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BSTRACT

The transonic flow past slender bodies and thin wings is investi=
gated with the use of a general theory of expansion procedures. It is
assumed that the solutions for the velocity components possess asympto-
tic expansions of a very general form, and the differential equations
and boundary conditions for the first and higher approximations are ob-
tained by applying appropriate. limiting procedures to the full equations.
The following cases are treated: 1) bodies of revolution at zero inci-
dence; 2) bodies of nearly circular cross-section, at zero incidence;
3) bodies of revolution at an angle of attack; and 4) thin wings at
zero incidence. Certain first-order similari{y laws are derived for
these problems, and the order of magnitude of the error is stated in

each case.
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1. INTRODUCTION

Linearized theory has found wide practical application in pre-
dicting the flow fields around thin wings and bodies, over a wide range
of subsonic and supersonic flight velocitiess But the transonic speed
range must be excluded. Typically the linear solution for the stream-
wise velocity perturbation becomes infinite as the free-stream Mach
number M approaches one. For example, this quantity is proportional
to |l - M2|—1/2 for flow past a two-dimensional airfoil, and propor-
tional to log |1 = M?| at the surface of a slender body of revolution.
For a given wing or body, these solutions violate the assumption of
small disturbances, and are therefore not correct, in some range of
Mach numbers near one.

A solution for any of the velocity components obtained by lin-
earized theory is actually the first term in an asymplotic expansion
presumed to be valid as one or more geometric paraméters (thickness
ratio, angle of attack, etc.) approaches zero. The error in the linear
approximation at a fixed point in the flow can be made arbitrarily
small by taking a sufficiently small value of the parameter, but the
large streamwise velocities obtained for M near one indicate a non=
uniformity in the expansion. Uniform validity of these solutions with
respect to Mach number is achieved only if M is bounded away from one.
The nonuniformity should not be surprising, because a flow near Mach
number one must contain both subsonic and supersonic velocitiese The
differential equation describing a purely subsonic or purely super-
sonic flow is, respectively, everywhere elliptic or everywhere hyper-

bolic in nature, and solutions to the two types of equations show en-
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tirely different dependence on the boundary conditions. For a mixed
flow we would therefore expect the governing equation to be one which
has the possibility of changing in type. Since the sonic line, along
which the change occurs, is not fixed in advance, the equation is further
expected to be nonlinear. These ideas have been used by several authors
as the basis for deriving first-order differential equations and bound=-
ary conditions for transonic flow over bodies of revolution and thin
wings (see, for example, Refs. 1, 2, and 3).

A more complete understanding of the transonic approximations can
be achieved by regarding the approximate transonic equations as part of
a systematic expansion procedure. The velocity components are assumed
to possess asymptotic expansions of a very general form, and the dif=-
ferential equations and boundary conditions for the first and higher
approximations are obtained by applying appropriate limiting procedurés
to the full equationse In principle it becomes possible to compute
higher~order terms, or at least to estimate errors.

The procedures are found to bear close resemblance to the methods
used in Refses 4 and 5 in deriving expansions for viscous flow over bodies
for low Reynolds numbers. In the viscous problem the limiting process
requires that the Reynolds number approach zeroj for the transonic prob=-
lém some geometric parameter must go to zero and at the same time the
Mach number must approach one. In both cases, terms in an “outer™ ex-
pansion which satisfies the boundary condition at infinity are of a
different order of magnitude near the body than far away. An additional
"inner™ expansion is convenient, and in some cases necessary, for calcu=

lating various flow quantities near the body surface. The inner expan-
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sion is not uniformly valid at infinity, and a matching with the outer
expansion ié therefore necessary. In the transonic case the approxi-
mate outer expansion is found to be the nonlinear equation predicted
above, while if the configuration is slender the first-order inner
eqﬁation is Laplace's equation. These equations correspond to the
Oseen equations and the Stokes equations, respectively, for flow at
low Reynolds ﬁumbers. The formal difference between the inner and
outer expansions lies in the choice of space coordinates to be held
fixed as the small parameter goes to zero. Determination of the cor-
rect forms of coordinate distortion, ie.e. the proper length scales,
represents part of the derivation of the first approximation.

The need of a coordinate distortion for the transonic outer ex-
pansion can be demonstrated either from the requirement of a nonlinear
differential equation or from the following heuristié argument. In
the case of a slightly supersonic flow one expects that the Mach cone
from the foremost point on the body should appear in the solution for
the first approximation. Consequently the proper length scale is given
by the tangent of the Mach angle, T—“L“- « Since this quantity in-
creases toward infinity as M approach;s-oge, it is not possible to use
only the original physical coordinates. If the form of the differen-
tial equation is also considered, one can show that a completely gen-

eral transonic theory is obtained only if the disturbance potential in

the outer limit is of order ll - M2 e In other words the streamwise
perturbation velocity should be of the same order as the difference be-
tween the free-stream flow velocity and speed of sounde This much in-

formation can be obtained without specifying anything about the body,
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except that the body dimensions should change, as M approaches one, in
such a mannér that the flow disturbances disappear in the limit,

For the inner expansion {he length scale should be of the same
order of magnitude as some characteristic dimension of the body. In
the case of a body of revclution the relevant quantity is the thick-
ness, while for a wing it will be shown that the span should be used.

The Finél step in determining the form of expansion is to relate
the Mach number to the body dimensions, that is to determine the order
of magnitude of |1 - MZI in terms of certain geometric parameters.
Using concepts from a general theory of expansion procedures (5), a
principle for matching the inner and outer expansions can be derived.
For slender configurations the result obtained states essentially that
the outer solution for small values of the (outer) radial coordinate
should be compared with the inner solution for large‘values of the
(inner) radial coordinate.

In the course of the derivations it is shown that the order-of=-
magnitude relation chosen between Il - MZI and the body dimensions is
the only one which permits discussion of all possible transonic flow
patterns. The relation thus established may be expressed by the state-
ment that some appropriate function of M and the body dimensions must
remain constant in the limit. Such a function defines a similarity
parameter. Certain similarity laws may be derived which allow com=
parison of the velocities, pressures, and forces for a family of simi-
lar flows characterized by a fixed numerical value of the similarity
parameter. Similarity rules are given, for example, in Refs. 1, 2, and

3. The present procedures are believed to clarify the earlier deriva~-
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tions; furthermore, the order of magnitude of the error is given for
each of the similarity laws stated, and the possibility of deriving
higher approximations is indicated in each case.

The appropriate form of expansion is derived first for a body
of revolution at zero incidence. In order to illustrate the considera=
tions which dictate the choice of a particular transonic expansion pro-
cedure, the discussion is introduced by an investigation of the non-
uniformities which appear for a subsonic expansion. It is shown that
four major considerations must be taken into account in deriving a
transonic expanéion: 1) the Mach number must approach one as the body
thickness approaches zeroj 2) a shrinking of the radial coordinate is
necessary in order to obtain an approximate "outer® differential equa-
tion which admits solutions capable of satisfying the boundary condition
at infinity; 3) an “inner® expansion, satisfying the boundary condition
at the body and matching with the outer expansion, is desirable in order
to obtain a description of the flow which is uniform in a strict sense
of the wordy 4) the shock relations must pe considered in order to show
that the vorticity is of a very small order of magnitude.

Consideration of the outer limit shows that there are only three
possibilities for a first~order equation if the boundary condition at
infinity is to be satisfied: 1) a linear equation describing a purely
subsonic or purely supersonic flow; 2) a nonlinear equation which does
- not contain the Mach number and which can only describe a flow for M
exactly equal to one; and 3) a nonlinear equation which does include a
dependence on M. The third of these possibilities is clearly the most

generale The form of the desired equation is therefore known, and the
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mathematical reasoning turns out to verify the heuristic argument given
previously., Next it is pointed out that the vorticity is negligible,
at least in the first approximation, and potential functions may there-
fore be introduced to describe the first-order outer and inner solu-
tions. It is shown that the leading term of the inner solution must
obey Laplace's equation, and an outline of the justification for
matching inner and outer solutions is given. Since the approximate
inner representation satisfies a relatively simple equation, the form
of the solution satisfying the boundary condition can be stated. The
solution contains a term representing a line source along the body axis
plus an unspecified function of the streamwise coordinate which could
be written explicitly only if it were possible to solve the nonlinear
outer equation. The form of solution for the second approximation is
then derived in a similar manner. First~order similarity laws are
given (equations 3.8] and 3.84) for the pressure at the body surface
and for the drag, including in each case a statement of the order of
magnitude of the errors These rules can be reduced to the results of
Ref. 3, which were derived in a quite different manner. In Ref. 6 the
procedures outlined above are applied to the special case of a slender
cone at zero incidence in a slightly supersonic flows The conical
property of the flow is used to reduce the approximate nonliﬁear par-
tial differential equation to an ordinary differential equation and the
complete solution for the first approximation is obtained by numerical
integration.

As a second example, the expansions are extended to include the

effects of small perturbations in cross-section shape. The ratio of
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maximum change in radius to the original thickness ratio is required to
approach zefo in the limit. It is pointed out that the use of an inner
expansion to supplement the outer expanéion is in general essential for
this problem, while for the case of a circular cross-section it is a
considerable convenience rather than an absolute necessity. |f the
axial distribution of cross-section area is held fixed, it is shown
that small changes in shape can produce only a very small change in
drag, if the shape of the body at the base satisfies certain require=-
ments (equations 4.22 and 4.23).

The expansions for a body of revolution at incidence are also
derived. For this case a second small parameter, the angle of attack,
must be considered. For greatest generality the angle of attack is
taken to be of the same order of magnitude as the thickness ratioe

Except for the presence of a second parameter, the procedures are
fundamentally the same as for the case of zero incidence. It is shown
that to first order the lift coefficient, referred to the base area,
has the same value as predicted by the linearized theory of subsonic
or supersonic flowj the order of magnitude of the error is also stated
(equation 5.20).

The problem of transonic flow over a thin wing is especially
interesting, and can be treated by procedu}es which are quite similar
to those used for slender bodies. The essential new feature lies in
the presence of a parameter representing the aspect ratio. It is as-
sumed that the wing has symmetrical profile sections, and only the case
of zero incidence is considereds A mathematical argument is again

given to justify the heuristic arguments stated previously, and it is



8
shown that the length scale and disturbance potential for the outer
limit must be of the same order of magnitude relative to |1 = M°| as
for slendsr bodies. Given these relations, one must distinguish be-
tween two possible cases, which differ in the behavior of the aspect
ratio in the limit.

In the first case, the inner and outer expansions coincide ex—
actly, and thé wing span is distorted (as M= 1) in the same manner as
the radial coordinate. Therefore the wing span must vary in a pre-
scribed manner as the thickness tends to zero and the Mach number ap-
proaches one. Specifically, the reduced aspect ratio, proportional to-
the product of maximum span times /ll - le s must be kept fixed in
the limits This fact is expressed by defining a second similarity
parameter (see also Ref. 2). A wing subject to these restrictions
will be called "nonslender%,

If on the other hand it is assumed that the inner and outer ex~
pansions may be different, an essential change in the nature of the
problem occurs. The restriction on the order of magnitude of the wing
span is no longer a specific onej it is only required that the reduced
aspect ratio vanish in the limit, and that the ratio of thickness to
span tend to zero so that the wing may be considered "thin™. For this
case the wing is called "slender®™. We should note that the term "slen-
‘der"™ for the transonic regime is less restrictive than for the subsonic
or supersonic regimes because of the importance of Mach number in the
definition; the actual wing span may even increase slowly toward infinity
in the limit. Since the span need not depend on the small parameters

in any more definite fashion, there is only a single similarity para-
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meter, as for the case of a body of revolution. |t turns out that this
parameter dépends only on the Mach number and the maximum cross-section
area of the wing, and may be written in exactly the same form as for the
body of revolutionj this is also true of the corresponding parameter for
nonslender wings. For the slender wing the first-order outer solution
again obeys a nonlinear partial differential equation, and it can be
shown that this solution possesses rotational symmetry. Perhaps the
most significant difference from the previous case is that near the
wing the approximate solution now obeys a relatively simple equation,
the Laplace equationj that is, the leading term of the inner expansion
is described by this equations The first=order jnner solution may be
expressed by a source distribution, but as for slender bodies an un-
known function of the streamwise coordinate must be included. Knowl-
edge of the form of solution is, however, sufficient for determining a
similarity law, of the form given in Ref. 7, for the pressure at the
wing surface (equation 6.31). The order of magnitude of the second
approximation will depend on the specific relation between span and
thickness, but a completely general error estimate for the similarity

rule can be obtained by considering all possible relations.
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2. _BASIC EQUATIONS

The basic differential equatiohs'are statements concerning the
conservation of mass, momentum, and energy for a continuous fluids The
equation of state is taken to be that for a perfect gas, and it is as-
sumed that the viscosity and heat conduction are zero. Since various
flow quantities will change discontinuously across shock waves, it is
also necessary to include equations expressing the conservation laws
in the form of jump conditions for shock waves. Boundary conditions
are imposed requiring that the flow be tangent to the body surface, and
that the velocity approach the free-stream value far away from the body.

The continuity equation and the momentum equation are as follows:

divpqg=0 | (2.1)

.a*ova’-l--‘l,-Vp:O (242)

where p is the density,’atthe velocity vector, and p the pressurej the
space coordinates used are non-dimensional, with the reference length

taken to be the length of the bodye The energy equation expresses the
fact that stagnation enthalpy is conserved along streamlines. Assuming

the perfect gas law,

P
;):0 (2.3)

where v is the ratio of specific heats. These three differential equa-

" tions, together with the shock relations, comprise the basic system of
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equations. An expansion procedure applied to this system would require
an assumed férm of expansion for the pressure and density as well as for’
the velocity components. For convenience, therefore, the equations are
modified so that it will be necessary to assume expansions only for the
velocities.

The momen tum relation may be expressed in a form involving the
vorticity o ¢

2
q
V(-é-)-i--:vaH-i- %Vp:O (2.4a)

Taking the scalar product with 3 ’

2
9
a.v( )+%E¢Vp=0 (2.4b)

ol

Combining equations 2«3 and 2.4b, it is found that

qev(=)=0 (2.5)

It can be shown from the definition of the entropy s that

S-S

00
P P c
- > Y (2.6)
oY ot |

where c_ is the specific heat at constant volume, and Poo? Poo? S0 N

dicate free~stream conditions. Therefore equation 2.5 is equivalent to
a statement that in a flow without shock waves the entropy remains con-
stant along a streamline.

