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Abstract

Various aspects of nonlinear inviscid gravity waves in the presence of shear in the air
and water are investigated. The shear, which appears due to the presence of wind in
the air and current in the water, is modeled by a piecewise linear velocity profile.

The interaction of short and long gravity waves is studied numerically, using spec-
tral methods, and analytically, using perturbation methods. Special attention is paid
to the verification of observations and experimental results. It is confirmed that fi-
nite amplitude waves propagating in the same direction as the wind or current are
more stable with respect to superharmonic infinitesimal perturbations than the waves
moving against the wind or current.

Infinitesimal perturbations in the form of side bands are also investigated both
numerically and analytically. The nonlinear cubic Schrédinger equation for the wave
envelope of a slowly varying wave train is derived. It is shown that depending on the
direction of propagation (along or against the shear) of the finite amplitude waves, the
effect of the shear on the stability is substantially different. In most cases, however,
the shear strength increase first enhances the instability, but later suppresses it.

Three-wave interactions of gravity waves with shear in the water are considered.
The interaction equations are derived with the help of two different perturbation
approaches. The question of stability is addressed for both resonant and near-resonant
interactions. The regions of explosive and “pump-wave” instability are identified for
various types of three-wave interactions.

A new type of steady two-dimensional gravity waves with water shear is computed
numerically. These waves appear at relatively low amplitudes and lack symmetry with
respect to any crest or trough. A boundary integral formulation is used to obtain
a one-parameter family of non-symmetric solutions through a symmetry-breaking

bifurcation.
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Chapter 1 Introduction

This thesis deals with the following aspects of the influence of winds and currents on
the stability and shape of gravity water waves: (1) stability of short wind-generated
waves in the presence of finite amplitude waves of permanent form; (2) effect of water
current on the stability of finite amplitude waves with respect to perturbations of a
wavelength close to that of the basic wave; (3) three-wave interactions and associated
instabilities; (4) analysis of the shape of the waves of permanent form in the presence
of a current.

A number of approaches can be employed for modeling shear. We will be using
a piecewise linear velocity profile (“stick” profile) both in the water and in the air.
This profile is simple enough to facilitate investigation of the finite amplitude waves
and, at the same time, is sufficient to obtain qualitative agreement with experiments
and observations.

In chapter 2 we consider the interaction of short infinitesimal waves with long
waves of finite amplitude. It has been known for a long time that the stability
properties of water waves in the presence of wind and current change significantly
depending on the directions of the wind, water current, and wave propagation. For
example, J.R.D. Francis [9] writes: “A number of phenomena are still unexplained,
and are very relevant to engineering problems. For example, it has been known by
many generations of sailors that waves produced by wind when it opposes a quite
small current are greater that those when the same wind is in the same direction as
the current. With ‘wind against tide’ the sea appears rougher, small ships toss about
far more and there is more broken water seen. ...Sailors are taciturn folk; and so
there are few references to this in the literature, and none at all in scientific work.”
There is also substantial experimental evidence that a long steep wave, propagating in
the direction of the wind, tends to sweep short wind waves, while a wave propagating

against the wind tends to enhance the instability associated with the short waves.
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This phenomenon was observed in the experiments by Mitsuyasu [6]. We confirm
these findings using both numerical and asymptotic approaches. Several background
flows are considered: (1) water current in the absence of wind, (2) wind without
any shear in the water (corresponds to early stages of the onset of wind), (3) wind
combined with the wind-induced shear in the water. In case (2) we compare our
results with the findings of Caponi, Saffman, and Yuen [4].

In chapter 3 we consider a related issue of the wave interaction in the case when
the wavenumbers of participating waves are very close. This case is reduced to the
well-known Benjamin-Feir instability, if the amplitude of the basic wave is sufficiently
small and there is no shear. In a recent paper, Q.P. Zhou [22] investigated a smooth
(exponential) weak velocity profile and derived the Zakharov integral equation de-
scribing slow evolution of the wave field. We use a simpler piecewise linear velocity
profile, but do not assume that the shear is weak. Since the difference between the
wavenumbers of the finite amplitude and infinitesimal waves is very small, it can be
expressed in terms of a small parameter, proportional to the wave amplitude. This
allows us to apply the method of two-timing to derive the nonlinear Schréodinger equa-
tion for the wave envelope, and investigate the influence of the strength and depth
of the shear on the stability of the infinitesimal perturbations. In order to verify
our results numerically, as well as study the range of validity of the asymptotic two-
timing approach, we use a slightly modified numerical scheme from chapter 2. We
also re-derive the main results for the “two-stick” profile, which uses two layers of
constant vorticity instead of just one, and demonstrate that differences between the
“two-stick” and “one-stick” profiles are not significant. Since the “two-stick” profile
can be considered to be a better approximation to some smooth velocity distribution
than the simple “one-stick” profile, the fact that the differences are small serves as a
justification for using a piecewise linear profile instead of a smooth one.

Chapter 4 is concerned with three-wave interactions. In the case of gravity waves
these interactions occur only in the presence of shear in the air or in the water.
The case of air shear was studied by Romanova and Shrira [18]. They derived the

interaction equations and indicated several regions of explosive instability. A more
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general formulation for an arbitrary continuously varying shear profile was developed
by Becker and Grimshaw [1]. Their results, although applicable to an arbitrary
continuous profile, involve expressions for the interaction coefficients which cannot be
easily evaluated for a given background velocity profile. Another approach, presented
by Vanneste and Vial [20], employs an expansion in the normal modes of the linearized
problem, instead of a small parameter expansion, and requires numerical evaluation
of the interaction coefficients. We concentrate on deriving simple expressions for
the interaction coefficients in the case of piecewise constant shear in the water and
investigating two different types of instability associated with this shear.

In chapter 5 steady asymmetric waves of finite amplitude are investigated. A
family of low amplitude asymmetric waves is found to be bifurcating from a solution
branch that is associated with the presence of shear. Previously known high ampli-
tude irrotational asymmetric waves, bifurcating from regular waves of period 27 /6

(Zufiria [23]), are also reproduced.



Chapter 2 Superharmonic instability

2.1 Introduction

As pointed out in [5], knowledge of possible short wave instabilities is “...important,
for example, for the interpretation of high frequency radar imaging. Some of the
primary sensors for remote investigation of the ocean properties are high frequency
radars that respond only to wind sensitive short waves, in the wavelength range of
1 to 10 em.” Hence, the interpretation of radar images requires an understanding of

the interaction of short wind-generated waves with longer waves and currents.

2.2 Mathematical formulation

As indicated in the introduction, we will study changes in the stability of an infinitesi-
mal wave, riding on top of a finite amplitude wave of permanent form, in the presence
of shear in the air and water. The background velocity profile is a continuous piece-
wise linear function as outlined in fig. 2.1. The velocity profile is characterized by the
depths (A and A,4) and the vorticities (2w and €4) of the shear layers in the water
and air. For simplicity, the wavelength of the wave of permanent form is taken to
be 27 and the short infinitesimal waves are supposed to have the wavelength 27 /k,
where k, = 2,3,.... Thus, we can restrict our attention to the interval 0 < x < 2.
The motion in each region is described by the streamfunctions satisfying the following

Poisson (or Laplace) equations:

Vi3 =0 for y4 <y < oo;
Vipg = —Qa for yr <y <ya
Vipy = —Quw for yp <y <yr;

V3l =0 for —oo<y<ys.



owry) .
(x) air
— yA
A,
\NEAY) Q,=Const

U= Q,A,-QY
AR /7% air
OXT<\ 2n X

NN

\y;"(x, v) Q. =Const
water
=- A, 4Y)
A,
w
Wy (%) water

Figure 2.1: Velocity profile. Velocities U4 and Uy, are shown as they would have
appeared in the absence of waves.

We also require that there be no motion as y — —oo, and the flow be uniform with
the speed Vi (V4 = —QaA4 — QwAw) as y — +oo. It is convenient to change to the
system of coordinates moving with the speed ¢ of the finite amplitude wave. Then

the general solution to the above equations can be represented in the following form:

vy =Y + ey,

N
) 1
\Ilgv _ Z ik (AZVelkIy + Bl‘che—Wy) _ _2.wa2 + (c — QWAW)y,
k=—N

N
'(‘[J}/V — e(ft Z e”cx (azve‘kk’/ + sze—VCIy) ;
k=—N
Py =W 4 eV

N
w kx W Ik
v = > e* Dy e®lv 1 ey,
k=—N
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N
W o_ ot ikx qW _[kly.
Py =€’ D e dy elkly,
k=—N

Yy = U{ +epf,
N

) 1
\ij _ Z ik (Alfclelkly + B?e—lkly) — §QA?J2 + (c - QWAW)y,
k=—N

N
Yt = et > eth® (afelk[y + bfe"kly) :
k=—N
Y = Ut + s,

N
A __ ot ikx 1A |k
Yy =e E: errdielMly,
k=—N

Ty = i e DAY + (c — QuAw — QulAa)y,
k=—N

where ¢ is a formal small parameter; A)Y, BY, DIV, olV, b}V, d¥, A}, B, D, af,
by, dit are the unknown coefficients; N is the number of coefficients used; and o
determines the wave speed and the growth rate of the infinitesimal perturbations.
The quantities denoted by capital letters (such as ¥ above) refer to the finite ampli-
tude wave, while the quantities denoted by the lower-case letters (i) pertain to the
infinitesimal perturbations. Note that the nonlinear boundary conditions discussed
below can only be satisfied in the limit N — oo, although we take a finite N for the
purposes of numerical simulation.

Similarly, the functions yr g 4(x,t) describing the shapes of the interfaces can be

expressed in terms of Fourier series:

N
Hi(z) = Z ijeikm for j =1,...,3, where Hj, = Hj_p);
k=—N

. ,
hi(z,t) = e Z hjre™ for j =1,...,3;
k=—N

yr = Hy +¢ehy; yg = Ho + €ho; ya = Hs + chs.

Let us derive the boundary conditions necessary to complete the formulation of



the problem:

1. We start with the kinematic condition at the free surface (y = yr(z)):

D _Oyr | Oyr
DV =0= (”“W*“%) 7
oy _ Oyr 4 oy 9yr
or | _ ot oy | Oz
Yy=yr Yy=yr

Equating the O(e?) and O(g') terms, we obtain

ovy | vy oM,

E 5y n =0 or U} = const;

=0

W 2UY  ohy  [(0pV oUW\ 0H, WY ok
or T amay T ar T i oz T oy oz

Ay dy?
on y = Hy(z).

2. Similar conditions can be obtained for ¥ on y = Hys(z), ¥¥ on y =
Hy(z), U4 on y = H, 3(x), and ¥4 on y = Hj(z).

3. Next, we use the continuity of the normal stress at the free surface (y =
yr(x)). First let us consider all quantities related to the water. Following
[19], we let ¥¥ = ¥ + 1Quy? Then V2)Y¥ = 0. Therefore, we can
introduce ¢F = &} + ¢} such that

ooy _ ovy ooy _ _ouf
oxr Oy ' Oy = Oz

A modified form of the Bernoulli equation can be used to obtain

yr
1 2 2
5 [V |+ Qe - T 4 gy

(e (22))

= ((%T 1!V¢ i +QA1/JT+9?JT>+F()

o9y
ot

ot
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for y = yr(x), where p = pa/pw is the ratio of the air density to water

density, and T is the surface tension.

A simple calculation shows that

2 2
w2 (0% oy
v _(037) +< Oy
W 5, W W ., W W a2 W W a2 W
0 oV oYy +8\I’1 Oy +h18\111 0°0y +h16\111 0] ’
Ox Oz oy Oy Oxr 0x0y dy Oy?

where all the terms on the right-hand side are evaluated at y = H;(z).

# can also be easily determined:

N
o =—i > e**sgn (k) (Akwe|k|y - B,Zve"k‘y> :
k=—N
N .
Vo= —ie”t 3 e*sgn(k) (akWe‘kw — bZVe_‘“y) :
k=—N

Note that we omitted some irrelevant terms which drop out after the dif-
ferentiation with respect to t. All the air related quantities can be treated

similarly.

Thus, equating the O(¢°) and O(g') terms (for y = H;(z)), we obtain

gIW\?  (aul\? w H
(ax) *( 5y ) W ot = T ey

auA\?  [owA\?
:p<< a;) +< 8;) +QA¢f+gH1>+F(t);

oY VY oY N owl oyplv ik oy 92wl
at dx Oz dy Oy " or 9zdy
oy 92wl - ovy
hYy __ 3H/HiM
(1+ (HD)2)32  (L+ (H])?2)%2
—, bolore N o4 oyt N o4 Gyt h ovd 52
ot Oxr Oz dy Oy Ox 0x0y

+h hy + ghy
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ova g2yt owsd
h 1 1 0 A O 1

]'L1 -+ gh1> .

4. Two similar equations can be obtained if we use the continuity of pressure

across yg and y4.

5. Note that the resulting equations for the short wave are linear with respect
to the Fourier coefficients, so that we can let hy;, = 1 without any loss of

generality.

6. To complete the system, we should add an equation fixing the amplitude

h of the long wave:

H,(0) = h/2.

In the case h = 0, the system of equations for the short wave decouples in the
sense that it possesses solutions in the form of monochromatic waves. It has been
shown in [2] that o satisfies a quartic equation. A wave is linearly unstable if this
equation has roots with positive real part.

For h # 0, the above equations cannot be solved analytically. We use two ap-

proaches to deal with this problem:

1. First, let us neglect all the o(h?) terms, which is equivalent to linearizing
the equation for the long wave. Then the wave speed can be determined
from the quartic equation (note that within this approximation the wave
speed is independent of h). Secondly, let us use three Fourier coefficients
for the short wave, namely those corresponding to ks and k; == 1. Now the
problem is simple enough to equate (using a symbolic manipulator, e.g.,
Mathematica) the Fourier coefficients corresponding to e*s* and e'*s*1)z,

The resulting generalized eigenvalue problem can be solved to obtain a

dispersion relation for o.

