‘variation reported here is similar in magnitude to weekly variations
reported by Paterson (1964) for the Athabasca Glacier. The con-
sistency of the velocity difference for three locations indicates that
to an approximation better than the accuracy ‘of the present velocity
measurements, the process causing the velocity variation leaves the
surface deformation rates locally unchanged. 7
The velocities averaged over the interval 9/8/66 to 7/28/67
can be compared with those for the interval 7/28/67 to 7/28/68. The
differences between the two time averages, when suitably corrected
for effects resulting from longitudinal strain rate (table 4), have én
average value of 3056 m yr-i., This corresponds to a decrease in

annual velocity of approximately 8%. The spread in the differences
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(maximum difference minus minimum difference) is 1.38 m yr-1 ,
which is distinctly less than the average of 3.56 m yr-l. Thﬁs, as
was the case with the short term velocity variation observed in July
1967, the above annual velocity variation has tended to affect the
glacier surface in a more or less rigid manner., Some systematic
differences between the surface deformation pattern over the two |
intervals can, however, be discerned. The decrease in the surface
velocity toward the‘ glac‘ier margins was greater than near the center
line; the deérease at section B was slightly greater than at section A.
The second effect is less pronounced than the first, so that points
along the same longitudinal line are affected more or less equally, in
comparison with points lying on different lines.

Observations on several glaciers (Elliston, 1963; Paterson,
1964) indicate that fluctuations in surface ;relocity are correlated with
variations in discharge of streams originiating at the glacier ter-
minus and in the su‘rrounding terrain., If the abundanée of melt or
rainwater implied by high stream flow significantly increased the pres-
sure in the basal hydraulic system of a glacier, as has been observed
to occur (Mathews, 1964), an increase in sliding velocity could be
expected on the basis of existing theories of basal sliding (Weertman,
1964; Lliboutry, 1968). The velocity variations reported here are
compatible with such an interpretation. The lower average velocity
over the period July 1967 to July 1968 as compared to the previous
years average could be a result of weaker or less frequent episodes

of high sliding veloéity during the late spring and early summer of
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1968 than was the case in 1967. Early summer of 1968 was unusu-
ally/cool in contrast to the unusually warm summer of 1967. Ablation
rates in July 1968 were léss than half of the rate for July 1967 of

4 cm of ice per day. In July of 1968 snow on the valley walls was
less abundant than during the previous July. These are all indica-
tions that there could have been a considerable difference in the

amount of water available to the sub-glacier hydraulic system.

C. Surface Strain Rates

Surface strain-rate components at the center of most of the
squares formed by the grid lines were computed from taped distances
by the method of Nye (1959). The standard error given by this treat-
ment corresponds closely with that which could be expected on the
basis of the independent assessment of the accuracy of the tape
measurements discussed in Chapter III. For some squares and rec-
tangles in the outlying parts of the surface strain-rate net only one
diagonal had been taped. For these quadrilaterals a determinant pro-
cedure based on analysis of triangles was used. The accuracy of the
results are essentially the same as for those squares where both
diagonals were measured. Values for the surface strain rates are
tabulated in table 5. Minimum principal strain rates range from
-0.123 yr_1 to -0.015 yr-i. Maximum principal strain rates range

from ~-0,002 yr-1 to 0.166 yr_io
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Areal Distribution

The distribution of surface strain rate shows the basic features
which one would expect in the ablation region of a valley glacier. The
planes of maximum comaression are symmetric with respect to a
centerline of flow and convex downstream. The changing orientation
of the principal strain rates and a progressive increase in strain level
with distance from the centerline is a reflection of the marginal
shear.

The distribution of the components of surface strain rate is
shown in figure 9. In any idealized picture of flow in a symmetric
channel, the stréin—rate components °ex'x' and éz,z. would be st—
metric and the component éx'z' antisymmetric across the centerline
of flow. The observed distributions show definite deviation from
these symmetry conditions, which shows that the slight asymmetry of
the channel (fig. 3) and surface (fig. 4) exert observable influence

L]

ex,z,i averaged over the

on the pattern of flow. Shear strain rate
area of the grid squares attains maximum values of 0,10 to 0.15 yr-1
on the northwest margin of the glacier. Inthe area of the borehole

array, Iéx,z,| is less than 0.05 yr-i; éx'x' has values ranging

from -0.023 to -0,016 yr_l; éz,z, has values ranging from -0.002
to +0,005 yr—l.

Marginal crevasses, where they occur within the surface
strain-rate net, are perpendicular to directions of maximum exten-

sion, as expected (Meier, 1960). Marginal crevasses.seem to exist

only where the principal extension rate exceeds a value of about
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0.1 yr_1 , so that marginal crevassing is limited to the area of the
glacier outside lines 6 and 7. Although the borehole array covers
a large portion of the width of the glacier, none of the boreholes are

in the zones of strong marginal shearing.

Time Variation

Tape measurements were not made in the 1968 field season,
so that strain-rate calculations as extensive and accurate as those
obtained for the 1966-1967 interval cannot be made for the 1967-1968
interval, The triangulation survey does, however, provide some
information over a limited area, which allows a comparison of the
surface strain rates for the two years. (See table 6.) Since the mar-
ginal portions of the glacier showed a velocity decrease greater than
did the centerline, an increase in the magnitude of the marginal
shear Iau/azl is indicated. The largest increase in shear-rate
magnitude occurred close to the centerline with the increase between
lines 2 and 1 (0,009 yr_i) and 1 and 3 (0,006 yrni) being greater than

that between lines 4 and 2 (0. yr_l) and 3 and 5 {0.001 yr—1

) The
approximate summetry of the effect suggests that it may be of some
general significance. The marginal accuracy of the measurements

(standard error 0.003 yr—i) and the limited areal coverage, how-

ever, would render any such interpretation rather speculative.
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D. Borehole Tilting ,

Tilt data, taken in the originally bored holes, are given in
;f\’:i?gure 10, with the exception of borehole 4A, for which no initial tilts
were measured, The initial tilts were measured at 15to 20 m
intervals with a Parsons Survey Co. optical inclinometer. When
plotted on a polar diagram, as in figure 10, the initial tilts are seen
to be randomly distributed about vertical, as would be expected
because of the cylindrical symmetry of the hotpoint used for boring
the holes. The root-mean-square deviation from vertical of the
component of tilt in a vertical plane is 0. 25°,

Tilt data for boreholes after approximately one year's defor-
mation are given in figures 11 and 12. In most of the holes, the tilt
magnitude‘s are less than 2° down to a depth of 200 m, belbw which a
relatively rapid and progressive increase with depth is observed. At
fhe bottom of the boreholes, observed tilt magnitudes are typically
about 6°, which corresponds to an engineering strain rate of approxi-
mately 0.1 yr-i. This is less than the shearing rate near the margins
0f 0.2 to 0.3 yr_1 as revealed by the surface strain-rate measuré—
ments., Tilts significantly gréater than this occur only in two bore-
holes (3B, 5A) and are restricted to the bottom 10 to 15 m of the hole.
The largest tilt measured after one year's deformation was 16°,

In all of the boreholes the azimuth of tilt below 150 m is closely
aligned with the direction of the average surface velocity (figo 12).
Most boreholes silow directions of tilt in their near surface portioné

distinctly different from that of the average surface velocity, the
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direction of local surface velocity, or the direction of local surface

slope (table 7).

Components of tilt

Components of tilt I‘X and FZ for the deformed boreholes
are given in figures 13 and 14. To facilitate comparison of the
different boreholes,the data have been normalized to a one year
interval; points plotted represent the measured value divided by
the time interval betweén completion of the original borehole and
the inclinometry survey of the deformed hole. The signs of the
tilts correspond to the sense of the shear strain rate (ex'y' or
ey'z') implied by the tilting. Thus a longitudinal tilt I"X is posi-
tive when it represents an up-glacier tilt. Most of the longitudinal
tilts are negative indicating the predominance of down-glacier tilting
as would be expected; a transverse tilt FZ is positive when the
tilting is toward the negative z axis,

The longitudinal tilt profiles are similar to the tilt-magnitude
profiles of figure 11, since the direction of tilt tended to be aligned
with the down-glacier direction. The alignment is not perfect, how-
ever, hence definite tilting in the transverse plane does occur, as is
clearly shown in figure 14. The largest transverse tilt observed

after one year's deformation was only slightly in excess of 1°,

Smoothing of tilt profiles

For some of the subsequent analysis and for efficiency in pre-

senting results, it was found desirable to use smoothed tilt data. The
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curves drawn in figures 11, 12, 13 and 14 are smooth curves selected
to represent the data. In smoothing the tilt data there are two choiceé.
The tilt magnitudes and tilt azimuths can be independently smoothed,
or alternatively the two components of projected tilt can be inde-
pendently smoothed. E;ch of these approaches has certain advantages
and disadvantages.

The main advantage of the first approach is that any syste-
matic error in the azimuth of tilt can be eliminated. Such a syste-
matic error could arise from a tendency of the inclinomseter to rotate
preferentially in one sense as it is lowered down the hole, thus pro-
ducing an asymmetry in the error caused by friction in the compass
needle. This source of error is easily éliminatéd in the deeper
portions of the holes by taking the center of the well-defined band
into which the azimuth readings fall, rather than taking the median,

A further factor is that any error in an azimuth determination always
has the effect of diminishing the measured component of tilt in the
correct plane of tilt. " This is a second order effect, but nevertheless,
for a 20° error in az imuth, it amounts to 7%, and is thus a systematic
effect, which can be minimized by eliminating the noise‘in the azimuth
determinations before computing the projected tilt profiles. The main
problem which can arise in this procedure is that the condition of

tilts symmetrically distributed about the vertical is not well displayed
in terms of tilt magnitudes and azimuth of tilt considered indepen-
dently. Such a situation is approached near the surface in several
boreholes (1B, 2A, 2B) where the 1;ilt magnitudve becomes small, If

such a situation occurs, where the tilt magnitudes are large, inde-
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pendent smoothing of the tilt magnitude and azimuth can lead to
totally anomalous results.

If the second appfoach, that of smoothing the projected tilts,
is pursued, the above geometrical problems are avoided. Any
systematic errors resulting from the asymmetric nature of the noise
in the azimuth and the width of the n%i,se band would, however, be
difficult to eliminate, |

The method finally adopted was to use both approaches. First
the tilt magﬁitudes and azimuths were smoothed independently as shown
by the solid line curves (figs. 11 and 12). Smoothed longitudinal and
transverse tilt profiles were then computed and plotted on the same
plot as the tilt components computed from the unsmoothed quantities,
These curves were then adjusted in places where the geometrical
problems described above gave unacceptable results. The resulting
curves shown in figures 13 and 14 are the smoothed curves which are

used in subsequent calculations,

General features of borehole tilting

Longitudinal tilting is caused by interaction of several of the
components of strain rate and rotation rate when considered in the
coordinate system (x',y',z'). This is a result of the fact that the
boreholes were not parallel to the coordinate axis. The instantaneous

longitudinal tilting rate is given by the formula

DY i ° ° . o . °
—I—j-i;—}i = (eX:Y1+ thy_v) + YX'(ex'x'— ey_lyl) + Yz'(ex'i'+wx'z')
N P gt (€ 1 =0 1) (1)
YXt le_l x!.y.l vaYzl lel lel ’
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which follows from general formulae derived by Shreve and Sharp
(unpublished). Since the boreholes deviate less than 4° from being
parallel to y', so that Y1 and Y1 are small with respect to 1, and
if wx'y' is presumed to be small, then the major contribution is
produced by the shear strain rate parallel to the sul;face ex'y"‘ For
this discussion, the contributions from the other components of
strain rate can be neglected, so that ex’y' is proportional to the
tilting rate Dyx,/Dt., "Further, since the surface slope, th_e tilts, and

the curvature in the borehole are small,

DYxl _ ant+v anl - 3YX| T
Dt =~ 8t y Oy ot X’

where I‘X is the tilt one year after emplacement of the initially
vertical borehole., In addition it is assumed that the shear stress
parallel to the surface, Tx'y" varies linearly with depth. This is
an assumption which has been made in the interpretation of all pre-
vious borehole experiments, On this basis the plots of longitudinal
- tilting rate versus depth in figures 13 represent the stress-strain-
rate relationship for ice, and define an effective viscosity

n= Tx'y'/zex'y' °C.Y/I"X, For example, a linear ﬂﬁid would plot as
a straight line. In a nonlinear material, such as ice, the effective
viscosity depends on the componenté of strain 1:ate; deviation of the
plot from linearity together with knowledge of the strain-rate com-
ponents gives information about the form of the dependence. It is

worthwhile discussing the longitudinai tilts under these simplifica-

tions because it provides an intuitive framework in which the original
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data can be discussed and related to the derived quantities to be con-
sidered later,

Longitudinal tilts‘for borehole 3A show the features which
would be generally expected for a strain—rate,softening material such
as ice. Consider the smoothed profile (fig. 13f). The tilting rate
at the surface is zero since TX'Y' is zero and thus ex'y' is zero
there., The apparent finite slope of the curve a: the surface indicates
that the effe‘ctive viscosity is finite, as would be expected if the other
strain-rate components were not zero. The progressive increase in
tilt magnitude accompanied by a monotonic decrease in the slope mag-
nitude of the profile is what would be expected as a result of the
lowering of the effective viscosity as the shear strain rate increases
with depth, Although all of the boreholes conform in a general manner
to the pattern of borehole 3A, a number of deviations from it occur,

Several boreholes,most notably holes 1B and 2B, show non-

zero tilting rates at the surface (figs. 13b and e). Such an effect was
also observed in the boreholes 314 and 322 of Savage and Paterson
(1963) which were initially in this region of the glacier. As shown by
Savage and Paterson, such non-zero tilting can be understood as an
effect of a rotation rate wx'y' acting at the surface of the glacier.
In Chapter VI-B quantitative comparison for all the boreholes shows
that the rotation rates implied by the surface tilting rates agree with
what would be expected on the basis of the distribution of longitudinal
velocity and surface curvature.

A striking feature displayed by most tilt profiles (1A, 1C, 2B,

3B, 5A) is a rather extensive depth range (typically 100 to 250 m)
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over which the slope of the tilt profile remains nearly constant (fig.
13). In several cases (1A, 2B) the tilt profiles actually show a slight
concavity toward the depth axis. These features indicate that other
depth-dependent strain-rate components, in addition to the shear
stra:in rate, influence the effective viscosity to a significant degree,

Most boreholes, especially holes 1B and 3B, have tilt profiles
which are es senti.ally vertical c;ver a significant depth range (up to
100 m). When allowance for the rotation discussed above is made,
this would indicate that a very high effective viscosity exists close
to the surface., Such high viscosity is unexpected because of the non-
zero surface strain rates.

These features are considered in Chapter VII, where it is
shown that to some extent they can be understood on the basis that
effective viscosity is determined by the second strain-rate invari-
ant, It is also shown that the shear stress must deviate from strictly
linear dependence,

The profile of borehole 2A shows a remarkable break in the
trend of increasing tilt rate with depth, Over the lowermost 40 m
the tilting rate remains essentially constant, rather than showing the
strong progressive increase usually observed. This anomaly reflects
a pronounced deviation from the normally-assumed linear variation
of shear stress with depth. It is an example of a zone of relatively
low basal ‘shear stress at the bed, as though the bed were abnormally
smooth near the bottom of borehole 2A,

The distribution of transverse tilt rate with depth is not so

easily discussed as it lacks any significant structure in individual
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boreholes, Correlation of trends from borehole to borehole, how-
ever, presents an interesting picture. This is better discussed in
terms of the integrated filt profiles discussed below. Non-zero
transverse tilting at the surface is larger than could be expected

from a surface rotation rate wy’z' as calculated from the distribution
of longitudinal velocity u' and the transverse variation of longitudinal

surface slope (Chapter VI-B and D).

Time variation of borehole deformatic’m_-.

In the two boreholes (2A, 3B) which were recovered in the
third summer's field work, comparison of tilts after one and two
years' deformation is possible. In this comparison several distinct
influences can be expected to produce a temporal variation in the
tilting-rate distribution in a given borehole. First, the most obvious
of these is a time variation of the boundary stresses, resulting in
a corresponding time dependence of the internal deformation rates,
Second, as the borehole location changes during flow, an apparent
time variation will be observed if there are strain-rate gradients in
the direction of its motion. Third, in a homogeneous strain-rate and
rotation-rate field, constant in time, the apparent rotation rate of a
line segment depends on its orientation. Thus even in these uniform
circumstances, as finite tilting accumulates, an apparent time vari-
ation in the tilting rate is to be expected. These effects on the longi-
tudinal tilting rate can be investigated quantitatively by differentiating

equation (1) with respect to time. In the case where Yo and Y,
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are small and the strain rates are small, the term (éx'y"— a)x'y') =

9u'/dy' dominates, as noted before. In this approximation the

differentiation yields:

9Y_1 1 'aY'v”A
D X'V O Ou ; 9 x
i \ 7Bt )‘, 5t 3y’ * ¢ %' \ Bt (22)

The first right-hand-side term corresponds to a reél time variation

of the deformation rates or the first effect cited above. The second
term is a result of thé advection of 1;he borehole or the second effect,
An advection term w'(a/az')(ayx,/at) can be neglected since w' is
very closely zero. The third ef.féct cited above proves to be negligible
in this approximation, {D/Dt)(d yx,/at) can be evaluated by considering
the tilting rates for the two successive year intervals for holeé 2A

and 3B, u'(B/BX)(ByX,/Et) can be estimated for 2A and 3B by assuming
a linear variation of tilting rate between the pairs 2A and 2B, and 3A
and 3B respectively. Thus the difference in the time-average value

of du'/dy' for the two-year intervals can be evaluated. If there |
were no time variation of the strain rates, the 1968 normalized tilt
profiles for 2A and 3B should be displaced from the 1967 normalized
profiles by an amount approximately 1 /6 of the spacing of the 1967
pairs 2A and 2B,and 3A and 3B respectively. A factor of 1/3 arises
from the fac;t that the annual displacement is approximately 1/3 of

the spacing of the borehole pairs. An additional factor of 1/2 arises
because the 1968 profiles normalized tc; 1 year are considered rather
than the diffverence between the 1968 and‘ 1967 tilts. vZA of 1968 would

be displaced toward 2B and 3B would be displaced away from 3A as a
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result of the sense of the motion. The approximation Y1 = YX+C¥X’

gives explicit formulae for (8/8t)(8u'/dy") in terms of the tilts

measured in 1966, 1967, and 1968:

2A
9 (ou' VA (1. 2A 5 24 { 2B -2
aelayr) = 2 (3™ 68 - 3y M6m - v PPem) v
(2b)
9 (du'\>2 1 _ 3B 7 3B 1 3A -2
“aT(‘é?) g2('2"‘}( (68) - g vy (67) +g vy (67) yr~ 7

(yX(éé) = 0, hence it does not explicitly appear in these equations.) In
figure 15the normalized 1967 tilt profiles are plotted as dashed lines
and the normalized 1968 profile is shown as a solid line. For both
cases the pattern is not as simple as that which would be expected
for time dependence of 8u'/8y’', thus indicating either that there was
a real but small difference in the average value of 9u'/dy’', that the
assumption of linear variation with x of tilting rate is not valid, or
that the experimental errors are obscuring the pattern.

Evaluation of the change in the time average values of du'/8y’
between the two years by formulae (2b) gives values which, over most
of the depth of both boreholes are negative, This is apparent from
figure 15 which shows the 1968 curve being .generally displaced to the
left of the posit,iori expected if the strain rate did not vary in time,
Over most of the depth range the calculated values correspond to time-
rate-of-change of engineering strain rate of -0,002 y-r_z to -0.008
yr-z (table 8)7. On the basis of the accuracy to which fhe tilt profiles
are deterrﬁined, a standard error of = 0,002 yr-z could be expected,

. Thus 1t seems unlikely that the effect is purely a result of measure-
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ment errors. Inthe lower 1/4 of the boreholes, the indicated rate

2)

of change in 8u/dy ranges from zero to strongly positive (0,03 yr~
very close to the bottom of hole 3B. The values calculated at these
depths are, however, highly suspect, since the assumption of linear
x-variation of tilting rate could break down close to the glacier bed,
It is quite possible, if not probable, that the rates of change of
Bu/ay calculated from equation (2b) are a result of local variations
in the spatial distribution of the strain-rate field rather than an actual
temporal variation. On the other hand, the negative values of
(8/0t)(du/dy) , which persist over considerable depths where a linear
variation of tilting rate could be expected to be more reliable,and
which are consistent in the two boreholes, probably indicate a real but
small time variation of the strain-rate field, Since 9u'/dy' is nega-
tive at all depths (except possibly near the surface),the negative differ-
ence corresponds to an increase in |du'/dy’ |« The average value of
the difference in 8u/dy over the whole depth of both boreholes is
approximately -0,002 yr—i. This corresponds to an increase in the
magnitude of differential velocity with respect to the surface of approxi-
mately 0,5 m yr"1 from the first year interval to the second.

The sense of the change in borehole deformation from 66-67 to
67-68 is the same as that observed for the surface strain rates meas-.
ured in the central portion of the glacier, which also showed stronger
marginal shear rate in the second year interval as compared to the
first. It is noteworthy that on the area of the cross section where
this change is best determined, the sense of the time variation of the

velocity gradients 8u/dy and 08u/8z is such as to produce greater
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differential velocity between the glacier bed and the center portion
of the surface for the second year interval. Thus acting alone it
would produce a difference in the surface velocities between thé two
years opposite to the observed decreése. Thus the decrease in the
observed surface velocities must be caused by a decrease in the
glacier sliding velocity. This has been partially counteracted by an
iﬁcrease in the deformation rates.,

A change in deformation rates could be expected even if the
sliding velocity decreased uniformly over the bed. A redistribution
of stress in the glacier is required in order that the same flux can |
be transported under the changed sliding condition. The redistri-
buted stress would act to bring the glacier surface into a new equi-
librium configuration. This phenomenon is of particular significance
with respect to the theory of kinematic wave propagation ( Nye,

1960).

E. Differential Displacement in Boreholes

- Integration of Y and Y, gives the difference in X and Z
coordinates of a point on a borehole at depth Y and the coordinates of

the surface intersection of the borehole (Y = 0):

Y .
AX(Y,t) :S‘ yx(¥'t) aY'
(o}
(3)
Y
AZ(Y,t) =5 BRI SR A
O

' The accuracy of AX and AZ thus c@lculated can be determined from
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the analysis of the tilt measurements as discussed in detail in
Appendix II. For the initial boreholes a standard error of 30 cm

is calculated for AX and: AZ at a depth of 300 m. The standard
errors of AX and AZ at a depth of 300 m in deformed boreholes
are calculated to be 20 and 27 cm respectively. The standard

errors have values of zero at the surface and increase approximately
as the square root of depth.

The borehole configurations for the smoothed tilts, nor-
malized to oﬁe year's deformation, are shown in figures 16 and 17,
Boreholes lying on the same longitudinal line are plotted against the
same origin. Initial borehole configurations are all identical and
are represented by the Y scale. The deformed borehole configura-
tion plotted then represents the differential displacement with respect
to the surface as a result of ice deformation over the period of one
year. Longitudinal differential displacements at the bottoms of those
- boreholes which penetrate to the glacier bed range from 5.7 to 13.7 m,
Transverse differential displacements up to 3.2 m in magnitude

occurred.

Longitudinal differential displacements

One notable feature of the differential longitudinal displacements
is that for all of the boreholes reaching bedrock the differential dis-
placement is a relatively small percentage of the surface displacement.

The largest contribution to surface motion from differential displace-
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ment was observed in borehole 5A (33%). For all other holes the
differential displacement lies between 12 and 22%; thus a large part
of the surface velocity is produced either by sliding or by concen-
trated deformation in a thin basal zone no more than a few meters
thick.

Another important feature of the differential longitudinal
displacements (fig. 16) is the systematic relationship between the
differential displacement of boreholes in section B when compar‘ed
with the bor‘ehole on the same line in section A, In the three cases
where this comparison can be made (lines 3, 1, 2), the differential
displacement of the section A boreholes becomes with increasing
depth progressively greater than the corresponding displacement in
the section B boreholes, as is indicated by the divergence of the
three pairs éf curves. This demonstrates a variation with depth of
the longitudinal strain rate. Since section B lies down-glacier from
section A, the sense' of the variation is increased extension at depth
relative to the surface. When borehole 1C is compared with borehole
1A a similar relationship of relative extension at depth is seen to
exist, Savage and Paterson (1963) showed from indirect measure-
ments that the longitudinal strain rate could not be expected to be
c;)nstant with depth over a large portion of the Athabasca Glacier. The
observations presented here directly confirm Savage and Paterson's
prediction of relative extension at depth for this portion of the glacier.
These observations are significantly at variance with existing theore-
tical treatments of glacier flow, which require the longitudinal strain

rate to be constant with depth. Possible causes of the observed
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behavior are discussed in Chapter VI-C.

Transverse differential displacements

The presence of substantial transverse differential displace-
ments is shown in figure 17. The importance of the transverse dis-
placements is demonstrated by the following observations, The
transverse displacement near the bottom of boreholes can be as much
as 30 % of the corresponding longitudinal displacement as is the case
in borehole 1A, For th‘e boreholes which show significant transverse
differential displacement at depth, the near surface transverse dis-
placements exceed the corresponding longitudinal displacements to a
d epth typically of about 100 m. In the case of borehole 3B this is the
case fo a depth of 184 m.

There is a systematic spatial distribution of the differential
transverse displacements (fig, 17). Neglecting for the moment the
profiles for 1A and 1C, there is a general pattern of divergence of
the profiles away from the centerline of flow. Profiles of boreholes
near the centerline (1B, 2A, 2B) are essentially vertical; profiles
of boreholes to the left of the centerline on the plot (3A, 3B, 5A
which lie toward the southeastern margin of the glacier with respect
to the centerline) show marginward differential displacement in-
creasing in magnitude with depth, and are thus inclined to the right.
The strength of the effect is stronger with increasing distance from
the centerline. On the other side of the centerline boreholes cor-
responding to 3A, 3B, and 5A are largely lacking., However, the

differential transverse displacements shown by borehole 4A give
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some evidence for the symmetry of the effect, In Chapter VI-D it is
shown that such a systematic pattern of transverse displacement
can be generally expect;ad in the ablation region of a valley glacier,

The relatively large differential transverse displacements
shown by boreholes 1A and 1C are clearly anomalous in that both holes
lie close to the centerline of flow, where transverse velocity would be
expected from symmetry considerations to be small over the whole
depth of the glacier. These anomalous effects must be related to
peculiaritiés of the local flow situation and can not represent a general
feature of flow in a valley glacier.

The existence of significant, depth-dependent transverse dis-
placements is particularly noteworthy in light of the assumption of
plane strain made in almost all theoretical discussions of glacier

flow and analyses of borehole deformations.
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CHAPTER V

CALCULATION OF THE INTERNAL DISTRIBUTION
OF VELOCITY AND STRAIN RATE

Present boring methods produce holes which are initially
vertical rather than normal to the glacier surface. This complicates
the interpretation of borehole tilting in terms of the flow quantities
which are of primary interest. First a brief discussion of methods
of interpreta_ttion of borehole data used in previous experiments is
given, Then an iterative procedure by which self consistent velécities
and strain rates can be calculated from the data from a borehole array
is described. The steps in the procedure are related to the earlier
methods where possible. The distribution of velocity and strain rate
as calculated by the new method are presented and the accuracy con-

sidered, All calculations are carried out in the (x,y,z) system,

A. Method of Calculation

In previous borehole experiments the interpretation of borehole
tilting in terms of strain-rate components has been done by various
methods, all of which involve a number of assumptions. The most
general treatment to date is that of Shreve and Sharp (unpublished),

The following formulae can be derived from their treatment:

x_Bu, . (3u_dv (y, ey &
Dt 8y+Yx ox By) z8z -y xax zaz)

(1)

§

z ow Bw 6v dw _ _BX
Dt =~ dy +Y( Yxa Y(YxaerYzax)
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where the components of tilt yx(y,t) and v, (v,t) are defined as in
Chapter IV~-A, and D/Df: = (8/8t) + v(8/8y). The components of tilting
rate depend in a complex manner on all nine velocity gradients, and
the orientation of the borehole trace. Clearly all nine velocity
gradients cannot be determined from the distribution of instantaneous
tilt and tilting rate in a single borehole without further relationships.,
One such relationship which can be expected to hold is the condition of

incompressibility.

el F e F e = 0 (2)

This is still not sufficient, so that assumptions concerning some of the
velocity gradients must be made,

In the first quantitative borehole experiment (Gerrard, Perutz,
and Roch, 1952) all contributions to the tilting rate Byx/at were
neglected except 8u/dy, so that 8u/dy = Byx/at. This approximation
would hold exactly in the case of homogeneous simple shear parallel to

the surface or in the case Y=Y, = 0. Nye's (1957) analysis of the

z
same data took into account the presence of longitudinal strain rate
du/8x assumed to be equal to the surface value over the whole depth
of the glacier. Assumption of plane strain and incompressibility give
3v/8y = - du/8x, thus in this case

ou, % _ du
oy = ot Yx Bx

other contributions being neglected. Savage and Paterson (1963)

showed how the assumption that the surface value of 8u/9x applies
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to the whole depth can be improved upon by estimating the value of
dv/dy averaged over the depth of the glacier from surface measure-
ments, knowledge of the‘ basal sliding velocity, and the slope of the
bed with respect to the surface. In previous borehole experiments
transverse tilting was either not observed, or was considered to be
negligible.

Instead of analyzing a single borehole on the basis of eqﬁations
(1) and extra assumptions, as has been necessary in the past, it is
appropriate to analyze all of the borehole data at once, with the possi-
bility of eliminating many of these assﬁmptions. This possibility was
one of the motivations for the three-borehole experiment on the Blue
Glacier (Kamb and Shreve, 1966) and for the coordinated borehole
array of the present experiment. The feasibility of this is readiiy
apparent in relation to equations (1) and (2). If the gradients of the
components of velocity in directions parallel to the surface (i.e.,
du/9x, du/dz, 9v/dx, dv/Bz, dw/dx, 8w/8z) were known, then by use
of these formulae 8u/dy, dw/dy, and 9v/dy can be calculated. The
problem then is to estimate, insofar as is possible, the velocity
gradients parallel to the surface at each of the boreholes, by com-
parison of the displacements in adjacent boreholes,

In the reduction of the Athabasca borehole data the basic ap-
preachhas beenthat implied by the above discussion., However, the
calculations were made by using the differential displacement pro-
filles rather than the tilt profiles themselves, in a manner somewhat
similar to a method used by Savage and Paterson (1963). The moti-

vation for this is that it leads to a method which is easily visualized
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geometrically in terms of displacements,‘ and which is readily
adapted to computation on a digital computer. First the method used
to calculate the components of velocity along a single borehole is
described, and its relationship with the formula presented above is
discusssd. The technique by which all of the boreholes were con-
sidered simultaneously in order to calculate self-consistent velocity

and strain-rate fields throughout the borehole array is then described.

