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ABSTRACT

1. The - transient concentration distridbution in the ultracentrifuge
is obtained in the form of a power series expansion in a small parameter by
g perturbation treatment of the appropriate differential egustion. The
problem reduces in zero order to that of sedimentatiorn 1n a constant
gravitational field.

The theory is used for determining which initial step distrivu-~
tiong lead to the fastest approach.to equilibrium. The saving in time as
compared to the conventional uniform initial distribution is also cal-

culated.

IT. The neglect of a phase shift in the theory of scattering has been
gshown by Schomaker and Glauber to be the reason why electron diffraction
investigations in the past led to distorted structures for certaln molecules
otherwise expected to be symmetricel. Complex scattering amplitudes for
use in calculating theoretical intensity patterns aré now available as a
result of the work of Hoerni and Ibers. In the present investigation we
reinterpret the diffraction photographs of a number of these molecules in
terms of symmetrical structures. The bond lengths in these molecules are
thus determined accurately. In.addition, further confirmation is provided

for the theory.
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A PERTURBATION THEORY OF THE APPROACH TOWARD
SEDIMENTATION EQUILIBRIUM IN THE ULTRACENTRIFUGE AND
AN ANALYSIS OF A PROPOSED FAST METHOD FOR REACHING

EQUILIBRIUM

GENERAL INTRODUCTION (1)

The possibility of obtaining particle mass from a gtudy of
the sedimentation equilibrium set up in the presence of an external
gravitational field has long been recognized. The initlal experiments
in this direction by Perrin (2) and Westgren (3) naturally made use of
the earth's gravitational field as the externmal force acting to produce
a non-uniform equilibrium distributlion of the particles suspended in a
guitable medium. However, the use of gravity for such measurements is
limited to the case where the particles in suspension are sufficiently
massive and dense as to result in an appreciable effect. For the study
of colloidal and lighter particles such as large molecules by the
sedimentation method an external force thousands of times that of gravity
i required. Dumansky (4), as early as 1913, attempted to make use of
centrifugal force for this purpose by rotating the golution in an
ordinary laboratory centrifuge. However, he was unable to obtain satis~-
factory results because of failure on hls part to recognize the im-
portance of taking precautions to avoid convection currents. It re-
mained for Svedberg (5), some ten years later, to examine the experi-
mental situation more carefully. He found that by using a small

sector-shaped sample and taking great care to maintain a constant



temperature he was able to eliminate convection currents and thereby
perform “faultless sedimentation in centrifugal fields 5000 times the
force of gravity." For this new research tool he proposed the name
ultracentrifuge, the connotation being that quantitative sedimentation
experiments could be carried out 1n the instrument. In these first
experiments, in which the technical problems were of primary concern,
the particles investigated were fine-grained gold sols, it being pos-
8ible to use these as test obJects. Having surmounted the chief
practical obstacles, Svedberg (6) now applied the instrument to the
determination of the molecular welght of proteins* and it is In this
realn that the ultracentrifuge has perhaps attained lts greatest

importance.

A. THEORY OF THE APPROACH TOWARD EQUILIBRIUM

1. Introduction

In conJunction with his experimental work, Svedberg (1)
derived (in analogy with the method of Perrin for the case of gravity)
by means of a kinetic as well as a thermodynamic argument, the theo-
retical equation necessary for calculating the molecular weight from

the observed concentratiocn distribution at equilibrium. However, since

*
In fact, it was the ultracentrifuge which first showed that proteins

actually have definite molecular welghts.
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' a réther long time (of the order of days) is usually required before
equilibrium ie sensibly attained, it was desirable to have a theo-
retical understanding of the translent process during which the ini-
tially ﬁniform concentration distribution passes over into the final
distribution. To obtain the concentration as a function of position
for all values of the time, 1t 1s necessary to solve the time-
dependent differential equation which describes the appreach to
equilibrium and involves the phenomenological constants D and S, the
coefficient of diffusion and the sedimentation constant, respectively.
This equation is nothing more than the continuity equation for the
case where there are currents of matter due to diffusion and to sedi-~
mentation and is simply an expresslion of the conservation of matter.
Ever since it was first derlved for the centrifuge by Lamm (8), many
attempts have been made to obtain its solution. Faxen (9) obtained an
approximate solution using eiegant mathematical techniques. However,
the evaluation of the result requires such a large smount of tedious
calculation that it has not been carried out. It is therefore of
interest only from a purely mathematical standpoint. Next to attempt
a solution was Oka. Having shown (10) that the equilibrium result can
be derived from the time-independent differential equation, he then
proceeded to investigate (11) the time~-dependent equatlon by expressing
it in the form of the Sturm-Liouville eigenvalue problem. Although he
was able to carry out the solution in a formal manner, he saw that he
could not cbtain numerical results without the necessity of extremely
lengthy calculations as had been true in the case of Faxen's solution.

He therefore returned to the original eigenvalue equation ané carried



out a pertufbation treatment., This was an excellent ldea. Un-
fortunately, however, he made a very poor cholce for the perturbation
parameter from a physical standpoint in that the application of.his
results is restricted to the case where the experimental conditions

are such that the final concentration distributicn differs but slightly
from wniformity. His solution 1s therefore of little use for describing
vhat takes place during centrifugation under the usual condltions em=-
ployed in such experiments. - Finally, Archibald (12) attacked the prob-
lem obtaining an exact solution éomewhat gsimilar in form to that ob-
tained by Oka but whereas Oka had not attempted to continue on with

the necessary computationé, Archibald carried them out for a specific
representative set of experimental conditlions. However, one must re-
peat these lengthy calculations for any other set of conditions that
might be considered. The solution is thus not in a convenlently usable
form, an essentiaslly numerical solution being required for each appllca~-
tion to a specific case. Under these clrcumstances the solution of
Archibalﬁ is not of much greater value than that which would be ob-
tained by a purely numerical integration of_the differential egquation.
Archibald (13), realizing this situation as well aé the next person,
therefore tried to obtain an approximate solution which would be more
amenable to direct computation. He succeeded in this but because he
made his approximations within the same mathematical framework as he
had used in obtaining the exact solution, his result is not physically
appealing, containing as it does quantities which (because of the
numerous transformations of variables and non-systematic approxima-

tions made throughout the derivation) are only indirectly related to



the clear-cut experimental quantities which enter the problem.

In view of the existing situation as outlined above, a
manageable solution of the ultracentrifuge differential equation is
still ﬁo be sought. Now the corresponding differential equation in
the gravity case has been solved exactly by Mason and Weaver (14), the
solution having & very convenient form both for computation and for
physical interpretation. As has been stated by Beams (15) and
Dr. Pasternak (16), this solution should give approximately valid re-
sults for sedimentation in the ultracentrifuge since the radius of the
latter 1s large compared to the heilght of the sedimenting column, 1i.e.,
the fileld is_relatively uniform over the length of the column and the
effect due to the sector shape 1s smwall. This then forms the basls of
the analysis to be presented here. In order to carry out the approxima-
tion method in a systematic manner, we return to the eigenvalue formula-
tion as used by Oka but put it in such a form that we can choose as the
perturbation parameter a quantity the value of which is a measure of
the deviation of the centrifuge problem from that of the uniform field
cage., Under theée circumstances the zero-order approximation corres-
ponds to the Mason and Weaver solution and the correction terms can be
obtained by the application of standard perturbation theory. We have
carried out the explicit solution and calculations through the first-
order terms although the zero-order approximation turns out to be
amazingly accurate (as showﬁ by calculating results for the same ex-
ample as considered by Archibald in his exact calculation) and gquite

sufficient for the dimensions occurring in the usual apparatus.



2. Mathematical Formulation of the Froblem

Consider a sector-shaped cell with radial sides ‘and bounded
by cylindrical surfaces at the distances y; and V, from an axis of

L

rotation. A cross-section of the cell is shown here.

e e -

A
We take as our frame of reference that which is most appropriate for
the problexﬁ, namely, a system of cylindrical coordinates Y , e ,
and 2 (with unit vectors €, , €, , &, ), collectively denoted by
the vector Yy having as origin some point on the axis of rotation.
If a solution is placed in the cell, the current density _J_ (¢, )
and concentration C(V¥,%) of dissolved substance must at all times,

t » obey the continuity equation

V'Jl = —-_9__9 (1)

which expresses the law of conservation of material: the time rate of
decreaese of material in a volume element 1s equal to the net amount of
materiasl flowing out through its boundaries per unit time. If the

solution is rotated with the constant angular velocity U , the dis-
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solved substance will experience a centrifugal force In the radial direc-
tion. Therefore if the initial concentration distribution is a function

of v alone, 1.e., C(¥,0) :j((r) , then it will remain a function of

Y only for all time. Hence

C(x,t) = c(r,¢) (2)

Now there are two contributions to the current density J' . The first,
_\_j o is that produced by the gradient of concentration and may be
described in the case of an ideal dilute solution with the ald of the

diffusion coefficient, D , by means of the relation

\j = -DVcC :—D‘@—QQ (3)

The second, \_} g ? ig that due to the centrifugal force and may be
expressed (again for an ideal dilute solution) in terms of the
gsedimentation constant, S , which is defined as the sedimentation
speed acquired per unit centrifugal acceleration. Since the centrifugal

force per unit mass is given by

L (ool of petid e o )

— Y =1t

2 (1)

we have for __\{ the velocity acquired

\/ESE :Su_nzY_e_, (5)



so that

(6)
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Thus

Je) =, v, = (0k « swrre)e,

a (7)
= J (v, t)
Since in cylindrical coordinates, the divergence of a vector
_G__ = €, G' + §1G1. + &, G—3 is given by
V'G- = -—]- B(YG,) —,L-_"a_@?- -+ ‘_S_G'z (8)
- Y vy ry 3a 2z
the continulty equation for our problem becomes
12 [v(pk _swre)] = Jc ()
Y dY or A Jt
which 1s Iamm's equation. The eolution of this equation C (v, 't)
must satisfy the initlal condition
C(r,0) = f£(») (10)

where {(v) 1s the given initial distribution. In addition, the
solution must satisfy the boundary condition that there can be no flow

through the surfaces at ¥Y=v; and Y=Y, , which means that J must

—



From equation 7 we find this condition

vanish for these values of y .
to have the foliowing mathematical form
(11)

¢
D—— - uulrc = .
oy S o :
One must solve equation 9 for

The problem is now completely defined.
subject to the conditions given by equations 10 and 11.

C(v,t)
In order to express the problem in a form which will make

clear the difference between the centrifuge case being treated here

and the uniform gravitational field case solved by Mason and

Weaver (14), we introduce the dimensionless variable /T defined by
(12)

T
|
si

-7

v

-<

[
<|

|
=

=

[

where
= (VI+Y1)
» with

¥y = L
2
and — |

go that the possible values of /22 1lie between +|
the value © for V=7 ., An alternative variable f can be defined

by
Y—-Y‘I Y.""Y.I
go" b-r H (13)
where
Y, =Y
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and therefore glves the fraction of the distance from

vhich is associated with the

position Y . Thus for

Y':Y, gl'.:o

yo= ¥, f = Vi
YR ) f = l .

The relation between /2 and f is

For the present we use /L as the position variable although we shall

replace it by JO whenever we find it convenient to do so.

Introducing
the parameter )\ defined by
T, -v |
2 ! /"‘/
A = = = (15)
o+, 27
we can write
V:F(l -f-)\/?_) (16)
Defining & mean speed Vv by

we introduce the dimensionless variable { by means of the expression
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(18)

Since }f/ﬁ7 is the time required for a particle having a speed v to
fall through the length of the cell, the significance of T is clear.

Expressing equations 9 and 11 in terms of these new quantities we find

2 3
d I 2cC
(i +2n) 21 (I+)\A)[T<” 30 '"(!"'/\’7—)(5] = é_(_; (19)
2T
Je
—_— = —
on (H—/\/L)C ) L= y (20)
where X 1is a dimensionlesg parameter defined by
\V H
o = (21)
2 D :

This is the formulation of the problem with which we shall be concerned.,

In order to compare with the uniform gravitational field
problem we deri&e the corresponding equations for that case. Conslder
a rectangular-shaped cell with parallel sides of length L being

bounded by planes at X,-and ‘Xz .



X‘ ’xz
Suppose a solution is placed in this cell and exposed to a uniform
gravitational force acting in the positive X direction. If the
initial concentration distribution of.solute is a function of X alone,

then we shall have
C = C(x,t)

and in analogy with equations 3 and 6, we have
J(x8) = =D2 4 Ve
x d X

where V' 1is constant., Therefore since the continuity equation for

the present case 1is glven by

9 Jx __ 2¢
X at
we find
0 3¢ ac
BX]:D§; _"VC] = SE (22)
with the boundary condition
D _ Ve =0  x=x x=x
%% ) 1o T A (23)
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In terms of the dimensionless variables

So/_ X=X, _ X=X
X, =X L

T = Y,t
and

VL

Ve
O(_Z.D

equations 22 and 23 become

& ] ()C AC
—_— v 3., — C = _—
af/ 2« }(B ] D’ (24)
and
e L, ,
370, = 2& C ) JO:O)ID/:/_ (25)

These are the equations for the umiform gravitational field case and are
analogous to those for the centrifuge case, equations 19 and 20, Now 1f
in equations 19 and 20 ve use

n = 2 f -

/ = 2 0/ ﬁ

and set >i= O (keeping oL constant), we find that they become identical
/
in form with equations 24 and 25, differing only in that @ = (X—X,)/L,

is replaced by f :(Y‘—Y,)/H and \/ = comstant 1is replaced 'by



V= SwF . Therefore X 1is a parameter which is suitable for

thé perturbatioﬁ procedure we have in mind., Since

X =V H
Y, +Y, 2

we see that O ) ¢ | , the value [ being attained only for the case
¥, =0 . The ususl values of V¥, and V, dealt with in the ultra-
centrifuge are of the order of 5 cm. with their difference being ap~

proximately 0.5 cm., so that

0.5 . -
~ = O,
A = 05

We may therefore expect to get rapld convergence of a serles expanslion
in powers of >\ . We postpone the perturbation treatment of equation 19
for the present and first obtain some familiar results for the sake of

completeness. At equilibrium,
Cr,r) = C(n)

3C

———

= O
0T

80 that equation 19 becomes

y
Z{Z{(HM)[%*“‘[’*MJCJ — 0

which means

o
(I—l—-)\»_)[ ﬁ — 0((/+>\A_)C_] = Constant
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The boundary condition, equation 20, requires the constant to be zero,

giving

de

T ) O
or

X (e + Y An®)

Ch) = AT (26)
For the ratio of the equilibrium concentrations at the bottom (/1 = | )
and top (~=-1) of the cell we therefore find

I

C 2
1/4:: Cj (27)

which provides a very simple interpretation of the parameter &« . In

terms of the variable Y equation 26 has the form

BLX/:)( ZLO( ‘yz |
-

Berp( 55 77)

We now derive an alternative expression for the equilibrium

C(r)

(28)

i

distribution by means of a statistical mechanical argument (1t may also
be derived from thermodynamics). By the method of Boltzmann we have for

an ideal solution
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cla)ern) = ol Rk

where € (r) is the potential energy of a molecule at Y due to the
external force. Since in the centrifuge for a molecule of mass »m and
partial specific volume V suspended in a solution of density d we

have as the net external force
F = m{1-vd) w2y = —4&

we obtaln by integrating over a sufficlently small range of Vv (so

that Vd may be treated as a constant)

2

E() — €(r) = —m(1-vd) 4 w (i —r*)

Since
"= MR

where M i1g the molecular weight, we have finally

M(1-74) wl(&L-GZART

C(Vlr] C =
/ (rz) - ’ (29)

Solving for > | we obtain the familiar expression by means of which the
molecular welght can be calculated from the concentration distribution

at equilibrium
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2RT &L[C(EE)/C[G)]

[/—v4)601(433_51>

Since we have from equation 28 that

sz 1—-?”2-
/e, = e P (&%)

we find on comparing with equation 29

w*®S (}}z_‘éz) _ M(1-vd) w (&_L_Gz)

2D 2RT

or

Sb/[) = /M (l —vd X/CQ s

(30)

(31)

which has the form of the usual expression arising in problems involving

diffusion in the presence of an external field and was first obtained by

Einstein in the course of his investigations on the Brownian motlon.

was first applied to the ultracentrifuge dy Svedberg.