The entropy must increase across a shock wave, but it can be shown
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that the stagnation enthalpy is conserved. Since the flow is uniform

far upstream; the energy equation can be rewritten in an integrated form

valid throughout the flow field:

2 2 2 2

q a U a 1 y+1

L4 [~ &-u
2+Y-1”2+Y-1"2'r-1‘*’2 (2.7

where U is the free~stream velocity, a = ra is the local speed of sound,
and a* is the critical speed of sound. Equations 2.1, 2.4b, and 2.5 may
now be combined to give another relation between q and a3
q2
& divi=d.v(z) (2.8)
Elimination of a2 from the last two equations leads to an equation con-
taining only the velocity components. 2
: q
Taking the gradient of equation 2.7 and replacing V (5) by the

value given in equation 2.4a, a vorticity law can be deriveds:

- - Nat p

This result is equivalent to Crocco's theorem, which relates the vorti-
city and the entropy gradient. Equation 2.5 may be regarded as a conse-
quence of equation 2.9, as is seen by taking the scalar product with a.
Far upstream from the body, the flow is isentropic and ® = 0, while di-
rectly behind a curved shock the entropy will vary from one streamline
to another. Equation 2.5 states that £ is constant along streamlines;

. e
hence the order of magnitude of the vorticity downstream of a shock wave
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can be det$fmined from equation 2,9 by finding the order of magnitude of
P
(- ;" ) immediately behind the shock. The shock relations will
Poo p
provide the necessary expressions for the changes in pressure and den51t¥

P
in terms of the jump in velocity. It will be shown later that Vv (= —2)

is of a very small order of magnitude compared to the body thickne;:?pY.
and the flow may therefore be considered irrotational in the first few
approximations;

~ The conservation laws applied to shock waves are stated, for
example, in Ref. 8, and are modified to give the shock polar equation
plus expressions for the pressure, density, and wave angle in terms of

the velocitiess The resulting equations are written here for an axially

symmetric case in which the flow upstream of the shock is uniforms

fbi 1 2
6, 2 U ~yrT(Y-1+3) |
v =7 - T+ (y=1+=)
y+l U " y<+1 e
p q
S =l+yW (- =) (2.11)
Peo /
q,,2
P q 2
- - - — (2.12)
- ¥
1- X
tanew— S v (2.13)
)

where q, and q, are the axial and radial velocity components immediately
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behind the shock, M is the free-stream Mach number, and 6, is the shock
wave angle. The equations are easily generalized to cases where the
flow ahead of the shock is not uniform, énd to flows not having axial
symmetry.

Equations 2.7 through 2.13 will constitute the modified basic
system of equations. In the following sections, expansion procedures
will be derived for various specific cases by finding suitable expan-
sion forms for the velocity components, substituting into the preceding
equations, and performing appropriate limiting procedures, The bound-

ary conditions necessary will be discussed for each case.
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3. BODY OF REVOLUTION AT ZERO INCIDEN
Geperal considerations

The determination of an appropriate form for a transonic expansion

is based on the following general considerations:

1) The expansions are assumed asyﬁptotic, valid as the body
thickness  approaches zero. In some sense they should also
be asymptotic as the Mach number M approaches one, and it
will be shown that the quantities ® and M=l should not go to
zero independently., Other geometric parameters in a parti-
cular problem may also be required to approach limits in a
specified manner.

2) The differential equation for the first approximation must
adnit solutions which satisfy the boundary conditions at the
body and at infinitys To achieve this possibility, it will
become necessary to shrink the radial coordinate, in a manner
to be prescribeds The resulting equation will have the non-
linear properties desired for the description of a mixed sub=
sonic-supersonic flow,

3) For slender configurations, spatial derivatives in the trans-
verse plane become large near the body. It is convenient,
although not always essential, to use an Mouter™ expansion
which satisfies the boundary condition at infinity, and an
"inner" expansion which satisfies the boundary condition at
the body; a condition for matching the two expansions can be
derived. |

4) Since shock waves will be present, the flow can only be ap-

proximately isentropic, and it is necessary that the shock
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relations be satisfied. It will be shown that the shock polar
equation requires the velocity components to be of different
orders of magnitude in the limit.
Exact eguations ggg boundary condjtions
The derivation of a transonic expansion based on these considerations
will be discussed in detail for the flow over a slender body of revolu=

tion at zero incidence. Cylindrical coordinates x,r,0 are used, and the

body surface is described by
S(xer3d) =r = 3F(x) =0 3.1

where d is the ratio of maximum radius to length, or one~half the thick-
ness ratio. The function F(x) will be assumed to have several continu-
ous derivatives; however, if it is desired only that the pressure at

the body be accurate to order 62, it will be sufficient to assume that

F'(x) and F®(x) are continuous. Nondimensional perturbation velocities

are defined by

q |
1? (xgr35,M) = 1 + ulx,r;d,M)
(3.2)

q
-Dt (x,r;b,M) = V(x,r;b,m

The dependence upon y is not mentioned explicitly, since it is assumed
that y will have the same value for all problems to be considered; also,
the dependence upon the other parameters, and upon the independent vari-

ables, will not always be written out in full,
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The boundary condition at the body surface is given by

-y
q

+VS8=0 at r = 3F(x) (3.3)
Substituting 3.1 and 3.2,

v(x.,bF) = {l + u(x,bF)} oF! (3.4)

It is also required that u and v approach zero far away from the body.
To obtain the differential equation for axisymmetric flow,
equation 2,7 is first rewritten as follows:

a2 ()2 + @ 1 yel

1
u | 2 w2

a."‘2 '
3¢5
" -Gg- (3.5)

In combining with 2,8 this gives the result
(1- Mz)mx + v, -l-"l:v' = MZ{(7+ Duu, + vy, +v.)

+-1Du (vr +%;v) + vzvr + uv(u_ + vx)

: .
5 W2 + v2) (v, + -}; v)} (3.6)

+

In nondimensional form the two components of the vorticity equation 2.9

are
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-1 Y
P P P
-‘v)(l+u)=-——L— (=) = (= -2
(v X Y(y-l)Mz Peo O " Poo pY
(3.7)
-l 5 Y
P P P
W -vv=—b— (=) (= =)
vl Poo Poo pf
Nonunjformjities in e sions for subsoni ]

The familiar first-order transonic equation is obtained by taking
a certain limit of equation 3.6, In order to clarify the réasoning which
dictates the choice of particular limiting procedures, it is convenient
first to consider limits which lead to the linearized and slender-body
equations. For simplicity the subsonic case is treated rather than the
supersonicj no shock waves are present, and the flow is isentropic to
any order of magnitude.

The Prandtl-Glauert equation is often derived simply by neglecting
all nonlinear terms in the full differential equation. Stated i more
precise terms, the derivation may be interpreted as the first step of
an expansion procedure. |t is assumed that the exact solution for the

perturbation potential possesses an expansion of the form

B(xyr35,M) ~ Zl g; (0); (x,r5M)
i=

where (308)
53—+ 0
€1 (®)

lim -n'-'i-s—— =0
5+0 0
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(Questions of uniformity will be discussed in the following paragraphs.)
The expansion is substituted into the differential .equations' and bound=
ary conditions, and & is allowed to approach zero while x, ry and M are

held fixed, For the first approximation, one finds that

_ .2
€ =90
2 1

B + + =0

, cplxx c‘,lrr r (Plr
(3.9)
lim [ro; (x,r)] = F(x)F'(x)
58—+ 0 r r=bF (x)
(pl(x,r) -+ 0 as x2 + r2 “+ o

where B2 = 1 - M2, The solution for @ (xyr) is found by distributing

sources along the body axis:

!
FEF'(B) o |
Py {x,r) = --% f (3.10)
0

J(:%)Z + o

Similar considerations may be used in obtaining higher=order solutions.

A useful approximation to q;l(x,r) is obtained by expanding equa=~

tion 3.10 for small values of r:
? (xyr) ~ F(x)F*(x) log r + g(x;M) ' (3.11)

where the dependence of g(x3M) upon M is contained in a term proportional
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to log B (eee, esgey Refe 9). Because of this behavior, the solution,
as expressed by either 3.11 or 3.10, can be made uniformly valid with
respect to M only if M is bounded away from one. This means that given
an integer n, a Mach number My < 1, and a positive number £, one may

find a number 60 such that

<€ (3.12)

if 8< dg and if 0 < M My < Lo (Uniformity with respect to the space
variables will be considered later.) It is therefore impossible to ob~
tain a transonic solution for axisymmetric flow over a slender body by
first allowing & to approach zero with x, ry and M fixed, and then taking
the limit as M approaches one. Instead, limiting procedures must be |
considered for which & + 0 and M —+ | simultaneously. The parameter to
be held constant will then be a function of both & and M,

For the special case of flow at M= 1, a possible procedure is
to take the limit of the differential equation as M approaches one, and
then to let § approach zero. Since it can be shown that the flow is
nearly isentropic, the first approximation to the solution may be ex-
pressed in terms of a potentiale If x and r are held fixed d&ring .o
the limit procedure, the resulting equation is Laplace's equation in the
transverse plane. The equation does not have the desired nonlinear pro=-
perties, and the general solution can not satisfy the boundary condi tion
at infinity. A revision of the limit process described above is there-

fore necessary: some sort of coordinate distortion must be used so that
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one or more of the nonlinear terms may be of the same order of magnitude
as the Laplaf;:ian. This conclusion is equivalent to a statement that the
velocity components must be of different orders of magnitude in the limit.

Even for a fixed value of M different from unity, certain nonuni-
formities with respect to the space coordinates will occur. The sub-
sonic approximation for u(x,r) is in general nonuniform with respect to
x because of singularities in g'(x) at the front and rear of the body;
for example, g'(x) behaves logarithmically at the ends of a pointed body.
Methods have been suggested for removing this sort of nonuniformity, but
will not be discussed here. A nonuniformity in r also appears which is
somewhat less obvious, but important in the present context. The quan-
tity \szvr in equation 3.6 contributes a term to the potential which is
O(bsr.z). In order to obtain all terms which are 0(") at the body
surface, it is therefore necessary to carry out the eipansion to 0(66).
If a definition of uniformity analogous to equation 3.12 is used, the
assumed expansion 3.8 cannot be uniformly valid all the way to the body
surfacee

Since the expansion 3.8 satisfies the boundary condition at infi-
nity, it is reasonable to assume that it is uniformly valid as d =+ 0 ex=~
cept in some finite region including the body; such an expansion will
be called an “outer™ expansion. It is then convenient to find an inter~
pretation of slender-body theory which treats the slender-body solution
as the beginning of an "inner" expansion valid near the body surface.
Calculation, for example, of the ._64 term in the pressure at the body can
then be achieved in a more simple, yet still systematic, fashion.

Qualitatively spesking, slender~body theory is based on the idea:
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that derivatives with respect to x are sméll compared to derivatives with
respect to ry if r is sufficiently small. In a neighborhood of the body,
the equation for @;(x,r) reduces approximately to Laplace's equation,
and the solution satisfying the boundary condition at the body is given
by equation 3.1l. The function g(x;M) is not determined by slender-
body considerations, but must be obtained by expanding a solution of the
complete Prandtl-Glauert equation.

In order to formulate an inner expansion which is uniformly valid

in a neighborhood of the body, a new radial coordinate is introduceds

re=g (3.13)

Now d is allowed to approach zero while xy r*, and M are held fixed, and
the equation of the body surface r* = F(x) is independent of &, The dif-
ferential equation for the first few approximations is Laplace's, and

the initial terms are exactly the slender=body solution. Since this
solution becomes infinite as r* =+ @y the region of uniform validity is
bounded. It will be shown that the regions of uniformity of the inner

and outer expansions can be made to overlap, and consequently that a
matching procedure can be devised. Since the boundary condition at the
body determines only a term proportional to log r*, the matching is es-

sential for the determination of the complete inner solution.

Expanded form of basic equations

For a transonic problem, it may be expected that the use of inner

and outer solutions will again be desirable. The inner expansion is
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written in terms of r¥, and the outer expansion in terms of another ra-

dial coordinate T, where
F=r f(3) ©(3.14)

and f(3) is to be determined. Since it is necessary to consider limiting
procedures for which =+ 0 and M~ ] simyltaneously, the parameter M is
replaced by a parameter K, which is a function of both M and d; the defi-
nition of K depends upon the limiting process.

The following expansions are assumed:

u(xyr3d,M) ~ 21 ei(b)ui(x,?;K]
i= :

~ ; A (8)u,¥(xyr %K)
(3.15)

v(x,r;d,M) ~ Z:l vi(b)»vi(x,?';K?)

~ Z K ; (B)v, *(x,r*;K)

i=l

Since these representations are assumed asymptotic,
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lim el(b) =0

5—+0
e_.,(d)
lim —%: 0
8+0 &n b
(3.16)
~ . M M
u, (x,r3;K) = lim HAXa L3
| 50 €,(®
Xor oK fixed
n-l ~
ulxyrsd ) = 2 €, (®)u; (x,r3K)
un(x,?;K) = lim =
5=+ 0 e, )

xoF 9K fixed

Similar statements hold for the other three expansions.

Substituting the outer expansions into the differential equation

3.6,

(1-42) (elulx-l- 52u2x+ e3u3x+ eee) + f(vl'vl;:l' v2v2?+ v3v3?+ ooe)
+-§ (vyvy + vovy + Vavg + eee)

= Mzi(‘y + 1) (eup+ equyt a3u3a!-..)(elulx+ 82u2x+ £3u3x+ ooe)
+ (Vv + eed(Fejup + eee + Vv + 00d)

r. X

+ (Y L l)(ElUl + .n)f(vlvl? + o0 +J‘F- V!Vl + coo)

2
+ (vlvl + ooo) f(vlvl? .-.)+(€lul+...)(Vlvl'l'...)(f'elul?...ﬂlle+..g)

- 2 + 1 2
+ —é'_ (Vlvl'l'ooo) (elulx'l'...) + -—2_- (Elul‘l"ooo) (elulx'l'ooo)
Y-l 22 2.2 |

1l
+ 2 (81 Ul +ooo+vl Vl +..‘)f(vlvl?+.’.+‘; vlvl"'ooo) } (30‘7)
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In terms of the inner solution, the equation becomes
: ]
(l —MZ)O\U * 4 Aoun¥ + Aqu *+Qoo) +-'(KV*+K V¥ + K V*"‘ooo)
U1} + gl + Agugt ULt oVt favay,
1
+ 'b-'r-; (Klvl* + K2V2* + K3V3*’|’ooo)
= MZ{(‘Y + 1)0\.101* +"°)Qlul: +eee)
+ (K v, ¥ +...)(‘"X U ¥ heeot kv ¥ +ooo)
11 R M
1 1
+ (‘f" l)&lul* +ooo) ) (Klvl:*,+ eee + r* Klvl* +ooo)
+(c v * + )Z'L(KV* +eee)
i s0e Fy 1 lr* oo
| 1 4
+(>\1Ul* +.oo)(KlVl* +ooo)( 6 Xlﬂl:* +eeot Klvl: +ooo)
+ 1':2:—_1'(Klvl* +ooo)2Qlul* +o.o) +:(‘"'2t"L0\lul* +ooo)20\lul* ""000)
X X ‘

+ x_“é’_l_&zul*Z_'_..._'- K12v1*2+...) %(Klvl:*"‘oo."' %:*Klvl*;"ooo)} (30 18)

The boundary conditions are

un(x,?;K) ’ vn(x,?;K) 40 as Fo+ X2 =+ oo (3.19)

and
Klvl*(x,F) + K2V2*(X,F) <+ K3V3*(X,F) 4+ eoe

= {l + klul*(x,F) + )\2“2*()(,(:) + ooo}bF' (3.20)

The outer expansions are also substituted into the shock relations.
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Retaining only terms which might be necessary for a first approximation,

(Vlvl + 0..)2

(l +€1 l""ooc) {l +'f+l (l - Mz) +.oc}

- __g___ (1 + slul+...)+{l+ (1 - ¥ Foer} G.21)

P
'F'; =] "'YMZ(Elul + 000) (3022)
@
2 .