Analysis of a single borehole

The problem of how to determine the depth distribution of u
and w from the initial and final coordinates is now considered. It is
assumed that the distribution of v and the x and z gradients of
u, v, and w are known, Let xi(y), zi(y) represent the initial !x and
z coordinat‘es of a borehole at depth y, and xf(y), zf(y) represent
the coordinates after a time interval At. In this present discussion
only the longitudinal component of velocity is discussed. Exactly the
same considerations apply to the transverse component. Since the y
component of velocity v is in general non zero a specified element of
ice initially at depth V3 lies at a different depth yg on the borehole
after the time interval At., The difference in depth Ay = Veo ¥ is
determined by the distribution of v and the time interval At. The
path of the element in the x,y plane is some curve joining xi(yi)
and xf(yf) as shown in figure 18. The average longitudinal velocity
of the element over the interval At is (xf(yf) - xi(yi))/At.

The calculation of the average velocity of the element and its

assignment to a specific point in space are made as follows. Define
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Wy = 57 (gly T389) - xy-3ay)) (3)
and ‘ |

x(y) = 3 (50 +x,9)
| (4)
27y = 5 (20 +2,09) |

N :
In order to calculate u (y), Ay can be approximately evaluated by

Ay = v'(x*(y),y,z*(y)> At (5)

Intuitively it could be expected that the velocity u at some point
roughly halfway between the initial and final locations of an ice ele-
ment would be equal to the average velocity of the ice element. It is
thus suggested that the quantity u*(y), which is the average velocity
of the borehole element for which vy and ye are equal distance above
and below depth y, gives to some approximation the velocity u at a
point of depth y, which is halfway between the initial and final bore-
holes as given by x*(y‘) and z*(y)., The derivative of u*(y) with
respect to y is approximately equal to the directional derivative of

u parallel to the curve defined by x*(y) and z*(y). In orderkto
interpret u*(y) in terms of the velocity field the following approximate

formulae are used:
utly) = u(x*(y),y,z*(y)) (6)
I = 28 (T y 2 ) v B2 Ty )

+ Y:(Y) -gl-zl(x*(y) :Y:Z*(V)) . (7)
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In fact, if the velocity field is assumed independent of time, it can be

shown that

Ay = V(x*(y),y,z*(y)) At(i +o[(eat)?] +0fv At -—V’éAt])

u*(y) = u(x*(y),y,z*(y)) (1 +O{(éAt)2] +0[ v At o—ﬁéAt])
(8)

* .
——'Y'dud; ). Y:;(Y) -g—;i(x*(y).y,z*(y)) - Y:(Y) ‘g‘lgl(x*(y),y,z*(y))

= -g‘—;(x*(y),y,z*w)) (1 +ol(2a?] +of vat-Veat]) }

where e and _Y72e represent the components of strain rate and their
gradients at the curve x*(y) , z*(y)..

In the event the strain-rate field is homogeneous the error
introduced by using the approximate formulae (5), (6), and (7) goes
as the square of accumulated strain experienced by an element of ice
which traverses the space between the initial and final borehole
locations, Further, in practice it can be expected that strain-rate
gradients will be small compared to the general strain-rate level,
Thus when accumulated strain in the interval At is small, as is the
case with the deformation over the period of one year in the Athabasca
boreholes, the approximation implied by equations (5), (6), and (7)
can be expected to be a good one. After proceeding upon the basis
of this approximation to a final calculation of the velocity field,
strain rates and strain-rate gradients, it is possible to test the validity
of the approximation qﬁantitat:ively. Explicit formulae have been de-

rived for the correction terms with contributions from derivations of
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velocity higher than second ordef being neglected. Because of their
length they will not be included here. They indicate, however, that
the error associated with the approximation is negligibly small (less
than 0.1%). Other sources of error are considerably larger than this
as will be discussed.

To summarize, u can be calculated along the curve defined
by equations (4) by use of equations (5), (3), and (6) from the initial
and final borehole coordinates and the y component of velocity v.
9u/dy can be calculated along the curve from equation (7) if 8u/8dx
and 8u/3z are known.

Differentiation with respect to y of equations (3) and (5) shows
that in the limit At — 0 they are equivalent to the first of equations (1).

In the limit At — 0, note that

xily) = % (y) = x,(y) = x(y,t,)

]

2.ly) = 2" (y) = z.{y) = zly,t,) (9)

A Vi Yy
Z}i[: = ._._A?.l_ = v(x(y,ti),y,z(y,ti)> .

In this limit differentiation of equation (3) gives

du _ X v ov ov
dy ~ Dt +Yx|:—5—§' T ¥y Bx +Yz—8-i] ; (10)

and differentiation of equation (6) gives

" .
du _ Ou ou du o
dy -'B-;rﬁ-yx 5% " Yz 52 . (11)

Setting the left sides of equations (10) and (11) equal gives the first of
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equations (1),

For the purpose of practical application of these formulae, it
is desirable that they be ﬁsed in a different form. The firs‘t reason
is that application of these equations requires the use of both bore-
hole coordinates and tilt components. In the iterative computer calcu-
lation ultimately used, this would require either an unnecessarily
large storage block, or a repeated calculation of tilt from borehole
coordinateé. Secondly, it is desirable to have the quantities known
on a line of éonstant x and z, so that when interpolation between
boreholes is made, the interpolation formulae are independent of depth.
For these reasons the procedure is modified as follows. Let ys(x,z)
be a datum surface, which represents the surface of the glacie:é at a
specific time (in this case 9/8/66). u can be calculated on the y-
coordinate 1iﬁe through the surface intersection of the original bore-
hole from its value on the curve x*(y), z*(y), given by equation (3),
by applying a suitable correction to take account of the x and =z

* %*
gradients of u. To first orderin x and z ,
* du V¥
u(xi(yg,y,zi(ys)) =u (y) -5 xi(ys),y,zi(ys)) [x (y)-xi(yS)J
au( o
- 5% xi(ys),y,zi(ys)) [z (y) zi(ys)] (12)
Equation (12) involves no further approximation if 8u/8x and 8u/dz
are independent of x and z. Since the lengths over which the cor-
* aps
rection is made are small (x>k <25m, z < 1,5 m) and the quantities

Bzu/axz, Bzu/axaz, i)zu/az2 and higher derivatives are small, no

significant error is introduced. Explicit evaluation of the contribu-
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tion from second derivatives of u substantiates this,

Equation (5) could also be similarly modified so that Ay
can be calculated from v(xi(ys),y,zi(ys)) . In these calculations,
however, 98v/dx and 8v/dz have been taken to be zero, which
gives v(x*(y),y,z*(y)> = v(xi(ys),y,zi(ys)). This additional
assumption turns out to be of negligible consequence because of the
actual smallness of these gradients and the indirect way in which
v enters in the formulae for u and Bu/ay. Equations (3), (4), (5), ’
and (12), and the same cénsidera‘cions applied to the transverse com-

ponent of velocity, give

uly) = Z% [xf(y +—;-v(y)At) - xi(y— -% v(y)At)] '

- B0 1) - x ()] -2 My -y )]
{(13a)
wly) = 211; l:zf(y +—%v(y)At) - zi(y- %V(Y)At)]

B Ky - xyly )] - 2 [Ny - oty )]

For notational compactness u(y) denotes u(xi(ys),y,zi(ys)) , ouly)/dy
denotes Bu/Bx(xi(ys),y,zi(ys)) , etc, Since in equations (13a) all
quantities either depend only on y or on their values along a line
parallel to the y coordinate axis, calculation from them of du/dy
and 8w/dy can be directly made.

Equations (13a), which are the basic equations for the analysis
of the displacements in a single borehole for longitudinal velocity, can
be used as they stand. It is, however, desirable to par‘tition thqe

equations into contributions from the surface displacements of the
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borehole at depth. At any time t, the borehole coordinates can be
described by the location of the intersection of the borehole with a
datum plane of constant y andthe x and z coordinates relative to

that point, Thus
X(Y9t) = X(Ysst) + Ax(Yat)
z{y,t) = z(ys,t) + Az(y,t)

where the plane y = Vg2 which passes through the intersection of the
original borehole with the datum glacier surface, has been chosen

as the datum plane {fig. 18). Let

Dx = xf(ys) - Xi(ys) ? Dz = zf(ys) - zi(ys)

represent the borehole displacement on the datum plane during the
time interval At (fig, 18) and define the surface longitudinal velocity
to be

duly ) du(y.) viy, )
_ 1 s i S s
Ug = At Dx T2 T ox Dx T2 0z Dz + 2 (Yxf(ys) +Yxi(ys))

{13b)

owl(y. ) dwl(y._) viy.)

_ 1 1 1 s s
Vs = AtPz "3 hx Px 3 3z Pt3 (Yzf(ys) +Yzi(ys))°

Note that with these definitions ug and w_ are approximately equal
to 'u(ys) and w(ys) as defined by equation (13a). The correspondence
is exact when the surface segment of the borehole lacks curvature,

which in practice is the case, Equation (132a) can now be written as
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uly) = ug +u,ly)
(13¢)
wly) = w, twy(y)

thus defining differential velocities ud(y) and wd(y). The quantities
u and w, can be determined unambiguously in terms of the quan-
tities measured at the surface by triangulation and taping. ud(y) and
wd(y) are quantities that can be determined from knowledge of the
distributions of v, du/8x, 8u/dz, dw/dx, and dw/dz over the depth
of the borehole. |

Although this approach is more complicated than the direct
application of equations (13a), it has the advantage that it is possible
to tie the derivates with respect to x and z of u and w directly to
these quantities measured at the surface, i.e.,

Bua(y) Bua(ys) Buda(y)
] < Thx * ox
*B B B

(134)

where @ and B assume values of 1 or 3, There is no constraint to
use surface strain rates calculated only from the velocities at the
top of boreholes, and the triangulation and taped distances from a
wider network of stakes can be used to give more accurate values at
the surface for these derivatives,

An additional advantage of this approach is that it can be readily
adapted to take care of the probable situation that surface displace-
ments measured by triangulation and differential displacements meas-
ured by inclinometry were determined over different time intervals.

If the deformation rates and thus the differential velocities with respect
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to the surface are independent of time, as actually seems to be the
case to a good approximation, as was discussed in Chapter IV, the
differential velocities can be calculated on any convenient time

interval,

Analysis of a borehole array

The problem of how to analyze the data for the whole borehole
array simultaneously is now considered. The aim is to compute a
self-consistent velocity aﬁd strain-rate field, the gradients of velocity
necessary for the application of equations (13) (or equations (1) ) being
obtained by comparison of adjacent boreholes. The following iteration
procedure, schematically illustrated in figure 19, is used. First,
depth distributions of 9u/8x, 8u/dz, dw/0x, and 8w/dz at each of the
boreholes are assumed. As an initial approximation these quantities
are chosen to be equal to their surface values at the location of the
specific borehole to which they referred (i.e., Bud(y)/ax =0,
Bud(y)/az = 0, etc.). By use of incompressibility (equation (2))
dv/8y is thus determined; integration over y and knowledge of the
surface values of v determine v{y) over the whole depth of the

glacier at the borehole:

y !
viy) = vly,) * SIY 9—%‘%’—1 dy' . (14)
S

Now all quantities necesrsary to the application of equations (13) are
known, and ug and wy can be calculated. By fitting appropriate

interpolating functions to Uy and w3 at any depth vy, Bud/ax,
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8ud/az, awd/ax, and de/az can be computed and combined with the
surface values to give du/8x, 9u/dz, etc. at that depth, The cycle
is repeated until no chang;a in the velocity field occurs by further
repetition.

The choice of method for interpolating uy and wy must be
made with particular care. One possible method is to fit a deter-
minate polynomial to the value of the quantity to be interpolated (ud

or Wy at a specific depth y) at the nine boreholes. An appropriate

polynomial for the arrangement of the boreholes (fig. 4 ) is

ug = €5 + cPiyix + Pz + cPliyz +1 clP)g)a?

+d Cg})(y)zz +-—é—C(6ﬁ)(y)z3 +%c(7‘5)(y)x2 + Eizcg”(y)z4 .

For x =z = 0 the five boreholes of section A allow the calculation

of derivatives with respect to z of order up to 4 thus determining
CO’ C3, CS’ C6’ and C8; the pairs of boreholes of flow lines 2, 1,
and 3 allow the calculation of Bup/ax and its derivatives with
respect to z up to second order giving C1 s CZ’ and C4; from the
single hole of section C, thJ,p/ax2 can be calculated. Such a deter-
minate polynomial is the least restrictive interpolating function which
can be computed from the available data, and in this sense involves
the fewest assumptions concerning the nature of the velocity field,
and thus seems a desirable way toproceed. The problems which can
arise in the fitting of determinate polynomials are, however, well
known, so that one must proceed with caution. |

Because the distributions of Uy have a smooth variation, with
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consistent trends at all depths in the region of the boreholes, the deter-
minate polynomial is a reasonable interpolating function for this com-
ponent of velocity. It is desirable, however, to constrain 8ud/8x at
boreholes 5A and 4A, where no direct measurement of this quantity

has been made. The reason for this constraint is that the extrapolation
of Bud/ax to these locations under the use of equation (14) is very
sensitive to small shifts in Bud/ax on the longitudinal lines 2, 1, and
3, and thus is untrustworthy. Such a constraint is accomplished by

adding terms % kixz3 and 21—215 kzxz4 to the polynomial. Thus

' 1 2
uylx,y,2) = Cyly) +C (y)x + C,ly)xz + C;(z) +5 C,xz

! 2 1 3 i 2 1 4
+—2- CSZ +-€C6(Y)z +EC7(Y)X + _2_4C8(Y)Z

1 3,1 4
tz ki y)xz” + 5k, (y)xz (15)

The eleven coefficients CO to C8, k1 and k2 are determined by the
value of Uy at the nine boreholes and the two constraints on Bud/on
The actual constraint, which is applied, is to require that Bud/ax be
zero at all depths in the boreholes 4A and 5A, thus the calculations are
made for these boreholes under the assumption that the surface values
of 8u/dx apply to the whole depth of the glacier at these locations.

The results of this method of interpolation on u, at depths of

d
0, 100, 200, and 300 m are shown in figure 20, The main point tc be
noted is that the determinate polynomial, constrained as described

above, produces a satisfactory interpolating function for Uy (fig. 20a).

The danger of greatly amplifying small fluctuations in the data by the
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fitting of determinate polynomials does not manifest itself here,
Further the constraints p}aced on Bud/ax at boreholes 5A and 4A
are reasonably compatible with the pattern of this quantity at bore-
holes 2A, 1A, and 3A (fig. 20Db),

In the case of Wy the problem of interpolation is considerably

more complicated. A consistent trend in w, across the borehole

d
array, such as is the case with uy» is lacking (fig. 21). The pattern
of diverging marginward transverse flow would produce a consistent
picture amenable to interpolation at section A except that it is seriously
disrupted by the anomalous transverse velocities in borehole 1A, The
sawtooth nature of the pattern indicates that any interpolation under-
taken is subject to considerable uncertainty. The use of a deter-
minate polynomial, as is done in the case of ud, tends to accentuate
the sawtooth nature of the distribution of W e For this reason this

method was considered undesirable. Instead simple difference for-

mulae for the evaluation of derivatives of w_. are employed. Where

d
possible central differences are taken, The evaluation of the deriva-
tives of W3 is then acéomplished by fitting local curves (parabolas
and straight lines) rather than fitting a curve applicable to the whole
array. This can be expressed in a simple way analytically because
the boreholes are in an approximately square grid of spacing 150
meters, All the formulae are expressible in terms of the differences
in Wy between adjacent boreholes. With the notation (M,N) =

[wy' - wi'1/150 and the definitions K, = (1B,14), K, = (2B,1B),

K3 = (2A,14A), K—’—l = (2B, 24A), K5 = (1B,3B), K6 = (1A,3A),

K7 = (3B, 34A), KS = (3A,5A), K9 = (1A,1C), and KiO = (4A,24), the



67

formulae for the derivatives are then as follows:

(9w ,/0%) = (8w, /9z) =
1A (K1+K9)/2 (K3+K6)/2
1B (3K1—K9)/2 (K2+K5)/2
1C (3K9— Kl)/Z 0
2A K, (Kt K;3)/2
2B K, 0 (16)
3A - K., (K6+K8)/2
3B K., 0
4A 0 0
5A 0 0

At boreholes 4A and 5A, where no direct information on de/ax

is available, de/ax is set equal to zero. At boreholes 1C, 2B,

3B, 4A, and 5A, where marginward extrapolation of w3 must be
completely hypothetical, de/az is set equal to zero. The results
of these procedures for calculating the derivatives of w4 with respect
to x and z at depths of 0, 100, 200, and 300 m are shown in figure
21,

A Dbasic plioblem is encountered in the application of these
methods of interpolation of Uy and Wy 2as a result of the fact that
all of the boreholes are not of the same depth. As y increases to a
value greater than the depth of a borehole the number of points avail-
able for interpolation is reduced by one. Simply reducing the order
of the interpolation formulae would introduce unwanted discontinuities

in the depth profiles of the x and z gradients of u and w at the
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depths of the bottoms of the boreholes. The alternative is to do

some sort of extrapolation, thus providing for a smooth transition.

In making an extrapolation by examination of the trends above the
bottom of a borehole not only can unwanted discontinuities be avoided,
but also the accuracy of the interpolation can be maintained in some
range below the bottom of the borehole. Since most of the boreholes
are very closely the same depth, the interval over which such extrap-
olation has to be made for them is small compared to the length of the
boreholes and the depth scale over which significant variations in the
borehole tilt components occur. For the three boreholes 5A, 1C,

and 4A this is not the case, and extrapolétion would have to be made
over depths of approximately 50, 100, and 200 m respectively. One
method of extrapolation might be to extrapolate all of the borehole
profiles to the depth of the deepest borehole. Another possibility
would be to extrapolate an appropriate coefficient in the determinate
polynomial in the case of Ugs OF in the appropriate difference in the
case of W to depths below the bottom of a borehole on the basis of
the results of the calculations at shallower depths,

The method of extrapolation which is used relies mainly on
the second of the above approaches, although direct extrapolation of
boreholes is also used. The method is as follows. First the profile
of borehole 4A is extrapolated to 200 m (see fig. 20a). The extrapo-
lated profile is taken similar to that of 5A in order to enforce approxi-
mate symmetry. Also the profile of 1A is extrapolated several meters
to a depth equal to that of hole 1B, Then starting from the surface,

interpolation is done using all nine points down to the depth of the
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bottom of the extrapolated borehole 4A, At this point C8 of formula

(15) and K, , of (16) are extrapolated to the depth of the deepest hole.

10
At depths below 200 m, by placing the extrapolated value of C

3 in
formula (15), the other coefficients can be determined from the
values of Uy in the remaining boreholes and the constraints on
Bud/Bx at the locations of boreholes 4A and 5A. The remaining
quantities of equation (16) are straightforwardly calculated from the
values of w4 in the remaining boreholes. On reaching the limit of
available dafa in borehole 1C at 210 m, C7 and K9 are extrapolated
with a resultant reduction in the number of coefficients to be deter-
mined in equations (15) and (16) at greater depth. This is continued
until the bottom of the deepest borehole is reached. The coefficients
Cn and Kn are extrapolated in order of decreasing subscript value
as the bottorﬁs of boreholes 4A, 1C, 5A, 3A, 3B, 2A, and 2B are
sequentially reached. The equality of depth between hole 1B and the
extrapolated bole 1 A eliminates the necessity of extrapolating Ci'

Extrapolation of a coefficient Cn or Kn is done by passing
a parabola through the last (deepest y = yy) calculated value with a
slope there equal to that of the least square line through the deepest
point and points 20 and 40 m above, and with a curvature equal
to that of the least square parabola through the deepest point and
points 20, 40, 60, and 80 m above. Thus

Cly) = aly®- yg) +bly-y,) *c
[2Cly,) -C(y, -20) -2C(y, -40) -€(y, - 60) +2Cly,-80)] /140

[Cly,) -Cly, -40)] /40 (17)

a

b

c =C(y£)
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The reason for extrapolating borehole 1A to a depth equal to
that of borehole 1B is simply a matter of convenience in program-
ming for calculation on a digital computer,

The mechanics of the extrapolation procedure do not require
that the profile of borehole 4A be extrapolated. If borehole 4A is not
extrapolated and the coefficients C1 to C8 are extrapolated‘in the
order and manner described above, the resulting interpolating func-
tions for Uy at depths greater than that of the bottom of the unextrap-
olated borehole 4A are unreasonable. The reason for this is that in
the top 100 m, wher‘e Uy is closely zero in all of the boreholes, the
value calculated for C8 is thus essentially zero over the whole depth
range., Consequently, at depths greater than 100 m, as the much
stronger differential motion in borehole 5A begins to manifest itself,
progressive‘ly larger values of C6 (the coefficient of the z3 term)
are calculated, thus producing interpolating functions which tend to
be antisymmetric and which actually predict posiﬁve Uy beneath the
bottom of borehole 4A, This is clearly unacceptable; extrapolation of
the profile of borehole 4A to a depth {200 m) is sufficient to establish
a trend in C8 leading to an approximately symmetric pattern in the
interpolating functions at all depths. Another way of avoiding the
difficulty, without making an arbitrary extrapolation of borehole 4A,
is to interchange the order of extrapolation of C6 and C8° This
causes Cé to be constrained to values essentially zero over the
whole depth. The strong differential velocity Uy at 5A contributes

to C8° The results of these two alternative approaches are essen-
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tially identical except for an expected slight difference in the value
of du/8z at borehole ZA‘;. The interpolating curves shown in
figure 20a are those resulting from the extrapolation of borehole
4A, All succeeding results are also calculated on this basis,

The iterative cycle (fig. 19) was programmed for computa-
tion on the IBM 7094, the basic formulae for step 1 being equation
(14), for step 2 being equations (13), and for step 3 being equations
(15), 16), and (17). Calculations were carried bout on the smoothed
borehole profiles (figs, 16 and 17) at five-meter intervals, The
continuous curves of the smoothed profiles were represented in the
computer by coordinate values spaced at five-meter intervals,
Coordinates at intervening depths were computed by interpolation.
For convergence it was required that at all points the change in
any component of velocity be less than 1 c¢cm yr_1 . This condition
was met after four traverses of the cycle., Execution time in the

7094 was 50 seconds.

B. Results of the Calculations
A feature of the computed velocity field is that the value for
the y component of velocity v predicted at the glacier bed is not
in complete agreement with what would be expected on the basis of
the requirement that the velocity normal to the bed be zero. This

comparison is made in table 9 (column 5). For this reason the com-



72

puter program was also run with a variation in step 1 which con-
strains v to have a vaiue consistent with the normal velocity re-
guirement at the bed. This was done by calculating v in the normal

manner by equation (14), and then modifying it as follows

2
(y-vy.)
vm(y) = viy) - (V(Yb) -vb) —= 5
(yb-ys)

where y, is the depth of the bed and v, is the required value of

b
v there. In this way the distribution of dv/dy = -(0u/0x) - (dw/0z)
as calculated from the interpolating functions determines the shape
of the depth profile of v, It is adjusted in order to achieve the
proper value at the bed. The square of the ratio (y- y‘s)/(yb - ys)
was used in order to concentrate the correction to v at the deeper
levels of the boreholes, The difference between the results for
u, w, and their derivatives computed by the modified and unmodified
versions of step 1 are negligible compared with the measurement
errors of the surface displacements and differential displacements
upon which they depend. Only the values of v are significantly
different. The modified solution is no longer consistent with the
condition of incompressibility. The degree to which incompressibility
is violated gives an indication of the uncertainty in the evaluation of
811&/8:; and 8Wd/8z as is discussed in part C of this chapter.

In the discussion of the distribution of welocity below and in
Chapter VI, the results of the modified calculation are used, since

the resulting v is expected to be more accurate. Since a similar

" modification of 8u/dx and 9w/dz cannot be unambiguously made,
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" the unmodified solution, which is internally consistent and satisfies:
incompressibility, is used in the detailed calculations concerning

the distribution of strain rate made in Chapter VII,

Internal distribution of velocity

The distributions of u and w with depth, which were calcu-
lated at each borehole, are not presented, since they are similar to
the longitudinal and transverse differential displacement profiles of
figures 16 and 17. Contour diagrams of u on sections A and B are
shown in figure 22, These diagrams better illustrate the relation-
ship of the velocity u between the various holes, and give a picture
of the areal distribution of observed longitudinal velocity in the cross
sections, The contours were drawn through the points calculated to
have the appropriate velocity at the locations of the boreholes. They
were not constrained by the actual interpolation on Uy used in the
calculation, but were simply drawn in the spaces between boreholes
so that they looked reasonable., (They also define another set of
possible interpolating functions for Uy similar but not identical to
the set actually used. This again illustrates the basic uncertainty in
the interpolation.) Marginward extension of the diagrams beyond the
limits of the borehole array was made on the basis of the results of
the surface survey. For comparison a contour diagram for a
theoretical distribution of longitudinal velocity, as calculated by Nye
(1965), is also included (fig. 23),

w and v are presented in the flow diagrams of figure 23,

A A ..
An arrow represents the vector vy + wz evaluated at the origin of
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the arrow. The‘ arrows thus illustrate the pattern of flow normal to
the longitudinal d:’L:t-ectionf Arrows were also plotted at points in the
speces between boreholes. w and v were each interpolated by
drawing smooth ‘curves through the calculated values at the bore-

holes, The smooth curves for v are shown in figure 24,

Distribution of longitudinal strain rate

A contour diagram of du/dx (fig. 25) gives the areal distri-
bution of longitudinal st:t"ain rate on a section half way between
sections A and B, where this quantity is best determined. The depth
distributions of 8u/8x in thi:z intermediate section at lines 3, 1,

and 2 are also presented (fig. 26).

Depth distribution of strain rate at borehole sites

The distribution with depth of the tensor components of strain
rate for each borehole is presented in graphical form in figure 27,
The strain rates are straightforwardly calculated from the velocity
gradients computed in the iterative calculation described above,
except for the lack of computed values of 9v/0x and 9v/dz. Because
of the indirect manner in which v enters into the calculation of u
and w and the actual smallness of these derivatives, the assumption
that 8v/9x = 8v/=z = 0 has no significant effect on the values calcu-
lated for u, w, and their derivatives with respect to y. Since that
assumption leads to considerable simplification in the calculations,
it was adopted., These quantities, however, enter directly into the

tensor strain-rate components. In order to evaluate 9v/0x and
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dv/8z, several methods present themselves, the most obvious of
which is to interpolate at given depths y on the values of v calcu-
lated at the borehole locations. As must be clear from the discussion
of interpolating procedures of the previous section, this can be a
tedious and uncertain process. It is noted, however, that the calcu-
lated values of v at the boreholes indicate that 8v/8x and 0v/8z
are approximately independent of depth. This interesting and per-
haps somewhat unexpected observation is discussed in Chapter VI-D
and illustrated in figure 25 and table 9. In view of this it is sug-
gested that 9v/0x and 9v/8z need only be evaluated at the surface,
To evaluate these quantities, instead of interpolating on the values of
v as determined by triangulation, which are subject to relatively
large measurement error, 9v/dx and 9v/08z at the top of each bore-
hole were chosen on the basis that the shear strain rate parallel to

the local glacier surface is zero (iceey € = 0), The

X!Yl = ey_lzl

remaining components of strain rate in the primed coordinate system

15€ ,.1) are known from the surface strain-rate

e e e
( 13 Z'Z" X'Z .y.y_

x'x

measurements and the condition of incompressibility. Thus

1 1 |
Sy = 5 (Bu/dy + 9v/0x%) andr Sy = -z(aw/a_y + 8v/8z) can be calcu-

lated at the surface from the usual rule for transformation of tensor
components under a coordinate transformation. If the transformation
from the (x,y,z) to the (x',y',z') system is described by x;= aijxj

and the corriponen’cs of strain rate with respect to the primed system

are denoted as é)’ij’ then
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Bv(ys) Bu(ys)

ot

5% - By T 22312528
(18)

av(ys)’_ ] dw(y,) ‘s .

5z oy 212253

Taking at each borehole dv(y)/0x = Bv(ys)/ax and dvl(y)/dz = Bv(ys)/az
all nine velocity gradients are known over the complete depth and the

tensor strain rates can be calculated,

C. Accuracy of the Calculated Components

of Velocity and Strain Rate

The accuracy of the calculated components of velocity u and
w can be estimated from equations (13a) with the use of the statisti-
cal quantitieé already computed for the borehole coordinates, and
estimates of the accuracy of 08u/8x, 8u/dz, dw/8x, 0w/9z, and v.
This is done simply by using the rules for calculating the variances
of sums and products. From the differentiated form of equations
(132) standard errors for du/dy and 9w/dy can be estimated in a
similar manner. As was the case in the computation of u and w,
the estimation of the errors is a circular process. Since, however,
the contributions to errors in u and w from errors in v and in
the x and z gradients of velocity are of the nature of small cor-
rections to the primary contributions coming directly from the error
in the borehole coordinates, the estimate of error for u and w and
their y derivative is only weakly dependent on the errors in these

quantities, Thus the standard error in u and w can be estimated
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using liberal estimates for the‘ standard error for these secondary
quantities. In this way the standard errors for u and w will be .
slightly overestimated. After thus evaluating the errors in u and

w, standard errors for 8u/dx, du/dz, dw/dx, d9w/dz, and v can

be calculated and checked against the original estimates. Following
this plan, standard errors cru(y) R crw(y), Gau/ay’ GBW/B;}’ are calcu-
lated assuming Tou/ox = "8u/8z = “ow/ox = Tow/dz 0.004 yr—1 ,

and ¢ =0.5m yr_i° In addition, values of |8u/8x| = 0,02 yr_i,
|ou/0z| = 0,16 yr-i, |ow/8x| = 0,02 yr_i, |ow/0z| = 0,01 yr-i, and
v=4m yr“1 were taken to apply at all depths., —é— xf(y) +xi(y)) /2=25m,
-% (zf(y)+zi(y)) =1i.5m, % (yxf(y) +yx.(y)) = 0,10, —%(yzf(y)‘l-yz.(y» =0,02,

1 1

1 1

12(y (- ; - 12(y - _ -
> 55 yXf(y) yXi(y)> =0.0016 m™", and 3 5 \/Zf(y) yzi(y)> = 0.0006 m
are also taken to apply at all depths. Then utilizing the standard
errors computed far the surface intersection, the integrated tilts,

the local tilt, and the slope of the tilt profile in Chapter III and

Appendix II, the following formulae are obtained:

olly) = (0.22)% + (0.0217)% (y/m) m? yr~°

o2 (y) = (0.22)% +(0.0235)° (y/m) mZyr?

