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Abgtract

Results are derived on rational solutions to AAT = B, where B is
integral and A need not be square. It 1s shown that in general, provi-
ded a rational solution exists, one can be found in which ell denomins-
tors are a power of twd. More general restrictions follow from the
corresponding restrictions possible on rationel lattices representing
integral positive definite quadratic forms of determinant one. Results
due to Kneser and others are applied to show thet A may be taken as
integral if it has no more than seven columns, half-integral if it hes
no more than sixteen columns.

These results are then applied to three types of matrix comple-
tion problems, integral matrices satisfying AAT = mI, partial Hademard
matrices and pertial incidence matrices of symmetric block designs. It
is found that rational normal completing matrices in which all denom-
instors are powers of two are always posslible in the first two casges
and almost always possible in the final case.

Using & computer approach, the specific problem of showing that
the last seven rows of a partial Hadamsrd metrix or a partial inci-
dence metrix (with suitable parameters) esn always be completed is
tackled and it is shown that this is in fact the case, extending re-
sults by Marshall Hall for no more than four rows. An appendix llsts
the computer tabulation which is the basis of this conclusion.



Introduction
A basic--and difficult--problem in combinatorial theory is the
completion problem: given an initial set of blocks in a block design,

when cen additional blocks be added to form & complete design?

The tack to be taken here is a matrix theoretic one. We will form
a partial incidence metrix X from the blocks originally specified and
complete it, add additional rows of rational elements, to form a nor-
mal square matfix A satisfylng the requislite incidence equation. We
will then attempt to apply retional orthogonal transformations to the
added rows to force the added elements to be integral while still pre-
serving the original incidence equations. A similar procedure is to be
followed to complete a partisl Hadesmard matrix or, more generally, any
(n-r) by n integrel matrix X satisfying X = nI for sultable m.

We begin, in Section 1, by citing results due to Hall, Ryser and
others showing when rational solutlons of the equations to be consi-
dered are possible at all. Tt will be noted that provided such ration-
al solutions exist, completions are possible under very genersl circum-
stances for arbitrary X. '

In Section 2, the major results of this thesis are derived. It is
found that orthogonal transformations may be applied so as to force
-the added elements to have denominators which are powers of two. It is
further shown that the aize of these denominatoras ia dependent on the
number of added rows and in fact, 1f the number of added rows is no
more than seven, the added rows can be made integrel, if no more than
gsixteen, half-integral.

In Bection 3, we apply these results to general integral metri-
 ces X satisfying XX? = mL. Some exemples and consequences of these re-
sults are described, along with possible lines of further investiga-
tion.

In Section 4, we specielize to the case of Hadamerd matrices,
aquare n by n matrices with all elements either +1 or -1 and sat-
isfying the equation HH? = nl. The results of Section 2 apply so far
as rational completions are concerned; for (1,-1) completions when no

more then seven rows are to be added, we turn to the computer and



Tind that indeed, such completions are elways possible. A counterexam-
Ple is cited to show that 1t is not always possible to add eight (1,-1)
rOVS .

In Section 5, we examine the case of incidence matrices. X is &
(0,1) matrix satisfying = (k-h)Iv_r + KJv_r- We wish to add r rows
of zeros and ones to form & full incidence matrix A satisfying AAT =
(k-\)I, + AJ - Agein, this is not always possible. Nor are rational
completions in which all denominators are a power of two, since an ad-
ditional restriction must be placed on the orthogonal transformetion
involved to preserve the normality of A. Cases in which thig can occur
are shown to be highly restricted, however. In the case where no more
 than seven rows (blocks) are to he added, we are able to show by re-
course to the computer results of Section 4 that completions to full
ineidence matrices are always possible, '

An appendix contains a computer generated list of forms and re-
presenting matrices used to show that six fow completions of
Hademerd and incidence matrices are always possible.

We note that the seven row completion results are extensions of
similar results by Marshall Hall, who earlier proved that two row com-
pletions of integral metrices satisfying XX° = mI, four row completions
of partial incidence matrices and four row completions of partisl in-
cidence matrices were possible in all cases.

Sections 1, 2 and 5 of this thesls are sdbstantiall& taken from
[1b] and Section 4 is substantially teken from [1a]. Section 3 is an
amelgem of results from both papers, with proofs based on the newer
results of [1b].



1. Existence Conditions for Retional Completions

The basic theorem for rational completiona is the following
theorem from the Hall-Ryser peper [2]:
Theorem 1.1, (Hall, Ryser). Suppose that AT = D, 9‘D2. Here the matrix
A 1s of order n and nonsingular. The matrix D1 is of order r and D2 is
of order s, where r + s = n. Let X be an arbitrary r by n matrix such
that XXT = D1. Then there exists an n by n matrix Z having X as its
first  rows such that ZZ' = D, * D,. This result holds for all fields
of cheracterigtic not 2.

For the purposes of this paper, the fileld in gquestion will he the
rationals and A will satisfy one of the two.equations AAT = ml or AAT
= (k-A)I + AJ (J is the matrix of all ones).

Fxistence conditions for rational solutions to AAT = mI ere de-
seribed by Hell in [3]:
Theorem 1.2. There exists an integral square matrix A of order n such
that AAT = mI if and only if: .

1) For n odd, m is a ﬁerfect square;

ii) For n

iii) For n = 0 (mod 4), m is any positive integer.

The necessary condition for & rationsl solution is in fact sufficient
for an integrel solution.

n

2 (mod 4), m is the sum of two squares;

Existence conditions for rational solutions to the 1n§idence
equation of a symmetric block design are given in [4]:
Theorem 1.3 (Bruck, Ryser, Chowla). Suppose v, k, A satisfy k(k-1) =
A(v-1). Necessary and sufficilent conditions for the existence of e
rational v by v matrix A setisfying AT - (k—l)Iv + AJV are:
' i) For v even, (k-A) is & perfect square;

11i) For v odd, 2 (k-A )x2 + (-1)("”1)/2

integers x, y, z not all zero.

hyg has & solution in

Conditions for rational completiona of approprieste X now follow:
" Theorem 1.4, Suppose m, n, satisfy Theorem 1.2 and X 18 an (n-r) by n
matrix satisfying XXT = mIn“r. Then there exists an n by n rational
matrix A, with X 8s its first (n-r) rovs end satisfying ALl = ul .
Proof: Follows dilrectly from Theorem 1.1. '



For the case of rationsl normal completions of incidence matrices,
we again quote the Hall-Ryser paper [2]:
Theorem 1.5 (Hall, Ryser). Suppose that the metrix B = (k-v)\)Iv + )\Jv
is rationally congruent to the identity (as established by Theorem
1.3). Let X be & (v-r) by v (0,1) metrix satisfying XX = (k-A)L,__
+ AJ and ¥J._ = kJ » Then there is & rational metrix A heving X
v~r v V-T,v 7 T
as its first (v-r) rows and satisfying AA~ = A"A = B, AJ, =JA = kJ_.