2. Alternatively, we can solve the problem numerically. In this case colloca-
tion can be employed to set up two systems of equations: one for the long

wave (it has to be solved first) and one for the short wave. The system of
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equations for the long wave is nonlinear, while the equations for the short
wave take the form of a generalized eigenvalue problem. Both systems can
be solved using Newton’s method with a good initial guess obtained from
the linearized equations. We can then use a path-following technique to
continue our solution in h and thus study how the stability changes with

amplitude.

While investigating the stability, we distinguish two principal cases: finite ampli-
tude waves propagating in the direction of the shear (these waves will be also referred
to as co-flowing) and waves moving against the shear (counter-flowing). There also
are two “intermediate” finite amplitude waves, associated with the presence of shear
in the air and water. These branches disappear in the limit of zero vorticity, and
are not considered here. However, we cannot discard them in our later discussion
of the infinitesimal perturbations, since they are the ones responsible for the linear

instability.

2.3 Linear stability diagrams

First let us determine which combination of the physical parameters 24, Quw, Ay,
Aw, k can lead to the linear instability.

The diagrams presented below (see also [2]) in figs. 2.2-2.3 were obtained by
plotting the regions where the linear dispersion relation (in the form of a quartic
equation) has roots with positive real part.

In order to reduce the number of independent parameters, it was assumed that
Viv /Va = 0.057, which is a typical value measured in expériments. We also assume
that the tangential stress of the undisturbed profiles is continuous across the air-water
interface, i.e., pavaVa/A4s = pwowViw /Aw, and take v4 /vy = 14.94. The contour

lines on each diagram represent the dimensionless growth rate

Re(o)
Cok
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Figure 2.2: Linear stability diagram in the absence of water shear. Contour lines
represent the growth rate .

where

0 :\jg(l —p) + Tk
k(1+p)
We also set p = 0.00121, neglect surface tension since it is very small, and normalize
time so that g = 1.

The last diagram (fig. 2.4) describes the region of instability for the case of water
shear only. The presence of the air is completely neglected, i.e., we set p = 0. The
resulting linear dispersion relation takes the form of a cubic (instead of a quartic)
equation.

The above stability diagrams will play an important role in our subsequent dis-
cussion, where we will consider short infinitesimal perturbations (k = k,) that fall

within one of the unstable regions for A = 0, superposed on top of a stable finite

amplitude wave (k = kz).
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2.4 Wind without water shear

Numerical calculations in this section were carried out with N = 30. Given this
resolution it was possible to compute the stability characteristics of the infinitesimal
wave for several values of V4. For each of these values we performed the analysis
with three different choices of kA 4: near the boundaries of the stability region and
approximately in the middle. We also restricted our attention to Vs/cy < 10, so that

the long wave was stable for all amplitudes in question.

2.4.1 Superharmonic perturbations with k; = 2

This case was studied in [4] using a somewhat different approach: the authors derived
a joint (coupled) dispersion relation for the long (k; = 1) and short (k; = 2) waves
and, unlike the present treatment, avoided splitting the solution process into two
steps (solving for the finite amplitude wave and then solving for the infinitesimal
wave). It was found that the instability was suppressed when the waves propagated
in the direction of the wind, and enhanced otherwise. Our results show that although
the enhancement of the instability is not observed, the suppression is much more
substantial when the long wave propagates in the direction of the wind. For example,
figs. 2.5-2.7 illustrate that the growth rate for the co-flowing wave decreases much
faster than the growth rate for the counter-flowing wave. Numerical calculations in
this section were compared with the asymptotic approach described in section 2.2.
This comparison served two purposes: on the one hand it helped to verify the absence
of errors in the numerical approach; on the other hand, it demonstrated the limitations
of asymptotics and the importance of using a sufficient number of Fourier coefficients.
Note that the lines corresponding to the numerical and asymptotic results for the
counter-flowing waves are indistinguishable in figs. 2.6 and 2.7.

The suppression of the instability appears to be due to the excitation of the
Fourier mode corresponding to the long wave. In our case, ki, = 1, k;, = 2, it is the
first mode in the expansion of each interface and streamfunction: hjj, ad, b, and

d{!. For example, initially af! = 0, so that a is the only nonzero coefficient in the
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Figure 2.5: v vs. h for Vy/co = 5, Apks = 0.19, ks = 2. —, numerics, co-flowing
waves; --, asymptotics, co-flowing waves; ——, numerics, counter-flowing waves; —--—,
asymptotics, counter-flowing waves.

expansion of 1{!. As the amplitude h of the long wave increases from zero, so does
ail. Eventually, ai' overtakes a5 and becomes dominant. This may result not only
in the suppression of the instability, but also in an unusual growth rate behavior, as
illustrated in fig. 2.8. We can see that the growth rate for the co-flowing wave has
an interim minimum and increases before going to zero. Let us take a closer look
at the imaginary part of o (recall that the growth rate is given by the real part of
o) in the neighborhood of the dip. Fig. 2.9 shows that the solution branch we have
been following (solid line) intersects with a stable(!) branch (dashed line) exactly at
the point where the minimum of the growth rate (dotted line) occurs. The nature
of this new branch can be clarified by plotting aft/aj. We can see from fig. 2.10
that it corresponds to a wave, which was initially dominated by af, and not a3 as
our original wave was. Thus, although the growth rate for the co-flowing wave was
initially decreasing faster than the growth rate for the counter-flowing wave, it was

prevented from going to zero by the interaction with another wave propagating with
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Figure 2.6: v vs. h for Vi/co = 5, Ak, = 0.23, k; = 2. —, numerics, co-flowing
waves; --, asymptotics, co-flowing waves; ——, numerics, counter-flowing waves; —--—,
asymptotics, counter-flowing waves.

the same phase speed. On the other hand, fig. 2.9 suggests that the instability can
abruptly disappear through a spontaneous bifurcation from the unstable branch (solid
line) to the stable branch (dashed line). We will later encounter another example of

the same type of behavior (fig. 2.19).

2.4.2 Superharmonic perturbations with k, > 2

As kg increases from 2, the roles of the waves propagating along and against the wind
are gradually exchanged (see figs. 2.11 and 2.12). So for sufficiently large k;, the
waves going against the wind stabilize faster than the waves going in the direction of
the wind. Fig. 2.12 indicates that the growth rate for the co-flowing waves can even

increase.
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Figure 2.7: 7y vs. h for Va/co = 5, Asks = 0.28, ks = 2. —, numerics, co-flowing
waves; --, asymptotics, co-flowing waves;

——, numerics, counter-flowing waves; —--—,
asymptotics, counter-flowing waves.

2.5 Wind and water shear combined

In the experiments conducted by Mitsuyasu [17], the wind speed was kept at 20 m/sec,
the wavenumbers of the finite amplitude wave were taken to be k; = 1,2,4, the
wavenumbers of the short wave varied so that ks/k; = 5,15,30, and the height of
the shear layer in the air was Ay = 0.3, i.e, 15 < V4/co < 40, 1.5 < Axks < 10.
These values clearly indicate that the instabilities in question are associated with the
region B in fig. 2.3, i.e., the presence of water shear is essential. If we now consider
a few sample values in the upper part of this region, we can see (figs. 2.13-2.15) that
for the wavenumbers in question the waves propagating in the direction of the wind
stabilize much faster than the waves propagating against the wind.
Unfortunately, the calculations cannot be carried out for small values of k; for
two reasons: (1) the matrices are extremely ill-conditioned for the large values of A4

and Ay, which are associated with small wavenumbers; (2) the long wave becomes
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asymptotics, counter-flowing waves.

Im(©)/(c K.} v

- 0.025
-0.520
-0.525 | 0.020
-0.530 F

i 0.015
-0.535 |
0540 10010
-0.545 |

i 0.005
-0.550 |
0885 . o o PR T SR | . Y T R 0.000

0.00100 0.00110 0.00120 0.00130 0.00140 0.00150
h

Figure 2.9: Im(o) and v vs. h for Va/cy = 8, Aaks = 0.09, ks = 2. —, Im(0), original
branch; ——, Im(o), new branch; -, growth rate -.
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Figure 2.12: v vs. h for Vi/co = 5, Ask; = 0.28. —, co-flowing waves; --, counter-
flowing waves.

unstable for some of those values.
The instabilities associated with the region A in fig. 2.3 are qualitatively the same

as those discussed in section 2.4 in the absence of water shear.

2.6 Water current without wind

In the case when the wind is absent, we have to restrict our attention to Viy /cq < 3,
for the reasons similar to those described in section 2.4. It can be seen that the co-
flowing waves are generally more stable than the counter-flowing waves. The results
are presented in figs. 2.16-2.21. In the spirit of section 2.4 we carried out calculations
for two values of the current speed Vi /co = 1.8 and 2.0. For each of these speeds we
investigated three values of the dimensionless shear depth Ay ks, so that the resulting
locations in the stability diagram would be approximately near the lower and upper
boundaries, and in the middle of the instability region. One can observe that the

trend is for the growth rates to be smaller for shorter waves.
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Figure 2.15: v vs. h for Va/cy = 23, Asks = 1.35. —, co-flowing waves; --, counter-
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Chapter 3 Modulation of gravity waves with

shear in water

3.1 Introduction

In this chapter our focus is on the case when the amplitude of the basic wave is
sufficiently small (in section 3.5 we use a numerical approach to study what happens
for large amplitudes) and the wavenumbers of the interacting waves are very close,
which would have resulted in the well-known Benjamin-Feir instability, had the waves
been irrotational. This instability was studied numerically by Longuet-Higgins [15]
and analytically (using the modulation approach) by Hasimoto and Ono [11]. The
latter showed that the wave envelope of a slowly varying wave train satisfies the
nonlinear cubic Schrédinger equation (NLS). We derive this equation for the waves
on a water current varying linearly with depth and study the dependence of the growth
rate of infinitesimal perturbations on the strength of the current. We compare the
results obtained with those of Li, Hui and Donelan [14] for the special case of the
infinitely deep shear. A numerical approach similar to that of Longuet-Higgins [15]
and the one used in the previous chapter is also pursued.

It is shown that depending on the direction of the propagation (along or against
the shear flow) of the finite amplitude waves, the effect of the shear on the stability
of infinitesimal perturbations is substantially different. In most cases, however, the

shear strength increase first enhances the instability, but later suppresses it.

3.2 Equations and boundary conditions

In this and all subsequent chapters, we neglect the presence of the air for the sake of

simplicity. We therefore drop the superscripts A and W, since all the quantities are
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Figure 3.1: Velocity profile for water shear. Velocity U is shown as it would have
appeared in the absence of waves.

related to the water (refer to fig. 3.1 for the new notation).

The superscript “I” is used for all quantities pertaining to the region with vorticity
(also to be referred to as the upper region), while the superscript “B” is reserved for
the quantities from the irrotational region (lower region).

The shapes of the free surface and the interface between the upper and the lower
regions are given by h'"% = hT:B(z,t), and the flow is described by two streamfunc-

tions U7 = U7 (z, y,¢) and ¢? = B(z,y,t), which satisfy
V3T = —Q for h® <y < AT, (3.1)

V3P =0 for — oo <y < hP. (3.2)

UT can be written in the form

1
U (z,9.1) = =5 W° = QAy + ¢ (,,1), (3.3)
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where 7 is harmonic and therefore has a conjugate function ¢” such that

3¢T_8¢T_ 8¢T__%
or  dy  dy Oz

Similarly, there exists ¢® = ¢P(z,y,t) such that

8¢B_0¢3. aqu__?}_p—li
oxr  dy’ dy Oz

(3.5)

To complete the formulation of the problem, we use the boundary conditions from

chapter 2. Using our new notation, we can rewrite them as follows:

1. We assume that the velocities are zero at infinite depth (this condition will

be modified in section 3.5 in order to account for a change of coordinates):

B B
%—)0, Qg?———é()asy-%—oo.
Oy or

2. The kinematic condition on y = hT(z,t) gives us:

D T
b—t(y—h )=20
or
06T OnT (047 . OnT
oy - ot +<8x —Qh+A) ) 5

3. Similarly,

op®  OhP n 0¢®? Oh®
oy ot ox Oz

on y = hB(z,t).

4. We require that the pressure across the free surface be continuous:

a¢T 1 |[8¢7T . 2 (0gT\?
—37+5K—5;— w+2) + (%)

+0Q (wT - %Q(hT)Q - QAhT> +ght = F(t)

(3.6)
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on y = hT'(z,1).

5. Likewise, we can use the continuity of pressure across the lower interface:

(-] (5)]

+Q (wT - %Q(hB)Q - QAhB>

068 1| [8¢B\® (067
=% T3 KT) +(a—y” (3.10)

0T 1
T3

on y = h¥(x,t).

6. Finally, the continuity of normal velocity across the lower interface yields:

OhB (94T 5 06T OhP OB 9P
o7 (”5{ — Gk +A)> "oy 0z oz oy (3.11)
on y = hB(z,t).

The last two conditions are equivalent to requiring that the velocity be continuous

at the interface, i.e.,

8¢T B _ 3¢B

a—x—ﬂ(h +A) = . (3.12)
BT OpB
%by‘ = ‘é%“ (3.13)

on y = h¥(z,1).

