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Abstract 

Integrated Nano Liquid Chromatography 
System On-a-Chip 

Thesis by 

Qing He 

Doctor of Philosophy in Electrical Engineering 

California Institute of Technology 
 

 

 

Integrated liquid chromatography (LC) chips are valued because of their significant 

advantages over conventional systems. However, they are very challenging to build due to 

the high complexity of LC systems and the need for high-level integration of many discrete 

microfluidic devices.  

The goal of this thesis is to develop technologies and devices towards a totally 

integrated LC system on-a-chip. Using parylene microfluidics technology, all of the 

devices are integrated on silicon wafers with CMOS-compatible batch processes. Due to 

the small size of the on-chip LC columns, the chips all perform nano LC, which means that 

the flow rates are on the scale of nano liters per minute. 

The thesis starts with the solution of the problem of bead integration, since most 
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LC columns are packed with micro-beads. A wafer-scale batch process is developed to 

integrate beads into micromachined devices. The technology is applied to make an 

LC-ESI (Electro-Spray Ionization) chip with an integrated bead column packed with 5 

µm diameter C18 silica beads. The integrated ESI nozzle allows direct coupling to a mass 

spectrometer (MS).  

Due to the high-pressure nature of LC operations, a complete LC chip must be 

able to both withstand and generate high pressures on-chip. Therefore, an anchoring 

technique is developed to dramatically increase the pressure rating of parylene devices 

from about 30 psi to 1000 psi. In addition, on-chip high-pressure generation is achieved 

with electrolysis-based micro-actuators. 

An integrated ion liquid chromatography chip is demonstrated, which has on-chip 

column, filters, injection structure, and conductivity detector. The column is packed with 

7 µm anion-exchange beads with a slurry packing technique. On-chip sample injection, 

separation, and detection of seven common anions are successfully demonstrated with a 

sensitivity of 1 ppm. 

Finally, a microchip that demonstrates high-pressure LC with integrated ESI 

coupling to MS is presented. The capacity of the column, which is 6.5 cm long and 

packed with 5 µm C18 silica beads, is the highest of all the devices in the thesis. Gradient 

separation at a pressure of 450 psi and on-line MS detection of digested cytochrome c 

protein is successfully performed. 
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CHAPTER 1 

INTRODUCTION 

 
1.1 From IC to MEMS 

The last four decades witnessed a revolution in information technology, whose 

cornerstone is the development of semiconductor integrated circuits (IC). It all started in 

1947 when the first transistor (Figure 1-1 (a)) was invented by Bardeen, Brattain, and 

Shockley at Bell Laboratories, who a decade later shared the Nobel Prize in Physics 

(1956). Soon, the little transistors replaced the bulky vacuum tubes and became 

commonplace in everything from radios to telephones. In 1958 and 1959 respectively, 

Kilby at Texas Instruments and Noyce at Fairchild Semiconductor both independently 

invented the first integrated circuits. Kilby was awarded the Nobel Prize in Physics (2000) 

for his part in the invention of the IC (Figure 1-1 (b)). The idea of integration quickly 

caught people’s attention and the IC has evolved at an astonishing pace ever since. In 

1965, Gordon Moore predicted that the transistor count on a chip would double every 18 
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months [1, 2]. This predication is now known as Moore’s law. The law has become 

enormously influential for the semiconductor industry, which continues to develop better, 

cheaper, and smaller chips following the roadmap set by Moore (Figure 1-1 (c)). The 

state-of-the-art CPU chip, Intel’s Pentium 4 (Figure 1-1 (d)), already integrates 125 

million transistors. It is really amazing that those primitive devices (Figure 1-1 (a) (b)) 

could grow into such a giant dynamic semiconductor industry, which has changed 

fundamentally how we live, think, and communicate, and will continue to do so for years 

to come.  

 

Figure 1-1 (a) The first transistor (Bell Labs); (b) The first integrated circuit (Texas 

Instruments); (c) Moore’s law (Intel); (d) State-of-the-art CPU chip Pentium 4 (Intel).   

 
With the success and knowledge obtained from miniaturization and integration of 

electronic devices, the potential of accomplishing a similar revolution also emerged for 
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mechanical and later fluidic devices, which led to the fields of MEMS (Micro-Electro-

Mechanical Systems) and µTAS (Micro Total Analysis Systems).  

 

1.2 Micro-Electro-Mechanical Systems 

1.2.1    Introduction 

A Micro-Electro-Mechanical System (MEMS) is a microfabricated system that 

contains both electrical and mechanical components. Its characteristic dimensions, as 

shown in Figure 1-2, range from 100 nm to millimeters. MEMS are also called 

micromachines or microsystems technology (MST). MEMS devices serve as one of the 

bridges connecting the digital world of the integrated circuits with the analog physical 

world.  

 

Figure 1-2 Dimensions of MEMS, nanotechnology, and lab-on-a-chip, compared to 

electromagnetic spectrum and everyday objects.  
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In 1959, Richard Feynman gave his famous speech titled “There’s plenty of room 

at the bottom,” in which he mapped out the tremendous potentialities for the 

miniaturization of machines [3]. In 1965, arguably the first MEMS device, a resonant 

gate transistor, was demonstrated [4]. In 1982, Kurt Peterson’s groundbreaking paper 

“Silicon as a mechanical material” [5] summarized many developments to that date, 

which greatly increased the awareness of MEMS and served as the starting point for 

realizing Feynman’s dreams. In 1989, researchers at University of California, Berkeley 

demonstrated the first IC-processed electrostatic micro-motors [6, 7], after which a wide 

variety of MEMS devices, technologies, and applications blossomed, and the field 

developed rapidly ever since [8]. Although their complexities are still far from those of 

state-of-the-art ICs, MEMS devices have shown many hallmarks of ICs such as multi-

level stacking (Figure 1-3 (a)) and large-scale integration (LSI) (Figure 1-3 (b)) [9].  

MEMS devices also achieved remarkable commercial successes, such as inkjet printer 

heads from Hewlett Packard, pressure sensors from Honeywell and Motorola, Digital 

Light Processing (DLP) system from Texas Instruments (Figure 1-3 (c)), and 

accelerometers from Analog Devices (Figure 1-3 (d)).  

 

1.2.2    Advantages 

MEMS technology produces devices that are smaller, better, and cheaper.  MEMS 

chips have significantly smaller footprints than their conventional counterparts. For 

example, microfabricated needles are minimally invasive and almost entirely painless. By 

exploiting phenomena that are better or more efficient with downsizing, MEMS devices 

are often faster, less power-consuming, and more sensitive and selective. Due to 
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downsizing, in the microscopic world, for instance, gravity is no longer important; 

surface effects dominant; thermal time constant is minimized; and fluids behave as 

laminar flows. Moreover, the per-unit cost is low due to MEMS batch fabrication.  In 

addition, MEMS offers new functions that never have been possible before. Its future is 

even more exciting considering its ability to integrate with ICs. 

  

 

Figure 1-3 Famous MEMS devices. (a) Multi-level MEMS gears (Sandia National Lab); 

(b) Large-scale integration of miniature pumps and valves; (c) Digital micro-mirror 

device for digital light processing (Texas Instruments); (d) Monolithic accelerometer 

(Analog Devices). 
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1.2.3    Fabrication Technologies 

Because of its root in the IC industry, many of MEMS basic processing 

techniques are borrowed or adapted from those used to produce ICs, such as 

photolithography, oxidation, diffusion, ion implantation, chemical vapor deposition 

(CVD), evaporation, sputtering, wet chemical etching, and dry plasma etching [10]. 

Many microfabrication techniques specifically for MEMS have also been developed over 

the years, such as KOH, DRIE (deep reactive-ion-etching), LIGA (German acronym for 

x-ray lithography, electroforming, and molding), wafer bonding, electroplating, and 3D 

stereo lithography [11]. In recent years, polymer MEMS have become popular, resulting 

in many new techniques suitable for polymers, for instance soft lithography [12–14].  

Multiple basic microfabrication processes are combined to make complete 

devices in two general ways, bulk micromachining [15] and surface micromachining [16]. 

As illustrated in Figure 1-4, bulk micromachining uses chemical or plasma selective 

etching of substrate material, with the help of masking films, to form structures in the 

substrate. The etching process can be either isotropic such as HNA (hydrofluoric acid + 

nitric acid + acetic acid), XeF2, or anisotropic such as KOH, TMAH (tetra-methyl-

ammonium-hydroxide), and DRIE. Surface micromachining, on the other hand, builds 

devices on top of the substrate, usually with the help of sacrificial materials, to form 

freestanding or even completely released thin-film microstructures, such as micro-

channels and micro-cantilevers (Figure 1-4). Common sacrificial materials are photoresist, 

polyimide, metals, phosphosilicate glass (PSG), and polysilicon.  
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Figure 1-4 Illustration of bulk micromachining and surface micromachining.  