2. General Results

In this gection, we will be concerned with the matrix equation
YYT = B, where Y is retional of siZe n by r and B is integral of size
n by n. In our epplications, YT will consist of the r rows added to an
integral (n-r) by n matrix X to form & normal metrix A satisfying AAT
= (k-\)I + \J or al = mI, for suiteble values of the parameters.
Since A is norrel and AAT and X ave hoth integral, so is B.

We will apply rational transformations to Y of the form W = YU,
where U is rational and has determinant one, If U is further stipulated
to be orthogonal, then we note that WWT = ‘IUUTYT = YYT = B, 89 the
metrix equation is preserved. If we now reﬁlace Y by ¥ in A, forming
the matrix A, then K = A"A. If originally AA~ = mI , normelity of
T 1s now assured; if AAT = (k-A)I + AJ, en additional restriction on U
is required. _ '

We would like to be able Lo chooge U so that not only does A sa-
tisfy the same normal metrix equation as A, but so that & is entirely
integral as well. If this can be done, then in the case of incidence
matrices, 1t is possible to show that the new matrix is in fact (0,1)
as required. In the case of Hadamard metrices, it is possible for the
added integral elements to be other than +1 or 41, in feet 1t 1s pos-
sible for there to be an integral completion, but no (1,-1) completion
at all,

In any event, we wlll see that, aslde from small values of r, it
is not always possible to mske W integral. We will show that it is poe
sible to choose anarthogonal transformetion to force all denominstors
of W to be powers of two, the size of which is dependent on r (but note
Theorem 5.1, which indicates that it is not alweys possible to force
the denominators to be powers of two when the additionsl restriction
necessary for a normal incidence matrix completion is imposed).

The maximum size of the exponent of two required for a fixed r
arises from the denominators of rational lattices representing integral
positive definite quadratic forms of determinant one and order r. In
particular, we may teke & zero exponent if r < 7 (i.e., W is integrel)



and one if r < 16 (i.e., W is half-integral). A list of quadratic
forms and matrices representing them is included &t the end of the
section.

Theorem 2.1. ILet Y be a rational n by r metrix where YYT is integral.
Then there is & rational orthogonsl matrix U of order r so thst zeYU
is integral for sufficiently large e, i.e., all denominators of YU are
a power of two. If then W = YU, we have WWT = YYT.

Proof: Choose s = 2% (s odd), the smallest integer so that s Y 1s
integral. Proof by induction on s.

1 =8 Y. Then Y1Y? =0
(mod p ) Choose v1,...,vk, row vectors from Y1 which form & basls of
the Tov space of Y, over Z . The dual of <v1,...,vk) is of rank (r-k),
but vysee.,v, 8re self-dual over Zp. Hence, there are (r-2k) further

k
vectors Vieg12ee0sV

Iet P be an odd prime factor of s and let Y

r-k which together with v1,...,vk form a basis of

the dusl of <v1,,n.,v ). Finally, there are k further vectors v
coesVy, vhich complete & basis of ZP,

r-k+1?

Since Vq2eee5V,, BT€ independent over Zy’ rational represent&tivqs
will be independent over Q. Form the matrix V by taking the rows of V
as the vectors ViseoesVy,e The independence»df the rows of V over ZP
insures that p does not divide det V. We have the following equations:’
2.1) 1) (v ,vJ) = 0 (mod pa) for 1 <1< J<k;

i) (v,v)-o(modp)for1<i<k,k<3<r-k.

Let P = Ik @ pI 2k @ p Ik and consider B = PV, It follows immediately
that p° divides det B, but pr+1 does not. Furthermore, i) and ii) imply
that BEX = 0 (mod p ), as 1s easily verified.

Iet y be a row of Y]' Since Vizee Yy is a basis of the row space

- of Y1 over ZP’ we may write y = ik1$‘a + PYqs where the a, are inte-

171 i
gers and ¥4 1s another integral row vector. Since each Vys 1= 1,,,pgk,
1s a row vector from Y, and Y1Y$ 0 (med p ), we have (y,v ) = E a

2
Cvi,v )+ p (y1,v )=0 (mod p7), J = 1,...,k. But (v 2y )=EO0 (mcd P )

1, = The00,ke Hence (y1,v )= 0 (mod plJ = 1,...,k or y1 is in the
dual of (v1,,..,v ). From this we obtain BYT =0 (mod P )



Iet g # p be & prime dividing det B. There are integers Qyseeny
d,, with gec.d. (d1,++.,d,) = 1 s0 that q divides 1212 d,b,, where the
bi are the rows of B. It is well known that given these conditions,
there is an integral metrix D of determinant one with (d1,...,d ) &s
its first row. Iet By = DB. Then B, Yy = DBY; = 0 (mod p 2 and B1Bf
= DBBTDT 0 (mod p ) The first row of B1 has all entries divisible
by q. Divide out the factor q from the first row and consider the re-
sulting metrix 32' The determinent has been divided by & corresponding
factor, however B,Y: = 0 (mod ) and BBL = O (mod p°) as before.
Continue inductively until the determinent is & power of p. Renaming
the new matrix C, we see that in fact |det C|
tebllished earlier. .

Consider the integral matrix E = p"ECCT. E 1s positive definite
and has detérminant one. Such & form can be represented by a lattice K,
satisfying the condition that I = J1,...,J = K 1a & chain of lasttices
on Q with J,.q 8ddacent to Jy» I denoting the identity lattice {51.

" Thia means that there i1s a rational matrix F so that FFT =F and 81l

denominators of the entries of F are powers of two. Then FE EE™'F =
I and if C1 = 1F’TE C, Cy is orthogonal and 2° pC1 is integral for
b suffic1ently large. Now we know that 2 C1Y1 is integral and in fact
2° C1Y1 = 0 (mod p), given the pro?ert;es we have established for C.