It is easy to prove that the continuity of pressure and normal velocity indeed
implies the continuity of tangential velocity, and hence the continuity of velocity
itself. First observe that on y = h¥(x,t):

d [9¢” T_ 1B 5\ _ 09°

_ 0 0T B O¢P N d¢T OB 3 d¢® OhB
-9t Ox ox dy Oz dy Ox
, opT oyt OhP B ohB
+Q<6:c + 9y oz - Q(h +A)3x—
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(use a condition similar to (3.7) to simplify the expression in parenthesis)
_ 9 [&bT 3 d¢P N 0¢™ OhP 3 opP 8h3} 3 Q(?hB

ot | Ox ox dy Oz dy Oz ot
_ 0 [og” o¢T Oh®P 0 [0g8  0¢F OhB ol ovB
£ o] Sl )

(h® + A) +

Or oy Oz ot ot ’

where vZ and v? are the tangential velocities above and below the interface respec-
tively. Therefore, the continuity of pressure and normal velocity (equations (3.10)

and (3.11)) imply that

T T

ot N 1d(v])* o} N 1d(vp)?
ot 2 dr Ot 2 dx

(3.14)

Suppose that the velocities are small, i.e.,
—~ _I(, T,B\(l
T,B :
oI = 3 (whP) 0,
=1

where € is a small parameter to be defined in section 3.3. In addition, let us assume
that (v1'B)1) ~ eilkz=wt) "which is exactly the form that we are going to use later on.
Then 2 (v1E)V) = —ijw(v1"P)® and it follows from (3.14) that (v1)® = (v2)®. Thus,
the tangential and normal velocities, and hence the horizontal and vertical velocities,
are continuous at the interface.

We will find later on that the use of the continuity of horizontal and vertical veloc-

ities, instead of the pressure and normal velocity, simplifies algebraic manipulations.

3.3 Derivation of Schrodinger equation

In order to derive an equation for hT, we apply the method of multiple scales to the
equations (3.1) and (3.2), as well as to the boundary conditions (3.6)-(3.9), (3.12), and
(3.13). Let € denote a formal small parameter (it will be later related to the amplitude

of the wave of permanent form). Following [11], we introduce “slow” variables:

E=¢e(z—cht), T =6, (3.15)
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where ¢, = gi"k— is the group velocity and w is the frequency of the finite amplitude
wave obtained from the linear dispersion relation. The velocity potentials ¢” and ¢?,

as well as the interfaces hT and hZ, can be represented in the following form:

> ¢IE", W= Y hIE™ (3.16)
% = > ¢PE", P = 3 KBE™ (3.17)

where
E = gilkz—wt) ¢7_’B (¢TB> hTB (hTB),

oo

¢’£’B = Z EJ(an (5,% )7
Jj=n}
WP = 3" hbP (e, 7).
j=In|
Note that
9 3 6. 6 0 _ .0 _a_
oz ‘o6 o o "o 2

We substitute the above expansions (3.16) and (3.17) in the equations (3.1) and
(3.2) respectively, and equate powers of E. In order to simplify the notation, we drop
the superscripts T" and B in all subsequent relations which are true for both.

%¢ Opn
2 n
ae2 + 2nike —— B¢

0%¢n

21,2
— 1"k pn + 3y

3

=0forn=0,.,00

or

) 2 . 2 : .
Z (5286?2,] + 2nike gg,] - n2k2¢n,j + 683721,]> g/ =0forn= 07 -5 00,
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First consider n = 1. Then equating the O(e!) terms, we obtain
Li¢11 = 0.

Hence, ¢ 1 = e**¥. Similarly, for n = 2: ¢y5 = €Y. For ¢& we should also use the

boundary condition (3.6). So,
11—AT ky+AT —-ky
¢€1 = Afekyv
4% = BTe™ 1 B,
¢5y = Bre™.
Now consider n = 1 once more and equate the O(¢?) terms:

9¢1,
23

L1 s + 2ik = 0.

This equation yields

T T
(]5{2 = aé y 4 zag? ye ¥ 4 CTeM 4 CT ek
DAE
L Y

Finally, equating the O(g3) terms for n = 1 gives

L Ob12  0%¢1;
Lig1 3+ 2tk o€ + oez = 0.
Therefore,
T — 8CT yeky + ZaCT —ky _ 162‘4{ y2eky 1 aQAng —ky
1,3 wT: o€ 2 9g2 2 0g2

+ Diet + Dye™™,
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B 2 AB
b _OCP e 10
’ ¢ 2962

2eky 4 Dfeky.

Note that since the fluid is of infinite depth, the mean level of the free surface can be
set to zero, i.e.,

ho; =0, ¢o; =0for j=0,1,...,

with the exception of hgy = —A.
The expansion coefficients of the streamfunction can be determined from (3.4)

and (3.5) as follows:

T,B
13_k/( 12>dya

22 —sz/qﬁgfdy

The most difficult step of the derivation is the substitution of the expansions into
the boundary conditions. We retain the terms which are bigger than o(e*), then
equate the coefficients corresponding to E'el, Ele?, E'e3 E2c2?. The resulting system
of twenty equations (see appendix A) has a solution provided that two compatibility
conditions hold.

One of these conditions is the linear dispersion relation. It has been shown in [3]
that w satisfies a cubic equation. A wave is linearly unstable if this equation has roots
with nonzero imaginary part. This linear instability has to be distinguished from the
instability studied in the present work and associated with nonlinearity. We restrict
our attention to the smallest and the largest roots of the cubic dispersion relation,
since the third (“middle”) root disappears in the limit  — 0.

The other compatibility condition turns out to be the nonlinear Schrodinger equa-

tion (NLS): - o
;M (S g Ih{I‘Q h{,l _0,

or TH 0&?
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where p and g depend on 2 and A. This dependence is investigated in detail below,
but explicit formulas for 4 and g are very difficult to obtain, even with the use of a
symbolic calculator (such as Mathematica). Instead, we compute u and ¢ for specific
values of 2 and A.
The only exception is the case A — 0o, when explicit expressions for u and ¢ can

be obtained:
o Wy (1 - Qd)2
P TR0

1
g = §wdk2(§2fl —6Q% +6Qy — 4),

where

wg = w — QAEL, de—g.
Wy

The dispersion relation becomes

Wy =w — QAL = (Q +1/Q2 + 4gk) /2.

These expressions were previously obtained in [14] with the formula for ¢ being some-
what different:
§Q00+ 200 — 2Qy + 1

2—-Q,

1
§wdk2(—QZ + 205 + 6Q4 — 4), (3.18)

q = —4wdk2—

i

where we made appropriate changes to the original notation of [14] to allow a com-
parison with our results.
It is known that the NLS has the following solution representing a nonlinear plane

wave:

h‘{,l — hoei(nf—af),

where hq = const, & = px? — q|hy|?. Then

hT — Eh’{:lez’(km—wt) + 0(52) — ghoei(n§-a7)ei(kz—~wt) + 0(62).
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At this point it is suitable to let ¢ = 1 and assume instead that the quantities
multiplied by € (namely hy and ) are small themselves. Recall that £ = e(z — ¢,t)

and 7 = €?t. Then
hT —_ hoei((k+ﬂ)m~(w+cgn+ufz2—q|h0|2)t) + O(h(z))

This expression can be viewed as a solution with a slightly modified wavenumber and

an appropriately modified dispersion law. Therefore,

p=uw"(k)/2,

allowing us to verify the correctness of p analytically using the linear dispersion
relation (see fig 3.2).

The other coeflicient ¢ will be verified numerically, since it is related to the non-
linear correction to the dispersion law.

The solution corresponding to the finite amplitude wave with the wavenumber k
is recovered if we set x = 0:

hiy = hee™.

3.4 Stability analysis

We can now carry out standard stability analysis using the NLS (see [11]). Let us
perturb A ;:
BT, = (ho + &h)eilem+e), (3.19)

where h and @ are proportional to ei@f‘“a7); € is a formal small parameter (corre-
sponding to € in the numerical approach described in section 3.5); k and & are the
wavenumber and frequency of the perturbation respectively. Upon substituting into

the NLS, we obtain the following dispersion relation for the perturbations:

- h2 «
&= qu\}l LY (3.20)
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This formula is valid for sufficiently small values of hy and k. The region of validity
is further restricted by the fact that in the case of the co-flowing waves, the asymp-
totic series for A7 (and all other quantities) becomes disordered if the shear strength
QA is too large, e.g., we get hi, ~ 1000(h],)?. However, hl,/(hT,)* is bounded
as a function of A, so that the case of the infinitely deep shear can still be investi-
gated for sufficiently small amplitudes hf’l. In the case of the counter-flowing waves,
h3,/(hi,)? remains less than 1, but the finite amplitude waves become linearly un-
stable themselves for large values of 2A, so that the present approach is no longer
applicable.

Obviously, the instability occurs when @ becomes imaginary. This happens for
ho > %\/_2% . Therefore, gt > 0 is a necessary condition for the instability. We will see
later that g always has the same sign as ); hence, it is the sign of u that plays the
pivotal role.

Let h = 2ho/k denote the “normalized” amplitude (note that the dimension of A
is L?) and v = &/ k2 denote the “normalized” growth rate (actually the growth rate
is given by Im[y]). Then we can rewrite (3.20) in the form

1 gh?

From now on we also assume that ¢ = 1. Note that apart from normalizing the
amplitude h, the growth rate -, and the acceleration due to gravity g, we preserve
the original dimensions of all other quantities.

We start with the co-flowing waves: 2 > 0, w < 0.

For 0 = 0 we have ¢ = 2 and p = § (if we take k = 1, w = —1). Therefore, a
wave becomes unstable for h = /2 /4.

In the generic case of {2 # 0 and A < oo, the behavior of yu is presented in fig. 3.2
(we will only consider the case k = 1 in order to facilitate comparison with numerical
results). As u goes to zero, so does the critical amplitude A at which the wave becomes

unstable (see fig. 3.3). When 4 becomes negative, the instability abruptly disappears.
This effect is observed for A < A, (A = 0.62). For A > A, u is always positive.
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0.05¢}

-0.05¢}

Figure 3.2: NLS coefficient p vs. vorticity §2 for various values of the shear depth A,
as given by asymptotics (dots) and w”(k)/2 (solid line); k = 1. Co-flowing waves.

Q

0 2 4 6 8

Figure 3.3: Critical amplitude A vs. vorticity Q for various values of the shear depth
A; k= 1. Co-flowing waves.
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Unlike u, ¢ does not change its sign and therefore has little effect on the stability.
This is illustrated in fig. 3.7, which has been placed in section 3.5 (along with some
other figures mentioned in the present section) to allow comparison with numerical
results.

From (3.21) we obtain the growth rate  as a function of Q2 (for various A and h,
k =1). We can see from fig. 3.19 (solid line) that for A = 0.1 < A,,, the instability is
first enhanced, but later suppressed, by the addition of shear. Such behavior is related
to the fact that p becomes negative, so that the instability is no longer possible. In
the case of A = 1.0 > A,, (fig. 3.20, solid line) the instability is simply enhanced.
This is due to the fact that p remains positive for all 2.

In the case of the counter-flowing waves (€2 > 0, w > 0) the basic wave is unstable
for QA large enough, so that the asymptotics becomes invalid. We therefore restrict
our attention to small values of 2. Again, we study the case k = 1.

The crucial property is that unlike the case of the waves propagating in the di-
rection of the shear, p does not change its sign and pg > 0, so that the instability is
always possible. The behavior of ;1 and ¢ is presented in figs. 3.4 and 3.5.

The critical amplitude A is an increasing function of 2, as illustrated in fig. 3.6.
Hence, we expect an initially unstable perturbation to stabilize for sufficiently large
Q2. However, since p is increasing in magnitude, the growth rate can initially increase.
The larger the amplitude of the basic wave, the bigger is the region where the growth
rate is increasing. It is sufficient to illustrate this behavior for just one value of A,

say A = 1.0 (solid line in fig. 3.22).

3.5 Numerical simulation

Our next objective is to compute the growth rate numerically and compare the results
with those obtained in section 3.4 using the asymptotic approach. We expect the two
methods to agree for small amplitudes, with the numerical treatment providing an
insight into what happens when the amplitude of the wave of permanent form becomes

large.
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Figure 3.4: NLS coefficient p vs. vorticity {2 for various values of the shear depth A,
as given by asymptotics (dots) and w”(k)/2 (solid line); k=1. Counter-flowing waves.

Q

Figure 3.5: NLS coeflicient ¢ vs. vorticity  for various values of the shear depth A;
k=1. Counter-flowing waves.
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Figure 3.6: Critical amplitude h vs. vorticity €2 for various values of the shear depth
A; k = 1. Counter-flowing waves.

3.5.1 Numerical method

It is quite easy to modify the numerical algorithm from the previous chapter for
the present case. In order to ensure a “bug-free” computation, the following two
approaches were implemented.

First of all, one has to note that the above modulation approach corresponds to
the (four-wave) interaction of the waves with the wavenumbers that are very close.
In fact, the wavenumbers must differ by k: k + k. For the purposes of the numerical
simulation, we take k = 1 /m. We now make an observation that the equations are

invariant under the transformation
A'=A/m, Q = Qym,

with all other dimensional variables being rescaled appropriately. The only nonzero
Fourier coefficients in this new wave are those whose subscripts are divisible by m.

Thus, a practical procedure for investigating the stability of a wave with & = 1 to the
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perturbations with & = (m £ 1)/m is as follows:

1. Calculate the basic wave of finite height with the wavenumber k& = 1.
2. Rescale the above solution, so that k = m.

3. Calculate the infinitesimal wave with £ = m = 1, riding on top of the finite
amplitude wave. Note that for this wave the only nonzero Fourier modes

are those corresponding to m £ 1 + Im, where [ is an integer.

4. Rescale the results back.

Alternatively, we can slightly generalize the algorithm from chapter 2, using the

following representation of the streamfunctions and shapes of the interfaces:

N R N -
by = et [ T elkthr <ake|kik|y +bk€—|k:tkly>:' ,

k=—N

N ~
hi(z)=¢| Y e BT for § =1,2.
k=—N

Both of these approaches were implemented and produced identical results. The
first approach requires fewer changes to our previously used algorithm, while the

second approach provides more flexibility as far as the choices for k are concerned.