 

1.2.4    From MEMS to µTAS 

Although MEMS started in the mechanical world, the field soon grew rapidly to 

encompass a wide spectrum of applications in many sub and spin-off fields, such as 

MOEMS (Micro-Optical-Electro-Mechanical System), RF-MEMS, and µTAS (Micro 

Total Analysis Systems). At the present time, µTAS is the one of the fastest growing 

subfields, which is highly interdisciplinary by nature, covering areas such as 

microfluidics, material science, analytical chemistry, and biotechnology.  

 

1.3 Microfluidics, Lab-on-a-Chip, and µTAS 

1.3.1    Introduction 

Microfluidics generally refers to the science and technology of manipulating 

minute amounts of fluids with volumes ranging from micro liters ( 31 µL = (1 mm) ) to 

pico liters ( 31 pL = (10 µm) ) (Figure 1-2). Lab-on-a-chip is the miniaturization and 

integration of the complete functionality of a chemistry or biology lab, such as sample 

preparation, reactions, separations, and detection, onto a single chip. Microfluidics is the 

key to the development of lab-on-a-chip, which is also called µTAS, the miniaturized 
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microfluidic system that can automatically carry out all the necessary functions to 

transform chemical information into electronic information. Microfluidics is a more 

general term than µTAS.  

The concept of µTAS was first suggested by Manz in 1990 [17], although the first 

µTAS device, a miniaturized gas chromatography system, was demonstrated in 1979 [18].  

Today, µTAS has grown tremendously into a large dynamic multidisciplinary field, 

whose impact could be far-reaching and revolutionary. The field is extensively reviewed 

in several papers from Manz’s group [19–21].  

The advantages of µTAS include significantly reduced size (portability), power 

consumption, sample and reagent consumption, and manufacture and operating costs 

(disposability). In addition, µTAS can achieve better performance in terms of speed, 

throughput, mass sensitivity, and automation.  

It should be noted, however, unlike its integrated circuit analog, which 

emphasizes continuous reduction of transistor size, µTAS focuses on making more 

complex systems with more sophisticated fluid handling capabilities, rather than pushing 

for the smallest micro-channels possible.  

The field of µTAS finds applications in proteomics and genomics research, high-

throughput screening (HTS) of drug candidates, point-of-care (POC) diagnostics, drug 

delivery, environment monitoring, industrial online analysis, food safety, forensics, bio-

defense and many more.  
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1.3.2    Future Challenges 

After over a decade of research and development on µTAS, it is interesting to 

discuss its pressing issues and future challenges. The most important ones are sample 

preparation, world-to-chip interfacing, on-chip chromatographic separation, on-chip 

feedback control, detection, and total integration. 

The integration of sample preparation into microfluidic devices represents one of 

the main hurdles towards achieving true functional lab-on-a-chip. It becomes more 

challenging for the enormous variation in samples to be analyzed, and/or the complex 

raw material in the environment. This problem may have to be handled on a case by case 

basis. Two reviews on sample preparation in microfluidic systems are given in [22, 23].  

Even with preprocessed samples, coupling of the samples, reagents, and 

conventional macro-scale tubing to the chips, often referred to as “world-to-chip 

interfacing,” remains a difficult problem. Although the chip may only need a nano liter 

sample, it is impossible for conventional scale fluidics to handle such a small amount. A 

much larger volume has to be started with, unless the chip can acquire a nano liter sample 

from its environment directly. Coupling conventional-scale fluidics with microfluidics is 

also challenging, especially since no packaging standard is set. Microfluidic chips are 

usually small and thin, which makes most conventional coupling techniques unrealistic. 

New coupling methods that are not significantly larger than the chip need to be developed 

[24]. Especially for high-pressure applications, such as liquid chromatography, reliable 

coupling with high-pressure ratings is highly desired.   

On-chip liquid chromatographic separation with bead-packed column is highly 

underdeveloped, due to the complexity of individual devices involved and the difficulty 
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of integration for a complete on-chip system.  Liquid chromatography, further discussed 

in Chapter 2, is the most important separation technique in analytical chemistry. It 

essentially eliminates highly specific sensing, which is very difficult to achieve.  

On-chip feedback control is not widely implemented even today, although its 

importance is starting to be realized. Conventional transducers are not sensitive enough 

or practical for monitoring on-chip flows and reactions. It is highly desirable and useful 

to know the operating conditions of the chip in real time. Devices based on silicon or 

glass would be better than those based on PDMS (polydimethylsiloxane), since it is much 

easier to integrate electrodes and circuits on silicon or glass substrates.  

Optical detection does not scale down well. With miniaturization of the micro-

channels, the usable optical path is greatly reduced, which leads to a significantly reduced 

optical signal and thus lower sensitivity for optical techniques, such as UV absorbance. 

Selectivity is also a serious issue. For conventional analysis, selectivity is usually 

accomplished through chromatography-based separation prior to detection. However, on-

chip liquid chromatography is highly underdeveloped, limiting the ability to separate 

sample compounds on-chip and hence limiting selectivity. Furthermore, many of today’s 

detectors are still off-chip, especially those based on optics and mass spectrometry. When 

the detector is significantly larger than the chip itself, the whole setup is far from a real 

“lab-on-a-chip.”  

Most of the developments in µTAS so far have been focusing on discrete devices, 

such as micro-channels, micro-valves, micro-pumps, flow sensors, pressure sensors, and 

electrochemical sensors.  However, total integration is an important trend for µTAS. 

Multi-chip packaging and complex fluidic/electrical interconnects are labor-intensive, 
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inefficient, unreliable, and costly. The integration process is not trivial at all. Firstly, most 

individual devices are built with incompatible technologies. The desired approach would 

be to micromachine every part in a compatible way. Secondly, there are few technologies 

that are sufficiently versatile to make the wide variety of devices needed for the system, 

while still powerful enough to keep each device optimized.  Parylene microfluidics 

technology, as described in the next section, is a great candidate.  

 

1.4 Parylene Microfluidics Technology 

1.4.1    Introduction to Parylene 

Parylene (poly-para-xylylene) is the generic name for members of a unique vapor 

phase deposited thermoplastic polymer series. Discovered in 1947 and commercialized 

by Union Carbide Corporation in 1965, parylene is used in several industries because of 

its superior properties. The primary application is PCB (printed circuit board) coating in 

the electronics industry, where parylene protects the delicate electronic devices against 

moisture and corrosive environments. Figure 1-5 shows the chemical structures for the 

three most commonly used parylene types: parylene N, parylene C, and parylene D. 

 

Figure 1-5 Chemical structures of parylene N, C, and D. 

 
Parylene is deposited at room temperature by chemical vapor deposition (CVD). 

The deposited film is highly conformal and truly pinhole free. It is also an excellent 



 12  
 

 

barrier to gas and moisture. The gas permeability of parylene is more than four orders of 

magnitude smaller than that of PDMS (polydimethylsiloxane), which is another popular 

material for microfluidic devices. Moisture vapor transmission is ten times less than 

silicones. 

Parylene is extremely inert to most chemicals and solvents. Based on the 

manufacturer’s study [25], solvents have minor swelling effect on parylene N, C, and D 

with a 3% maximum increase in film thickness. The swelling is found to be completely 

reversible after the solvents are removed by vacuum drying. Inorganic reagents, except 

for oxidizing agents at elevated temperatures, have little effects on parylene. Parylene is 

also biocompatible (USP Class VI), which means it is safe for long-term human implants.  

Parylene exhibits impressive mechanical strength and flexibility in a thin film 

coating. Its Young’s modulus is between silicon and PDMS, so it can be used to make 

both rigid structures and flexible actuators.  

Parylene is an excellent electrical insulator as well as a good thermal insulator. 

For example, the breakdown voltage for 1 µm thick parylene is over 200 volts, and the 

thermal conductivity of parylene C is only four times that of air (0.21 mW/(cm·K)). 

Optically, parylene is transparent in the visible light range. It only absorbs light 

under 280 nm in wavelength, which unfortunately limits its UV applications.  

Due to their slightly different chemical structures, the three types of parylene also 

differ in properties. Parylene N has the best penetration characteristics. However, 

parylene N also has the slowest deposition rate. Parylene D can withstand higher 

temperatures than parylene C. Parylene C has a useful combination of electrical and 

physical properties plus a very low permeability to moisture and other corrosive gases. 
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Moreover, deposition of parylene C is faster than the other two. Parylene C is the 

parylene of choice for most conventional and microfluidic applications.    

Detailed electrical, mechanical, thermal, barrier, optical, and other properties can 

be found on a parylene vendor’s website [26]. A list of selected properties for parylene N, 

C, and D are shown in Table 1-1.  

 

Table 1-1 A selected list of properties for parylene N, C, and D. 

The parylene deposition process and the involved chemical processes are 

illustrated in Figure 1-6. The process starts with placing parylene dimer (di-para-

xylylene), a stable compound in granular form, into the vaporizer, and the substrate to be 

coated into the deposition chamber. The whole system is pumped down to medium 

vacuum.  The dimer is heated in the vaporizer and sublimes into vapor at around 160 °C. 