It

Equations 30 and

31 are the two fundamental formulae used in sedimentation equilibrium

calculations.



3 Mathematical Formulation of the Exact Solution

The problem as formulated in the preceding section is the
following. We must find a function C (2,T) which is a solution of the

differential equation

2 [ L 2e .
.<I+M>57x{('” >[0<M-(f+m)c]} = 5:% (32

and satigfies the boundary condition

L = (I +2r)c o= 1 (33)

ION

ag well as the Initisl condition
C{n,0) = f(n) | (34)

where /261) is the given initial distribution.

Consider now the function :?0%[?) defined as follows

X
AT Khw+n)

chr) = ¢ - i (%2,7T) (35)

In terms of this function the differential equation can be shown to



~ take the form

2 23 g 3
< I + }\ﬁw(ﬂ)y{ —f%/z+)W@LUj = ;:7;
T
where |
win) = Xn 4+ (I+m)"

The boundary condition beccmes

]3 o
— = = : L =
DA Zj )

and the initial condition 1s

_AERY _ n
5 L+

9(ro) = & e £(n)

(Note that in this way we have eliminated A  from the boundary con-

dition.) We now separate the %ariables in the usual menner, setting
9Ty = U) (T)

which gives

—2-5‘0 u’ + A2 u’-—[o(/f-)}w ‘u
x =<7 2 Jpu =g U,
and dlviding through by 0’?9 s, the left side becomes a function of /L

only and the right side a function of 7 only. Since 2 and Z° can

be varied independently, the equality of the two sldes of the equation
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means that each side must be a constant, say — £ . Thus

" | / /
2 LA el [(peow] = O

¢~c
and therefore
9 ~ u & T (36)
The equation for u« 1is
u' + /\wu’—ez_(("(/ﬁ%w)u#—éi‘iu =0 (37)
with the boundary condition
Ulty) = _?zfzx(:/) - (38)

We wish to find a function /3{/2.) such that by multiplying equation 37

/
by /9 (2) the terms containing u” and U’ can be written as ( /5 u’) s
i.e., self-adjoint form., This means that we require /3 to be such that

Plu"+ dwur) = (/5’0(’)/ = pu+plu’

and therefore
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/J)HAJ" = /5/ (39)

or _
o) — -
///D = Aw = Ao<~/>, + N(I+2n)"
Integrating, we obtaln
‘/’“f = AZ R i+ An)
so that /3 1s found to be

AZ At

p o= (1+an)e ° - (40)

Multiplying equation 37 by this function /: , we therefore obtain
Y .0( e o’ _
(/:u) E(7+%w)/>u + &5 pu =0

and setting
?(/L) = fif(o(/?_+Aw)/o = %(%P t p7)

~(n) = _025 P (k1)

we have

(/:)u/)’ _Zu + £ u = 0 (42)
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which has the form of the generalized Sturm-Liouville eigenvalue prob-
lem (17). Froml the general properties of this equation we know that its
solutions satisfying the boundary condition, equation 38, consist of a
complete set of real orthogonal eigenfunctions U, , U, , U ,.....

2

with corresponding real eigenvalues &£, , &, , g, s»----.. For

non~periodic boundary conditions, such as we have here, the & _ are

™

gimple, i.e., no two linearly independent eigenfunctions can belong to
the seme eigenvalue. The condition of orthogonality satisfied by the

eigenfunctions can be shown to be the following
{
—_ . m wmwa
/ Ao U, Y, = O ; F
-1

If we normalize the U, such that

/
‘/o(n, /Jb{,: = |
=

we can evidently write (remembering that ¢~ = _"_Z‘ p)

I

| | |
/da pi., = SRR | (43)
Z, |

It is easily shown that &M‘,}o by means of the following argument.

!
/
(c::ggou/gul:_z_o(kgrag
. O([I (M )"4

But we have from the differential equation that



EMVNG(M‘: —-(/34(“/)/ 71_50{

Introducing this into the preceding equation, we get
]
a—— 2 - 7/
2 o [y 7 g
-1
/
- 2 fa(/\— Ml ro 2 ! 2
= - (pu) u, +_.ﬁaZuM
=1 -4 -
But from equation 41 we have

g =% (Lp +p)

Introduction of this expression for ? and integration by parts of the

terms containing (/bt/m’)/ and /é 7 yields

- E[puiu] + f?/f‘:/*”»«’f o5 fopu
* [/5” ~ 2/014 pu, i,

Now because of the boundary condition, equation 38, the integrated

portions combine to vanish and we are left with
!
-2. 4 o 2
= = — U
-t

Since



and

we gee that

and therefore it follows that

€ 20

The elgenvalue zero occurs for =0 , say, if

U (r) = & u )
(45)

which obviously satisfies the boundary condition as well as the dif-

ferential equation. Since we have from equations 35 and 36 that

L
/\92{/1 i;_f(fz-l—/) _~th'

ClrT) ~ & e U (2) - (k6)

we see that the term n=0 is the only one remaining as T °° because



.Eo %o

€. >0 5 n=i

The solution of equation L5 is

L
U ~ e
so that
AEr" an
C(r,) ~ C e

which i1s in agreement with our previous result, equatlon 26. In order

to complete the formal solution of the problem, we must satisfy the
initial condition

C(r,e) = ][(/L) .

Since the U, form a complete set we can make the following expansion

..>\22<./~J- -‘_"i(n.-{-l]

C e L o= > A u

N=o

where the AM are easily determined by making use of the orthonormalilty

condition satigfied by the ", and are found to be given by

' ~AERY S ()
AM _ ﬂn‘/‘)u“c 2 - (At
)

C £ (47)
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We can now write as our completé formal solution

A () = T
C (/",'C) = C c Z AM L(M(ﬂ-) e (18)
M0

where U, and &  satisfy the following differential equation (re-
arranging equation 37)

{4

l?-u - 2 ‘X _
Zul-Suor ZAwn) [y £d.]= -¢y

2 0 Fne

(49)
(/(J'(/L) = XN 4+ (/7‘"7\/2.)_’

under the boundary condition

U (1) = i;ium(r/) (50)

The solutions will satisfy the orthogonality condition

o« .2
7\—2:”'

/
%//t-(/f-?\/l—)c Uilhe = 6 © N % am (51)

7

and are to be normalized such that

Pl

) (52)

LT
=
"’
M

I

! A
/oLL (I+Ar) e
-/



are given by

Finally, the constante /Aﬂ

J’ ~%(r+1)
dn (I—}—)\/L)L{ - ][ﬁv—) (53)

where J£6n) is the given initial concentration distribution.

This then completes the derivation of the exact formal solu-
tion. The problem remaining, of course, 1s that of solving equation 49
and as we know from the work of Archibald and his predecessors, lts
exact treatment must lead to a solution which is not convenient for
practical purposes. From our discussion in section 2 concerning the
parameter ;\ s 1t is clear that the most profitable procedure will be
to represent the solution in a power seriles expansion in A l.e.,
treat the actual problem as a perturbation of the problem for which

>\= O , and this is the procedure we sghall adopt in the next section.

4. Perturbation Method

The differential equation to be solved is the following

(equation L49)

2 " 2 /—_o(u - _
T

MR
<

where

w o= A+ (1+22)"
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so that we have in & more expliclt form

2
x 2

"o
U, —xXU, +

(s}

If we define a get of operators H . by

H(o) _ —2_ o{’- &
X Ant 2
4P 2 (e 3_{_ _
H ( /L+/)( _o(L_)

we can write equation 54 in the form

Z/Hm+ AH 2 AP H —"fum =

;%- AE‘A— + (/'f-?\/),)-j[(/(‘:— %f- MMJ

—E U

m M

If we now take U, and £ _ to have the following form

U = [/(o)

(5k)

(55)

(56)

(57)

(58)

(59)



......

€. = € + gt + et 4 (60)

and introduce these expansions into equation 58, we get

o) ) o ,
{H‘ + AH +----}{uﬁ f Aui’fm} - —{gflAg"i-.}{uf’ﬂ-)ufh.}

Equating coefficilents of llke powers of A results in the following

get of equations

(o) (o (o) (o)
HYu® = - &lu,

(1) (o) (o) (i} () (y ) (o) (61
H U, + H u, = -~ €M u, ——-£M U, )

!
\
Using equation 59 in the boundary condition

Ul(x1) = S UL(21)

and again collecting like powers of ?\ , we get
(o)/ e u‘o’ +
{/{M (i j) = ~ (~_ I)

2
uit)/(-_;_-() = f_(?: u:,("_'"l)

-

(62)

-~

-

(o (1)
so that UM )) [/fM ... all satisfy the same boundary condition. Equations
]

() ¢
61 together with equations 62 determine U, U )) .... and the cor-
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1)

. e
responding € °, €, _... . Also introducing the expansion for U

AN

given by equation 59 into the formula for A.‘ » equation 53, we find

(o)

A = AL+ AAL

where
I (n_+')

/-\:) — faln_ L{M‘ C ]L(,l_)

' "‘(/z_ ,)
ALY 2 /,a[u eaul]c 7[(,:) (63)

Thus the solution C (2,7) given by equation 48 ie

Crh,2) =¢ —i Z{Am :) }{u"" "’} ﬁAEWJ(Z;)

5. Zero=Order Solution

If we set )\ = O, keeping X fixed, we obtain the zero-order
approximation which corresponds exactly to the rigorous solution of Mason

and Weaver (14) for the uniform gravitational field problem. Thus

equation 6L becomes



C(o) | Ln+t) —£‘°’
(r,T) = ¢ . Z A” Y e T (65)
"\ NA
H:o\

where from the first of equations 61 and 62 we know that U,,f” must

satisfy
(@) (o) (o) (o)
Hou, = -¢" u.
or
2 u(o) 74 _ _ﬁé M(o) _ ) (o)
;—C ~ 2 - -7 é‘4\ é/"‘
with the boundary condition
rd (o)
u’:o)(i_l) - _;._(_ (/(M (i'l)

From the work of Mason and Weaver we can write down the solution at

once.

Xln+i
1( )

° (66)

Uiy = B, X2
(67)



XM(A_) = Cod ‘SzE(/L-H) + Mﬁ% San 1-1—2'-(/‘(.+l) (68)
(o)
£ = o (69)
(o} 2 2 . .
nort z
= ad
m = 1 2 -

where the Eﬂh are to be determined by the application of the normaliza-

tion condition (zero-order in A ), equation 52

:F£m [Lﬁot]z = I .

This ylelds

B x
o T Ik |

3 | (71)

2 1 o~

R :(I—f—f)

” Wt (72)

n= 12 ..
P
C)]

The only remaining quantity in equation 65 to be determined is /Q\W‘ .

If we consider the case for which the initial concentration distribution

is uniform, l.e.,
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;f(m)k=_co

the first of equations 63 yields

(o) / o
AT L[ g ST

' Q) (9)
and introducing the expressions for U, and U, from equations 66
and 67 we find on carrying out the necessary integrations

(o)
A" - 28 (73)

— = °

Cc

]

AL 48, [ 1 —e0"e "]

= = (74)
< wrrt (1 4+ %2
n >
"M o= l) Z) .

(=) : ()
Introducing these expressions for Ao and A « &long with the ex~

(o) ‘°) {a) ) 2 2
pressions given for U, ) U, , €, ) E,,:, , A and BM
[~]

into equation 65 we have in terms of the variable f

f=t-v)/H = $(2+) ° <P

(9)

C (p, ) 2 2&
C f - T ¢ ! +
° c -1
(75)
___"_C 2
-+ ‘fO(C C “ Li-en"e ] E:o—unr + X Shant _%t
)“ un’"(l-f—wﬂ_’_) Fra f’jc
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our final-expression for the zero-order approximation. For completeness
we repeat the definitions of the quantities & and T ,

v H
X = - ‘zwém(CZ/C,)tB

uil

2D

(\?
it

Il
(-

where

<l
1

S w*

Rl
il

S bL)lCV,f-V'L)/L

6. First-Order Solutlon

(o) (0)
Having obtalned 14“ and é;‘ we may now consider the

) [y,
determination of U, and & ° from the second of equations 61 and

62,
11 (e o) (1 © () (1) (o)
H() L) I_I()L{A(A) - _ZM u/_. —“EM (’(M
7 _ o«
(/(M (i‘l). = —Z MM (fl)

We will first carry this out by the method commonly used in the perturba-

)
tion theory of quantum mechanics. Thus we will expand (4:1 in terms

o

(o)
of the complete set of unperturbed eigenfunctions Lﬁn « Although we
shall show how this expansion can be summed to yield a closed expression,
we will prefer to obtaln the solution in closed form by another method,

namely, by finding a particular integral of the differential equation.
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Since we know from equations 62 that U,  satisfies the same

we can write the followlng expansion of
o)

(o)

boundary conditions as U,
U

u,i" in the complete set of orthonormal functions »
oo
()
u o= y (=)
" end C'M'W\ um (76)

M= o

r&here the C:‘ » 8re as yet to be determlined., Introducing this expansion

ui" s we get

into the above equation for

() (o) o o (o) () (o)
AU - Z C [e2- Ei’]% -é U, (77)
Wm=-o .

il

where we have used the fact that
(o] (o) (o) (o)
H (/(M = gm (/{M«
(o)
If we now multiply equation 77 by U « end integrate over the range
of the variable . making use of the orthonormality property

{
(o) (o)
f"(/» UM (,(K = SMK
-

we obtain

(
(0) i {o) o, o ]
/aln Ue H u, - CMKfsk”-&‘j = -
M ”~M, %K

=~
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so that by taking X +#4 we determine the expansion coefficients to be

ko)

!

(o) Q) (o)
foln, MK H w.’
-1

C"‘K = (o) Coy ) foam (78)
[EK — En ]

and by taking K=un we find

/
—_— . (o) 1) (o)
2’1 - dn. U," H { (’{—V. . (79)

-1

We have stlll to determine C,m « The freedom in its choice 1s used
in such a way that the normalization condition on the functions U._ ,

equation 52, is satisfled through terms of first order. Thus equation 52

A5t

{
/6(4(/+)M,)C ur |

i

-~

yields

1]

/
/(4, (1+2)(1+AEA (U Aui"+....)z

and collecting terms, we have

/ f
/’{"[“»:”J - + X[Jm[(/z, + .;_f/;,‘)(t{:o')1+ 2 M/lo)u:)] + O (’}\?’) =
Z, /



' )
so that the condition on U,  1s the following

f { :
dn 'y - - L [ « (or\ % (80)
J - 7 ) [ E)ul)
i

()
Introducing the expansion for W

1
' /o(n. UM(O) i CMM u::) = C““
=1 M=o
/
= g [ el

as the expression determining C o * The result obtained on carrying

» we have

out this integration is

= - %
.
CM‘"_ - {1 [ kLTCL-] }YL - ‘} 2,-——". (81b)

From equation 78 we have the expliclt result

. 4B,B, X “ < # Ju®
Cmo - = %7,7[_1.((_‘_ %(;ni) [C (-1) +j+zl;(. [C(:l) —’]D - (l+ 5\:2__‘—) (82)
“ F 0o
and
C = 0 5 n¥° (83)
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since

) (o)
U =
H U = o (81)
The remainder of the coefficients are found from equation 78 to be
C_ 8( -+ T‘_ [‘
AN = [ —_—
o ‘VLLTCL( - —_ i}
n (85)
MmM+n odd ;omn o= 1,2,
and
+*
c - g (14 5=.) a
mm 1/L”71:7‘(l - 1‘-_")1 - BM
> (86)
M+m even | mIFn , mon, =12, ...

Turning now to equation 79, the formula for E:l” ;» we note that because

of eguation 84 we have
£ = o (87)

which is not surprising since we know that

— (of m
Eo—'o = £° -]L-)\E-’ d - - -

the term A = already having been shown to yield the equilibrium

contribution, all other terms decaying to zero with increasing T .