- -1
Tou /oy = 0+0019 yx
- = 0.0020 yr
aw /9y ¢ y

Even though maximum estimates of the above secondary quantities

were applied uniformly at all depths, the depth-independent part of
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the estimates for o*i and o-i are almost completely dominated by
the standard error of 0,20 m estimated for the location of the sur-
face intersection of the boreholeo. In this calculation the depth depen-
dences in o’i and U\Z;v come entirely fr.om the standard errors in
differential léngitudinal displacement (O.;OZi?w[y) and transvel‘;se
| displacement (0. 235Vy). The greatest contribufion to the standard
error in 0u/dy and dw/B8y is, as expected, the error in the com-
ponents of tilting rate (0,0015 yr-i and 0.0019 yr—i respectively).
Thé accuracy of éxy and éyz depends on the accﬁracy of
9v/8x and 0v/dz, as well as on that of du/dy and 8w/dy. In calcu-
lating éxy and éyz it was assumed that 8v/8x and 09v/3z were
constant over the full depth of the glacier, and had values required by
the calculated values of 8u/dy and 8w/8y at the surface under the

condition that e 1 = = 0 at the surface, Thus, unless the ice

x'y' T Sy'z!
is strongly anisotropic at the surface, the errors in 9v/8x and
dv/9z will be identical in magnitude and opposite in size to the errors
in 9u/dy and 8w/dy, so that in the calculation of éxy and éyz the
errors cancel. However, at such a depth that the calculated values of
9u/dy and dw/dy are relatively independent of the values calculated
at the surface, no such cancellation can be' expected and the errors
can add. Such a depth would be between 50 and 100 m., If the error
in 8u/dy and Ow/dy at the surface is taken to be twice the normal
value of 0,002 yr—i , as suggested in Appendix-II because of edge
effects in the definition of the data smoothing curves, then at depths

greater than 50 to 100 m one could expect a standard error in the

strain rates °exy and éyz of 0.0023 yr—l. as long as 8v/8x and
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9v/8z are in fact independent of depth, This last condition is valid
to within £ 0,003 yr-i as indicated by observations shown in table 9
(column 6) and figure 24, “Including this in,the calculation gives a
standard error of about 0.003 yr-1 for éxy and éxz'

The error in the x and z gradients of u and w is now con-
sidered. There are two basic sources of uncertainty in these quanti-
ties., The first is the uncertainty in the values of u and w at the
borehole locations. The second is the uncertainty involved in the
interpolation used to estimate the gradients. The first source is open
to direct quantitative evaluation. The second cannot be directly
evaluated.

The contribution from the first source can be roughly esfimated
by considering the effects on the calculated gradients in Uy and w3
in terms of simple differences, If there are adjacent boreholes on
either side of a borehole at which a velocity gradient is to be evaluated,
then the gradient is determined approximately by a central difference,

The error in the evaluation of the difference is approximately

= Vv2/300, which gives

o
aua/axﬁ o

= = 1/2 -1
"aud/ax(y) = “aud/az(y) = 0,0018(y/300m) /“ yr

and

"awd/ax(V) = and/az(y)= 0.0019(y /300 m)*/2 et

If there are not boreholes on both sides but only on one side, then the
gradient must be approximated by a non~central difference, The

experimental error in evaluating such a difference will be approxi-
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mately twice as large as those cited above. To make a more
accurate assessment of the effect of small variations in u, and w3
at each of the boreholes on the calculated gradients of Uy and Wy
requires use of equations (15) and (16). In view of the inability to
evaluate directly the contribution from interpolation error, such
refinement is not worthwhile, The above estimates for the error in
the gradients of differential velocity and the estimates for the sur-

face strain-rate components give

ggxz(y) = (0‘0001)2+(§17{E )2 God=,) v=°

o'éxx(y) = o-zzz(y)= (0.001)2+(k2) _3_(¥(—)—r_ﬁ) yr-z
where 0,002 < k < 0,004 depending on to what extent the borehole
is surrounded by other boreholes.

Although the interpolation error cannot be directly estimated,
some idea of the average error in the sum (du/8x + 8w/8z) canbe
obtained from constraints placed on 8v/8y by v determined at the
surface by triangulation, v at the glacier bed as required by the con-
dition that the velocity normal to the bed be zero, and the condition of
incompressibility. As is shown in table 9 (column 5) the value of
9v/dy computed from (8u/dx + dw/8z) and integrated over the depth
of the glacier is not in agreement with the above conditions. The
disparity is on the average about 1 m yr-l. Errors in estimating v
at the glacier bed on the basis of the normal velocity conditions (Yb of
table 9) and inthe measurement of v at the glacier surface (vs of

table 9) must also contribute to the differences., If, however, it
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is assumed thﬁt the sole source of the difference comes from errors
in (8u/dx + 0w/dz) = - 8v/dy an upper limit of 0,003 yr™! can be
placed on the error in this quantity averaged over the depth of the
glacier. This value is consistent with the estimates of oy, and

oe, calculated with interpolation error neglected, whichm;uggests
th:tzthe additional interpolation error is not large.

In Chapter III a standard error of 0,35 m yr-1 was estimated
for v at the surface, The bed slope with respect to the x and =z
axis is known to an accuracy of about 0. 5° which indicates that v
at the glacier bed is determined to within 0.5 m yr_i. Since the
distribution of v was constrained at both the surface and the bed,
the uncertainty in the intervening space should not greatly exceed
0.5m yr"1 .

The estimated errors of the various flow parameters are

summarized in table 10,
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CHAPTER VI

INTERNAL DEFORMATION: INTERPRETATION AND
COMPARISON WITH EXISTING THEORIES

The distributions of velocity and strain rate, as calculated
and presented in Chapter IV, are the first direct observations which
give a coherent picture of internal deformation over a significant
portion of a complete valley glacier cross section. In this chapter
significant features of the pattern of flow are described and inter-
preted. In particular an attempt is made to distinguish those features
which could be expected to be typically exhibited by flow of valley
glaciers from those which result from influences peculiar to the
cross section studied.

The main features of the distribution of longitudinal velocity
are: high sliding velocity over the central portion of the glacier,
low sliding velocity at the margins, stronger shear strain rate near
the margins than at the base of the glacier in its central portion, and
contours of constant velocity, which are approximately semicircular
and have shapes significantly different from the cross section bound-
ary shape. Transverse variation of water pressure at the glacier
bed is suggested as a possi’ble cause of the greater sliding velocity in
the center of the glacier as compared to the margins. The observed
pattern of flow is considerably different from that c‘alculated by Nye
(1965) for a cross section of similar geometry. The distribution of
longitudinal strain rate shows that the deformation field is not com-
pletely two-dimensional.

The observed pattern of lateral flow is discussed and shown
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to be compatible with the lateral flow which is neces sary to maintain
equilibrium of the surface at the margins of the glacier. The eleva-
tion differences associated with the curved transverse surface pro-

file are sufficient to drive the flow,

A. Distribution of Longitudinal Velocity

The important features of the distribution of u are illustrated
in figure 22. The manner in which the diagram was constructed is

discussed in Chapter V,

Sliding Velocity

One of the most striking features shown in figure 22 is the
generally high basal sliding velocity, which persists across most of
the width of the glacier in both sections A and B. This fact was
anticipated in Chapter III-E, where the differential displacements in
the boreholes were compared to their surface displacements. The
contribution of basal sliding velocity to surface velocity at the center-
line of sections A and B was 81 and 87% respectively. The dominance
of the contribution of basal sliding velocity to the surface velocity
at a given longitudinal line is only slightly decreased toward the mar-
gins. This is supported directly by the fact that the basal sliding
velocity is still 70% of the total surface velocity at the location of
borehole 5A and indirectly by tile additional constraints placed on the
velocity contours outside of the borehole array by the surface meas-
urements. A zone of particularly high sliding velocity is centered
around line 2 in both sections A and B.

In contrast to the high basal sliding velocity, which persists
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over most of the width of sections A and B, is the relatively small
marginal sliding velocitjy at the surface on both sides of the glacier
(Chapter IV-A). On the northwest margin the ice velocity is very
close to zero. On the southeast side the velocity at marker 7A is
about 60% of the centerline velocity. Although direct measurements
do not extend to the margin, simple extrapolation indicated that the
marginal velocity must certainly be less than a few meters per year
(fig. 8).

The large transverse gradients in the sliding velocity implied
by the high basal velocity and low marginal velocity are particularly

significant,

Shear strain rate and shear stress at the bed

A significant manifestation of the relative strength of the
basal and marginal sliding velocities is that the marginal shear strain
rate (Bu/az near the valley sides) is greater than the basal shear
strain rate (du/8y at the valley bottom). This fact is easily noted by
observing the relative spacing of the velocity contours in figure 22a.
It indicates that the glacier is being supported to a greater extent by
"friction" at its margins as compared with "friction" along its base.
A very important consequence of this condition is that the basal
shear stress at the centerline, calculated by use of the shape factor
appropriate to the glacier cross section, will be over estimated,
since such a calculation only gives the average shear stress along
the ice-rock contact. Setting the shear stress TXY at the centerline

to be equal to the average shear stress at the ice-rock contact gives
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where f is given by the area A of the cross section divided by the
product of the length of the ice-rock interface P times the maximum
depth H. For the Athabasca cross se'étion f is 0.58, A more
appropriate shape factor £ based on the observed strain rates seems
to be about 0.5, as discussed in Chapter VII. This is a value which
would be estimated, if the calcuation of f were made on the basis of
the shape of the roughly semicircular velocity contours rather than

the shape of the channel cross section,

Possible causes of sliding velocity behavior

The persistence of a basal velocity amounting to 70 to 90% of
the surface velocity across most of the glacier width probably repre-
sents a contribution to the overall glacier motion much greater than
is typical, Previous borehole experiments indicate that although
basal sliding is highly variable, it contributes on the average about
50% to the total surface velocity (Kamb, 1964). Even though the ob-
served high basal sliding velocities appear to be anomalous, the
observation that the basal sliding velocities are greater than the
marginal sliding may be typical of the pattern of flow in valley glaciers,
From the observations in one glacier cross section, which are pre-
sented heré, certainly no conclusive staternents can be made, How-
ever, the fact that the effect is manifested on both sides of the glacier,
that the transverse gradients in sliding velocity are much greater than

the longitudinal gradients, and that the variation in sliding velocity
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is apparently monotonic with dist-ance away from the centerline of

| flow except for the slight perturbations at line 2 suggest that the
distribution is of general significance, rather than being the result
of random perturbing influences. Additional evidence that basal
sliding may typically exceed marginal sliding in valley glaciers
comes from surface measurements on several glaciers, which show
that marginal sliding velocities are generally cbnsiderably less than
50% of the centerline surface velocity, a fact pointed out to the author
by B. Kamb (personal communication). Specific examples are given
by Meier (1960, p. 26, fig, 24) for the Castleguard sector of the
Saskatchewan Glacier, where marginai velocity is less than 20% of
the centerline surface velocity for four transverse profiles spaced
roughly 094 km apart along the glacier., Other examples are Blue
Glacier (Meier et al., unpublished), Rhone Glacier (Mercant‘on,
1916, map no. 3) and Austerdalsbreen (Glen and Lewis, 1961),

It is not unreasonable to expect that in the event basal sliding
significantly exceeds marginal sliding, the shear strain rate (and thus
shear stress) near the margin will exceed the shear strain rate (and
shear stress) at the valley bottom, as is the case in the Athabasca
sections, This should be the case at least if the half width of the
glacier cross section does not greatly exceed the depth.

If these effects are indeed typical of the flow of valley glaciers,
there must be something to be learned from them about the sliding
process and conditions beneath the glacier which affect it. Since
there is relatively lower sliding velocity at a location of relatively

higher stress, thée cause must be transverse variations in the param-
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eters which affect the sliding velbcity vs. stress relation, rather
than the internal distribution of stress which which would occur if
such parameters exhibited no lateral variation. The two parameters
which theoretical considérations indicate are fundamental in deter-
mining the sliding response to an applied stress are macrotopography
or roughness of the bed and the difference between the average nor-
mal stress at the ice interface and the pressuré in any water existing
between the ice and rock (Weertman, 1964; Liboutry, 1968). High
roughness and high pressure difference will impede the sliding.

The effect can possibly be understood on the basis of the
lateral variation of the water pres suré at the bed, If the normal stress
at the ice interface is assumed to be equal to the lithostatic overburden
pressure, then the pertinent difference in pressure can b¢ represented

as
Ap(8,2) = p g 8- (p - pyg Hiz)

where 2z represents the location in the section, H(z) the depth
there, and § the level of the water (see fig. 29). It is assumed
further that there are no z pressure gradients in the water layel;c
P and pi represent the density of the water and the density of ice,
Starting from the deepest part of the section (which is taken to be

z = 0) the pressure difference Ap increases toward the margin and
reaches a maximum at the point 126’ where the ice;bed rock contact
intersects the water surface. Beyond that point it decreases to zero
at the glac-ier margin, By examining r(8) = Ap(é,za)/Ap(G,O) s, which

is plotted as a function of water level § in figure 30, it is seen that
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the value of the pressure difference at zg can be considerably
larger than the value at the centerline when the water level is high
(ioe., as & approaches 0,1 H), In this event, in a typical glacier
cross section the region of maximum Ap would be very close to

the margin, and its retarding effect could possibly produce a smaller
marginal sliding velocity than that occurring at the center line. The
effect thus produced would be approximately the same on both sides
of the glacier, and would show the largest gradients in the sliding
velocity where the valley sides are steep.,

That sufficiently high water levels actually exist in valley
glaciers is not known. Monitoring of the w‘ater level in the Athabasca
glacier boreholes has shown that during the summer, water pressure
in hydraulic systems deep within‘ the glacier is sufficient to maintain
water levels at heights less than 40 m below the surface., Although
these pressures do not necessarily reflect the pressure at the glacier
bed, they give indication that high water pressure at the glacier bed
is not an unreasonable expectation, Whether existing water stands
could produce sufficieht amplitude in the lateral variation of Ap to
produce the effect cannot be tested, since glacier sliding theory is
not yet developed to the point where the effects of water pressure can
be quantitatively assessed. However, the large simrt-period vari-
ations in surface velocity observed on this and other glaciers, which
are correlated with variations in stream discharge at the glacier
snout and thus presumably with variations in the pressure distribution
in t\he subglacial hydraulic system, indicate that water pressure can

have a strong effect on glacier sliding. 'This supports the plausibility
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of the hypothesis,

Several features of the distribution of sliding velocity are,
however, incompatible §vith this hypothesis. The gradient in sliding
velocity between lines 3 and 5, ;Jvhich is well documented at section
A, seems to be much greater than would be expected thére on this
basis, since the transverse slope of fhe bed is small, At a corre-
sponding location on the other side of the section there is a maximum
in the sliding velocity and a low gradient. These features indicate
that variations in the other parameter (bed roughness) must also at
least contribute to, if not dominate, the distribution of sliding velocity,
A systematic difference in roughness between deeper and shallower

parts of the bed could conceivably arise through glacial abrasion,

Flux through the cross section

A parameter of hydrological interest is the ratio of the average
value of u over the cross section to the average value of u over the
width at the surface, that is (u) A/(u) s Calculation of (u) A from
figure 22a gives the value of 40,5 m yr_i; a value of 36,5 m yr_1 is
calculated for (u) s Thus (u)A equals 1,11 (u) g At least in this
case calculations of the ice flux based on the assumption that the mean
velocity u in the cross section is equal to the mean surface velocity
will not be grossly incorrect, The value of u averaged over depth at
the centerline, (u)H has a value of 49.7 m yr—i. This is consider-
ably greater than the average of u over the cross section; (u) A/( u)H
is 0,82, The geometrical average (u)G =y (u) H(u)s » which has a

value of 42,6 m yr_l; gives a better approximation to (w) A than
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either (u}H or (u)s considered singly,

Total ice flux through section A is computed to be 1,09 X 107

3 -1
m yr °

Width ratio of velocity contours

Another significant feature of the distribution of longitudinal
velocity represented in figure 22 is found by considering the width
ratio of the velocity contours. The width ratio R is half the distance
between the surface intersections of a contour divided by the maxi-
mum depth of that contour. The width ratio systematically decreases
as one considers contours of increasing velocity. The impﬁrtant fact
to be noted here is that the width ratio passes from values greater
than one to values less than one, as is shown in table 11, The sig-
nificance of this becomes apparent below when the observed distri-
bution‘ of u is compared to the theoretical distributions computed

by Nye (1965).

Comparison with solutions of Nye

Nye (1965) computed numerical solutions to the problem of
steady rectilinear flow of an isotropic material obeying a power law
(n = 3) in cylindrical channels of various cross sections., He con-
sidei'ed only symmetric cross sections, with sliding velocity inde-
pendent of location in the section, although these conditions are not
essential to his numerical method. The fundamental assumptions
on which the numerical treatment is based are that of rectilinear

flow (in which u = u(y,z) and v = w = 0) and homogeneity of the
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rheological properties, Nye's solution for a parabolic channel of
width ratio 2 is shown 1n figure 23, Such a channel approximates
quite well the actual cross sections A and B of the Athabasca
Glacier, except for the protrusion on the southeast valley wall, The
solution has been scaled to cover approximately the observed range
of velocities,

Nye's éolufion shows features which contrast strongly with
the observed pattern of u. Clearly the drastic difference in the
boundary condition a‘tssumed by Nye and the boundary condition
appropriate to the Athabasca sections contributes very strongly to
this difference. The most obvious incompatibility between the
theoretical and oBserved distributions is that the relative strength
of marginal to basal shear is opposite for the two distributions. A
difference in the quantity (u) A/(u) 5 also exists, Nye pointed out
that for many of his solutions the ratio was close to one, For the
parabolic channel of width ratio 2 his result was 0.980, which is
distinctly smaller than the observed value of 1.11, These differences
could probably be rectified by applying a more realistic velocity
boundary condition in the theoretical treatment.

A more basic incompatibility can be discerned when the width
ratios of the observed contours are considered., By considering the
solution to the flow problem for boundaries having the shape of the
observed velocity contours, the problem in terms of geometry and
boundary conditions becomes exactly that considered by Nye. Con-

sider section A, where the velocity contours are nearly symmetric,
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Nye enunciated some principles based on symmetry which relatéed

the solution in a channel of width ratio R to the solution in a channel
of width ratio 1/R for certain classes of boundary shai)es, These
are particularly simple for a boundary with R = 1, which has sym-
metry such that there is nothing which distinguishes the planes z = 0
and y = 0. This is the case when the boundary has reflection sym-
metry about the y axis and about the lines at * 45° from the y axis,
In this event clearly all velocity contours interior to the boundary
must have width ratios equal to 1. Since the contour for u=46 m
yr—1 has width ratio 1, all contours interior to this one should have
the same ratio 1. Table 11 show that this is not the case for the
observed velocities, This indicates that the flow is influenced observ-
ably by either the longitudinal strain rate 9u/9x, by gradients in v
and w, by longitudinal stress gradients, or by inhomogeneity in the

rheological properties of the ice,

B. Interpretation of Surface Values of 9u/8y and 9w/dy

If the ice is isotropic, the shear strain rate components éx'y’

and éy'z’ must be zero at the glacier surface, since TX,Y, and Ty,z, »

are zero there, Thus, under the assumption of isotropy, non-zero

du'/dy' and 8w'/dy' must be a result of rotation acting at the sur-

face (see Chapter IV-D), This hypothesis is nowtested Quantitativelyo
If 9u'/dy' and 8w'/dy' are caused by rotaﬁion; then there

must be gradients in the y' component of velocity v', such that

dv'/ox' = - Bu'/dy' and 8v'/8z'=-3w'/dy'. These conditions give



éxlyl = éy'z' =0

° _ 8u' _ av'
x'y' T By T T 8x
° __ ow' ov'

wy'z' T T dy" T 9z

9u'/dy' and 9w'/dy' can be calculated from 8u/dy and 8w/dy as
given by borehole tilting/, knowledge of the surface strain rate com-
ponents, and standard transformation procedures. In fact the differ-
ences between the quantities in the primed and unprimed system are
much smaller than the measurement errors because the difference
in axis orientations is so small. (This can be seen in figure 28,
where the values of éxy and éyz attain values very close to zero
at the surface even though the exact condition is é L1 = é =0,)

x'y y'z'
Independent estimates of w_, , and 1.1 can be made in
x'y y'z
two other ways, First this can be done by appropriate direct differ-
encing of v' as determined by triangulation measurements to get
dv'/0x' and 9v'/9z'. A second approach is to use the distribution

of u' as determined by triangulation and estimate 3v'/0x' and

8v'/9z' from the surface slope gradients by using the following

formulae:
8V' |8ax'
ox' %"
9v" oa_, da
- u' — ul N A
9z ox oz

These follow simplv from (1) the requirement that a borehole element
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near the surface and initially normal to the surface must remain
normal to the surface, and (2) the assumption that the surface is in
equilibrium., The surface slope at points of intereét was computed
from the topographic map {Topographic Survey, 1962) by averaging
over a centered length of approximately one glacier depth. Slope
gradients were similarly calculated from the difference in slope over
an interval of one glacier depth centered on the point of interest.
Comparisons of the three independent estimates of ;)X,Y, and

, are given in table 12. In the table, values of Zo 11 and o .
X'y y'z

Wty
as determined by triangulation survey are given only in the cases
where central differences could be used, For the most part c'oX, .

is small, and there is agreement between the three independent esti-
mates within the tolerance allowed by the measurement errors. In

the case of &)Y,z, where the values are small there is agreement as
was the case for wx’y“ For those cases where &y'z' estimated

from the boreholes takes on values considerably different from zero
the agreement between the independent estimates is not complete.

In general the estimates from borehole tilting give the largest rotation
rate, from triangulation an intermediate value, and from the surface
slope the smallest value. The_'latter two .estimates agree to within

"the measurement errors., The first two estimates are also compatible,
The consis’tent difference in magnitude of the effect between the various
estimates of Zoy'z' seems to be more than a matter of chance, The
consistently smaller rotation rates computed from the sufface con-

figuration suggest that the surface (represented by the 1962 topographic

map) may not be in equilibrium with the préSent regime of flow, and
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that if this regime persisted, the surface would ultimatelf develop
stronger gradients in the transverse variation of longitudinal slope.
There is a difference in scale between the first estimate (r) and the
other two estimates (t and s). Rotation estimated from the surface
tilting of the borehole represents an average over an interval in z

of less than 50 m, whereas the other two estimates represent
averages over an interval in z of approximately 300 m,‘ (The agree-
ment between the first and second estimates is improved in the cases
of boreholes 3B and 4A if one considers the value of dw/0y at a depth
of 50 m, For 3B 0w'/dy'= -0,008/yr; for 4A 8w'/dy' = 10,005 /yr.
The comparison is unaffected by this procedure at the other bore-
holes.) It is not clear why such a difference in scale should lead to

consistently different results,

C. Distribution of Longitudinal Strain Rate

All existing theories of glacier flow require the longitudinal
strain rate 9u/dx to be eitfxer zero or constant over the glacier
thickness, In the Athabasca Glacier cross sections, the distribution
is far from being constant. Figure 26, which is a contour diagram
of 8u/dx half way between sections A and B, where this quantity is
best determined by the data, shows a rather complex distribution.,

A significant feature of the distribution is that there is a general
tendency for the compression rate (—Bu/ax) to decrease toward the
glacier bed,

The compression rate decreases with depth at all three lines
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(1, 2, and 3), where depth information is available (fig. 27). In all
three cases the trend with depth is approximately linear. Such a
linear variation with depth could be produced by uniform bending
about the z-axis. Approximately uniform bending would probai)ly
occur if there were a downstream change in longitudinal curvature
of the bed, accompanied by a similar change of curvature of the flow
lines, as illustrated in figure 31, The bending rate is given by
a&x.y,/ax'. Several estimates of bending rate can be rpade by
differencing the various estimates of &’x'y' at the glacier surface,
which were made in the previcus section, As was the case in esti-
mating the values of (:)X'Y' and ELY.Z., there is considerable depend-
ence of the result on the method by which it is calculated. For the
case for which a’x'y' was estimated from the distribution of ’surface
slope, awx.y./ax' becomes approximately u'(azax,/ax'z), which
shows the explicit dependence on the curvature gradient. This rela-
tion can be applied at the glacier bed as given by Paterson (1962),
as well as at the surface,

At a given location on the glacier surface a uniforfn bending
rate acting there should produce over the depth of the glacier H a

total difference in the longitudinal strain rate
A (au)ws(_.r =+—5L H
ox ox

In table 13 the observed difference in du/0x at flow lines 1, 2, and
3 is compared with expected values from bending based on the various

estimates of bending rate. The values are in general too small to
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completely account for the observed difference in 9u/dx. At line 1
the estimates based on the values of v determined by triangulation
and the curvature gradiént of the bed at the glacier centerline are
compatible with the observed A(du/0x). There is,\however, con-
siderable uncertainty in each of these quantities, so the agreement
does not necessarily substantiate that bending can account com-
pletely for the observed A(du/dx)., It does seem probable, however,
that bending does contr_ibufe at line 1. This may also be the case at
line 2. ,Thére seems to be no evidence that bending contributes at
line 3,

A transverse variation of 9u/dx could also be produced by
uniform bending about the y axis. The traverse variation of 9u/dx
across the glacier is incompatible with such an interpretation. In
addition, since the glacier channel is straight, there is no apparent
reason such bending should occur.

The areal distribution of 8u/dx on the cross section is not
compatible with a uniform bending rate affecting the whole section,
since 9u/08x is not a linear function of y and z. This fact is of
general significance since linearity of 8u/0x is a general require-
ment for the strain-rate field to be independent of x (Appendix III),
Thus the distribution of 8u/8x illustrates the three-dimensional
character of the deformation field and the corresponding equilibrium
problem. The rather complex distribution of 8u/0x is probably a
result of a number of factors such as those acting to maintain equili-
brium of the glacier surface, the bending effects citea above, and

constraints placed on the longitudinal variation of u at the glacier
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bed by the parameters which determine the slip velocity,

D. Distribution of Components of Velocity w and v

Several observational facts suggest that a transverse com-
ponent of velocity w commonly exists in valley glaciers in the
ablation region (Sharp, 1960). Direct measurements of surface
velocity near the margins of the Saskatchewan Glacier (Meier, 1960)
showed the existence of a strong marginward component of velocity,
The fact that striations on recently exposed sides of glaciated valleys
show a tendency to run up the valley walls indicates that marginward
flow often exists at depth., The presence of large, crested lateral
moraines on many glaciers suggests that some process for the con-
centration of debris has acted. General marginward flow could
achieve such concentration., The ty’p‘ically convex transverse sur-
face profile of valley glaciers in the ablation region must tend to
drive marginward flow,

There are obvious considerations based on equilibrium of
the glacier surface and the viscous incompressibility of ice which
show why a transverse component of velocity directed toward the
margin should exist in the ablation region of a valley glacier., Some
of these are briefly discussed by Nielsen (1955), After describing
the observed pattern of transverse flow in the Athabasca sections
‘these considerations are discussed in some detail, The distribution
of the transverse component of velocify w and the nox;mal component

v are illustrated in figure 24, which was constructed as discussed



99

in Chapter IV,

General description

The distribution of w gives striking confirmation of the
existence of marginward flow. Note that most of the lateral transport
occurs at depth, This feature is particularly noteworthy in that it
brings to mind the hypothesis ‘of extrusion flow as put forward by
" Demorest (1943), The pattern is symmetrical, except for the
relatively ‘large transverse velocity at borehole 1A, which is unex-
pected because of the close proximity of hole 1A to the center of the
channel, The magnitude of the transverse motions is not negligible
when compared to the differential longitudinal component of velocity.
The contribution of gradients in w to the overall strain-rate level
is considerable. It exceeds the contribution of the longitudinal strain
rate 9u/dx over considerable depths in several of the boreholes
(figs. 28).

The presence of a component of velocity v at the glacier sur-
face is required in order to maintain the elevation of the surface,
Since the longitudinal slope of the glacie rr bed with respect to the x
axis and the longitudinal sliding velocity are in general nonzero, the
condition that the velocity be normal to the bed gives vectors which
are not parallel to the cross section perimeter,

A surprising feature of the distribution of v is that the
difference between v at the glacier bed and at the surface is inde-
pendent of location (see table 9, column 6), The sigﬂificance of this

is that variations in v at the glacier bed are manifested strongly at
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the surface with relatively little damping. This is well illustrated

for the case of transverse variation of v in figure 25,

Cause of lateral flow

For the purpose of getting deeper insight into the pattern of
transverse flow, some conditions on the average of w over the depth
of the glacier H(z) at a given location 2z in the transverse section x,
1u en H(Z)

(w) =4 w(x,y,z) dy
H(z) ~ H(z) b ryo
can be derived. The main tool is the condition of incompressibility,

which in integral form requires that

1 au — _@_}_—1 — “o." :
A <'5;c>A'“S‘S. 5% dy dz = S.C'V n' a4 (1)

i

where A' is any subarea of the cross section with boundary C'. n'

is the outward pointing unit normal to C'. Using the notation shown

in figure 29, equation (1) can be applied to the area A(z) to give

(w) H(z) when the surface and basal values of v and w together with the
transverse slope of the glacier surface and bed are known. For sim-
plicity a cylindrical geometry, with planar upper surface (y = 0) and
with the generators of the glacier bed parallel to the x axis is con-

sidered. In this case :;K' = 0 on the bed, and equation (1) becomes

w
A(z)(%ﬁ) Alz) = H(z){ w) H(z) + S‘z +vs(z) dz {2a)

where vs(z) is the value of v along the surface,
An immediate consequence of incompressibility is that in a
cylindrical channel the condition that (w) H(z) = 0 requires an un-

reasonable velocity distribution. This is shown by assuming
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(w) H(z) = 0 and observing what happens as z — W,, where H(z)—0.

For z = W+ equation (2a) gives

22) N vS(W+)(W+—z)
( x’A(z) A(z)
. A(z) . .
Note that lim —— = 0. Consequently, if there is non-zero abla-
z~’W+(W+ z)

tion _’at z = W+, then in order to maintain the elevation of the surface,
9u/dx must be infinite there. Under the stricter assumption that

w = 0 everywhere, the source of this problem is clearly illustrated
by direct integration of the differential form of incompres s‘ibility to

get

H(z) v_(z)
du R dulx,v,z) , _ s
{Bx! H(2)® H<z).§o o T THE)

Since the longitudinal strain rate has less depth over which to act
near the glacier margin where H(z) becomes small, the average
value of 8u /8x over that redaced depth must be correspondingly
larger. In a typical cross section the distribution of 8u/8x and
the accompanying u required to produce finite v, near the edge
would have the unacceptable feature of extreme gradients in the
marginal shear rate 8u/8z. Thus in the case of cylindrical channels,
W or more generally (w) H(z) cannot be everywhere zero in the
ablation (or accumulation) region.