The dimer vapor enters the pyrolysis furnace that is maintained at 690 °C, where the 

dimers are cleaved into identical monomers (para-xylylene). In the room-temperature 
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deposition chamber, the monomers reunite on all exposed surfaces in the form of 

polymers (poly-(para-xylylene)). The deposition takes place at molecular level. The 

monomers are extremely active molecules having mean free path on the order of 1 mm 

(under deposition pressure of around 100 mTorr), which results in superior penetration 

power and a high degree of conformability to the surfaces being coated. The coated 

substrate temperature never rises more than a few degrees above ambient. Additional 

components of the system include a mechanical vacuum pump and associated cold trap. 

Although parylene N structure is used in Figure 1-6, the process is almost identical for all 

three common types of parylene, except for some slight differences in pyrolysis 

temperature and deposition pressure.  

 

Figure 1-6 Parylene deposition system and the involved chemical processes.  
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Typical coating thickness ranges from one to tens of microns. It can also be as 

thin as hundreds of angstroms. The coating thickness can be controlled by the amount of 

dimer used. The normal deposition rate of parylene C is about 5 µm per hour. The 

deposition rate is directly proportional to the square of the monomer concentration and 

inversely proportional to the absolute temperature [26]. Higher deposition rates, however, 

can result in poor film quality, which often appears as a milky (cloudy) film in contrast to 

normal clear transparent ones.  

 

1.4.2    Parylene Technology for Liquid Chromatography On-a-Chip 

Besides its superior properties, parylene is well suited for µTAS applications 

because of its ease of integration with other microfabrication techniques.  

Parylene’s room-temperature deposition makes it post-CMOS compatible, which 

allows parylene devices to have electrodes, sensors, and even circuits. Parylene’s 

conformal coating enables it to form complicated structures with great step coverage. 

Moreover, parylene is bio-compatible which makes it suitable for biological sensing 

applications and implant devices. As an organic polymer, parylene can be easily etched 

with oxygen plasma, using photoresist or metal as a mask.  

Parylene technology is proven to produce a wide variety of devices, including 

many important microfluidic devices, such as channels, micro-pumps, micro-valves, 

filters, pressure and flow sensors, mass flow controllers, electrospray nozzles, and gas 

chromatography columns (Figure 1-7) [27–32]. These microfluidic devices all have 

compatible fabrication processes, which potentially can all be integrated with a single 

batch fabrication to make a real micro total analysis system.  
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Figure 1-7 Parylene microfluidic devices.  

 
Furthermore, parylene technology is a great candidate for making liquid 

chromatography (LC) on-a-chip. An LC system is a complicated, highly-coordinated 

fluidic system that contains reservoirs, tubing, filters, pumps, pressure sensors, flow 

sensors, valves, mixers, columns, and electrospray nozzle if coupled with mass 

spectrometry (MS). To miniaturize an LC system, the microfabrication technology has to 

be versatile and powerful. Parylene technology certainly provides such opportunity for 

the total integration of an LC system on-a-chip. In addition, as an LC column wall 

material, parylene’s inertness provides unique advantages such as larger pH range and 

fewer surface functional groups than those of silica.  
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CHAPTER 2 

NANO HPLC 

2.1 High-Performance Liquid Chromatography  

2.1.1    Introduction 

High-Performance Liquid Chromatography (HPLC) is one of the most powerful, 

versatile, and widely-used separation techniques. It allows separation, identification, 

purification, and quantification of the chemical compounds in complex mixtures. It is an 

indispensable tool in analytical chemistry. It has a wide spectrum of applications in fields 

such as the pharmaceutical industry, proteomics, the chemical industry, environmental 

laboratories, the food industry, forensic analysis, and clinical analysis. The only 

limitation for HPLC is that the sample must be soluble in the liquid phase.  

Based on the definition given in [1], chromatography in general includes all 

separation techniques in which analytes partition between different phases that move 

relative to each other, or where analytes have different migration velocities, such as in 

electrokinetic chromatography. In most chromatographic techniques, one phase is 
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stationary, while the other phase is mobile. When this mobile phase is liquid, the 

chromatographic technique is called Liquid Chromatography (LC). The LC stationary 

phase can be either solid or surface functional groups bonded on a solid. High-

performance liquid chromatography is comprised of those LC techniques that require the 

use of elevated pressures to force the liquid through a packed bed of stationary phase, 

which is highly-efficient for separation. The packing material usually consists of particles 

with dimensions around 10 µm, which creates a large backpressure in the densely-packed 

bed. Therefore, the technique is also called high-pressure liquid chromatography.  

In short, during the elution process, the surface functional groups (stationary 

phase) on the particles interact with the sample and eluent (mobile phase). When the 

injected sample plug is carried through the column by the liquid eluent, different sample 

components interact with the stationary phase differently, partitioning their time in the 

stationary and mobile phases, and therefore migrate through the column at different 

speeds, and exit the column at different times. This process is illustrated in Figure 2-1.  

 

Figure 2-1 Illustration of the chromatographic separation process. 

 
When the solvent composition of the mobile phase is constant, it is called 

isocratic elution. When a sample mixture contains over 20 compounds, isocratic elution 
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can be problematic. Early peaks usually have poor resolution and final peaks are broad 

and flat. Weaker solvents will improve early peaks but worsen the final peaks, while 

stronger solvents further compress early peaks but improves final peaks. This so-called 

“general elution problem” can be solved by starting with a weak solvent then gradually 

increasing solvent strength over time, so that all peaks can be well resolved. The gradient 

profile can be best determined empirically. 

 

2.1.2    History 

Chromatography was invented by a Russian botanist Mikhail Tswett (1872–1919) 

in 1903 (Figure 2-2) [2]. He employed the technique to separate plant pigments by 

passing solutions of these species through glass columns packed with finely divided 

calcium carbonate [3]. The separation appears as colored bands on the column, which is 

why he named this technique chromatography. The word chromatography is composed of 

two Greek roots, chroma (color) and graphein (to write). 

 

Figure 2-2 The inventor of chromatography, Tswett, and his chromatographic device. 

 
Table 2-1 lists some of the milestones in the development of modern HPLC [4]. 

In 1941, Martin and Synge developed the theory of partition chromatography and used 
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mathematics to describe the separation process [5], which became the basis for modern 

HPLC. They shared the Nobel Prize in Chemistry (1952) for their invention of partition 

chromatography [6]. Martin also published the first application of gas chromatography 

with James in 1952. In the same year, gradient elution was demonstrated by Alm. By the 

late 1960s, LC theories and instrumentations were well established, which led to the first 

commercially available liquid chromatography system in 1969. Around 1973, packing 

technologies were advanced so that, for the first time, reproducible high-efficiency 

columns could be prepared with particles less than 10 µm in diameter. Also in 1973, 

modification of silica surface via silanization became commercially feasible. These 

breakthroughs led to the first 10 µm reversed-phase HPLC columns [1]. Since then, 

HPLC has become one of the most important and fastest-growing techniques in the 

modern laboratory. The state-of-the-art column liquid chromatography equipment and 

instrumentation is discussed in a recent review [7]. 

 

Table 2-1 Milestones in the history of HPLC development. 
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2.1.3    Theory 

2.1.3.1 Chromatogram and Important Equations 

The separated compounds appear as peaks in the chromatogram (Figure 2-3), 

which is a plot of some function of the compound concentrations versus elution time. 

Each peak is a Gaussian curve in theory. Retention time of a peak is defined as the time 

between sample injection and the peak maximum. 0t  is the retention time of the 

unretained sample, which is the time that the mobile phase takes to travel through the 

column, also called breakthrough time. If the column length is cL  and the mobile phase 

linear flow velocity is u , then 

 0
cLt

u
=  (2.1) 

 

Figure 2-3 Chromatogram and its characteristic features [8]. 
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For most LC separations regardless of column dimension, the optimized linear 

flow velocity u  is on the order of 1 mm/s, as a rule of thumb. The corresponding 

volumetric flow rate F is: 

 cF uAε=  (2.2) 

where cA  is the column cross-sectional area and ε  is the column porosity. For cylindrical 

columns with inner diameter (ID) of cd : 

 

2

4
c

c
dA π

=
 (2.3) 

The column porosity ε  is: 

 

column packing

column

V V
V

ε
−

=
 (2.4) 

where columnV  is the total volume in the column and packingV  is the volume taken up by the 

solid packing material in the column. The column porosity can also be expressed as the 

sum of inter-particle porosity and inner-particle porosity.  

Rt  is the retention time of a retained compound. Two compounds can be separated 

if they have different retention times. '
Rt  is the net/adjusted retention time relative to 0t . 