So consider Y, = YC, = 27%g ¥,Cy+ Then o8 1Yé is integral
where 8y = s/p < s. Inductively, we may apply further orthogonsl
transformations 02,...,Cu until s = 1. Taking U = C$..»Ci, ve see
that U is orthogonal and 2°YU is integral for e sufficiently large.
Theorem 2.2, Iet Y be & rational n by r matrix where YYT is integral.
Then there is e rational matrix Z with det Z = 1, ZZ° integral and
 ZY" integral. '

Proof: By Theorem 2.1, we may choose a rational orthogonal U so that
EeUTYT is integral for e sufficiently large. In fact, choose & minimal
e satisfying this condition and let Y1 = 2eYU. Evidently, YTff =0

(mod he). We now choose & basis of the integral lattice generated by

pr, by what was es-



the rows of Y1 as follows:

2.2} B = { D=V seee,d =V b =RV seee,D =2V e,
| 1 I e L Y ky K,

e~1 e-1 e
b =2 V. ’aoo,b ='2 V. ’b ==2V ’D!O}
kg 1+ kg1t ke kg k1T k#1777

vwhere the v, are all nonzero (mod 2) and independent over Z,. Since
Y, 1T =2 0 (mod Le), the ssme holds for the inner product of any two
b, end it follows from this that (v V5 )= 0 (mod 4), 1, = Tyeeesk o
The dual of { Vyseees Ve ) over Z, is of renk (r-k,) and contains
1,...,vk - We may choose additionel vectors Vie 412297y ke to com~
plete the “ausl of ¢ ViseensVie ) over Z,. By adding suitaeble even mul-
~ tiples of vectors annihilating each of the Vys i= 1,...,k s except
- for a specified v, 5 it can be seen that we may in fact stipulate that
representative y. be chosen so that (vi,yj) =0 (mod 2%), 1 = 1,...,
L g =k +1,...,r-k . Then if we set 2, = o® vy 1= k +1, R k ’
it follows that (bi,zj) 0 (mod 4%), 1 = 1,000k, J =k +1,...r—k .
Continue now in a similar fashion to obtain Yy e 1277y Y -Ke -1
completing the dual of ( VysreesV ) which already contains
v1,...,vké and yke+1""’yr~ké' Representatives g??uld be chosen in
such & fashion so that in fact (vi,y.) =0 (mod 27 '), for 1 = 1,...,
J ' +1
ke 17 Jj=r-k +1,...,r—k -1 Then if we again set z, = ot Yy0 i=
r-k +1,...,r~k _1» We have (bi,z ) = 0 (mod 4°) for 1 = LFRRRY PP
J=r1r-k +1,..,,r-ke_1 1mmediately. In the remeining cases, for i =
ke-1+1""’ke’ we need only write (bi’zj) = (2§vi,2e+1yj) = 0 (mod 4°).
Eventually, we determine yke+1,,.,,y and the corresponding
Zk 1,«9:,2- L FOI'm a m&tl‘ix Z1’ With rOWS b1,eoo,‘b k +1,...,Z . The
inner products (zi,z ), 1, =k ot1seee,T ave all zero (mod 4¥) as each
zy has been multiplied by a factor of at least 2%, This plus what was
previously shown gives that Z1Z1 0 (mod 4°).
We note that the way bi""’bk were chosen shows that they form

8 basis of the row space of Y1, modulo 2%, Each zJ annthilates each bi



1=1,...,k, modulo 4. Since each 2 has been multiplied by a factor
of &t least 2° and the seme holds true for the remaining bke+1""’tﬁf
where m is the rank of Y, over the rationals, it follows that in fact
(bys2,) = O (moa 4%), 1 = 1,..0,m, 3 =k +15000,7. Thus 2 Y =0
'(modulo 4%,

Consider finally det Z4- Since v1€...,vke,yke+1,,..,yf are inde-

171

pendent over Z2, we need only count the powers of two factored into
the rows of Z1 to determine the largest power of two dividing det Z .

We have that vi,...,vk1 have been multiplied by 20 - 1, Y k1+1,.,.,y

have been multiplied by 22e. The total contribution from these 2k1 rows

€ o
is (4 ) o Likewise, k1+1”°"vk2 and ¥y r-kp WPLIET A contribute 2

and 22e respectively, for a total from these 2(k -k, ) rows of

(& )k2 "k, Continuing onwerd, it can be seen that the contribution of
1,»..,vke and y,, rkgt 4170 00Y, 18 (he)ke The remaining vectors yke+1’

TP ke are all multiplied by & factor of 2%, Hence the largest power

of two dividing det Z, is 18 )re (2° )r”ake =
Now we proceed as in the proof of Theorem 2.1, multiplying by uni-
modular matrices on the left and dividing by odd prime factors until

we obtain a matrix Z, with [det Z,| = 2%F and the other properties

preserved; Z, g O (mod 4° )y Z,, YT 0 (mod 4%). If we set Z, = 277

laet. 2] =1, z3z3 is integral and z xf is integral with z3y§ =0
(modulo 2° ). Finally, set Z = +Z UT, 8ign chosen so that det Z = 1.

Then 77" = Z3UTUZ3 z3z§, which 1 integral, ZY' = 47 UT(E ~uy;)

= +27% YT which 1s algo integral.

29

It follows easlly from this that a representative rational W mey
be chosen, satisfying WW YYT and with the denominators of W no lar-
ger than those of a lattice representing the form ZZ s 88 derived
above.

Theorem 2.3, Suppose there is a rational n by r matrix Y satisfying
YYT = B, where B 18 integral. Then there is such & Y with denominators
dividing s, where s is the least common denominstor of the entries of

& rational metrix L representing the form ZZ., ss determined in
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Theorem 2.2, up to integral equivalence.
Proof: By Theorem 2.2, we may choose a rational Z so that det 7 = 1,

Zﬁr = FE ig integral and ZYT is integral. Suppose I represents the form

M?EM =F, where M is unimodular. Then LﬁT = F and L?F“1L = I . Since
F and F"1 are symmetric, integral and unimodular, we may write
LT 1FF 1L = (F L) F(F L) = I_. Substituting for F, we find that
(MF L) E(MF L) I and finally, substituting for E, we have

(z MF~ L) (z MF L) = I, Evidently, we have that Z'vr" 'L 18 ortho-
gonal. Since F 1, M? and ZYT are all integral, so is F M?ZYT Thus

WT = L F M ZYT has denominators dividing 85 the l.c.m. of the deno-

minators of L. But WW' = YUU'Y' = YY', where U = Z'MF™ 'L is orthogonal.

Since the form ZZT of Theorem 2.2 is always integral, positive
- @efinite and of determinant ome, it follows that properties of repre-
sentatiors W above carry over from the the corresponding properties
of these particular forms. B

Using Kneser's results of [6], we may for exsmple state the fol-
lowing as corollaries:
Corollary 2.4, Suppose there is a rational n by r matrix Y satisfying

YfT B, where B is integral snd r < 7. Then there is an integral n by

r matrix W so that WWT B.

Proof: Theorem 2.3, noting that any integral positive definite form of
determinant one and order less than or equsl to seven is integrally
equivalent to the identity, thus allowing us to take s = 1.

Corollary 2.5. Suppose there is a ratioﬁal n by r matrix Y satisfying
W o= B, where B 1s integral and r < 16. Then there is & half-integral
matrix W (1.e., 2W is integral) so that Wi = B.