3.5.2 Comparison of numerical and asymptotic approaches

It has to be noted that the numerical and asymptotic approaches have different ranges
of validity. For example, the Jacobian in Newton’s method is ill-conditioned for small
k, since in the limit & — O the infinitesimal and finite amplitude waves have the
same wavenumber, so that the system of equations for the Fourier coefficients of the
infinitesimal wave becomes degenerate. Therefore, the numerical simulation proves
to be difficult, while the asymptotic expansion gives the best approximation. On the
other hand, the asymptotic expansion is not valid for large hg, where the numerical
approach still gives reliable results. As mentioned in section 3.4, the asymptotic

approach fails for large values of 2A, while the numerical approach fails for large
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q. A=10 A=0.6

Figure 3.7: NLS coefficient ¢ vs. vorticity () for various values of the shear depth
A for the co-flowing waves, as given by numerics (dots) and asymptotics (solid line).
k = 1. Co-flowing waves.

+kA can no longer be represented with

A (roughly for A > 1), since the values of e
sufficient accuracy for higher harmonics.

Now let us verify the correctness of the values of the NLS coefficient ¢, using the
fact that wezaer = Wiinear —qh2+0(hg). Therefore, for small amplitudes we should have
Wnumerical & Wiinear — qh3, which allows us to check the correctness of ¢ by computing
the dispersion law of the finite amplitude wave. It can be seen from fig. 3.7 that the
values of ¢ obtained with the help of the computations agree with those given by the
asymptotic approximation.

The numerical results for the dependence of the growth rate on the vorticity Q
are presented in fig. 3.8. In order to explain the disagreement between the numerical
and asymptotic solutions, let us perform the computation with only two Fourier
coefficients for the finite amplitude wave, which would be similar to the asymptotic
approach assumption (3.19). We can see that the picture changes dramatically when

we go from N = 2 (fig. 3.9) to N = 3 (fig. 3.10).  Further increase of N results
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Figure 3.8: Growth rate v vs. vorticity {2 for various amplitudes h, as given by
numerics. A = 0.1, N = 50. Co-flowing waves.

0.30

0.20

0.10

el s 1O
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Figure 3.9: Growth rate v vs. vorticity © for various amplitudes h, as given by
numerics. A = 0.1, N = 2. Co-flowing waves.
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Figure 3.10: Growth rate v vs. vorticity € for various amplitudes h, as given by
numerics. A = 0.1, N = 3. Co-flowing waves.

in rapid convergence to the situation presented in fig. 3.8. Note that the mazimum
growth rates presented in fig. 3.9 (N = 2), especially in the case h = 0.2, are in better
agreement with the asymptotic results.

Now let us determine how well the predictions for the growth rate obtained from
the asymptotic theory agree with the numerical calculations for large amplitudes. We
set Q =1, A = 0.1 and carry out the computation for k =0.01 and k = 0.02. It can
be seen from figs. 3.11 and 3.12 that the agreement is very good for small amplitudes,
especially for the smaller of the two values of k. As expected, the asymptotic approach
fails to predict the decrease of the growth rate for large amplitudes. This behavior is

in agreement with [15].
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Figure 3.11: Growth rate & vs. amplitude hg for 2 = 1, A = 0.1, as given by numerics
(dots) and asymptotics (solid line). Co-flowing waves.
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Figure 3.12: Growth rate & vs. amplitude ho for 2 = 1, A = 0.1, as given by numerics
(dots) and asymptotics (solid line). Counter-flowing waves.



45
3.6 “Two-stick” profile

Our next task is to obtain a better approximation to a continuous velocity profile.

We take an exponential profile of the form
U, = Ugey/‘5, —oo<y<0

to be our “model” continuous velocity distribution. First suppose that we use the
“one-stick” profile considered above. Since we are trying to model the effect of wind,

it is reasonable to require that the velocities at the free surface be equal, i.e.,
Uy = QA.

Additionally, we require that total mass fluxes due to the shear flow be the same:

0
| 1
/ Uly)dy = Upd = QA%

—0o0

which leads to
A = 26.

Let us now use a “two-stick” profile of the form

Q(y+ A+ DA, -A;<y<0
U= Qg(y+ Al + AQ) , —-(Al + Ag) <y < ——Al
0 , —o0 <y < “(Al'{"Ag)

In order to determine §2;  and A, we assume that

1. the velocities at the free surface are the same:

UO - QlAl -+ Q2A2; (322)

2. the vorticities at the free surface are the same (this is equivalent to re-
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quiring that the derivatives of the velocity profiles be the same at the free

surface):

Us/6 = S (3.23)

3. the mass fluxes are the same:
1 2 1 2
UO(S = ‘éQlAl + 'Q“QQAQ + QQAlAQ. (324)
Combining (3.23) and (3.24), we obtain

1
U2 ==
L)

0F + %QlﬂgAg + AN,
Condition (3.22) yields (after some algebra)
L2 a2 a2 L 2
§Q1A1 + WA Ay + QA5 — §QIQ2A2 = 0.
Denote a = Q/Qy, b = Ay/A,. Then the last equation becomes

1 1
3 + ab + a?b? — -2—ab2 = 0.

We can treat this as a quadratic equation with respect to a (or b). Then

b—2+ b2 —4b—4
a= .
4b

Real positive solutions exist if and only if
b>2(1+2).

If we choose b = 2(1++/2) then there is a unique solution for a: @ = 1(1— ?) Thus,

the quantities for the “one-stick” and “two-stick” profiles are related by

A 2(14+V72)
T o2+V2

A,
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N A=10

Figure 3.13: Dispersion law w vs. vorticity ) for various values of the shear depth
A. Dotted line, “two-stick” profile; solid line, “one-stick” profile. Co-flowing waves.

0 =20, Q, = %(2 —V2)Q.

Given this choice of the coefficients relating the “one-stick” and “two-stick” quan-
tities, let us investigate the agreement between the resulting dispersion relations, the
coefficients of the Schrédinger equation and the growth rates. (The derivation of the
NLS in the “two-stick” case is virtually identical to the “one-stick” case, although
algebraically even more cumbersome.)

First note that in the case of the “two-stick” profile, the dispersion relation takes
the form of a quartic, while for the “one-stick” profile it was a cubic. So it is legit-
imate to compare only the two “extreme” (i.e., the largest and the smallest) roots.
As explained earlier in sections 3.3 and 3.4, these roots correspond to the waves
propagating along and against the direction of the shear current. We can see from
figs. 3.13 and 3.14 that for the co-flowing waves the agreement is very good, while
for the counter-flowing waves there are noticeable differences, especially when the

strength of the shear is large.
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Figure 3.14: Dispersion law w vs. vorticity {2 for various values of the shear depth A.
Dotted line, “two-stick” profile; solid line, “one-stick” profile. Counter-flowing waves.

Now we are going to compare the values of y and ¢ for the two profiles (figs. 3.15~-
3.18). Again, in the case of the waves propagating along the shear (figs. 3.15 and 3.16),
the agreement is very good, even for large values of QA. For the counter-flowing waves
(figs. 3.17 and 3.18) the two profiles produce somewhat different results starting with
A =~ 0.5.

Finally, we compare the growth rates for the two profiles (figs. 3.20-3.22). It can
be seen that, although there are significant quantitative differences, qualitatively both
profiles yield identical results. Overall, this gives us hope that the results obtained
with the help of the “stick” profiles provide a good approximation to the exponential

profile behavior.

3.7 Conclusion

We have studied the effect of shear on the stability of infinitesimal perturbations

(in the form of side bands) superposed on a finite amplitude gravity wave. It has



49

0.05

0.00

-0.05
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Figure 3.15: NLS coefficient p vs. vorticity  for various values of the shear depth
A. Dotted line, “two-stick” profile; solid line, “one-stick” profile. Co-flowing waves.

70 =06  A=03 A=0.1

Figure 3.16: NLS coefficient ¢ vs. vorticity 2 for various values of the shear depth
A. Dotted line, “two-stick” profile; solid line, “one-stick” profile. Co-flowing waves.
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Figure 3.17: NLS coefficient p vs. vorticity €2 for various values of the shear depth A.
Dotted line, “two-stick” profile; solid line, “one-stick” profile. Counter-flowing waves.

TA=10

Figure 3.18: NLS coefficient ¢ vs. vorticity 2 for various values of the shear depth A.
Dotted line, “two-stick” profile; solid line, “one-stick” profile. Counter-flowing waves.
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Figure 3.19: Growth rate v vs. vorticity €2 for various amplitudes h. Shear depth
A = 0.1. Dotted line, “two-stick” profile; solid line, “one-stick” profile. Co-flowing
waves.

92

h=1.0

Figure 3.20: Growth rate v vs. vorticity €2 for various amplitudes h. Shear depth
A = 1.0. Dotted line, “two-stick” profile; solid line, “one-stick” profile. Co-flowing
waves.
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Figure 3.21: Growth rate v vs. vorticity ) for various amplitudes h. Shear depth
A = 0.1. Dotted line, “two-stick” profile; solid line, “one-stick” profile. Counter-
flowing waves.

been demonstrated that for the co-flowing waves the addition of shear can lead to
the complete suppression of instability. The value of {2 for which the growth rate
becomes zero is independent of the wave amplitude provided that the shear depth is
less than a certain critical value A... Otherwise, the instability is enhanced by the
addition of shear.

For the counter-flowing waves the picture is less clear, as the finite amplitude
waves become linearly unstable themselves if the shear strength is sufficiently large.
However, as long as the finite amplitude wave remains linearly stable, the growth
rate of the infinitesimal perturbations goes to zero as the shear strength increases.
Depending on the amplitude of the wave, the growth rate can initially increase before
going to zero. The value of 2 at which the instability disappears is also strongly
dependent on the wave amplitude.

Thus, the co- and counter-flowing waves present two substantially different cases

as far as the instability is concerned.



Figure 3.22: Growth rate v vs. vorticity €2 for various amplitudes h. Shear depth
A = 1.0. Dotted line, “two-stick” profile; solid line, “one-stick” profile. Counter-
flowing waves.

It has been also shown that a refined shear model (“two-stick” profile) produces
qualitatively identical and quantitatively similar results.

Further investigation is necessary to determine the nature of the disagreement be-
tween the numerical and asymptotic approaches. Of course, a study directly utilizing

some continuous vorticity distribution is also desirable.



o4

Chapter 4 Three-wave interactions

4.1 Introduction

In the previous two chapters we considered various aspects of the stability of gravity
waves, related to four-wave interactions. These interactions can occur with or without
shear in the water. In this chapter we investigate three-wave interactions of gravity
waves, which are possible only in the presence of shear. We derive a system of equa-
tions describing three-wave interactions and determine when they can cause instabil-
ity. Two types of instability are considered: “explosive” instability (non-exponential
blow-up in finite time) and “pump-wave” instability (the usual exponential growth).

Due to the algebraic complexity of the derivation, we are going to use two inde-
pendent methods. Each method has its own advantages and the agreement between

them guarantees that the result is correct.

4.2 Derivation of the interaction equations

Let ki, ko, and k3 denote the wavenumbers of the interacting waves. We represent

each of the velocity potentials ¢7Z, as well as the interfaces h*"?

, as a sum of six waves
with the wavenumbers +k;, £ko, +-k3 and frequencies +w,, +ws, *ws, satisfying the
resonance conditions:

k3:k1+/€2; w3 = Wi + wo.

Neglecting all higher harmonics and all the o(¢?) terms, which play no role in the

derivation of the interaction equations, we can write

3 3
o' = > (1, + 20y, )En, KT = 3 (ehl, + &R}, )En, (4.1)

n=-—3 n=-3
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3 3
" = 3 (edl, + %05, ) En, P = Y (ehD, +€°h3,)Ey, (4.2)
n=-—3 n=-—3

where

E, = eittna—ent)  gTB _ <¢§’7:B)* , DB = (hi,nB)* ke = —kn, wep = —wy.
It is implied that the summation is carried out over all n € {—3, 3}, excluding zero.

At this point we apply the method of multiple scales. The appropriate “slow”
variables are

E=¢x, T=ct. (4.3)

Let the coefficients qS?Z’nB and h}:;f be dependent on the slow variables:
T,B T,B . 3, T,B _ ;T.B
¢j,n - d)j,n (67 Y, 7-)7 hj7 h (57 )

Note that

N g+aa 9.0
Bz ‘o o ot Car

Similarly to the derivation in section 3.3, the most difficult step is the substitution
of the expansions into the boundary conditions. We retain the terms which are bigger
than o(e?), then equate the coefficients corresponding to Elel, Ele? n=1,2,3. The
resulting system of thirty equations has a solution provided that two compatibility
conditions hold. One of these conditions is the same linear dispersion relation in the

form of a cubic equation that we encountered in the previous chapters:

2kw, + Qlk,|(1 + e~ 220kaly
| (2knwn + Qk, | (1 — e7280kn1)
+Q(wn + QAk,) + g =0. (4.4)

D(kp,wn) = —(w, + QAE,)?

Note that the dispersion relation (4.4) can take many different forms. However, it is
the form above that is used in the interaction equations. This particular form comes

from the Bernoulli equation and ensures that the pressure is proportional to D(k,w),
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ie.,

3
p= 3> D(kn,wn)h{n.
k=-—3

The other conditions take the form of a system of three nonlinear partial differential

equations:
0 0 .
Py —eaglily = i (W) b, (4.5)
0 J T . T\ T
P (87 Cg(%) = o (h1,1> hi 3, (4.6)
0 0 W, :
= 4.
P (87' Cgag) ZHh h‘127 ( 7)
where P, = P(k,) = 52 55D (kn,wn); H is a real-valued interaction coefficient, which

depends on k, and w,, and should be the same for all three equations. In our com-
putations, the latter fact provided a very useful and reliable check on the correctness
of our derivation. From now on we assume that our initial conditions are such that

o)

% = 0, i.e., there is no slow-space modulation.