Therefore,  

 '
0R Rt t t= +  (2.5) 

0t  represents the time a compound spends in the mobile phase, which is identical for all 

compounds since compounds only move down the column when they are in the mobile 

phase. '
Rt  represents the time spent in the stationary phase. The longer a compound stays 

in the stationary phase, the later it will be eluted.  
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To characterize a compound, the retention factor, k, is preferred over the retention 

time, since the latter also depends on column length and flow velocity. k is given as: 

 
'

0

0 0

RR t ttk
t t

−
= =  (2.6) 

k is independent of column length and flow rate and represents the molar ratio of 

the compound staying preference between the stationary and the mobile phase. Therefore, 

k  can be also expressed as:  

 stationary

mobile

n
k

n
=  (2.7) 

where stationaryn  and mobilen  represent the number of molecules of a certain compound in 

the stationary and mobile phases respectively. Various compounds must have different k  

values in order to be separated.  

The separation factor, α , is defined as: 

 2
2 1

1

  ( )k k k
k

α = >  (2.8) 

The separation factor shows the chromatographic system’s separation power between two 

compounds, i.e., its selectivity. 

As shown in Figure 2-3, w  is the peak width. When measured at 13.4% height of 

a Gaussian peak, w  equals four times the standard deviation, σ , of the peak. The 

resolution, R , of two peaks is defined as the ratio of the two-peak maxima distance to the 

mean of the two peak widths:  

 2 1

1 2

2 R Rt tR
w w

−
=

+
 (2.9) 
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The more separated and sharp (narrow) the two peaks are, the higher the resolution.  

The number of theoretical plates, N , can be calculated from the chromatogram:  

 216( )RtN
w

=  (2.10) 

The equation is correct only if the peak has a Gaussian shape, otherwise, some other 

approximate equations should be used. Since the calculation of N  involves retention 

time, N can only be derived from isocratic, not gradient, chromatograms. The plate 

number obtained from a non-retained peak is a measure of the column packing efficiency. 

Higher N  and higher efficiency can be obtained with longer columns, smaller beads, 

better packing, and better optimized flow velocity. N  is proportional to column length, 

and inversely proportional to bead diameter pd : 

 N cL∝  (2.11)  

 1N
pd

∝  (2.12)  

Qualitative and quantitative information about the sample components can be 

obtained from the chromatogram. The retention time of a compound is always the same 

under identical chromatographic conditions. Therefore, a compound peak can be 

identified by comparing to a standard chromatogram with known compounds. The 

concentration of a compound can be determined by its peak height, which is proportional 

to the injection concentration. Plots of peak height versus injection concentration, usually 

linear, can be obtained using samples with known component concentrations. 

The concept of reduced/dimensionless parameters allows comparison of different 

columns. One of the most frequently used parameters is dimensionless flow resistance: 
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2
p

c

Pd
L uη
∆

Φ =
 (2.13) 

where P∆  is the pressure drop across the column, cL  is the column length, η  is the 

viscosity of the mobile phase. Φ  is between 500 (spherical beads) and 1000 (irregular 

beads) for columns packed with totally porous materials. This equation can also be 

rearranged to estimate column backpressure: 

 
2

c

p

L uP
d
ηΦ

∆ =
 (2.14) 

 

2.1.3.2 Band Broadening and van Deemter Equation 

Chromatographic bands increasingly broaden as the bands move down the column 

(Figure 2-4).  Band broadening reflects a loss of column efficiency. There are four 

reasons for band broadening.  

 

Figure 2-4 Illustration of band broadening during chromatographic elution. 

The first is eddy diffusion (multi-path effect) (Figure 2-5 (a)). There are always 

some sample molecules in the band that go rather straight in the column and exit earlier, 

while others have many diversions along the way and exit later.  
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The second is flow distribution of the mobile phase traveling in the channels 

between the beads (Figure 2-5 (b)). The laminar flow is faster in the channel center and 

slower on the edge. Both of the above effects can be reduced by using more uniformly-

sized beads. However, the mobile phase flow velocity has little effect for either one.  

The third cause is longitudinal diffusion of sample molecules in the mobile phase 

(Figure 2-5 (c)), which happens only when small beads are used, mobile phase velocity is 

low, and the sample diffusion coefficient in the mobile phase is large. This effect can be 

minimized by choosing an adequate mobile phase velocity.  

 

Figure 2-5 Four mechanisms of band broadening.  

The forth cause is the time-consuming mass transfer process between mobile, 

“stagnant mobile,” and stationary phases (Figure 2-5 (d)). Inside the pores of the beads, 

molecules move only by diffusion. Therefore, some molecules could be stuck in the pores 

while others continue to move down the column with mobile phase. In this case, the 

higher the mobile phase flow velocity, the more broadening effect will be.  

In summary, the theoretical plate height H (explained in detail in Section 2.1.3.4),  

representing the column efficiency, can be plotted against mobile phase velocity u  

(Figure 2-6), which is called the van Deemter curve. The effect of eddy diffusion and 
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flow distribution is shown with line 1. The longitudinal diffusion effect is shown with 

line 2. The mass transfer effect is shown with line 3. And the van Deemter curve is line 4, 

which is the summary of all four effects. The optimal u  is reached when the 

corresponding H reaches minimum. This H–u relationship can also be expressed with the 

following van Deemter equation.  

 
BH A Cu
u

= + +
 (2.15) 

where , ,  and A B C are coefficients for eddy-diffusion and flow distribution effects, 

longitudinal diffusion effect, and mass transfer effect respectively.  

 

Figure 2-6 Van Deemter Curve.  

 

2.1.3.3 Band Broadening vs. Separation 

Even though the band broadening effect exists, the chemical components in a 

sample can still be separated into non-overlapping bands if the column length is long 

enough. In a uniformly-packed column, the band width increases with the square root of 

the length it has traveled downed the column, while the distance between two bands is 
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proportional to the traveled length. This is the fundamental reason why chromatography 

works [1].  

Chemical compound concentration is not uniform in a band (peak). The band is 

rather a statistical distribution of molecules. The width of the band is always proportional 

to the standard deviation of the distribution, σ , with the proportionality factor depending 

on the distribution type. For typical chromatographic bands that are Gaussian distributed, 

the peak width measured at 13.4% of peak height is 4σ . The band standard deviation 

increases with the square root of the time spent in the column. Therefore, as equation 

(2.16) shows, the band width W  increases with square root of L , the length traveled.  

 LW t L
u

σ∝ ∝ = ∝  (2.16) 

  

Figure 2-7 Band broadening effect vs. separation effect. 

While the distance between two bands, L∆ , approximately can be expressed as:  
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 1 2 1 2( ) ( )R R
c

LL t t u k k L L
L

∆ = − = − ∝    (2.17) 

 

2.1.3.4 Height Equivalent to a Theoretical Plate 

In some sense, the height equivalent to a theoretical plate (HETP), H, can be 

imagined to be the distance over which chromatographic equilibrium is achieved [8]. The 

smaller the H value, the higher the column efficiency. However, the plate model is not a 

very good presentation of chromatographic column; plate height represents column 

efficiency for historic reasons only, and not because it has physical significance [3].  

Chromatographic band (peak) width can be described by its variance 2.σ  As 

stated in the previous section, σ  increases with the square root of the length traveled. 

Therefore, the peak variance increases linearly with the length it has traveled (Figure 2-8). 

The smaller the slope, the slower the peak widens, the higher the column efficiency. The 

slope (variance per unit length) is defined to be HETP:  

 
2

H
L
σ

≡  (2.18) 

H can also be calculated as:  

 cLH
N

=  (2.19) 

The reduced/dimensionless plate height, h , is defined as: 

 p

Hh
d

=
 (2.20) 
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h  represents the number of layers of stationary phase packing over which a complete 

chromatographic equilibrium is obtained. A column with good packing usually has h  

from 2 to 5. 

 

Figure 2-8 Definition of HETP. 

 
2.1.4    Instrumentation 

A typical HPLC instrument has the following parts: solvent reservoirs, high-

pressure pumps, sample injection device, separation column, and detector (Figure 2-9). 

Some of the optional parts are guard column, thermostat oven, and fraction collector. 

Since this thesis work emphasizes column and detector, these two parts will be discussed 

in more detail below.  

 

Figure 2-9 Schematics for a typical HPLC system. 
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2.1.4.1 Solvents 

Solvents must be HPLC-grade. They have to be degassed before entering the 

column, otherwise gas bubbles will appear in the detector where the pressure is low. 

Commercial HPLC systems usually have on-line degassers in their pumping units. The 

most preferred organic solvent is now acetonitrile rather than methanol mainly because 

the latter is more viscous, and thus generates higher backpressure. Methanol viscosity is 

0.6 cP at 20 °C, while that of acetonitrile is 0.37 cP. Acetonitrile is, however, much more 

expensive than methanol.   

 

2.1.4.2 Pumps 

An HPLC pump has to be able to generate thousands of psi pressure, and provide 

high flow accuracy and precision. The delivered flow rate must be unaffected by 

backpressure change during separation. For example in gradient separations, the ratio 

between solvents in the mobile phase changes, which leads to a total effective viscosity 

change, and therefore a backpressure change. Commercial HPLC pumps are mostly 

piston pumps. Recently, a new pump for nano HPLC applications has appeared on the 

market, which uses compressed air as the pressure source and a flow sensor to perform 

feedback control to generate precise nano liters per minute flow rates [9]. 