Proof: Kneser lists the indecomposable forms of order 16 or less as
11, KS, K12, MTh’ M15, K16 end L16,8' It suffices by Theorem 2.3 to
find a half~-integral lattlce representing each of these forms, as any
other integral positive definite form of determinant one is equivalent

to a direct sum of coples of these.
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Kneser in fact glves half-integral representations for Kgs Kyp9
K16 and L16 8 explicitly and it is not diffilcult to find such repre-
b

sentations for M1h and M._ as well.

As a curious byprod&it of this decomposition, it also follows
that in the cases r = 9, 10, 11, 13, we may in fact stipulate that
1, 2, 3 or 1 of the columns of W may be taken as integral, respec-
tively. This is because a form ¢f one of these orders must have I1,

12, 13 or I1 as & direct summand, respectively.

We list the indecompossble forms and their associated latiice
bases (in matrix form) below (zero entries are left blank for clarity:

—

K0 [0 1 lottice: |4 % & F & oo &
11 k2 . o)
221 1 -1
121 . | -1
1. 1 -1
L . -1
B 12 i -t
121
121
121
121
122
27 1
1 14 4
k21
121
121
121
121
! 12
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- 3+ Orthogonal Completions

As the first application of the results of Section 2, we will
concern ourselves with orthogonal completions, i.e., suppose we have
an integral (n-r) by n matrix X satisfying XXT = mIn-r' Theorem 1.4
shows that a rationsl matrix A of order n with X as its first (n-r)
rows may be chosen so that AAT = mIna What restrictions can be placed
on the added rows? ’

We will write

X

T

where Y is rational and of size n by r. We note that since YYT

A=

A A - X X and the latter quantities are integral, so is the matrix
YYT. All results of Section 2 now apply and any replacement of Y by a
metrix W sabtisfying WWT = YYT will preserve the matrix equation AAT =
_ ATA = mI . Je obtain immediately that W may be taken so that all de-

| nominators are a power of two always, with suitable restrctions on

the gize of the exponent depending on r.

' In particular, it is interesting to note that for n < 8, if we
take X as a single row, with the sum of the squares of the elements of
X a suitable m satisfying Theorem 1.2, then (n-1) additional integral
rovs may always be added so that the resultant matrix A satisfies AA
mIn- To be even more specific in tge cage n 2 = 3, Zhis means that if
integers x, y, z are glven so that x~ + y + 2z = m , then there are
,two independent solutions Xys V39 %45 1 =1, 2 to the Diophantine

2 2 2
equations XKy +Yyy ot 22, = 0, Xy vy, vtz =0,

n

For n = 10, if we take X as a row of ones (m = n = 10), it is ea=
sy to verify thet any start of rows can always be completed, following
from the fact that all possible second rows allow s thifd to be added,
leaving seven, These matrices X are used in the construction of so-
called Type II solutions to the incidence equation for a projective
Plane of order 10. That conjecture by Mexshall Hall, later verified on
the computer by Arthur Rubin, led to Hall's original investigations
of integral completions and later to the work described here.
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Theorem 3.1. Suppose X is an integral (n-r) by n matrix satisfying
xt = mI__, vhere m, n satisfy the hypotheses of Theorem 1.2. Then
there is an n by n matrix A, with X as its first (n-r) rows, satis-~
fying AAT = mT and with 2°A integral for sufficiently large e.
Proof: By Theorem 1.1, X has a rational completion

X

s
T

=mle A is vnecessarily normal, hence since X'X is integral,

3.1) A, =

where A AI];

o) T T _

so 1s YYT = AOAO - X"X. Theorem 2.1 applies and we may choose W so that
2%y is integral for e sufficiently large and WWT = YYI.

But then

WT
T

satisfies ATA = ml = AA” and we are done.

3.2) A = .

As a cordllary, we have immedlately that integral completions of
X as in Theorem 3.1 are possible whn r i Te
Corollary 3.2. Suppose X is as in Theorem 3.1 and r < T. Then X has an
integral completion to a matrix A satisfying AT = nI.
Proof: Corollary 2.4 and the same argument used in the proof of
Theorem 3.1.

Marshall Hall proved in [3] the same result for r < 2.

That r < 7 .is best possible may be seen by teking n =9, m= 9,
r = 8 and letting
33) x={1 1111111 1] |
We have (319)(319)T = 91, and yet there are no integral row vectors of
length 9 which are both orthogonal to X and have sum squares of the
entries equal to 9. This fo;l,lcws from the fact that there are no such
solutions mod 2. A

There is however a half-integral solution:
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2 -1 -1 -1 -1 -k
1-2-2-2-2 L4

N0 OO N e

~io
i

<

3.k4)

It seems quite likely that somewhat stronger results may be pos-

sible. We consider for instance completions of

3.5) x=1[1

2 2 2 2]

1

1

A helf integral completion is the following:

4.%/5/51.-1-1111111!1
!

Tt can be verified that no orthogonal tranformation with ell denomin-

ators a power of two can be applies to the lower twelve rows from the

left and produce any further integral rows. Yet X does have an inte-

gral completion:

514000001134%
N 00000~ —aqma
N=-=-000O0O0—r—AN™

NOWN™ e —OO0ONNN

132000009.._0_1_.1..1.1
oYYy OO
e GO OO
| 2 [ 200 T 2N I
= g e === O O QO
toe ot Tt o1t
e e = O OO
| 2 S N | SN SR B |
et - O 0O
[ DN SR D T | | S S |
e TTTTATSo00
m.lD...D_OOOOOQ-_nJ..M...A.Mn
i
<g
Py
[
.
(s8]

The transformation involved is in fact of denominator 10.



17

4. Hadamard Completions

The problem of completing appropriate (1,-1) matrices to full
Hadamard matrices is probably the most interesting subcase of the pre-
ceding combinatorially. Consider the following example from [3]:

711 1111 1 111 ]
T 1 1 1 1 11 -1 -1-1-1-
11 1-1-1-1 1 1 1-=1=-1-1
1T 1 1-1-1-1-1-1-1 1 1 1
22 0 1-1 0 1-1 00 00
2 0-2-110-1 10 0 0 O
k1) A= 1o2-21-101-1 000 0
0001 0-1-1 012-20
0 00-1 01 1 0~1 2 0-2
0001 0-1-1 010 2-2
000~ 2-1 1-2 1 0 0 O
0 0 0-1-1 2-1-1 2 0 0 0

A satisfies AAT = ATA = 12T. Apparently then, the first four rows do

have an integral completion to a matrix A satisfying AAT = 12T+ But
‘ théy do not have a Hadamard (1,-1) completion. This may be verified by
notihg that the sum of the first four rows is:
b.2) s=41 1 1 0 0 0 0 0 0 0 0O 0]
No vector of 1's and ~1's can be orthogonsl %o such a vector, as 1is
necessary if any (1,-1) rows are to be added.