1] v, Vv + see
390 =1+ elul + o0 + L (3.23’)
elul + cee

E Uy F eee »
tan g, = » ——l— (3.24)

Vlvl + eoe

These expansions describe shock waves in a uniform stream; similar equa-
tions could be derived for the more general case. The beginning of the

vorticity expansion may be obtained from equation 3.7:

(fa;lul? o Vlvl + coo)(l + eilul + ooo)

X
1 2 Py
Y(Y - 1) M2 a; Poo ol
1 8 Poy
(f&l l "vl l +...)(Vlvl +ooo)— (l+ooo) ax ("' "&)

X Yy-l)Mz Poo pYf
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First-order eguati for outer e io]

 The preceding equations allow a number of possible order-of-mag-
nitude relations among the various functions of d. These relations can
not be expressed uniquely as equalities = for example, any assumed
result could be altered by an arbitrary multiplicative constant. How-
ever, for simplicity the order relations will be written as equalities
or inequalities.

Equation 3.2] leads to one of three possible order relations:

V| = €4/ ll - le > 813/2 - (3.26a)
v = 513/2 > e/ I - M2| (3.26b)

A VAT | (3.26¢)

With the use of 3.26, the largest terms in equation 3.17 are seen to

- give
(1 - Mz)slulx+ "1*"(1"1'; +%‘V1)= & + l)slzululx-!- ves (3.27)

In ahy limi ting process for which the functions g, (3) and vi (3) have
the properties prescribed in 3.16, and for which M is bounded, the
neglected terms will disappear in the first approximation, Since equa—
tion 3427 is to describe an outer solution, the approximate equations
must admit solutions which are capable of satisfying the boundary con-

dition at infinity. Again three possibilities arises
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(1 = Weu; + v flv, +Lv) =0 (3.28a)
v Yty 1
. X r r
v.flv, ++v) = &+ e, 2uu (3.28b)
WV T V) Y 1 91 .
X
(1-m )elulx-l- vlf(vl? +? vp) = & + gy ululx (3.28¢)

Equations 3¢26a, by c and 3.28a, b, ¢ correspond to limiting processes

for which, respectively,

2

lim ; = (302931)
5+0 €l

| - M2 .

lim =0 (3.29b)
>0 &l

lim 4 =W K = conste (3.29)
53=+0 &

Consider first the limit 3.2%9a. |If M is held fixed as 3+ 0y
‘the shock polar relation gives v, = g for supersonic flow, and the con=
dition of irrotationality gives the same result for subsonic flows Then
f(5) =1, ieee F = ry and the usual linearized equation is obtained.
We have seen that this approach cannot lead to a transonic approximation.
Now suppose that M-+ 1 sufficiently slowly that l l - le >» si. The
governing equation is 3.28a, with v, = g4/ |l - QZ‘ and f =,/ Il - le.
Since u(x,r) = O(el) = ol = MZ), the flow will be entirely subsonic
or entirely supersonic, if d is sufficiently small. The solution can-
not be a uniform approximation to any mixed flow, because there is an

error O (1 - Mz), which by assumption is of larger order than €|
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If instead we first allow M to approach one, and then take the
limit as b'*\O,’the shock polar and the differential equation give
vi = 513/2 and f = 811/2. This procedure gives the first term of a
double expansion in d and (1 - Mz). Essentially the same result is ob=
tained by considering the more general limit 3.29 and allowing M to
approach one sufficiently rapidly that |1 - 12| <« e, Again the
first approximation 3.28b describes a flow at M = 1, and it can be ar-
gued that the result is not a uniform representation for flow at any
other Mach number (see immediately below)s

The expected qualitative features of the relevant mixed-flow
patterns are described, for example, in Refslle A flow at M =1 is
seen to have certain properties which are different from flows at any .
other value of M. Approaching from upstream infinity, the flow decele=-
rates, and then accelerates to supersonic velocities As'it passes over
the bodys The sonic line begins at some point on the surface, and ex=
tends to infinity. ﬁ;sﬁock may appear at the rear of the body, or else
compression‘waves may coalesce to form a shock at some distance away;
immediately behind the shock the velocity is still supersonic. If now
the Mach number is slightly less than one, the sonic line does not ex-
tend to infinitys The shock at the rear remains, and the supersonic
region is terminated by a shock further downstream; both shocks end at
a finite distance from the axis. For somewhat smaller values of M the
supersonic region is terminated by a shock originating at some point on
the body., If M is slightly greater than one, there is a detached shock

in front, followed by a finite subsonic region; the sonic line originates

on the body, and again there is a shock at the rear of the body, It
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can therefore be seen that for Mach numbers very close to one, the flow
near the body may approximate the flow at M = 1, but the conditions far
away must be different. Near the limits of the transonic regime the
flow patterns are different everywhere. o ,
The limit 3.29¢c is therefore the only one which has the possi-
bility of yielding uniform approximations to the various types of tran=
sonic flows. Hence we should choose the order relation 3.26c and the
differential equation 3.28c. It is expected that as & =+ 0 with K fixed
the essential nature of the flow pattern will be preserved, although .
the shape of shocks and streamlines in the physical plane will be dis-
torted in a manner which can be defineds Thus a particular value of K
characterizes a family of similar flows, and K may be called a simi~
larity parameter., 1t is important to notice that a physically reason=-
able differential equation is obtained if &=+ 0 with K fixed, and K
subsequently approaches zero. That is, the expansion is expected to be
uniformly valid in some range of values of K which includes zero, and
flow at M= 1 is simply the special case obtained by setting K = 0.

From the expressions for pressure and density behind a shock,

p P Y '
b ﬁ {1+ o))} (3.30)
> T |

Since this quantity is conserved along streamlines, the relation holds
everywhere downstream of a shock wave, and the vorticity law 3.25 shows
that the flow is irrotational in the first apbroximation. The same
type of argument is valid for a flow with more than one shock.

We have therefore established



?zal r (3.31)

hing with inner
Injorder to find €)(6), a matching with the inner solution will

be derived. From the boundary condition 3.20 and the differential
equation 3.18,

Kl =9
vl*(x,F) = F! (3.32)
vk +d vx=0
R
The solution for vl* which satisfies the boundary condition is
'
v xyrk) = £ (3.33)

The argument that irrotationality is preserved in the first ap-
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proximation as & approaches zero with r* fixed is more complicated than
before. In order to apply the shock relations, the limit must be per-
formed in such a manner that the point of observation remains at the

shock. 1t is therefore necessary to let x vary slightlys Consider the
case of an attached shock at the nose of a pointed body. The expansion

3.24 for the shock wave angle shows that at the shock

r¥* = — =
sl1/2 5 ’811/2 8

+ cee (3.34)

In order to étay at the shock and keep x fixed, we must also keep T
fixeds Assuming Rl(x),to be linear near x = 0, we may also stay at
the shock by maintaining r* constant and allowing x to approach zero
as 511/2 5. That is, a new coordinate x* = x + ()(811/2 d) should be
used. Since F(x) is also linear near x = 0y v = ()(ell/zbg) as 80
with r* and x* fixed. From the shock polar, it is seen that v << u,
énd the remaining part of the argument for irrotationality proceeds as
before,

it follows that

ulxer30,M) ~ Alx;5K) + 82(FY2 + FFM) log r* -~ (3.35)

If the coordinate x is retained, the expressions for u and v may be non-
uniform at the ends of the body and at shock waves. It will be assumed
that the nonuniformities could be removed by suitable procedures, and

the approximations will be considered uniformly valid for
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F(x) < r* < rg* < o0 (3.36)

where rb* is independent of d.

In this particular case, the approximate outer equation contains
all the terms of the corresponding inner equation, and it is reasonable
to expect that the first-order representation of the outer solution will
be uniformly v&lid everywhere. This conclusion can be proved with the
use of some general concepts relating to expansion procedures. The
regions of uniform validity of the inner and outer representation will
be shown to overlap, and a matching of the approximate solutions is
therefore possibles In Ref. 5 these ideas are applied to problems of
viscous flow over bodies at low Reynolds numbers. There the_first-
order equation for the outer expansion is the Oseen equation, while
thekfirst term of the inner solution is described by the Stokes equations
An outline of the matching procedure is given here in order to illus-
trate another application of the general theory. The complete proofs
will not be given, and the ideas will be discussed in detail only for
the relatively simple first-order axisymmetric flow.

Consider a class of functions y(b) such that

lim y(3) =0

80 (3.37)
lim _ < ®
a-+0 V()

That isy ¥ = 0 as d -+ 0, but ¥ should not approach zero any faster than
1/2 W)

&) .. A new radial coordinate r is defined by
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(%

r(W) - 7 ¥ (3.38)

<
I

For the special case ¥ = £//%, r® will be equal to r*, The limiting
process associated with r(w) requires that & - 0 with x, rﬁv), and K
fixed; this limit will be denoted by limv.

The first term in a representation of v(x,r;d,M) obtained by

wﬂﬁwlhw%ﬂbewm%mdw
v(x,r3d,M) ~ ) (5) Vlcw)(xaf(¢)§K) (.39)

Taking the limit of the full differential equation 3.6 and boundary con-
dition 3.4,

G RS B
(\l{) T)V

l"

(3.40)

W]VICW) (x4 F) =5 F!

The approximate differential equation thus has the same form for the
entire class of functions y(8) as for the special case P - r¥, The
solution to 3.40 gives

e, /2 5% F1

‘ 7 X (3.41)

v(x,r;o,M) ~

Comparison with the results for x| and Vl* shows that the result 3.41
is identical to the first term of the inner expansionj hence we have ex-

tended the region of uniform validity of the inner solution .
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Since the same representation is obtained for any choice of \}I(b), sub=

Ject to the restrictions 3.37, uniform validity has been achieved for

ro*‘ '.1%2_;

E,l

IA

F(x) < r*

or . (3.42)

| ell/zb F) < F < rg*y
where | may approach zero arbitrarily slowly, and ro* is independent
of de

The outer solution for v(x,r) is approximated by
V(X’r;b’M) ~ 5l3/2 Vl(x,?gm (3043)

~which is expected to be uniformly valid for ¥y < ¥ < @, where T is
independent of d. Since the representation is assumed asymptotic, the
error, measured by 31.3/2 (v - 513/2 vl} y must approach zero if 5=+ 0
with x, y and K fixeds The function expressing the error may have a
singular‘ity at ¥ =0, but it is always possible to let T =+ 0 sufficiently
slowly as b -+ 0 that the dependence upon & still dominates. The domain
of uniformity may therefore be extended, and there exist functions Y;(s)
which belong to the set of functions {(3) and which tend to zero suf- |
ficiently slowly that the error indicated tends to zero if Fgyy(d) <

¥ < 0. According to equation 3.42, the inner solution is valid for

511/2 d F(x) < 'F < rg* Y (8), where we may choose rg* > ?0. Hence
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there is an overlap domain";o Yo ®) < 'l: < o' Y (8) where the inner
and outer solutions are both valide The two representations may there-
fore be matched in this domaine

To find the form of v, in the overlap domain, we note that lim\y
applied to the equation for v, yields the same equation as the inner

equation. Hence in the overlap domain

. S, (x) §,(x)
v,(x,rsk)ev-}F— = ;L,'Gw (3.44)
and
3/2
A € $, (x)
vixyrsd,M) ~ -71‘;-- -i-@ (3.45)

The fact that the representations 3.41 and 3.45 agree in this domain
may be expressed by the following limits

. W - W)
tim ¢ ¥ ,wm Y AL (3.46)
¥
Therefore
ﬁl = 5»2
(3.47)
FF? '
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The definitions for r, K, and v, are obtained by substituting the value
of & into equation 3.31,
With the use of equation 3.35, a matching condition analogous to

3.46 is obtained for ul:

&) (o3 K) =Alx30,K) =82 (F1%+ FF“)log(‘el—l%; B )

li = 3.48
m\y N 0 (3.48)

Therefore

K(x35,K) = 2 3° log & (F'? + FF") + bzg,'Cx;K)
(3.49)

u'l(x,?;K') = (F'2 + FF") log ? + gl'(x;K) + goo

where g, *(x;K) is undetermined, as in the slender=body solution 3.11.
Substituting A(x35,K) into the inner representation 3.35 for u(x,r), it

is seen that
A =8 log b
2

by =

| (3.50)
u*xyr¥K) = 2712 + FFW)

u *(x,r¥5K) = (F'2 + FFm) log r* + g, "' (x;K)
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“Summary of fir rder resul

Since it has been shown that the vorticity is of smaller order
than 62, the exact solution to the full equations may be represented ap=
proximately by means of a potential ®(x,r;d,M), The error thus incurred
can be determined, in principle, by continuing the expansion procedure
in terms of the velocities until the shock relations show a change in
entropy. In order to condense the results, it will be assumed that this
potential function possesses inner and outer asymptotic expansions, with
the understanding that the expansions must be terminated before the vor-
ticity becomes an essential part of the problem.

The assumed expansions for © are

n
D(x,r35,M) ~ 2 eifb)cpi(x,?;K)
: 1= . .
n
~ i}_i_l A (8) X; (xyr%5K)
T=br (3.51)
r¥ = -g

It has been shown that a family of similar mixed flows can be obtained
only if the Mach number is allowed to approach one in such a manner

that K remains constant; this quantity is essentially the same as the
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similarity parameter introduced by von Kdrman in Ref. l. Formulas can
be derived which relate the velocities at corresponding points in two
similar flows, i.e. at points where x and ¥ have the same values.

The first approximation to the outer solution is given by

el=6

]
Koy, +Qpu. ¥ X9y = (v + Do 9
xx 'k roor X xx

cpl(x,';;K) = 8;(x) log ¥+ g (K) + ¥ logz?f H——l 8,'$;™

+ 72 log Tl(y + 1)(S,'g," + S,"%;" - 25,'$;") - k§"]

(3.52)

+ 2P+ DG 5 19" - 8" - 5, +g'g)"

+ K(s" - gl")] + o log37)
§,(x) = FF!