 

2.1.4.3 Sample Injectors 

An injection valve is used for sample injection into the column with an accurate 

and precise amount of sample. Figure 2-10 illustrates the working mechanism for a six-

port sample injection valve. In Figure 2-10 (a), the sampling loop is connected to the 
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sample injection inlet, from which sample is loaded into the loop. Excessive amount of 

sample is usually loaded, in order to make sure the loop is completely filled. Then the 

internal rotor seal is rotated to bring the sampling loop online with the pump and column 

(Figure 2-10 (b)) to inject sample into the column.  

 

Figure 2-10 Injection valve working mechanism. 

 

2.1.4.4 Chromatographic Columns 

2.1.4.4.1 Column Dimension 

Column length and inner diameter (ID) are two of the most important column 

properties. The separation power in terms of number of plates is proportional to column 

length. However, backpressure and analysis time will also rise proportionally to column 

length increase. For gradient separation, the column length is less a factor for resolution 

since the separation is controlled by gradient rather then the length of the column. 

Narrower columns require less sample injection, consume less mobile phase, and have 

better sensitivity when the same amount of sample is injected. However, wider columns 

permit higher sample loadability.  
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2.1.4.4.2 Column Packing Physical Properties 

HPLC columns are mostly densely-packed with micro-scale beads. The aim of the 

beads is to carry the stationary phase and to generate high surface area. As shown in 

Figure 2-11, the beads used in HPLC column packing differ in shape, size, pore size, and 

surface area (porosity).   

 

Figure 2-11 Physical properties of liquid chromatographic beads.  

 
The shape of HPLC beads is either spherical or irregular. The vast majority of all 

columns uses spherical beads, since they provide more uniform and dense packing, better 

flow profiles, less backpressure, and higher efficiency.  Irregular beads often provide 

more surface area and higher capacity.  

The size of most commercial HPLC beads is between 3 µm and 10 µm in 

diameter, while 1 µm diameter beads are also being explored. Smaller beads provide 

smaller plate height, which is proportional to bead diameter. This comes with the expense 

of significantly higher backpressure, which is inversely proportional to the square of bead 

diameter.  Therefore, the trend is to increase resolution rather than continue to reduce 

particle size. 
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Pore size is the average dimension of the channels inside the porous beads. The 

bead internal structure is fully porous and can be best compared to a sponge with a rigid 

structure. Within the pores, the mobile phase and the analytes do not flow but move only 

by diffusion. The pore size can range from 60 Å to over 10,000 Å. Molecules smaller 

than the pore size can enter the pores and fully utilize the internal stationary phases. 

Larger molecules may be kept outside the pores and thus have little retention. In practice, 

molecular weight is used instead of size.  

The bead surface area is determined by the pore size and abundance of pores in 

the bead. Higher porosity beads with smaller pores have larger surface area. For example, 

the surface area of a column packed with 5 µm non-porous beads is only 0.02 m2/mL, 

while that of a totally porous-bead-packed bed is 150 m2/mL [1]. Pores that are too small, 

however, are detrimental to column efficiency, since they are difficult to access. For 

general purpose columns, 10 nm pores are often used. For large molecules like proteins, 

100 nm pores are the best choice. For beads without bonded surface functional groups, 

larger surface area means more capacity, longer retention, and generally higher resolution. 

For bonded beads, both surface area and bonding density should be considered. There are 

also non-porous bead columns, which can eliminate band broadening caused by poor 

mass transfer into the stagnant mobile phase within the pores, and can reduce undesired 

loading capacity in some cases. 

 

2.1.4.4.3 Base Material and Bonded Phases 

The base material of the beads is generally a metal-oxide, such as silica and 

alumina, or a polymeric material, such as polystyrene-divinylbenzene (PS-DVB). Silica 
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is the most popular base material for HPLC column packing, while polymeric materials 

are gaining popularity. Silica beads are produced by a number of different syntheses such 

as complete hydrolysis of sodium silicate, or the polycondensation of emulsified 

polyethoxysiloxane followed by dehydration [8].  A silica bead has silanol (-OH) groups 

on its surface, which can be chemically modified (replaced) with desired stationary 

phases. A number of reactions can be used. Figure 2-12 gives one example, where the 

silanol group is reacted with an alcohol, ROH. R may be an alkyl chain or other 

functional group.  

 

  

Figure 2-12 Chemical modification of silica surface. 

 
ODS (octadecylsilane), in which 2 17 3R= -(CH ) CH , is the most common type used 

in HPLC columns. It is also called C18 since there are eighteen carbon atoms in this alkyl 

chain (Figure 2-13). It is very non-polar and is used in reversed-phase (RP) HPLC, as 

explained in Section 2.1.4.4.4. Similarly, C8 2 7 3(R= -(CH ) CH )  and C4 

2 3 3(R= -(CH ) CH )  are also used in RP-HPLC. Since they have shorter alkyl chains than 

C18, they are less non-polar and require less run time for separations.  

After the functional group bonding process, the silica bead may also be end-

capped, which bonds short hydrocarbon chains to free silanol groups still on the base 

silica surface. End-capped beads provide more predictable separations since the effects 

from free silanol groups are mostly removed. 
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Figure 2-13 Chemical structure and 3D illustration of C18 functional groups on silica 

surface. 

 
Compared to silica beads, polymer materials have wider pH range. Silica can only 

tolerate mobile phases having pH 2 to 7.5, while polymers are usually good between pH 

2 to 12, sometimes even 0 to 14. Strong acids and bases can not be used for silica-based 

columns. Polymer-based columns, on the other hand, can be thoroughly cleaned with 

strong acids or bases to have a longer lifetime than silica-based columns. Moreover, the 

polymer material surface is free of silanol group, which can sometimes affect separation.  

One disadvantage of polymers is they are softer than silica. They can swell in 

non-polar solvent and shrink in aqueous solvent. In addition, when compared to silica-

based columns, polymer columns take longer time to equilibrate when a new mobile 

phase is introduced.  
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2.1.4.4.4 Separation Mechanisms 

The most common types of LC, based on the separation mechanisms in the 

column, are normal-phase, reversed-phase, ion, size-exclusion, hydrophilic interaction, 

and hydrophobic interaction.  

Normal-phase LC employs a polar (water-soluble, hydrophilic) adsorbent such as 

silica, and a non-polar (fat-soluble, hydrophobic) mobile phase based on hydrocarbons 

such as petrol. It is also often called adsorption chromatography and was the first type of 

LC technique developed. However, two reasons greatly limit its use. Firstly, silica is 

hydrophilic, any trace amount of water in the solvent could change its surface property, 

thus change elution time. Second, many interesting analytes, such as amino acids, 

peptides and nucleotides, are so polar that they do not easily dissolve in non-polar 

solvents, and therefore can not be analyzed by normal-phase.  

The solution to these two problems is to modify the silica surface to be 

hydrophobic (non-polar), and use polar solvents for elution, which is known as reversed-

phase (RP) LC.  RP-LC is the most popular type of LC today. Non-polar compounds are 

eluted later than polar compounds. Water as a mobile phase cannot interact with the non-

polar (hydrophobic) station phase. Therefore, water has little elution power. Non-aqueous 

solvents, such as acetonitrile and methanol, are less polar than water. Therefore, they 

have better elution capability. The more solvent content in the mobile phase, the faster 

the separation. 

Ion chromatography utilized ion-exchange interactions of charged analytes, eluent 

(mobile phase) ions, and charged functional groups on the stationary phase. Eluent ionic 

strength and pH can affect the elution. This is discussed in detail in Section 5.1.2.  
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Size-exclusion chromatography is a separation based on size, i.e. according to 

molecular mass, rather than any interaction phenomena. Larger analytes have limited 

access to stationary phase in the pores of the packing. Therefore, larger molecules are 

eluted earlier than smaller ones.  

Hydrophilic interaction chromatography is an extension of normal-phase 

chromatography where very polar analytes and aqueous mobile phases are used. 

Stationary phases are still the same.  

Some protein separations need significantly less-hydrophobic stationary phase to 

prevent the proteins from being denatured by common RP-HPLC solvents. This 

technique is called hydrophobic interaction chromatography, which is an extension of 

reversed-phase chromatography.  