This example illustrates that an integral completion is not suf-
ficient to guarantee a Hedamerd completion and further that the com-
prletion of the last seven rows of a (1,-1) Hadamard start is the best
that might be expected in general. Hall in [3] was able to show that
if no more then four rows remain, a full Hadamard completion is al-
ways possible. Here, it will be shown that in fact the last seven
rows can be so completed. We will need three lemmas and a largely
compubational theorem.

Lemma .1, Iet X be an (n-r) by n matrix, = 0 (mod 4) with every
entry +1 or -1 and satisfying XY =nl _. Suppose Y is a rational

n=r
completion of X (always possible by Theorems 1.1 and 1.2), i.e.,

X
Y.

satisfies AOA% = nIn. Then the entries of fTY are integers of the same
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perity as r and sbsolute value no larger than r.

Proof: Since AEAO is integral and XTX is integral, then also YTY =
Ar'gAo - XTX is integral. Furthermore, n is even by assumption, so AEL;AO
=0 (mod 2) and since all the entries of X are +1 or =1, XX = (n-r)J
(mod 2). So Y'Y = rJ (mod 2). Since the mein diagonal entries of ala_
are n and the main diagonal entries of X'X are (n-r), the main dia-
gonal entries of YTY are r. Applying the Schwarz inequality to the rows
of YT shows that the sbsolute value of any inner product is no larger
than r.

Lems 4.2, Call B = (by,) = Y'Y, where Y 1s s in Lemma h.1. Then for
arbitrary i,T,j, ;cg bij ;bik = T (mod %).

Proof: Iet x°, ¥y and 2z~ be three colums from X. Then (x,x) = (y,¥)
= (2,2) = (n-r). Let w = x+y+z. Then since x, y, 2z have all odd en-
tries, so does w. Then (w,w) = (n-r) (mod 8) as any odd square is con-
gruent to 1 (mod 8). Then (x,y) + (x,2) + (y,2z) =% [(w,w) - (x,x) ~
(v,¥) - (2,2)] = ~(n-r) = r (mod L), as n = 0 (mod 4). Thus if C =
(cy,) = XX, we heve CyyF Cpp + Cp = ¥ (mod ) for eny 1, §, k.
Hence B = -C (mod 4) satisfies the condition stated.

Lemma 4.3, Suppose that one of the off-diagonal entries of 'Y 18 (r-2)
or -(r-2). Then there is an orthogonsl transformation U so that UY has
& row compbsed entirely of entries +1 or ~i.

Proof: We may suppose that the first and second columns of Y have the
8pecified inner product. If the inner product is negstive, negate one
of the columns, so that we may suppose that the inner product is in
fact (r-2). The same orthogonsl transformation will suffice. Call the
two colums x s yT. Then we have

+ b,
J

v x m r r-2
L.h) W= s W =
Yy " -2 T
T

80 that Wi is nonsingular. Iet D} = WW" . Adding further rows to W,
orthogonal to x and y, it is easy to see that we may obtain & nonsin-
gular vetional T by T metrix W' vith W'(W')’ =D, ® D,, some D,. Now
let
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T eee 1 1 a
)-I-QS) Z=

1

T eoe 1 =1 b
where Z is 2 by r. Then ZZT = D1 = WWT. All the hypotheses of Theorem
1.1 are now satisfied and there is a rational orthogonal U so that
WU = Z and hece UTWT‘ = ZT@ Let Y1 = UTY. Then the first two columns
of Y1 are the rows of Z and Y1Y51[' = UTYYTU = nIr and also UTYXT = Or.
Hence if we take
X
4.6) A.] = ,
1 .
then A1Aq; = nIn ag hefore. Now let zT be any other columm of Y1 and
let s be its last entry. Evidently, (a,z) - (b,z) = 2s. lemma 4.2
evidently still holds if we replace b by its negative and we obtain
4.7) (2;2) - (b,2) - (a,b) =25 - (r-2) = ~r (mod 4)
So s is integral and 2s = 2 (mod 4) or s 1s odd. Evidently the last
row of Y1 consists of n odd integers, the sum of whose squares is n.
This forces all entries of the last row to be +1 or -1 as desired.
We will now deal with the needed computationsl result:
Theorem 4.kt. Suppose Y is & rational r by n metrix with r'< 7, rank Y
= r and !TY = C satisfying the following properties:
i) C is integral and ¢,, = r, all i;
11) ¢ = vJ (mod 2);
iii) iyt ot Sy = -r (mod k), all i, J, k.
Then there is a (1,~1) matrix T of size r by n so that ¥ = C.
Proof: By induction on r. We note that Lemma 4.3 demonstrates that
whenever C, as above, has an off-diagonal element of magnitude (r-2),
we may apply an orthogonal tranformaﬁion to produce & row of 1's and
-1's in Y. Deleting this row to produce & new (r-1) by n metrix Y, ve
see that If C, = YEEY.‘, properties (i) and (ii) are satisfied (for Ty
= (r-1) ) immediately. If %, y, z are all (1,-1), then as in lemma 4.2,
Xy + xz + yz2 = 3 (mod 4); subtracting this from (111) sbove shows that
(111) holds for C, and r, as well. We have thus reduced the problem to

the previous case and we may assume, henceforth, that C has no off-

11
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disgonsl elements of megnitude (r-2).
‘case 1. r=1,2, 3, 4
Iet Y, C be as above. We may assume that C has no elements of mag-
nitude (r-2). (1), (ii) and the Schwarz inequality imply that in fact
all elements of C are in fact r, -r or (r even only) zero.

Ifr = 1, Y is alrveady (1,~1) and we are done.

If r = 2, choose two independent columns. Their inner product
must be zero (= (r-2) ) and we are done.

If r = 3, the inner product of two independent culumns must be
1 or -1 and again we are done.