The additional terms in ¢, are obtained from the differential equation
by an iteration procedure, as suggested in the derivation of equation
3.44,

It is also of interest to determine the behavior of the solution
at the body surface. As d -+ 0, the body shrinks, and a point on the sur-
face obviously does not follow the rule t = constant. The inner expan—
sion provides the formulas needed to relate the velocities in two simi-

lar flows for a given point on the body; a similarity law for the pres—
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sure at the body is derived at the end of this section. The initial

terms of the inner expansion are

A = 62 log &

g =o°

Lx, =0

X +
lr’"r’i' lr’"

1 (3.53)
4 o er* =0

X
2r*r*

Xy (xsr¥;K) = 2 FF*
X 5(xyr*3K) = FF' log r* + g, (x;K)

Since the quantity log & is not very large for physically reasonable
values of the thickness ratio, the terms of order 52 log & and_b2 may
be of very nearly the same size, and will be considered together as a
"first-order® solution,

The results given in equation 3,53 are similar to the resulis of
slender-body theory, in that the dominant terms represent the potential
due to a source line of strength proportional to the local rate of change
of body cross-section area. The term X, isy however, twice as large
as the corresponding term in subsonic or supersonic flow. The essential
transonic part of the problem is the nonlinear interaction be tween

sources, represented by the function g,(x3K), which can be determined
y Fep Y 8130,

only by solving the nonlinear equation f‘or‘q;l .
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Derjvation of higher approximations
In principle the methods outlined may be used to obtain any de-
sired order of accuracy. The procedure will be continued here to give

two more terms in each expansion.

After subtracting the first-order terms, the differential equa-

tion 3.17 for the outer expansion becomes
2 2
Kb (82”2 + 53‘.‘3 +ooo) + 6(“2V2~ + v3V}‘ +000) + ~ (V2V2+ V3V3+0O0)
X X r r r
=y + 1)[62, (uu, +uou, )+ 82 (uyuq + uqu, ) +,,.]
=Y €2 192, " Y2t €3 143 7 U3 T Tees

‘(Y+1)Kb6uu + 80 Quy o+ vy )+ € - 1)6% (v~+-1-v)
lellrle Ve TSN

v +1
+_—""'2 66U12Ul +ene (3'54)
X

In order to satisfy the boundary condition that u; and v approach

zero at infinity, the homogeneous part of each approximate equation,
starting with the second, must be the same. Specifically, the equations
for all higher approximations are linear, with variable coefficients,

and may have known forcing terms on the right~hand side:

Ku, +v,_ +-}; v, = e+ (uu, +u.uy ) = 4., (3.55)
VS ¥ S WA 28

Therefore

Vv, = Eib (3.56)
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for every value of i.
Next tﬁe inner solution is considered.
tion 3.20 it follows that
ky=8° log b
3=

and

vo*(x,F) = 25, 'F!

vg*(x,F) = 8, 'F" log F + g, 'F"

The differential equation 3.18 gives

V2, T e 2*

vt avgt = Rt Fvpt) 4 W vy

3
! S
r¥ ¥

From the boundary condi-

(3.57)

(3.58)

(3.59)

Solutions to these equations which satisfy the boundary conditions are
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(3.60)

o s
. L 2 log r¥*
V¥ = Fa(55) log F+g)'S) -5 §|F*2) 4255, 198 4 oy

It is again necessary to relate the terms of the inner and outer
expansions by means of a matching procedure. The justification of the
matching isrf‘undamentally the same as for the first approximation, and
the existence of overlapping regions of uniform validity can be demon-

strateds It can then be shown that, for the outer expansion,

5
v2k= g0 =d log &

Kuy, + vy, + vy = (p+1)(uyu, +upu, ) =0 (3.61)
2 VT2 Y e

Kuy + vo + = vy = (p+1)(ujuy + uqu, )
% % §°3 ¥ 173, 37N,
@r-Dee+l)
2 “1Y,

=v.(u;,+v ) = 2yKuyuy +
s T VL Y Y1

The last equation has been simplified by using the equation for the
first approximation. As in the derivation of equation 3.44, expansions
of vy and v5 for small T are obtained by an iteration procedure. Ree

taining only the largest terms in equation 3.61 and solving the resulting
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equation, the initial terms are found to be

= "'g'—s ,EX)" + eee

V.
2 r

(3.62)

E ~  Sqa(x)
V3 = 231()()31'()() ‘LQE-L"' ix“' ese

r r

Matching with the inner solution then gives

- - - Lg g2

It is seen that S3 depends on the parameter K.

The additional relations needed are found by using the shock con=
ditions and the vorticity equations While the argument will again be
given only for an attached shock at the nose of the body, the methods
could also be used for the other possible shock configurations.

According to equation 3.34, the first approximation to the shock
shape is T ~ R (x)s Since the position of the shock cannot be fixed in
advance, the determination of R;(x) is part of the solution for the
first spproximation. To obtain higher-order terms in the shock rela=
tions, the velocities will be expanded in series about T = Ry(x). The
largest terms in the shock polar equation 3.2] give a relation between

uy and v, immediately behind the shocks

' -+ |
[v, GsR)D TP = [ GBI )Gy - K] (3.63)
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If the error_? - Rl(x) is assumed to be larger than 82 log & in order
of magnitude; the shock polar leads to an additional relation between
u; and vy, which is not justifiable. The expression 3.24 for the shock

wave angle can therefore be rewritten with an estimate of the errors

1 uy (x,R,)
tan 0, =-% m + 0 log &) (3.64)

It follows that the second term in the asymptotic representation of the
shock shape must be of order 62 log 83 similarly, the third term is
o} (62). The shock position is then described by

¥ = Rl.(x) + b2 log & Rz(x) + 2 Ry(x) + ees (3.65)

and the velocities immediately behind the shock may be expressed by
u—bzu( F()+t>4 log & [u,(x4R;) + Rou, (x,R,)]
= 0 Uiy g 2V 21~ 97
+ §4[U3(X,Rl) + RBUIN(X’RI)] + eue
r
(3.66)
5 .
v = bsvl (X’Rl) + 6 lcg 6[V2(X,Rl) + szl';(x’Rl)]

r

Rewriting the shock polar equation 3.21 to include the largest

second-order terms,
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[§3vl + b5log o(vy + Rovy ) JE ]2

Y
= [bZU + 64l0g 6(“ + Rou : ) + see ]2 (3067)
1 2 271~
2 4 2 ys?
o) Ul + 3 lOg o (U2 + R2U‘~) + se0 "?-_;'T Kd“+ oee
X Y
2 - bzul + e0e + 2 sz + eee
Y+l Y +1

where all functions depending on T are to be evaluated at ¥ = Rl (<)o
The terms of order bslog d now give a relation between u, and v, rather

than a second relation between ) and Vye The equations for pressure

and density become

p A
7= 1 =-y(1 -sz)[bzul + 8t log &(u, + R2u1~) + 64(113 + Ru, )+ 0ol
r r '

0
(3.68)
d 2 4 4 X_ﬁ
00 - oy ‘ :
i I+ 3%, + 8 log 3, + Rzul?,) +5 (ug + 33“17; o) *oeee
(3.69)
Making use of equation 3.63,
P . P '
S = 21 +0Gh)] (3.70)
ot LY
o)

Since this quantity remains constant along streamlines, the relation is
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valid throughout the flow: fields The first of equations 3.25 for the

vorticity can be rewritten to include more terms:

[63(U1~" Vl )+6510g 6("2““' V2 )+65(UB~“ V3 )+ooo][l+ 62ul+ 000]
r X r X r X

.
SEEEE B TRRES T @3.71)
v& =D (1 =-K) or Pwo pf

It follows that the flow is irrotational in the second and third ap=-

proximations:

Uy = v, =0
%2
(3.72)

Uy =vy =0
3

The argument could be continued to show that irrotationality of the

inner solution is also preserved.

Results for higher approximations
The description of the flow by a potential ® therefore intro=-
duces an error due to the entropy variations which is of smaller order

than &%

s and the expansions 3.51 may be continued to include terms of
order 5%, In the outer expansion the results for the higher approxi=

mations ares
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€y = d log &

_ .4
83-—6

l

t Qo teg,, = +p, 0, + ) =0
}@2 ?Z?F | ¢ q>2;’ Y ¢1X(P2xx q,zxwlxx

XX
“‘?3xx"' P "'l“ﬂg,.. - &+ Dy 3 + @3 fPl )
= &Pl.;cplx -Zr%pl c?l (Y+l)(2r-l)cpl (pl (3.73)

cpz(x,?;K) = §,5(x) log T+ gz(x;K) + o2 log,2 ¥)

V~ _ N 2~ . ~ . 2 | 2~
P3(xyr3K) =8, (x)8,*(x) log r+83(x;K)log r + g3(x,K) + o (r“log“r)
8,(x) = = 25,(x)3, *(x)

83(x3K) = = 8, (x)8,"(x) log F(x) +g;'(x5K)$;(x) = % Sl(x)F'z(x)

The functions g,(x;K) and g3(x;K) can be determined only by solving the

full equations for g, and 3. These equations are linear, but the coef-

ficients involve gl(x;K), which is part of the solution of the nonlinear

equation for 9o

Results for the inner expansion are:



49

' 4
Ay = § log ®

_ .4
Ny =

1 =

rirk
Xy, X, 2% Xp  +X3 X, (3.74)
réex T Opx r¥ Cxr¥ r¥ Tr¥ex *

X 3(x,r#K) = 28, (x)8;"(x) log r* + g,(x5K)

3
8,"(x)
X 4Gyr#%5K) = 8 ()8 1) log?r® = 4 -'1:2-’3

+ 83(x;K) log r* +'g3(x;K)

imilarity 1
The pressure at the body surface may now be determined from the

inner expansions of the velocitiese Rewriting the irrotaticnal con-

dition 3.70,

o/ Gp=1)

L (ﬁ-z- ) [1 + o(h] (3.75)

Peo

Substituting equation 3.5,

! /Gp=1)
2= -G e? wAT T +oeh] 3.6)

Peo
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The pressure coefficient is defined by

P=Pyp - 2

2
=== (= =1 (3.77)
P %-poouz M Poo
In terms of the inner expansion,
¢ =-2lgsX -2°X, -3°x5 + o’log ) (3.78)
P x X r¥

The last equation is of special interest because it shows quite
clearly that a quadratic term must be included in the expression for
the pressure at the body surface. The same equation is obtained for
subsonic and supersonic flows, with different definitions of the func-
tions Xy and Xoe While the result is now well known, the theoretical
Justification is not entirely clear unless gppropriate limiting pro-
cedures are considered. For the linearized cases, an approximate so=
lution is usually expressed by means of a potential which describes the
flow at a fixed point in space and which satisfies the Prandtl-Glavert
equation in the limit as b approaches zero. A point on the body sur-
face, however, is not a fixed point, but a point which moves toward the
axis as d =+ 0. Obviously the velocities need not have the same order
of magnitude under the two limiting processes; To perform calculations
at a point on the body, it is necessary to work with equations written
in coordinates which remain fixed in the limit, so that the dependence
upon d appears explicitly. The proper expression for the pressure is
then obtained directly by the procedure of the preceding paragraphe

For the transonic case, the pressure coefficient at the body sur-

face is
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c, == 8% log 5(43,") = 2(25," log F + 2g;* + F'9)
+ o@? log 3) (3.79)

A first-order similarity law for the pressure at the body may now be
formulated as follows:

¢ 2 4 e 2
-g + 25, log 3F + F'° = fn(x;K) + O (3 log b) (3.80)
o
In this form the rule is a statement that for bodies of similar shapes
there is a transonic similarity for the nonlinear interaction effects

described by g, (x;K)e Another form of the similarity law is

H
2 445, log 8 = fn(x3K) + © (2 log 3) (3.81)
N .

The result was given in Ref. 3, in essentially the same form but with-
out an estimate of the error.
The drag coefficient, based on the maximum cross-sectional area

) 62, is defined by an integration of the pressure over the body surface:
l . '
Cp = 2 jo C, FF* o (3.82)

If the body is pointed at both ends, the drag reduces to

l
4
Cp = =4 b2 Jo FF' g)! dx + O (5" log 3) | (3.83)
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The similarity law for the drag of similar bodies is

role”

= fa(K) + O (3% log b) (3.84)

[+
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4., BODY OF NEARLY CIRCULAR CROSS-SECTION

Form of expansion
The derivation of a transonic expansion procedure can be carried
out in much the same manner for bodies of noncircular cross-sectione

The body may be described by

S(xyry038yt) = 0 = r = 3F(x), /1 + 7G(x,8)

where (4.1)
2
Jo G(x,8) d6 = 0

With this representation, the distribution of cross-sectional area is
the same as for the body of revolution defined by r = 3F(x). The
quantity © may be a function of d, and indicates the relative order of
magnitude of the deviations from a circular section. A limiting pro-
cess will be used which allows d to approach zero, and the role of ¢
in this procedure must be determineds |If ¢ decreases as b goes to
zero, the first approximation will be the same as for a body of revo-
lutions On the other hand, if ¢ increases, the cross-section shape
will approach that of a wing, or of some other configuration with
thickness small compared to one of the other dimensions. In order to
study a general class of noncircular sections, the logical choice would
be to keep © constant in the limit, i.es to regard ¢ as a second simi~
larity parameter,

For the present analysis, however, the deviation from a circular

section will be assumed small, in order to allow an expansion for small
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To One possibility is to let d approach zero with ¢ fixedy, and then to
take the limit as 7 goes to zero. Alternatively, ¢ might be allowed
1o decrease with d, since for this problem it is expected that the first
approximation will be the axisymmetric results The latter conception
of the procedure has an advantage because, having specified the depen-
dence of 7 upon d, it is possible to discuss the relative orders of
the two quantfiies in the solutione

As before, an inner expansion will be used to describe the flow
close to the body, and an outer expansion will represent the solution
farther awaye. For the body of revolution it can be seen that continu-
ing the outer expansion to include terms up to the order of magnitude

of 510

would give a representation which is uniformly valid everywhere
to order 64. Presumably one could obtain a representation uniformly
valid everywhere to any desired order simply by taking a sufficient
number of terms in the outer expansion. The inner solution therefore
is not essential in principle, but serves as a considerable aid in com-
putation. In the present casey however, it will become clear that the
use of two expansions is in general éssenfial.