 

2.1.4.5 Detectors 

A successful HPLC analysis relies not only on the mixture separation delivered by 

the chromatographic process, but also on the visualization of the separated compounds 

provided by the detector. For the earliest chromatography, the separation is literally 

“visualized” by a rainbow of colors. Over the years, a whole spectrum of detectors 

exploiting all kinds of physical and chemical properties has been developed. Detailed 

discussions are given in [10]. As the separated compounds exit the column and pass 

through the detector cell, changes on the background signal are sensed by the detector 

and recorded on a chromatogram. Among all the detection methods, UV-visible 

absorbance, fluorescence, refractive index (RI), electrochemical/conductivity, and mass 

spectrometry (MS) are the most common ones.  
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The choice of the appropriate detector for an application depends mainly on the 

analytes of interest and the desired sensitivity. Table 2-2 summarizes the sensitivity for 

the most common HPLC detectors [3, 10–12]. The sensitivity data are dependent on the 

compound, instrument, and HPLC conditions. Those given in the table are only typical 

values. Other important detector properties include selectivity, response time, and 

detector cell volume. The selectivity determines how well it can discriminate a compound 

from others or from the background. The detector also has to be fast enough to allow 

real-time detection. If more time is required to achieve a desired sensitivity, the analyte 

fractions may have to be collected and analyzed later. Since trace levels of chemicals are 

to be determined, the volume of the detector cell needs to be small enough that the 

separated peaks do not distort or overlap in the detector.  

 

Table 2-2 Typical sensitivity data for common HPLC detectors. 

 
UV-visible absorbance detector measures the loss of ultraviolet or visible light as 

the light passes through the HPLC column effluent. The chemicals of interest must 

contain chromophores that absorb UV or visible light, such as conjugated double bonds 

and aromatic rings. The flow cell is usually arranged in a “Z” pattern, in which the flow 
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path is maximized to maximize absorbance that is proportional to the flow path in the 

detector cell. The absorbance rather than the transmittance is recorded, because the 

former, not the latter, is linear with sample concentration. The absorbance method is 

simple and reliable. However, it is less sensitive than fluorescence, electrochemical, and 

mass spectrometry detections. And it is not a universal method for all analytes.  

Fluorescence detection captures the fluorescence emission at a higher wavelength 

generated by a lower excitation wavelength. The analytes must have fluorophores, which 

are compounds that fluoresce. This method has much better sensitivity and selectivity 

than most other methods. Its sensitivity comes from the fact that most background 

solvents do not fluoresce and the analytes usually strongly fluoresce. There are two 

reasons for its selectivity. Firstly, not all organic molecules fluoresce. Secondly, 

fluorescence detection uses two distinct wavelengths as opposed to one in absorbance 

method, which greatly reduces the chance of interfering peaks. One important 

disadvantage of fluorescence detection is the limited number of compounds that fluoresce, 

although some of them can be chemically derivatized to have fluorescent “tags.” Another 

drawback is that the fluorescent response can be affected by solvent type, temperature, 

and pH.  

Refractive index detection is a universal method, since the refractive index 

difference between any two liquids is on average about a million times larger than the 

detection limit of current RI detectors. It is often used for compounds that do not have 

strong UV chromophores, fluorophores, electrochemical activity, or ionic conductivity. 

One major disadvantage, however, is the lack of sensitivity. Since the refractive index is 
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a property of the bulk solution, any change in temperature, pressure, or composition can 

affect the baseline stability. Therefore, gradient elution should be avoided.  

Electrochemical detectors measure the electrochemical properties of the HPLC 

column effluents. It has good sensitivity and can be used for an extensive list of analytes. 

The most common type of electrochemical detectors is the conductivity detector, which 

measures the electrical conductance. It is especially used for ion chromatography where 

the analytes are ionic and have weak UV absorbance. Non-suppressed conductivity 

detection measures sample signals directly on top of baseline signal generated by the 

mobile phase. Suppressed detection removes the background after separation but prior to 

detection. The sensitivity of suppressed conductivity detection is one to two orders of 

magnitude better than non-suppressed one, according to the data in Table 2-2. One main 

issue of conductivity detection is the temperature effect on the ion mobility, and thus on 

the conductivity. Conductivity of an ionic solution rises about 2% for every degree 

increase in temperature [13]. Therefore, the detector cell temperature must be carefully 

maintained and/or temperature compensation must be used. More details of conductivity 

detection are presented in Section 5.2.2.  

HPLC-MS seems to be the ideal merger for separation and detection. Mass 

spectrometry is one of the most sensitivity detection methods for HPLC. It is universal 

and can be used for specific compound identification and quantitative determination. MS 

has superior selectivity and it can easily discriminate against interference from 

background or other eluted materials. In a mass spectrometer, compounds are vaporized, 

ionized, separated according to their mass-to-charge ratio (m/z), and detected.  

Electrospray ionization (ESI) [14] is one of the most common ionization techniques, 
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especially for high molecular weight samples used in proteomics. Other notable 

interfacing techniques are atmospheric pressure chemical ionization (APCI) and matrix-

assisted laser desorption ionization (MALDI). The interfacing requirement is one factor 

limiting the use of MS. Another practical reason is that mass spectrometers are still very 

expensive. Furthermore, since MS demands a rather low flow rate on the order of 100 to 

1000 nL/min, it raises challenges on the LC side, which is actually one of the main 

reasons for the development of nano HPLC.  

 

2.2 Nano HPLC  

2.2.1    Definition 

The recent developments in proteomics, in particular, have been demanding the 

reduction of LC column IDs, to accommodate dwindling sample amount and the need for 

increasing sensitivity. In addition, the field of lab-on-a-chip demands on-chip liquid 

chromatography separation for other chip-based chemical analysis, just in the same way 

that LC is highly desired and utilized in conventional-scale analytical chemistry 

applications. Performing separation prior to detection essentially eliminates the need for 

highly specific sensing, which is difficult to achieve on-chip.  

Based on the definition given in Table 2-3 [15], many columns used for 

proteomics  applications today can be called nano HPLC columns. Inherently, most on-

chip microfluidic columns also fit in the nano HPLC category. It should be noted, 

however, that on-chip columns usually have rectangular cross-sections, unlike the 

conventional cylindrical columns.  
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Nano HPLC is sometimes also referred to as “nanobore HPLC” or “nano-scale 

HPLC” in the literature.  

 

Table 2-3 Nomenclature for HPLC systems.  

 
It is interesting to note that nano HPLC does not mean the column ID is on the 

nanometer scale, but rather the flow rate is on the scale of nano liters per minute (nL/min). 

Similarly, micro HPLC means the flow rate is on the scale of µL/min, while normal 

HPLC has its flow rate between 1 to 10 mL/min. The operating flow rates for each 

category are calculated based on the column ID and optimal flow velocity, which is 

usually on the order of 1 mm/s.  

 

2.2.2    Miniaturization Benefits 

First, the use of narrower columns reduces solvent consumption significantly. 

Since the optimal linear flow velocity for LC separation is independent of column ID, the 

actual eluent volumetric flow rate scales with column cross sectional area. The retention 

volume RV , which is the volume of the mobile phase necessary to elute a peak with 

retention factor k, is proportional to column cross-sectional area: 
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 0( 1) ( 1)R c c cV F k t k L A Aε= × + = + ∝  (2.21) 

For cylindrical columns, this means it is proportional to column ID square: 

  2
R cV d∝  (2.22) 

When column ID shrinks, theoretically [8], the separation efficiency remains 

nearly unchanged given the same packing quality of the columns. Thus the separated 

peak width is almost independent of column ID. Another way to understand it is to 

imagine the column with smaller ID was taken out from the central rod of the larger 

column (Figure 2-14). Since sample band (peak) width is the same across the column 

cross-section, the smaller column should produce the same peak width as the larger one.  

 

Figure 2-14 Peak width remains nearly unchanged with column ID reduction. 

 
As a result, when the same amount of sample is injected, the peak maximum 

concentration, pc , scales inversely with column ID square,   

 2

1 1
2

i
p i

R R c

VNc c
V V dπ

= ∝ ∝  (2.23) 

where iV  is the injection volume, and ic  is the injection concentration. Since most HPLC 

detectors, such as UV absorbance, fluorescence, mass spectrometry, and conductivity 
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detectors, are concentration-sensitive instead of mass-sensitive, the detector response 

shown as peak height scales the same way. Therefore, higher sensitivity and/or less 

sample requirement can be obtained with column ID miniaturization.  

This effect of column ID and bead diameter reduction is illustrated in Figure 2-15. 

Columns 1 and 3 have the same packing quality but different ID.  For the same injection, 

the peak from column 3 has the same width but much more height than that from column 

1.  The same holds for columns 2 and 4.  

 

Figure 2-15 Effects of column ID and bead diameter reduction on separation performance. 

 
Since most HPLC detectors are concentration dependent, the number of sample 

molecules in the peak is proportional to the peak area times column cross sectional area. 

Therefore although injected sample amount are the same for 3 and 1, the peak area in 3 is 

larger than that in 1, because column 3 is narrower than 1. The same holds for columns 2 

and 4. 

Comparing column pairs with the same ID but with different bead diameters, the 

peak height from column 2 is about the same as that from column 1, while the peak width 
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is much narrower due to better separation efficiency of the smaller packing materials 

(Figure 2-15). The same holds for columns 3 and 4. 