If r = 4, permute columns so that the first four are independent.
We may assume that inner products between distinct columns are zero.
Apply an orthogonel transformation so that the first four columns are

11 11
4,8) H = } _: "} ::
1-1-1 1

Further columns must have & non-zero inner product with one of these,
we may in fact assume that 1t is b or 4. But then the further column
must be a duplicate (or the negative of one) of one of the first four
columns. So Y is now (1,~1) and we are done.
Cage 2. r = 5,
Iet ¥, C be as above, The entries of C must be 1, -1, 3, -3, 5 or =5.
If any entry is 3 or -3, we may apply an orthogonal transformation to
obtain & row of (1,-1) entries and this then reduces to the case r = 4.
So suppose there are no entries 3, =3 in C. Iet W be the 5 by 5 metrix
consisting of the first five columns of Y (assumed to be independent).
Then F = WWT has all off-diagonal entries +1 or -1. Negate appropriate
rows of W so that the first row and column of F (except for fiq = 5)
consists of all +1 entries., Since -r = 3 (mod 4), (1i1) now implies
that the remaining off-diagonal elements of F are all +1, i.e., F =

hIs + J5' let
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1
1
1‘19) Z = 1
1
1

Then ZZT = F. Apply an orthogonal transformation to Y to obtain Y'

with first five columns ZT. Iet y be another column of Y'., If Zy has
an entry 5 or -5, it must be identical to or a negative of & column of
7', Otherwise all entries ave +1 or ~1. (111) now implies that all en-
tries are identical, so negating if necessary, we may take them all to
be +1. We may solve directly for y and find that

5.10) ¥ = (1/3) 01 1 1 1 -1]

Evidently, y'y = 5/9 #£5, so this case cannot arise. Thus Y is entirely
(1,-1) and we are done.

- Case 3. v = 6. A

Iet Y, C be as above. The entries of C = YTY must come from 0, 2, =2,
b, k, 6, -6, If any entry is 4 or -4, then, as above, we may reduce
~to the previous case., let W’T be the 6 by 6 matrix consisting of the
first six (independent) columns of Y, Then if F = WWT, all off-diegon-
al entries are 0, 2 or -2, At this point & certain amount of hand and
computer calculation is involved. Up to permutetion and negation of
columns of WT, we find 28 possible F satisfying (iii). Of these, 19
feil to have determinant a perfect integral squere (necessary if there
is to be a rational solution W as above). For the remaining nine, (1,-1)
Z satisfying ZZT = I are found in all cases. let y be atother column
of Y and let v = Zy. v must be consistent with (iii). In addition,

yTy = 6 implies (ZRTV)T(Z~1V) = vy =6, Taking these two conditions
into account, it is found that for all admissable v, y = Zm1v is (1,-1)
So Y 18 now (1,~1). Tebles of F, Z, v, y are found in the appendix.
Case e r =7,

let Y, C be as above. The entries in C = YTY must come from 1, -1, 3,
~35 55, =5, T, =7+ If any entry is 5 or ~5, then as sbove, we may reduce
to the previous case. let WT be the 7 by 7 matrix consisting of the

first seven (independent) columns of Y. Then if F = WW-, all off-dia-
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gonal entries are 1, -1, 3 or ~3. A computer 1s used to find s8ll pos-
sibilities for F, up to permutation and negation of the rows of W, sa-
tisfying (iii) and with determinant a perfect integral square. A total
of 167 possibilities are found. In all cases, one or more (1,-1) ma-
trices Z are found so that ZZ' = F.

let y be a further column of Y and suppose that v = Zy. Then as
in the previous case, we must have vTF-1v =r = 7. If any entry in v
is 7 or -7, then y is identical to or a negative of a column of WT.
Iet then Yyoeees¥y be the remaining columns of Y, with no entry of
vy = Zyi equal to 7 or ~7, &ll i. Negating if necessery, we may as-~
4 1s 1 or -3 in 81l cases. (111) shows
that if z is the first column of Z©, then (2,34) + (2,7,) * (y,5¥,)

= 1 {mod 4). But now we have (z,yi) = (z,yj) =1 (mod 4), 211 1, 3.

sume that the first entry of v

Hence we now have (yi,yj) # -1 (mod ), 81l i,J.
(2
Let F be fixed. For each (1,-1) 7 satisfying 72" = F, determine
the subset V, = { v : v compatible with (1i1) and 27 v is (1,-1) }.

Let V1”"’Va be all such distinct subsets. Suppose then an incompat-
ible subset V = { ViseeesVy } of v) individually competible with
(1i1) is found, further satisfying (vi)T "1v3 ( = (yi,yé) Y= -1

(mod %), all i, J. Then clearly such & subset exists with k < a.
Since a is typically rather small, it was possible to use the compu-
ter to check through all such subsets, for all F. It was found that

no such Incompatible subsets exist for any F.

n

Hence a (1,-1) completion is alwsys possible in the r = 7 cese
as well.

Tables of F, Z, v, y exist in unpublished form.

It is now lmmediste that Hedemsrd completions sre possible for
r<T.
Theorem 4.5. Let X be an (n-r) by n matrix, n = 0 (mod 4) with every
entry +1 or ~1 and satisfying XXT = nIn-r' Then if r < 7, there is a
Hadamard matrix of order n with X as its first (n-r) rows.

Proof: By Theorems 1.1 and 1.2, there is & rationel completion Y of X,
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as in (4.3). By Lemmas 4.1 and 4.2, Y setisfies the hypotheses of
Theorem 4.k, Hence, there is an r by n (1,-1) matrix ¥ satisfying
YT = ¥Y. But now

X
4011)A1 = —
Y

T T

: Ty _ - _
satisfies A1A1 = AOAO =nl = .l-\1A1

with X as its first (n-r) rows.
As noted earlier, Hall proved the seme result in [3] for r < L.

o S0 A, is & full Hadamard metrix

1
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5. Symmetric Block Designs

The problem of interest here is the rationsl and, if posssible,
(0,1) completion of a partial incidence matrix of s symmetric block
design.

This is similar to the general representation problem described
in Section 2, but there are additional restrictions. Suppose X is a
(v-r) by v (0,1) matrix satisfying ! = (k»k)Iv__r
k, )\ satisfy the conditions of Theorem 1.3. Then by Theorem 1.%, we
may determine a rational matrix '

-1l

setisfying AAT =aTA =B = (k—K)Iv + )Jv. The theorems of Section 2
. apply to Y and we may determine & rational orthogonal U so that W = YU

+ AJV-T’ where v,

satisfies the various properties indicated. To preserve the normality
of A, we must further stipulate that UTJr = Jr' If A is to be the
incidence matrix of a design, we want additionally that Y be (0,1).
Tn this regard, a theorem of Ryser [11] applies, which states that a
normal integrsl matrix satisfying AAT = B, as sbove, 1ls either the
incidence matrix of & design or the negative of one. Hence it suffices
to force the entries of W to be integral by & transformation which pre-~
serves the normality of A. Here, we will be able to use previous work
on Hadamard matrix completions to show that X may be completed to an
incidence metrix whenever r < 7, extending a result by Hall for r < k.
Theorem 5*3..Suppose that X is a {(v-r) by v (0,1) matrix satisfying
o = (k-K)IV~r + RJv_r, where v, k, A satisfy Theorem 1.3. Then there
exists & rational normal matrix A, with X as its first (v-r) rows and
further satisfying 2%) 15 integral for e sufficiently large, except
possibly when the following conditions hold:

let Xqsere X denote the column sums of X. For some odd prime p,
we must have:

i) p2 divides r;

ii) x; Tk (mod p), 1 = 1,.0e,v.
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Proof: By Theorem 1.5, we may choose a rational Y of size v by r s0
that