Since the transonic flow over a slender body of revolution is ap-
proximately irrotational, it is expected that the initial terms in the
velocity expansions for nearly circular cross~sections may also be repre-
sented by means of potential functions. The procedures used before will
lead to the same coordinate distortions and similarity parameter as for
the axisymmetric problems Since it is assumed that the solution is close
to that for a body of revolution, the inner expansion is assumed to be

of the form
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O(xyry030,MyT) ~ 6210g & X (x,r¥;K) + 82 X5 (xyr¥;K)
‘ n

+ 32 log & X5(x,r*;K) +..ot 'Zl 1 @y, *(x,r*,05K) (4.2)
i=1

where the functions X, (x,r*,0;K) are the results obtained for axial
symmetry, and i (5,7) must approach zero if © —+ 0 with 3 held fixed.
The latter quantities form a decreasing sequence in terms of b, but
the ordering must of course depend on the order of magnitude of =«

with respect to 8. An analogous expansion is assumed for the outer

solutione

Approximate solution

The full differential equation in terms of velocities differs
from equation 3.6 only in the presence of a third velocity component
w(x,r,8)e If a potential @ is assumed, and the expansion 4.2 is sube
stituted for &, an equation analogous to 3.18 is obtained. Sdbtracting
the terms which are independent of T, and keeping only the largest re-
maining terms,

] 11
2o (U ¥ Lop*  Fesl) & * o UD* + eee)
32 %1, o H2P2, o2 e 11 TR

1 1
S * +u: * o+ ooo)
b2 ¥ ("‘q)‘ee 2209

I~

- 2 |
=4 (% 0%, *of X )+ }

xr¥ xr¥

o

1 4 2 '
4 = [y (X * + * - X X )
64 i 1 2.,* q)lr_*r*' chlr* 2'-* 2!"*"*

+ oo } + oo (4.3)
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The boundary condition is again given by the requirement of tangent

flow. Generalizing equation 3.4 to the present case

Vixy0F /TH 48 50) = {1 + ubx,f, /1 + 16 400} & F, /T +26)
o]
+w(xydF /1 + 16 ,0) m 35 @®F. /1 +6) (4.4)

Introducing @ and its expansion ’

1,2 2 '
> {57108 8 X #OF /1476 + 85X, GoF, /1 +70) *oor)

+'é' {”‘1‘91* (X’FA /1 + 16 ,6) +u2<p2* (xyF. /1 +1G ,0) + ..,}-
{l +6 log & X (x,F /1 + 46 ) +Feoet “l‘Pl*(x’ m,e).,,..'}

FFt + 4 (2 6), 6g

X Fm *

(1 + 6)2 -{u‘q"g(x’FV L' y0) + oo

(4.5)
Substituting for the functions Xi(x,r*) and performing Taylor expan-

sions about r* = F,

25,5,
o _L(l - TG + g T2G2+ ooo) +6310g o _—'1:‘_'1— (l - JZ'TG + Qoo) + eee

ul i v 200 »
* d {(pl’:*(x,f‘-,e) i (pl:*r*(x":’e) * ".} * & {(PZ:*(X,F,O) + 0.0}

=2 {rrt + 3 o(F0) 1 - S8 + 3 o%6P o}l pPlog b+ 25 4 L)

G
+ :zzg 'F-'e‘ (l + ono){ UA'IQ)IS (X’F,e) + 000} (4’6)
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The boundary condition is now applied at the mean surface r* = F(x).
Terms in 4.6 which are independent of T will cancel because of the
definition of the functions X;(x,r*). The largest remaining terms

determine ) and the boundary condition for @y *(xyr*,0) 2

u.l=’r:62

(4.7)
CPI:*(X,F’G) = .éJF- (FZG)X

Depending on the magnitude of T, p, will be either ¢ 64log 5 or fczbz.
In the discussion of equation 4,17 it will be pointed out that terms

linear in T cannot contribute to the drag, so we will take

uz = '5262
(4.8)
G 2 £G
‘Pgr*(x, 9) aF (F8), -3 9 r*r*(x’ 6)

+ % cplg(x,F,e)

without necessarily requiring that ¢ 64 log & K 'rzbz. From 4.3 it is
seen that the differential equation is Laplace's for both ¢;* and Po*s

S |
, # Fh gt ok =
(Plr*r* r* (Plr* e (PIGQ

(4.9)

The form of solution can be determined if it is possible to expand

G(x40) in a Fourier series, We therefore take
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(o0

6x,0) = 2 G (x) el (4.10)

= =00

where Go(x) is xero and G_n(x) is the complex con jugate of Gn(x). Sub-

stituting in the boundary condition for ¢,\* ,

: o0
¢l**(x,r*,6) = %E- ;; (F2Gn)"elne (4.11)
r n = =

A general solution to Laplace's equation contains terms of the form
r*meiime , Where m may be any integer. If positive values of m were
admij tted, the matching condition would give terms in the outer solu-
tion which were too large, ie.ee of order v if m=1, Ié ifm=2,

etce Since 1 can be of any order of magnitude smaller than one, these
terms can become infinite as d =+ 0, or at least larger than the source

term from the axisymmetric solution. Therefore the result for ¢* is

00
Q*(xyr#,0) = =5 2 F'TLI (F%6 )t oin® (4.12)
n==00 |n|r¥

In the outer solution there will appear terms of order 62,
s log 5, and 54 which are the same as for the body of revolution. Using
a matching condition as before, the first term depending on 0 is of
order 164, and the potential Ql*(x,r*,e) will also lead to terms of
order wbs, 168, etc. Since ¢;* is in general an infinite series, one
could take arbitrarily many terms in the outer solution and still not
be able to find the complete expression for ¢1*. In other words, it
is not possible to obtain an expansion which is uniformly valid everywhere

to order % simply by taking a sufficiently large number of terms in
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the outer solution. In this respect the present expansions differ from
the ones obtained for axial symmetry.

The boundary condition for q)z* becomes

0o R 00 i
S ind 2 in@
7* (oFs0) = 4 {nzm 6 o'"H n=2-m Inl (F%6 )" '™}
Ly 0 (3 6
- In n in
T OuF { n§ nGpe }{ n'z': Inl (Fan)' © } (4.13)

and the solution for g *(x,r*,0) is

¢ o]
et _ 1 v 1 e e
Po*(xyr%,0) = = § nlz:_m &) | Tl (4.14)

The coefficient ¢ (x) is defined by

(s 2] Q0 <0

L oeei™®= T T 6Pl + el T cas)

M==00 Je=00 k=m0
and the value co(x) =0 is included in the definition.

Surface pressures and drag

An expression for the pressure coefficient is obtained in the
same manner as for the body of revolution, and the expanded result is

analogous to equation 3.78. At the body surface,
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2 , 2 |
C = =2{d%log 85Xy (%,F, /' 1 + G ) + 8“x, (x,F 141G ) +eee
P { 1, ’ 2x ?
2 wro 2.2 ‘
+ Q¥ (xyF, /1 + 16 40) + TP ¥ (xy,F /1 + 16 40) + o0
(Plx ’ ’ 2, ’ }
- "61"'2 {62 er*(x,F,, / 1 + G ) +ooot 'Cszlt*(X,F,‘ / 1 + "B'G,e)

-2

2.2
+ 6 * F l -+ 'CG 9 + cen
T ‘Pzr*(xy A/ +9) }
-2
1 2 . / n
- ":6 *(X F l + "CG e) + [ X XY + YY) (4-16)
2F2(1 +'cG){ P10 ’ }

Expressions for X, and X, are substituted from equation 3.53, and
X X

the terms representing the radial velocity component are replaced by
the right~hand side of the boundary condition 4.5. Expanding all terms

in Taylor series about r* =F,

. L o
¢, = 2fs%log 5 + 25! + 8%, [log F + + w6 = £ 1267 + vu0 ]

+ 8%, " + aee + w2lo *(xyF,0) + 5 oyt OuF30) + oo ]
X X

+ 7262[@2*0(,!:’6) + oo ] + ooo}
X

| 2 ) 3 22 | '
_{ %.- [FFt + %T(F @) 1 = 5 16 + 5 276+ . M1 + 5210% b+ 235} ""'"}

6 2
+F 21+ ...][fcaqul; (%,F40) + o001}

-2
‘ 1 2
- [1+ 000] TP ¥ (XyFy0) + eee (4.17)
822 { ‘Ple Xs%s }
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Considerable simplification occurs in the expression for the drage

In terms of the surface pressure, the drag coefficient is defined by

S N B J‘Z" [
Zfdx coF/1+76 & GF /1 + )

=1 f; dx jzn c, {FF' +3 (7). } do (4.18)

ll

Substituting for Cp and combining terms where possible,
1 2
1 2
Ch=Ch+5-T | dx c_ (F°G)_ d6
D™ "D, 2 JO .[0 Po X
-1 2 jl dx [ {FH(FP0) + FAFTEMG + 2FFig» (x F'e)} 40
T 0 % 0 X ‘n‘?lx oFy
+dq 62j dxj - 5 FF13F % FPGe- L FA(4F 5 FRGG,
3 2 | -
-3 /g 2 - (FZG)xcpl:(x,F,e) - FZF'G:pl:*cx,F,e)

- 2Fth,2* (xyF40) =~ F'2Ge¢l* (x,F,0) = *2 (x,F,e)}de (4.19)

where Cpo and Cp are the results obtained for the body of revolution

r = 8F(x)s Throughout the preceding development the Fourier expansions
of terms linear in T never contain a term which is independent of Q.
This will also be true for the terms of order 1 b log & and smaller
which contain 7 only to the first power. All such terms will drop out

upon integration over O. There will be no term in Cy which is linear

in T, and for purposes of determining drag no generality has been lost
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by taking p, equal to 12b2.
The last integral in equation 4.19 can be simplified by using re-
lations of the form

Jo o=2r L GG | (4.20)

N==C0

Each integral of a double sum may therefore be replaced by a single
summation to be integrated over x. After rearranging terms, the re-

maining integration is carried out explicitly to give
S 1 (2 2
= 1 22 B Ie ' t
GO t2T? gw{ inj (F8) " (F76)

+ o(t%2) | (4.21)

- P (3F'G_ + 2Fa_ %} .

where it has been assumed that the body has a pointed nose. The sume=

mation reduces to zero in three cases. For a body with a pointed base,
F(1) =0 (4.22a)

and consequently all terms in the sum disappear. If instead the base

is blunt, but the rate of change of shape with x is zero, then
Fr(l) = Gx(l,e) =0 (4.22b)

and the sum again vanishes. Lastly, the sum is zero if

6(1,0) = G, (1,0) = 0 (4.22¢)
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ieee if the base is blunt and circular and the derivative of the shape
perturbation G(x,8) is zero at the base.

For the three types of bodies described, therefore, the change in
drag due to small deviations from a circular cross-section is of smaller

order than mzbzz

Cp=Cp + o(1%2) (4.23)

where b represents the order of magnitude of the thickness ratio and

T the order of the perturbations in cross-section shapes
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Do BODY OF REVOLUTION AT ANGLE OF INCIDENCE

Expansio r§ dure

The expansion procedure for circular bodies at small angles of
attack is basically the same as for zero incidence, but there is a con-
siderable increase in the complexity of the equations. Cylindrical co=
ordinates x,r,0 are used, such that the x-axis coincides with the body
axise The angle of incidence is denoted by a, and the undisturbed
velocity hasla small component in the r,0 plane which is of the order
of as If 9,39, 3dg are the total velocity components, and u,vyw the

nondimensional perturbations to the free-stream velocity,
0 . . .
T (xyry050,Mya) = cos a + u(x,r,6;8,M,a)
qi 4 7 - | * | V B | |
5 (xry050,Mya) = sin a sin 0 + v(x,r,0;3,M,a) (5.1)

q B L
Ug'(x,r,e;b,m,q) = sin a cos © + w(x,r,035,M,a)
The boundary condition at infinity therefore requires that u,v,w approach

zero as the distance from the body increases. At the body surface

r = 5F(x), the condition of tangent flow gives

v(x,0F,0) = {cos o+ u(x,bF,G)} dF! - sin a sin © (5.2)
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The square of the velocity is given by

2 v

q

-5 =1+ 2ucos a+ 2 sin alv sin 8 +w cos ©)
§)

+uT+ v +w (5.3)

Substituting 5.1 and 5.3 in 2.7 and 2.8, and eliminating a2
- y=1
f1- 2

--2-M2[2u cos g + 2 sin a (v sin 6 +w cos 0) +u2+v +w2]}

X{"x+"r+ %v+ %we}

= Mz{[cos o + u][uxcos a + sin a(vxsin 0+ W, cos 0)
+uu o+ v+ wwx] + [sin a sin 6 + v][urcos a

+ sin a(vrsin 0 +w_cos 0) + uu, + vy, + wwr]

r

+ -.1: [sin a cos O + w][uecos a + sin a(vesin 0+ wgcos 0

+ v cos O -w sin 0) + uug + vvg + wwe]} (5.4)

After rearranging terms, the equation is stated in a form corresponding

to the relation 3.6 for a = 0:
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1 - Mz)ux + v, +-‘l;'v +-}:w9 = MZ{sin @ cos a [(ur + vx)sin ¢
+ ( -;l:ue + wx)cos 8] + sinza[;ux + (vr sin 0 + -‘l; vgeos 8)sin ©
+ (wrsin 6 +-'l:wecos 0) cos O +-}; (v cos § = w sin 8)cos 6]
+ cos ally + Duu + v(u, +v,) +w( ;l: ug +w)

+ (¢ = Dulv, +%-v +'|17WG)J + sin ally = Du (v sin 6

+w cos 6) + Gy = 1)(v sin 0 +w cos 6)(vr+%v+';l:we)
+ulu +v) sin9+u(-:-ue+wx)ccse

+(%ve +wr)(v cos 6 +w sin 0) +2vvr sin G+Tz;wwe cos ©

+Tl;w(v cos O =w sin )] + [vzvr +-‘l;w2we + uv(ur + vx)

v+ 1 v=-1
+ uw( -ll;- ug +wx) + ww( ';,l- vo +wr) + =5 u2ux +----2——-(v2 +\.'12)ux
sl (@ ed L + L) (5.5)
2 v ror YT G) ’ ¢

The limiting procedure requires that & and a approach zero simul-
taneously, and the choice of an appropriate relationship between the two
parameters will depend on the generality desired of the expansion. If
a should decrease more rapidly than ®, the first approximation would be

the same as for zero incidences On the other hand, if a should go to
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zero rather slowly, the first-order solution would contain no source
term and would correspond to flow around a thin needle~like body in-
clined to the free stream. Since neither of these results is con-

sidered sufficiently generaly g will be taken proportional to &:

a = Ab (5.6)

where A is to be held constant as b approéches zeroe This choice will
include the body at zero incidence as the special case A = 0, while
large values of A will correspond to the case of an extremely thin
body at anrangle of attacks

The use of inner and outer expansions is again helpful, and would
in fact be necessary from a practical point of view for determining the
form of the 64 terms in the potential at the body surfaces As for the
case of zero incidence, the inner solution should be expressed in terms
of a radial coordinate which is of order one at the body surfacej the
first approximation to the outer solution must satisfy a nonlinear
equationj and the expansion procedure should be capable of describing
all the expected types of transonic flow patterns. Thus the procedures
used before apply without any change, and the definitions of ¥y r*, and
K are the same as in equation 3.5l. [t can again be shown that the en-
tropy changes due to the presence of shock waves are of small order, and
for the first few orders of magnitude the flow may be represented by a
potential. The assumed forms of expansion are therefore

n |
D(xyr4050,Mya) ~ ;E ei(b)Qi(x,?,e;K,A)

i=l

(5.7

n
~ L p(8) X (xyr%,05K,A)

1=
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Form of approximate solution

The assumed expansions are now substituted into the full differen-

tial equation 5.5, In terms of an outer expansion, the equation becomes

2 ’ 2
Kd (5 + + & P + ooo) + 9 (8 oo + s + g + o'o)
lcplxx 52¢2XX 3 3xx l(Plrr €2W2rr 3¢3??
2 % (EICPIN + 8?2’“ + 83(?36‘ -+ ooo) + 62 %2(51(?1 + 52(?2 + 53(?3 +ooo)
r r r r r 00 00 00
= (l - Kﬁz)iZb(Ab - '61' A363+ 000)(1 &262'*' ooo)[(slfpl ~ -+ 52(])2 ~
. xr Xt
. 1 ’
+ ot eed) sin 0+ 2 (e + € + + eee) cos 6]
%‘P3xr ~ 1‘1’1x9 22 <0 83?3)(&
+ (Ab 'é'A3b3 + 000)2["(81(?1 + 82?2 <+ 53(?3 + ooo)
v XX XX XX
+ b2(€l¢l- + es) sin6 + 22 %(el¢b~ +eeo) cos O sin ©
re r ro
21 2 21 2
+d° = (e + ses) cos 0 +0° = (€,9,. + ees) cos” O
r2 l¢196 r lwlr

<@L, (g ee) c0s  sin 614 @ = £ K57 4 e Doy

+ £ + ¢ + .'.._)(e + + & + Q..)