Furthermore, the miniaturized column does not have the burden of elevated 

pressure requirements, although its flow resistance is significantly increased. The reason 

is the optimal operating pressure is proportional to the optimal linear flow velocity 

(equation (2.14)), which is independent of column diameter.  

Finally, a miniaturized LC system will be significantly cheaper than its 

conventional counterpart. In addition, it will be significantly smaller even compared to 

today’s most compact desktop LC systems. These new features could enable portable 

and/or disposable LC systems that could be used for field tests, networked sensing, real-

time environmental monitoring and so on, which would be impossible with today’s bulky 

lab LC instruments. LC chips can also be incorporated with other chemical and biological 

sensors to make them more selective and sensitive. Moreover, mass parallel LC 

separations could be possible with LC chips, which would greatly reduce drug discovery 

time and cost.  

 

2.3 Review of Nano HPLC Chips 

Despite the benefits of miniaturized LC systems, on-chip classic pressure-driven 

LC technology is actually considerably under-developed [15–25], compared to chip-

based capillary electrophoresis (CE) with its abundant publications.  

As another popular separation technique, CE has its limitations and drawbacks 

compared to LC. Firstly, CE relies on charged analytes moving in an electric field, which 

is not suitable for analytes that are barely conducting or dissociate in high electric field. 
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LC, on the other hand, is a rather general method. Almost any, if not all, samples that are 

soluble in liquid phase can be separated using LC. Secondly, LC does not need the high 

voltages employed for CE, mostly on the order of kilovolts, which is not suitable for 

many practical applications. Thirdly, for CE, the resistive heating across the column is 

also a concern. Fourthly, on-chip CE demands the use of a tiny plug of injected sample, 

which mostly has to be done on-chip, raising the micro-system complexity considerably. 

In contrast, LC systems can tolerate much larger injection volumes, which could be from 

off-chip, since the sample will concentrate on the LC column inlet, given adequate 

capacity of the column.  

One main factor limiting the development of LC on-a-chip is the lack of available 

technologies to integrate various components of an LC system, especially for the heart of 

the LC system, the separation column [16, 17]. Although the packing of the on-chip 

column with beads seems to be desirable and straightforward, until recently, most chip-

based LC columns with few exceptions [18] were made using alternative methods. These 

include open-tubular [19], surface-activated micromachined posts [20], continuous 

monolithic bed formed by in-situ polymerization [21], and column coated with 

nanoparticles [22].  

For all the chips presented in this thesis, columns are all fabricated by either 

integrating LC beads into the column during fabrication or packing columns with beads 

after fabrication. There are two important advantages of using conventional beads over 

alternative methods. Firstly, without introducing new surface chemistry, the well-

established separation knowledge can be utilized. Secondly, there is more flexibility to 
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perform various types of LC separations and/or to optimize particular separations, by 

choosing from a variety of commercially available beads and stationary phases. 

Recently, Nanostream Inc. revealed their micro parallel LC cartridge, which is 

made of polymeric material and has 24 bead-packed microfluidic columns allowing 24 

samples to be analyzed in parallel. The samples are injected from off-chip using an auto 

sampler and detected with 24 UV absorbance detectors off-chip. Also recently, 

researchers from Agilent  presented their chip-based fritless LC column with electrospray 

ionization (ESI) nozzle [15, 23]. The chip is made of two polyimide layers bonded 

together, while the ESI nozzle is fabricated by laser ablative trimming of the bonded chip. 

The column is packed with C18 beads using a tapered outlet rather than frit, utilizing a 

so-called “keystone effect” [26]. Samples are injected from off-chip using an injection 

valve attached to the back of the chip. A mass spectrometer is used as the detector. The 

most complete LC chip so far is a device from our research group [24] that has on-chip 

gradient pumping, sample injection, column, and electrospray nozzle. Its 1 cm long 

column is packed after chip fabrication. A mass spectrometer is used as the detector. 

Some packaging is required to form the solvent and sample reservoirs for the chip.  

The goal of this thesis is to develop technologies and devices to address the 

important and challenging issues of previous LC chips. Firstly, there is no device to date 

that integrates bead column during chip fabrication, which directly prevents real batch 

fabrication of LC chips (Chapter 3). Secondly, the needs for high-pressure rating and 

efficient high-pressure generation on-chip are still unmet, especially for parylene micro 

devices, which has to be solved in order to perform real high-performance/pressure liquid 

chromatography on-a-chip (Chapter 4). Chapter 5 presents the first integrated ion 
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chromatography chip, which demonstrates on-chip sample injection, column separation, 

and conductivity detection for multi-ion sensing. And Chapter 6 demonstrates a high-

pressure LC-ESI/MS microchip, which is integrated with 6.5 cm long column, filter for 

packing beads, and electrospray nozzle for coupling to mass spectrometry detection. 

Finally, Chapter 7 concludes the thesis. 
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CHAPTER 3 

 BEAD INTEGRATION TECHNOLOGY 

AND AN LC-ESI/MS CHIP 

 
3.1 Introduction 

As mentioned in Chapter 2, one of the most challenging parts involved in the 

development of on-chip liquid chromatography is the bead separation column. 

Conventionally, LC columns are packed by a so-called “slurry-packing technique,” in 

which beads prepared in slurry are externally packed into the column. Naturally, some 

researchers use the same method to pack on-chip micro-channels [1–5]. Unfortunately, 

although it seems to be straightforward to pack a fabricated micro-channel, the packing 

process is laborious, time-consuming, and only one column can be packed at a time. 

Some alternative methods [6–9] that avoid packing have also been proposed. These novel 

packing-less columns are useful for some applications. However, they also have serious 

disadvantages such as limited separation knowledge base, separation mechanisms, and 
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applications. A detailed discussion is given in Section 2.3. The conclusion is on-chip 

bead-packed column that miniaturizes its conventional-scale counterpart is the desired 

approach for on-chip LC. The fabrication of the bead column, however, needs to be 

greatly simplified. Therefore, this chapter discusses the development of a new in-process 

bead-delivering technique to make integrated bead columns. This method offers the 

advantages of batch fabrication, easy integration with other devices, and little dependence 

on bead type.  

The chapter starts with a discussion of many aspects in dealing with beads. The 

second part develops a novel technique to integrate beads into micromachined devices. 

Finally the third part demonstrates an application of this technique, which is a liquid 

chromatography–electrospray ionization (LC-ESI) chip with integrated LC bead column, 

particle filters, and electrospray nozzle for coupling to on-line mass spectrometry 

detection. The combination of liquid chromatography and mass spectrometry (LC-MS) is 

a very powerful merger for separation and detection. Microchips with LC-ESI/MS 

capabilities are highly desired, especially in the field of proteomics. We have successfully 

demonstrated similar parylene freestanding ESI nozzles before [10, 11]. This work for the 

first time truly integrates the LC bead column with ESI nozzle. 

 

3.2      Working with Beads 

3.2.1 Various Terms and Properties 

In the literature, the terms “particles,” “beads,” and “microspheres” are often used. 

Generally speaking, “particles” are usually irregular in shape and non-uniform in size. 

“Beads” are more spherical and more uniform. “Microspheres” are the most spherical and 
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uniform of the three. However, the distinction is not so clear cut. Therefore, the three 

terms are often used interchangeably. In the field of liquid chromatography, the term 

“bead” is mostly used to describe the packing material in the separation column.  

There are a wide variety of beads commercially available. Their sizes can range 

from several nanometers to millimeters. The base material can be silica, alumina, 

polystyrene (PS), and many others. There are a number of choices for surface chemistries 

and bulk properties as well, such as hydrophobicity, fluorescence, and magnetism. The 

beads can also come in a rainbow of colors.  Some major vendors for all general and 

special beads are Bangs Laboratories (Fishers, IN), Duke Scientific (Palo Alto, CA), and 

Polysciences (Warrington, PA). Liquid chromatographic beads are available from 

vendors such as Alltech Associates (Deerfield, IL), Hamilton (Reno, NV), and Grace 

Vydac (Hesperia, CA).  

 

3.2.2 Aggregation 

The interactions between particles, especially surface forces, are proportional to 

the first power of particle size. As a comparison, gravitational force is proportional to the 

mass, thus to the cube of particle size. Hydrodynamic forces caused by flow depend 

roughly on the square of particle size. Therefore, when the particle dimension reaches the 

micron level, surface forces become dominant. Aggregation is often seen for suspended 

micro-particles, which aggregate by collision and are held together by surface forces [12].  

The leading cause for aggregation of polymeric particles is hydrophobic 

interaction. The particles are likely to form aggregates in aqueous solution to reduce their 

total surface area, and thus lower their surface energy. Silica beads are more hydrophilic 
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because of their surface hydroxyl groups. For them, the main cause of aggregation is 

charge interactions. Furthermore, higher temperature or particle concentration increases 

the likelihood for the particles to contact, thus creates more opportunities for aggregation. 

To break aggregates and homogenize the suspended particles, two methods are 

commonly used, sonication and vortexing. In addition to these two physical methods, the 

addition of suitable molecules can often effectively reduce the hydrophobicity or surface 

charges of the particles, thus reversing the aggregation. The choice of the right solvent is 

often the best way to avoid particle aggregation.  