X
5.1) A = [T]
Y

m
satisfies AA™ = ATA = B = (k-»'.’\)Iv + )‘Jv' Append a colum of ones, form-
ing the matrix
X 1 1
0 - . T _ . T
"o 1 1

As shown in [2], we must have AJv J. A = kKA and so all inner products

v
between columns of A o must be integral. The same is clearly true for

1]

the columna of X o? 88 the entries are all Integers, so subtracting,
Y YT = ATA - XTX o? We see that the same must be true for columns of
Ytg as well. Y satisfies the hypotheses of Theorem 2.1 and we may de-
termine & rat:.cnal orthogonal U so that all denominators of UTYT are s,
power f 2, Call the first column of YT TYSS Y1+ We note that (y1,y1)
=r, as U is orthogonsl. If we cen apply a series of orthogonal trans-
formations to Yqs S8Y Uf,...,ui, 80 that U'j]é..,Utgul‘y1 = J, & column of
r ones, and so that no odd factors are introduced into the denominators
of Y1 when the same transformations are applied to this matrix, then
if Uo = UU1... 2 Ve see that Uo is orthogonal and Uer = Jr’ as is
necegsary and sufficlent if the completion

X

o= Uy

1s t0 e normal, AZAQ = AZAE = Be

Choose & minimel f so that y, = of ¥, is integral. Then (ye,yz) =
1wy = 0 (mod 4), if £ > 0. It follows that Yo has 4m odd entries, some
m. After permutations and negations (ell orthogonel transformations) »

5‘3) A2 =

we pub Yo in the form
5.4) 501 1 1 1 Lo (med U).
We can now apply the transformation U = H & I, Where
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111

1 -1 -1
-1 1 -1
~1 -1 1

5.5) H=%

e e Y

Then we have
5.6) (@y,)" =10 0 0 0 ...] (mea 2).
In this way, we have reduced the weight (number of odd entries) of Yo

]

by applying an orthogonal transformetion of denominator 2. Continue
until all entries of Y, are even. Then a smaller f will suffice to
meke Efy1 integral. Inductively, we may continue until f = O, or Y1
itself is integral. Suppose ¥y has an even nonzero entry. Then since
¥y is integral and (y1 ,y.l) =T, ¥, has at least three zero entries.
After permutatlon, write

5.7) y? =[2a 0 0 0 ...]

Apply the transformation U described above to obtain

5.8) y%‘=[u W U U eae]

where the entries are still integral and there are fewer zero entries
than before. Tnductively, we may assume that all entries are odd or
zero. Suppose we have two odd entries of differing magnitudes. After
possible negation, take them both positive and write

5.9) yf'—-[v w 0 0 ...]

Again, apply U to obtain

5.10) y1 (v v W cae]

where v© = L(v+w), W = (v-w) and both quantities are imtegral and
nonzero. Again, we have fewer zero entries than before.

Inductively, continue until all entries are either zero or of a
single odd megnitude, call 1t x. After negation, we mey in fact take
5.11)y€$=[x X X eos X 0O +.. 0]

If x = 1, there are no zeros and in fact we have Yy = J and we have
achieved our desired objective. If x > 1, then x° divides r (as (y1 ?yl)
= r) and if p is an odd prime dividing x, p2 divides r. Apply our
composite orthogonal transformation UT to the full matrix YT so that
the first column of UTYT is our newly obtained ylf of (5. 11) and the

rest of the elements have denominators & power of two. Inner products
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of columns have not changed and in fact we have (y1,y:) = (k-xi),

where YI is the i-th column of UEEYT and Xy is the i~th row sum of X.
For large enough g, Egyi is an integral vector, as is
(x"1y1)z(2gy§) = x-12g(k-xi) is integral which, since
(knxi) is integrzl, means that x divides (k-xi) or ¥,

~1y1. Hence
is odd and
k (mod p) for

X
X

il

any odd prime p dividing x.
If no such odd prime p exists, x > 1 is impossible and this com~
pletes the proof.

Counterexamples when conditions (1) and (ii) hold do in fact ex~
ist. . T, Parker has shown in [8] that for an arbitrary prime p and
suitable t > 1, a construction of (p~1) mtuslly orthogonal Iatin
squares of order pt is possible, so that the associated partisl inci-
dence matrix (for a projective plane of order pt) hes no rational

- normal. completion in which p does not divide the denominators of some
elements. This is true even though t may be chosen so that a rational
normal completion does exist by Theorem 1.5. The partial incidence
matrix involved has p?t + pt + 1T rows and all column sums are 1,
(pt+1) or (p+1). Hence p2 divides r = pz(tzvt) and all column.sums
are congruent to k = (pt+1) = 1 (mod p). So both (i) and (ii) are sa-
tisfied, as would be expected.

While it is not always possible to find a rationsl normsl comple-
tion of a partisl incidence matrix with denominators a power of two,
it is possible to find some normal solution to the incldence eguation
with denominators a power of two whenever & rational solution exlsts.
Corollary 5.2. Suppose v, K, A satisfy Theorem 1.3, Then there is &
rational normel metrix A such that AAT = ATA = B = (k-A)T, + AJ, end
2% is integral for suffieiently large e.

Proof: Teke X Bs a single row of k ones and (v~k) zeros in Theorem 5.1
By Theorem 1,5, there is a rational normsl completion. As 0 < k < v,
some column sums are one, others zero and thus are incongruent modulo
any prime p. Condition (ii) of Theorem 5.1 being violated, we are
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therefore assured of & rational normel completion in which all de-

nominators are a power of two.

Finslly, we indicate a connection to completions without essen-
tial denominator, as described in Jones [9], Goldheber [10] and Parker
[al.

Theorem 5.3. Suppose v, k, A, r, X are as in Theorem 5.1 and there is
a rational normal completing matrix A, with X as its first (v-r) rows,
AAT = ATA =B = (k-v?\)Iv + th and the further stipulation that no entry
of A has as a divisor an odd prime p satisfying conditions (i) and (ii)
of Theorem 5.1. Then there is a rational normal completing matrix A so
that 2°% is integral for e sufficiently large.

Proof: Write A as in (5.1) and determine an orthogonal metrix U, by
the process described in Theorem 5.1 so that U'TYT has all denominstors
8 power of two and _ °

5.12) Uij': [xX X ere X O .. O]

where J is &2 colum of r oneé, x is integrsel, positive and odd. let p
ve an odd prime dividing x. We note that in the construction of Uo’ es
outlined in Theorems 2.1 and 5.1, involved are a series of rational
orthogonel transformetions in which the denominators have as prime

- factors only those primes dividing 2s, where s is the l.c.d. of the
entries of Y. Hence, if t is the l.c.d. of the entries of Uo’ our as-
sumption and Theorem 3.7 imply that p does not divide t.