2 T 3 1 TR TR

2

2 25

+ 2% (5 ~ + ...)(5 ~ +ooo) + p (5 + ooo)(& + ooo)
191~ 191 ~ ~2 1% 1?1 g
+ 326 = 1)( L L
Y - Elcpl 'oo)(al({)l + ees + l({)l + see + = 2 Elq)lee'l"oco)]
+ (kb +000)[(Y - l)(EIC?l 000)6(81(91~51ne +ooo+ l El@lecos e +000)
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1
+ 26(8](?[)("’.0.)(51(?1)( Sln 9 + eee + lq)l eCOS e + ooo) 4 000]
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The inner expansion gives

| .
' X + + “‘3X + .oo) + -~ + + +ooo

]
o WXt et kg F e
= (1 ...){(Aa o)+ g [(u.lxl + o0s) sin 0

] : 21 . 2
+ 5 (].L X + oc-) cos O + oo.J + (Ab + o.o) = [(u- X +...)sm 0
r¥¥] lxe 52 ! lr*r*

+%*(u,lxlr e+...) cos O sin 6 + —= 2 (u.lX + voe) cos® 0

,,,(p.lx + ees) COS 2% - 2 (u.l + ess) c0s O sin 6 + 4o
2 1
+ (1 + ooo) -~ [(‘L X + ouo)(}.l, X + too)"'_"'-([.l X +ooo)(u X +000)
2 Ty L2 g
Y
+ .ao] + (Ab + ooo) 3 [ *(‘Ll l + ooo)(l.l.l 1 *e+ ’.o) cOs 9
2 .
+ —= (,J-X + o-.)(l.l.)( +ooo) sin e
2 B X1 4

+ 2([.L1X + QQO)Q.LI 1 + 00-) sin e + —= *3 (’ilxl +ooo)(Uonl +ooo)cose

i

2 2 . 1 2
- ":3"' (u-lxle'*'ooo) sin 9] + 'g4[(]£lxlr*+ oao) (lJ-lxl + o.o)

r r¥rk
"'—171' (p,l)(l + "’)2(‘”1)(1 + oee)
r¥ G 66

| ! "
+ : X +ooo) X +ooo)( X Fooom = X +ooo)+ooa] (5.9)
2 X e Xy e DA | teeem e Xy } A

The tangency condition at the body surface becomes
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l
g{ulxlr*(*,F,e) g (oFs0) + Xy (o0 + oo}

= {l —%Azbz + eee +p1Xlx(x,F,9) + aoo}_ &F'

- (Ab -%A363 + see ) Sin e (5.10)

A matching condition between the inner and outer expansions pro-
vides the necéssary additional relations, and the procedure for finding
the form of the solution is exactly the same as in the case of zero in-
cidence, ?or the inner expansion the initial terms must be solutions
to Laplace's equations To satisfy the boundary condition, a source
term plus a term proportional to sin © are needed, both of which must
be of order 62. Solutions showing the desired dependence upon € are
%; sin © and r* sin 6, but the latter possibility is excluded, since
otherwise the matching condition would require a term of order one in
the ouierlexpansbon. Additional functions of x, of unspecified order

of magnitude, may also appear, and the potential is of the form

DlxyrB3Myda) ~ BlxsdKR) + 52(FF! log r# + AFZ S8 ) (5,11)

In the outer solution the first term is again of order 62, but

the differential equation is more complicated:

El :62
1 1
+ -+: ~+: ) (5.12)
K¢lxx qJlrr r er r2 q)169
_ . cos © 2
=2A sin O F2A=T"¢q -ARp + Cr + 1)?1 P
xr %0 xX X XX
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If now ¥ is small, the largest terms are the three terms of the
Laplacian. The first terms in an expansion of ?) for small ¥ must
satisfy Laplace's equation, and the expansion may be continued by means

of an iteration procedures

P(xyF,03K,4A) = 8, (x) log T+ g (x3K) + AS ' (x) ¥ log T sin ©

~

+ hy(5K,R) T sin B+ G + DS, 1(x) $,%(x) 72 log? ¥

+ O (Fz log T) (5.13)

The matching condition is used to show that S;(x) equals the source
strength F(x)F'(x), and that other singular terms such as %;sin 0
should not appear in R ’

A function hl(x) appears which is analogous to gl(x) in the sense
that it can be determined only by finding a complete solution to the
nonlinear equation 5.12 which satisfies the boundary condition at in-
finity., In the subsonic or supersonic case the corresponding term is
the first term of an expansion for small r of a solution to the Prandtl-
Glauert equation which becomes infinite far away from the body. One
might then expect, or hope, that h;(x) is zero for transonic flow. How-
ever, the term T sin O does represent a solution to the homogeneous
equation, and the present procedure does not provide any justification
for omitting ite A term proportional to ¥ cos 6 would also be a solu-
tion, but is excluded because the flow must be symmetrical about a
vertical plane through the body axis.

Determination of the form of the approximate inner solution can
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now be completed by matching with the outer expansions
By = 62 log ®
ﬂ2=5

] ]
X + = + =X =0
Lewrx r*)ir* * log
X + -l'*)(z + '1-*2)(2 =0
(5.14)

xl (X,F’e) = 0
r*

Xy (x,Fy0) = F'(x) = A sin 6
r¥
X (x,r%,6) = 2F(x)F'(x)

Xp(xyr*,0) = F(x)F'(x) log r* + g, (x;K) + AFZ(X)'§i%;Q

The real need for using an inner expansion would become apparent
in deriving higher-ordek approximations. Equations 5.8 through 5.10 are
written out in sufficient detail that all terms necessary for carrying
out the expansion to order 64 can be obtained without returning to the
full differential equation and boundary condition. It is obvious that
the equations become quite lengthy for terms of this order. Continuation
of the procedure would be tedious, but would probably not require an un-
reasonably large amount of work. However, certain of the terms in the
potential which are of order 64 at the body surface are of order 614 in
the outer limit, and it would therefore be virtuall? impossible to ob-

tain uniform validity to order 64 by using only an outer expansion.
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Pressure and lift

Since the vorticity is again of very small order, the pressure

is given approximately by the isentropic relation

2
p y-1 q 3 /-1
el W) -} (5.15)
In terms of the inner expansion, the pressure coefficient is
¢ = - 22 log 8X, - 82(2X, + 2A sin X, + 2 SEx,
P 1, x S 2 r* T2
2 .1 2 4 2
+x2r* +,,,.‘2><20 )+ o log” d) (5.16)

Substituting for X, and X,, and evaluating the result at the body sur-

faw’
c, = - 52 log 5[48'] = 5°[25," log F + 2g)! + F12
. 2, .2 4, 2
+ 4AF! sin © + AS + 2K cos 20] + O (5" log“d) (5.17)

A similarity law analogous to equation 3.8l could be formulated.
In the first approximation, the lift force perpendicular to the
free stream equals the force normal to the body axise The lift coef=

ficient referred to the base area is then given by

o fl jzr C_ sin 6 5F(x) dO dx (5.18)
L 7 8%F%() Jod0 P

Integration over € drops out all terms in equa{ion 5.17 except the one
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containing a factor of sin 03 the relative error in C will be of the

same order as in the pressure.

w 1 v

C = L j F(x)F'(x) dx {l + 0 (52 log2 a)} (5.19)
F(D) “0 ~

The first~order lift coefficient in terms of a is determined simply by

completing the integration and substituting a for Abe The error esti-

mate in terms of a and ® is obtained by showing that the error in C

2

is at most 0(64 log™d, a4 logzb), and then.repeating the derivation

of CL‘ In this manner it is found that
-4
C, =2+ 0 (ad? log2b ’ %— logzb) (5.20)

In the first approximation, therefore, the lift coefficient is
the same as for subsonic and supersonic velocitiess Since the coef-
ficient is defined in terms of the base area, the first-order lift
force is zero if the rear of the body is pointed. The two terms given
in the error estimate are of the same order of magnitude in a mathe-
matical sense, but for very large or very small A, the actual values
could differ considerably. Furthermore this representation of the
error shows that the expansion is not uniformly valid for large A; uni~-
formity is achieved for 0 <Al < A5 < oo,

The procedure could be continued to obtain "™second-order™ terms
in the potential which are of order 5% log2 5, 8% log 5, and 8%, The
unspecified function hl(x) would then appear in the inner expansion,
and would probably contribute to the lift. One would therefore expect

to obtain only a second-order similarity law for the lift, instead of
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a second~order formula expressed entirely in terms of known functions.

It should be pointed out that the expansion for circular bodies
at incidence can not be considered as a special case of the expansion
derived in Section 4 for bodies of nearly circular cross-section. Sup-
pose the coordinate system for the body at an angle‘of attack were
chosen so that the x-axis passes through the nose of the body, but is
parallel to the free stream instead of coincident with the body axis.
The boundary condition still requires that the component of the free~
stream velocity normal to the body surface be cancelled at every point
on the surface. This condition could also be interpreted as the boun-
dary condition for a body of noncircular section at zero incidence;
however, the deviations from a circular section would be of order a,
iees of the same order as d, while for the problem discussed in Section
4 the deviations are of smaller order than d. The limit précedure of

this section is therefore not equivalent to that of Section 4.
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6, TH
Introduction

In this section we shall consider wings at zero incidence, in
the limit of very small thickness. The thickness ratio is measured by
a parameter d, which will tend to zero, and the maximum semispan is
denoted by b. The unit of length is taken equal to the maximum chord;
hence b is eséentially an aspect ratio.

We first discuss some general properties of the outer expansion
which are valid for an arbitrary body shape; it will only be assumed
that in the limit some body dimension tends to zero in such a manner
that the flow disturbances due to the body are small. To fix the
ideas, consider a slightly supersonic flow and let the Mach number
decrease toward one in the limit. At the station x = | the radius of

|

a Mach cone from a point with x =0 is l 3 the radius will
l - M

increase as M approaches one. It is expected that the outer limit

should be chosen so that a point on the Mach cone remains fixed in

the distorted coordinates. That is, one should define ¥ to be pro-
portional to r+/ |1 - W o For any other choice the Mach cone would

disappear from the problem in the first approximationy either one
would approach the free-stream conditions in the limit, or else a
point ¥ = constant would remain too close to the body and the first-
order solution would not satisfy>the boundary condition at infinity.
Furthermore, if the first approximation to the potehtial is of the
form slvl(x,?), it can be shown either from the shock polar or the
equation of motion that a completely general transonic theory can be

obtained only if € is proportional to M2 - 1. The suggested selec-
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tions of ¥ and g) are in agreement with the results derived for a body
of revolution, and it will be verified later that similar agreement is
obtained for the wing problem. Thus it appears that the length scale
for the outer expansion and the order of magnitude of the flow distur-
bances can be expressed in terms of Mz—l independently of the body shape.
On the other hand, it must be possible to express the magnitudes of the
flow disturbances by means of geometric parameters defined in terms of
the body dimensions. This is accomplished with the use of the inner
expansion. - By comparing the inner and outer representations one then
can relate Mz-l, and hence g, and the scale factor for the outer limit,
to the body parameters.

In the inner expansion the proper unit of length should be equal
to some characteristic dimension of the body. Returning now to the
wing problem, one sees that there are two characteristic lengths, b
and . |t will be argued later that b rather than & should be taken
as the relevant dimension. If b increases as V7F=i%Eir s the length
scale of the inner expansion is the same as that for the outer expan-~
sion. This is the case of "nonslender™ wings. The wing span remains
of the same order as the distance to the Mach cone, and the reduced
aspect ratio, proportional to b h - M2| s is kept constant in the
limit. (This is also true for the Prandtl-Glavert transformation of
linear theory.,) It is interesting to note that the significance of
the reduced aspect ratio can be inferred directly from this purely
physical argument, as well as indirectly by the mathematical reasbning
given later. If on the other hand the wing span becomes negligible

relative to the width of the Mach cone, the scales of the inner and
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outer expensions are different. In this case the reduced aspect ratio
tends to zero and the wing is called slender. 1t should be noted that
if the actual aspect ratio, proportional to b, remains fixed, or even
increases sufficiently slowly, the wing will still be considered slender.

The preceding considerations suggest that the order of magnitude
chosen for b will have a significant effect on the mathematical nature
of the probleme A similar situation arises with respect to the order
of magnitude of |1 - M|, and it will be ussful to suimarize the three
possible cases which arise. |t can be shown that for a body of revo-
lution, of radius proportional to d, the first-order equation is funda~-
mentally different for the cases |1 - M| >> 8% and | 1 - 2| <« 32,
The former case leads to a linear equation and the latter gives the flow
for M exactly equal to one (see the discussion of equations 3,28 and
3¢29)s The change in the equation occurs at the critical case for which

2,
?

| = M is proportional to 5% for this case the first-order equation

contains all the terms which appear in the other two cases. In Section 3
2
the relation 1 -2M = constant was selscted as the most general one,
d
and an argument was given to justify the choices The same type of rea=

soning will also be applied for the flow over a wing.