However, .on considering E_:) for w=12,.... we find from equation 79
after introducing the appropriate functions and integrating, that we

alsc have

E = O . all " . (88)

Thus

£ = £ 4+ o)

"
and the zero-order eigenvalue should be an excellent approximation to
the exact eigenvalue, especlally for our case where A=~ 0.05%

Returning now to equation 64 and retaining terms of the first
order in A\ we can apparently write

Lrtt) m )

Cr,) = (l+>\i{/z"-/—---)c Z[/}{“"AA"? ][Z{“’)u"’ JC e

"‘(A.+t)

(c
e ZC ,{Ac) (a)+)‘[,( 1_/4 L)IM.,L A{L( :o)a:,)]}

+ o ()

(89)

We recall that /A\“ is determined by the initial distribution, 7( (~) ,
through the second of equations 63, namely

X (1)
N

/ "‘i‘[ '+ ruJe £o)



and again considering the case where

)C(m) = C

we have

() !
/i‘k = ﬂ(/\. [U:) + n u/:"'J e— %f (r+1) (90)
0 =1

)

or introducing the expansion for U,

() { I

co _X () o
(o) o ~=(a+r)
= P“ZCM%CL +ﬂ‘aﬂuf"€z

|

and comparing the first term on the right side of this equation with

(o
the formula for AM given by equation 63a, we find that

A — (o) ! ~X{n+1i)
“ - )y "7
N WZ‘O Conm ic‘r + j*ﬂfLUM ¢t (91)
= ° =1
Since
X (1)
(o)
u ~ c *

the integral in this equation vanishes for the case h=0 and eince

for this case we also have
C = 0 . moE o

we obtain



A e AT - (92)

i

Also for =0 we have from equation 76

(14 x
(o)
W 5
W=o

and again using the fact that

C = 0 . w %o

[- 27" )

we get the result

(o)
(93)

I
O
<
i
|
SR
S

Thus for the case n=o0 the term which multiplies A in equation 89,

namely
(o) G} (v
[£Y) Co) . ce)
ol /L?. Ao u +_ Ao u _/- Ao ao
2 c ° ¢ ° c
[ ] (-3 a

can be written in the following simplified form

(o)
A (o)
SRR R

Hence we have for the equilibrium result

X {nei)

C(/L,oo) - e * A“l (o) . 2
- ) a8 uoﬁ—)\_"{(('ﬂ-)]‘f“()(A)

°©



o=

' (e)
or introducing the variable fO and the expressions for /ﬁo and

u:o) , ve have <.
2%
C (j)/ao) - 2x i )
c, | (sz_ ) c LJ_”AZXf("P)J + O () ) - (9%)

That this 1s indeed the correct result can be easlly verified. The

exact equilibrium distribution is derived in Appendix I and is given by

gy 2 fz“ft"AU'f)J
c (Cz‘f_ ) . (95)

4]

Clearly the result obtained by expanding this expressilon and retaining
terms of flrst order in A is identical with equation 94,

Returning now to equation 91, we write it as follows

) o
o) .

Ah = >_’ Cm., Am + I (96)
C — - "

° M=o °

where
. | y
— -2 (rtr)

Ih - j;lz\, L u/:o) C * . (97)

The explicit result obtained by carrying out this integration ie the
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following '

L

(1 + ”";)1
o
i L= | [ G

wrr

. (o)
Since (:MJW and /4M~ have slready been given, equation 96 can be

m Q!
used for calculating /4~L . U can be determined by using

“n

the expressions given for C in the expansion, equation 76. This

nw
then completes the Adetermination of all the guantities necessary for
making calculations from equation 89.

However, this is not a véry satisfactory form in which to
express the solution as it requires the term by term computation of the
expansions appearing in the expressions for bg?) and /QL” s ag Just
mentioned. We therefore proceed to derive expressions for these quan-~
tities in closed form. This can be done in elther of two ways.

The first method is to deal directly with the sums themselves,
obtaining their representations in closed form by the device of contour
integration in the complex plane. By the cholce of appropriate functlons
which are integrated over sultable contours, the summations can be
evaluated. This method is outlined in Appendix II. It reguires such a
large amount of tedious manipulation, however, that 1t is very difficult
to avoid errors. It is presented here only for its academic Interest.

The second and much more satisfactory method 1is to return to
the differential equation for b{:” , solve it by obtaining a

particular solution which is added to the complementary function



-

satisfying the homogeneous equation and finally determine the two
congtante of integration by applying the boundary condition and the

normalization condition. Having obtained b{g) in closed form in
. ()
this manner, /\“ 1s determined from it by dlrect integration using

equation 30. We proceed now with the details of this method.

)
The differential equation for U, 1is (second of equations

61)

[ HC ef’] w!" - - [/-/"’+ e ul” ‘

We have already shown that

so that we have to solve

C)

[H e Jul = = U

()

(o) (o)
The explicit expressions for the operators P{ and /{ and for L{K

(o)
and E;‘ are

(0)._ |
Ho = 32

=
HY = L fup +(r—><)][§l(_o — ]

IL
|
pol R

a

uM = B Cog nir o< '
[ o3 n [" + P /Jmmrf]
E:,) = _g(_ -+ %LWL.
2 2 ot



Since
[ - <Jfeormp v mmt ] = e (10 2 iy

the differential equation takes on the explicit form
ofd " o ) D .
R S A g

L

D = 2am X
. ww (I+ 5-.) B. ,
Thus the homogeneous equation is
2w a1
O O SIS
/( 2

f

so that

C°m/alemufa:j {uudf«lm = ﬁ,“c,o—dn'lrfo + KM<!43-1~TC{°

The terms of the inhomogeneous part are of the form

JO <$o&v‘u1r(o

/\fﬁm'vxrrro



Since each of these groups contains <6< TP and Aewn TP which
are present in the complementary function we must multiply the terms
of each group by'_P so that the terms obtained willl be different from
those in the complementary functioﬁ. Hence the particular sclution is

taken in the form

u = a_.//o"-mn/rﬁ ¥+ erocm«n-[o -f—Qs F;‘;"“n‘/e + Q‘f()dx,;;vﬂr/o

Substituting into the differential equation, we find that we must take

kS

a':_o((l-f-:f;-;) 3.
2, = = (l-)(I+ fg—;)BM
a4, = ©

a, = 51{5 1+f%r—L)B%

in order that the left-hand side agrees with the right. Thus we have

for our complete solution

1)

U

.
3
(4

= ﬁMC»O'a,nT{" +{<M44)wmr(o

— (l—f— :‘-‘;Ez){a((o"cmmrf + (1I- x)(omnn(‘a—% ‘ow Wf}



The constants k“ and F(M must be chosen in such a way that this

solution satisfies the boundary condition equation 62

o‘((/((”
i

(the same must hold at j9‘= | ; however, this gives nothing new since

()
E;“ has slready been evaluated) and the normalization condition

equation 80
- / !
(o) (t} 2
)CLL u, U, = —-2L j:Lm (n,+- xoav) [—Lt“{]
2 -~ LS ~
=/

which when written more explicitly is

[
(v}
.
Jap X bt o e Tl ]
° B, 24 wrmT Nk 12 .

The boundary condition and this normalization condition provide us with
two simultanecus equations for the determination of Aa‘ and ﬁfﬁ .

Omitting the further details we state the result one obtalns on solving

these equations

A

o= R sz ) - P

u’:‘l) ) % _ f—(— X
“B"M - 4 ~ (99)
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where

/{M"z (1+ ){[—(f I +_]—_<}mv\n’

hf(f’"/l) - “)O(’—(D)JCMMT{O }

and as ususl

—_ — o 4
XM = C,o-d’hu(o + FFMMTF/" .

(
This concludes the derivation for UM‘) .
T3]

We now determine A » (for the initially uniform distribution
case). From equation 90 we have

) ! Y
A - 2["(’ w. e foy T,

CO

o)
where IM » which does not involve L(M s 1s defined by equation 97
and 1s given explicitly by equation 98. Introducing the expression Just

found for U :) and carrying out the integration, we find
t1)
A - (o &
¢, “ITLQ + x> )Z "'n'“][! -C ]
ntnr
( 100)
'n" i ] [ j

where the upper sign 1g to be taken when n 1is odd and the lower sign

when M. 1is even. TFrom equation T4 we have

AY o+« B [1:e"]
C = (% z (101)
o h 1‘[7‘([ __t_ X >

Y
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so that taking the ratio with equation 100, we get

(4D

An ;,(7.
(o —_— OC
/‘\M) "/(H— o {[( wre (102)

—[6 + 2 - 2o<‘*j I~ !
nmt -hl,‘n—"f i l‘t‘ij

Multiplying equation 10l by BM we also find

3 4 Y4B [ 1t c""]

— -
< nrr > (1 ;:5;"_,_
(103)
—
_ 4ol [1 =€ ]
f ba 0(2 2
N <I +h"7r")

We are now in a position to write down the final result of

our perturbation theory of the approach toward equilibrium.

2«

< - (e“‘_,)e (—“‘_“"(’('"c”] +

a (104)

- CM {[I-—-zw\f(l- +A(A“' )])gs,) +>\{:)($0)j+




For convenlence we repeat the expressions for the quantities appearing

in this result.

B AT o bz

< KW(1+~J

+e

~ «
+ X ) - l 32 ¢ : x 9 e 1|
(o) 4 z e I 2 | -e
AM_ () 4+ £ }{%17171 [ Wt w«n—‘f][ --c] }
whr *

/K:.)( (!—(— x*

—Br-'fa)—»«fa-/ogww/a ]

Where there are two signs appearing, the upper sign is to bve taken

when M. is odd and the lower sign when . 1is even.

T. Comparison With Archibald's Numerical Results

As gtated in the introduction, section 1, Archibald has made
calculations for a specific experiment both from his exact (12) and
approximate (13) solutions. The position variable used by Archibald

is Z  vwvhere



(105)

$

T

()

Er:
™~
o

and he introduces the parameters a and b which are the values of 2

at the extremities of the cell. Thus

5 oo Sw?* o
a = Z’ = 7 v, = "‘-—'ZD ;
¢ (106)
kS 1
b o=z, = 2% = Swiyl
2 2 'D
These he relates to the experimental quantities by introducing the
fundamental formula for 9 / D » equation 31,
S / M (1= vd)
D - RT
getting
- T
o = ™ (l ~vd )W r 2
2RT
. (107)
JD /\/[ <1~7 0!) w . 2
= ——— -
2RT *

The data for the specific example he considers in which the dissolved

substance was carbon-monoxide hemoglobin are the following



M = QX/ 000 jMS,/mo‘e

Vo= 0.749  o?/qm,
Lo = 29790 1 Y‘ol'r\s./Se,c,
T = 293°k

with the cell dimensions*
Y, = 160 cum.
Y‘z - 4. 632 Cm,

The values of Q. and b corresponding to these data are

a.

b

In calculating < /C‘> Archibald used only the equilibrium term (M=o )

5.0
6.2

1

plus the term for m = | , omitting the terms for " 2>, 2 . Although
he found this necessary (in the exact case) because of the extreme labor
required to calculate the higher terms, the omission is partly Justified
due to the rapid decay of these terms as comﬁared. to the decay of the

term for v = | .

*
The value of %.61 given for ), 1in references 12 and 13 1is apparently

in error because the value given for 4 does not agree with that
which would be calculated using v, = 4.6/ . IndJ. Phys. and Collold
Chem. 51, 1204 (1947), where Archibald presents this same example, the
value given for Y, 1g 4,632 which does in fact yleld the value for

b which is used in all of these publications, namely, 6.2. Because
of this last fact and because it is 4 and not Y2  which enters
into Archibald's calculations, we take 4.632 as the value for Vz .



Dropping the termg beyond n =] , he makes his calculations

from a formula of the form

_K, T,

| z
%(z,tA) = K& + K N@E)e (108)

where the specific values for K, and /K, and the tabulatlon of the
function N(z) are arrived at after a very lengthy computation based on
the data for the given experiment. Of particular interest to us is the

value which he gets for K, , namely,

K, = 31.70
The time variable Z; 1 defined as
o~ 2
QA = 2 S wit (109)

We recall that our time variable T 1is defined differently

—_—

\V4
T = — t
H
- SWIFt
go that
T _ r
Z-' — ——— e
/A zH
or
A
t = 2 H Ta (110)



Since St
R l__, 2
L-a = 1D(Y;' V;)
= SWip
D
= Xy
D

o =

we find

24

{!
~
o

|

[

. (111)

Thus for the experiment being considered
X = O.¢

From the time exponential in the term for W =! in equation 104 and from

the relation between ( and E, given by equation 110, we find that

the value of /\’3 from our theory 1ls to be calculated from

[‘X + T’ L , (112)
2 H

Introducing the appropriate values for the parameters we easlly obtain
the result 39.70 which is in exact agreement with the rigorous result
of Archibsld. He states that it required several weeks of computing to

obtain K 3 and the labor involved in getting the corresponding quantity
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in the term for W =2 seemed prohibitive. We have for any value of

T the generai result
F. oC Wt
— - + 2t ] o (A
2 H [2 ™, + (2) (113)

for the coefficient of -Y;Q in the tlme exponential, the first-order
correction having been shown to vanish. Since the value of A for
the glven experiment is

V. -,

>\ - 2 !

Rt

(114)

1

0.0537

we are not particularly surprised at the accuracy we have obtained. By
means of his approximate formula Archibald calculates a value of 39.77
for k} . Aside from being considerably more complex in form then our
expression, equation 113, it has the more serious disadvantage in that a
number of unsystematic approximations are made in its derivation so that
there is no formalism present for ite modification in cases where these
approximations are not completely satisfactory.

To complete the correspondence between the quantities used by
Archibald and those used here, we conslder the position varilsbles JD

and 2 . DNow
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. Y-,
ﬁ Y. v

o = Gk

and. therefore we have for the relatlon hetween SD ané 2

pe g e -]

(115)

For the M =1 term we have from equation 104

T

“("c‘[%( t ];_Fﬁ Ta B A o
LA Top 0 A8 e e

()

A (f)}

C

where, as we have already mentioned,
& T* r
- T+ = —_— = 3 0
for the values of o , y , and /o Dbeing dealt with. From eguation

—

103 we calculate using & = 0.6

(o)

B A yoo [1+ ]
-To TFL(!'{"O(%L“')I

= 0.3504



and from eQuation 102

(

. _’___ . _ ¥
N’ o(] Py {31"( [é +4o< 2 o ][

i

H

0.037¢6

Introducing these computed results along with the values X = 0.6 and

A = 0.0537 into the expression 116, the M =1 term takes on the

following form which is suitable for making calculations

o.(,Jo w -
0.350¢ {[l —0. oé‘l‘y’r)(l—(o)-f—OOOZ?]X (/o)—/-OOS-}?}\p[/O)} 31.70 T Ca (117)

(1)

In Table I we tabulate the functions X, (p) and ﬁ ( P )
X (p) = coump + X 4ia T
(r r = gl T

)

’K (10) (1—/—»( ){[‘((, ./)_,_4(]"‘ 44Mn/° ):(C V2) - “/"(1 f)](‘,o«\rrrf?

for the case « = O.(.

We remsrk here that to a very good approximation the term for
m = | , expression 116, vanishes for all times for JD =,/o where

/O is such that
[~]

X, (p) =0 = COPTL, + K dwTp



or

fwnw/o - - T (118)

This means that for times such that the terms for W > | have become
negligible, the concentration curves at different times will all pass
through a common pqint ("hinge point") located at /0~§/e , having a
fixed concentration equal to the equilibrium value for that point. It
might appear that this could be made the basis for a method of deter-
mining molecular weight since o« could be measured by determining
the "hinge point”, Jﬁ . However, because of the small values of X
involved, the value of /g varies only slightly even for large relative
variations in o as can be deduced from equation 118, so that the
sensitivity of the method 1s not sufficient for obtaining quantitative
results. One can avoid the difficulty by working at large & values
put then the terms for M? | do not decay as rapldly relative to the

n =) term which means a greater delay in the fixing of the hinge
point.

At equilibrium we have from equation 104

_C'_(/D/ o) 2

20p
c, = (qu_')c [1=2z2=p(i-p) ]

to within terms of order :\% . In Table II we tabulate this function

(£ = 0.¢ ) both in zero order and in first order (>\= 0.0537) and

compare with the exact results given by Archibald. It ls seen that the
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inclusion of the X\ term reéults in values which are in almost perfect
agreement with {;he true values.