Although the method we just used is very simple and can be easily employed
in conjunction with a symbolic manipulator, thus simplifying the task of solving
thirty simultaneous equations and allowing us to minimize the effort by using the
techniques from the previous chapter, it does not provide compact expressions for
either the interaction coefficient H or the coefficients F,.

The following approach (Lake and Yuen [21]) provides a better way of obtain-
ing expressions for the coefficients, as well as help us check the correctness of the
derivation once more. The disadvantage is that it is more difficult to use a symbolic
manipulator, so that a generalization for the case of four (and more) interacting waves
is not readily available.

We start by rewriting the boundary conditions. Let ¢(z,t) = é(z, h(z,t),t) denote

the value of the velocity potential at an interface, or more precisely:

¢ (z,t) = ¢" (2, A7 (2, 1), 0);
&I(’T7 t) - ¢T(:L‘3 hB(x" t>7 t);
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B(z,1) = ¢ (z, hB(,1),1).

We also need the value of the streamfunction at the free surface:
@ZT(:I:, t) = wT(x, hT(:c, t),1).

Then . )
dp 09 0pOh 0p do 0¢Oh

ot Ot Oyot’ dz Oz Oyodz

Substituting these expressions into (3.7) and (3.8), we obtain

onT 9T onT  agT QahT (
ot Oxr Ox Jy Ox

AT+ A) =0 (4.8)

on y = hT(z,t), and

OnB 0T OnB  9¢T _OhB,
Y + 5% O 9 —an (h"+A)=0 (4.9)

on y = hB(z,t), where we neglected third-order terms.

A similar transformation of (3.9) yields

od" 1 (0¢T\* 1 (84"\ 84", . T, T
—at—+5(3;> -5(_@) — 0% (W7 4 2)+ QYT+ ghT = F(1) (410)

on y = h'(z,t).

Finally, we use conditions (3.12) and (3.13), which take the following form:

0¢’ B _ 99"
£ QA" +A) = e (4.11)
and
op” . d¢P

on y = hB(z,1).
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Now introduce Fourier transforms:
1 7~ ‘ 1 7~ 4
W (z,t) = — / hT (K, t)e"dk, hP(z,t) = —A + — / hB(k,t)e"*dk; (4.13
(w0)= 7= [ W) (@) 7o | PR eas (41)

o0

6"t = o [ (@l 06 4 3,070,

o0}

¢B(x>y7 \/—_7—1: /7 Kjt |K!yem$d"€

Note that the velocity potentials automatically satisfy Laplace’s equation. It is easy
to relate this integral representation of the potentials and the interfaces to the series
representation (4.1)-(4.2) that we used in the beginning of the chapter. For example,

for the free surface we can let

KT (k1) = V27 Z (ehl,, + e2hk e ™"5(k — kn). (4.14)

n=-3

Then
3

W'(z,t) = 3 (eh], +&*hi,)En,

nz=-—3
i.e., we recover our series representation.
The values of the velocity potential at the interfaces can be expressed in terms of

the Fourier transform as follows:

; 1 7 A
d)T((Ea t) = ——/—2—7—r / (a(/ﬁ, t)e“"hT(z’t) —+ ﬁ(;g;, t)e_lﬁlhT(myt))d,{,
q%I(:U7t) - '\/32: 7(05(:%, t)e|I€}hB(1;,t) - /8(,4;, t)e’('ﬂhB(-’E,t))eiﬁde,
T
. 1 7
3P (z,t) = 7= / (1, £)elFNP @D g
T

Assuming that the amplitudes are small (more precisely, i/ihT’B(:L‘,t)I should be

small), we can expand the exponentials above in Taylor series. Truncating the series
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after the first two terms and using (4.13), we obtain

oo

#7(00) = = [ (ol )+ Bl )y (4.15)

oo o0

1 . .
b [ ol ) = B0 D) (s, D7,

—00 =00
oo

1 .
' (z,1) / ok, t)e A 4 B(k) t)elm18) e g, (4.16)
\/27r

o0 oo

1 B - 5
+§; / / ]fil\(a(nl,t)e“I'ﬂIA - 5(/431,t)e_mm)hB(fﬁz,t)e’(”ﬁm)xdlza

-0 =00

8 (x,t) = / v(k1,t)e”FA e g, (4.17)

1
V2T .
1 o0 o0
+§ / / |k1ly(kst lmlAhB(’§ tyellmtraleg

where dis = dr1dk,.

Applying the Fourier transform to both sides of (4.15)-(4.17) and using

5(k) = % 7@“‘””(13:,
we get
(k1) = als, t) + 1) (4.18)
/ [ e, 1) = B, )7 s, )i
S(rt) = alk, t);jnl—uﬂ(ﬁ, #)ella (4.19)
+\712'—%' 7 7 ler| (@ (ien, )12 = Blrcr, )12V (g, 1) Srsachra,
Gk t) = W,t)e_*o;:o (4.20)

1 o0
+———///-c /i,e"‘fAth,(Sd,
,—-27r_oo Oc)] 1[7 1 (2 )123 12

where 5123 = 6(/‘61 + Ko — K/).
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Inverting relationships (4.18)-(4.20), we can find «a(k,t), 8(x,t), and v(k,?) in
terms of qfﬁ}(ﬁ;, t), 537, and q@:

Tk, t)elA — §(k, )
ol t) = 5 R (AIA) (421)

/\

|K1]0123 o [emm (55“(&1’ t) cosh(|k1|A) — (m,t))

1
_\/ZT‘_ZO _4 2 sinh (x| A) sinh

s (g, 1) — (JﬁT(nl,t) — (1, 0) cosh([/ﬁ}A)> fTB(Hz,t)] dis,

_ ;ﬁ(/ﬁ t)eIxA — QOT[(’% t) |K1]0123
Blet) = ——— Gmmn) \/5‘7;/ / Ssmh(alA) snb(e]a) 22
X [e"[’”’“'A (qu}(/{l, t) cosh(|k1]|A) — q%’(m, ) T(ko, t)
_ (gﬁ(m,t) & (k1,1 )cosh(}nﬂA)) lﬁ(ng,t)} dia,
’}/(K,t)e_‘nlA — g(/{ t \/12—7(— / |KJ1|¢ /{1, (Klg, )5123d12 (423)

The boundary conditions (4.8)-(4.12) require the knowledge of Q%—Zf(a:, hTB(z,t),1)

(i.e., the Fourier transform of the derivative, not the derivative of the transform),

aé/T’\I’B T
(z,t), and ¢ (z, 1):

ox
~5—(:c, RT (z,1),t) = |k|(a(k, t) — B(k, 1))

mé/n:f (k1,t) + B(xk1, )) T(Kka, t)0123d12,

aqu\T hB —~|&|A [klA
Sy (0 h(@0),1) = Inl(a (.1 B, 1))

+%/ /m(a(m,t) FA 1 By, t)el AV hB (ka, 1) 103d1a,
Qgg(ﬂs,h’g(x,t),t) = |kly(r, t)e 1A

oo
/ K3k, 8)eFIARB (ky, 1) 6123d1,
o
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——(x,t) = ir(alk, t)e "2 4 B(k, t)eH1?)

‘ 1 oo o0 i ) N
+ r—2ﬂ/ /’fl|"31](04("01,t)€ KA _ Bk t)e 12V hB (19, 1) 6193d12,

-0 =00

l
UH
=
I
o~
=
=
E&
=
o
o
=
>

The application of Fourier transform to the boundary conditions (4.8)-(4.12) and
the subsequent use of the relationships above produce a system of five integral equa-

tions presented in appendix B.

Let us apply the method of two-timing (with the slow time 7 given by (4.3)):

BT (1) = (T (i, 7) + 2hE (5, 7)™, (5, 1) = (P (,7) + B (k, T))e ™",

— —~

O (k1) = (07 (k, 7) + 26T (1, 7))e %, Gl (k, 1) = (e (k, 7) + £26L(, 7))e ",

Q@(fﬁ, t) = (65/5?(&, T) + 52@3(&7))644‘)2

where w = w(k).

We start by equating the O(e) terms in (B.1)—(B.5):

&7 (,7) cosh(|x]A) — ¢ (k,7)
sinh(|x|A)

ilw + QA/@)@(/@ T) + | K|
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= &7 (5, 7) — & (, 7) cosh(|]A)
iwh?(k, ) + |K| Snh (A1)

—i(w + QAH)Q%{(K, T)

1&1 &7 (1, 7) cosh(|]A) = $l(k, )
sinh(|k|A)

in($l(k,7) — 6P (k, 7)) — QhP(k,7) = 0,

o (k,7) — ¢l (k, 7) cosh(k]A) 3 _
: sinil(lm[A) _¢F(K’T) =0

+ghl(k,7) = 0,

These equations allow us to express /?{9 , qSlT, gb{ , and qﬁf in terms of f;? and obtain
the dispersion relation (4.4).
Equating the O(g?) terms and using the results for the O(¢) terms to simplify the

expressions, we obtain

ORT - OF (k, 7) cosh(|x|A) — $d(k, 7)
5 —L(k,7) — i(w + QAR (k, T) — |K| Sinh((s]A)
1 o0 o0 .
+E / / iVi (K, K1, Ko)d1gge " @1Twzld = 0
Bl;? . qb Ky T) gg Kk, T) cosh(|x|A)
it . hB _ 2 2
or (’ﬁ T) tw (/{, T) I I 31nh([/<;|A)

1
+__
V2

=

o0 o0
//ZV?(’%/ﬁ,ﬁ2)51236—i(w1+w2’w)td12 = 0,
o0 oxa

997 k] 63 (s, 7) cosh(||A) — Bh(x, )
5, —(k,7) — t{w + QAm)qﬁZ (k,T) —HQ—H— snh([5]0)
— 1 7 F .
+ghf(x,7) + E / / V:a("f,ffl,52)51236_1(w1+w2—w)td12 = 0

R(03(r,7) = 85 (k, 7)) — QRE (,7) = O,
T iy

(%) = 9h(, ) cosh((rIA) _

sinh([x]A) o)

o~
=

1 o0 xo
+——/ /ZVB Ky K1, K2 )0pgge " @1t@z=eltg =
—00 —O0
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where

! —~ —
Vi(k, K1, K2) = S [COSh(!Iﬂ]A)(wl + QAK) AT (K1, 7)Y (Ko, T)

sinh(|x]|A)
—wihP (K, T) WP (K2, 'r)]
kL (r1, TVRT (o, 7) — QU1 BT (s, TV (K2, 7),

K —_— —~
‘/2(:‘43, K1, KJQ) - ’éTIﬁl_[(TLTA—) [(wl -+ QAKQ)h?(K;l, T)hr{(lig, T)

— cosh (|| A)wrhP (1, )P (2, 7)]
—krid (1, TVRE (g, 7) — Q1P (52, )P (k2 7),

1 T 7
Vi(k, K1, ko) = —ililf‘ézﬁbr{(/‘?h 7’)¢P{("527 7)

1
+=

> (@1 + QAR (ws + QAT (51, T)AT (2, 7)

_Q_Ii__ [cosh(l/{,]A)(wl -+ QAKJ)@(KQ: T)];?(KJ?’ T)

ksinh(|k|A)
—m@(mﬁ)@(@ﬁ)] )

P o~ —~
‘/5(/{, K1, 62) = S—H—lﬁ‘l(—]—]/;"—A—)‘ [(wl -+ QAlil)hl{(KZl, T)h?(h‘,g, T)

- COSh(Im]A)wlfﬁ(m, T)ﬁ?(l{,g, 7')]

-}—[/ﬁ:/ﬁ]d}l (k1,7 hl (K2,7) —z'Qm/;?(fcl,T)i;{\g(&g,T).

Upon combining the above five equations and using the dispersion relation (4.4),

we obtain the following (Zakharov) integral equation:

6hT 1 77 —
PG ter) = o= | [ iVl )BT st R )

Xel(w("“) wk1)=w(k2))t 5123d12a

where the function V' is given by

V(k, k1, k) = (=K (=1 4 2217) 4 262218y (w + QAK)
‘/1(,{'7 K, K’Z)

(4.24)

+Q|(QAK — 228 (W — QAK) + w))

K|(QUr|(—1 + e8I} + 2ke2AlxI )
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2Qe”F (w + QAK)
Q|k|(=1 + e2BIl) 4 2ke28l8ly
2kew(w + QAK)
(Qr|(—1 + e28l8l) 4 2ke28l5lw)

Va(k, k1, ko) + 1V3(k, K1, K2) (4.25)

%("% K1, '%2)-

__i,.
I

Substituting

W (k,7) = V2r S0 BE (K, 7)8(k — k)

nm=-—3

into (4.24), we recover the interaction equations:

8h{1 . T \* 1T _—iwios7
Pt = iH (hT5)" hige>, (4.26)
P M iy (7)) R e 4.27
L t (1,1) 1,3 ’ (4.27)
dnT .
P 871;3 = (HR] ] e, (4.28)

where w93 = (w3 — w1 — wq) /e is a “detuning” parameter (obviously, wiss = 0 cor-
responds to resonant interactions); H is the interaction coefficient, which can be

expressed in terms of the structure functions V in the following way:

H(k17k29k3) - V(klv_k27k3) +V(k17k37‘k2)
= V(kay —k1, k) + V (ko kg, — k1) (4.29)
= Vi(ks, k1, ko) + V(ks, ks, k1).

In the course of the stability calculations (section 4.3), (4.29) allowed us to check the
correctness of our results by making sure that all three expressions above yielded the

same answer for H, when V was substituted from (4.25).