In a similar manner we will investigate the mathematical changes
in the wing problem which depend on the relation between b and 5. First
the behavior of & in the limit should be examined. The case where this
quantity is held constant does not really correspond to a wing, but
instead should be considered as describing a slender body of noncircular
cross-section. Such a body belongs to the class of shapes mentioned in

the first paragraph of Section 4, where the parameter T was chosen to

be a constant. This case will not be of interest in the present dis~
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cussion because the restriction to a "thin" wing implies that'%'should
tend to zero és d goes to zero, That isy b is not allowed to approach
zero as rapidly as d. Second, we require that the first approximation
include effects of aspect ratio, and not reduce to a two-dimensional
problem. This requirement leads to a second limitation on the variation
of b with 8, It will be shown that one may allow b to approach infinity
as d goes to zero, but that b should not increase more rapidly than
6-1/3. The cases bbl/3= constant and'%'= constant turn out to be cri-
tical cases at which there is an essential change in the mathematical
nature of {he problem. The cases of interest will be 1) the critical

1/3 _ constant and 2) the intermediate case for which bbl/B-* 0

case bd
and %~+ 0; the first case corresponds to a constant reduced aspect ratio,
while for the second case the reduced aspect ratio will tend to zero.

In the first of these cases the fundaméntal mathematical assumption
is that the inner and outer expansions coincide. The first term of the
expansion satisfies the nonlinear transonic equation, and it is not
possible to describe the flow near the wing by reducing this equation
to the Laplace equation. The wing might therefore be called Mnonslender™.
Since a single expansion is to be valid everywhere, it is expected that
the wing semispan b should be distorted in the same manner as the y-
coordinate. 1t is this consideration which will lead to the relation
bbl/B = constant. The aspect ratio, proportional to b, will increase
toward infinity as 5~/3, Using the relation which will be obtained to
relate M and &, it will be shown that the reduced aspect ratio, propor-
tional to b«/ll - M2| 5 will be kept fixed in the limit; the mathemati-

cal development therefore leads to the result predicted previously by a

heuristic argument.
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In the second case of interesty, b is allowed to vary with & in

173 nd 2 both tend to zero. This is the case

of "slender® wingse The exact nature of the dependence of b on & need

such a manner that bd

not be specified; the relation between the two parameters willy how-
ever, affect the order of magnitude of terms in the second and higher
approximationse The assumption that bbl/3 approaches zero will be
exactly equivalent to the assumption that the length scales of the
inner and outer expansions are differents The reduced aspect ratio
will also tend to zero in the limitj this fact affords still another
possible definition of the problem.

The expansion procedure for this case will again be derived by
studying the differential equation and boundary conditions. In deter-
mining the approximate form of expansion, however, it is convenient to
make use of the idea that one expects the expansion for nonslender wings

1/3

to remain valid if bd is allowed to approach zero. That is, one as-

sumes that each term in this expansion itself possesses an asymptotic
expansion for small values of bbl/g. Actually two such expansions are
necessary == an inner and an outer. Each of the two representations

of the potential for a slender wing may therefore be stated as a double
seriess |f the exact relation between b and d were specified, the terms
could be ordered so that each expansion would be given by a single
series, with the decreasing asymptotic sequence expressed in terms of

d and b61/3 instead of just . For convenience it will be assumed that
su&h an ordering is possible, and the inner and outer expansions will

each be represented by a single series. In general it is expected that

these series will not be expressed in terms of the variables used in
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the original expansion (for nonslender wings), but that the proper co-

1/3

ordinates will involve bd as well as ds As indicated previously,

the unit of length for the inner expansion is be The scale for the

1/3

outer expansion will be a function of d and bd ™/~ which must be deter-

minede [t will be shown that this function should be proportional to

Sh-wl 7
The leading term of the inner expansion obeys Laplace's equation,

s as expected from physical considerations,

and the form of the first-order solution near the wing is given by the
most general solution of this equation which satisfies the boundary
condition at the wing surface. (For nonslender wings Laplace's equation
is not validy and it is not possible to determine anything about the
first-order solution without solving the full nonlinear transonic equa-
tion.) The outer expansion will be of the same nature as in previous
casesy and a matching of the two expansions will again be necessary.

In the matching procedure, the outer expansion for small values of the
(outer) radial coordinate should be compared with the inner expansion
for large values of the (inner) radial coordinate. For the first ap-
proximation, the matching depends only on the distribution of cross-
sectional area, and not on the details of cross=section shape. Hence
the first term in the outer expansion is influenced only by the area
distribution. Furthermore the coordinate distortion (i.e. the length
scale) for the outer expansion, the order of magnitude of disturbances
far away from the wing, and the similarity parameter relating M to b
and d all depend only on the maximum cross=sectional area. These three
results may therefore be expressed in exactly the same form as for the

body of revolution. By inserting appropriate constant factors, the same
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conclusion can be shown to be true for nonslender wings.

Thus Ane finds a close resemblance between the two wing problems
and the case of a body of revolution. This result might not be wholly
unexpected. Physical reasoning suggests that the length scale for the
outer expansion can be expressed in terms of M, independently of the
body shape., Starting from this assumption it can be shown, as indi-
cated previously, that the most general transonic equation is obtained
only if the disturbance potential far away from the body is of order

|1 -

necessary only to establish the appropriate dependence, in the limit,

« Detailed knowledge of the body shape would therefore be

of the Mach number on the characteristic body dimensions, and one

might hope to find a unique order-of-magnitude relationshipe. For the
cases treated the relation turns out to involve only the order of the
body cross~sectional area. The same dependence might be expected for
other cases, but further investigation would be necessary before com-

plete generality could be assumed.

Nonslender wings

In rectangular coordinates, the differential equation obtained

from 2.7 and 2.8 is

(- Mz)ux tvy tw, = MziQY + Duu, + v(uy +v ) Fwlu, +w)

+ (y - l)u(vy +w )+ v2vy +-w2wz + uv(uy“f v, ) +uw(u, +w )

v+ 1 y=-1
+ vw(vz + wy) + =5 u2ux +—5 (v2 +'w2)ux

-1
+ ! 5 (u2 + v+ wz)(vy + wz)} (6.1)
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The coordinates x,yyz and the perturbation velocities uyvyw are all non-
dimensional, with the maximum chord and the free-stream velocity taken

as reference quantities. From the three-dimensional form of the shock
polar equation, it may be seen that v and w can not be of larger order
than u, and the first~order condition of irrotationality follows directly.
The flow may therefore be described approximately by a potential @, and

equation 6.1 becomes
2 =
(l - M )@Xx + @yy + (I}ZZ — (Y + l)Qx@XX + (XX} (602)

The wing plan form is described by

y
sl(x) < 5 < sz(x) 0<x<l (6.3)
where b is the ratio of maximum semispan to chord, and the functions
s)(x) and s,(x) are of order one. For simplicity of notation, s(x)
and sz(x) are also assumed single-valued, but the methods to be used do

not exclude other wing shapess The wing surface is given by
b
8(x,y,2385,b) = z 5 dhix, £ ) =0 (6.4)
where b is one~half the thickness ratio, and the upper and lower signs

refer to the upper and lower surfaces respectively. The boundary con=

dition at the surface is determined by the requirement of tangent flows

w(x,y,dh) = {l + u(x,y,bh)}b %2&+ v(xyy4,0h) %- g%z; 6.5)

b
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where h(x, %’) and its derivatives are assumed to be of order one. In
6.5 and in subsequent expressions the condition is written only for the
upper surface; due to symmetry of the differential equation and bound-
ary condition, the flow field must be symmetrical about the plane z = 0.

We will now investigate the behavior of the potential @ in the
limit as d approaches zero. For the moment we will consider only the
special mathematical case for which the inner and outer expansions
coincide. For this case the wing will be called "nonslender®™. It will
be shown that the quantity bbl/3 is held fixed as & goes to zero. As
expected from physical considerations, the reduced aspect ratio also
remains constant.

In writing an expansion for @, the same coordinate distortion
will be used for both y and z, so that the terms<§yy and sz in equation
6.2 will both contribute to the differential equation for the first
approximation. (If instead we were to choose ¢&y of smaller order than
@5 the first-order solution would describe the two=-dimensional flow
err an infinite wings if P, were too small, the solution agreeing
with the boundary conditions would turn out to be trivial.) Since it
is expected that M and b in general will not be constant as & goes to
zero, these quantities are replaced by certain unspecified parameters
which are expressed as combinations of the physical quantitiés. The
new parameters will be denoted by K(Myd) and o(byd). The parameter
K is determined in the same manner as for the body of revolution.

The assumption that the innér and outer expansions coiricide will lead
to a relation between the orders of magnitude of b and b, and the equa~-
tion o = constant then allows one to choose a suitable function for .

We therefore express @ by the following asymptotic expansion:
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n

O(xyy,255,Myb) ~ .Zl g (b)cpi(x,;,;;K,O')
i=

;; = yf(d)
Z = zf(d)
(6.6)
K= K(M,b)
o = o(b,yd)

where €, (8) << 1 and &, (3) < g, (3).
Substituting 6.6 into the differential equation 6.2,

(1= 1W)eig) +e)f%) _+ )= (r + Deyp) 9 +eee  (6.72)
P Yy zz X XX

Using the arguments given previously it can be shown that all terms
omitted in this expression are necessarily negligible in the first ap-
proximation, and that the four remaining terms should all be of the
same order of magnitude. We may therefore choose the following rela-

tions among the parameters:

_ 2
al—f'

(6.7b)
2

] =M

= K = constant
|

These expressions are in agreement with the previous statements that f2

and €y should be proportional to ll - WP o These parameters will now
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be related to the‘ body parameters by considering the boundary condi=
tions.
By assumption the outer expansion is valid near the wing, and it
should therefore satisfy the boundary condition at the wing surface.
At the wing surface, z is of order f(3), and hence must tend to zero
as b approaches zero. We shall assume that ?). MY be expanded in a
Taylor series about z = 0. From equations 6.4zand 6.6 it can be shown

that

Elf'cpl,z_(x,y,O;K,U) + eee = 8h (x5 Fp) + e

(6.8a)
for

Lo d

s)(x) < Fp < sp(x)

All omitted terms are necessarily of higher order than the terms re-
tained. By definition K and ¢ remain constant in the limit, and €,f(2)
must therefore be of the same order of magnitude as d. We may take

the two quantities to be equal:

g f =% (6.8b)

To obtain a proper description of the flow near the wing, a co-
ordinate y = ')bL= %f‘ should be held fixed as & goes to zero (see
also the discussion immediately preceding equation 6.15). That is, for
some neighborhood of the wing the y=coordinate should be stretched in
the same manner as the wing semispan b. In terms of ; 5 the second

argument of ¢, in the boundary condition 6.8a is ybf. If the outer |
z
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expansion is to be valid at the wing surface, then the outer limit may
be applied io the boundary condition. In order that ¢l~(x,;bf,0) de~
pend on y in the limit, it is necessary that bf(3) be he 1d constant,
i.e. that y and y differ only by a constant factor. In other words,

a single stretching of the y-coordinate is cbrrect for the entire

flow field, and must agree with the stretching of the wing; this is
consistent with the original assumption that the inner and outer ex-
pansions coincide, The parameter ¢ is required to be a function of b
and d which remains constant in the limit; a convenient definition

satisfying this requirement is

o = bf = constant (6.8¢)

The results for the coordinate distortion and similarity para=—
meters, obtained by combining equations 6.7b, 6.8b, and 6.8c, may be

summarized as followss

5173

<1
]

y

61/32

K:J—b"é-%z

1/3

NQ
L

(6.9)

c = bd

The similarity parameters K and o are equivalent to those given in

Ref. 2. Combining the definitions found for K and o, it can be shown

that for the present case the quantity b, /ll - le is held fixed as
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b approaches zero. Thus, as anticipated from a heuristic argument in
the introductory paragraphs of this section, the mathematical assumption
that the inner and outer expansions coincide has the physical signifi-
cance that the reduced aspect ratio remains constant in the limit,

The equations describing the first approximation are obtained

from 6.7 and 6.8:

Kp) +91 t Q) = (v + Do (6.10)

?)
XX Yy zz X XX

‘Pl,;(XJ’O) = hx(x, %L )

In determining the second approximation one should first examine higher-
order terms in the shock relations to show that vorticity may still be
neglecteds This can be done in a manner analogous to the discussion

for a body of revolution. Then it can be shown that the second term in

the expansion of @ is described by the following:

_ 4/3
€5 =

Koy +9ou *@o0.. =0+ D@ 90 to09; )+ 2.9
XX % zz X “xx X Txx y Xy

(6.11)
] 2
+ 20,9 ~ - 2K, 9y T3 ¢+ 12y - " 9
Z X2 X XX X xXX

<P2;(x’;’0) = CPlx(X’;’O)hx(& %‘ )
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If values are given for K and g, a change in & distorts the flow
in a relatively simple manner which can be specified (to a certain order
of magnitude). Knowledge of one solution would therefore imply knowl-
edge of an entire family of similar flows. One of the useful similarity
laws is the rule for the pressure at the wing surface. Following the
procedure of equations 3.75 through 3.77, the pressure coefficient is

found to be
cp == 262/3<p1 + 0 6Y3 (6.12)
X

Consequently the similarity rule is given by

C
g-;i,B = fnlx,33K,0) + O (6%/3) (6.13)

This expression may be used to relate the pressures acting on two af=-

finely related wings having the same values of K and g

»

Expansiong for glénder wings

The second problem of interest is that of "slender™ wings. There
are actually three possible ways of defining the problem, all of which
can be shown to be equivalent. From a mathematical point of view the
fundamental assumption is that the inner expansion is essentially dif-
ferent from the outer expansion. Using a physical picture one could
instead take the reduced aspect ratio as a basic parameter and begin

the discussion with the requirement that b, / |l - M2 tend to zero. Or

one could start from the case of nonslender wings by specifying that



2

the quantity o = bp!/3

should approach zero in the limit. The last
choice seems to be the most convenient; we will specify that ¢ must tend
to zero with &, subject only to the restriction that %'must also approach
zero in order that the wing remain "thin". The exact nature of the re-
lation between o and ® will be important only in determining the order

of terms in the second and higher approximations. In the present dis~
cussion we shall be interested primarily in the first approximation.