We tabulate the =1 term, 117, in zero order and in first
order for T, equal to zero in Table III and for T, equal to
0.015 in Table IV comparing with Archibald's exact and approximate re-
sulte. We find that although our zero-order approximation has a form
which is considerably more simple than the formuls of Archibald's
approximation, 1t nevertheless leads to slightly more satisfactory re-
gulte at least for the specific example be.ing considered here,

Since the zero-order- and first-order %= | terms decay at

exactly the same rate as the correct Mm=1| term, we have for the

—

error A(T,) at "time" T,

-37.70 T
A (Ty) = A (o) & "

39,70 T, (119)
A (ty) = A (e) e oA
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TABIE I

<)
Tabulation of X (!3) and %l (]a) for the Case & = O,(

z P X, (p) 4.(p)
5.0 0.000 1,000 0.518
5.1 ~0.087 1.015 0.527
5.2 0.17k 0.953 0.503
5.3 0.261 0.822 0.458
5 ol 0.345 0.637 0.405
5.5 0.430 0. 40k 0.358
5.6 0.513 0.150 0.326
5.7 0.595 -0.111 0.318
5.8 0.678 -0,368 0.335
5.9 0.761 -0.601 0.375
6.0 0.841 -0.787 0.428
6.1 0.922 -0.92k 0.482

6.2 1.000 -1.000 0.518
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TABLE II

Equilibrium Concentration Distribution (X = 0.¢ )

z 0 C945°
»*

Zero Order First Order Exact
5.0 0,000 0.517 0.517 0.517
5.1 0.087 0.57h 0.571 0,572
- 5.2 0.17k 0.637 0.631 0.632
543 0.261 0.708 0.699 0.698
5.4 0.345 0.783 0.772 0.772
545 0.430 0.866 0.852 0.853
5.6 0.513 0.958 0.943 0.942
5.7 0.595 1.056 1.040 1,042
5.8 0.678 1,167 1,151 1.151
5.9 0.761 1.289 1.27h4 1.272
6.0 0.841 1,419 1.507 1.406
6.1 0.922 1.563 1.556 1.554
6.2 1.000 1.727 1.717 1.717

IDN,| = o.010 , —IZT—[ = 0,001

lzf5o|mq; 0.017 ) 1125.L““X:: 0.002

‘éxa denotes the difference between the zero order and the exact.

zf&, denotes the difference between the first order and the exact.

¥ Using N\ = 0.0537.
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TABIE III
Contribution to C/c_ from the h=| Term for T, = O .
= P hoyrox.  Orter  Order
5.0 0.000 0.380 0.351 0.361
5.1 0.087 0.405 0;375 0.384
5.2 0.174 0.401 0.371 0.379
5.3 0.261 0.367 0.337 0.3k
5.4 0.345 0.301 0.275 0.281
5.5 0.430 0.209 0.183 0.189
5.6 0.513 0.09h 0.072 0.079
5.7 0.595 -0.038 -0.056 -0,047
5.8 0.678 -0.182 ~0,194 -0.182
5.9 0.761 ~0.323 ~0.333 ~0,318
6.0 0.841 -0.452 -0.457 ~0.441
6.1 0.922 ~0.568 ~0.563 -0.,546
6.2 1,000 -0.652 -0.639 -0.622
|[A | = o017 IA] = o.011 Al =
Al = oozt [A] = o.019 (A ] =
Max e b

Arch.
Exact

0.363
0.387
0.380
0.348
0.281
0.188
0.074
-0.051
-0,184
~0.315
-0.439
~0. 5k
-0.625

0.002

0.005



-63~

TABLE IV

Contribution to C/c_ from the n=( Term for C, =

Z

5.0
5.1
5.2
23
5okt
5.5
5.6
5.7
5.8
549
6.0

6.1

£

0.000
0.087
0.17h
0.261
0.345
0.430
0.513
0.595
0.678
0.761
0.8k1
0.922

1.000

Arch.
Approx.

0.209
0.223
0.221
0.202
0,166
0.115
0.052
-0.021
=0.100
-0.178
-0,249
-0.313
-0.359

——

1A, =

o ma’x

Zero
Order

0.19%
0.207
.0.205
0.186
0.152
0.101
0.0k0
-0.031
-0.107
~0.18k%
-0.252
-0.310

-0.352

0.006

0.010

.0/ %5
First Arch.
Order Exact
0,199 0.200
0.212 0.213
0.209 0.209
0.190 0.192
0.155 0.155
0.10k 0.10k
0.0kk 0.041
-0.026 -0.028
=-0.100 ~0.101
-0.175 '0f17h
-0.243 -0.242
-0,301 -0.3500
-0.343 ~0.345
Zzgri = 0,001
[A] = 0.003

/‘MM
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B. FAST METHOD FOR REACHING EQUILIBRIWM

1., Introduction

Although the equilibrium method (1) in the ultracentrifuge is
inherently a very powerful one for the study of molecular weight and
polydispersity, 1t suffers from the fact that a long time 1s often
required (of the order of several dayé)-in order to arrive effectively
at the equilibrium state. The disadvantage of this lies not only in
the resulting delay in the procurement of experimental results. One
must also consider the difficulty involved in maintaining a constant
speed of rotation end constant temperature in the apparatus over such
long periods of time. A further serious disadvantage lies in the fact
that many of the substances to which it is desirable to apply the
method are not sufficlently stable to endure such lengthy experiments.
| Becauge of these disadvantages, the equilibrium method has
not been extensively used. The sedimentation velocity method (1),
although not resting on as sound a theoretical basis, has nevertheless
been more popular due to the much shorter times required for obtaining
results,.

In view of this situation, it seemed of Ilmportance to in-
vestigate the possibility of eliminating the disadvantage of slowness
from the equilibrium method. Now in the conventional equilibrium
method, one starts with an initially uniform distribution of the sub-
stance under investigation in a suitable solvent and allows the pro-

cesses of sedimentation and opposing diffusion to transport the
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‘ mﬁtérial, fesulting finally in the appropriate non-uniférm equilibrium
distribution in the presence of the centrifugal field. A saving of
time might be effeqted if one starts initially with a non~uniform
solutioh in the form of a step function having pure solvent in the
top (nearer the axis of rotation) portion of the cell and the solution
in the bottom.portion,* the reasoning being that by starting in this
manner, less material has to be transported in order to arrive at the
equilibrium distribution and this might result in a decrease in the
time required. The availability of the synthetic boundary cell (18)
means that i1t should be possible to set up the experiment with the
gtep function distribution., The questions are how to make the dbest
cholce for the initial distribution for a given experiment and what
saving In time can be expected. In order to obtaln the answers to
these questions we return to the theory of the approach to equilibrium

which has been presented in section A.

2. Derivation of the Optimum Step Functions

The approach toward equilibrium is described by the formal

solution, equation 48

C(ﬁt‘)—C(flw) = 0 Gocr’ Z /'\“ U.(p)C ™ (120)

*  Professor Schomaker pointed out that there 1s no need to restrict the

step function to this speclal form and that one should consider a more
general form, using a solution of one concentration in the top of the cell
and a gecond solution of a higher concentration in the bottom portion.
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We have obtained explicit expressions for U, and &, , which are
valid to within terms of order ,\~ , by means of a perturbation

treatment

Uolp) = U@ + Alle) + 0(3)

(o)

E. = €+ o(n)
where
(D) ™ 7
3 - rrTr L X
~ 2 & 2.
and
N o=
V. +F

The /ﬂyL are constants for a given value of & and are determined by
the initial distribution of concentration, 7£(7Q} » through the rela=-

tion given by equatlon 53,

! -0((0
A, = 2 Jo‘{/[)[’*?‘(lf—').]%((o) S ). (121)

o

(o)
Because of the rapid increase of 5;» with m , for the

&K -values of interest, the deviation from equilibrium is eventually
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determined by the leading term ( M = | ) of the sum in equation 120.
We therefore assume that the optimum starting conditions will be such

that the necessary condition

A

(l
o

!

ig satisfied. Since the initial step distribution which will accomplisgh
this will depend on the value of A  involved, we also express fT()O)

in the perturbatlion scheme taking

(1)

Lip) = L7+ 2f T+

C:I ;0 <j° < /3

I

<o) ¢
Cx = Cp +2Cq #-- ¢ e L.
Defining
(o} (o)

F{ = Clir (:1:

(1) (1)
T (fI

1l

R

we can write
L , 04 @<
:f:(f) f) {3

R [ n ke o] pep e
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| and for the ratio of the concentrations in the two portiong of the cell

we have

Q)

C (o) )
r _ R [l—f—kf{ R +:( ' (122)

(o)
fﬁ /? . ... and /% are to be determined in such a way as

to make /%I vanish.
Introducing this initial distribution into equation 121 and

collecting like powers of ;\ we get

(o)

A, = A AAT e

n

where
{
° X o (a)
AL = lj:‘(f’ c fu:’#
!
A(’) = 2[0( ~°<fo ' g (] I (123)
. o{?e, {[(2f--l)uiq+d:’]{(;uﬁf)%”}
with

7= o, [[1-AG-p) + RA (p-7]
1)

Fo= . R“ACe-p)

‘



-

where we have Introduced the unit step function

A(?() =
l X 7 O

(=)
Now setting /’\| equal to zero we get from the first of equations 123

1
— g
0 = [tpe X [0 -Ale-)] + R AGp |

(124)

XI({D): C/O"JT(—/O + _;{4,(,;‘,71-(0

which on carrying out the integrations leads to the following equation

co
determining SR " and ﬂ

X
. Y #6/5

(I~p)x

R

|

(125)

Y, + e

where

% = CHTp ’[(Tl—of‘)/zn'oz]%w/&
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Now the equilibrium distributions most favorable for experi-~

mental study in the ultracentrifuge are those for which
(Ce,) = a4
e7ui |

(1 and 2 denote the extremities of the cell) so that using an agsumed

value for the moleculsr weight, M s in the expression

Anlcue,) SO Gty A

Qzuil 2R T

(126)

one chooses a speed W such that the concentratlon ratio will lie iIn
the desired range. The corresponding range for the parameter X 1is
easily calculated from the relation

X = —é-«éw{cz/C,)

Qlu;,
= O0.3§ —0.70

(We recall that in Archibald's example for which we made calculations

in the preceding section, «  had the value 0.6.)

To illustrate the nature of the result expressed in equation

(o)
125, we calculated R as a functlon of /6 for the cagse &' =0.§ .
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. The results are presented.in Table V and plotted in Figure 1 (solid
cur#e). The éurve shows that there exists a wilde range of choices for
the location of the synthetic boundary all of which are consistent with
the vanishing of /%:0) . It is.interesting to note that included
in this range there is the choice of pure solvent as the top layer

( R “ 2 oo ) with the boundary placed at /5 = 0.174. The
degree of freedom in the choice of the initial step function resulting

(0}

from the presence of the two parameters R and /5 can slsgo be

used to make

so that in asnalogy with equation 124 we take
I _p
o = Ji < hy {[1-A@p] + R‘”A((o-/s)}

X - :
. e) CoL2mpe + 5"(? Al 2T

which leads to

o
(o) fz - C’ﬁ

Z; _ @-—(hﬁ)o( (127)




 where

):_ = cevamp -[(%r"—xl)/yrzof]ﬁé«zw/s

The resulte calculated from this equation, again for the case O{= O. 6,
are presented in Table VI and plotted in Figure 1 (dashed curves). The
gimultaneous solution of equations 125 and 127 ylelds the particular
choice for f?(o) and /% such that both /ﬁfo) and /Q:f) vanish.
This 1s easily obtained as the point of intersection of the solid and

dashed curves in Figure 1 with the result

(% = 0.53%
(
R Vo 2.8 )
()
Since /qz is usually quite small regardless of the nature of the

initial distribution, this result is not particularly important from

a practical standpoint. In applying the fast method the chief emphasis
should 5e placed on the attempt to have conditlons as ideal as possible
for the vanishing of /qu) .

We illustrate the appearance of the optimum initial distribu-
tions in Figure 2 which is a plot of three of the poseible choices for
the initisl step function all of which cause /qfo’ to vanish, with
the central one ( /% = 0.535 ) also causing /q;o) to vanish. For

comparison we include the equilibrium distribution which is given by

the continuous curve. It is clear that the optimum step functlons do
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‘not have to be good approximations to the final distribution. Ap-
parently sedimeﬁtation and diffusion play a vital role in determining
the sultability of a glven step function. The criterion of the van-
ishing 6f /\l appears to be the only logical one to apply, glving
the bafest requirements which must be met by an optimum initial distribu-
tion. Of course we expect, however, that if we cause an increasing
number of the /A,L to vanish by introducing more and more parameters
into the initial distribution (more steps) we will be approximating the
f£inal distribution more and more closely since we know that all the

/qu will vanish only if we start with the actual equilibrium
distribution.
Thus far, in deriving the optimum step functions, we have
been concerned only with the zero-order approximation. We wish now to

examine the effect of including the first order term in equation 122

RQO)

T *

G R[] o0

We therefore return to the second of equations 123 which is the
o)
formula for /\,\ . Specializing to the case M = | and equating

to zero we have

| _exp
o = Jire {f<lf-r)U,‘°’+uj"]{‘°’+uf“’]é“’)l
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TABIE V

Position of the Step and the Corresponding Ratio of Concentra-
: (o)
tions in the Layers such that /\lo Vanishes.

Calculated from Equation 125 for the Case X = 0.6, i.e.,
<C=/C:>u{v;| = 3.31 , |

p R
0.000=0.194 neg.
0,194 +
0.20 20
0.25 5.2
0.30 3.4
0.35 2.72
0.40 2.42
0.45 2.26
0.50 2.17
0.55 2.1k
0.60 2.16
0.65 ~2.22
0.70 2.32
0.75 2.49
0.80 2.78
0.85 3.30
0.90 k.37
0.95 7.69

1-00 o0
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TABLE VI

Position of the Step and the Corresponding Ratio of Concentra-

(o)
tions in the Layers such that Az Vanishes.

Calculated from Equation 127 for the Case K= 0.6, i.e.,
(exle)eqrt = 332

A R™
0.000~0.01 neg.
0.02 5.11
0.05 1.38
0.10 1.17
0.20 1.10
0.30 1.09
0.40 1.13
0.50 1.35
0.51 1.43
0.52 1:56
0.53 1.81
0.5k 2.43
0.55 6.66
0.56 -1.92
0.57 -0.21
0.58 0.25
0.59 O.hk
0.60 0.56
0.70 0.82
0.80 0.83
0.90 0.7h

1.00 — OO
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(o) (1)
and introducing the step distributions for jf and j: we solve

(1) .
for R with the result

' I e ) o
RO fap & ap-ox + R XY Lmate-p] + R Ale-p) )

[ap & T, A(p-p)

(o) A (o)
But since R and {3 are chosen such that / vanishes, we have

from equation 124
! o
(40 %, D-AG-p)]
fo,(f &y, Alp-p)

Forming the ratio we find

)

/S (o / _0(/0 10
fio & Tapn +87] + R [ Bexrd]

R Jhe e

Carrying out the rather tedious integrations we obtain our final

expression
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ﬁiu) <~ EQ([s) _Q(o)j + Rfo)[Q(l) _ Q(/Q)J
,?“) - : -
[‘—‘}/,G-ﬁo(] (128)
where

=4

P
Q([") =€ codn‘{o{;r_.i_; E‘fo(-f-ﬂ'm[/ )] r)__lx)’(o( (,}
+Tye 4JA~TL‘(O{b._[D.o<7‘t‘3 wt ]+ [, g™ qg]f

+ -,'Lyf("'(")i

}/; = C/O'QJC/Z ——E(Tr’:x‘)/zn'd__)/@wf/:’

We consider now one of the step functions listed in Table V

J

= 0.50 R = k.17

)
and proceed to calculate R / () from equation 128 remembering that

X =0C.6 . The result is

RY/Re = 0.077



| so that
Cw
—= = 2.7 Et + 0,077%:] + o(x?)

Cr
and since we usually have A\ =< 0.08, we see that the correction amounts
only to about 0.4% of R(“ and is therefore utterly negligible,

In order to examine the influence of first-order terms on the
choice of step function in the vicinity of /3’-‘—‘ 0.17Y4 which is the pure
gsolvent case, we must proceed in a different manner since we can no
longer treat /3 as fixed and simply account for the first-order cor-

rection by varying Cpo /CI . For the pure solvent case

e o= } Per
Cr . (b<¢<r

J

and we wust now treat /5 as the gquantity which depends on A .