An important consequence of equation (2a) concerning the
relative magnitude of 8w/8z and 8u/8x can be derived. First note

that equation (2a) when applied to the whole glacier cross section,

of area A = A(W_), gives the average value of 8u/8x over the com-
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plete section (Su/ax)A, which is required to supply the necessary
flux through the surface to counteract ablation.

w

1 + ‘
( e >A A gw v (z) dz

Differentiation of equation (2a) gives

d<w>H(z) ) o (z)

dz = H(z) (%) 1(z)
W
1 O + —Vs(z) H(z) < >H(zs
- —ﬁ—(—)j VS(Z) dz W + y
2 W f . (z) dz < >A
; w S
’ . (2b)

where ozT(z) = dH(z)/dz and is the transverse slope of the bed with
d .

respect to the surface, The value of e (w) H(z) 'S related to

( 8z>H( ) through the equation

aT(z) (wb(z) - (w) H(z)>

v 5 ‘
E—Z_<W> H(z) = é-lz—N) H(z)+ H(z) (2¢)

where wb(z) is the transverse sliding velocity at the glacier bed.

At z = 0, where VOIT = 0, equations (2b) and (2c) give

A Wv (0) (-Ql—l

) —
(32 mio)= "B w0y |t - EwW W,
f v (z) dz <8x>H
W ,

’a

(3)

Thus if the value of Vs “at the centerline is equal to its average value
over the surface and if 9u/9x averaged over the centerline depth

equals the average over the cross section area, then



103

5 ' 5 A
(32 Y100) = = 5% J1(0) [1 - E‘W]

For any reasonable cross section -I—?_V—f <1, so it can be concluded
that for the ablation. regibn where (au/aX)A < 0 the average value
of 8w /8z over the depth of the glacier at the centerline is extensile,
For a parabolic cross section, simple geometry shows A/WH = 2/3,
which gives |

-, 0w 1,0u

(522100 = ~3(5= 1)
Thus in a typical glacier cross section 9w/08z is not necessarily
negligible compéred to 8u/dx even at the centerline. This suggests
that the hypothesis of plane strain at the centerline of a glacier in the
ablation region may lead to errors of the same order incurred by
neglecting the longitudinal strain rate. In this regard it is important
to note that the magnitude of this effect does not depend simply on
W/H, but depends on the channel shape.

To investigate the size of the transverse motions equation (2a)
can be used under the simplifying assumptions that Ve is constant
across the section, and that 8u/9x is constant over the area of the
section, In a particular instance where these assumptions do not
hold the details of the distribution of (w) H(z) ™Y not be correctly
predicted, If, however, v is taken equal to its average over the
surface and 8u/8x equal to its average over the cross section area,
then good estimates of the size of the transverse motions can be

obtained, The first of these assumptions is approximately true on
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the Athabasca Glacier, and should hold on other glaciers, since
ablation rate is largely determined by elevation, a parameter inde-
pendent of location on a transverse section., Although, as the dis-
cussion of the previous section indicates, the distribution of longi-
tudinal strain rate can be far from constant, this assumption is
adopted for these estimates. In the case that 8u/8x decreases
toward the margins, as observed on the Athabasca Glacier, the
assumption of constancy will lead to an underestimation of the

required niarginward flow. With these as‘sumptions

) ) W
(AT A Vs
and ;
v W W .
- S + z  A(z)
ey w1 (7 - - 52 @

The distribution of (w) H(z) as defined by equation (4) is
illustrated in figure 36 for the class of symmetric boundary shapes

which can be described by
Ble/e
lzl
H(z) = H[l -(W+)

The types of boundaries which can be so described are extensive,
For example, parabolic cross sections are described by a =1, B= 2;
elliptic cross sections are described by a=2,p =2, As a becomes

‘large the cross section approaches a rectangular cross section. In

the case that a = i

v, W
+
(e =" F 'T,) (5
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that is, (w) H(z) is a linear function of z with

HK¥H@) . Ys_ YW 1 _ 1 ou
dz BH ~ A B+l T PB+2 9x

(Note, however, that when afT(z)¢ 0, d{w) H(z)/dz cannot be re-
lated to (8w/9z) H(z) without knowledge of the transverse basal

sliding velocity w, as shown by equation (2c)). When a«>1 for a

b
given (B, the valley walls are steeper, with infinite slope at the
margin, and the valiey bottom is flatter., The average transvers;e
motions are then, as expected, less than required for a = 1, Since
the walls are vertical at the margin, (w) H(z) goes to zero as z
approaches W, or W_. Channels with o <1, for which the slope
at the margin is zero, could not be expected to maintain equilibrium
there, and clearly do not represent a situation actually occurring in
nature.

For the case of a parabolic cross section of width ratio 2
(i.e., W+/H = 2)

(W) H(z) =T Vs (Wz;)

Thus it can be concluded that in typical glacier cross sections,
transverse velocities on the order of the surface ablation rate must
be expected., The motion will in general be toward the nearest mar-
gin. The strength of the transverse motions, in the sense of an
average over depth, will be greatest near or at the margins.

Another variable of interest is the total transverse transport
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H(z)

a,(z) = Hz)(w) g = yo wix,y,2) dy

It can be shown under the assumptions leading to equation (4), that
q, = 0 at the margins, and that it has extreme vé,lues at the points
on the cross section where H(z) is equal to A/W, which is just the
average depth of the section. The distribution of g, is shown in

~figure 32,

Interpretation of observed lateral flux

Some of the features of the observed transverse flow in the
Athabasca Glacier can >e compared to predictions based on the
assumption of cylindrical geometry., To predict the value of
<8w/az) H(z) at the centerline equation (3) can be used. Ewvaluation
of (6u/8x>A and (8u/9x) H(0) from figure 26 shows that
(Bu/ax) H(0) = (Eu/ax)A = —0.01‘2 yr—i., From the measured surface
velocities VS(O) is -3.3 m yr-1 and the average of vs(z) over the
surface is -3,8 m yr_i. With these quantities and A/HW = 0,68,

equation (3) gives

1

¢ & -0.41 (28 = 0.005 yr~

- u
5z / H(0) = =/ H(0)

which is to be compared with the observed values of +0,005 yr“1 at
borehole 1A and 10,003 yr  at borehole 1B. Values of (w) ) 2
the various flow lines can be calculated by use of equation (5) with
=2 and W+/H = 2 corresponding to a parabolic channel of width
ratio 2. (Recall that the validity of (5) depends on the additional

~assumptions that Vg and 811(/8)( = (W/A)vS ai'e constant.) These
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are compared to the observed values in table 14, The observed
values in the table corresponds to the average of the values for the
A and B boreholes of a given longitudinal line, except at line 5
where the value of borehole 5A was taken. In general the agreement
is good except at line 1 where larger diéplacements are observed
than would be expected on the basis of these assumptions.

The very lafge transverse displacements observed at bore-
holes 1A ((‘w) H(z) = -0,97 m y'r-i) and 1C are clearly incorﬁpatible
with an interpretation in terms of a symmetric cylindrical channel
acted on by a uniform longitudinal strain rate. These effects must be
the result of some asymmetry in the bed configuration and the distri-
bution of longitudinal strain rate. Between lines 1 and 3 there is a
rather sharp change in the longitudinal slope of the glacier bed as
indicated by the differences in borehole depths at sections A and B,
At line 2 the longitudinal slope of the bed with respect to the x-axis
is about +2.0°; at line 1 it is about +1.2%; at line 3 it is about -1.0°,
Positive sign means the bed is more steeply inclined than the x-axis,
so that where the x-axis parallels the surface slope the glacier is
thickening down stream., Thus the glacier is flowing over what can be
described as a diverging ramp. This caﬁses a considerable lateral
gradient in the component of velocity v as shown in figure 24, and
would tend to produce a rotation at line 1 of the same sense as .the
observed 8w/8y in borehole 1A, Thus the large values of dw/dy
would be expected on this basis. What is apparently a greater
anomaly is the fact that the transverse flux is toward line 3, The

effect of the non-cylindrical nature of the bed just described would
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tend to produce a flux toward line 2, in order to maintain the glacier
surface level laterally., This is opposite in directio‘n to the observed
flux. Thus the condition of incorﬁpressibility would require that
du/dx between holes 1A and 3A be re'latAively extensile compared to
du/0x between holes 2A and 1A, In fact there is some evidenée for
| this as is shown in figure 26. Half way between sections A and B
the average of 9u/8x over depth at line 2 is -0,0016 yr—1 and at
flow line 3 is -0,0012.yr—1.
In order to make a more precise quantitative interf)retation of
the observed average transverse displacements it is necessary to
start with equation (1) and proceed without making the various assump-
tions which were made in the derivation of formulae (2) to {5). This
requires detailed knowledge of the glacier geometry and the distri-
bution of longitudinal strain rate in the cross section of ihterest.
Although rather extensive and reliable data on the glacier geometry
are available, there is a considerable area of the ice-rock contact
over which the sliding velocity is high, but where knowledge of the
divergence of the bed with respect to the surface is lacking. Thus
Ven' cannot be evaluated over a large portion of the bed. In figure
26 a distribution of 8u/8x for the complete glacier cross section
(A-B) is presented, However, over a significant portion of this
cross section near the margins éonsiderable extr:a;polation is involved,
For these reasons it is difficult to make exact quantitative compari-
son on the basis of equation (1) applied to areas A' which extend into

the marginal regions of the cross section. In addition, even in that

part of the section where direct measurements were made, the
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uncertainty in 9u/dx is sufficiently large to cause errors in (w) H(z)
of the same size as those produced by neglecting the longitudinal
divergence of the surfaée and the bed,

Some idea of the uncertainty involved is obtained by noting
that (8u/8x>A equals -0,012/year as computed from figure 26.
Under the assumption of cylindrical geometry a value of -0.017 yr_1
would be required to produce the observed flux through\the glacier
surface, This difference would indicate an error in the evaluation
of (Bu/dx) ,; the diffex;ence could also be made up by a veiocity into
a section 0f 0,9 m y:r_1 averaged over the length of the ice-rock
contact. In the center of the section, the flux across the bed profile
is mainly out of the section as shown in figure 24. Thus it would be
required that there be significant flux into the section in the marginal
portions, This is actually to be expected since the glacier is becom-
ing narrower in the reach of this section.

These considerations indicate that the good agreement in
table 14 is somewhat fortuitous. The assumption that 8u/dx is con-

1 and the

stant on the section and equal to lA fvs(z) dz = -0,017 yr~
assumption of cylindrical channel shape, which are inherent in
equation (5) have lead to errors which have to some extent cancelled
each other., Nevertheless the compérison indicates that the observed
transverse motions are compatible with those necessary to maintain

the elevation of the glacier surface as required by the viscous incom-

pressibility of ice.
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Transverse surface elevation differences

The details of the transverse flow pattern involving the actual
depth distribution of w, and the specific transverse profile, which the
glacier surface must assume in order to produce the requisite driving
stresses, is a difficult non-linear boundary value problem, which
will not be considered here. It is possible, however, to make a
simple order of magnitude estimate of the elevation difference be-
tween the central and marginal parts of the glacier surface, which
would be réquired, in order to drive the observed transverse flux,

Consider the problem, illustrated in figure 33, of a rectangu~/
lar region of depth H and width W, which is occupied by a ViSCO\.;S
material of viscosity m. At the top of the slab a sinusoidally varying

normal stress is api)lied,
T = -N'cos hz
vy

where N is positive and h = 2m/W. The shear-stress TXY 'is taken |
to be zero. On the other boundaries of the region it is required that
the velocity normal to the boundary and the shear stress parallel to
the boundary be zero.

This problem is different from the one of interest. Mbst
obvious is the difference in boundary shape. The boundary condition
fhat the shear stress parallel to the boundaries be zefo is, however,
more reasonable than might at first be expected. The actual profiles
of w show in genefal small values of 9w/dy (and éyz) at the bot-
tom of the boreholes, thus indicating that Tyz. is small (less than

0.05 bar). Also since the sliding velocities u, are high (40 m yr"-l)
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it could be expected that a value of Tyz much smaller than T

would be sufficient to produce the relatively small transverse sliding
velocities (3 m yr—1 maximum). The boundary condition applied at

y = 0 on the slab is also different thaﬁ the actual boundary condition
of interest. In the case of a real glacier the natural boundary con-
ditioﬁ is that the actual glacier surface, presumably convex upward,
is a stress-free surface. This condition is approximatéd by taking
the surface of the slab to be the mean elevation of the true glacier
surface. The normal stress on the slab surface is given by the weight
of the overlying material between the slab surface and the actual

glacier surface, thus

In general, the required surface configuration will not be sinusoidal.
It can be expected, however, that the actual elevation difference be-
tween the center and margins will not be strongly dependent on the
shape of the surface profile, The assumption that the material can be
described as a homogeneous Newtonian fluid is a considerable simpli-
fication. The effective viscosity at depth can be expected to be less
than that near the surface, as a result of the large strain rate associ-
ated with the longitudinal flow. An appropriate average viscosity is
taken.

The goal is to relate the maximum transverse flux to the nor-
mal stress amplitude N (and thus the glaciér surface profile) by

solving the equations of equilibrium, The details of the solution are
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discussed in Appendix IV. The velocity solution is of the form

v(y‘,z) = ¢(hy) h cos hz
wly,z) = - S‘_%%}Il sin hz

(6)

The average transverse velocity at any location z is given by

H .
(W)g = %S‘o w(y,z) dy =-§i§{—1—1—%¢(0)

since ¢(hH) = 0 as required by the condition that v(H,z) = 0. Solu-

tion of the equilibrium problem shows that

N = 2nh%$(0)Q(4)

where

and £ = 27rH/W. Thus N is related to the maximum transverse flux

4,) .y Which equals H(w); evaluated at hz =% /2 (z = = W/4),

by

N = Znhzq

Z

}max =8mm WZ

If the maximum transverse flux is equal to that observed at borehole
5A (an average of 1,8 m yr_1 over a depth of 260 meters), with
W=1.2 km, H= 300 m, and an appropriate average viscosity

(10 ba;r-yr is a reasonable viscosity, as shown in Chapter VII),

the required normal stress amplitude is 0.36 bar, This corresponds

to an elevation difference between the center and margin of 7.8 m.
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The actual elevation differences are 7.6 m for the southeast side
and 6.1 m for the northwest side. The height of the existing
"central hump" on the Athabasca Glacier thus seems to be suffi-

ciently high to drive the observed transverse flow.

Depth distribution ©f the transverse flow

By considering the form of ¢(hy) in equatioﬁs (6) the depth
distribution c;f the lateral flow of the approximate problem with
rectangular boundaries can be compared to the observed depth
distribution of w. The solution for ¢(hy) is given in Appendix IV,
¢ and d¢/dy are plotted in figure 34. The dé/dy curve corre-
sponds to the depth distribution of w. The shape of the dé/dy
curve is similar to the observed distribution of transverse displace-
ments (see figure 17). In the approximate problem the value of
w (d$¢/dy) at the bed is 2.5 times greater than the value at the
surface; thus, as is the case with the observed distribution, most
of the marginward transport occurs at depth.

Both the observed and the approximately calculated patterns
of flow represent a kind of extrusion flow or "pressure controlled"
flov? as envisioned by Demorest (1943), Although such flow has
been discredited as a mechanism for the longitudinal component
of flow, it can be expected to represent the normal pattern of
transverse flow associated with a convex transverse surface profile.
(In the length of a valley glacier above the firn limit, where the
surface profile would be concave, transverse intrusion flow could

be expected to occur.) The problem of how the upper layers of ice
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can be equilibrated when they are resting on a stratum of faster.
moving ice, which was 'overlooked by Demorest, does not arise
because of the lateral confinement imposed by the valley walls,
The "tub" visualized by Demorest, which he explicitly removed
when he applied his ideas to the main transport, is still in place

in the transverse flow problem.

. Depth dependence in the gradients of v

Thé observation that the gradients in v are relatively
independent of depth is worthy of consideration. In particular
notice the transverse variation of v (fig. 25). 8v/8z has signifi-
cant values at the glacier bed which are related to the transverse
variation of the bed slope and the sliding velocity at the bed. For
example, fhe average value at the bed of 8v/3z between boreholes

1

3A and 2A is +0,007 yr . It is surprising that dv/3z should have

a value just as large at the surface, where triangulation measure-
ments show the same average to be 0.008 yr_1 « The relatively
small scale variations in v imposed at the glacier bed would be
expected to be damped over the thickness of the glacier and thus
produce weaker variations at the glacier surface,

To get a feeling for the amount of damping to be expected,
consider a viscous slab of thickness H. The top surface of the
slab is taken to be stress free., On the bottom surface it is re-
quired that the shear stress be zero and that the velo;ity normal

to the surface have a sinusoidal variation of wave length \. It can

be shown (Appendix IV) that the ratio R of the amplitude of the
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normal velocity response at the top of the slab to the amplitude of

the applied normal velocity at the base is given by

e! 2(4+1) + et 24

R(L) =

where £ = 2rH/\. An appropriate wave length for the observed
transverse variation of v is about 2H, or 600 meters (fig.25).
This corresponds to £ = v which gives a value of the ratio R of
0.35. Since the ob§er§ed amplitude is essentially undiminished
between the bed and the surface, the distribution of v must be
viewed as anomalous. Possibly factors, other than the boundary
condition at the glacier bed, which affect the distribution of v
could act to produce this effect,

Although the perturbations in v at the bed are not damped
out, it is interesting to note that the topographic features at the
glacier bed which produce the variations in v are in fact subdued
at the glacier surface. The smaller values of 9v/dz estimated at
the surface on the basis of the surface topography, as compared
with the directly measured values, are an indication of this fact,
(See table 12,) At the bed the difference in longitudinal slope
between boreholes 3A and 2A is 3.0° but at the surface the difference
is 1,0°., This agrees with the expected damping. This fact empha-

sizes the anomalous nature of the distribution of v,
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CHAPTER VII

ANALYSIS OF STRAIN-RATE FIELD FOR
RHEOLOGICAL PROPERTIES

In Chapter ‘VI it was established that the deformation field is
not two-dimensional and that there are a number of features which
complicate the general pattern of flow. It can thus be expected that
the distribution of the stresses is complex and cannot be deter-
mined by simple staticv equilibrium considerations. Thus the task
of determining in situ rheological parameters for the flowing ice
is a considerable challenge,

The general problem of how to analyze the motions of a flowing
medium to determine rheological parameters is considered. A
method of analysis based on general assumptions concerning the
rheology gf the material, but which requires no assumptions con-
cerning the distribution of stess, is developed. The problems of
applying it to the present data are discussed.

The analysis shows that to some approximation the distri-
bution of shear stress across the width of the glacier is linear with
depth; thus a method of analysis similar to that used in past bore-
hole experiments can be applied to all of the present boreholes, A
more general analysis shows, however, that there is significiant

deviation of the shear stress from strictly linear depth dependence,
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A. Restrictions on the Material

Before discussing the analysis of the strain-rate field,
some assumptions concerning the response of ice to an applied stress
are outlined below,

The basic assumption is that ice behaves as an isotropic in-
compressible fluid with a response which is indepen;dent of hydro -
static pressure. Under these assumptions the most general re-

lationship giving strain rate in terms of the stresses is

P 1Tyt 1o tot Lo
eij = B(I2 ,1'3)'rij+ C(IZ’I?))-(Tikaj 3 Izéij) (1)
(Glen, 1958), where p = - %‘Tii is the mean compressive stress,
T!.=T..+p are the stress deviators, and I, and I} are the
1] 1] 73 A

second and third invariants of the tensor Ti'j" Since the strain-rate
response to stress is assumed to be independent of mean stress,
only the stress deviators appear.

The assumption that ice behaves as a fluid, that is, that the
stresses are determined only by the strain rates and do not depend
on the strain history, or correspondingly that the strain rates
depend only on the presently applied stress and not on the loading
history, can be expected to be approximately valid in practical
application to flow of glaciers, since over the greater part of the
volume of most glaciers the stress acting on a given element of ice
varies only very slowly in time, Also there is the implicit assump-
tion that under constant load a steady state non-zero strain rate is

reached after a sufficiently long time interval. .
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There is experimental evidence that hydrostatic pressure
does not markedly affect the response of ice to stress (Rigsby,
1957). It is also clear that under a constant applied stress, the
density of any material cannot indefinitely change at a constant
rate, so that in terms of fluid vbehavior the incornpressibility of ice
is a requirement.

The assumption of isotropy can, howevér, be questioned.
Extensive measurements of crystal orientation in samples of glacier
ice (Rigsby, 1953; Kamb, 1959) demonstraté that preferred orienta-
tions of the cyrstals almost always exists, Because of the very
strong plastic anisotropy of ice single Vcrystals (Nakaya, 1958), it
can therefore be expected that glacier ice will in general exhibit
anisotropic mechanical behavior. The strength of such anisotropy
has not as yet been quantitatively investigated., There is no evidence
that typical glacier ice is strongly anisotropic in its mechanical
properties,

Even with these simplifying assumptions the "flow law" ex-
pressed by equation (1) is complex., The additional assumptions
C(1,,13) = 0 and B(I},I}) = B(I,) are made. The verification of
these assumptions requires combined load experiments which test
the response under complex applied stress, Very few experiments
of this type have been done. Glen (1958), in discussing some experi-
ments of Steinemann, has sﬁowvn that, although there is some

reason to doubt these two assumptions, a flow law of the form

° — ! 1
eij = B(IZ)'rij
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is approximately valid. Until more extensive experimental infor-
mation is available the “complex analysis with the more general

flow law of equation (1) is not justified. The simplified flow law

is the flow law considered by Nye (e.g., 1957, 1965) in his theoreti-

cal analyses of various problems in glacier flow. To conform to

. . 2 _ o _1 ., 22 _1e o
his notation, let 77 = I2 =5 TijTij and €° = > ijgij be the second

- - / .« -
invariants of the stress-deviator and strain-rate tensors. Then

° '
eij = f('r)'rij
which can be written
' - o [ ]
Tij = Z'q(e)eij (2)

Such a material can be thought of as a viscous fluid in which the
"effective viscosity" is determined by the overall strain-rate level

L]
as expressed in the value of €,

B. Methods of Analysis

In laboratory experiments direct determination of rheological
parameters can be made by applying a known stress and observing
the resulting response. Glen (1955) has shown experimentally that
the quasi-viscous response of initially isotropic polycrystallic ice

to uniaxial compression can be represented as a power-type flow law

-]
n
e=B'ec

where n is a constant and B' depends on temperature, ¢ and e



120

here represent the applied compressive stress and the resulting
compression rate, Depending on how the experiments are inter-
preted, Glen infers a value for n of 3,2 or 4.2. In terms of the
generalized flow law of equation (2) Glen's results can be expressed

as

(3)

where

In field experiments, the experimenter has no control of the
stresses. Thus to make a direct comparison of measured defor-
mations to the stresses producing them, he must either independently
measure the stress field or make assumptions concerning it, The
direct measurement of stresses in flowing medium presents many

difficult problems and is not practical.

Analysis based on linear depth-variation of shear stress

Rheological interpretations of the deformation measured in all
past borehole experiments have by necessity been based on assump-
tions concerning the distribution of stress., Nye (1951, 1957) has
shown that for a glacier of constant thickness and surface slope, in
which the strain-rate field is of phase-strain type and has no longi-
tudinal depen’dence, the stress field is statically determined. In this

case the shear stress Tx'y' is linear with depth:

Tx'y' = ;gx'y'
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where p is the average density between y' =0 (the surface) and
depth y'. Nye (1952) suggested that the effects of the valley sides
can be approximately accounted for by inclusion of a shape factor

f=A/PH as follows:

TX'Y' = ngXIY' (4)

(A, P, and H are the area, length of the ice-rock contact, and

centerline depth of the cross section as shown in figure 28.)
Analyses of previous borehole experiments (e.g. Nye, 1957;

Paterson and Savage, 1963; Kamb and Shreve, 1966) have been

carried out on the basis of a shear stress given by equation (4). The

analysis can be carried out in several ways. One can estimate 0

at a depth y' from equations (2) and (4):

pg_v'
n= f....__.}.{_....—-

If the logarithm of 71 thus calculated is plotted against the log of
the observed é (based on direct measurements or suitable assump-
tions) for a large number of depths y', then linearity of the resulting
array, with slope between 0 and -1, would confirm the applica-
bility of the power law. The slope of the curve would determine «,
(@ must lie between 0 and 1 for n between 1 and o.)

The results of borehole experiments analyzed as above have
in general given remarkable confirmation of Glen's 'experimentally
determined flow law, and show that a pbwer flow law with n between

3 and 5 is a good approximation to the gross rheological behavior
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of glacier ice. They also give indirect evidence of the soundness (to
some approximation) of the assumptions made by Nye in his early
analyses (1951, 1957), Some irregularities were, however, ob-
served. |

Nye"' (1965) has shown, in his calculations of rectilinear flow
in cylindrical channels with constant sliding velocity over the bed,
that the shear stress is only approximately linear With depth, The
present observations, as discussed in Chapter VI, show that, in the
Athabasca sections, the strain-rate field is not independent of x, and
that plane strain does not prevail even at the centerline, Thus it is
possible that the shear stress deviates to some degree from linear
depth dependence. In addition, the estimation of the shear stress at
the bottom of the glacier based on a shape factor correction would
give a value which is too large if the correction is based on the
channel shape. For these reasons it is desirable to seek a method
of analysis not requiring the assumption of equation (4) for the
shear stress. The specific goals of such an analysis are either to
calculate the shear stress distribution so that the above method,
but with the modified stress distribution, can be applied, or to
develop a new method in which the stress distribution is not explicitly

used.

Analysis based on strain-rate gradients

If a flow law of the form of equation (2) is assumed, the
distribution of effective viscosity 71 can be investigated in any volume

where the deformation field is known, by using the equations of
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equilibrium and a minimum of assumptions on the stress distri-

bution. The equations of equilibrium are

T.. . T .=0
1)s ) pgl

In this case the body force is gravity pg, where p is the local

"density, Combined with equation (2), these become
¢ - +og. =
| (Zneij),j P,; T rg; 0 (5a)

The basic idea of the method of analysis proposed here is
well illustrated by considering equations (5a) for the case of
rectilinear flow of a linear incompressible fluid of constant density‘
in a cylindrical channe‘l with a planar upper surface y =0, In this

case, the equations of equilibrium reduce to

nVZu +tpg, =0
(5b)
P=p ng

If the curvatures of the velocity field (Vzu) can be measured, then
the viscosity can be evaluated,

When the effective viscosity m is a function of €, m will
not be independent of location, and equations (5a) are rhore compli-
cated. Under the assumption that ice density is homogeneous, they

become, in terms of the (x,y,z) coordinates,
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8y
C B, ., By, en, 2 8p', Vs ]
Zexx 8x+zexy 6y+2éxz oz Ve 9x +ax pgy+ng—0

. -a—r e 23 . —3_1:! 2 Q_B' _ ‘
Zexy ox * Zeyy oy * Zeyz 0z Vv - oy =0 (6)

Zé m+2éz%+2ézzg—3 +11V2w-—g-§’+-§%’—s—pgy=0

where p'(x,y,z) = p(x,y,2) - pgy(y—ys(x,z)) - p, is the difference
between the mean compressive stress, p(x,y,z) and the "over-
burden pressure," defined by the body force integrated from the
surface plus atmospheric pressure P,e Since the surface is stress
free, except for a normal stress equal to the atmospheric pressure,

certain conditions on m and p in terms of the irelocity field and

its derivatives must hold. Namely

Tx'y' = Znexlyv =0
(7a)
'Tylzl = Znéy'zv =0
and
- : - ! -
Ty,lyl + Pa = Zneylyl P 0 (7b)

for y = Vs (x,z). Equations (6) are linear partial differential equa-
tions to be solved for m and p' with the boundary conditions given
by equations (7).

To gain some insight into the problems involved in the solu-
tion of equations (6), it is useful to consider again the special case

where the material has a planar top surface y = 0 and the flow field

>
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is rectilinear, but now it is not assumed that 1 is independent of 7
location. With p' = 0 the second and third equations are trivially
satisfied. The first equation becomes

o , Bud
9y 9z

3

+ "’lvzu t pg, = 0. (8a)

m'm
ha i Ee
@

4

The second of equations (7a) and equation (7b) are also trivially

satisfied. The remaining boundary condition at y = 0 is .
nea- =0 ., ) (Bb)

(8a) is a first order partial differential equation with a single inde-
pendent variable n to be determined. In general a single character-
istic curve passes through each point (Hill, 1950, p. 345). The

direction of the characteristic is given by

Thus the characteristic curves are parallel to the gradient of u.

On a contour diagram of u the curves would run normal to the con-
tours. Thus, the first derivative of u in a direction normal to a
characteristic is zero, which shows that the shear strain rate and
consequently the shear stress across a csrlindrical surface parallel
to a characteristic and the x-axis are zero. Another fact to be noted
is that when 9u/dy = 8u/8z = 0 a curve of any direction dy/dz will
have the above properties and ’thus more than oﬁe characteristic can
pass through such a point. In figure 35 the characteristics are drawn

for a hypothetical distribution of U
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Characteristics have two basic properties. The first is that
specifying the dependent variable (in this case ) along a character-
istic will in general not enable one to determine the solution else-
where. The second is that the dependent variable cannot be arbi-
trarily specified along a characteristic, in fact specifying its value
at one point on the characteristic determines the value at all other
points on the characteristic . These two properties can be expressed
analytically by transforming equation (8a) to local coordinates (t,n),

where

H
>
o+ >

o+ >
1
<i
]
5>

"

<
£

A
Such a coordinate system at a given point has axis t parallel to

A
the characteristic curve and axis n parallel to the u contour at
that point. The characteristics are curves of constant n; the u
contours are curves of constant t. The system is an orthogonal

curvilinear coordinate system and defined by transformation functions

o+
l

= t(YsZ)

= n(y,z)

o]
!

In these coordinates equation (8a) can be writteu

b2 (o, 28 Tt Ty, By (9)
t 3t ¢ Bt h_ Bt My 3¢ = ~ P8y 3

where the fact that 9u/dn = 0 has been used.

2 2 2

2
vy = (55) * () e wl-(5) +(3)
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are the scale moduli of the coordinate axes t and n.