It will be shown that for the given restrictions on g there are only

two possibilities for the order of magnitude of the largest neglected

term, and a completely general error estimate can be written quite

simply. [t will therefore be sufficient to require

lim o=0
53—+ 0
(6.14)

where ¢ is defined by o = bbl/go

In writing the form of expansion we assume that the individual
terms of the expansion for nonslender wings will possess (inner and
outer) expansions for small g. In principle the slender-wing solution
could be obtained by actually performing such expansions, and each of
the two representations of the potential would be expressed by a double
series. The terms in these series could presumably be ordered if fur-
ther information were given about the dependence of ¢ upon d. Each of
the expansions for @ could then be written as a single series in terms
of a decreasing sequence of functions which depend on both & and ge

This will be the assumed form of expansion.
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First the flow near the wing will be considerede In determining
the proper coordinates for an inner expansion, the general rule is that
the scale should be of the order of magnitude of the body dimension.
For thin wings the characteristic dimension of the wing in the y-direc-
tion (the semispan b) differs in order of magnitude from the characteris-
tic dimension in the z-direction (the thickness d). It may appear at
first glance that the coordinates to be used are % and %z_ o However,
(as can be seen from later calculations) if these variables were used
the first term of the potential would obey the trivial equation @zz: 0.
If one instead uses f and % s Laplace's equation @yy+ ®,, =0 is ob-
taineds Formally one could consider the first equation as an inner
equation relative to the second equation. Solutions to the two could
then be matched in the usual way. This leads, however, to trivialities
which can easily be bypassed. (Note that the second equation contains
the first, in the sense that if one introduces -\é and é into
Laplace's equation one obtains. @, = 0 in the limit,) We therefore as=-

sume the inner expansion to be of the form

n
D(x,y52309Myb) ~ Zl l.-l«i(b,c);i(x,-y-,;;K)
1=

o=

y = (6.15)

Z =

TN

In the case of nonslender wings ¢ is constant and -y- is propor=
tional to ')7. For the present case 0 <K 1, and it is to be expected

that the coordinates ; and ;, and hence the corresponding expansions,
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will be fundamentally different.s The inner expansion will therefore be
matched with an outer expansion which satisfies the boundary condition
at infinity. It is also expected that the coordinate distortion for the
outer expansion may differ from that obtained in the case of nonslender
wings, and may depend on ¢ as well as on d. In cylindrical coordinates
the outer expansion will be as follows:

n

O(xyyy238,Myb) ~ ;E si(b,o)Qi(x,F,G;K)

1=

¥ = rf(5,0) = vbf(5,0) =/ y> + 22 bf(5,0)

In order to relate the present problem to the case of a body of

(6.16)

revolution at zero incidence, it will be convenient to introduce the
idea of an "equivalent™ body of revolution. This body will be defined
as the body of circular cross-section which has the same longitudinal
distribution of cross-sectional area as the wing. The equivalent body
will be defined by r = beF(x), where b is the maximum radius and the

maximum area is

m 2 = M = koo 3 (6.17)

The constant of proportionality k depends only on cross-sectional ge-

ometry; ee.g., for a delta wing of elliptic cross-sectiony k is equal to
one. For the nonslender wing, the maximum cross~sectional area is pro-
portional to 62/3. According to 6.9, the coordinate distortion and the

similarjty parameter K can therefore be made the same as for the body

revolution simply by inserting appropriate constant factors and re=-
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writing the results in terms of d,e In the present case the same will
be true, and the quantities K, f, and € will be expressed in terms of

o .
e

Form of slender-wing solution
Substituting the outer expansion into the full differential

equation,

2
(l-Mz)(e(p + e + Epr F ees) (e, F E,_F E + oee)
Ml 2<p2><>< 3 Pl 2cp2rr 3<P3'FF
+ f2 :l: (Ei(Pll;i' 82@2~+ 53CP3~+ 0.0) +f2 '3:2(51(91 + Eép + 53q)3 +.-0)
. F F ¥ ; 00 < 20 00

= Mz{(Y + l)(sl(Pl + 52(P2 + 53(’)3 + ooo)(el(Pl + Ez(PZ + 83(?3 + ooo)
X X X XX XX XX

@ -+ ooo) -+ ———(E q} P +ooo)
1x9 2 1 l>< l><><

2,2 | L 2
+ 2% (10, Py F oee v, 6,
llrlxr r2 1 16

+ G = DF2(e g, +eau)(e ~tE ;l: JFE L +eoe)tesst (6418)
Y 1?1 1Pl €1 = e 122 Plgg }

Again a sufficiently general first-order transonic equation is obtained
only if (1 = MZ), €}y and £2 are of the same order of magnitude as

& -+ 0. The approximate equation can be determined, and for small ¥
the largest terms in ¢y will represent the velocity field due to fluid
sources distributed :along the x-axis:

. ] 1
y oLt Tt S = (v +1)
K‘?l A\ c?lr r2 (PIGG T (Plxcplxx

XX + FFF
| (6.19)
9y = Sl(x) log ¥ + gl(x;K) + O (?2 log2 )
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where $,(x) is the source strength and g (x) describes the nonlinear
interaction between sources. The source strength can be found by
matching with the inner expansion, but gl(x) must remain unspecified
because we do not knéw the full solution to the nonlinear equation.

Applying the inner limit to the differential equation,

- 73 -
(1 = M2)(Il'lq?lxx+ vee) + Lc'é— Q.thpl__’*‘l.l.zq)z_ + eee)

Yy yy
/3

+ O (P F B By F eee )
RS i~~~

D e — /3 y J .
= MZ{(Y + l)(ﬂlz q)l (Pl + ooo) + 2 b'-é"' (ul (Pl__tpl —F ecen
X XX g y “xy
' 4/3 -
2= = S 3=-2 = 32—

+u _ _+...)+ (U. P @ T oees +I.L Py Oy

1 PPl ~ A e s 1 %1-91
Faee # G F)Gt eee) * ooe] (6.20)

Y Z2 YyzZ

The expanded boundary condition is

/3, _ _ o
é.&__ {MI‘PI.;(X,YaO) "'11'2(?2.;("’)/,0) +I«L3°P3;(X,Ya0) + ---}

= {l + [.Llalx(x,;,o) + ooo} 6hx(xy}’j

Vi _
+ia"" {”1‘?1.3.;(X,y,0) + .--}61'\_)_’,_()(,% + vee

2/3 "

- é—z' {[.Llal_(x,;,O) + ooo} 6h(x,yj + eee (602l)
g ZZ
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By analogy with previous cases it is expected that the leading
term of the expansion should satisfy Laplace's equation. That this is
true can be seen by comparing the orders of magnitude of the terms

appearing in equation 6.20. Since the perturbation velocities must

1/3

vanish in the limit, the quantities;il and érb 1y must both tend to

mppons.

Yy

.can not appear in the first-order equation. The assumption that inner

zero with 8. |t follows that terms such as 51— c-p-l _ and 6%__6
’ X

and outer expansions are different can be shown to imply that the terms
containing 6} will also be negligible in the first approximation.
As anticipateggwe therefore find that the largest term in © must satisfy
the Laplace equation.

The largest term in the right side of the boundary condition 6.21
is equal to bhx(x,;). Multiplying both sides of the equation by 6674/3,
it is seen that one of the terms in the inner expansion of ® should be
of order 052/3; the order might also be stated as by or 6e2' This term
in the solution may be expressed by a distribution of two-dimensional
sources at z = 0, of local strength proportional to hx(x,;). However,
it is possible that the source term might not be the largest term in
the expansion. Any function which depends on x, but not on'; and ;; is
also a solution to Laplace's equation, and its derivative with respect
to Z is identically zero. We must allow for the possibility that such
a function may appear as the first term of the expansion. Thus we
should include in the solution an unspecified function which depends on
the variable x and on the parameters d, g, and K. It is assumed that

the order of magnitude of the function may be greater than or equal to

the order of 662/3; otherwise the function would not be of interest for
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a first approximations 1t will turn out from a matching with the outer
expansion that two orders of magnitude will appear, namely 062/3log g
/3

and 0~ Y, For the moment we express the beginning of the inner expan-

sion in the following form:

Dxyy;z505Myb) ~ Alx;5,K,0)

+5 2 m(——‘-fz(X) h, Gy ) loga/ G -7 +2 & (6.22)
tsy (x)

Strictly speaking one should postpone discussion of the source term un-
til the order of magnitude of A(x3d,K,0) has been determined. If this
function should be of a rather large order relative to 3 %, it is pos-
sible that Laplace's equation might be correct only to describe A(x;d,K,0),
and that additional terms should be retained for the equation which
leads to terms of order 662. However, in the present case this diffi=~
culty will not arise, and it is convenient to consider the source term
and the unspecified function simultaneously.

Following 'Kaplun's ideas (14), a principle for matching the inner
and outer expansions may be derived by introducing a class of functions

¥(5) and a coordinate r¥) such that

W) _ _¥  _bf -
W =y =R T

lim ¥(3) = 0 (6.23)
5=+ 0
. bf (5.0
lim =0
s>0 VO
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W)

If & is allowed to approach zero with r fixed, then r =+ 0 and ¥ =+ 0o,
The approxirﬁate differential equation obtained by taking this limit is
again Laplace's. One therefore expects that there is a solution of the
Laplace equation which satisfies the boundary condition at the wing and
which is uniformly valid for 0 < ¥ < BY(d), for any ¥(d) which satisfies
the conditions 6.23. According to the general concepts of matching,

the first terrﬁ of the outer expansion should be valid in a region de-
fined by Q}Jo(b) < ¥ <, for functions \1/0(6) which tend to zero suf-
ficiently slowly. Taking B> Cy it is seen that there is an overlap
domain Cf_(2) < T< By (8) in which both representations are uniformly
valid, and therefore a matching between the two is possible. In this
domain T is small and r is large. Hence a matching in the overlap do-
main means that the inner solution for large values of ¥ should be com=
pared with the outer solution for small values of (2

The general solution of Laplace's equation satisfying the bound-

ary - condition at the wing is given by equation 6.22. Expanding this

expression for large values of T =a/ ';? + z2 ’

_ Jbsz(x)

1
® ~ A(x35,K,0) + log r oh, (xy &) dn (6.24)

bs) (x) x

Since the integral is one-half the rate of change of cross-sectional

area,

O ~ Alx305K,0) + 8 FGIF!(x) log ¥ (6.252)

where, according to equation 6.17, the equation r = 3 F(x) is used to

define the body of revolution having the same area distribution as the
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wing. Similarly, using equation 6.19, one may write the first term

of the outer expansion for small values of T

Q ~ el{Sl(x) log ¥ + gl(x;K)}

(6.25b)

= el{Sl(x) log r + $,(x) log bf + gl(x;K)}

The matching principle states essentially that these two expressions
must be identical. Equating the two, and using the result €} = f2 ob-

tained from considering the outer expansion, we may write the followings:

f(2,0) = &,

(6+25¢)
Sl(X) = F(X)F'(X)

Alx;3,K,0) = 3 ZFGOF1 () log (B5.) + 3, %) (x;K)

Thus the function A(x3d,K,0) contributes to the first two terms of the
inner expansionj it can be verified that Laplace's equation is correct
for both the first and second terms.

The results obtained thus far will be summarized immediately below.

First-order results and error egtimates

For the outer expansion it is found that
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1 1
Pl T SOt D =(¢+ Doy o
K‘pl vlrr r (plr r2 (P‘GG pd q)lx lxx ‘

XX
q)l(x,?,e) = F(x)F'(x) log ¥ + g1 (5K) + o0e (6.26)
= ber
g o L=tf
2
%

The initial terms of the inner expansion are given by

iy =52 log (b)) =0 (8% 3log o) =0 (b5 log b5/

po = %2 =0 (@¥3) =0 ()

51—- + 51_ =0
yy zz

"
(6.27)

q—’l— (x5y50) = 0
z
5'2; (x5y,0) = hx(x,yj

61 (xyyy2z) = F(x)F'(x)

- - S (X) T
22075 = ke [ 2 ) tog/ (-7 + T T+ 6500
Sl X

The quantities M, and p, are written in terms of b, and b only for con-

cisenesse
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The resemblance between the wing problem and the case of a body
of revolution can now be seen clearlys In each case the coordinate dis-
tortion is proportional to the square root of the maximum cross-section
areaj the order of mognitude of the perturbation potential far away
from the body is the same as the order of the cross-sectional area; and
the relation between Mach number and body dimensions, found by keeping
the similarity parameter K constant in the limit, requires that | - W2
be proportional to the maximum cross-~section area. ([t follows that the

length scale of the outer expansion is of order s in agree-

2
ment with the value predicted from physical consi%e:aTiLns. The re-
sults also illustrate the three properties of slender wings: the inner
and outer length scales are different, the parameter bbl/3 tends to
zero with 3, and the reduced aspect ratio vanishes in the limit.

Since an estimate of the error at the wing surface is of interest,
the derivation will be continued to determine the order of magnitude of
Bge In this determination, one must consider the inner expansion of
the differential equation, the boundary condition at the wing surface,
and the matching with the outer expansion. If o tends to zero relatively
slowly, the nonlinear term appearing in the first equation of the outer
expansion is expected to be relatively large in the inner limit, and
will give the largest contribution to the error. Accordingly, for
6 >> 83 | the largest neglected term in the differential equation
determines Ky and all neglected terms in the boundary condition are

of smaller order.
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by = bzbe4 logz(bbe) =0 (0'462/310g20') =0 (b4€>210g2b61/ 3)

93—t p3_= &+ Vg 9, (6.28)
yy 2z X XX

-‘53-("’-};3 0)=0
4

The same order of magnitude is obtained by a matching with the expansion
6.19 of o, for small T,

/3 the

On the other hand, if ¢ approaches zero more rapidly than 3
span approaches zero almost as rapidly as the thickness, and the largest
part of the error arises from the Taylor expansion of the boundary con-
dition about z = 0. If 0 < 61/3, the next approximate differential
equation is Laplace's, and the solution consists of a distribution of
sources. As in the first approximation, the corresponding term in the
outer solution behaves as log r. The proper matching then shows that

M3 must be larger by a factor of log o than the value required by the

boundary condition:
5 4
= —:5 log (bd,) = 0% log 0) = 0 (2log t6'/?)

93—t 93 =0 (6.29)
yy oz ‘

6}-(X’Y’O) == h(x,WEz_(x,?,O)
z 2z

Similarity law for Cp

A formula for the pressure coefficient is obtained in the same

manner as before. Omitting all terms smaller than those neglected in §,
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- — 2
Cp = o 263 log (bbe)cplx had 263 (sz

4
3 ‘
+ 0 {bzbe4 logz(bbe) ;%— log (bbe)} (6.30)

With the use of equation 6.17 relating b, by and gy 2 similarity law

may be formulated for the pressure at the wing surface:

C .
=, + {FOFG0 + F260] log (6%)
o)

e

3

y
= f‘n(x,B';K) + O {b b logz(b36), % log (b36)} (6.31)

A similar expression was derived in Ref. 9. The result may be used to
compare surface pressures in any two problems for which the similarity
parameter K and the wing shape functions s,(x), s,(x), and h(x, ) are

1/3

the same. The result requires only that b3/~ and £ be small, and

says nothing further about the relation between b and %; in particular,
bal/a need not be constant.

If b61/3 is not small, the rule breaks down.because the inner and
outer expansions are no longer distinct, and the flow near the wing can
not be described by the Laplace equation. The unspecified function in
equation 6.3] must then depend on this quantity as well as on {he ones
indicateds In this case the similarity law 6.13 may be used. The pre-
sent result is also incorrect if %' is not small, because the pressure
at the wing surface can not be calculated at the plane z = 0, and the

unknown function has to depend on %‘. If b is of order d we should

properly speak of a slender body rather than a thin wings In Section 4
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results were derived for the special case of slender bodies for which
the deviations from a circular cross-section are smalle A more general
slender-body theory could be derived with the aid of the methods dis-

cussed in the present sectione
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