Writing

Flp = CxAlep)
and expanding the step function in powers of A after introducing

fe B ap e
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‘we get

FO) = G [Ap-p ~ 2B G-p] w0 (o)

or

i)

76co) Cx A (/D"ﬂ“/

1)

Fro= e piite-p)

where we have introduced the Dirac delta function. Thus from equa-

tions 123, on setting

(o)

/q = O

!

4]
A =0

!

(2) (
we obtain the following expressions determining /g and /@ Y

!
-4
‘/rdf =t (34 = 0
(o)
f
or

(o)) [

5 (p7) + é(l—ﬁ = 0

(129)
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and

o ax[am - @]

S Ty e X (87 '

(130)

We have already glven the solution of equation 129 for the case X = 0.6,

namely

/3(” - 0.19 ¢

Using this value in equation 130 with & = 0,{ , we calculate the result

/5“) = 6,060

Thus

—

/3 - 0.194 + 0.960 N + O

!

S 0.1‘?4#[/ + o.3l/\] + O (W)

For A=0.05 we get

/b: O.fl7'7 + O(’Az)

or a correction of about 1.5%. We note that the effect of including
the first-order term is to shift the value of /5 in the direction of

larger values,
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‘3. Time Required to Reach Equilibrium

We turn ndw to a consideration of the saving in time (as com-
pared to the conventional method) brought about by starting with the
step distributions derived in the preceding section. For this purpose
the zero=~order approximation will certalnly be adequate since we do not
require precige resulits but merely a falr estimate of the times involved.

Thus we take

Cp,T) = ¢ (p,) oz/o ~xe _nr

< Z [AMB xwe ™

(o) 2 : -
A B, = TN dp X (e L)

{

A. B, = 2% y £(p)
[-ezx—_ N fof’ | (131)

X. ()

I

o hTTfO + ;fé; Lo %7?70 ]
Of course, an infinite value of 7 1is required in order that exact
equilibrium be attained. However, for practical purposes, it is suf-
ficient to consider that equilibrium has been effectively arrived at
when the concentration distribution deviates nowhere by more than 1%

from the distribution at true equilibrium. An asterisk will be used
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to denote the equilibrium state and we let Z % be that value of T

for which

C_(o)’(‘*) — C(o,) (132)
: On O l . 3
C Co)oe)
: (o]
Bxcept when A is zero, the M =1 term is sufficient in applying

i
this relationshipT so that T%* 1s computed from

o a~ ¥
A%s, LT +47 1t
0,01 = T c
A, 3, ) (133)

Now in the conventional method

F) = <,

go that we find

/L\:) BM _ 2 [C’/li( I}[l - (“')“_C—MJ (134)
AP B, Wt (1 o+ )"
. wr

which specializes to

(o) 2% -
AR ale-i][1+e
' - ] , (135)
(o PR
AT B T ( [+ %2 )
0 Q T
T It is easy to show that the M =1 term in equation 131 has a maximum
at p= o and this is why we take equation 132 as our criterion for the

attainment of equilibrium.
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‘In the "fast method" we take

/L(f) = x RN (136)
C. R"™ . Iﬂ<(0<

Y

where N~ and f4 are such that A" vanishes for the assumed value
of X ., However, ordinarily the true value of & for the system will
not agree exactly with the value assuxﬁed (also the system may be poly-
disperse and therefore possess a range of oK -yalues) since & or the
molecular weight is known a priori only approximately. Thus /\(Io)

for the system actually differs from zero and the M =] term will
control the approach to equilibrium just as in the case of the con=-
ventional method., Thus to calculate T for the fast method we again

use equation 133 but since ]ﬁ(f) is now given by equation 136, we find

that equation 134 is to be replaced by

A:)BM Z[Ciui l] ‘/M{ -/ [«) ‘“%_).d);yi‘m} (137)
A(o)B ':i_:_v)i [/& + Rm(l—ﬁ)] .

o o ,VLlTC’L ( I +
so that in place of equation 135, we have

A, B, 2[@ l]Cﬂd{(’, -7, +[e —/“xy,]f{;
o o 7? (I+F‘) [-_/& TR(O)("’/})] (138)
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with Y, -given by
}i\ = dcug 71717% — [(%‘—71;1-_ xl)ﬁ'nn‘x‘](f&whn—ﬁ

go that

y [(Tr—e>] .

— co 7 —_
L/’: T 4M7Fﬁ | .

We now consider the case where a value of 0.6 has been assumed
for o and one of the optimum step functions (derived for this value

of o ) listed in Table V has been chosen, namely

(o)

/5:0.50 IR = 2.17

(o)
If the actual value of & for the system is 0.6, /‘\ will venish and

(
using the n =2 term, we find for T a value of 0.06. If the actual
value of oK differs from 0.6, however, we use the M= | term for the
calculation of T * ., The results are plotted as curve a in Figure 3.
The curve indlcates the degree of sensitivity of Z“* to the difference
occurring between the assumed value of o and the actual value in the
gysten.,

For comparison we have also-calculated the dependence of %
on the value of &« in the system when an initially uniform distribution

is used (conventional method). These results are plotted as curve b in

Figure 3. Curve ¢ in the same figure is obtained by computing the ratio
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of the T*-values given for the two methods in curves a and b, This
ratio attains its maximum, of course, if the value of < in the system
is exactly equal to the value assumed in choosing the step function.
If the relative error in estimating OZ is 15%, the use of the step
function is expected to lead to a two-fold reduction in time over the
conventional method and an eight~fold reduction if there is exact
agreement between the assumed and actual & -values.,

As we have already pointed out, the & -values of interest
for the equilibrium method in the ultracentrifuge lie in the range
0.35-0.,70. Therefore from curve b we expect that the values of 2796
for the conventional method should be of the order of 0.5, In the course
of his theoretical work on the settling of particles in a uniform gravi-
tational field, Weaver (19) derived the result that regardless of the value

of X, the maximum value of I required for the sensible attainment of

T As a line of possible development in order to overcome the limita-
tion on the reduction of time because of one's inadequate a priori
knowledge of the molecular weight, Professor Schomaker has suggested
that after the cell has been set up with the oroperly chosen (to the
best of one's knowledge) step function distribution, an appropriate pre-
run at high speed be interjected in order to obtain an initial distribu-
tion of essentially three steps for the main run. Generalizing beyond
this, he further suggests that the process be monitored, the gspeed being
readjusted from time to time in accordance with the observed progress cof
the experiment and a built-in wisdom of the program,
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'equilibriumf (starting with a uniform distribution) should be 2. This
value 1g often épplied to the ultracentrifuge (reference 1, equation
108), (20) as a basie for predicting the time required to reach equilib-
rium. | However, 1t has actual significance only for extremely large
values of & vwhich were of Interest to Weaver but which are of little
concern in ultracentrifuge work. Although still valid in the sense

of being the maximm velue of % , actually for the small values of
‘X of interest here, 1t glves much too high an upper bound to be of
much use. From the results presented here, we expect that it leads to
values of Z‘* which are four timeg larger than actually required.

For calculating absolute values of time, t, we must recall

the definition of 7T , namely

t=—}j—.—z~
vV

where H 1g the helght of the cell

Weaver's criterion for equilibrium is equivalent to demanding that

the relative deviaticn from true equilibrium be very small at P =/ .
If instead, one requires the relative deviation at f = o to be small
(as we have done here), one obtains Z‘m’: (= % and this is the limiting
value which should be approached by curve b. These maximum values are
obtained by letting &« become very large as this is when the largest

T -values are required for reaching equilibrium. For the much smaller

«-values dealt with in Figure 3, the two criteria lead to essentially
the same results.
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"and V' is the measn velocity of sedimentation

8o that

t-)(‘ lf—/ ,C_*
Swr(v,+7)

Or alternatively, this can be expressed in terms of the coefficient of

diffusion if we remember that

Y H

so that
€L
t = H o ,
2D x
Thus
¥ 2 ~ %
T = H L (=) ) (139)
2D .

4, Experimental Results

The theoretical expectations have received preliminary con-
firmation in experimental runs with ribonuclease (Armour) carried out by

Dr. Pasternak. The experiments were done at 13,410 r.p.m. in the Spinco
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Model E ultracentrifuge equipped with a temperature control system
and.phaseplate schlieren optics. A stationary distribution of the
protein, which did not appear to be truly homogeneous ( /Ciz = 14,800),
was reached in the case of a uniform initial distribution in about 4O
hours compared with the calculated time of 36 hours, and in about 18
hours for an initial step distribution for which Cr/C_ vas 2.12 and
/5 wag 0.53. The speed, LU , chosen from equation 126 was such
that the assumed value of M, 13,600, corresponded to an « -value of
0.6 ( (C;/c,)ayu”= 3.32) :'an a 0.61 cm, column of solution.

Unfortunately, Dr. Pasternak left the institute before he
hed an opportunity to repeat the experiment using the improved knowledge
of the molecular weight to adjust the value of <o for the system more
closely to 0.6 in ;rder to see whether a further reduction in time might

be achileved.
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Appendix I

From equation 28 we have

C(r,e=) = p w/o[zrrx___ -t

where [3 can be determined from the requirement that material be con-

served
n, v,
%('V r c(ro) = dr v C (v, o)
n r
or
rl Y‘L
r /) (r=r%
! "
which yields
B = 2«¢(, {w 26 __e/“[ 2,
F (VLL_ ‘(IL) * ] (Y‘LL'Y: 1) : ] }

— 2 C, [ z]
(Q/D.OC_— ‘ (Y‘ "-'Y



Introducing this expression for [3 into the first equation, we obtain

for the equilibrium distribution

clre) _ [ -r,‘)
_C: - (qu /D (v, - J

2K

| weh 2o (v+
(0™ - » P[—f(rﬂﬂj

i

since

_r-v ‘
50 B ra_— Yl

The task remaining is to express (Y'*r:)//(ﬁ,+Y3) in terms of  and

A + This can be accomplished by the following sequence of equations.

Y+v, v+t -
v+, B ot
_ | _ ()’Q_—V‘)
) (v +1)
= | - (h—Vv)




y = ¥ {I4+ Ar) o= 2P - !
Y, (1+ X))
(Y"J._—Y) _ by (l——h.)
LY
- A (l — f )
Y o+

|
>’
P
|
]
~—vr

Y; + Y,
Our final result is therefore

Clr =) 2 Felmrten]
C, (e, —)
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We are dealing here with the expansion of L(:?

in terms of
the unperturbed eigenfunctions LL::) which form a complete orthonormal

set

o0
) z ‘ ()
\/L'V\ = Cnm um«
=0

and wish to illustrate a method of obtainlng an expression for this in-
finite series in closed form.
An example of the type of sum one gets when the explicit ex-

(o)
pressions for (:h“\ and Liﬂn are introduced is for "M odd

="
S _ Z Cod MTP
e 2 XY ( k™ L\ * i
W=, 4 (w""‘;c';)("”‘*“w’)

To evaluate this sum we construct a contour integral in the complex
plane in such a way that the sum of the residues at the poles leads to an

expreassion identicai with Sik . Thus we conslder the integral

2%

¢ (= 5)ET )" wed (F2)

T o= fla oA lrpee]



where the éontour C is

> /:‘\ y FX\ > f’;) -
-R —oh o< R

so that it encloses the poles of the integrand at Z = MU , M= 2,4, ...
(due to Aunf (7_;'2) ) and at 2 = nl (due to (z*+ n*)* ) and
excludes the poles at 2 = Rl -’17% and Z. =0 « From the theory

of contour integration we know that (as R —> oo )
oo

T = amwi ) (Reidee b z=mi) + 2ni x (Residue ot 22ni)

w4

The regidue at <Z=m(¢ 1s found to be

-2 c,o-q.mw:{o

<R€/si»\ue, ok Z:‘ML) =
7T (e 5 (mn)®
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so that
. % .
I = - ari. 2 Z N
T 2 v T 1\
=y (m + E<7-?“) (W& - )
4+ a2t x (Re-ddug I o Z: W\L)
or
.4 ' - -
S««. = . {271.“1. x(l?mwlueafzzm_> — I}

Thus by evaluating the residue at 2 = n( and the integral I~ by
direct integration over the contour, we can obtain an expression for

S.,L . The result is

S% = Z mmm(v | o eokd

Sy (m-;- )(M n)* g

| { 5 ok [%(p)]

7wt "‘/7?'1 (1 + X%vﬂ-z)zdx;nﬂ (o(/z)

I

_ wi(p-
Fnt (1 + )

" T—[/+20+Kﬁﬂ)]@+jgi;%m7.

Fn®

C o ’h‘Tt‘/O
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By evaluating (1n an analogous manner) the other sums similar
to *S; which arise in the expression for LL:) and combining the re-
sults, one can obtain (after an extremely tedious algebraic simplifica-
tion).the result given in equation 99 which was derived more directly by

the method pregented in the text,
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(Reprinted from Nature, Vol. 179, pp. 92}—94, January 12, 1957)

A Fast Method for reaching Equilibrium in
the Ultracentrifuge

THE inherent power of the equilibriom method!
for study of molecular weight, polydispersion, and
activity coefficients in the ultracentrifuge has been
limited by the length of time required to reach
equilibrium. We have found that this time can be
appreciably reduced by using the synthetic boundary
cell® and by solecting the starting econditions—speed
of the ultracentrifuge, the relative heights and the
relative concentrations of the two layers—in accord-
ance with a mathematical analysis of the approach

“to equilibrium. :

The approximate®, as well as the exact?, solutions
by Archibald of the ultracentrifuge differential
equation are not useful in our problem because of
the extensive numerical computation needed for each
sot of experimental conditions. We have obtained a
manageable solution by a perturbation treatment of
the centrifuge equation, retaining terms of the first
order in the parameter A = (r, — 7;)/(rp + 1) ~ 005,
where the »'s are distances of the cylindrical surfaces
of the equilibrating solution from the axis of rotation:
For the analysis required here, however, the zero
order approximation is adequate. This approximation
corresponds to the exact solution of Mason and
Weaver® for sedimentation in a uniform gravitational
field. .

The concentration of an equilibrating component
having sedimentation and diffusion coefficients S
and D is

Clg,7) = C*(p) + oxp ap . exp(— av/2) f;Aan(P)
where exp( —n?riv/20) (1)
p =0 —m)H, H =1 — 73

a = HV[2D, V = Sw?(rp + 71)/2;
T = Hto, by = H|V ; Xu(p) = cosnmg + (a/nn)sinnmg,

and where the asterisk denotes equilibrium. Since
C* = 4, exp 20p, « determines the final distribution
in the zero order approximation. It also determines
the exact distribution, as is shown by its equivalence
with the familiar expression

In C% _ M(1 —p) w2(ry? — mf) _

S = —_
Dx3 ~p-® @
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For a given value of « the A,’s are constants which
are determined by the initial distribution of con-
centration.

Because the time exponential in (1) involves n?, the
deviation from equilibrium after a short time is given
by the leading term of the sum, » = 1; equilibration
will be accelerated if it is possible to choose initial
conditions such that A4, vanishes.