Values of 1 at ‘ipoints not lying on é characteristic can not be
calculated from values of m specified on that characteristic. This
means that equations (8) do not represent a well posed boundary
value problem, since the boundary condition is applied on a charac-
teristic, Nevertheless a unique solution can be obtained if there
is only one point in the cross section where 8u/0y = 8u/dz = 0. In
a real glacier cross section it is reasonable to expect that there is
only one such point and that it lies at the surface. In this case,
every point in the cross section is joined to the point where 8u/dy =
du/8z = 0 by a characteristic (fig., 35). If a condition on 7 is ’
applied at this point, then equation (9) defines a solution satisfying
equilibrium (8a) at all points. A suitabie condition is: nht -g—g =0
at the point where 8u/dy = 8u/8z = 0. This is equivalent to requiring
that the shear stress be zero, where the shear strain rate is zero.
With this condition equation (8b) is also satisfied.

There is a very simple physical explanation for the above
conclusion. Since there is no shear stress parallel to a characteris-
tic curve, gross equilibrium of a pie shaped segment of the cross
section bounded by two characteristics (n1 and nz) and a velocity
contour (t) must be accomplished by application of a shear stress
across the velocity contour (see figure 35). If the distance along

the velocity contour (t) between n, and n, is £ (ni,nz,t) and

A(n1 ,nZ,t) is the included area, then the average shear stress is

T = ngA(ni :nz :t)/ﬂ (n1 ’nz ,t)
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T can be identified with the quantity 'r]ht —g-;—l .

Thus in the case of rectilinear flow the distribution of velocity
u and equations (6) and (7) (or equivalently equations (8) ) uniquely
determine the distribution of the quantity T = 1']ht —g—::—l and thus the
distribution of 7M. The analysis can be carried out without any
assumptions concerning the distribution of stress. This result is
easily generalized to the case for which the ice density is not homo-
geneous, ’

The same arguments apply for the slightly more general
velocity distribution where the strain-rate components are independ-
ent of x, but a constant longitudinal strain rate is allowed to act.
The most general form of such a velocity field is given in Appendix
III, The glacier surface is required to be cylindrical with generators
parallel to the x axis. The boundary condition (7b) then requires
that 8p'/8x = 0. The first equilibrium équation reduces to (8a).
Since there are no longitudinal stress gradients and the surfaces
across which the shear stress is zero are cylindrical surfaces
with generators parallel to the x axis, equation (8a) uniquely deter-
mines T and 7n in the same way through equation (9). Since, how-
ever, there must be non-zero components of velocity v and w,
as required by incompressibility, the second and third equilibrium
equations will not be automatically satisfied, In general ti'lere are
hypothetical distributions of v and w which satisfy the require-

ment  of incompressibility and any boundary conditions over the

glacier surface and bed compatible with incompressibility, but which
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do not satisfy the second and third of eqﬁations (6). Thus, a solution
of (6) with boundary conditions (7) will not exist for an arbitrary
distribution of velocity With x-independent strain rates, If for an
observed x-independent field, the second and third equilibrium
equations were not satisfied with the viscosity distribution uniquely
determined by the first, this could be taken to indicate that the flow
law given by equation (2) is incompatible with the observed motions.
In making such an interpretation one would of course have to give
due considération to the errors of observation.

In the analysis of more complex distributions of velocity, the
questions of existence and uniqueness also arise. The question of
compatibility, which arose in the discus sion above, can be expected
generally to exist simply because there are two unknowns and three
equations to satisfy; thus a solution to equations (6) may not exist
for a specified distribution of velocity. Also, by virtue of the
assumed isotropy of tﬁe ice, the shear strain rate parallel to the
glacier surface vanishes at the surface; thus the coefficient of the
derivative of n normal to the surface, in equation (6), vanishes, so
that this derivative becomes indeterminate at the surface. As was
the case for x-independent flow fields, equations (6) and (7) do not
constitute a well-posed boundary-value problem. Whether a solution
is nonetheless uniqlie, as in the case of x-independent flow, is, how-
ever, a question that has remained unanswered.

For the purpose of practical application of these ideas, how-
ever, these mathematical difficulties are not significant, Although

for an observed distribution of velocity equations (6) may be incom-
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patible or the solution to (6) with conditions (7) may not have a
unique solution, a valid approach is to seek the best solution con-
sistent with a specific model of the flow law. In view of the uncer-
tainty in any observational data, this would indeed seem to be the

most reasonable way of proceeding.

Approximate solution based on minimizations of ;esidual body sources
Instead of attempting to solve equations (6) , approximate

solutions are sought by the following method. m and p' are param-

eterized in terms of specific models of the fuhctional dependence of

these quantities on x, y, z, that is

N=nx,y,2; 4 500 ,!lm)

p'= P’(XQY’Z;Zm,*_l se f ° ’In)

For example one possible model is to let 1 and p' be represented
by three-dimensional polynomials. 7 can also be parameterized

directly in terms of the second strain-rate invariant €,

° 2
n= T](€ ;11 :ooo,lm)

In equations (6) Bn/axi = (an/aéz)(aéz/axi). n probably has a
relatively simple function dependence on €. The actual spatial
distribﬁtion of m can, however, be very complex. Thus proceeding
in this manner has the advantage that a model capable of giving the
actual distribution will require fewer parameters, and parameters

in a flow law given by equation (2) can be directly evaluated.
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In general, with specific choices of the n parameters £k
the equations of equilibrium (6) will not be satisfied at a given point
X,v,%; that is, there will be residuals Tye ry, r_ s to the three
equations. O;n.e can think of the residuals as defining a body force

' field =_x"(x,y,z;£1 seoe ,ln). Fictitious forces —_; would be re-
quired in order to produce equilibrium with the specific choice of
parameters. Also the boundary conditions given by equations (7) will
not be satisfied. There will be residuals S0 S’y" s, defining a
distribution of surface traction s = _s_(ys(x,z);ﬂ {2o00 ,ln). It is pro-

posed to choose the parameters of a given model such that the

residual forces are minimized in the sense that

Fz(ﬂl,.“ ) ggg? ?dv+§§'é’e s da (10a)
v

S

n

is required to be a minimum. The conditions

2
2520 k=1,...,n
K

give n equations for the n parameters 1 froee ,!Zn.

In the actual application of this technique to field data it is
advantageous to consider equation (10a) in a discrete form, so that
the equilibrium equations can be considered at selected points where
the strain rates and their gradients ére best aetermined. Thus

N

.
F'Z(ﬂi,.,,,ﬂn)=2?o?+ S s (10b)
: n=1 A

m=1

is minimized. The sums areover N distinct points (x,v,z) inthe interior
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and M distinct points ys(x,z) on the surface, The value of F'Z
or the root mean square residual force Z =+ F'Z/(N+M) is a
measure of the fit to the data.

In this discrete form the minimization of F'2 is identical
to the usual least squares problem. Consideration of equations (6)
and (7) at the selected points gives 3(N+M) conditional equations
to determine the n unknown parameters, When 3(N+M) >n the
n conditions‘ on 8F'2/61k give n normal equations which deter-
mine the parameters £ greee ’ln'

If 1 and p' are linear functions of the parameters, then
the conditional equations will be linear., The usual theorems on

least square procedures apply. The normal equations will be linear

and will define a unique solution for the parameters !1 seca ’1n°

In order to examine models, where m does not depend
linearly on the parameters, a successive approximation procedure
for the case when 7 = n(éz;l freee ,lm) is developed. For a given

choice of the ln the equations of equilibrium give

a ° . 02.
_3—1512 (e ’11 3600 ’ﬂm)ui +1(€ ’11300- 'lm)Ki

| |
OB (x,y,m _qaeeesd ) HE = m (11)
1

° 02

oy
where By = Zeij € S) ’

oy
2 N 8 = —_
i’ Ki-vui’ fx_'[p(g"}i—i-—?—);)’fz—p 8" 52

)
and f = 0, K incremental changes le in the ﬂk are made, there

will be a corresponding variation ﬁri in r. which is given to first

order in the Mk by
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m b
an on op'
6r.=z ERCUIY 5z.+Z 5L .
i (azjaéz 1 o1 . 1) j L%,

j:l j=m+i
Similarly the boundary conditions are
2 '2.1 i _ -
T‘,(G T qrece m)exlyt - SX,
. 2 °
21’](6 ;«ei,ooo "em)eylzl = SZ'
2n(e?4 2 )e ' Y, 1) =
1’](6 i qreees m)ey_ly_v' P (X,Y,Z, mti?°°°? n) = S,y_l

Incremental changes in s in terms of the Gﬂk are given by

M
= 2e oM
SsX, = Zex'y' Z 57 6£j
=1 7
M
§s_, = 26_, ,Z 0 o,
z y'z oL. 7 j
=1
N
e on op'
6s_ , = Zey, : Y 6123 z 51 6£J
j=1 j=m+1 J
By choosing SJZk so as to minimize
N ' M
2= Z 7+ 85) (T + 67) +Z (s+8s)e(s +8s)
n=1 m=1

conditional equations

- = !
ALl )8L; - byl = x}

(12)

are obtained. A isa 3(N+M)X n matrix, b, is a 3(N+M) com-



134

ponent vector. The evquations are ordered as follows: N x-equili-
brium equations, N y-equilibrium equations, N z-equilibrium

~ equations, M x' boundary conditions, M z' boundary conditions,
and M y' boundary conditions. The Aij(ik) and bi(lk) are then

given by:

for i=1,n§osN

r' =r + 6r
x x x
- f ., Om 22 . 2,
bi - :EX p‘X 8%2(6 ’£1’°'°’2m) Kxﬂ(e :'ei,otos'em)
op'
+8X (X:Y:Z;£m+130-°:£n)
(12a)
on on .
° +K v J= 1,eougm
X a0.0e2 o
A, = J
1)
a 1
94 .6x j=mtl,e..,n
J
for i=N+1,...,2N equation (12b) and for i= 2N+,,..,3N
equation (12c)let x — y and x — z in the above equations;
for i= 3N+1,.., s IN+M
rl=s_,+ 6s_,
i x x
b1= ?Zexnynﬂ
124)
.9 . (
Zex,y,—a-%}— j=lseee,m
iy~

0 j=m+1,o'o,n
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~
for i = 3AN+M+1,...,3N+2M equations (12e), let x' = z';

and for i=3N+2M+1, 3N+3M

r.==s |+6S|
y y

U-l
"
t
[\
o
~<—-
3
+
e

(121)

Ze| 18- j=1,ooo,m
-p S j=mtl, . en

The desired minimization is accomplished by solving the normal

equations

G..6L, = B, (13)

where
55 7 Prifig

B, = Abe

The normal equations give a unique solution for 6f ,.0., Gﬁn. The
original estimates of the parameters En are then corrected to |
lk"i' 5£k. The procedure is repeated until no further change in the
Ek is computed, |

If 7 and p' depend 1inéar1y'town their respective sets of
parameters then the successive approximation procédure converges

in one step. The resulting solution is uniqué. If n (or p") is not



136

a linear function of its parameters, then in general several cor-
rection steps must be ta‘.ken. Further, in this case it may be possible
that the quantity F12 given by equation (10) has local minima and
maxima. For this reason in the application of this technique with
non-linear models it is advisable to test whether the converged

values of the .llk correspond to a minimum and whgther there are

other minima in the domain of acceptable b The first test can be

K
accomplished by keepirig track <;f F'2 in the successive steps and
noticing whether each step reduces F'Z. The second test can be
made by seeing whether different starting values of the parameters
lead to the same converged solution.

A troublesome feature of the above method of minimizing
residual body forces was discovered when it was applied to the
strain-rate field calculated from the unsmoothed tilt data., The
results gave viscosities much smaller than expected, and residuals
approximately equal to the body force. Intuition provides the follow-
ing explanations for this behavior. The noise in the tilt data gives
local fluctuations in the calculated strain-rate components, If the
mechanical properties of the material are homogeneous, as is im-
plicitly assumed by the use of equation (2), and if the parameters
of the flow law (2) are such as to give non-zero viscosity, then there
must also be local fluctuations in the ‘stress gradients, which in
general cannot be equilibrated by the applied forces unless there is
‘a fortuitous cancellation of the contributiqns of noise from different

boreholes, If local strain-rate gradients are much larger than the
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gradiént of the overall trend, then, in order that the local stress
gradients are nolt overWhelmingly large compared to the body force
density, the flow law parameters will be chosen so that the vis-
cosity is smaller than reéuired by the overall gradient and the acting
body force. Thus the estimates of flow law parameters are biased
by the existence of noise. The effect of noise can be simply analyzed
for the case of rectilinear flow of a linear fluid described by equa-
tion (5b) by considering hypothetical data. The analysis shows that
as the noise amplitude in the measured values of Vzu becomss

very large as compared to the real value, the estimated viscosity
goes to zero and the residual body force is equal to the acting body
force. As the noise amplitude becomes small compared to the
actual value, the biasing effect goes to zero. This was one of the
more compelling reasons for representing the tilt data by smooth
curves., Use of the smoothed data in the above analysis involves

the implicit assumption that the scatter in the tilt data comes from
experimentally introduced noise and does not represent real

features of the flow. This is a reasonable assumption (Appendix

II"B) .

C. Application to the Athabasca Data

The above techniques are now applied to the strain-rate field
derived from the smoothed data., First, arguments are presented
which show that shear stress parallel to the surface will be approxi-

métely” linear with depth across the width of the glacier. Because of
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this an analysis based on linear variation of shear stress is pre-
sented., Second, the technique of using strain-rate gradients, and
minimizing residual body forces is applied. In the analysis it is
assumed that ice density is independent of position and has a value

of 0,90 gm/cm>,

Linear shear stress analysis

One possible way of proceeding with the analyéi\s is to calcu-
late the dis‘tribution of shear stress T through equation (9). This
procedure would be valid only if the longitudinal strain rate 8u/8x
‘were constant throughout the volume of this part of the glacier, the
strain rates were independent of x, and the glacier surface were
cylindrical with generators parallel to x. Even though there are
complexities in the actual distributions of flow variables and sur-
face slope, which clearly violate these requirements, the diétri-
bution of shear stress thus derived should be approximately correct.
Realizing the approximation involved, a precise calculation is not
made. Since the u velocity contours are approximately semi-
circular (fig, 22), the (t,n) coordinates can be associated with the
standard polar coordinates (r,0), where y=rcos 6 and z = r sin0,
In this case h5= (8r/8y)2 + (i):c'/az)2 =1 and hi = 1/r2. Equation

(9) becomes

oT
—a—;-l-

R

'_‘.-pgx

with the condition 7 =0 at r = 0, The solution is
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T=-Spg r (14)

This is, of course, a result established long ago by Nye (1952) for
rectilinear flow in a cylindrical semi-circular channel., It shows
that, under the assumption of x-independence, the shear stress

T can be expected to be approximately linéar with depth across

Xy
the width of the glacier, that is

\

= =-4
'TXY—'rcos 0= 5 PEY

The analysis of all of the boreholes can be made by one of the pre-
viously used methods, Here logn, where 7 = 'rxy/Z ;xy’ is plotted
against log E.

The above formulae are written with respect to the (x,y,2)
system, which is the system with x parallel to the glacier surface
at the centerline, The longitudinal slope at the centerline is 3.9
Since the glacier surface is not a ’cylindrical surface, there is some
ambiguity in choosing the best coordinate system., For example a
system with the Xy axis parallel to the surface slope averaged 6ver
the area of the complete borehole array could be more appropriate.,
Such an average surface slope is about 3,4°., Another possibility
is that each borehole be analyzed on the basis of the local surface
slope, as computed from averages over areas with dimensions equal
to the depth of the borehole,

Approximation of the velocity contours with concentric semi-

circles involves the implicit assumption that the shear strain rate
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éxy = -;— (3u/dy) goes to zero on a horizontal line y = const, The
actual free surfac¢ condition is Tx'y' =0 at y= Vs (x,z), thus it
is most reasonable to méasure the increase in shear stress in terms
of depth below the actual local surface.

The above formulae generalized to a coordinate system

(32,';?,;) where z is parallel to z, but x has a plunge different from

x by an angle S;K,becorne
Ty = -3 PE( - T2
5 PBx\Y - YV X,2

. 1 .
- = e cos 26 +-z(e y—exx) smzai (15)

6}'{ is positive if x corresponds to a steeper slope than x. Figure
36 shows the results of this analysis when applied in the set of
coordinate systems with x parallel\ to the local surface at each
borehole location (6 _ = -1.1° to +0.1°%). Results for the (x,y,z)
system (Gx = 0) and for the coordinate system with x parallel to
the average surface slope (6x = -0.50) are almost identical to the
results presented in figure 36,

The curves logm vs. logbé for the different boreholes show
certain similarities in all three coordinate systems. An approxi-
mately linear portion of the curve corresponds to the lowermost
50 to 100 m of the borehole. The depth corresponding to the open
circle plotted in figure 36 and above which the linear trend does not

persist is given in table 15, column 4. The termination of the
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linear trends in boreholes 1A and 2B by dips in the curves is associ-
ated with a depth range ‘i'where the shear strain rate vs, depth pro-
file is convex away from the depth axis, and the ratio (;r-;s)/és_{v
does not decrease with increasing depth as fast as it Would in the
case of a more typical depth variation of shear strain rate, The
steep portions of the curves exhibited by all bo%reholes correspond
to those depth ranges where the second strain-rate invariant is
relatively independent of depth, but the ratio @-§s)/é§§ decreases
markedly with depth, The onset of this behavior occurs at greater
depth in the section B boreholes than in the section A holes. The near
vertical portions of the curves for boreholes relatively distant from
the centerline (4A, 5A) are to the right (higher strain rate) of the
corresponding portions of the curves for boreholes close to the
centerline (1A, 1B)., This systematic distribution is a reflection of
the difference in shear strain rate é’:‘c'z‘ at the different boreholes,
€ shows a minimum in all the boreholes at depths ranging from 75
to 165 m. These depths are tabulated in table 15, column 3. Since
the ratio (;—;s)/éi_}; is monotonic in this depth range, the curves
log 1 vs. log € are double valued, At depths shallower than that of
the minimum in E the curves have large positive slopes.

The curves for none of the boreholes can be unambiguously
interpreted in terms of a power-type flow law. Such a flow law
would require the curves to be linear. The double valued nature of
the curves clearly indicates that they do nof. represent any flow law

represented by equation (2) which can be applied uniformly at all



142

depths, even with a form other than a power law. In addition, if the
material were homogeneous, the large negative slope exhibited by
all the curves over significant depth ranges would imply an unac-
ceptable inverse relationship between stress and strain rate; in
other words an increased stress would result in a diminished strain
rate, These features indicate that over a considerable depth range
in the boreholes the analysis is not giving a valid picture of rheologi-
cal properties., Either there is a significant inhomogeneity in the
rheological properties of the ice, or a rheological behavior different
than is describable by equation (2), or a failing of the assumption of
the linear depth variation of shear stress, or a large effect of
measurement errors.,

In order to evaluate the effect of errors of observation,the
relative error in 71 is of interest. As calculated on the basis of

the assumption of linear variation of the shear stress, it is

3 (Y fego

L s )2 : (16)
The depth at which :33-{-_)—7 exceeds the estimated error in ;.}2_}; ranges
from 30 to 100 m for the various boreholes. This means that ih the
near surface parts of the boreholes a relative error exceeding 100%
in the estimated viscosity m is possible. This corresponds to an
error in log mn of about £0.5. This can be compared to the error
at the depths where the linear trend in the log 1 vs. log € curves
are broken. There the relative error in 1 is about 1'0%, which

corresponds to an error in log n of about + 0.05. Thus the
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anomalous steep slope and double valuedness of the curves might

be a result of a strong manifestation of observational errors as the
glacier surface is approached. At first sight it would seem strange
that observational uncertainty could act consistently to overestimate
the viscosity near the surface. However, this could occur as follows,
. Since € is relatively independent of depth,the condition required to
give a meaningful plot interpretable in te:fms of equation (2) is that

1n also be independent of depth. This would be the case if the de-
p.endence of é?{'s_r on depth were linear. It is easily seen that if the
curve és-{? vs. y is concave away from the y axis the computed
viscosity must increase upward. The smoothed curves which repre-
sent the longitudinal tilt data may be biased to be concave near the
surface because of the overall concave nature of the tilt profiles,

the large depth range over which the smoothing averages were

taken, and edge effects associated with the lack of data above thé
surface,

Examination of the longitudinal tilt data (fig. 13) shows,
however, that positive evidence for a concave part of some of the
borehole tilt profiles exists near the surface. This is particularly
evident in the boreholes of section B, where tilting rate remains
essentially constant down to depths of 100 m. This means that shear
strain rate remains zero over a considerable depth range near the
surface. The stronger manifestation at section B is a reflection of
the decrease with depth of the compression rate (fig. 27). Depths

above which the smoothing curves for a borehole could be altered
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within the constraints of the déta in order to produce a significantly
different result are tabulated in table 15, column 2‘ and plotted as
solid circles in figure 36, The parts of the log m vs. log € curves
corresponding to depths shallower than these depths do not neces-
sarily represent real effects. In all of the boreholes except 1C,
2A, and 3A the strong upswing of the log n vs. log € curves begins
at significantly greater depths. Thus the effect is not caused solely
by meésurement errors. -

The short segment of large positive slope shown by the
log 11 vs. log ¢ curve for the deepest part of borehole 2ZA is a
definite anomaly not attributable to observational error. It is
correlated with the unusual depth dependence of the observed longi-
tudinal tilting rate in the lowermost 40 m of the borehole (fig. 13d).

"~ The dips in the curves of boreholes 1A and 2B are associated
with definite convex parts of the longitudinal tilt profiles (fig. 13a
and e). Adjustments of the depth distribution of é within limits
set by the estimated error can not eliminate these features.

The curve for borehole 1C plotted in figure 36 gives good
examples of apparent énomalies probably resulting entirely from the
possible large relative error in the estimated viscosity and slight
fluctuations in the depth dependence of é.}—{? not demanded by the'
data. The sharp dip in the curve is correlated with a slightly conv.ex
portion of the longitudinal tilt profile bet'v;feen depths at approximately

60 and 130 m (fig. 13c). The upward swing at shallower depths cor-

relates with the concave part of the profile above 60 m. These
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features are not required by the data.

Although there are features of the log 7 vs. log € curves of
figure 36 which indicate that the assumptions of the analysis must in
part fail, the approximately linear curves shown by the deeper por-
tions of each of the boreholes and the linear trend defined by the
combined data from all of the boreholes can be interpreted in terms
of a2 power law, 11(.6) = Bé—a. The slopes (-a) of the linear parts of
the curves are closely the same in all three of the coordinate sys-
tems in which the computations were made. The intérceﬁt (B) or
position of the curve along the log m axis does, however, depend on
the specific coordinate system. The best agreement between the
curves for different boreholes is achieved when the plots are made
with respect to the coordinate systems defined by the local surface
slope (fig. 36). Apparently the surface slope averaged over an
area with dimensions approximately equal to the borehole depth
better defines the shear stress at the bottom of a borehole than the
average value over the larger area of the complete borehole array.

Flow law parameters ¢ and B were computed from the
general trend defined by all of the data and the linear parts of the
individual borehole curves (fig. 36). The results are given in table
16, There is a considerable range in a for the individual boreholes,
as could be anticipated in view of the distyinctly different tilt profile
shapes which were measured in the different boreholes. Large
values of B, which correspond to the value of n at € = 1 yr_1 ,
are associated with small values of «@ (aﬁd vice vers;a) as a result

of the fact that the linear trends for all boreholes converge at a
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o -1 °

strain rate € = 0.05 yr ~, Extension of the linear trends to € = {
yr = gives values of B depending systematically on the slope. In
order to make comparisons which are valid in the range of the ob-

served strain rate, the flow law is normalized such that

. -«
*( €
m=B (’-)
€
o
ey O -1 * -1, -a e
with €, = 0,05yr *. Thus B = B(0.05yr ") =, With this normal-
ization, values of B* lie between 9 and 10 bar yr. o and B are
plotted in figure 37.

The question arises whether the spread in the values of ¢ rep-
resents a real effect or is simply a result of measurement errors.
The errors in é?‘c? and .e at a given depth are not independent. In
addition the errors in either of these quantities at different depths
are not independent because of the smoothing operation which was
applied to the data from which they are derived. Thus the estimation
of the accuracy of @ is not straightforward. If the shear stress is

accurately linear with depth, the slope of the log n vs. log € curve

can be written explicitly as

do—— e e——  de__
o= -dlogl . (L XY, 10 ( Xy / XV q) 17)
d log € e}-{? dy € 3y y-yg dy

Since in the deeper parts of the boreholes, where the log n vs. log €

plots are approximately linear, the shear strain rate é;{__ is the

ge__ XY o
largest contribution to € (fig. 28), the ratio L —-3—{-Y/ 1 %¢ is
°ky 8y ¢ %Y

approximately one; thus
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de— de——

2= 2 (s /XY ) =k (18)
Y —
e.:’_(_37 oy oy

This corresponds to a relative error in the power law exponent
n = -1-1_—& of k. By using the estirhates of étandard error for the
‘smoothed values of é,}.{_}; (0.003 yr ) and aé?{?/eﬁ (0.0002 yr lm™}),
which amount to respective errors of about 10% and 40% at the depths
under consideration, and by assuming these erro?s to be independent,
a value of 0.41 is calculated for ;““‘K. This gives a relative error in n
of 41%. Such an estimate applies to the slope (-@) at a single point
on the curve. In those boreholes (e.g. 2B) where the depth range
corresponding to the linear segment of the curve is short compéred
to the length of the average used in the smoothing of the data (106 m),
the estimate directly applies. If the linear segment corresponds to
depth ranges approaching 100 m (e.g. boreholes 3A, 3B), then
equation (18) with k = 0.4 overestimates the standard error. By
using the standard error in the average of aé.ﬁ/eﬁ over a 100 m
depth interval, which is estimated to be V2 oy /100 and which
corresponds to a 10% relative error, a factorxlg of 0,14 in equation
(18) or a 14% error in n is calculated to be more appropriate in
these cases.

Although the observational uncertainty is large, the spread
in the slopes (-a) of the linear parts of the log m vs. log € curves
for the different boreholes is too great to be attributed entirely to

measurement errors.

If linearity of shear stress and a shape factor of 1/2 are
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applicable, the accuracy of B* is determined mainly by the ac-
curacy to which surfacé slope is known. Surface slope is known to
within 5%. Thué the scatter in B*, which is about *5%, is not
significant. Because of the large errors in a there is, however,
considerable uncertainty in B (up to 30%).

The valués of the parameters o and B, as given by a
straight line fit By eye to the general trend of all of the boreholes,
are 0.81 and 0.85 bar 'yr1 fa respectively. The accuracy of these
determinations can be estimated by cohsidering the scatter in the
values computed from the individual boreholes. Use of the standard
formula for the standard error of the mean gives approximate
standard errors for @ and A of 0,05 and 0.17 bar yr1+a respec-

tively.

Method of minimization of residual body forces

The above analysié, based on a linear depth-dependence of
shear stress, only approximately takes into account the distribution
of u over the cross section, anc completely neglects the x depend-
ence of the strain-rate field. The u contours show a systematic
pattern that differs slightly but definitely from the concentric semi-
circular pattern for which the shear stress would be exactly a linear
function of y. Also, the actual strain-rate field is x dependent.,

In order to include these features in the analysis for rheological
parameters, and hopefully to clarify some of the anomalies arising
in the linear shear-stress treatment, the technique of minimizing

residual body forces is used.
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Of the three equilibrium equations (6) the x-equilibrium
equation can be considered of dominant importance. rThe longitu-
dinal flow occurs in direct response to a body force, whereas the
flow normal to the main component of flow represents relatively
small adjustments imposed by the longitudinal flow. Thus con-
sideration of the x-equilibrium equation provides the basic infor-
mation for the evaluation of visco‘s ity. The remaiﬁing two equili-
brium equations provide information on the distribution of p',
which allows evaluation of 9p'/dx, and can be viewed as providing
a correction to the distribution of viscosity calculated from x-equili-
brium under an assumed distribution of p'. Because of the indirect
way in which v is evaluated from the borehole data, and because of
the distribution of w in the cross section (fig. 21) evaluation of
Vzv and Vzw is very imprecise. For this reason the second and
third equilibrium equations have not been considered in the analysis,
This eliminates the possibility of relating the mean stress directly
to the data and requires assumptions concerning this quantity to be
made. |

Boundary conditions (7a) are exactly satisfied as long as 1
- at the surface is finite, and thus they do not provide additional infor-
mation in the minimization of the residuals. They need not be con-
sidered,

Note that with the above considerations oniy equations (12a)
(x equilibrium) and (12f) (normal boundary condition) are included

in the set of conditional equations to be analyzed, By = Z[éxx e +
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de 9e? 2
e, w- te =—] and k_=V“u were calculated along the bore-
xy 0y Xz 0z X

holes at 5 m intervals,
The x and z gradients in °€2 at a given depth were calcu-
lated using first and second differences in the computed values of

22 at the borehole sites at that depth. By adopting the notation

(M,N) = [€%),,- €%)\]/150 and defining the differences

K, = (1B,1A) , K, = (2B,1B) , K, =(2A,14) ,
K, = (2B,24) , Ky = (1B,3B) , K, = (14,34) ,
K, = (3B,34) , Kg=(34,54) , Kg=(14,1C) ,

K10 = (4A,24) ,

the explicit formulae used for evaluation of the gradients can be ex-

pressed as follows:

8x 9z

1A (K, + K9)/2 (K;+ Ké)/Z
1B (3K, - K9)/2 (K, + K5)/2
1C (3K9— Ki)/Z (K;+ Ké)/Z
2A (K, t K9)/2 (Kot K3)/2
2B (3K4- Kg)/2 (3K,- K¢)/2
3A (K7+ Kg)/Z (K + K8)/2
3B (3K7— Kg)/Z (3K5- KZ)/Z
4A 0 (3K, - K;)/2
5A 0 (3Kg- K,)/2

aéz/ax is set zero at boreholes 4A and 5A, where it cannot be
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directly evaluated. Bzu/ax2 and E)zu/az2 were computed from the
interpolating functions on differential longitudinal velocity, ud,
which were used in the iterative calculation of the velocity field
discussed in Chapter V-A, and values at the surface given by the
surface measurements,

The x and z gradients of ::2 and the curvatures 82u/8x2
and <’32u/az2 are subject to uncertainty as a result of possible inter-
polationerrors similar to those which were considered iﬁ the evalu-
ation of thé x and z velocity gradients (Chapter V-C), Since,
in this case, second derivatives are involved, the uncertainty from
this source is even greater. This is particularly true for azud/axz
at all boreholes except in borehole 1A above 200 m. The interpolating
function for Uy contains the implicit assumption that Bud/ax is
independent of x and z as determined by an appropriate difference
between Uy in holes 1B, 1A, and 1C. Below the botfom of hole 1C
(200 m) extfapolation is involved. Interpolation errors can also enter
strongly in the evaluation of 82ud/822 at borehole 2A below 100 m
and boreholes 3B, 2B, and 5A, because these holes lie on the lateral
margins of the array.