Set.U1 = tUo, 8o that U1 is integral and det Uy = £, Fvidently,
U?j = 0 (mod p), where 3 # O (mod p). But this is impossible unless
p divides det Uq, a contrediction. Hence x = 1 and we are done.

We will now deal with the problem of finding design completions
for r < 7. Hall proves the following theorem in [7].
Theorem 5.4 (Hall). Suppose v, k, A, r, X are as in Theorem 5.1 and
r < k. Then X can be extended to & (0,1) matrix A, with X as its first
(v-r) rows end satisfying AAT = ATA = (K=A)I + A,

The proof involved is a detailed examination of the cases. How-
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ever, with & transformetion of the partial incidence matrix X, it is
possible to use previous work done on Hedsmerd matrices in Section 4 to
obtain the same result for r < 7.

We recall Theorem k.h:

Theorem L.k, Suppose Y is a rational n by r matrix with r <7, rank Y
= r and YYT = C satisfying the following properties:

1) C 1s integral and c,, = r, all i;

i1) ¢ = rJ (med 2);

ii1) Cyq+ Cpp t Co = -pr (mod 4), 811 i, j, k.
Then there is & (1,~1) matrix Y of size n by r so that YI* = C.

We will now tranform the (0,1) matrix X into a (1,-1) metrix X,
setisfying (1), (11) and (iii), thereby allowing us to obtain our re-
sult. _ _

Theorem 5.5. Suppose v, k, A, r, X &are as in Theorem 5.1 and r <7

Then X can be extended to & (0,1) matrix A with X as its first (v-r)

rows and setisfying ant = ATy - (k-}.)Iv + Mv = B.

Proof: By Theorem 1.5, there is a rational normel completion of X,

~i.e., & matrix A of size v by v with X as its first (v-r) rows and

tisfying BA® = A'A = B, Bl = J A = kJ,. |
Write A = 2K -~ J,+ Then AOA¥ l;A—'A'T thv + VI, = v+ b (k~A)

- = T = —"' = Ld = Y
(Iv Jv) AA, AJ, =2AT - vI_ (2% v).:rv JA, . Write

oo Tov v

%o

T

(¢)

ii

5013) Ao =

where X is (v-r) by v end has all entries 1 or -1 and Y isvbyr
and ::'a.‘c:lorua.].e Since X | is (1,-1), X+ o = (v-r) Iy (mod 2) Hence

Y Yi AA, - XX o= vJv - (v-r)7, 2 rJv (mod 2). All main diagonal
entries of AgA sre v, those of ngo (v-r). Hence the mein diagonal
entries of Y Y are v-(v~r) = v. Let Xgs Xy5 Xy be three columns from
X e Iet w = xi+x +xk.. All entrles of w are integral and odd. Hence
(V:V) £ (v-r) (mod 8). Thus (x sxj) + (x ’xk) + (x ’xk) = %( (wyw) -

(rpog) = (o)) = (m) ) = 2l ver) = 30e)) & (or) (moa 1),
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Consequently, if XTX = (x ), we have x, XX ,jk ~(v-2) (mod 4).
The corresponding en*’cr:.es a _k’ g ik from ATI\ are all congruent
to v (mof %). Hence, for y. J, Vigr V5 k from Y YT, we have
5.14) Yis * Vi + Y 5% = 3v-[-(v-r)] = hv~r = ~r (mod 4)
for a1l i, j, k.

Now we append a column of ones to Ao as follows:

X

1 1
Constder C = Y,Y. ALL entries have been shown to sstisfy (1), (1i)
(111) of Theorem 4.4, except for those entries associated with inner
products with the appended column, denoted with the index O. Yo has

renk r since AO is nonsinguler and so Y1 has ravk 1.

29 9 wd

5'15) A" = ,X

1 =

—d $ S Y ad
[0}

Clearly‘,_ C o =T 88 desired. For any i, cy = (2k~v)'- (v~r)
= r (mod 2), as A, = (zk-v)J and X, is (1,~1). We know that for
o1 * Yoy ¥ *yy = (v-r) by the reasoning outlined above.
Further, if 1> j >0, a_, + 803 * = (2k~v) + (Zk-v) + (v-i({k-A))
= ~v (mod b). Hence if 1> J> 0, ¢ oL + Co5 * C4y Z2 v = [~(v-r)] & ~p
(mod 4). Hence 2ll hypothese of Theorem Ut. ll- are satisfied.

Choose Y according to Theorem 4.4, stipulating (after negation of
colums) thet the first row of Y is all ones. Then still T¥* = C. Call
?o the matrix ¥ with the first row deleted and form

X

any i, Jj, X

™ Q
5.16) Al = &
o]
Xy - -
Then A = AT Ay = vJ + h(k.—h)(x -, ) and IAs = (2k-v)Jv. Set A =
-:',,:-(Ao + Jv) 'I'hen BT = (‘l/h)(A ot ry Iy Iy .ET + v ) = (k=A)I, + AT,
‘and KJV = L‘(Aod +vI,) = - Further, A :l.s (0,1) So K is in fact the

incidence matrix of a design conteining the original X.

Hall gave in [7] an example of three lines of an (11, 5, 2) de-
sign with no completion, indicating that r < 7 is best possible.
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2 2 2 2 2 7
2 2 2 2 2
2 2 2 2 2
21 2 T 2 T 2 1
_ 2 -1 2 1 2 1 2 1
5.17) % 1 2 21 1 2 1 2
1 2 1 2 1 -1 2 2
1 2 1 2 1 2 2+
1 2 1 2-1 2 1 2
1 2 1 2 2-1 2 1
1 3 1 2 1 2

The design cannot be completed since then the inner product of the
first two columns would be two, which is impossible.
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Appendix

Forms for Hadamard six row completions

Listed are the 28 forms memtioned in the case r = 6 of Theorem
L.4. Fach form is numbered, followed by its determinant and square
root. Only those cases in which the determinant is & perfect nonzero
integral square need be considered for the purposes of the theorem.
In these cases, admisseble v are listed to the side of the form F.

Following the form are one or more (1,~1) solutions 7T 4o the
equation ZZ° = F. To the right of each Z sre the vectors y = Z"Tv,
corresponding to the v listed by the form. It mey be seen that y is
(1,-1) in all cases.

Note that v for which the inner product with a column of ZT is
L, -4, 6 or -6 need not be considered, aslin the first two cases, the
problem reduces to the case r = 5 and 4n the other two cases y must

be a dupllicate or & negative of a column of ZT.
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