4.3 Stability analysis

One possible approach to analyzing the stability is to use the “pump-wave” approxi-
mation. That is, assume that |h],|, [T 5| < |h{,], i.e., the waves with the wavenum-

bers ky and k3 are considered to be infinitesimal in comparison with the wave corre-
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sponding to the wavenumber k;. Then the interaction equations (4.26)-(4.28) become

(to leading order):

oht,
P—= = 0 4.30
1 o7 ’ ( )
ORT . .
Py—t® = iH (h,) hige =, (4.31)
: Ont
e P22 = iHD b, (4.32)

We deduce from (4.30) that h], = const. Differentiating (4.32) with respect to 7 and

substituting for ZA7, from (4.31), we get

Phiy . Ohfy _|HALP
or? 12 or P2P3

T
h1,3'

Hence his ~ €7, where

2
1 w123 <w123) 4H?
PN N (i RO (e I .
2I bl |hi1] \i |hi 4] PPy

A wave is unstable with respect to the infinitesimal perturbations if A has a non-zero

imaginary part, i.e., if

0.

2 92
PP, < 0 and (“’123 ) 4H

<
|hT ] PP;
A normalized dimensionless growth rate -y can be defined as

|Tm |
COkl ’

Y123 =

but a more convenient quantity to consider is

Y123
A

Y123 =
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which is independent of the amplitude th,1 in the resonant case (w23 = 0), although
no longer a dimensionless parameter. It is immediately obvious that the growth rates

H2
PP

are smaller for the near-resonant interactions, provided that the quantity h?, =

does not increase (we introduced the symbol h.. in order to emphasize that the
quantity in question is proportional to the inverse of the critical amplitude, at which
the instability first appears). Thus, we need to investigate h, for both the resonant
and near-resonant cases.

Let “f” (“forward mode”) denote the co-flowing wave, “b” (“backward mode”)

denote the counter-flowing wave, and “i”

denote the third root, which lies between
the other two. Using this notation we can write, for example, f-b-b, which would
mean an interaction between a forward mode (k;) and two backward modes (k, and
k3).

All the graphs in this section were obtained by fixing k; = 1 and letting A and Q
vary, so that the whole region of instability in fig. 2.4 (0 < Ak; < 3,0 < V/¢ < 10)
could be covered. The values of ky and k3 were limited so that 0.1 < %, % < 10.

Figs. 4.1-4.7 below show the regions of instability in the “pump-wave” approx-
imation. Circles represent the region of instability due to the resonant (w3 = 0)
three-wave interactions. The radius of the circles is proportional to the growth rate
123 = her. Thus, circles of larger radius correspond to more unstable regions. These
regions may also appear as darker areas in the plots.

It is interesting to note that more than one resonant triad can exist for given
values of 2, A, and k; = 1. If this is the case, the interactions with shorter waves
(k2, k3 > k1) result in the growth rates that can be several orders of magnitude larger
than the growth rates in the case of approximately equal wavenumbers (k; or k3 = k).
This fact is illustrated especially well in fig. 4.2. The area with large circles is the one
where the long and the short waves interact with each other. Due to the cut-off that
we introduced (ks/k; < 10), the nearby points correspond to the long-long three-
wave interactions and therefore result in much smaller growth rates (represented by

smaller circles). Thus, the energy can be transferred very efficiently between the long

(counter-flowing, in this particular case) finite amplitude waves and the infinitesimal
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Figure 4.1: Growth rates for the b-b-b interactions. Solid lines, linear growth rates;
CiI‘ClGS, ’/)\/123. Wioz = 0.

v/, 6 8 10

Figure 4.2: Growth rates for the b-i-b interactions. Solid lines, linear growth rates;
CiI'CleS, ’/\;/123. Wiog = 0.
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VilC,

Figure 4.3: Growth rates for the b-i-i and b-f-i interactions. Solid lines, linear growth
rates; circles, J123. wizs = 0.

VilCo

Figure 4.4: Growth rates for the i-b-b interactions. Solid lines, linear growth rates;
circles, ”)\/123. Wiog = 0.
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KAy |

0 2 4 v, /e,

Figure 4.5: Growth rates for the i-b-i and i-f-i interactions. Solid lines, linear growth
rates; circles, ¥93. wig3 = 0.

0 2 4 v, /e, 6 8 10

Figure 4.6: Growth rates for the i-i-i interactions. Solid lines, linear growth rates;
circles, "/)\/123. Wyog = 0.
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Vil

Figure 4.7: Growth rates for the f-b-i interactions. Solid lines, linear growth rates;
CiI‘ClGS, ’/}\/123. Wi93 — 0.

short wind-generated waves.
Now let us consider the near-resonant interactions with swjye3 = 0.01 and choose
the b-b-b interactions as an example. We still require that the wavenumbers satisfy

the resonant conditions exactly:

ki + ko = ks.

The main question that we have to answer is whether the parameter k. increases.
If it does, the near-resonant interactions can turn out to be more unstable than the
resonant ones. Direct comparison is complicated by the change in the wavenumbers
ko and k3 (ky = 1 is still held fixed), which is associated with the non-zero value
of wya3. In order to make our comparison meaningful, we restrict our attention to
those points in the stability diagram that correspond to less than 10% change in the

wavenumber ko. Fig. 4.8 shows the points where h.. increases. The radius of the
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0 2 4

Vi/C,

Figure 4.8: Critical amplitudes differences between the resonant and near-resonant
b-b-b interactions. Solid lines, linear growth rates; circles, Ah,,. cwiz = 0.01.

circles is proportional to the relative increase of hg,:

hnear—resonant . hresonant
cr cr

Ahcr -

hnear——«resonant
cr

Another possible type of instability is the explosive instability. It is well-known
that under certain conditions amplitudes of the interacting waves can become infinite
in finite time. Any solution of the system (4.5)-(4.7) exhibits this behavior regard-
less of the initial conditions, if the sign of the energy of the wave with the greatest
frequency (in absolute value) is opposite to the sign of the energies of the other two
waves, where the energy of a wave is given by jw;P;|h{ ;|*. For example, if k; corre-
sponds to the wave with the maximum frequency, the following condition should be
satisfied:

Piwi Pows < 0 and Pyw; Pyws < 0. (4.33)

Since the above condition (4.33) does not involve the interaction coefficient H, the

analysis of the regions where the explosive instability is possible can be carried out
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[ bbb =

Figure 4.9: The region of explosive instability, corresponding to the b-b-b interactions.

entirely in the framework of the linear approximation. Specifically, all we need to
know is the linear dispersion relation.

The following resonant interactions were found to result in the explosive instability
(within the restrictions on k; and ks, specified above): b-b-b, b-i-b, b-f-i, i-b-b, i-i-i, f-
b-i. The regions of explosive instability are presented in figs. 4.9-4.12 and are marked

by circles.

4.4 Conclusion

We have demonstrated that the resonant and near-resonant three-wave interactions
lead to a significant expansion of the instability region. Even if the participating waves
were originally stable in the whole physical domain (the f-b-i case), the nonlinear
interaction can lead to the onset of instability. If the instability is of the explosive type,
the amplitudes can become infinite in finite time. It is known, however, that if higher-
order four-wave interactions are taken into account, the amplitudes need not become

infinite. We have also shown that the near-resonant interactions can potentially be
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Figure 4.10: The region of explosive instability, corresponding to the b-i-b and b-f-i
interactions.

0000000000

Figure 4.11: The region of explosive instability, corresponding to the i-b-b and i-i-i
interactions.
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Figure 4.12: The region of explosive instability, corresponding to the f-b-i interactions.

more unstable than the resonant ones, depending on the wave amplitude and the

parameters of the shear.
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Chapter 5 Asymmetric waves

5.1 Introduction

In this chapter we investigate different shapes of steady two-dimensional inviscid
gravity waves with shear in the water. It has been known for a long time that “...the
shape of waves in the open sea can sometimes indicate the presence and direction of
a current” ([13], p. 110). Therefore, we attempt to find free surface profiles which
unlike “regular” waves are not symmetric about any trough or crest.

Solutions of this type were first presented by Zufiria [23], who investigated irrota-
tional deep water gravity waves. He found a symmetry breaking bifurcation for the
waves which were very close to the wave of greatest height. We reproduce this result
in section 5.4.1.

One may expect that the presence of shear introduces a preferred direction and
result in wave profiles with considerable asymmetry at low amplitudes. Indeed, it
is possible to find bifurcations leading to a one-parameter family of low amplitude
non-symmetric solutions. These bifurcations are associated with the existence of a
slowly propagating wave, which is not present in the irrotational case. Unfortunately,
in the absence of a good theoretical understanding or an analytical approach, the

search for asymmetric profiles has to be carried out on a trial-and-error basis.

5.2 Mathematical formulation

As mentioned in the introduction, some of the effects that we are looking for occur
at high wave amplitudes. The Fourier series formulation used in the three previ-
ous chapters fails for sufficiently large amplitudes (see [16]). We therefore adopt a
boundary-integral method ([8]) which enables us to compute steep waves. In order

to make our notation more suitable for use with this new formulation, we replace the
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superscripts 7', B, which we used previously, with the subscripts 1,2 and change the
notation for the interfaces from A7°F to Y12
Let Wi = Wia(z,y) = ¢12(x, y) +ith12(z, y) denote the complex potential of the
irrotational contribution to the flow, so that the total flow in the region with shear
(between the two interfaces y;(x) and ys(x)) is described by the following stream-

function
1 y
Uy (z,y) = —cy + QAy + -Q-Qyz + 1y (z,y) for ya(z) <y < yi(x), (5.1)

and the flow in the irrotational region (below the lower interface yo(z)) is described
by
Ua(z,y) = —cy + (2, y) for — 0o <y < ya(2). (5.2)

Note that the signs of ¢ and €2 are opposite to those used in the previous chapters.

Consider the following mapping of the infinite surface of the fluid:
w=e"" =T = y(z,y).

This mapping transforms two infinite interfaces y; »(z) into two closed contours wy o(x)

(see fig. 5.1), where
wi(7) = w(@,y1(z)), wa(z) = w(z,y2(2)).
Denote
¢1(z) = ¢1(z,41(2)), Yuu(z) = di(z,1(2), Wn(z) =dulz) +wn(z), (5.3)

i.e., ¢11, Y11, and Wi, are the velocity potential, the streamfunction, and the complex

potential evaluated at the free surface. Similarly, for the lower interface we have

b12(z) = d1(2,y2(2)), Yi2(z) = Y1(®, y2(x)), Wia(z) = ¢r12(z) + ith12(x),
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air (Dl

water:
vorticity # 0
Wi(w)

irrotational
region
W ()

Figure 5.1: The two closed contours wi(z) = w(z,y:1(x)) and we(z) = w(z, ya2(x)),

comprising the contour T

¢2é(x) = ¢o(x,y2(2)), Yaa(x) = Po(z, y2(x)), Waa(z) = Poa(x) + ithae(x),

Wap = Wa(zg) = w(Ts, Yulzg)) for a = 1,2,

where x5 is an arbitrary point on either interface.

Since the function W (z) is analytic, we can apply Cauchy’s theorem to the contour

I (see fig. 5.1):
dW1 (w) dw -0
J dw W — Wag

Now we can use the Plemelj formulas to get an integral equation

AW
m—dj—(waﬂ) +(P.V)

dWl dw
w
J dw W — Wag

=0,

(5.4)

(5.5)

where (P.V.) denotes the principal value of an integral. First suppose that wap lies
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on the outer contour, i.e., « = 1. Multiplying both sides by %“;l(xﬁ), we obtain

. dW11 dw

Taking the imaginary part of this expression, we get

dwy 7AWy dz
_d_flf_(wﬁ) ((PV) 0 dr (Z’) wl(a:) __ wl(xﬂ)

T AW, B
e ()H 0 (7

Two additional equations come from placing w,s on the lower interface:

i dény
dx

(zg) +Im

d¢
—W—Cl—f(xﬁ) + Im

2ﬂdW22 dz
72 (z5) + Im [@—(zﬁ) ((P.V.) / =22 (2) WQ(x)_M(xﬂ))} = 0. (5.9)

0

These integral equations have to be combined with the following boundary conditions

applied at the interfaces:

1. The interfaces are streamlines:

dn(@) = ep(z) — QAp(z) — %Qy%(ax), (5.10)
Yi2(z) = cya(z) — QAys(z) — éﬂy%(x), (5.11)

V() = cya(z). (5.12)
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2. The tangential velocity is continuous at the bottom interface:

d¢22($)__ ddra
dr 7 dx

(z) + QA + yo(z)). (5.13)

Note that this condition is equivalent to requiring that the pressure be
continuous across the interface. In fact, it follows from (5.11) and (5.12)
that the tangential derivatives of the streamfunctions ¥, (z, y) and ¥y(z, )
are zero at y = yo(x), i.e., normal velocities are zero at the interface.
Therefore, using the Bernoulli equation, we deduce that the continuity of

tangential velocity implies the continuity of pressure.

3. The pressure is continuous at the free surface (the Bernoulli equation):

1
5q2 + gy1(z) = const, (5.14)

() (*52)]

Let 7 and T denote the unit normal and the unit tangent to the free surface

where

¢ =

y=y1(x)

respectively: , ;
fi = - _£l$,7
<1+(%i—1< >>)< =)
1+ () ) b
Then

¢ =

(52 (5

The normal component of the velocity is zero on the free surface, i.e.,

y=y1(z)

a\lll (l’, y)

ar O
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Therefore,

_Ody 0w\’
2= (5\111(33,;9)>2 _ 0z dx oy

on dyl 2
1+ (d—x')

o, dy, i oY, _ Oy dy %

Or dx oy Ox dz + Jy

o6, dnidn
= oz -+ 9y dx c+ QA+ y)

d
= %—chQ(A—%yl),

Recall that

where all quantities are evaluated on y = y;(z). Using the notation intro-

duced in (5.3), we obtain

d \?
(ﬁﬂ_cmmwn)
9 dz
q = dy 5
1
1+(dx)

Let us choose the constant on the right-hand side of the Bernoulli equation (5.14) to

be equal to (c — QA)?(1 — b) + gy:1(0). It is easy to show that b = 1 corresponds
to the wave of greatest height, while b = 0 corresponds to the case when the wave

amplitude is zero. Consider the Bernoulli equation (5.14) at z = 0:

z=0

First take b = 0. Then the pair y; = 0 and ¢;; = 0 is a solution. Now let b = 1. Then
¢* =0, i.e.,, we have a stagnation point. If we require that this stagnation point be

at the crest of the wave (see (5.16)), then b = 1 will, in fact, correspond to the wave
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of greatest height. So 0 < b < 1 encompasses all possible wave amplitudes, which
makes it convenient to use b as the natural parameter in the continuation process.
Note that all equations are invariant under horizontal translation. Therefore, we
have to impose three additional conditions in order to fix the origin and the depth of

the shear layer:

517? /yl(a:)da: =0, (5.15)
dy1 _
Y 0) =0, (5.16)
% (@)~ @)z = A, (5.17)

0
Condition (5.15) implies that the average elevation of the free surface is zero; condition
(5.16) requires that a crest or a trough of the wave be located at x = 0; and condition
(5.17) fixes the average depth of the shear layer to be equal to A. The above conditions

are not unique. Instead of (5.15) we could have required, for example, that

which would have placed the origin on a crest (or a trough). However, the conditions

chosen are the most convenient for the numerical method being used.