Por the initial condition

Ch 0 <p < B
G(P:O) == . R
C,, B<p <1l

where B is the position of the synthetic boundary,
A, can be made vo vanish if 3/C, and 3 are chosen
go as to satisfy N

C./Cy = (v, — exp Ba)/{y: + BXP-{—(l—B)Oﬁ} (3)
with .
v; = cos il — [ (n% — «?)/2na] sin wf

In Fig. 1, C,/C, is plotted against 3 according to
equation (3) for the case of u = 06, thatis, C*/C%, =
3-3. The curve shows that there exists a wide range
of choices for the location of the synthetic boundary,
all of which are consistent with the vanishing of A,.
It is inberesting to note that pure solvent may be
used as the top layer (C,/C, = ) if the boundary
is placed at B = 0°19. It is also to be noted thas
in the vicinity of § = 0-55 the curve has a broad
minimum and the system is insensitive to . filling
errors,

We turn now to a consideration of the saving in
time brought about by starting with a step distribu-

70

01 02 08 04 05 06 07 08 09 10
8

Fig. 1. Position of the step and the corresponding relabive. con-
centrations in the layers that cause A, to vanish, Caleulated
from equation (8) for «=0-6, that is, C*»/C*. =88 -
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Fig. 2, @, The dependence of z* on the actual value of a starting

with the step distribution, §=0-5, C,/C,=2-17, chosen on the

bagis of @=0-6. b, The dependence of 7* on a starting with a

uniform solution. ¢, The ratio of times required to reach equili-
brium in systems b and o

tion chosen in accordance with equation (3). We
define equilibrium as the state in which the concentra-
tion deviates nowhere by more than 1 per cent from
the concentration at true equilibrium, and let ©* be

. the valtie of = caleulated from equation' (1) for this
equilibrium state.’ In applying the fast method to an
actual system the value of « will be incorrectly
estimated (also the system may be polydisperse and
therefore possess a range of o values) so that the
step distribution will be incorrectly chosen and A,
will not quite vanish. The effect of an error of this
kind on t* is shown by curve a, Fig. 2. Compared
with the conventional method, there is an eight-fold
reduction in time when the value of o for the system
agrees. exactly with the value assumed and about a
two-fold reduetion when the error in « is approx-
imately 15 per cent, curve ¢. The saving of time
results’ from setting up step distributions to approx-
imate the final distribution and from advantageous
combinations of sedimentation and diffusion to trans-
port material. ‘

For the above comparison, we have also evaluated
<* for an initially uniform distribution from equation
(1); the results are plotted as a function of « in
curve b. The equilibrium distributions of interest in
the ultracentrifuge are C*/C*; = 2-4, and corre-
spondingly, « = 0-4-0-7. This leads according to
curve b to v* &~ 0:5, and to values of ¢* one-fourth as
large as are usually expected® on the basis of ©% = 2
(ref. 1, equation 108).

The theoretical results have been confirmed with
ribonuclease (Armour) in experimental runs at
13,410 r.p.m. in the Spinco Model B ultracentrifuge
equipped with a temperature-control system and
phaseplate schlieren optics. A stationary distribution

-
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of the protein, -which did- not appear to be truly

homogeneous (M, = 14,800), was reached in the case

of a uniform initial dissribution in about 40 hr.
compared with the calculated time of 36 hr., and in
less than 20 hr. for an initial step distribution for

which Cy/C; was 2-12 and @ was 0-53. The speed, o,

chosen from (2) was such that the assumed value of

M, 13,600, corresponded to an o« value of 0:6 in a

0:61.cm. column of solution.

This investigation was supported in part by the
National Institutes of Health, Bethesda, Maryland,
and in part by a grant from the National Science
Foundation. A more extensive account will be
published later.
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THE DETAILED INTERPRETATION OF THE ANOMAIOUS ELECTRON
DIFFRACTION.PHOTOGRAPHS OF SOME SYMMETRICAL GAS
MOLECULES WITH THE AID OF COMPLEX SCATTERING

AMPLITUDES

A. INTRODUCTION

The use of the Born approximation for the amplitude of the
scattered wave in electron diffraction by gas molecules has lead in cer-
taln cases to determined structures which are in serious disagreement with
the results obtained from other physical measurements. Perhaps the case
of uranium hexafluoride has been the most thoroughly explored. As early
as 1957, Braune and Pinnow (l) concluded on the basis of their electron
diffraction investigation that all of the U-F bond lengths in the molecule
are not equal, the different values being 1.78, 1.99, and 2.17 . Al-
though their specific assumption of a rhombic bipyramidal model might
have been discarded (having been based only on the measurement of the
vositions of the maxima in the diffraction pattern), neverthelegs, the
necessity for assuming a lack of octahedral symmetry seemed obvious. A
few years later, apparently because of the important role played by
uranivm hexafluoride in the war effort, several investigations were made
vertaining to its structure. These were by means of electron diffraction
of the gas (2), x-ray diffragtion of single crystals (5), gpectroscopic
observations (4), and dielectric constant measurements (5). The electron

diffraction investigation, conducted by Bauer, was in agreement with the
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earlier one in that the regular octahedral structure was ruled out. The
model he proposéd, however, was that of a distorted octahedron having
three short and three long U-F distances with the values 1.86 and 2.16 k.
In striking contrast, the other methods of investigation led to results
which are consistent with the regular octahedral structure. In view of
this contradictory situation, the suggestion was made to Bauer by Libby
in 1944 that perhaps the theory of the diffraction of electrons by very
heavy atoms was in need of modification. This possibility was not taken
seriously by Bauer (6) (although he did propose that electron diffraction
experiments be done on other compounds containing a central uranium atom
bonded to light-weight groups) becaﬁse the electron diffraction in-
vestigations of a large number of molecules containing both heavy and
light atoms had led to nothing unusual. Unfortunately, his "analysis" of
the situation was strongly dependent on taking at face value the "results”
obtained by others without due regard to the details and validity of their
procurement. Thus, for example, he raised the question '"were the de~
parture from a regular octahedron due merely to the atomic weight of the
central atom, why would MoF6 be distorted (as'reported by Braune and

1

Pinﬁow) whereas TeF6 is regular (7)." A glance at the paper by Braune
and Pinnow, however, 1s sufficient to convince one that because of the
meagerness of their data they had not succeeded in showing anything about
the structure of M0F6 (this cannot be said of their work on UF6). Thus
Bauer's arguments, being based in part on false premises, tended to ob-
scure the true cause of the difficulty.

In the meantime, Professor Schomaker and his co-workers, by

means of electron diffraction studies extended out to larger scattering
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'angles, had found apparent splits in distances for molecules other than
the hexafluoridés. Previous electron diffraction data for these molecules
had indicated nothing ancomalous and had led to symmetrical structures as
expected. Thus 1t became clear that comparisons between the results found
for different molecules (or even the same molecule) should be made with
care as to the adequacy of each particular investigation, With the
availability of these more extensive results a trend became apparent;
namely, that the magnitude of the apparent split found in the distances
between a pair of atoms In a molecule is approximately proportional to

the difference of their atomic numbers.

Molecule Distance VAYA Apparent Split (A)
(Obs.)

MoFy " Mo-F %3 0.1k
No(CO), Mo...0 34 ~0.13

Mo=C 36 0.13 (assumed

equal)

WF, W-F 65 0.2%
w(co)6 We..O 66 0.23%
0s0), 0s-0 68 0.2%
UF U-F 83 0.30

Sﬁch a systematic variation of the split apparently rules out any purely

chemical reason for the effect such as the formation of some sort of

peculiar bonds.
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Thus Schomaker and Glauber (8) were led to examine the possible
interpretation of this simple behaviour in terms of the inaccuracy of the
Born approximation for atomic scattering. By noting that the fundamental
error resulting from the use of this approximation is that it leads to
real instead of complex amplitudes for the scattered waves, they dis-
covered the reason why the conventional analyses of electron diffraction
data héd led to unsymmetrical structures. Taking the amplitude to be
real corresponds to a neglect of the phase shift attendant on scattering.
For the scattering from a single atom this change of phase plays no role
in determining the intensity of the scattered wave., This is not true,
however, for the scattering from a pair of atoms since interference ef-
fects arise. This is just the case of interest in electron diffraction
by gas molecules where the total intensity of the scattered wave as a

function of angle is proportional to

the terms with ¢( xtj resulting from the interference of the waves

scattered from atoms ( and ‘j separated in the molecule by the

distance V,_J , where as usual S = %E/Jm-g . As implied by the

asterisk, the amplitude ja of the wave scattered by atom bj is in

general a complex quantity and may therefore be written in the form
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(o) = [0 e

J

where the argument, '75 » corresponds to the phase shift associated
with the scattering from atom j . Introducing this more explicit

répresentation of the amplitude, the expression for the intensity takes

on the form

il

Z 2. )ﬂ }7‘;{0"4 AN sy . A?"J
<y 5 ¥ )

2

which is to be compared with

which is the conventional formula and results from the use of the Born
approximation
P

fer ~ [£e) - f

J
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Thus the correct description of the intensity requires the vpresence of a

factor QO“JAYQ which is absent from the approximate expression. This
factor has an important effect if the atoms L and J differ ap-
preciably in scattering power so that for some critical angle, (€9c>ﬂi »
‘quzﬁ attains the value Tf/i . The cosine then vanishes resulting
in a "beat-out" effect on the intensity rmuch as is observed in the d4if-
fraction patterns produced by rolecules containing both heavy and light
afoms. That this behaviour can be simulated in the conventional formula
o

—

by the introductlion of a pair of distances Y{; 4 Scj » and Y}J CJ »

with

| A

§ don, (.7':95>£J‘

[N
1
>
I

)

‘j

ig apparent from the relation

“1
5 ya o
Z S(VcJ' '('gcj) S(‘fc}- '—g,;]-)

—_—

L s +5) . d s (Vg ={.)

= Cdssy . Sy o(_ﬁfi) .

° Y..

hence the reported asymmetries.
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By continuing the Born perturbation procedure to the second
stage of approximation and assuming a screened-coulomb potential,
Schomaker and Glauber were able to derive a non-vanishing expression for

the phase shift, z@nd Borwn s from which they determined the values of

(SC)C,corresponding to varioug pairs of heavy-light atoms guch that
An(s) = T/2 ,
)

The resulting calculated apparent splits

25 = 7%5:)‘_1.

were in excellent agreement with the observed values,

It was found later (9), however, that although the diffraction
pattern for UF6 obtained with L0 kev electrons could be satisfactorily
interpreted in terms of a symmetrical structure using 'Q&@iao'w the
pattern resulting at 11 kev was in serious disagreement with the pre-
dicted one. Thus it appeared that the original agreement had been for-
tuitous and that further modifications of the theory were necessary.
Finally, Hoerni and Ibers (10) using the formalism of partial waves com-
bined with the WKB approximation method and assuming the Thomas-Fermi
potential for the uranium atom were able to compute values of Ll)quF

which led to excellent agreement between the calculated and observed
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'intensity patterns both at 40 and 11 kev. Subsequently, they extended
their éalculatidns 80 as to include a large number of the atoms in the
periédic table (11).

In the present investigation we apply the theoretical results
of Hoerni and Ibers to the detailed reinterpretation of the electron dif-
fraction photographs of the molecules listed. in the table on page 107,
with the exception of UF6. The purvose is two-fold: to provide ad-~
ditional confirmation of the theory and to determine accurately the

structures of the molecules in question,

B. OSMIUM TETROXIDE

There is a conslderable amount of information in the literature
(obtained by methods other than electron diffraction) regarding the
structure of the osmium tetroxide molecule.

The reports on the infrared and Raman spectrum indicate that
the molecule has a regular tetrahedral structure. Thus the early work
(12) on the spectrum of the vapor as well as the recent invesfigations
of the vapor (13) and in addition of the liguid and solid (14) are all in
agreement with this structure. The spectrum is particularly simple in=-
dicating a highly symmetrical shape for the molecule. In addition the
plene square model is ruled out because the observed coincidence of the
infrared and Raman frequencies indicates the absence of a center of sym-

metry.



-113~

The polarization of osmium tetroxide has been observed (15) at
temperatures of i56°'and 288° and found to be constant within the experi-
mental error of 14 leading to the conclusion that the molecule possesses
no permaﬁent dipole moment., This result is consistent with the tetra-
hedral model.

Finally, in the crystal structure investigation (16) the x-ray
data imply that the osmium tetroxide molecule is tetrahedral or nearly so,
even though the positions of the oxygen atoms cannot be derived from the
observed intensitles; no other structure yielding reasonable interatomic
distances could be found.

In view of the consistency between these observations there
would appear to be strong evidence in support of the tetrahedral struc-
ture. The previous electron diffraction investigations, however, have not
glven results in agreement with this simple model., Although Brockway (17)
gave the single value of 1.66 t 0.05 A for the Os-0 distance he made no
commitment as to the type of structure or configuration involved. A
publication of the detaills of this work, although reported to have been
forthcoming, has never appeared. Next, Braune-and Stute (18) fit their
electron diffraction observatlons by assuming two pairs of 0s-~0 distances
in the ratio of 1:1.57 the smaller distance being equal to 1.79 A. In
view of the observed lack of dipole moment (15), they concluded that a
distorted tetrahedral structure was improbable and thought a planar con-
figuration to be a more likely possibility. It appears, as pointed out
by Sheehan (19), that these authors in actuality determined the mean

values of the 0s-0 and 0...0 distances which of course bear the ratio



~11h-

‘1.65 in a tetrahedral structure. Recently, Sheehen (20) made an electron
diffraction investigation in an apparently clear-cut msnner arriving at
an unsymmetrical structure in complete disagreement with the requirements
of the 6ther rhysical measurements. Although the radial distribution
curve did indicate a tetrahedral arrangement of the oxygen atoms, the
Os-0 distance was "split" there being two sharp peaks corresponding to
the distances of 1.59 A and 1.82 A thereby destroying any possibility of

retaining the regular tetrahedral model.

Because of the availability of the diffraction photographs used
by Sheehan we have done no further experimental work in this comnection.
In his experiments the vapor was at temperatures ranging from 60° to 700;
the electron wave length was 0.06059 A and the camera distance, 10.9% cm.
A new visual curve was not drawn, Sheehan's on the whole proving to be
satisfactory. The features especially important for the determination
were rechecked by an examination of thé photographs in collaboration with
Professor Schomaker,

The curves calculated for a regular tetrahedral model are
presented in Figure 1. The cut-off point was varied until the most ac-

ceptable curve was obtained. The theoretical value 808_0 = 0.122 A

leads to curve 4 which is not considered to be as satisfactory as curves 2

and 3 corresponding to values of 0.110 ﬁ and 0.115 ﬁ, regpectively.
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Values of 0.10 Kl(curve 1) and 0.13% A (curve 5) are clearly not acceptable.
The effect of increasing the temperature factor of the 0...0 term is shown

in curve 6.
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ILegend _of Figure 1. 0s04

Curve §os-0 B (a5, .0780g-0) * 10° (E?)
1 0.100 0.8
2 0.110 0.8
3 0.115 0.8
L 0.120 0.8
5 0.130 0.8

6 0.110 3.3
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TABLE T

Scale Factor, Osmium Tetroxide

M1
in Max qo(V.S.) qc/qo Wt
3 9.4 1.041 1
3 24,3 ’ 1.049 0
N 26.7 1.049 0
: L 28.8 1.042 0
5 32,5 1.031 1
5 37.40 1.013 3
6 40.96 1.025 3
6 Lk, 73 1.017 2
7 49,02 1,010 2
7 -- -- 0
8 55.72 0.996 0
8 - f -- 0
9 62.19 1.008 1
9 67.77 1.002 2
10 72.59 1.018 1
10 80.3k 0.997 1
Scale Factor 1,016
Ave, Dev, 0.009
gm0 = 1.69 x 1.016 = 1.717 A
Ave. Dev. 0.015 K
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TABLE II

Structure of Osmium Tetroxide, Td

Parameter Value Limit of Error
T08=0 1717 A 0.035 A

, . A .02 A
28140 0.226 & 0

(apparent split)
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C. TUNGSTEN HEXAFLUORIDE

Spectroscopic evidence points conclusively to a regular octa=
hedral structure for the tungsten hexafluoride molecule., This conclusion,
previously arrived at purely on the bésis of the presence of only three
iines in the Raman spectrum (21), has been verified by two independent
investigations of the infrared spectrum of the vapor (22), (25), in which
all but five very weak bands were fit into an ldentification scheme based
on the totally symmetric octshedral structure.

Although the original electron diffraction investigation of
Braune and Pinnow (1) on the hexgfluorides of uranium, tungsten, and
molybdenum leading to unsymmetrical structures was not considered by many
to be adequate, the more thorough work of Bauer (2) on uranium hexa-
fluoride clearly indicated that a serious discrepancy did in fact exist
with regard to the determination of the structures of these compounds.
Tungsten hexafluoride was later investigated by Bastiansen (24) by means
of electron diffraction. The radial distribution curve strongly suggested
a model containing three short and three long W-F distances and indeed his
final model was in accord with this suggestion having for the unequal
distances values of 1.73 A and 1.96 A. Bauer had obtained the same result

in unpublished work (25).
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b.