The y gradient in ;:‘2 was calculated from the first difference
of 22 between depths spaced 5 m apart. azu/Byz at depth y was
computed from the second difference in u using the point at depth y
and points 5 m above and below,

In the calculations the surface slope averaged over one bore-

hole depth is used to evaluate ays/ax,.

In choosing a possible model for p' two facts are to be noted.
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First is that the surface strain rates are relatively independent of x
(x gradients in the surface strain rates are less than 0,2 X 10~ % m~1
yr"1 in the area spanned by the borehole array, as compared to the
typical values of 0,5 X 10_3 m“1 yr_1 of B:exy/ay in the deeper
parts of the boreholes.) In view of the normal stress boundary con-
dition, this indicates that p' is to a first approximation independent
of x at the surface., (If the ﬂow law derived froﬁi all of the bore-
hole data and a linear shear stress depth distribution applies at the
glacier surface, then 8p/dx is less than 10% of the acting body
force pgx.) Second is that since the y-equilibrium equation is not
considered, the depth variation of p' cannot be directly related to
the data. For these reasons it is assumed that p' is independent
of position, By making this assumption, the effects of the longitudir-
nal gradients in mean stress on the flow are neglected. The longi-
tudinal forces associated with the gradient in 'r}’cx are still included,
however.

The minimization of residuals can be carried out over any
set of points chosen from the points spaced at 5 m intervals along the
boreholes, where Kx and Cx were calculated. Results for the
parameters o and B of a power law derived from the following
sets of points are tabulated in table 17: (1) the complete depth range
of single boreholes, (2) all boreholes taken together over the com-
plete depth range, {3) the depth range which corresponds to the linear
portions of figures 36 of single boreholes, and (4) all such depth

ranges considered together. Single borehole analyses were not

carried out for boreholes 1C and 4A, because of their relatively
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small depths and small ranges in é. The root-mean-square residual
body forces are also tabulated in units of the body force acting paral-
lel to the local surface slope. Values of this quantity are typically
between 0.3 and 0.4 times the acting body force, except in the case
of the analysis of the réstricted depth ranges of single boreholes,

in which case it can be considerably smaller. Wifh the viscosity
distributions implied by the above flow laws, the rodt—-rﬁean-square
residual forces, which would occur as a result of measurement
errors, are estimated to be 15 to 20%. This estimate does not
include the effect of interpolation errors, which cannot be quanti-
tatively evaluated,

Errors for the calculated parameters can be estimated by a
standard procedure for le: st squares analysis, The errors thus
estimated (0,02 = T, =0.1t, and 0,05 = °p = 0.36) cannot, however,
be interpreted to be standard errors because they were calculated
from the smoothed tilt profiles and thus must underestimate the
standard error. The accuracy of the parameters is more iikely
to be similar to that implied Yy the larger standard errors estimated
for the cofresponding resultsﬂ obtained in the linear shear stress
arialysis, since the results of both methods are constrained by the
same data.

As is thé case with the results based on the linear depth-
variation of shear stress, the flow law parameters derived from
different boreholes show a considerable range, with boreholes 3B
and 2B lying at one end of the range (large @, small B) and boreholes

1B and 2A at the other (small a, large B),
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Depth dependence of shear stress

The near surface behavior of the log n vs. log € curves
(fig. 36) has two possible explanations. First is that the shear
stress deviates from a linear depth dependence. Second is that a
flow law given by equation (2) does not aﬁply because the material
is not homogeneous or the effective viscosity is not determined only
by the second strain rate invariant. In order to distinguish between
these possibilities the residual body force fields for the pertinent
distributidns of viscosity are shown in figure 38,

The dotted curves ;f figure 38 give the distribution of residual
body force versus depth at each of the boreholes calculated by using
equation (6) with p' constant and the viscosity distribution given by
equations (15) with ‘x parallel to the local surface slope. The resid-
uals thus éalculated attain va'ues much larger than the actual acting
body force as the surface is approached. This is a result of the very
large near-surface viscosities and the attendant viscosity gradients
which result from application of quation (15) The residuals tend
to become negative near the surface, because the viscosities predicted
by equations (15) are much greater for section B than for section A
at equivalent depths, so that 91/8x is large and positive and the con-
tributions to equilibrium of o7 'XX/Bx =2 -g; ne , are consistently
negative. The contribution from B'rxz/az =2 _86_5 ﬂexz can be positive
or negative depending on the relationship of m in adjacent holes in
the same section., The greater viscosity at equivalent depth in hole
1B as compared to hole 2B causes this contribution 'to be positive at

2B, With this Viscosi‘cy distribution B'rxy/By =22 ne is —;—p g

oy ' xy x
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and does not contribute to the excessively large residuals,

The distribution of residualé indicates that the viscosity
derived from equation (15) does not give a reasonable representation
of the existing viscosity distribution near the surface. Thus the
sharp rise of the curves (fig. 36) cannot be caused completely by a
real increase in viscosity near the surface,’ but must indicate that
the shear stress deviates to some extent from a linear depth depend-
ence, There is no compelling reason to conclude that rheological
inhomogeneity exists or that a flow law of form given‘by equation (2)
is inapplicable. The depth distribution of shear strain rate near
the surface, of which the sharp upturn in the logn vs. log ; plots
is a manifestation, is caused by a shear stress lT,xy, which increases
with depth less rapidly than predicted by equation (15)., The acting
body force then must be equilibrated by the other stress gradients
BTXX/BX, B‘TXZ/BZ, or dp/dx.

The dashed and the solid curves in figure 38 give the depth
distribution of residual body force at each borehole calculated from
equation (11) with p' constant by using respectively the flow law
determined from the linear part of the log M vs. log € curve for that
borehole (fig. 36) and the flow law derived by the minimization of
residual body forces over the complete depth of that borehole. In
either case the boreholes for which there is definite evidence for a
strong upturn in the log m vs. log € plot (1A, 1B, 2B, 3B, 5A)
have distributions of residual body force showing a si_:rdng decrease
with depth. The negative gradient terminates at a depth correspond-

ing roughly to the depth that marks the onset of the anomalous near-
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surface behavior. In order that the small gradient in Txy’ which

ié given by the concave distribution of éxy and the nearly constant
value of €, be equilibrated, it is necessary that the other stress
gradients entering in the x-equilibrium equation have appropriate
dgpth dependences to compensate for the changing value of 8'Txy/8y.
The gradient in the residuals indicates that this is not the case for
87}'0(/8:: and a*rxz/az. Thus there is no evident cause for the non-
linearity of the depth distribution of Txy’ which seems to Be required
by the observed depth distribution of shear strain rate.

The calculations of the residual force field do not take into
account any longitudinal gradient in the mean stress. (It was assumed
dp/0x = 0,) It is thus possible that the non-linear depth dependence
in Txy is caused by a depth-dependent longitudinal gradient in mean
stress that cannot be ascertained with the existing data. The longi-
tudinal gradient'in mean streés can, however, be calculated at the
surface through equation (7b)? It is possible at least to test whether
such gradients reduce the residual forces at the surface, If a power
law with @ and' B equal to any of the sets of parameters listed in
tables 16 and 17 applies uniformly at the surface, then the mean
stress gradients are less than 10% of Pgy+ The mean stress is more
compressive down glacier, which gives a gradient of the proper sign
to reduce the residual forces, but the size of the gradients is too
small to reduce the residuals to a level compatible with equilibrium,
(At the surface the strain rateé and their gradients are known to an

accuracy sufficient to determine the residual forces to within 0.2 in
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body force units.) Thus it seems unlikely that a depth dependent
gradient in mean stress, calculated on the basis of homogeneous
power-law properties, can account for the residuals at depth.

A possible, though highly speculative, solution to this
apparent dilemma is that near the surface the effective viscosity
corresponding to equivalent ; is higher at section B than at section
A as if the ice were longitudinally inhomogeneous. At th‘e‘e surface
this would give more negative values for the contributions of 9T 'xx/ax
and 9p/9x to equilibrium and reduce the positive residuals. Since
’éxx’ decreases with depth, B'r}'{x/ax would becéme more positive
with depth and would contribute to eliminating the negative gradient
in the residual forces., A power law with a value of the parameter
B 20% greater at section B than at section A and equivalent values
of @ at both sections would give contributions from 37';0(/3}{ and
8p/8x large enough to eliminate the residual forces at the surface.

A clear instance of deviation of shear stress from linear
dependence occurs in the lowermost 40 m of borehole 2A (fig. 13d).
This demonstrates graphically the effect that local differences in the
properties of the glacier bed can have on the flow, and is particularly
significant with respect to the present discussion. Since flow law
parameters are determined to a large extent by deformation in the
lowermost parts of boreholes, where strain rates are high and show
significant variation, the effects of such fluctuations in bed properties
can strongly influence the reéults of an analysis for rheological

parameters,



158

Comparison of the two methods

In figure 38 the displaceinent of the solid curx}es from the
dashed curves toward the axis of zero residual body force shows that
the degree of disequilibrium corresponding to the least-squares flow
‘,law is less than for the flow law derived from the linear shear-stress
treatment. A displacement independent of depth indicates an adjust-
ment of parameter B resulting from depth-independent contribu-
tions from. aT_, /8z in addition to that included in equation (15), and
from EB'J'DLX/EBX° Such contributions do not imply any deviation of TXY.
from linear dependence, but only a change in the proportionality
factor. A systematic difference in the gradients of the two.curves
indicates that changing-the parameters results in a depth-dependent
redistribution of stress. A change in the flow-law parameter « is
thus involved. The adjustment of the parametrs can be seen by com-
parison of tables 16 and 17,

For explicit comparison, the results of the linear shear
stress treatments and the least square analyses, which were
restricted to the depth ranges corresponding to the linear portions
of the log M vs. log € curves (fig. 36), are plotted in figure 37,
These comparisons are more meaningful than comparisons made
with the least squares analyses applied to the complete dépth of
boreholes, because the pos_sible effects of different weighting of the
different depth ranges of the boreholes do not enter. The differ-

ences between the results of the two methods show that the effects

of the deviation of the velocity contours from a concentric semi-
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circular pattern and the observed x dependence of the strain-rate
field have a significant influence in the calculation of flow law
parameters.

If the point for hole 2B, which was calculated from a parti-
cularly short depth interval (20 m) and small range in € (0.029 to
0.032 yr -1) and which is therefore subject to considerable uncer-
tainty, is neglected, the range in @ for the least squares-analyses
(0.61 to 0,83) is significantly less than for the linear shear stress
analyses (0.56 to 0.98). Thus it seems reasonable that the spread
in o, as determined on the basis of linear shear stress, is caused
by a deviation from such linearity, and that the least squares pro-
cedure is successful in correcting for such deviations. The remain-
ing spread in @ can be attributed to the uncertainty in the measure-
ments and calculation of gradients. The range in B* - B(éo)_a
from the least squares treatment (6.0 to 15.2 bar) is increased with
respect to the range for the linear shear stress results (9.0 to 10.0
bar). The greater range in B’l< is caused to some extent by the fact
that the comparison is made at éo = 0,05 yr_1 which was chosen
specifically to minimize the spread in B* as given by the linear
shear stress results. Nevertheless the spread in B>I= from the two
methods cannot be equalized by reasonable adjustment of .60. The
spread in B>'= probably comes from failure of the explicit assumption
that the longitudinal gradient of mean stress“is zero, and the implicit
assumptions involved in the calculation of the strain-rate components

and their gradients by a specific interpolation procedure.
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Results

For the purpose “of defining a "best" flow law on the basis of
the Athabasca borehole data, the results derived from combined
analysis of all of the boreholes can be considered to be most signifi-
cant. If the spread in the results for individual boreholes is caused
by the limitations of the accuracy and extent of the data, then it
could be expected that such influences would tend to cancel in the
combined analysis including all of the boreholes. If the spread
represents existing inhomogeneity in the ice, then the combined
analysis defines a flow law describing, in some sense, the average
properties of the ice,

The results for the power law parameters B and «, which
were calculated from the general trend defined by figure 36, the
least-squares analysis applied to the complete depth of all of the
boreholes, and the least-squares analysis restricted to the lower
parts of the boreholes, are plotted in figure 39 as points a, b, and
c respectively. For comparison several other sets of parameters,
as determined by laboratory experiments and field data of other
investigators, are also plotted. Included are the flow laws deter-
mined experimentally by Glen (1955) for polycrystalline ice at -0.02°C
(points 1 and 2), the experimental results of Butkovich and Liandauer
(1958) as extrapolated to 0°C by Paterson and Savage (1963b) (point 3),
the results from the analysis of the closure of several tunnels by Nye
(1953) (point 4), and a result from recent borehole measurements on

the Blue Glacier (Kamb and Shreve, unpublished) (point 5).
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The result based on the linear shear-stress analysis and the
Blue Glacier result, which was calculated by a similar method, are
in very close ag(reemen‘t. The agreement between the éresent re-
sults and those determined on the Blue Glacier is particularly
significant because of the difference between the deformation rates
in the two field studies. The present results represent strain rate
€ between 0,02 and 0.10 yr_l; the Blue Glacier determination was
based on measured strain rates between 0.1 and 0.6 yr-l. The
identical vélues of a=0,81 (n=5,3) for the two experiments are
slightly larger than the value of @ = 0.76 (n = 4,2) which represents
the largest of the values obtained by laboratory measurements,

The least-squares analyses give values of @ which fall in the
range spanned by the experimental values reporfed here, The values
of B are, however, displaced relative to the experimental values
in a sense which corresponds to relatively higher viscosity, Pre-
sumably the least-squares analysis (points b and ¢) should be more
reliable than the point based on the assumption of a linear shear
stress variation (point a), since, in so far as is possible, account

. : '
is taken of the stress gradients 97, /8x and o7, /0%,
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CHAPTER VIII

CONC LUSIONS AND RECOMMENDATIONS

The results of this field study call into question a number of
concepts concerning glacier flow. The calculations of Nye (1965),
which are the most comprehensive and rigorous to date, fail to a
significant degree to predict the distribution of longitudinal velocity
observed on the Athabasca Glacier (Chapter VI-A),

The failure wa's shown to be caused in large measure by the
difference in the boundary conditions as assumed in the theoretical
analysis and as actually exists in the cross section under observation.
This demonstrates the importance of the boundary condition applied
to the bed in theoretical predictive calculations such as Nye's (1965),
and the need for greate‘r understanding of the phenomenon of glacier
sliding. The observed contrast between basal sliding in the central
portion of the channel and marginal sliding is of significance in
hydrological applications of glacier flow theory:and provides infor-
mation about the sliding process. The generality of such a contrast
should be directly examined further by making marginal sliding
measurements in conjunction with borehole experiments which deter-
mine basal slip velocity., The hjpothesis that such an effect results
from a lateral variation in basal water pressure needs to be tested
directly by monitoring of water pressure iﬁ boreholes and measure-
ments of the distribution of bed roughness across glacier channels,

The observed distribution of veldcity also differs from the

theory of Nye (1965) in a manner which is not accountable in terms
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of the boundary condition used in the calculation. Nye (1965) made
his calculations under the assumption that the flow field is recti-
linear and has no longitﬁdinal dependence, and that the material is
horﬁogeneous. Both of the conditions of the flow field are violated

to éome extent in the cross section of the Athabasca Glacier (Chapter
VI-C and D). It is also possible that the material is not rheologically
homogeneous. The specific source of the diéparity betwee\n the ob-
servations and theory remains unidentified, and is a question which
needs further consideration.

A two-dimensional calculation similar to Nye's (1965), but
allowing a more general non-rectilinear velocity field with x-inde-
pendent strain-rate components (Appendix IIl) and carried out with a
more realistic boundary condition, would be an important extension
of Nye's work. Such a calculation could be of use in isolating any
effects of the longitudinal dependence of the strain rate or rheological
inhomogeneity of the ice from effects caused by the non-rectilinear
nature of the flow.

The distribution of e in the cross section (Chapter VI-C)
indicates that the strain-rate field is not longitudinally independent.
The importance of longitudinal stress gradients, where significant
gradients in surface and bed slope exist, has been recognized (Robin,
1967). The distribution of longitudinal strain rate’ observed here
and the implied longitudinal gradients in the strain-rate and stress
fields may indicate that longitudinal stress gradients play a role in
glacier flow in the ablation region of valley glaciers even when the

surface and bed slopes are relatively uniform.
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It has long been recognized (Nye, 1951, 1957) that longi-
tudinal compression is a response to ablation through which a glacier
maintains its thickness., Lateral flow, as observed in the Athabasca
Glacier cross section (Chapi:er VI-D), is an essential feature of this
response which has been largely overlooked. Lateral flow velocities
of the same order of magnitude as the normal velocity at the glacier

surface, and lateral exiension (éz ) in the central portion of the

z
glacier of the same order of magnitude as the longitudinal compres-
sion rate (—éxx) can in general be expected. The convex transverse
surface profiles typical of the ablation region of valley glaciers

exist in order to supply the driving stresses for the required trans-
verse flow.

The observed decrease in longitudinal compression rate (—:axx)
with depth and the existence of transverse extension (éz‘z) at the
centerline are particularly significant in that they cast doubt on the
applicability of the theory of Nye (1957), which requires that éxx is
independent of depth and that ézz is zero.

All previous analyses of borehole deformation have been made
under the assumption that shear stress parallel to the surface is
linear with depth. The present data indicate that significant variation
of the shear stress from linear depth dependence exists (Chapter
VII-C), although the spec ific cause of such a deviation has not been
identified.

A challenge for further study is to understand the mechanism

of stress redistribution, which is responsible for the anomalously
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slow increase in the magnitude of shear strain rate with dep’ch‘ near the
surface. The slower increase in shear strain rate with depth at section
B as compared to section A, the smaller width ratio of velocity of con-~
tours at section B as compared to section A, and the marked decrease
of longitudinal compression rate with depth are interrelated features of
the flow field which need explanation and probably provide clues to the
specific mechanism of stress redistribution.

The new methods pf analysis (Chapter VII-B) are valuable
tools in the ahalysis of glacier flow, since they require only general
assumptions concerning the rheology of ice and no assumptions about
the distributions of stress. The full potential of these methods could
not be realized even with the extensive measurements of the present
project, largely because of the uncertainty in determining gradients of
flow quantities by interpolation between boreholes. Spacing of the bore-
holes closer than%- of the glacier depth and a more extensive borehole
array would providé significant improvement. The efficiency of the
present techniques of boring and inclinometry (Chapter III-B) and the
reliability of borehole recovery achievable by use of aircréft cables as
borehole. marker(s (Appendix I-B), now make such extensive and detailed
measurements possible. The method developed for the interpretation
of tilt data from borehole arrays in terms of velocity and strain-~rate
components (Chapter V-A) provides a framework within which data from
borehole arrays more extensive than the present one can be reduced to
give the flow quantities needed for the new methods of rheological

analysis.
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For gaining further understanding of the distribution of stress
and velocity in glaciers, the experience of this research emphasizes
the importance of concentrated and detailed deformation measurements,
giving complete strain-rate information, as opposed to scattered glacier-

wide measurements.
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APPENDIX I

DESCRIPTION AND EVALUATION
OF EQUIPMENT AND PROCEDURES

A. Equipment and Field Procedures

Thermal drills

The two types of thermal drills ('"hotpoints') used, a sténdard
boring hotpoint for making the original holes and a céble—following
hotpoint for borehole reéovery, were both designed by R. Shreve.
These hotpoints were found to be highly reliable. Both types are of
similar construction. Flat resistance wire of total resistance 19.6
ohms is wound around a cylindrical copper core, one end of which
forms the nose or melting surface of the hotpoint. The standard
boring hotpoint has almost perfect cylindrical symmetry. The cable-
following model has a 1/8'" hole through a lip projecting from the
hotpoint ﬁose. The cable to be followed is threaded through this hole.

The hotpoints are designed for a maximum amperage of 11
amps when the instrument is in ice water. Actual operating amperage
on the Athabasca glacier operation was typically between 9 and 10
amps. At this amperage, a hole 6 to 7 cm in diameter is produced
with a penetration rate of 6 to 7 m/hour. The standard boring hot-
point was used on the end of a seven-foot section of standard 1 1/4"
galvanized steel pipe which provided weight to improve efficiency
and served as a guide to keep the initial borehole straight. The cable-
following hotpoint was mounted on a brass tube three fe'et in overall

length. The tube was in three sections, so that sections could be
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removed in order to make a shorter assembly in the event that sharp

corners in the deformed borehole were encountered.

N

Power cables

For most of the boring operations, electrical cable with four
stranded copper conductors (18 AWG) was used. Two conductors
were used in parallel, giving a circuit resistance of 6.5 ohms per
1000'. Electrical connection to the hotpoint was made with banana-
type plugs. 100 per cen£ reliability is obtained without the difficult
problem of providing for water-tightness, which is required when
single~unit plugs, such as Cannon connectors, are used. Four-
conductor Cannon plugs potted with silicon rubber were used for all
connections at the surface.

The power cable also served as the mechanical link between
the hotpoint and the surface. The cable strength of 150 lbs. is con-
sidered marginal for this purpose. The considerable advantage of
having only one cable down the hole, however, was found to outweigh
the risk involved. To make mechanical connection of the cable to the
hotpoint, the cable was bound back on itself to form a loop. The loop
was reinforced with a cable thimble and secured to a sleeve on the
top of the hotpoint assembly by passing a bar through it.

Power cables of various lengths (300, 500', 950", 1000') were
employed. The shortest cable appropriate to boring at a given depth
was used whenever possible in order to reduce line loss and thus
make maximum use of available power. Provision vyas' also made for

joining two cables. Electrical and mechanical connections were
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accomplished in a manner similar fo that for connecting to the
hotpoint.

The four-conductor cables just discussed were found to have
a tendency to twist when under tension. This could be expected from
the manner of their construction, in which the four conductors are
gently twisted into helices around one another. This tendency is
particularly strong in new cables. This effect is of no c‘onsequence
in the initial boring of holes, but in thé process of cable; following, it
causes a gré‘at danger of irretrievably tangling the power cable around
the aircraft cable being followed. In 1967 this caused a great deal of
loss in field time, and contributed to the loss of a hotpoint and the
lower 100 meters of hole 1C. In 1968, two-conductor shielded
coaxial cable was tried. This cable has a cylindrically symmetric
construction, with a single center conductor insulated from a double
braided outer shield, which provides the second conducting path. A
thin polyvinyl chloride sheath is laid over the braided shield and forms
ar; insulating outer cover. Experience with this cable on the Athabasca
glacier indicates that this type of cable greatly reduced the problem of
cable tangling. In addition, for épplications where only two conductors
are required, this type of construction is very efficient in that an
equivalent line resistance can be obtained with a cable smaller in

diameter and lighter in weight.

Power supply

Electrical power w¢s supplied by two 3000 watt portable

generators. At the altitude of the Athabasca field site, the maximum
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output of the geﬁerators was actually between 2300 and 2400 watts.

Power supply to the hotpoint was controlled by a SCR control
circuit based on the time constant of an RC circuit with variable re-
sistance. This control system was designed by J. Westphal. Each
control unit contained a 250-volt a.c. voltmeter and a 10-amp RF
amméter for direct monitoring of the generator output voltage and
current to the hotpoint.

The hotpoint was almost always run at full power. Sometimes
circumstances arose such that for brief periods the hotpoint may not
have been submerged in ice water and thus had to be run at reduced
power in order to avoid a burnout. One such circumstance arose
from the fact that the surface ice in this area of the Athabasca glacier
is below freezing, and the holes thus tend to freeze up rapidly at the
surface. The period of one night is typically sufficiently long that in
the morning the hotpoint cannot be directly lowered without first
enlarging the hole. If the water level has dropped, this must be done

at low power.

Heater bars

The danger of trapping a hotpoint in a borehole as a result of
the borehole closing near the surface during a long period of boring
was also a great problem. With only the power input resulting from
power cable dissipation, some difficulty in retrieving a hofpoint could
be expected after only four hours. In order to avoid th_e inconvenience
and time loss involved in raising the hotpoint every three or four hours

for the purpose of enlarging the hole near the surface, heater bars
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were used to pfovide power input in the near-surface section of the
borehole. The heater bars were operated at the same time boring
was proceeding at the bottom of the hole, thus allowing long periods
of continuous operation. Heater bars used were commercially con-
structed, 2 feet long, 1 1/2" X 3/16" in cross section, with a resist-
anceb of 27 ohms. Three such bars were used in series at 115 volts,

dissipating 160 watts.

Drilling stand and aircraft cable assembly

A wooden box (15 1/2'" x 16" x 12") mounted on four wooden
legs (2" X 2") set into‘ the ice was centered over each borehole and
served as a stand for drilling purposes and storage of aircraft cable
over the winter. During the drilling operation, a spool was mounted
between two of the legs of the stand in a manner such that power cable
could be easily wound on and off by means of a hand crank. Cable
passed from the spool over a sheave mounted on the top of the box,
through a hole in the top of the box, and then down the borehole to the
hotpoint. The sheave was coupled to a revolution counter. The change
in depth corresponding to one revolution could be calibrated, and was
approximately one meter (1.063 m).

A small drum (6'" diameter, 6' long) was mounted in the in-
terior of the wooden box to serve as storage for the aircraft cable
over the winter. The end of the aircraft cable in the borehole was
wound on one side of this drum. On the other side, a band of adjust-
able tension with both ends secured to the wooden box and passing

around the drum served as a friction brake. For wintering over, all
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holes in the wooden box were blocked to prevent packing of snow
around the mechanism. |

Cable used for marking most of the boreholes was 1/16"
diameter, 7 X 7 construction stainless steel aircraft cable with a
strength of 480 lbs. and an elongation at breaking of approximately
1%. In one hole (hole 2A), a cable of similar construction but 3/32"
diameter was used. A steel weight was atta‘ched,at‘ the‘ lower end of
the aircraft cable. The dimensions of the weight (1 v11/16" diameter,
3! long) are just slightly larger than those of the inclinometef. This
weight serves two purposes. First, it crarries the cable down the hole.
Second, it fixes the cable at the lower end, so that the borehole can
be enlarged in the event that the aircraft cable is free in the hole,
but the hole is too small to allow passage of the inclinometer. This is
necessary because, in order to follow the cable with a cable-following

hotpoint, the aircraft cable must be kept under tension.

Inclinometers

Two types of inclinometer were used on the Athabasca glacier.
Inclinometry of the initial boreholes was done with an optical-type
instrument loaned by Parsons Survey Company. These instruments
are proven instruments and have been used in most of the borehole
experiments done to date. The instrument works by recording the
positions of a pendulum bob and compass needle on a photographic
disc. The main disadvantage of this method is that afi:er‘ each meas-
urement the inclinometer must be raised to the surface and loaded

with a new photographic disc. The time spent in loading and the
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amount of windihg involved in lowering into a deep hole make this
method very time consuming.

In order to be abie to obtain a higher density of data than
would be obtainable with such optical inclinometers, a more efficient
instrument was desighed and built and was used in the deformed bore-
holes. The new type of inclinometer has an electric output and can be
read remotely from the surface, so that complete logging of a hole
can be accomplished with only one lowering of the instrument. The
basic method employed is similar to that in the optical inclinometers.
The position of a pendulum bob and compass needle are determined by
the electrical output of solar cells mounted in a manner such that the
area of illumination by a light source of fixed intensity changes with
changing orientation. The light source is powered and controlled from
the surface, and is monitored in the instrument by a separate solar
cell not affected by any displacement of the pendulum or compass.
The method of illumination measurement is temperature dependent,
since the efficiency of the solar cells depends on temperature. Hence
the instrument as designed would not be satisfactory for general
applications in a temperature-changing environment, unless the
temperature dependence of the standard solar cell were exactly
matched to that of the other cells in the instrument. However, in the
nearly isothermal environment of a water-filled borehole, the tem-
perature dependence presents no problem. The total temperafure
variation over a depth of 300 meters is about 0.2°C.

Figure 6 illustrates the geometry of the instruxﬁent and the

manner in which it works. Below the light source is the pendulum
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unit. A square pendulum bob is suspended from four chains. Beneath
the weight are four silicon solar cells mounted normal to the sides of
the pendulum weight in such a manner that approximately 50% of the
area of each cell is shaded from the light source at zero inclination.
Cells on opposite sides of the pendulum weight are connected back to
back as shown in figure 6. The output of each cell pair is then approx-
imately zero at zero inclination, and changes as one of the cells
becomes more covered and the other less covered, as the instrument
is tilted. T‘he output from cell pairs gives the components of tilt
along the two perpendicular axes x and y which are fixed with respect
to the instrument body. Maximum pos‘sible inclination is determined
by‘the length of the suspension chains. Pendulums of different maxi-
mum amplitude can be interchanged in the instrument.

The compass assembly is mounted above the light. A magnet
is mounted on a shaft that turns in jewel bearings. A card rigidly
attached to this shaft has a spiral shaped aperature cut in it, so that
the area of illumination on a solar cell above the card depends on the
relative azimuthal orientation of the card and the inclinometer case.
Selenium solar cells were used, because they were available in a
shape suitable to this application. Two such cells are read
independently.

For a complete determination of instrument orientation, five
current measurements are made. With the system used, current
output ranges from 0 to 10 ygA. The output is read on an API taut-
band meter capable of 0.2% reproducibility. The forms of the output

versus orientation curves are given in figure 7 for the compass and
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and for the 10° pendulum used for almost all of the measurements.
Because the output for a single cell registering the orientation of the
compass card must be continuous and give the same value on a rotation
of 360°, the output from a single cell cannot give an unambiguous
result. Thus it was found necessary to have two compass readout
cells, A, and A;. The output of a single cell gives a pair of possible
orientations. The two pairs, from the two cells, are compared, and
the orientation which is common to both pairs is chosen as the correct
one. It determines the azimuth of the x and y axes of the pendulum
unit with respect to magnetic north. The x and y outputs of the
pendulum unit can be simply combined to give tilt magnitude and
direction of tilt provided that the pendulum is suspended in such a
manner that’the bob does not twist as it is displ'aced, so that the x
output does not change upon tilting in the y direction and visa versa.
This requires that the suspension chains be parallel and of equal
length. It is rather easy to achieve this to a degree which limits
difference in tilt magnitude as computed only from the x and y output
as compared with the actual value to less than 1%. Twisﬁng of the
pendulum would require calibration along many directions of tilt or
essentially a complete two-dimensional calibration. Such calibration
was done only once, in order to verify that the effects of twisting were
negligible.

Because of the five independent current measurements re-
gquired for an orientation determination, a stepping relay was placed
in the instrument. Activation of the relay from the surface causes

successive instrument components to be connected to the output
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channel. The individual measurements are thus made in sequence.
With this feature, a fourrconductor cable provided a sufficient number
of independent conductors.