5.3 Numerical method

Suppose we divide the interval [0, 27] into N equal parts so that the grid size h is

equal to 27r/N (N is chosen to be odd). Let us expand y; » in Fourier series:

(N-1) /2
Y12 = ag” + Z * cos(mx) + b-2 sin(ma)).

Since we deal with 2 —periodic functions 9 »(z, y(z)) and y; 2(z), it is natural to

use the trapezoidal rule to evaluate the integrals. First we need to evaluate the
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contribution from the singular point. Note that

L1 (5) L )
@) —an(es) T mows den o)
' T (z5)
dW (x) dw (:IJ ) ,
. dx dz _ aw
wllglﬁ T — T dz? (z)-

Therefore, our integral equations produce 3N nonlinear equations of the following

form:
r 90 e ot | P [ o W
dz " dz? " dz " 1=oer w1(@) — wi(zy) dz :
N dwr (xk)
ap dng ) sz k dW11
— — T =0, (5.18
gwg(xl)—m(m) dz (1) 2@_60_1(“) dx (zx) (5.18)
dx
dors d2¢12 dws 4 ay dWh
12 h—12 2
" dr (z) + dz? (2)) + hlm dzx () l:%?,:k walx)) — wa(xy) dx (.
d2w2
B N (a7] dW11 (:l?l)> _ dx2 (*’Bk) dW12 (flik) -0 (5 19)
o wi(z) —wo(zg) dx Qd—wz(:rk) dz Y
dx
deoy d2¢22 duws N a AW,
X2 h—T22 Im | —2
n dr (ZL'k) dr2 (xk) + hlm dz ($k) lzoz,l:¢k (J)Q(ZE[) — wz(ﬂfk) dx (xl)
2 (1)
. dr? k dW22 .
2@2@) T (zk)| =0, (5.20)
dr \F

where z, =2rk/N, k=1,...,N;ay=1,1=1,... N—1, ap = ay = %
Our unknowns are ¢y, $15 (total 2IV), the Fourier coefficients of y; 5 (total 21V)
and c. Note that the boundary conditions (5.10)—(5.13) allow us to eliminate 1,5,



83

P12, Yoo, and %"1 from consideration. Thus, the total number of unknowns is 4N +1,
so that we need a further N + 1 equations, which come from the Bernoulli equation
(5.14) and condition (5.15). The two remaining conditions (5.16) and (5.17), fixing
the origin and the depth of the shear layer, have to be incorporated with the help
of Lagrange multipliers f;(z), j = 1,2: we multiply (5.16) by fi(z), (5.17) by fa(z)
and add these quantities to all of the equations (5.18)-(5.20). fi, are chosen by
trial-and-error so that the system has the greatest condition number possible.

We start the computation by a choosing a small value of & > 0 and using an
analytically derived linear solution to the system (5.18)-(5.20) with the boundary
conditions (5.14)—(5.17) as an initial approximation in Newton’s method to arrive at
a nonlinear solution. We then continue our solution by increasing b. The continuation
is done using either the natural parameter or arclength continuation method [12],
whichever is more appropriate. We look for a change in sign of the Jacobian of
the system, which indicates non-uniqueness of the solution at the point where the
Jacobian matrix is singular, and then pinpoint the exact location of the bifurcation

point by bisection.

5.4 Results

Any symmetric wave can be represented in the form

(N=1)/2
y1,2:d(1) + Z d,,C cos(k(zx — 9)),

with = 0 being the axis of symmetry. Then

= d,” cos(kd), b = dy”sin(kd).
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Therefore, in order to determine whether a 27-periodic wave is asymmetric, it is

sufficient to check that for some n

1,2 .
tan(nd) # a?_’i’ (5.21)
where
b2
ta,n(5) = 5.
ay’

In practice, a%’z can be zero (for example, we may have a wave of period 7). If

ay” # 0, then

pL2
tan(24) = —%——5

Qg
and .
-1+ (1+ tan2(25))5
tan(ds) = tan(24) ’
so that we can use
b1,2
tan(ndy) # CL?T (5.22)

instead of (5.21). This condition is very easy to check, since

_ tan(dy) +tan((n — 1)d4)
tan(nde) = T T tan((n = 1):51)’

so that recursion can be employed. Of course, (5.22) is meaningful only if al? # 0.

5.4.1 Asymmetric waves in the absence of shear (Zufiria)

It was discovered by Zufiria [23] that there are symmetry breaking bifurcations for
the waves of wavelength 27 /6. Since Zufiria used a formulation significantly different
from the one presented in this chapter, it is important to verify the results from [23].

Because all the interesting irrotational phenomena occur at high amplitudes, a
sufficient resolution must be used. We let N = 551, which corresponds to keeping
approximately 40 Fourier coefficients for the original wave of wavelength 27/6. The

equations were considered to be satisfied if the error was less than 107'2. In all the
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Figure 5.2: Main symmetric irrotational branch P-1, b = 0.87900, ¢ = 0.44255. A:
free surface; B: interface at y = —0.5; C: crests at the free surface; D: troughs at the
free surface. The waves are symmetric with respect to any crest or trough.

calculations the time scale was normalized so that ¢ = 1. Note that apart from
normalizing the gravitational acceleration, we preserve the original dimensions of all
quantities.

In accordance with [23], we denote the principal branch of the solution by P-1.
We follow this branch from b = 0 to the neighborhood of the first bifurcation point
(namely to b = 0.87900). Although in the absence of shear ¢15(2) = ¢g(z) and
the lower interface y,(z) has no physical importance (since the flow is potential in
both regions), we are going to compute both ¢a(x) and y(x). These two quantities
provide a useful check on the accuracy of the code and facilitate the comparison
of the results obtained with and without vorticity. Fig. 5.2 shows corresponding
profiles: graph A represents the free surface; graph B represents the lower interface
at y = —A = —0.5 (this is the same value of A as the one used below in section 5.4.2
for the computation with shear); graph C gives detailed picture of the crests at the

free surface; and graph D shows the troughs at the free surface. After a period tripling
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Figure 5.3: Symmetric irrotational branch P-3, b = 0.88124, ¢ = 0.44251. Symmetry
with respect to the three highest crests (in fig. C) and second and fifth troughs
(counting from left to right in fig. D).

bifurcation, the wavelength becomes equal to 7 (see fig. 5.3). This branch is denoted
by P-3. After another (period doubling) bifurcation, we switch to the branch which is
denoted by P-6 (see fig. 5.4). Finally, we find a symmetry breaking bifurcation. The
asymmetric branch is denoted by P-6a (fig. 5.5). An asymmetric profile far away from
the bifurcation point is presented in fig. 5.6. The bifurcation diagram is presented in
fig. 5.7. The locations of the bifurcation points agree very well with those found by
Zufiria [23].

5.4.2 Asymmetric waves with shear

Let A = 0.5 and consider two different symmetric waves with the wavenumbers
k =ky =2 and k = ky = 15, as an example. In this section we let N = 251, which
corresponds to keeping approximately 60 Fourier coefficients for the original wave of

wavelength 27 /k, and 8 coefficients for the wave of wavelength 27 /k,.
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Figure 5.5: Asymmetric irrotational branch P-6a, b = 0.88246, ¢ = 0.44253.
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Figure 5.7: Bifurcation diagram. P-1, P-3, and P-6 are the symmetric irrotational
branches. P-6a is the asymmetric irrotational branch.
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Figure 5.8: The wave speeds ¢f 3 (solid lines) and c{% ;(dashed lines) as functions of
(2 for infinitesimal waves (linear approximation).

Since the linear dispersion relation has the the form of a cubic equation, each pair
(k,§2) is associated with three possible wave speeds ¢ = cf, k=215 7=123,
namely cf (the co-flowing wave), c& (the counter-flowing wave), and ¢ (a wave which
is propagating very slowly and is absent if Q = 0). The dependence of c;? on {2 in the
linear approximation is plotted in fig. 5.8. We can see that the branches c2 and c}?
intersect near ) = 1.

Moreover, cj increases with amplitude, while ¢}’ decreases, as illustrated in fig. 5.9
(solid lines). Therefore, if we start with Q > 1, these two branches intersect again for
some b > 0. Let us check whether this behavior leads to any interesting bifurcation
phenomena. We choose 2 = 1.0.

Fig. 5.9 shows that there are, in fact, bifurcation points (B;, By and Bs) on both
branches, where the Jacobian has two zero eigenvalues. Therefore, the Jacobian does
not change its sign, which makes it very difficult to detect these bifurcation points.

However, if the step size in the continuation process is small enough, a substantial
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Figure 5.9: Bifurcation diagram for the waves in the presence of shear. Solid line,
“main” branches; dotted line, bifurcated branches.

decrease in the magnitude of the Jacobian can be observed in the neighborhood of
these points.

The bifurcated branches exhibit singular behavior, i.e., the Jacobian does not
become nonsingular as we move away from the bifurcation points. This makes it vir-
tually impossible to obtain any solutions along these branches. Such singular behavior
is due to the fact that each point on the bifurcated branch is itself a bifurcation point.
Therefore, the formulation of the problem has to be adjusted in order to allow further
progress. A solution is provided by adding another auxiliary condition, namely

dy,
—Z(©)=0. (5.23)

This condition fixes the location of the lower interface crest (it is no longer required
that this crest be exactly under the crest of the upper interface, so in general & # 0).
We incorporate (5.23) in the same manner as (5.16) and (5.17) using another Lagrange

multiplier f3(x). The Jacobian becomes nonsingular and we can follow the bifurcated
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Figure 5.10: Main branch k; = 2, near the bifurcation point B;, b = 0.070911. A:
free surface; B: Fourier coefficients a; for the free surface; C: interface at y = —A; D:
Fourier coefficients a? for the interface.

branch using our usual methods. This technique can be also used to facilitate the
pinpointing of the bifurcation points. For this purpose we set £ = 0 while on the
main branch. Then the bifurcation points are characterized by simple eigenvalues,
so that the Jacobian changes sign, which in turn allows us to detect the bifurcation
points very easily.

Let us start with the bifurcation point B;. Near B; the main branch is just a wave
of wavelength 7, as shown in fig. 5.10 (graphs A and B represent the free surface and
its Fourier coefficients, graphs C and D represent the interface at y = —A and its
Fourier coefficients). Note that the amplitude of the lower interface is larger than
the amplitude of the free surface. The bifurcated branch combines the modes close
to k; = 2 and ky = 15, but as long as £ = 0, symmetry is preserved. The profiles to
the left and to the right of the bifurcation point B; are shown in figs. 5.11 and 5.12
respectively. As one can expect, the bifurcated branch eventually joins the solution

branch corresponding to k; = 15. To the right, it first passes through a fold, and
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Figure 5.13: Main branch k; = 15 near the bifurcation point By, b = 0.11450.

then reaches By. To the left, it reaches B;. Note that both branches corresponding
to ko have a 7/ky phase shift between the free surface and the lower interface and
with respect to each other (compare figs. 5.13 and 5.14).

If we now set & # 0 on the bifurcated branch, we obtain non-symmetric wave
profiles. Figs. 5.15, 5.16 and tables 5.1, 5.2 illustrate these profiles for two different
values of £&: € = 219 = 27r—1ﬁ0 and € = z3p = 27T§NQ. The asymmetry manifests itself in
higher modes, associated with ks, i.e., the underlying wave of wavelength 7 remains
symmetric, but the ripples (of wavelength 27 /15) introduce asymmetry. For example,
we can see from table 5.1 that relationship (5.22) indicates asymmetry for n > 7 (only
the modes for which a;, > 10® were taken into account).