The present investigation is based on Dr. Bastiansen's diffrac~
tion photographs (wave length, 0.06048 &; camera distance, 10.975 cm) al-
though a series of sector-photographs has recently become available and
is being studied by Dr. Kimura.

A new visual curve was not drawn, Bastiansen's being used as a
guide. Where questionable points arose they were settled by examination
of the photographs and the conclusions were based primarily on the ob-
servations of Professor Schomaker. The general appearance of the pattern
is falrly obvious and serves to determine the location of the cut-off
point. The theoretical curves calculated for a regular octahedral model
are presented in Figure 2. The first five curves illustrate the manner
in which the theoretical pattern depends on the value chosen for SW}F.
Curve 3, which 1s accepted as being the most satisfactory, corresponds to
SW_F = 0,116 in excellent agreement with the theoretical value 0.115.

As shown by curves 6 and 7, two details of the pattern (maximum 5a and
minimum 8) are particularly sensitive to the choice made for the tempera-
ture factor of the Fou'oF ) terms and serve to confine the difference
aF..FO = ay-F to a fairly limited range. Visual examination of the
photographs indicates that minimum 8 is a fair amount shallower than the
average of minima 7 and 9 and also that maximum 5a is very ﬁeak. In the
theoretical curve the first of these requirements is met the better by a
decrease in aF..FO = ay.ps the second by an increase, Thus the best

choice is determined by a compromise., The final results are presented in

Table IV.
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Legend of Figure 2. WF6

(3 y2yp) % 107 (89

Curve §yp (B) F..F* P
1 0.100 2.2 0.8
2 0.108 | 2.2 0.8
A5 0.116 2.2 0.8
I 0.120 2.2 0.8
5 0.128 2.2 0.8
6 0.116 4,0 1.0
7 0.116 1.0 0.5

*
F..F, means ortho (adjacent) fluorine atoms

F..Fp means para (opposite) fluorine atoms
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TABLE IIT

Scale Factor, Tungsten Hexafluoride

Min Max qO(O.B.) qc/qO Wt
1 7.9 0.937 0
1 12.5 1.040 0
2 20.2 | 0.990 1
2 2h b 1.004 1
3 29.1 1.010 2
3 33.50 1.003 3
by 36.89 1.003 3
i 39.8% 1.007 2
5 Ll 59 0.987 1
5 50,88 0.975 0
6 , 58.31 0.998 2
6 6%.52 0.987 3
7 68.14 0.996 3
T 75.58 0,993 3
8 79.14 0.998 2
8 84,72 0.995 2
9 90.27 0.995 2
9 95.92 - 0.989 1
Scale Factor 0.997
Ave, Dev, 0.006

T p=1.84 x 0,997 = 1.834 A

Ave. Dev. 0.011 A
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TABLE IV

Structure of Tungsten Hexafluoride, Oh
Parameter Value Limit of Error
834 A 0.03 A
L 1.834 A 3
2by - 0.253 A 0.02 A

(apparent split)
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D, TUNGSTEN HEXACARBONYL

The earliest investigation of the structure of tungsten hexa-
carbonyl was based on a study of the X-ray scattering by the crystal (26).
The results were consistent with the assumption of an octahedral structure.
Hdwever, the tungsten-carbon distance could not be determined (upper limit:
2.3 ﬁ) because of the unfavorably large ratio of the atomic numbers.

Shortly thereafter, an electron diffraction study (smax'“’lh)
was made by Brockway, Ewens, and Lister (27), the results of which sup-
ported the regular octahedral structure although the evidence was not
considered to be conclusive, Alsoc it was not possible to determine whether
the tungsten atom is bonded to the carbon atom or oxygen atom of the
carbonyl group. Assuming the former to be the case, they obtained for the
W-C and C-0 distances the values 2.06 £ 0.0k A and 1.13 * 0.05 4,
respectively. Iater, with electron diffractlion photographs extending out
to larger angles (Smax’“ 35), Sheehan obtained a radial distribution
function giving two different values for the W-C distances (1.9% K and
2,20 k) as well as for the W,.0 distances (3.09 & and 3.31 &) in the
molecule. The resulting need for introducing a large number of parameters
into the trial models made the investigation a particularly laborious task

to carry through.



-127 -

In the meantime, the infrared spectrum of solid tungsten hexa-
carbbnyi was obtained in the 2-l5va region (28) with a view toward
determining whether the C~0 bond in the compound is similar to the bond
in the.cérbon monoxide molecule or rather more like the one in ketone
molecules., A lone band was observed corresponding to the C-0 stretching,
the frequency being close to that in carbon monoxide. More recently (29),
a much more extensive investigation of the infrared spectra of the vapors
of chromium hexacarbonyl and molybdenum hexacarbonyl hag been carried out.
Only preliminary spectra were obtained for the tungsten carbonyl (dve to
lack of sufficient sample) but these are "very similar to those of the
chromium and molybdenum compounds” the spectra of which could be inter-

preted quite satisfactorily on the basis of an octahedral structure.

In the present investigation we made use of the photographs
obtained by Sheehan ( temperature, 970 - lO9°;_electron wave length,
0.06075 A; camera distance, 10.9% cm) .

Theoretical curves were calculated for a regular octahedral
model of the molecule in which the tungsten atom is bonded to the carbon
atoms of the carbonyl groups. The first five curves presented in Figure 3
show the way in which the theoretical intensity function varies as the
shape of the molecule is changed, with the W-C and W..0 phase shifts
fixed at their theoretical values and the relative temperature factor

coefficients assumed to be those of set A. Curve 3 is the most acceptable
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Jin this group thus determining the ratio of the W-~C distance to the W..0
distance (207/%20). - The region beyond q equal 50 as given by curve 3 is
in excellent agreement with the appearance of the photographs,

| The region between maxima 4 and 9, however, is unsatisfactory
so that variations of the relative temperature factor coefficients and of
the positions of the cut-offs were considered. The form of maxima 5, 6,
and 7 in these curves indlicates the need for shifting the cut=-off points
to larger q-values while the exaggerated appearance of maxima Ta and 8
seems to require the introduction of more severe temperature factors.
Therefore pairs of curves were calculated using the relative tempersture
factor coefficients of sets A and B for each choice of cut-off points.
The curves for set B are more like what is wanted than those for set A.
Curve 7B, corresponding to SMF<‘= 5w“o= 0.115 3, is congidered to be
the best (theoretical prediction: SW-A: 0.127, SW”0= 0.119)".

As for the degree of confirmation obtained for the octahedral
model we indicate ite virtues by presenting curve 10 which is the cal-
culated intensity using only the W-C, W...0, and bonded C-0 terms. The
introduction of the non-bonded C..,O, 0ss.0, and C...C distances as they
occur in the octahedral structure changes the comparison of maxima 1, 2,
and 4, introduces minimum 5, sharpens minimum 6, and broadens minimum 7,

all as required by the appearance of the photographs. At the same time,

these terms do not destroy any general features of the pattern, except in

*
This curve ig improved somewhat if the C-0 bond distance is increased

by a few hundredths of an ﬁngstrém while the ratio of the W-C distance to
the W...0 distance is kept fixed at 207/320.



'thé.region‘beyond q equal 40 where their influence must be eliminated by
the introduction of ‘severe temperature factors*. In addition, the hint

of maximum 3 is introduced as indicated by the change in the shapé of
minimﬁm 4, To achieve a more distinct maximum it is necessary to increassge
the temperature factor coefficient of the O...OO terms to a value of about
0.040 .&2 in order that the C...Op and O...O:p contributions which are in
phase in this region can exert a sufficient influence., In connection with
this maximum there may be the difficulty that the eye ig particularly sen-
gitive (especially in this region of small g-values) to the effects of the
C...Op and O...Op terms because of their extremely hiéh frequency (5.27 A
and 6.40 ﬁ, respectively) in a way not sufficiently accounted for in the
usual intensity formula, For exanmple, a formula giving greater importance
to curvature and therefore to higher frequency terms may be what is
required.

- With regard to the possibility that another model might also
give acceptable results (there is no indication of this, however, in the
radial distribution curve of Sheehan) we mention that although no curves
were calculated for the trigonal prism model the distances corresponding
to such a model are such as to yield a completely unsatisfactory result
(especially in the vicinity of maximum 5) when the effects of the non-

bonded C...0y, 0...0, and C...C terms are introduced into curve 1O.

* .
These large temperature factors appear to be plausible on the basis

of the spectroscopic investigation (29) which yielded for the F2 bending
vibration the particularly low"frequencies"of 90 cm~l and 80 cm=1 for the
chromium hexacarbonyl and the molybdenum hexacarbonyl molecules,
respectively.
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Finally, it has been found that the electron diffraction method
appéérs to be capable of deciding whether the tungsten atom is bonded to
the carbon atom or to the oxygen atom of the carbonyl group. Curve 114,

» calcuiated for the model in which the.bonding is to tﬁe oxygen atom
(using'the theoretical values for the phase shifts), is definitely in-
ferior in a way which cannot be remedied, 1t seems, by any variation in

the parameter values,

Cq

It is necessary here to add a few remarks in connection with what
appears at first to be a striking discrepancy between the form of the cal-
culated curves and the "obvious appearance”of the photographs in the region
between maxima 4 and 9. The theoretical curves show a strong dominance of
maximum 7 whereas the photographs seem to indicate maximum 6 to be the most
outstanding feature in this region. This leads to a comparison between
maxima 5, 6, and 7, in the visual curve which is the opposite to that ob-
tained in the theoretical curves, The fact, however, that all of the
theoretical curves are the same in this respect regardless of the choice
made of the available parameters indicates that the visual interpretation
of the photographs is in error. The apparent impasse can be resolved if
one assumes the theoretical curve, say curve 7B, to be correct and sets
about to determine whether such a form might possibly be misinterpreted in
the visual examination of the photographs. Noting that what the eye "sees”

is strongly affected by the surroundings (background), we expect that the



| great streﬁgfh of maximum 4 will tend to belittle maximum 5, the double
minima 6 and 7 will make maximum 6 appear too strong, and the exceptional
width of the region of maxima 7 and 8 will result in meximum 7 appearing
too weak. (These errors will be diminished if the observation is made at
arm's length.) All of these effects will combine to produce the apparent
discrepancy existing between the visual and theoretical curves. Such ef-
fects did not often play a great role in the visual interpretation since
the background usually does not change very much over such small regionsg
and invegtigators had learned how mentally to draw in the background when
making their observations. With the entrance of the beat-out phenomenon
resulting from phase shifts, however, sudden changes in background occur
as first the influence of one type of term and then that of another
dominates the pattern. In such cases apparently even an experienced ob-
server must use extreme care in arriving at a visual interpretation of
the photographs. The situation is presumably not much improved when
microphotometer tracings of sector pictures are employed since there is
the necessity for subtracting out the background which leads again to the
same difficulty.

The theoretical intensity formula used in the correlation with
visual data was oriéinally derived by taking the ratio of the molecular
(oscillating) scattering to the atomic ("background") scattering so that
it would yield maxima and minima corresponding to the rings which the eye
seeg on the photographs. Although the resulting formula succeeds in this
and is useful for determining the size of the molecule by a comparison of

ring diameters (this was at first the only use made of the formula) it does
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‘noﬁ try to take into account the effects involved in the visual egtima-
tioﬁ of the relafive'intensities of these ringé*. In the past, as men-
tioned in the preceding paragraph, the observer learned from experience
how to change what he actually saw in order that it would correspond more
closely to what the formula gives. This no longer appears to be a suf-
ficiently satisfactory method of approach. An intensity function cor-
regponding more closely to the obvious appearance of the photographs to
an inexperienced observer would certainly help to improve the situation.
Unfortunately, the derivation of such a function (which is at the same
time not cumbersome) is no easy task as is evidenced by the fact that no
substantial change in the original formula has been made during the more

than 25 years that have passed since it was first introduced.

*
Unfortunately these effects are even present in the measurement of

ring diameters.
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Iegend of Figure 3, W(CO)6

Model . Y-/ 7. .0 Syg &)
1 207/318 0.127%
2 207/319 0.127
3 207/320 . 0.127
n 207/321 0.127
5 207/322 0.127
6 207/320 0.120
T 207/320 : 0.115
8 207/320 0.120
9 207/320 0.110

100 207/320 0.120
11 W-0-C bonding with r c/“w-o = 320/207,

$ ..o = 0125 § o = 0-120.

#

Theor. Value

W-C, W..0, and C-0 terms only.

Sw..0 (&)

0.119%
0.119
0.119
0.119

0.119

0.120
©0.115
0.110
0.110

0.120
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 Iegend of Figure 3, w(co)6 (Cont'a)

(a,. - aC—O) x 10° (22)

iJ
Atom Pair A B
W-C 0.5 0.5
W..0 0.85 0.85
v, 2. .
C..C, 5 k.0
c..op 3.5 6.0
Oo oO )'I" . 8'0
: o >
,CesCy 6.0 10.0
C..04 10.0 16.0

0..0, 20.0 30.0
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TABLE V

Scale Factor, Tungsten Hexacarbonyl

Mim Max q.(W.s.) q, a./a,
1 (4.8) 4,6 0.958
. 1 (7.5) 7.0 0.933
2 (10.2) 10.2 1.000
2 (13.0) 13.25 1.019
3 (1k.1) - -~
3 (15.3) -- --
L (17.2) 17.3 1.006
L (21.1) 21.3 1.009
5 2k ,8 25.0 1.008
5 26.9 27.0 1.004
6 29.8 29.5 0.990
6 32.5 32.25 0.992
7 34 .8 35.5 1.020
7 38.8 39.0 1.005
8 3.7 5.7 1.046
8 18,6 48.2 0.992
9 51.8 51.2 0.988
9 54,99 55 .2 1.004
9a - 59.1 -
9a 61.50 61.0 0.992
10 63.4 63.5 1.002
10 66.39 66.5 1.002
11 69.94 70.0 1.001
11 T3.46 T4.0 1.007
12 "(6. 78.0 l.OlLl-
12 79.1 79.2 1.001
13 81.k 81.25 0.998
13 86 .4 85.5 0.990
1k 89.46 89.0 0.995
1ha 9k.7 96.5 l.ery
1ha 97.5 98.0 1.005
( ) denotes obs. of V.S.
Scale Factor 1.001
Ave, Dev, 0.006
Yy = 2.071 x 1.001 = 2.073 A
Ave. Dev. 0.012 R}

ry..0 = 3.201 x 1,001 = 3.204 &
Ave, Dev. 0.019 A

=
ct
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TABLE VI

Structure of Tungsten Hexacarbonyl, Oh

Parameter Value Limit of Error

Yy G 2,075 A 0.0k &

[/ -]
..o 3.204 A 0.065 A
26 0.2%0 A 0.05 A

(apparent splits)

%0 o250

=
o
(@
W
=4
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E. MOIYBDENUM HEXACARBONYL

The X-ray scattering by the crystal of molybdenum hexacarbonyl
was interpreted on the basis of an octahedral structure (26) with the
values 2,13 A and 1.15 A assigned to the Mo-C and C=0 distances,
regpectively.

This was followed by the electron diffraction study made by
Brockway and co-workers (27) which led to results very similar to those
which they obtained for the tungsten compound. They reported the value
.08 + 0,04 A for the Mo~C distance and 1.15 * 0,05 K for the C-0 dis-
tance in the regular octahedral structure. As in the case of tungsten
hexacarbonyl, however, Sheehan (20) was forced to interpret his electron
diffraction data (which included larger angles of scattering than those
of Brockway) in terms of a model having a short Mo-C distance (1.99 R)
and a long Mo-C distance (2.12 2), assuming all of the C-O distances to
be equal.

Very recently the infrared investigation (29) has, however, con-

firmed the regular octahedral structure for the molecule.