The complete inclinometer assembly was placed in a water-
proof outer case sealed with O-rings. The cable used with the
inclinometer contained four '"'copper weld' conductors (number 18 AGU),
and was manufactured by Vector Cable Corhpa‘ny, /originally for use
in heat flow measurements. The cable was connected electrically
to the instrument with a four-prong Cannon plug. This plug was also
isolated from the water in the borehole by O- ring seals.

In actual operation, the instrument is calibrated before and
after each use, because of the possibility of drift resulting from
changes in light intensity and fhe efficiency of the cells. In the case
of the penduium unit, the calibrations before and after always agreed
to within 1% of the maximum amplitude of the pendulum, and this
value is taken as the accuracy of the tilt magnitude determination
achieved in the borehole measurements. Systematic error in the tilt
magnitude calibration was evaluated and eliminated by rotating the
instrument 180° and recalibrating. Experience over the period of one
field season and two months of cold room experiments indicates that
the pendulum unit output is stable over a period of four months at the
1% level. In the case of the compass unit, an error of +20° in azimuth
was possible because of friction in the compass bearings. For the
third summer's field work, the instrument was modified by attaching
a vibrator to the case, near the compass shaft. The vibrator ‘(an

eccentric cam powered by an electric motor) was activated during
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the operation of the relay switch. This greatly improved the oper-

ation of the compass system.

B. Experiences in Borehole Recovery

The experiences with the method of using aircraft cables as
markers for borehole recovery provide some useful information con-
cerning the reliability of the method and possible modifications;

For most of the’boreholes, a one-year interval produced an
average elongation of about 1% and maximum local elongations of
about 2%. Thus some sliding of the cable through the ice was neces-
sary in order to avoid breakage. This can occur by a regelation
mechanism in ice at the pressure melting point. Presumably in ice
which is significantly below the pressure melting point, such slippage
could not occur. Thus recognition of a surface layer of ice definitely
below the pressure melting point presented a clear danger to the
success of this technique.

No cables broke over the 1966-67 winter. But all cables were
under considerable tension after wintering over, as shown by the fact
that additional cable was pulled into the holes as the holes were re-
drilled (fig. 5). The curves of figure 5 represent the combined effect
of (1) the release of strain in the part of the cable which is being
freed from the ice as the cable-following hotpoint penetrates, and
(2) release of strain in that fart not yet freed, but nevertheless under-
going relaxaﬁon because of the changing tension boundéry condition

at its upper end as the hotpoint penetrates.
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For all of the cables, the total elongation of the cables is
definitely less than the borehole elongation, by 2.1 m on the average.
This indicates that either, in spite of the cold surface ice, cable was
pulled in from the surface, or the weights at the bottom of the holes
were pulled up the holes before they became securely gripped by the
ice. That the first is possible is suggested by the fact that the local
borehole elongation of about 2%, typical of the tops of all the boreholes,
would have broken all the cables if some readjustmeﬁt ﬁad not taken
place in the‘ surface ice. The second is possible since in two bore-~
holes (3B, 4A), after a one-year period, the weights were still free.
Although this was not the case with any other boreholes, it indicates
the possibility that the weights in the other holes could have remained
free for at least part of the year. In addition, the weights were en-
countered in reboring in 1967 on the average 1.8 m higher than would
have been expected from a consideration of ice surface elevations and
the strain rates. This indicates that nearly all of the accommodation
was accomplished by lifting of the Weights up the hole, rather than by
pulling cable in from the surface.

The typical experience in recovering a borehole is that for the
first several meters, no cable is pulled into the hole. After borihg to
between 5 and 15 m, cable starts to be pulled in very rapidly, with
as much as 1.2 m being pulled in in 5 m of further boring. After this
episode of rapid pulling in, the rate becomes greatly reduced, to
about 0.2 m per 100 m bored. This slow rate persists_ typically until
80 m depth. Thereafter a rather steady rate of approximately 0.5 m

per 100 m bored persists. These features are illustrated in figure 5.
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The apparently relaxed state of the aircraft cable, which was
always observed very close to the surface, is believed to result from
local melting around the cable as a result of absorbtion of radiation
penetrating the ice. The extremely rapid rate at which cable is
pulled in as the hotpoint penetrates below the cold surface layer
cannot be attributed to local relief of elongation in the cable. The
total amount of cable pulled in during the near-surface episode (about
1 m) and the breaking elongation (1%) indicafe that essentially instan-
taneous relaxation is océurring over a length of af least 100 m. This
demonstrates the large contrast in thle facility of the cable to creep
through the cold surface ice and the more temperate ice beneath. For
all the boreholes showing an initial phase of rapid cable pull-in, the
average elongation remaining in the aircraft cable after completion of
the episode was roughly the same value of about 0.3 to 0.4%. This
would seem to indicate that in temperate ice of a thickness of 300 m
elongations greater than 0.4% would not be expected even at the very
highest strain rates observed in glacial flow as iong as the cable is
free to be pulled in from the surface. Since 0.4% is safely below bthe
breaking elongation of 1%, the 1/16" diameter cable .used should be
adequate in situations where the ice is at the pressure melting point
throughout.

Although no cables were broken over the winter 1966-67,
average elongation of the cables up to 0.8% had accumulated, indi-
cating that the system was operating with very little mérgin of safety.
The 3/32" diameter cable which was placed in hole 2A vshowed a

behavior considerably different from that of the 1/16' cables (see
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fig. 5). The absence of an initial phase of rapid pull-in may indicate
that because of its greater tension under an equivalent strain, this
cable was able to pull through the surface ice. Thus using a heavier
cable may be one way in which the problem created by cold surface
ice could be attacked.

Over the winter of 1967-68, four of seven cables left for later
recovery were broken by ice deformation. The tops of the cables
were left coiled on the ice surface. They were not set up in the maﬁner
which they had been the previous winter, because it was desired to
leave no equipment on the glacier surface. Also it was felt at the time
this decision was made, in the summer of 1967, that cable had not
been pulled in from the surface during the 1966-67 winter. Conditions
at the lower end of the cables were also different for the two winters.
For the winter of 1966-67, the weights were initially free. However,
in the summer of 1967, most of the weights could not be melted free,
so that for the entire period between recovery in 1967 and 1968, the
weights acted to fix the lower end of the cables with respect to the
ice. These differences in end conditions are no doubt the cause of
the large percentage of cable breakages over the winter of 1967-68,

The two boreholes successfully recovered (2A, 3B) showed
average elongations very close to 1% and a.pparently just barely
survived. Both of these holes are unusual in that hole 3B had a
weight which was successfully freed in 1967, and hole 2A was the
hole which had the stronger cable. In the case of hole 2A, however,
it ié known from a mark made in 1967 that no significant amount of

cable was pulled in from the surface over the winter. It is thus
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believed that the survival of this cable is not a result of its greater
strength‘, but is more likely related to the value of the average strain
rate parallel to the hole, which is smaller in this hole than in holes
where cables were broken. This is probably also the case for the
cable in borehole 5A. (Although the cable for borehole 5A was not
broken, it was not successfully recovered because a frayed spot on
the cable prevented lowering of the cable-following hotpoint.)

All of the cables which failed were broken within 7 m of the
surface, which is no doubt the result of the combined effects of the
firm gripping of the cable by the cold ice and the high local strain
rate producing a 2% elongation of the borehole. Although little cable
was pulled into the boreholes during the winter of 1966-67, it is
possible that the proximity of a free end of the cable at the surface
was the major factor which allowed the minor near-surface adjustments
necessary to prevent breakage in the cold surface layer to take place.
Whether or not having fixed the cables so they could have been easily
pulled in from the surface would have been sufficient to prevent the
breakages which occurred over the 1967-68 winter cannot, however,
be definitely resolved.

From these experiences, it would seem that in temperate ice
this system of marking boreholes can be expected to work consigtently
without modification. Ewven though there was a very good recovery
percentage for 1966-67, the systém was operating with a small mar-
gin of safety, which depended on the accident of the weights remaining
free, a condition which an experimenter cannot hope to control. Thus

it seems that before this system is used again on a glacier where cold

/v
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surface ice can have an appreciable effect, some modification should
be made. The basic approaches which might be consider‘ed are:

(1) to use cables of a coﬂstruction such that the breaking elongation
exceeds any elongation which would be expected in the process of
deformation; (2) to increase the strength to drag ratio, by either
providing the cable with a smooth surface which cannot be grabbed by
the ice, or by increasing its diameter; (3) to guarantee a free end
condition at the lower end of the cable by having a weak mechanical
link, or by providing a means whereby extra cable could be stored

within and pulled out of the weight.
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APPENDIX I1

"NOISE'' IN BOREHOLE TILT MEASUREMENTS

The scatter (''noise'') in the borehole tilt measurements re-
quires discussion in ordér to specify the accuracy with which the
experimental parameters of interest are determined. The quantities
of interest here are the values of the local tilt, the local slope of the
tilt profile, and the borehole coordinates with ‘respect to the surface
of the initial and deformed boreholes. One would also like to isolate
the source or sources of the noise. An additional question of impor-
tance is whether the scatter is caused by the flow of the glacier, or

whether it is purely a consequence of the experimental technique.

A. Errors in Experimental Quantities

The accuracy with which the data determine the general trend
of tilt with depth, as represented by the chosen smoothing curves
can be made without specific reference to the source of the scatter
in the data, by a purely statistical analysis requiring only general
assumptions concerning the nature of any contributing source of noise.

Consider the deviations {(Y) and £(Y) of I"X(Y) and I"Z(Y) from
any two arbitrary smooth curves. Noting that TX and I"Z and thus {
and ¢ are determined at only discrete points Yk spaced AY (2 m)
apart, the notation can be simplified by denoting C(Yk) and g(yk) by
Ck and é_',k, respectively. Let distributions fN({kl, gkl_;. .o CkN’ gkN)
give the probability of measuring specific values for the ZN random

ariables to and to . Although specific knowledge of
v Ey, CkN €, t© 8y Althoush sp g
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the probability distributions fN is not available, they are introduced for
the purpose of making definitions and clarifying the nature of the
assumptions which must be made.

For notational efficiency, let 7 represent either the random
variable £ or £. In the usual manner, the first moment of the random

variable 1 is given by

©

(0, = Elm ] = \ 7ty (e £,L, 26, (1)

-

and the statistical autocorrelation function is defined by

[+

R'I](Yk’ Ykl) = E[nk’ TIkJ = Snknklfz(ck’ gk; th’ gkl)dckdgdekldgkl (2)

-0

Note that Rn(Yk’ Yk,) = R (Yk" Yk)‘ In addition Rn(Yk’ Yk) is the non-

n

central second moment of the random variable nk. The variance of

nk is
2(vy,) = R_(Y,,Y,) - p2(¥,) (3)
Op{Yi) = RpXje Y ) = (Y

The normalized statistical autocorrelation function is defined to be
- !
(¥, )0, (Y,.,)

P (4)

n(Yk, Yk) =

n

These statistical functions can be used to estimate the accuracy
with which the data determine the smoothing curves for PX and I‘Z and
the quantities of interest derived from them. Consider the curves

defined by

te
i~

le'
N|%

sk sk ]_ 1 )
me =M (Y) =—5 2 (Y, +nAY) = — Z 7 (5)
k KT Tk Uk N1 k+n

n= =

N Z
™| 2
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where AY is the spacing between consecutive tilt measurements and
N is even and less than the total number of tilt measurements N in
a given borehole. n*(Y) thus defined is a running average with each
point having unit weight.

The actual smoothing curves were not determined by a running
average as above, but were drawn by hand with the averaging done by
eye.  An analysis applied to the curves 17* should, however, give an
idea of the uncertainty in the choice of the hand-drawn smoothing
curves if N* is chosen equal to the number of points effectively used
in the visual average. An appropriate N* would seem to be the number
of points in a depth interval of approximately 100 m (N#< = 50). This is
consistent with the elimination of any fluctuations of wave length less
than 100 m, as was done in the smoothing. In addition, the average
given by equation (5) implicitly requires that there be N*/Z data points
on both sides of the point k which is under consideration. In the upper
and lowermost parts of the boreholes, this is not the case. Thus
there are edge effects, and as a result, the smoothing curve cannot be
as preciéely located near the surface and bed. Such edge effects are
neglected in the following analysis. To approximately account for
edge effects, the error in tilting rate at the surface and at the bottom
of the boreholes can be taken to be twice the value derived in the
analysis below.

The formulae giving the first moments and variances of the
random variables *
dn (Y

)

k):m’

n(Y), S (Y
dy
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and v
* K k=1,
I (Y) =S n (Y)dY = AY 2, n (Y,)
‘ o n=1
n be derived. They are
N
2
s ¥y) = Eln,] = 7 Z_N*un(YkJrn) (6a)
n= =
2
Nx N (6b)
Lyt pf 2
= — R (Y, . D) R (Y )
(N+l)2 n:'E: n'El-\I-* n' " k+n " k+n n k
2 2
£ 1
HowlY) = BIS.1 = —— (p, (N9 - p (v, N# (7a)
S 'k k NAY<’7<k+2> n(k2>

02, (Y,) = ELS, - pgy(¥, )%

o7 1 (Vi) + o (Vi) (70)

i

Nk
k-1 2
(Y ) =E=2Y ¥ % Y _ . ) (8a)
Pt Yk k N+ 1 m=1 -N “‘r) m+n
=7
ol Yy) = BLAL - pp (Y, 0%
(8b)

k-1 k-1
—SAY—ZZ > Y R(Y

) - i (Y )
(N'+1)% m=1 m'=l __-Nx _Nx nomitn’ Yimrn) 7 HpslYy
2 -2
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As these formulae stand, however, they are useless in that
the necessary statistical quantities such as the moments and corre-
lation functions cannot be determined. These quantities could be
estimated from the outcomes of a large number of identical experi-
ments in which a number of boreholes would be placed in the same
identical location by exactly the same technique and surveyed with
the same instrument after identical intervals of time. Since the only
quantities essential to the application of formulae (6), (7), and (8)
are “n(Yk) and R’n(Yk’ Yk,), only these would have to be estimated.
Note that the usual estimators for p,n(Yk) and Rn(Yk’ Yk') are

M
021 no‘(Yk)

1
"‘n(Yk) ™
(9a)

M
1
Rn(Yk: th) = 'ﬁ 22’1 na(Yk)na(Yk')

o

where M is the number of experiments performed and na(Yk) is the
outcome of the ozth experiment at depth Y, .

In fact, only one such experiment has been performed. Thus
to make progress, some additional assumptions are required. One
possible approach is to consider the different boreholes, which pene-
trated to the bottom and were completely recovered, as distinct but
identical experiments. This would be a reasonable approach in that
the sources of the noise could be expected to act equivalently in all
of these boreholes. However, there are only seven such borcholes,
which is an inadequate sample for application of the above formulae.

An additional step can be taken by assuming that the processes which
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produce the random noise are independent of depth in the boreholes.
Although, as will be discussed in the second section of this chapter,
there is reason to think that this assumption may :not be precisely

true, it can be expected to be approximately valid. Specifically, it

is assumed that o-; and pn are independent of depth or

0727(Yk) = c::‘] (10a)
pn(Yk, Yk+n) = pn(nAY) (10b)>_

1f n (which equals £ or £) is the deviation away from the actually
chosen smoothing curve appropriate to the variable for which 7 stands,
then ’J‘n*(Yk) is not zero at all depths, because in choosing the smooth~
ing curves, systematic effects caused by the behavior of the compass
unit in the inclinometer have been eliminated, as discussed in

Chapter IV-D. This results in a displacement of the chosen smoothing
curves away from a curve defined as a running average. This dis-
placement is assumed to be independent of depth. This again can be
expected to be only approximately valid. Since the actual displace-
ment involved is in all cases small compared to the amplitude of the
scatter (less than 10%), no significant effect on the outcome of the
analysis would occur even if the displacement were assumed to be

zero. The weaker assumption

Y = 10c¢
Hp(Y1) = by (10¢)
is, however, sufficient to reduce the complexity of the formulae.

The above assumptions and equation (4) imply that
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R, (Y (nAY) (10d)

K Yien) 7 By

Under these assumptions, formulae (6), (7), and (8) reduce to

. = 11
T u,, (11a)
2 _IL_
O s = 1+2 2% (1- p_(nAY) (11b)
N { n= 1( N +1> J
Hgs = 0 . (12a)
2 sk
Oaw = 1-p (N AY) (12b)
S (N AY) { n }
PrslYy) = (k- l)A,Yu,7 (13a)
2 ‘ 2 2 1 :
orelY, ) = (k -naviel v 54— T 1- ——)p,.(nAY) (13b)
Ik { N1 ( N‘+1> n

n=1

N N

k-1 2 2

+ 42 5 22 z (l—k—f—l)p ([n—n'+£]AY)}
(N+1)¢ , . -N , -N n
B )
n-n'+4 # 0~

Since all of the statistical functions of interest are independent
of depth under the above assumptions, it is natural to suppose that
”"7 and Rn(nAY) can be estimafed by considering the scatter along the
length of the borehole as well as by the outcomes at given Y of

different experiments. Thus in analogy to equations (9)
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N
2 my,) (14a)

1
N

Hn

Rn(nAY) = 2 nly

m(Y + nAY) (14b)
a=1 o

o

where N is the number of tilt measurements made in the borehole and
M =N - n. Estimators of o'n and pn(nAY) can be computed from

equations (3) and (4). 0., R_, and pn withn = £ and = £ can be

Hy Oy T
used in equations (11b) apd (12b} to estimate a standard deviation for
the location and siope of the smoothed tilt profiles. Equation (13b)
estimates the accuracy with which borehole coordina;tes are deter-
mined.

If the above formulae are applied to each borehole secparately,
the following results are obtained. The standard deviation Op ranges

from 0.31° to 0.57° and g, from 0.29° to 0.98°. The larger scatter

3
in I"Z is interpreted to be a result of the relatively large error in
azimuth (* 20°). The autocorrelation functions for the separate bore-
holes pc(nAY) and pe(nAY) were calculated for n up to 10, corre-
sponding to a maximum interval of 20 m. The normalized correlation
coefficients estimated for tilt measurements spaced at these intervals
were always small (less than 0.2 for £ and £), except in the case of
borehole 2B where pC and pg attained values up to 0.35 and 0.55,
respectively. 1f the random variables Ck and gk are normally dis-
tributed, then it can be shown that for pc and pg much less than one,
pC and pg would be approximately no;mally distributed 'with variance

1/(M-3) (Mood, 1950, p. 314). Although { and £ do not seem to obey

normal distribution laws as is shown in figure 40, the actual
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distributions are not drastically dif‘ferent from normal form, and
thus it can be expected that the above estimate of the variance for p
will be of use in testing the significance of calculated values of pc and
pE . For all of the boreholes except 2B, the calculated values of Pe
and pE for n 2 1 are not significantly greater than the standard devia-
tions, which for a typical borehole 300 m deep with 150 tilt measure-
ments would be approximately 0.08. This, along with the fact that the
distribution Qf pC and pg,with increasing separation of the compared
points apparently lacks any systematic features, suggests that there is
no significant correlation. However, one significant systematic
pattern of the distributions for the various boreholes considered
separately (not illustrated here) is that the corfelation coefficients
pc and pg for a 2 m interval (n = 1) are always negative, and for a 4 m
interval (n = 2) tend to be positive. This suggests that significant
correlation exists between the deviations of tilt measureménts sepa-
rated by 2 and 4 m. To test this, all boreholes were considere’d
together, by using equations (14) with the sums including data from
all of the boreholes. (N equals the total number of tilt determinations,
and M = N - 9n.) The resulting normalized autocorrelation functions
are illustrated in figure 41. The horizontal dashes are placed one
standard deviation (+ 0.03) above and below p = 0. In the case of
pt (nAY), the values for pz(nA,Y) with n 2 3 are compatible with the
interpretat‘ion that pc(nAY) = 0. pC(IAY) = -0.12 and pc(ZAY) ’= +0.09,
which are several times the estimated standard deviation (0. 03); this
must indicate real though weak correlation between adjacent and next-

adjacent tilt measurements. A similar distribution for pg(nAY) was
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calculated. Thé values of pg(nA,Y) seem, however, to be significant
out ton = 6. This longer range of significant correlation is due to

a large contribution from hole 2B, caused by a strong disturbance in
the transverse tilt measurements where large deviations alternating
in sign occurred over a considerable depth (fig. l4e). The meaning

of such correlations will be of interest in the second section of this
chapter. For the present purpose, it is sufficient to note that the
correlation p(nAY) is small for n> 0, and tiaat significant correlation
ceases to exist over intervals short comp.areld with thé length over
which the running average was made. In this case, the sums involving
p(nAY) with n 2 1 in equations (11b), (12b), and (13b), make only a
small contribution to the value of the variance calculated for each of
the quantities of interest. In view of the many approximations already
inherent in this analysis, it is justifiable to neglect those contributions
for n =z 1 and to evaluate the variances as if all of the tilt determinations
were strictly independent.

Application of formulae (11b), (12b), and (13b) to the borehole
data after one year's deformation (figs. 13 and 14) gives standard
deviations |
-

7

(0
::-:J -1 ==
L==rmo, GI*(Y) 1.41/Y G, 0

ag 4 GS sk

n:}:
where AY and N>'< were taken to be 2 m and 50. The values of U§

(0.47°) and o, (0.63°), calculated from all of the boreholes considered

g
together, give standard deviations 0.07° and 0.09° for smoothed tilt,
0.007° m ™} and 0.009° m™! for the slope of the smoothed tilt profiles,
and 20 cm and 27 cm for the integrated tilts at a depth of 300 m.

Application of the same formulae to the initial tilt data (fig. 10), gives



GI*(Y) = 3.9/Y O‘n m

where AY and N* were taken to be 15 m and 20, respecfively. For
the initial tilt data, GC and crg are estimated to be 0.25°., These give
standard deviations 0.06° for the smoothed tilt, 0.004° rn"1 for the
slope of the tilt profiles, and 30 cm for the integrated tilts at a depth
of 300 m.

Combination of the guantities for initial and deformed bore-
holes gives standard deviations 0.0015 yr-l ana 0.0019 yr-l for the
tilting rate 9y, /3t and 3y_/3t, 0.00014 m™' yr™" and 0.00017 m™ ! yr'!

for the change in slope of the tilt profiles Yy and Y, and 36 cm and 41

cm for differential displacement AX and AZ.

B. Sources of Noise

The possible sources of noise can be divided into two categoriés:
real noise introduced by the flow, and experimental noise introduced by
the method of boring, marking, and recovering the boreholes. The
following sources of experimental noise in deformed boreholes can be

enumerated:

i) instrumental error in the inclinometer,
ii) non-parallelism of inclinometer and borehole, made possible
by the difference in borehole and instrumeht diameters,
iii) wandering of the boring hotpoint in the initial emplacement
of the borehole,

iv) non-centering of the aircraft cable in the initial borehole
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v) fluctuations in the diameter of the borehole resulting from
changes in hotpoint efficiency, as caused, for example, by
accumulation of debris at the bottom of the borehole during
boring,

vi) spiraling of the cable-following hotpoint around the aircraft
cable during borehole recovery,

vii) modification of the sides of the borehole in the interval be-
tween boring and the inclinomefry survey as a result of
flow and freezing processes caused by the presence of the
borehole.

Sources iv) and vi) would, of course, not contribute to scatter in the
initial borehole tilt data, as is also the case for real noise.

For some of these sources, a maximum possible contribution
can be determined. For source i), instrumental error, the error is
estimated on the basis of calibration experiments (Appendix I) to be
less than + 0. 1° in tilt magnitude and * 20° in azimuth of tilt for the
electrical inclinometer; a similar accuracy, but with greater reli-
ability in the azimuth, is expected for the optical inclinometer used
in the survey of the initial boreholes. Consideration of the difference
in diameter between the borehole and inclinometer case, and the
length of the case, indicates a maximum possible contribution from
source 1i) of 1.4° for the electrical inclinometer and 2.0° for the
optical inclinometer. Similarly geometrical constraints on the
curvature of the recovered borehole implied by the passage of the
cable-following hotpoint indicate a maximum of 1.6° for source vi)

and 2.5° for source iv). The drilling logs indicate that short term
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fluctuations in the rate of hotpoint penetration did not exceed 5% of the
average drilling rate. If this reflects a real difference in power input
at various depths rather than just fluctuations in ice density, source
v) could contribute 0.1°. Similar limits cannot be placed a priori on
sources iii) and vii). The fact that the inclinometer could be lowered
suggests, however, that no great modification of the borehole could
have occurred in the interval between boring and inclinometry, and

. thus that source vii) probably only contributes weakly to the errors.

The problem is to discover ways in which these various
sources of noise can be distinguished, if possible. The depth depend-
ence of the scatter amplitude, the autocorrelation between consecutive
measurements of I"X and I‘Z, the cross correlation between measure-
ments of PX and PZ at the same point, and the time development of the
scatter ampiitude are considered to this end.

If sources ii), iv), and vi) were the main contributors to the
scatter in deformed boreholes, then one could expect that the scatter
amplitude would be less where the borehole is significantly inclined
than where the borehole is nearly vertical. There is little tendency
for this to be the case, which suggests that other sources of errors
must also enter significantly.

In the first section of this chapter, the autocorrelation
functions pt(nAY) and pg(nAY) were defined. Estimates of the auto-
correlation functions indicate the presencé of a disturbance in the data
of approximately four-meter wavelength (fig. 41). All of the sources,
exﬁept sources i) and ii),could conceivably exhibit such a periodicity.

One might suspect source vi), in which the cable-following hotpoint
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spirals around the marker cable as it penetrafes the ice, as a likely
origin for this feature of the noise in the data. This possibility can
‘be tested by recognizing that if spiraling were the main source of
noise, a large deviation in I'X would be accompanied by a small
deviation in PZ and visa versa. If a two-dimensional histogram were
to be constructed with intervals of the deviation of I‘X along one axis
and of I‘Z along the other axis, then the condition of spiraling would
result in a ring of maximum density surrounding the origin, where
there would be a region of low density. Such a two-dimensional
diagram can be illustrated in one dimension simply by plotting the
number of points per unit area in a centered anulus of given thickness
on the above histogram versus the radius. This is done in figure 42.
Tilt measurements in all of the boreholes are included together. If
the main component of the scatter came from spiraling of wavelengths
on the order of 4 m, then a distinct minimum could be expected in
the density at r = 0. This is not observed. An additional indication
that spiraling at four-meter wavelength cannot be the main source of
vthe scatter is given by the fact that geometrical constraints would
require the resulting scatter amplitude to be three to four times the
observed amplitude.

Comparison of the amplitude of scatter in the initial boreholes
and in boreholes after one and two year's deformation is complicated
by the fact that in each case a different instrument was used. Since
all three instruments (the optical inclinometer, the electrical incli-
nometer, and the electrical inclinometer with improved compass

mechanism) are equivalent in accuracy of measurement of tilt
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magnitude, this problem can be circumvented. The standard devia-
tion in the initial tilt magnitudes (fig. 10) was 0.25. In deformed
boreholes, a measure of the scatter amplitude that is independent of
the azimuth measurement is obtained by considering the scatter ih
the tilt magnitudes in portions of the holes which have remained planar
during the deformation. Thus, the bottom 150 m of boreholes 2A and
3B after one and two year's deformation are considered. After one
year's deformation, the amplitudes of scatter (standard deviation)
were 0.41° énd 0.45° respectively. This is almost twice the ampli-
tude of scatter in the initial tilt data. After two years, these quan-
tities were 0.50 and 0.47, which are only slightly greater than the
corresponding quantities after one year's deformation.

The fact that considerably greater scatter was observed in
deformed boreholes indicates that source iii) is not the sole source
of noise in deformed boreholes. If the additional noise in the tilt data
for deformed holes were real noise caused by actual local fluctuations
in flow parameters tied to structural inhomogeneities in the ice, then
it could be expected that the amplitude in scatter would increasec
linearly in time; that is, the increase between thé" second and third
year's data should be appfoximately the same as that between the
first and second year's data. This effect was not observed. However,
it cannot be ruled out on this basis alone, since source iv) (non-
centering of the aircraft marker cable) is also capable of erasing noise.
This would tend to be the case if the aircraft cable were on initial
emplacement pulled tight, as was done. It would remain tight because

of the extension of the borehole resulting from ice deformation. The
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taut aircraft cable would tend to cut corners and thus smooth out
irregularities.

If there were real noise in the flow which was not tied to
structural inhomogeneity in the ice, but which fluctuated randomly in
time at a given element of ice, then one could expect the noise ampli-
tude to increase roughly as the square root of time. The observed
time development of the scatter amplitude is not incompatible with
this interpretation. Such a process is, however, difficult to imagine.

From the above discussions of the possible maximum contri-
butions of the experimental sources of noise, and the expected effect
of these sources on the available statistical quantities, it is clear that
no single one of the possible experimental sources of noise can ex-
plain the observed characteristics. It is quite possible, however,
that all of the experimental sources acting together could produce the
observed characteristics. The weak correlation exhibited by tilt
measurements spaced two and four meters apart in deformed holes
could be something inherited from the initial holes as a result of the
action of source iii), or could result from occasional events of
spiraling. The latter is suggested by the large contribution which
borehole 2B makes to the correlation functions of figure 41. The
tilt data for borehole 2B show strong evidence for spiraling between
140 and 210 m. The large amplitude accompanying this event distin-
guishes it from the typical noise pattern (figs. 13e and l4e). In

considering the cross correlation of the I'

X and I"Z deviations, the

result expected of spiraling would not be obscrved because of the

rarity of cccurrence and the large amplitude of scatter associated
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with the events. The increase in scatter amplitude from initial to
deformed boreholes could be a result of the additional effect of
experimental source vi);

Since the observed properties of the scatter can apparently be
produced by the enumerated experimental sources of noise, there is
no compelling reason to attribute any of the noise to real features of
the flow field. On the other hand, the possibility that such features
exist and contribute to the scatter cannot be discounted on purely

statistical grounds.
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APPENDIX II1

FORM OF VELOCITY FIELD FOR A
LONGITUDINALLY INDEPENDENT STRAIN-RATE FIELD

For the purpose of discussing the observed velocity and
strain-rate fields, a brief derivation of the general form of the
velocity field of an x-independent strain-rate field is given below.
The question of longitudinal independence Qf\the strain~rate field of
a glacier flowing in a cylindrical channel is of considerable impor-
tance, because assumption of such independence has been made in
all theoretical treatments dealing with the detailed distribution of
velocity in valley glaciers (Nye, 1951; 1957, 1965). In addition, an
extension of Nye's (1965) trzatment of rectilinear flow in cylindrical
channels to a more complicated case, with ablation at the surface
involving non-zero longitudinal strain rate and motion perpendicular
to the direction of main transport, will probably’/also require such
an assumption because of the practical limitations of present
computers.