This type of bifurcations is not limited to k; = 2, ks = 15, Q@ = 1, and A = 0.5,
and occurs in many other cases as well. However, unless the separation between k;

and ky is large enough, no asymmetric waves are present.
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: Main branch ky = 15 near the bifurcation point Bs, b = —0.21798.

k by/ak b /az tan(kd,) | tan(kd_)
2 | 0.54746 0.54746 0.54746 | 0.54746
4 1.56355 1.56355 1.56355 1.56355
6 | 14.65888 | 14.65888 | 14.65888 | 14.65888
7 | 1.00107 1.00107 | -5.42350 | 0.18438
9 | 3.42634 3.42634 | -1.22848 | 0.81402
11| -4.53733 | -4.53733 | -0.40717 | 2.45597
13 | -1.14519 | -1.14519 | 0.11472 | -8.71675
15 | -0.36739 | -0.36739 | 0.70656 | -1.41530
171 0.14992 0.14992 2.04511 | -0.48897
19| 0.75974 0.75974 | -21.67202 | 0.04614
21 | 2.23811 2.23811 | -1.64206 | 0.60899
23 | -12.36454 | -12.36454 | -0.57642 | 1.73486
24 | 1.35424 1.35223 | -0.27940 | -0.27940
25| -1.52103 | -1.52103 | -0.02201 | 45.44144
26 | 7.35378 7.35432 0.23250 | 0.23250
28 | -2.61117 | -2.61118 | 0.89373 | 0.89373
30 | -0.84943 | -0.84943 | 2.82191 2.82191

Table 5.1: Fourier coefficients for
indicates asymmetry for n > 7. £ = 2y, b = 0.092021.

an asymmetric profile with & = z,5. Test (5.22)
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Figure 5.15: Asymmetric bifurcated branch. £ = x9, b = 0.092021.

k| bi/a} b2 /ad tan(kdy) | tan(kd_)
2 | 14.73065 | 14.73065 | 14.73065 | 14.73065
4 | -0.13640 | -0.13640 | -0.13640 -0.13640
6
9

4.84978 | 4.84978 4.84978 4.84978
6.74821 | 6.74821 0.52109 -1.91904
11 | -0.21827 | -0.21827 | -2.28454 0.43772
13 | 3.44283 | 3.44283 0.35917 -2.78423
15| -0.36555 | -0.36555 | -3.51682 0.28435
17 | 2.24988 | 2.24988 0.21236 -4.70893
19 | -0.52829 | -0.52829 | -7.02130 0.14242
21| 1.61719 | 1.61719 0.07382 | -13.54568
23 | -0.71631 | -0.71631 | -169.23364 | 0.00591
24 | 1.84107 | 1.84107 | -1.05759 | -1.05759
26 | -0.63444 | -0.63444 | 0.82472 0.82472
28 | 1.36251 | 1.36251 | -1.39526 | -1.39526
30 | -0.84387 | -0.84387 | 0.61872 0.61872

Table 5.2: Fourier coefficients for an asymmetric profile with & = z5. Test (5.22)
indicates asymmetry for n > 9. £ = 254, b = 0.092021.
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5.5 Computational aspects

Although the numerical method being used is very efficient, the large number of
Fourier coefficients, which is required to reproduce all the bifurcation phenomena at
high amplitudes, leads to a large size of the Jacobian used in Newton’s method. For
example, N = 551 produces a Jacobian of order 2200 x 2200, i.e., approximately 35
Mb of memory is needed to store one copy. Moreover, computation of most elements
of the Jacobian involves evaluation of an integral, and therefore takes a long time.
However, all elements of the Jacobian can be computed completely independently
of each other. Therefore, parallelization seems to be an attractive option. One can
follow several different strategies, but the cheapest solution is provided by the use of
PVM ([10]), since it allows the use of a local workstation network as a virtual parallel
machine. Besides the opportunity to execute different parts of the code concurrently,
PVM also allows us to use remote computers to store additional copies of the Jacobian

and other data, if required by the algorithms being used.
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We split the Jacobian into several blocks and compute them concurrently on
different computers. The size and the number of the blocks have to be chosen so that
the blocks are small enough to be computed on a standard workstation and provide
uniform load of the participating computers, and at the same time big enough to
make the overhead involved in setting up the parallel machine negligible. In other
words, we have to make sure that the program is scalable. This task is complicated
by the fact that the computers available on a local network are typically very different
with regard to their memory and speed, and the number of computers can change.
Therefore, the “master-and-slave” approach is used, so that the main routine can
monitor the load on various machines across the network and assign appropriate
number of tasks to each of them.

The result is then sent back to the main routine, which performs the LU decompo-
sition of the Jacobian. It is possible to perform LU decomposition concurrently, using
ScaLAPACK. As described in [7], the ScaLAPACK (or Scalable LAPACK) library
includes a subset of LAPACK routines redesigned for distributed memory MIMD par-
allel computers. It is currently written in a Single-Program-Multiple-Data style using
explicit message passing for interprocessor communication. It assumes matrices are
laid out in a two-dimensional block cyclic decomposition. The ScaLAPACK routines
are based on block-partitioned algorithms in order to minimize the frequency of data
movement between different levels of the memory hierarchy (the memory hierarchy
includes the off-processor memory of other processors, in addition to the hierarchy of
registers, cache, and local memory on each processor).

In our computations, however, the above approach to performing LU factorization
provided very little advantage over the conventional method. This was due to a
considerable overhead, both in terms of storage and speed, caused by the exchange
of data between the processes. Moreover, the number of computers necessary for an
efficient implementation of the block cyclic decomposition was at least nine, which

proved to be hard to achieve.
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5.6 Final remarks

We have shown the existence of a new type of steady finite-amplitude non-symmetric
gravity waves with shear in the water. These waves appear as a result of a “merger”
between two waves with different wavenumbers, and a phase shift between them. One
of the questions that remains to be answered is why such a shift becomes possible. It
would be also interesting to explore the phenomena for a range of wavenumbers, as
well as different 2 and A.

Another challenging task is to reproduce the results for a smooth velocity profile,
when the “middle” branch cf is not present. Recall that it was the collision of the

two solution branches, 2 and ¢}°, that resulted in non-symmetric profiles.
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Appendix A Equations arising in the derivation

of the NLS

Denote wy = w + QAE, cgq = ¢ + QA.

e Boundary condition (3.7)

~ Eleb:
k(AT — AT + z‘wdhil = 0;
— E'¢%
. (AT — AD) OhT
—k(Ct -l - zwdhrﬂz +1 185 22 — €y 821 =0;
— E2%¢2:

—2k(Bl — By) — 2k*(AT + A])hT, — ikQ(h],)? — 2iwahl, = 0;
— E'é:

—2k*(BY + By)h1y — k(DY — D) = K*(AT — AD)|Af,
1, - - . -
+§]€3(A1 - AQ)(hl,l)Q - deh1,3 + kQ(Aclr + Ag)hg’z

+ah{ 1, 0T =) Oy
or EY: 997 5¢

— kQhT 1hy, = 0.

¢ Boundary condition (3.8)

— Elet:

—ik AP + ekAwhfl = 0;
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- EleZ
. AP 0A, | . AOhT
ikCP — ekAwhEQ + 6{1 — kA B¢ + chem%% = 0;
— E%%:
—ikB — e K? AP hY| + e Pwhl, = 0;
- E'é:

_ 1 -
~2KBPRT, — FAkDE — e KPAT B[ 4 Sed S AP (P )

. 1,1 .
ZeQAk: h§3 eAk k'zAfhg:Q e2Ak eAlc 1

or o€

oCB ohB

A LAk 1 20k Z7771,2
1Ae™"k B¢ Cq B¢

¢ Boundary condition (3.9)

— Blel:
—iwg(A] + AJ) + QAT — A7) + gh¥, = 0;
- Ele:
O(AT + AT
~iwg(CY +C3) +iQCT = CF) + gh, — cgd_(_La‘g__Q ~ 0
— E?%e?:
—2k* AT AT — 2iwy(BY + BY) + (BT — BY)
—ikwy(AT — AJ)h] ;| + ghy, = 0;
— E1€3:

4k*(BY A{ + By A7) — dikwy(BT — BI)hY| — iwy(DT + DT)
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+iQ(D] — D) + 4k*(|AT | — |ATP)RT — ikPwa(AT + AD)|RT |
—szQ(AlT - /lg)lhill2 + iszwd(Arf + Ag)(h{l)‘
1 -
5K QUAT — AD)(RL,)? + ghT,

O(AT +43) . 9(Cf +CF)

o7 “TT e =0

+ikwy(AT + A7 )hY, +

¢ Boundary condition (3.12)

— Elel:
wA] — QAT + e*2 AT (w + Q) — wAP = 0;
— Ele2:
OAT 8AT
T _o2kA T 1
i(—w+ QO] — (w+Q)C;5 — gag + Aw Fa
oAT 2ka OAT oka, OA7
““QA‘a‘g—“‘Cge —é—é—*‘Aﬁ w 85
8A 8AB 8AB
_ 2kA _ —_ 0
QA@ aé- + CI + gag A “‘—__'ag O,
— FE2?e2

2ie” 2 k? AT AT — 2wBT + QBT — 2¢%2u BT — e*2QBT

—* Y kwAT by + ¥ kwAThy  + +2wBP + P RwAPRE, = 0,
- E'é:

4k*BT A{ +4e*2k?* BT AT — die**kw(BF — BT e* )R,
—4k*BP A7 — ie** 2w (D + e*2 DY) + ie?*2Q(DT — ¢2*2 DI
42K ([AT[ = e AT )R, — i A2 (AT + 2 A7) |nE [
_ie2kAk2Q(A§F 2kAAT lh { %ze%AkQQ(A{ _ eZkAA%‘)(hEI)Q

1 _ _ - _
+5ie k(AT + AT (hE))” + e hw (AT hE, — 24 AT)hE,
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O(AT + eZkAAT) 66’ BC’T
. 2kA i 2/ . %%kA %A
+e 5, cge 85 — Ae 2 — 3¢
ocT ocrt 6CT 0?2 AT
NS 4kA 2 4kA 2kA
—cge" T ——— — Ae"Pw—= — Ae*"PQ—= cgAe
3 o€ o0& oer
1 AZ 2kA 8 AT 1 2 2kA a AT ic. A\ LIIcAa Ag
+22 w8£2 2A 9852 +icgAe —852
+22A2e4 W 6/5 A2 wAQ 2 852 + die® kaBh{B1

+ie*2wDE — 4ekAk3Af‘Af hey + i€ 2w APRE hE,

’%ie%Aka/_llB(hﬁf _ ierAkwAfh£2 _ e2kA?§Tf i chQkA%qg
+A62ng§—§ — A8y 6;;_13 + ic,Ae?FA 6;?2{3
—liAQerAwQ(;{—; -
e Boundary condition (3.13)
— Eleh:
—Al e A + AT =0
— EleZ:
~kCT + 85T + 3;? 8;? PIRITN 652

”iAe%Aka;Z kCP — 8;; 8545 ~ 0

— E?¢:

~2B{ +2¢"A B — 262k ATRY, — 2B AT R, — ie?*2Qn? |

+2B + 2" kAPRE, = 0,
— E'e3:

—4k*B h{| — 4" *k*B] hP| — 2¢F2k DT + 2632k DT
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2 _
24 KPAT [P, |+ 2e™ 2 K2 ATRE BP)

+RARBAT (hB))2 — AR AT (RE,)? + 2¢HK2 AT R,

T T

+2e* 2K AT, — 2ie™ A KQRY hY, + 2ie ,cAagf — 2iAe ’“Akaacé
oCT oCcT *AT 02 AT
—2ie3RATE2 _ 9iAGBRALT Y2 g A kA A2gkA 1

e _*—85 iAe B¢ 852 + A%e k8§2
—2Ae 3’“A58? — A%e 3’“%88? +4k* B hT, + 264 kD
26kAk3AB ’hB IQ - ekAkBA"B(hB )2 - 2ekAk2ABhB - QinA ac{?
1 1,1 1 1,1 17922 65
B 2 B

+2z‘Ae’“Angl— + 2Ae NG — AZe ’“%a A4

o¢ Bf 0¢?
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Appendix B Integral equations describing the

three-wave interactions

Applying Fourier transfrom to the boundary conditions (4.8)-(4.12), we obtain:

ORT o7 (k1) cosh(|k|A) — ¢ (x, 1)

5 — (&, t) — |& ! sinh([5]2) — 1 QAKAT (K, 1)

1 |k
sy / / <sinh([/f]A) sinh([r1|A)
y [cosh([/flA) ((]‘ﬁ’(m, ) cosh([1|A) — ¢ (r, ¢ )) I (g, 1)
- (gﬁ“(m, £) — & (k1, 1) cosh([fﬁ[A)) hB(K;Q,t)] — k1T (1, )T (e, 1)
—-ilef/ﬁ’(h:l, t)fﬁ"(@, t)) O123dip = 0,

(B.1)

8hB(H 0 —In lqu(ﬁ, £) — &1 (k, t) cosh(|x]A)
ot sinh(|x|A)

1 |k |
+E_Zo _[o (sinh([n[A)sinh(]m]A)
< | (87 ety cosh(mald) = & 0, 1)) 7 e 1

/\

— cosh(|x|A) (ﬁ(m,t) — )cosh(lm[A)) hAB(@,t)}
-K&lg(m)f;}}(/ﬂg) - ilehB(m)hB(ng)) d123dis = 0,
(B.2)

anT k,t) cosh(|k|A) — @l (k, 1)

sinh([+]2) 9h* (1)

\/15%-[0 4( /‘d1"52¢ K1,1) ('fz,)

+1[/i o 'éT(m,t) cosh(|s;]|A) — ¢I(K17t) ¢T(/@2,t) cosh ko A — ¢) (Ko, t)
o sinh(x:|A) sinh ko A

- (5t = iI0ART (k, 1) + Qlffl &
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|kk] , Vi

ksinh(|x|A) Sinh(lfﬁ]ﬁl) !COSh([,iA)< (k1,t) cosh(|ki|A) — & (K1, 13))
BT (g, 1) — <<;°5T(/<;1,t) — ¢! (K1, 1) cosh([m[A)) f/L\B(lfz,t)D O123d1a = 0,
(B.3)

in( — GF) — QR (k, 1)

1 % & (k1,1) — ¢ (k1, t) cosh([mi|A) =3
277_/ [o]/ﬁlhlz( sinh(|x1|A) —¢ (m’t))

oo

Xﬁ\("@: t)0123d12 = 0,
(B.4)

] <¢ (k, 1) ‘—siih((T/;t[ZX c)osh([n]A) P t))

7= ] I (snmy sy (7 60 comiioala) = i )

ST (K, )—cosh(]m[A)( 5 (k1) — & (kn, 1) cosh(mm))ﬁ(@,t)}

—

— |kt | BB (1, O)RE (g, 1) — K2 (1, £) — QEB(m,t))ﬁB(@)) Sipsdiy = 0.
(B.5)
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