The electron diffraction data used in this investigation are
those of Sheehan (temperature, 90° - 11205 electron wave length, 0,06042 A;

camera distance, 10.92 cm).
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Theoretical curves were calculated for a regular octahedral
model of the molécule in which the molybdenum atom is bonded to the
carbon atoms of the carbonyl groups. The first five curves in Figure k

»show the‘way in which the theoretical.intensity function varies as the
shape of the molecule is changed, with the Mo-C and Mo..0 phase shifts
fixed at their theoretical values and the relative temperature factor
coefficients assumed are those of set A, Curve 3 is the most acceptable
in-this group thus determining the ratio of the Mo-C distance to the
Mo,.0 distance at 207/320. This curve would be improved if minimum 7
could be made deeper and maximum 9 could be made stronger. A shift in

the cut~-off point (theoretical (qc) = 68.5) of the Mo-C term to a

Mo-C
larger gq-value should help to bring about both pf these changes, How-
ever, if the cut-off point of the Mo..0 term is to be shifted at all

from the theoretical value ((q,) 78), it should not be shifted

Mo..0
toward larger g-values because this has the effect of making minimum 11
deeper and of weakening maximum 12, both of which changes are not desired,

Thus the amount by which the cut-off point of Mo-C can be shifted is

Mo=C ig to remain greater than 5&00‘0.

limited if S
Curves 6, 7, 8, and 9, serve to illustrate the form of the in-
tensity function for various choices of the cut-off points and relative
temperature factor coefficients, Curve 6A is quite satisfactory in the
region q greater than 60 but not as good for q less than 60. In particular,
minimum 7 should be deeper and maximum 9 stronger. Curve 84 is better in

these latter respects but not as good for g greater than 60, minimum 11

being too deep and‘maXimum 12 too weak. A choice lying somewhere between
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Athe two curves is best so that we teke 25&0_0 = 2%;..0 = 0.135
(theoretical prediction: Qé;_c = 0.146, 28&0..O= 0.128). The need for
more severe temperature factors such as those of set B 1s not as clearly
indicated here as it is in the case of the tungsten carbonyl. Maximum 3
is already quite distinct and there is no exaggeréted feature to dbe
eliminated from the curves. The only apparent improvement obtained by
using set B is that maximum 9 is strengthened. In comnnection with this
feature and the one immediately succeeding it (maximum 10), we remark that
a situation arises similar to the one experienced in the case of tungsten
hexacarbonyl {maxima 6 and 7) in that the obvious appearance of the photo-
graphs suggests that maximum 9 is stronger than maximum 10 by a conslder-
able amount. However, in none of the theoretical curves (which are
reasonably acceptable otherwise) is this found to be the case. The answer
to the apparent difficulty agaln lies in the heed for gilving due con-
sideration to background effects., Maximum 9 is preceded by a deep minimum
with the curve rising sharply, whereas maximum 10 is preceded by a shallow
minimum with the curve falling off very gradually resulting in a broad
maximum. Under such conditions and particularly at close examination of
the photographs we should expect an appearance similar to the one actually
found. This kind of situation arises in these carbonyl compounds as the
cut~off region is approached where the C-0 term is becoming dominant
producing broad maxima which appear weak. We note also that in the case
of the molybdenum compound, maximum 7 compares quite favoraﬁly with
maximum 6 in the appearance of the photographs (unlike the tungsten case)
since the cut-off points are gquite distant andlmaximum T is now preceded

by a deep minimum.
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The trigonal prism model as well as the possibility of Mo-0-C
bonding are both ruled out in exact analogy to the case of tungsten hexa-

carbonyl.
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Figure 4. Molybdenum Hexacarbonyl
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Iegend of Figure 4, Mo(co)6

Model- "o-¢/ o .0 §ro-c D) So..0 (A)
1 207/318 0.07%" 0,064
2 207/319 ' | 0.073 0.064
3 207/320 ~ 0.073 0.06k4
L 207/321 0.073 0.06k
5 207/322 0.073 | 0.06k
6 207/320 0.070 , 0.070
T 207/320 | 0.070 0.060
8 207/320 0.065 0.065
9 207/320 0.065 0.060

*  Theor. Value
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Legend of Figure k4, Mo(CO)6 (Cont'a)

(a,, - a5.q) x 107 (42)

ij
Atom Pgir A B
MO-C : 005 0‘5
Mo..0 : 0.85 0.85
C..C 2. L,0
D 2 _
C..0 . 6.0
b 3.5
0..0 L, 8.0
p _ >
C..C 6.0 10.0
&}
C..0, 10.0 16.0

O..O0 20.0 30.0
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TABLE VIT

Sogle Factor, Molybdenum Hexacarbonyl

Min Max qO(W-S’)
1 5.0
| 1 TeD
o) 10.4
2 13,0
5 -
L 18.2
in 20.97
5 25.06
5 27.28
6 29.86
6 32.59
7 36.24
T 39.1
8 42,5
8 45.6
9 u8,2
9 _ 51.43
10 55.08
10 58 .39
11 T
11 -
12 o=
12 86.0
13 89.1
13 92.
Scale Factor 0,995
Ave. Dev, 0.005
yo-c = 2071 x 0.995 = 2.061 £
Ave, Dev. 0.010 R

Ave, Dev, 0.016 A -

Re jected

1./9,

0.880
0.907
0.962
1.015

0.951
1.030%
1.002
0.999
0,991
0,994
0.986
1.004
0.981
0.965
0.983
0.992
0.995
0.998
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TABLE VIIT

Structure of Molybdenum Hexacarbonyl, Oh

Parameter Value Limit of Error
r 2,061 A 0.0k A
Mo~-C .
Bio. .0 3,185 A 0.065 A
.135 A .02 A
28y0-c 0.135 A 0.02 A

(apparent splits) . .
25&0 o 0.135 A 0.02 A
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F. TUNGSTEN HEXACHLORIDE

e

' On the basis of their electrbn diffraction investigation
(Smax ~ 15) Ewens and Lister (30) reported a regular octahedral structure
for the tungsten hexachloride molecule with the W-C1l distance equal to
2,26 * 0,02 &, Their radial distribution function had gingle peaks at
2,28 & and 3.15 A. The general appearances of the five maxima which were
vigible on their pictures were in agreement with those of the calculated
curves.,

The X-ray study (31) indicated that the molecule is present in
the crystal with the structure of a slightly deformed octahedron which
result was considered té be in agreement with that of the electron dif-
fraction investigation. The W-C1l distance was assigned the value o.24 &,

The electron diffraction photographs obtalned by Rundle were
degcribed by Spurr (32) as beiné in full agreement with the observations
of Ewens and Lister. Iater, however, Professor Schomaker re-examined the
photographs giving particular attention to the region of large scattering
angles with a view tpward determining the presence of a beat-out and re-
sulting apparent split which was expected because of the phase shift

phenomenon. Indeed the effect was observed to be present and a rough

estimate was made of the apparent split (0.18 A).

b.

For the purpose of the present investigation Professor Schomaker

drew a visual curve based on his study of the photographs. The theoretical
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éurVeé were next calculated (curves 1-5) and were all found to be in serious
disagfeement with the visual curve in the region immediately following
maximum 4, Maximum 5, which is‘present-in the theoretical curves, is ab-
sent in‘the visual curvé*. A careful fe-examination of the photographs in
this region failed to change the situation. Since it appeared that a
shortening of the Cl..ClO distance relative to that given by the octahedral
model would tend to send this region of. the theoretical curves into general
agreement with the visual observation, Professor Schomaker suggested that
the vapor actually present at the time the photographs were taken may have
been that of tungsten oxychloride;which is easily formed from the hexa-
chloride in the presence of oxygen or moisture and has a considerably higher
vapor pressure.

To test the possible validity of this hypothesis, a theoretical
intensity pattern (curve 6) was calculated for a model of the tungsten
oxychloride molecule in which the Cl..Cl, distance in the octahedral model
was decreased slightly to a value which it was guessed would lead to the
desired effect., The form of curve 6 in the region in question is in ex-
cellent agreement with the visual curve although for some of the other
features in the portion of the curve corresponding to q less than 50 the
“visual curve seems to lie somewhere between the curves for WCl6 and WOClh,
possibly indicating that a mixture of these substances had been present.

Unfortunately, the photographs are only five in number and the features

* Ewens and Lister state that maximum 4 is unsymmetrical, falling more

slowly to the outside. This is more in agreement with our theoretical
curves than with the photographs.
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YWhich are preéent in the region beyond g equal 50 are very difficult to
observe. On the basis of his study of the first four pictures (which are
poor in this region) taken in the course of the experiment, Professor
Schomakér had drawn a visual curve which somewhat resembles curve 5 (WCl6)
at these large g-values, On examining the fifth picture taken (which is
much clearer), however, he had made a sketch of the appearance of this
region which bears a striking resemblance to the WOClA curve, Had this
gketch instead been more like the curves for WCl6 at these g-values, the
posgibility that WOClu had been present originally but had been gradually
depleted would appear plausible. However, maximum 5, which is associated
with WClg, 1s not observed on this photograph either so that it seems
likely that even during the taking of the last picture the vapor of the
oxychloride was the predominant one present. The rough agreement (in the
reglon g greater than 50) of the visual curve based on the first pictures
with the theoretical curves of WCl6 must elther be accidental or else due
to the difficulty of obtaining a reliable visual curve from such poor
pictures. In any case all that one can conclude is that there ig suf-
ficient evidence for suspecting contamination to have occurred. Pictures
of pure WCl6 must be obtained in order for the Investigation of its

structure to proceed,
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Figure 5. Tungsten Hexachloride
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Iegend of Figure 5, WCl6

(aij - aw-m) x 107 (Ag)

Model

Cl..C1
b

1.0
1.0
1.0
1.0

l.o

i = -
w—cll Ty Cl,

Curve et (B C1..01,

1 0.072 3.0

2 0.080 , 3,0

> 0.088 3,0

N 0.096 ' 3,0

5 0.104 3,0

6 wocl,
((:11w012
( CllWCl:L

1w
{C WO
(€101,
{ C1W0 =
Parameter Values Sam. 6

[+
ol - 2.26 A3 m, o = 1.70 A
oo = 0-120 A5 £ = 0.090 A
6 = 1%0""
(cont'd)

* Chosen so that I'CILJ..C].E - 310

w~cl

i
N
n
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i

L}J

T —-26
37 /4

= Tf‘/z

W/z. + 6
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Iegend of Figure 5, WCl6 (cont'd)

Atom Pair (éij - eyoy) X 107 (2%)
W-0 0.0
C1,..C1, 3.0
Cl,..Cl, | 5.0
C1,..C1, 4.0
C1;..0 4.0

012..0 6.0
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G. MOIYBDENUM HEXAFILUORIDE

As in the case of the tungsten compound, the spectroscopic
evidence is strongly in favor of a regular octahedral structure for the
molybdenum hexafluoride molecule (21), (22), (23).

In the electron diffraction investigation by Braune and
Pinnow (1), only three measurable maxima were obtained (smax‘ﬂvll). The
first was discarded and the remaining two were consistent within the
experimental error with a regular octahedral structure. However, having
found that the assumption of an unsymmetrical model was necessary for the
uranium compound, and likely for the tungsten compound, they postulated a
similar structure for molybdenum hexacarbonyl. Later, Bastiansen using
considerably more extensive data observed a split of 0.14 R in the Mo~F
distance, the two unequal values being 1.77 K and 1.91 2. Bauer had also

obtained this result (25).

b.

The present investigation is based on Bastiansen's diffraction
photographs (wave length, 0.06045 K; camera distance, 10.985 cm).

No features could be observed in the cut-off region on these
photographs so that his visual curve (which he had drawn as a dashed line

in this region to indicate uncertainty) had to be used with the hope that
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‘it'ﬁight prové gufficient for the purpose of roughly placing the location
of ﬁhe cut~off ﬁoint.

Five theoretical intensity curves were calculated for a regular
octahédfal model for different valuesvof ‘gMo—F' Curve k4, corresponding
to gﬁo-F = 0,072 A (theoretical: gﬁo-F = 0.060.R), is judged to be the
best in agreement with Bastiansen's conclusion. The details of the features
in the cut-off region are, however, not in very satisfactory agreement with
the visual curve*. An 1nérease in the temperature factors of the F..FO and
F..Fp terms would probably help to improve the situation to some extent.
Plans had been made to calculate additional curves with such revised tem-
perature factors but this was made impossible to execute because of the
mechanical breakdown of the Datatron computer during the last days in which

this thesgis was written.

% .
This may in large part be due to the extreme uncertainty involved in

the visual observation.



=155~

10

Pigure 6. Lolybdenum Hexafluoride
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Iegend of Figure 6, MoFg

(aij - aMo-F) x 107 (Kg)

Curve SMO_F () F..F_ F..F,
1 0.054 2.2 0.75
2 0.060" , 2.2 0.75
3 0.066 2.2 0.75
) 0.072 2.2 0.75
5 0.078 2.2 0.75

*
Theor. Value



157~

TABLE IX

Scale Factor, Molybdenum Hexafluoride

Min Max a4 (0.B.) qc/qo Wt
1 T.76 0.928 0
1 11.35 1.101 0
2 -- -- 0
2 - - 0
5 20.30 0.990 1
3 24,70 0.996 1
I 29.40 1.003 2
b 33.85 1.00k 2
5 Lo, 46 0.994 0
5 46.91 1.002 1
6 51.97 1.001 o
6 56.23 0.998 1
7 60.80 0.985* 1
7 - -~ 0
8 m- -- 0
8 72.29 0.993 0
9 - - 0
9 84.76 : 1.002 1
10 -- -- 0
10 95.10 0.998 2
Scale Factor 1.000
Ave, Dev. 0,003

Nyop = 1.8 x 1.000 = 1.840 A

Ave, Dev. 0.006 A

*
Rejected.
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TABIE X

Structure of Molybdenum Hexafluoride, Oh

Parameter Value Limit of Error

Q o
Y05 1.840 A 0.02 &

25& 0.14 A 0.03 &
o-F
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Propositions

1. The time derivative of the concentration at any point in the cell
decays exponentially (after a short initial period) during the approach

to eqﬁilibrium,in the ultracentrifuge. The perturbation theory gives an
accurate explicit formula for the decay constant so that both the molecular
weight and sedimentation constant can be determined from a single experi-

ment,

2. It is shown that the second virial coefficient of a two-dimensional
gas can be positive at a given temperature even if that of a three-~di-
mengional gas is negative at the same temperature. Thils may explain the
experiments of Wilkins (l) in which he found the type of adsorption
corresponding to repulsive forces at a temperature at which the virial

coefficient of the three-dimensional gas is negative.

5. The integral equation for the radial distribution function in a
two~dimensional fluid has been obtained using the superposition approxi-
mation. The kernel is more complicated than in the three-dimensional case.
Analytical solutiong are obtained for the case of hard sphere interactionsl

by approximating the kermel by its asymptotic form.

ke A theory of multilayer adsorptioﬁ based on the use of moleculér
distribution functions is presented. The non-linear integral equation
satisfied by the density can only be solved by approximation methods. The
amount adsorbed is obtained by integrating the density function over the

entire adsorption region.



©5. ' The statement of Wilkins (1) that the Langmuir adsorption isotherm
is equivalent to the assumption of hard sphere interactions between the

adgorbed atoms in the monolayer is shown to be incorrect.

6. A consideration of the problem of sedimentation in a medium with
constant density gradient is shown to lead to the Hermite differential
equation resulting in a close analogy with the problem of a harmonic

oscillator in quantum mechanics.

7. The unusually low values found for.the frequency factor in the
expression for the thermal rate of escape of trapped electrons and holes
in semiconductors and luminescent materials may be explained by applying
Chandrasekhar's expregsion (2) for the rate of escape of éarticles over
potential barriers. In this way the frequency factor can be related to

the friction constant (inverse mobility) of the electrons and holes.

8. The expression obtained for the phosphorescence intensity assuming
first order kinetics for the rate of escape from traps is shown to be the
Iaplace Transform of the distribution of trapping levels, The often ob-
served inverse power decay may then be interpfeted ag due to a peaked
distribution with a slight spread rather than to the usually assumed

exponential distribution.

9. The attempt has been made to calculate the molecular friction
constant in a fluid by replacing the remaining N-1 molecules by an
elastic continuum. The use of the Kirkwood expression (3) for the fric-
tion constant in terms of the force correlation yields, however, &

vanishing result not only in the harmonic approximation for the vibrations



" in the medium but also in the anharmonic approximation. The congistency
of this result with that of Peierls (4) in connection with the thermal

condﬁctivity of ‘solids is pointed out.

10. Some interesting results are obtained in a theoretical investigation
- on the mamner of the variation of the density from that of bulk liquid
to that of bulk vapor in passing through the surface zone separating the

two phases.,
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