First, the general form of the velocity field is derived and
described. A basic incompatibility between x-independent flow in a
cylindrical channel and the typical pattern of flow in the ablation

region of a valley glacier is discussed.

A. Form of the Velocity Field

Let the x-axis be aligned with the direction of assumed inde-

pendence of the strain-rate field. Differentiation of the strain-rate
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components with respect to x gives

52
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ox

2

oV - o (1b)
3xdy

2

S W . o (lc)
3%z

2 2

du . 2%.9 (1d)
dxdy ox

2 2
LU L2 ¥ (le)
oxXdz dax

2 2

OV 42 W._y (1£)
dxdz Ay

Equations (la, 1d, le) give

u = R(y, z)x + h(y, z)
2 \'
v === = + G(y, z)x + gly, z)

2
w :é% 3‘2—- + Fly, z)x + £y, z)

Equation (1b) becomes
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2
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and equation (1f) requires
R _3G , oF
9 T 4 == = 0
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These additional conditions give
R(y,z) = ay +bz + r
Gy, z) = -cz + e
F(y,z) = cy +d
where a, b, ¢, d, and r are constants. Thus

(ay + bz + r)x + h(y, z) (2a)

o
it

2

v = -a-}-%—- + {e~-cz)x + gly, 2) (2b)

2
x

w = -b > + (d+cy)x + f(y, z) (2¢)

The x-dependent part of the velocity field associated with the
constants a, b, c,vd, e, and r can be simply interpreted in terms of
simple x-independent deformations. The contribution from the
constant r represents uniform longitudinal extension. The motions

associated with the remaining constants are best illuminated by
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considering the rotation-rate w,. = 5 (u, . - u. .):

1} 1,] J:1
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e L 1 3h
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These quantities can be interpreted in terms of a rotation-rate
vector W = %Vxﬁ with W, = wyz, wy =W and w, = wxy' Thus
constants d and e represent rotation rates about the y and z axes
which are independent of x. The constants a, b, and c represent
relative rctation rates of cross sections at different longitudinal
position x and correspond to a uniform bending rate about the z axis,
a uniform bending rate about the y axis, and torsion along the x axis,
respectively. The most general velocity field compatible with an
x-independent strain-rate field as represented by equations (2) can
be described as a velocity field depending only on y and z (given by
h, g, and f) with superposed homogeneous longitudinal extension,
uniform bending about the y and z axis, torsion about kthe x axis, and
rigid rotation about the y and z axes. The longitudinal strain rate
must be a linear function of y and =z.

The motions corresponding to non-zero values of the constants
a, b,c,d, and e can be related to real problems in glacier flow. Down
glacier curvature of the channel would tend to produce the motions

represented by the constants d and e. A gradient in the curvature
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of the channel would tend to produce the bending represented by a

and b. The torsion associated with ¢ does not have any general
application, although it could conceivably be of interest in specialized
cases of distribution of ablation rate or longitudinal variation in

channel shape.

B. X-Independent Flow in Cylindrical Channels

In a glacier of cylindrical geometry, the requirement that the
velocity normal to the bed be zero demands that all constants except
r be zero. Thus longitudinal strain rate must be constant. In the
ablation region (or accumulation region) of such a glacier, where
longitudinal strain rate cannot be zero, the sliding velocity varies
linearly along the glacier bed, but the shear stress which drives the
sliding is independent of x. This would require a rather special dis-
tribution of the parameters influencing sliding, such as bed roughness
and basal water pressure. If the parameters which determine sliding
response to applied basal shear stress were longitudinally constant,
as would seem to be more generally applicable, then either non-
cylindrical geometry or longitudinal variation of the strain rates and

the stresses must exist.
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APPENDIX IV
EQUILIBRIUM OF A VISCOUS SLAB WITH SINUSOIDAL DISTRIBUTION

OF NORMAL STRESS APPLIED ON ONE SURFACE

Consider an infinite slab of viscous material, viscosity 7,
bounded by the surfaces y = 0 and y = H at which the following
boundary conditions hold. The shear stress is zero (i.e.‘rxy= Tyz: 0)
at’the boundaries y = 0 and y = H. A normal stress Txy = -Ncos hz

is applied at the surface y = 0. We wish to solve for the motions and

stresses within the slab for two types of boundary condition at y = H:

(1) normal velocity v vanishes

(2) normal stress Tyy vanishes

For either boundary condition at y = H, the velocity solution
must be independent of x and must be periodic in z. Standard methods
for analysis of plane-strain problems show that the condition of
incompressibility and the equations of equilibrium are satisfied by a
velocity field of the form

v(y, z) = ®(hy)hcoshz
(1)

w(yz) = - %11'37) sinhz

and a pressure distribution

21 d® 1 d &\
pomi(L e L 2
h dy h” dy
where
4 2
I OPRER: I T (2)
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In terms of the function @, the stress components of interest can be

written as

2

TZ:n<§l+§y>:nh2{-—lzg——g—>-¢}sinhz
y dz dy h™ dy
. 5 (3)
A TNCIr N S
yy dy h dy h™ dy

Without consideration of the specific form of the function @,

it can be noted that w = 0 and Tyz =0atz= :!:-% . Thus, the problem
is equivalent to that of an infinite strip of thickness H and width W= -ZEE
for which the shear stress and the normal velocity on the sides are
required to be zero.
The general solution of equation (2) can be written
- -hy hy;
®(hy) = ¢ {(1+Bhy)e "7 +(y +8hy)e (4)
The four constants c, 3,9, 6 are to be determined by the normal and
tangential boundary conditions aty = 0 and y = H. Let £ = hH. The
normal velocity boundary condition at the surface requires
2
N = 2nh7c(1 -7) (5a)
The shear stress boundary conditions aty = 0 and y = H give
1-B+y+6=0 ' (5b)
-4 y/
[1-(1-£)Ble "+ [¥+(1+L)5]e =0 (5c¢)

The normal boundary condition at y = H for cases (1) and (2) can be
writter. as

[1+ B,ﬂe—z x [y +61z]e" =0 (5d)
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where the plus sign represents the zero normal velocity condition,
and the minus sign represents the zero normal stress condition.

Solution of the linear equations (5b, 5¢, 5d) for B, y, and §

gives
1{ 44 24 3
pz-K)Le + e (ﬂ:1+z:F:a)J}
1, 24,,24 ,2
y =z w2 ¥2,€=Fl)‘:l:1} (6)
1 24
T e - F
5 K{e FL1FL+40) ,1}
where

2

K=e-e® 10254220 +1).

c is trivially determined from equation (5a), thus giving the complete
solution for the velocity and Jstress fields.

For case (1), a result of particular interest is the relationship
between the applied normal stress amplitude N and the resulting normal

velocity amplitude at y = 0. Noting that
®(0) = c(1 + 1)

equations (5a) and (6) with the upper sign give

N = 2nh%®(0)Q(4) (7)

where

1oy ePPyag-4”
QL) = =57 >
T 1y ePr2(1-24) 44

24

£

For case (2) the comparison of the normal velocity amplitude at

y = H (the free surface) to the normal velocity amplitude at y = 0 (where
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the driving stress is applied) is of interest. From equation (4)

| -4 )
R(4) = q:(z) _ (1+Bh)e "+ (Y+b4)e
® (o) (L+y)

from equations (6)

2(4+1)e*+ 22¢ 7%

- (8)
eZ£+ 44 + e 24

iR(I,) =
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‘Borehole

1A
1B
1C
2A
2B
3A
3B
4A

5A
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TABLE 1

CHRONOLOGY OF BOREHOLE OPERATIONS

1966

Initial Inclino-

Boring metry
7/13-7/22 7/24
7/26-8/2 8/2
8/17-8/22 ‘8/23
8/20-8/25 8/25
7/27-8/3 8/3
8/9-8/15 8/16
8/9-8/16 8/17
8/28-8/29

8/31-9/4

9/4

1967

3

First
Recovery

7/22-7/28
8/4 -8/10
7/11-7/19
8/15-8/23
8/8 -8/21
7/1 -7/14
7/31-8/4

§/24-8/25

6/29-7/6

Inclino-~
metry

7/29
8/11
7/21
8/24
8/22
7/15
8/5

8/25

7/9

1968

Second
Recovery

7/28-7/30

7/13-7/19

Inclino-
metry

7/30

7/20



7C
3C
2C
6C
7A
5A
3A
1A
2A
4A
6A
8A
5B
1B
4B

1C
5A
3A
1A

4A
3B
1B
2B

a.

3441,

© 3655.

3916.
4181.
3364
3449.
3579.
3709.
3839.
3970.
4101.
4190.
3373.
3632.
3895.

3785
3449,
3578.
3709.
3839.
3960.
3508
3639.
3765.

03
77
34
89

.18

91
74
73
97
A
80
58
96
85
00

.52

58
33
73
51
58

.65

99
63

locations o©of surface markers

TABLE 2
INITIAL STAKE AND BOREHOLE LOCATIONS
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Unit co-ordinate equals 1 m

5955.
5831.
5681.
5534.
5827.
5777.
5702.
41

5627

5553.
5479.
5408.
.39
5648.
42
5350.

5363

5500

b. Locations of boreholes

5753.
5783.
5699.
.41

5627

5557.
5467.
5580.
5505.
5434,

81
11
52
21
88
26
06

17
75
25

53

05

13
22
73

38
85
11
74
66

i}

414.
416.

420

412.

402
406

407.
410.

409

405.
405.
409.
399.
399.
396.

419.
406.
406.
410.
409.

405
401
400

399.

43
26
.21
10
.73
.59
84
15
.39
68
69
53
73
71
57

U

10
59
84
15
70
.36
43
.15
33

~-166.
~-154.
-144.,

~16.
-11.
-5.

137.
148.
160.

10
99
16

67
&9
63

.36
10.
12.

09
46

50
53
26

8 September 1966
Unit co-ordinate equals 1 m

-146.
-17.
-2,

80
01
92

.83

25.
135.
138.
145.

19
49
77
20

i

CQOOWO oM P

8 September 1966

~

.04
.73
.51

.33
.08
.50
.56
.95

-390.41

~143.
157.

-399.
-299.
-149.

149.
299.
499.

-307.
-9.
292.

-302

147

-8

138.

21
90

12
69
79

82
46
00

22
17
82

.79
.75
-149.

95

.46

296.
-156.
48

25
16

96



Stakes

66-67 '
7C 34.47
3C 50.39
2C 52.61
6C 32.42
7A 31.25
5A  40.39-
3A 46.85
1A 49,92
2A 51.10
4A 47.56
6A 34.79
5B 38.52
1B 47.04
4B 43.73

Boreholes

66 - 67
1C 54.05
5A  41.28
3A  47.84
1A 49,92
2A 51.04
4A 0 47.31
3B 45.18
1B 48.17
2B 47.94

Boreholes

67 - 68
5A 37.01
3A 43,15
1A 47.21
20 46.11
4A 42.53
3B 40.09
1B 43.02
2B 46.11

Units: velocity, m yr'l; azimuth, degrees east of north;
plunge, degrees above horizontal

| TABLE 3
. SURFACE VELOCITIES

Azimuth Plunge

39.
37.
35.
36.
37.
37.
37.
36.
36.
36.
36.
37.
37.
37.

36.
37.
37.
36.
36.
36.
36.
37.
37.

37.
36.
36.
36.
36.
37.
37.
36.

AR WOUPRPRWWEHESNPDDWVOYO -

N~ OO WOWMN

POV PO o

=t
o

PoONPOMWOWOH UV WSV O

OO QO

N = O N

34.
50.
52.

32

30.

40
46

49,
51.

47

34,
38.
46.
43,

41

49.
50.

47
44
48

+7

36

43.
47.

46
42

40,
42.

42

standard error 0.20 m yr'1

53.
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ut

23
15
50
. 26
76
.03
.56
80
02
46
66
11
88
54

84
.25
.62
80
97
.19
. 9%
.07
.87

.95
12
20
.10
.53
06
99
.62

-3

-4,

-3
-3
-5
-5

-5.
-3.

-2.

-3

-3,
-4,

-4,

-3

-2.

-3
-4

~3.

+ standard error 0.35 m yr

v

.90
90
.12
.15
.53
.37
23
33
.63
96
.08
.58
89
01

.64

63
.33
61
.28
.70
08

wt

-1.
.57

1.

0.
-0.
-0.
-0.
.53
0.
.48

-0

0]

0

0.
-0.
-0.
-0.

-0

30

22

28 %

13
49
15

63

06
26
14
48

.66
.43
.02
.53
.84 .
.33
.12
.14
.21

b
.08
.27
.46
.08
.35
-0.
-0.

04
34

Interval
9/8/66 - 7/13/67
9/8/66 - 7/13/67
9/8/66 - 7/13/67
9/8/66 - 7/13/67
9/8/66 - 7/13/67
9/8/66 - 7/13/67
9/8/66 - 7/13/67
9/8/66 - 7/13/67
9/8/66 - 7/28/67
9/8/66 -~ 7/28/67
9/8/66 - 7/28/67
9/8/66 - 7/13/67
9/8/66 - 7/13/67
9/8/66 - 7/13/67
9/8/66 - 7/28/67
9/8/66 - 7/28/67
9/8/66 - 7/28/67
9/8/66 - 7/13/67
9/8/66 - 7/28/67
9/8/66 ~ 7/28/67
9/8/66 -~ 7/28/67
9/8/66 - 7/28/67
9/8/66 - 7/28/67
7/28/67 - 7/28/68
7/28/67 - 7/28/68
7/13/67 - 7/28/68
7/28/67 - 7/28/68
7/28/67 - 7/28/68
7/28/67 - 7/28/68
7/28/67 - 7/28/68
7/28/67 - 7/28/68

1
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TABLE 4

TIME VARIATION OF SURFACE VELOCITY

is average velocity over interval 9/6/66 - 7/28/67.

is average velocity over interval 7/28/67 - 7/28/68.

dugy . .
e = Uy H X 1 yr 1is change expected if velocity
x

field were time-independent.
Op = Y68 T Y67 is measured change in velocity.

6 = O - 0. egives change in velocity resulting from
time variation of the velocity field.

Units: m yr-l

Borehole 6, ’ 6 67
1A -1.12 -3.84 -2.72
1B -1.11 . =4.08 -2.97
2A -1.02 ©-4.87 -3.85
2B -1.05 -5.15 -4.10
3A -1.05 -5.50 -3.45
3B -0.90 -4.88 -3.98
4A -0.80 -4 .66 -3.86
5A -0.74 ~4.30 -3.56

+ standard error 0.35 m yr_1



Sections

.021
. 002
.048

.019
. 002
.051

.010
. 002
.049

.010
. 000
.056

.007
. 000
.051

LR ]
ex'x
e z'
ex'z!

TABLE 5
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SURFACE STRAIN RATE

are tabulated in units yr-l.

Arrangement .is geographical; tabulated
values apply to the center of the square
within which they are listed.

-0.026
0.005
0.026

-0.021
0.005
0.025

-0.016
0.003
0.021

-0.017
0.001
0.014

-0.012
-0.001
0.013

Standard error for eyx'x!

.024
. 007
. 009

.022
.004
.011

.020
.001
.010

.023
.000
. 005

.015
.001
.001

=0.
.008
-0.

-0.
.003
~0.

-0.
-0.
-0,

~-0.
-0.
.002

-0

-0

Lines

021
003
020
011
023
001
002

025
002

.017
. 000
._O.

004

.Standard error for ey'y'

~-0.
.001
-0.

-0

-0.
-0.
.013

-0

-0.
-0.
-0.

-0

019

0l4

.019
. 000
-0.

015

023
002

022
002
012

.016
-0.
-0.

005
011

and ez'z!

0.0006 yr

0.0007 yr .
1

-0

-0

-0.
.004
-0.

-0.
. 005
-0.

-0.
. 009
-0.

. 009
.002
.051

016

040

016

037

018

033

1

-0.
.045
-0.

-0.
.050
L141

-0

-0.
.045
.123

-0

-0,
.043
-0.

~0.
.048
.111

-0

004
142

005

012

019

114

028
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TABLE 6

TIME VARIATION OF SURFACE STRAIN RATE

du

Sx. 67 is average surface strain rate over interval 66-67.
B
du

%

68 is average surface strain rate over interval 67-68.

du

Numbers on horizontal line segments give 32 68 " Sz 67

half way between the ends of the segment.

du

Numbers on vertical line segments give 55“68 - S 67

half way between the ends of the segment.

Units: y\:_1

Linés
5 3 1 2 4
A + -0.001 + -0.005 + 0.009 + O. + - 2z
0.004 0.002 0.002
B + -0.007 + 0,009 +

1
X

Standard error 0.003



AZIMUTH OF TILT AT THE

Boreh

ole

1A

1B
1C
2A
2B
3A
3B
4A
5A

o
010/
< e

de

pth

50
100
150
200
250
300

= gzimuth of
= azimuth of

= azimuth of

A4 = azimuth of

Units: degrees east of north

A1
-52
-140

-46

-52
-40
+133
-37
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TABLE 7

SURFACE IN DEFORMED BOREHOLES

tilt in boreholes.

local surface slope.

local surface velocity.

mean surface velocity:

Ay

33
2%
40
23
30
51
40
27
58

TABLE 8

du

A

3

36.
37.
36.
36.
37.
37.
36.
36.
37.

v o 0 O N O N = W

(9%
<))
O

36.
36.
36.
36.
36.
36.
36.
36.

O W W O O W W WO

TIME RATE-OF-CHANGE OF 5; IN BOREHOLES

is calculated from equation (2b) of Chapter IV.

Borehole 2A

ym 52 S

+0.
. 004
.008
. 006
.003
.002
. 000

002

Borehole 3B

depth y(m)

0
50
100
150
200
250
285

Jd Au -2
St g;(yr )

-0.004
-0.006
-0.002
-0.007
.=0,002
0.000
+0.031
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TABLE 9

COMPARISON OF VALUES OF v AT THE SURFACE AND BED

vg = surface velocity given by triangulation
_ b b
vy T ax ub+ az v

*
where ag is the longitudinal slope of the
bed with respect to the x axis

and az is the transverse slope of the bed

with respect to the z axis.

y
v = v(y) -é}b(%}%+%§) dy

s
where Vs and Y give the location on the

y-axis of the surface and bed.

units: m yr

Borehole VST vﬁ* Vo Vb=Vp Vp=Vg
1A -3.3 +0.7 -0.5 +1.2 +4.0
1B -3.5 +0.8 -0.9 +1.7 +4.3
2A -2.6 +1.0 +0.3 +0.7 +3.6
2B -3.6§ +0.5 +1.5 -0.5 +.1
3A -4.9 -0.9 -1.4 +0.5 +4.0
3B =4.7 -0.9 -1.8 +0.9 +3.8
sa -5.4  -2.1% <11 -0 +3.3

% Slopes of the bed with respect to the surface were determined by
differencing of borehole depths. Where the comparison can be made
the slopes thus calculated agree well with the seismic results
of Paterson and Savage (i963a).

+ Standard error 0.35 m yr~l (except as noted).

"+ Standard error 0.5 m yr-! (except as noted).

Standard error 0.8 m yr’l.
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TABLE 10

SUMMARY OF STANDARD ERRORS FOR FLOW QUANTITIES AT BOREHOLES

u,w v e e

xx €z

. exy»© Xz
myr) myr'h) @rdh b (yr'1)
Surface 0.22 0.35 0 0.001 0.001
Depth of 300 m 0.46 0.5 0.003 0.004 0.003
TABLE 11

WIDTH RATIOS OF LONGITUDINAL VELOCITY CONTOURS

Section A

u contour

(g 1) 50 48 46 b4
width ratio 0.89‘ 0.97 1.00 1.04
Section B
ueontour - 48 46 A 42
(myr-1)

width ratio 0.61 0.83 0.90 0.95
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TABLE 12
ROTATION AT THE SURFACE

Rotation rates acting at the glac1er surface as estimated from

borehole tilt data giviag 3—- and 5—— (r), triangulation data

1
glvmgg 7 and av‘ (t), and surface slope data (s) are compared.

wy:x. (Yr-l) wy'z' (yr~ 1)
Borehole T t s Y t | s

1A  -0.001 +0.004 -0.002  +0.012 +0.008 +0.004
1B -0.003 ~ -0.005 +0.002 - +0. 002
1 -0.001 +0. 002 +0.008 +0.006  +0.002
24 -0.003 +0.001 . -0.002  +0.001
2B -0.004 -0.003  -0.003 -0.002
34 -0.002 +0.001  O. +0.010  +0.007  +0.002
3B -0.002 0. +0.017  +0.007  +0.001
4A  -0.003 0. -0.013  -0.002 -0.002
5A  -0.002 0. +0.010  +0.002  +0.001

Standard 553 5 03 0.004  0.003

error

F

TABLE 13
EFFECTS OF BENDING

du
The observed difference in 10ng1tud1na1 strain rate A-é— (between the
ice surface and the bed) is compared with value produced by bending
as estimated from borehole tilt data (r), triangulation data (t),

surface curvature gradient (s), and bed curvature gradient (b).

%ﬁ (yr-1) H?;_ALY (yr-1
low line \ r b
1 +0.022 +0. 004 +0.020 +0.004 +0.020
2 +0.016 +0.002 +0.006 .
3 +0.012 +0. -0.003 -0.003
andard 0.002 0.008 0.006
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TABLE 14
LATERAL FLUX

(w) as observed, and predicted by equation (5) of Chapter VI

are compared.

Line Observed Predicted
1 -0.68 -0.29
2 +0.54 . +0.63
3 -0.89 -1.17
4 +1.58
5 -1.76 -2.04
TABLE 15

DEPTHS OF SIGNIFICANT POINTS IN LOG 7 VS. LOG é PLOTS

depth above which curvature of the smoothed longitudinal tilt
profile is not determined.
depth at which € reaches a minimum value.

depth below which the log 7 vs. log é plot is approximately linear.

Depths are given in meters.

Borehole d1 §2 d3

1A 40 100 . 240
1B 150 165 235
1C 150 70 170
2A 100 105 215
2B 50 : 140 275
3A 75 95 - 185
3B 75 95 200\
4A © 50 75

54 | 100 75 155
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TABLE 16

POWER LAW PARAMETERS AS DETERMINED FROM
LINEAR DEPTH DEPENDENCE OF SHEAR STRESS

o B

Borehole bar yrlto
1A 0.82 | 0.78
1B 0.67 1.32
2A 0.56 1.82
2B 0.88 0.68
3A 0.86 0.69
3B 0.98 0.50
5A 0.69 C1.17
all 0.81 0.85

holes
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TABLE 17

POWER LAW PARAMETERS AS DETERMINED BY
LEAST SQUARE MINIMIZATION OF RESIDUAL BODY FORCES

Borehole and o B 1o rms
depth range (bar yr~ ™) residual body force
! . (units of pgx)
1A (0 - 300) 0.57 1.79 0.310
1A (240 - 300) 0.73 1.39 ‘0.083
1B (0 - 300) 0.53 1.91 0.310
1B (235 - 300) 0.62 1.61 0. 287
28 (0 - 295) 1.04 0.51 0. 265
2B (275 - 290) 1.09 0.50 0.022
2A (0 - 290) 0.57 2.21 0.138
2A (95 - 250) 0.66 1.63 0.080
3B (0O - 285) 1.07 0. 26 0.402
3B (200 - 280) 0.83 0.59 0.166
3A (0O -~ 280) 0.71 1.79 0.362
3A (75 - 275) 0.70 1.87 0.331
5A (0 - 250) 0.81 0.66 0.372
5A (155 - 240) 0.61 0.96 0.065

all holes with
complete depth range, 0.72 1.03 0.398
including 4A and 1C

all holes with depth
ranges as given in
second entry for each
hole above

0.68 1.23 0.425 '
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a. Longitudinal profile
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b. Longitudinal component of slope
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¢. Longitudinal strain rate

FIGURE 2. CENTER LINE GEOMETRY AND SURFACE STRAIN RATE

Data are from Paterson (1962). Heavy line segments
in longitudinal profile represent reflecting surfaces
observed in a seismic survey. Errors in bed slope
are as given by Paterson (1962). Arrows C, A, and B
give locations of cross sections in which boreholes
were placed during this field experiment.
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FIGURE 3, CROSS SECTION GEOMETRY

The  :ransverse profile shown is the
C-section of Paterson (1962). Sur-
face slopes were measured from the
topographic map (Topographic survey,
1962). Vertical lines represent
boreholes of the present study.
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FIGURE 5. RELEASE OF STRAIN IN AIRCRAFT CABLES
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step relay activated
from the surface —

D.C. electric motor
powered from ~

the surface COMPASS UNIT

shaft with — {as seen from light source)

eccenfric cam

2 solar cells (Ayand A)
mounted on an insulating

& plate fixed to instrument
s : body
] compass shaft -
o{? mounted on Wiring of Ay and A,
A3 jewel bearings Pl
Q . .
8] cell mounting
collimating plate
tens = 10uA
light source powered
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cell— surface
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of equal length
s —x 750 0,20 K1 [20KQ
QS’ 4 solar cells mounted on
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- to the instrument bod
Q y ®
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FIGURE 6. ELECTRICAL INCLINOMETER
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FIGURE 10. TILT MEASUREMENTS IN UNDEFORMED BOREHOLES



238

FIGURE 11. MAGNITUDE OF TILT IN DEFORMED BOREHOLES

Date gives time of tilt measurement.
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(See following pages.)
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FIGURE 12. AZIMUTH OF TILT IN DEFORMED BOREHOLES

Date gives time of tilt measurement. Arrow
indicates azimuth of average surface velocity.
(See following pages.)
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FIGURE 13. LONGITUDINAL COMPONENT OF TILT IN DEFORMED BOREHOLES

Plotted values are normalized to a one year interval by
dividing the values measured at the time of inclinometry
by the interval of time in years between completion of
the original borehole and inclinometry of the deformed
borehole. (See following pages.)

a. Borehole 1A '66-67
b. Borehole 1B  66-67
c. Borehole 1C 66-67
d. Borehole 2A 66-67
e. Borehole 2B  66-67
f. Borehole 3A 66-67
g. Borehole 3B 66-67
h. Borehole 4A  66-67
i. Borehole 5A  66-67
j- Borehole 2A  66-68

k. Borehole 3B 66-68
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FIGURE 14. TRANSVERSE COMPONENT OF TILT IN DEFORMED BOREHOLES

Plotted values are noirmalized to a one year interval by
dividing the values measured at the time of inclinometry
by the interval of time in years between completion of
the original borehole and inclinometry of the deformed
borehole. (See following pages.)

a. Borehole 1A  66-67
b. Borehole 1B  66-67
c. Borehole 1C 66-67
d. Borehole 2A  66-67
e. Borehole 2B  66-67
f. Borehole 3A  66-67
g. Borehole 3B  66-67
h. Borehole 4A  66-67
i. Borehole 5A 66-67
j. Borehole 2A 66-68

k. Borehole 3B 66-68
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FIGURE 18. CALCULATION OF VELOCITY FROM BOREHOLE COORDINATES

input: assume

dx , dz , Ox , Oz Ox dz Ox Az
///////’ \\\\\\\~ ‘/g:///'au
3. fit interpolating l. combine with §;§ 8—3 etc.;
functions dv ’au‘ éw
integrate 5; = . (§; + 5;)
Ugr W4 v

AN /

2. Use borehole
displacements

FIGURE 19. ITERATIVE CYCLE FOR CALCULATION OF VELOCITY AND STRAIN RATE
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INTERPOLATION OF LONGITUDINAL DIFFERENTIAL VELOCITY
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FIGURE 21. INTERPOIATION OF TRANSVERSE DIFFERENTIAL VELOCITY
Computed derivatives %gd are represented by line segments;
curves represent interpolating functions which are

compatible with the computed slopes.
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FIGURE 25. TRANSVERSE VARIATION OF y COMPONENT OF VELOCITY
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« -

FIGURE 29. DEFINITION OF GEOMETRICAL QUANTITIES IN A CROSS SECTION

The following additional quantities are also defined:

H = H(O0) is the maximum depth of the cross section;
A = AW_) is the area o’ the cross section;
P is the length of the ice rock contact.
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o 0.5 1.0
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FIGURE 30. DEPENDENCE OF PRESSURE RATIO ON WATER LEVEL

r(8) gives the ratio of the difference in hydro-
static overburden and water pressure at the top

of the water column (depth §), to the same differ-
ence at the deepest part of the channel (depth H).

thyy < 0

FIGURE 31. BENDING AS A RESULT OF A LONGITUDINAL GRADIENT IN BED
: CURVATURE :
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FIGURE 32. LATERAL FLOW IN CYLINDRICAL CHANNELS

Form of cross section geometry, average lateral velocity,
and lateral flux are shown schematically for channel shapes
given by H(z) = H(l-(|z|/W,)B)/%, Solid line is for g = 1,
B> 1; long dashes are for ¢ <1, B> 1; short dashes are
forg>1, p>1.
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FIGURE 33. VISCOUS SLAB WITH NORMAL LOADING ON UPPER SURFACE

Dashed line indicates a hypothetical glacier cross

section and its relation to the assumed geometry
and distribution of normal loading.

velocity =

Y

¢« depth

\
y

FIGURE 34.  FLOW IN A VISCOUS SLAB WITH NORMAL LOADING ON UPPER SURFACE
Curves give forms of depth distribution of

v =®(hy) hcos hz and w = ‘-%% sin hz.
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FIGURE 36. LOG () VS: LOG (¢€)

N is calculated from an assumed linear depth
distribution of shear stress by equation (15)
of Chapter VII, with X parallel to the local
surface at the top of each borehole.
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FIGURE 37. FLOW-LAW PARAMETERS FOR LOWER PORTIONS OF SINGLE BOREHOLES

o) Parameters calculated from an assumed
linear depth distribution of shear stress

@ Parameters calculated by least squares
minimization of residual body forces
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FIGURE 39. RESULTS FOR POWER-LAW PARAMETERS

Flow law parameters as determined from a combined analysis

of all boreholes with a linear distribution of shear stress

(a) and as determined by least squares minimization of residual
forces for complete depth ranges (b) and lower portions (c) of
all boreholes are compared to experimental parameters as given
by Glen (1955) (1) and (2) and Butkovich and Landauer (3) and
to parameters determined by field measurements as reported by
Nye (1953) (4) and Kamb and Shreve (5).
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FIGURE 40. DEVIATIONS OF MEASURED TILT FROM SMOOTHING CURVE

Histogram plots of deviations are compared with
Gaussian curves of identical mean g and standard
deviation ¢ The Gaussian curves are normalized
to include the same area as the histograms.
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FIGURE 41. AUTO CORRELATION FUNCTIONS FOR TILT COMPONENTS

40

20 -

N gz +€2‘

T
0 0.5 1.0

‘/c2+€2

FIGURE 42. RADIAL DISTRIBUTION OF TILT DEVIATIONS