 

3.2.3 Packing and Porosity 

The packing quality and porosity of chromatographic columns are two of the most 

important factors for column performance. Therefore, it is worthwhile to discuss bead 

packing and porosity. Let us start with a simple case, packing of uniformly-sized solid 

spherical beads. Two types of packing are the most common, BCC (Body-Centered 

Cubic) and FCC (Face-Centered Cubic). For BCC packing (Figure 3-1 (a)), there are two 

beads per unit cell. The coordination number is eight, meaning each bead has eight 

closest neighboring beads. The porosity for BCC is 0.32. Examples of BCC materials are 

chromium (Cr) and tungsten (W). For FCC packing (Figure 3-1 (b)), there are four beads 

per unit cube. The coordination number is twelve. The porosity is 0.26. Examples of FCC 

materials are aluminum (Al), copper (Cu), and platinum (Pt). For all types of packing of 

solid spherical beads, only inter-particle porosity exists, and the porosity of 0.26 obtained 

for FCC is actually the smallest possible. Although dense packing is desired for 

chromatographic columns, the commercial non-porous-beads can only obtain column 
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porosities of about 0.4. One reason is that chromatographic beads have considerable 

variations in size and shape. The other reason is that the packing process is not able to 

replicate the uniform crystal structures.  

 

 

Figure 3-1 Two common particle packing structures (a) BCC; (b) FCC.  

 
In addition to dense packing, high porosity is also desired for HPLC columns. 

Higher porosity means more surface area, more efficient separation, and less flow 

resistance. However, high porosity resulting from loose packing is undesirable since it 

creates dead volumes that cause excessive band broadening. Closely-packed porous-bead 

columns can solve this dilemma since inner-particle porosity is added to the inter-particle 

porosity. Commercial porous-bead columns have total porosities around 0.7 to 0.8, which 

means as little as only 20% of the volume inside the column is occupied by solid material.  
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3.2.4 Applications in MEMS 

 

Figure 3-2 One-shot pump and valve using expandable microspheres. 

 
A wide variety of interesting applications of micro and nano particles in MEMS 

are already available. For example, fluorescent and dyed particles are frequently used in 

microfluidic devices for flow visualization [13]. Magnetic micro-beads can be 

manipulated in micro devices for transportation of chemical reagents and cells [14]. 

Using thermally expandable microspheres, one-shot micro-valve and micro-pump (Figure 

3-2) have been demonstrated [15]. The valve can be used for normally-open (NO) 

applications. The pump can be used for chemical release. They are one-shot only since 

the expansion is irreversible. Using silica bead-packed capillaries with electrokinetic 

pumping, pressures over 8000 psi have been achieved [16]. The pressure is proportional 

to the voltage applied, and inversely proportional to square of the bead diameter. 

Moreover, microspheres with special coatings have been demonstrated for multi-analyte 

sensor arrays for the analysis of complex fluids (Figure 3-3) [17]. Each bead in the array 

acts like a taste bud. When combined, these beads form an array for detection of a variety 

of important classes of analytes, including acids, bases, metal cations, metabolic 

cofactors, and antibody reagents. 
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Figure 3-3 Multi-analyte sensor using specially-coated beads. 

 
However, none of these applications directly integrates particles into the device. 

Instead, the particles are usually injected into the device through access holes or placed 

by micromanipulators after device fabrication. 

 

3.3 Integrating Beads into Micromachined Device 

3.3.1 The Method 

MEMS devices are integrally fabricated with included beads by starting with a 

mixture of a sacrificial material and beads and disposing the mixture onto a substrate. A 

MEMS structure is fabricated on the substrate including at least part of the mixture, so 

that at least some of the mixture is enclosed in the MEMS structure. Finally, the 

sacrificial material is removed, leaving at least some of the beads substantially free and 

enclosed in the MEMS structure.  
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Figure 3-4 Pictures illustrating the major steps for integrating beads into parylene channel.  

 
The major steps for integrating beads into a typical parylene device are shown in 

Figure 3-4. First the beads (Figure 3-4 (a)) are mixed with photoresist. The mixture is 

spin-coated (Figure 3-4 (b)) and photo-patterned. Parylene is coated (Figure 3-4 (c)) on 

top to form channels and filters, where filters are channels with height smaller than the 

bead diameter. After photoresist removal by acetone, the beads are free to move in the 

channel but trapped by filters at ends of the channel. Figure 3-4 (d) illustrates a densely-

packed column with 5 µm diameter silica C18 LC beads. The column is 100 µm wide 

and 26 µm high. The process flow for the device is shown in Figure 3-5. Despite a few 
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novel aspects, the bead integration process is still mainly a photolithography process, 

which allows its easy integration with other processes and/or devices. 

 

 

Figure 3-5 Process flow for the testing device for bead integration technology. 
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3.3.2 Mixing and Spin-Coating 

The fabrication process starts with mixing particles, such as LC beads, with a 

sacrificial material, such as photoresist. By measuring the weight and knowing the 

density of the particles, the total volume of the particles, and thus the volume mix ratio 

between the sacrificial material and particles, can be determined. Then to remove the 

bubbles generated by mixing, the mixture can be degassed by any degassing technique, 

such as vacuum or centrifuge. After that, the mixture is applied onto the wafer substrate 

by standard spin-coating or any other appropriate coating processes, such as squeegee. 

A low-spin-rate effect is found to create web-like non-uniform bead distribution 

in the spin-coated film. As Figure 3-6 shows, the beads are dense in some areas while 

sparse in others. The hypothesis is the spin-rate is not high enough to create enough force 

during spinning to break the bead aggregates and distribute the beads uniformly. 

 

Figure 3-6 Spin rate effect on the coated photoresist-bead film. 

 
The thickness of the spin-coated mixture film depends on the spin rate, type of 

bead and photoresist, and mixing ratio. The higher the bead content in the mixture, the 

thicker the resulting film becomes, which is due to the increase in effective viscosity of 

the mixture. It is found that substantially thicker films can be achieved by adding enough 
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particles to the mixture before spin-coating. For example in Figure 3-7, the bead ratio in 

(b) is 3.5 times of that in (a). The film thickness in (b) is 44 µm compared to 12 µm in (a).  

In addition, the film thickness can be further increased by multiple spin coatings. This 

enables many thin-film materials to be extended to thick-film applications.  

 

Figure 3-7. Spin-coated photoresist-bead film and the mixing ratio effect. 

 
3.3.3 Patterning 

Patterning of the mixture can be achieved with either photo-patterning or etching 

with a patterned mask on top of the mixture film. When photoresist is utilized as the 

sacrificial material, a standard photolithography process can be conveniently used.  

In order to successfully pattern the bead-embedded thick photoresist film, 

multiple exposure-developing cycles are often necessary. It is different from simply 

increasing exposure and developing time, in which only the film top part gets 

overexposed, since the beads may block the bottom part from exposure. By developing 

away the exposed top part before the next exposure, the bottom parts of the film can then 

be fully exposed. By repeated exposure and developing, the mixture film can be patterned 

with ease. Finally, ultrasonic cleaning can be used to detach and remove any particles still 

sticking to the substrate. Figure 3-8 shows a patterned bead-photoresist film.  
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Figure 3-8 Patterned bead-photoresist mixture film.  

 
3.3.4 Parylene Coating 

The photo-patterning process can leave a bumpy surface after developing. This is 

due to beads either exposed on or removed from the top surface during developing. Some 

SEM (Scanning Electron Microscope) pictures are shown in Figure 3-9. Figure 3-9 (a) 

and (c) are from one sample with the beads sticking out on the patterned film, while 

Figure 3-9 (b) and (d) are from another sample where most beads are removed from the 

photoresist top surface. Therefore, the photo-patterned structure surface roughness is 

about twice the bead diameter. 

Those beads that are exposed after photo-patterning tend to stick to subsequently 

conformally-deposited parylene and do not release from parylene even after photoresist 

removal. Figure 3-10 (a) shows one example where the beads are trapped in the top 
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parylene even after photoresist is removed from the chamber. The out-of-focus Au stripes 

at the chamber bottom can be used to confirm the beads are really sticking at top. To 

prevent bead sticking to the top parylene, a buffer photoresist layer can be spin-coated on 

top of the mixture film and patterned together with the mixture. The result can be seen in 

Figure 3-4 (d) where essentially no beads stuck to the top parylene.  

 

Figure 3-9 Scanning electron microscopic pictures of patterned bead-photoresist films. 

 
Similarly, bead/photoresist scums can also stick to the bottom substrate after 

developing, which is sometimes hard to remove even with ultrasonic agitation (Figure 3-

10 (b)). The solution is a bottom buffer photoresist layer spun before the mixture film, 

which prevents direct bead-to-substrate contact. In summary, the bottom buffer 

photoresist, the beads/photoresist mixture, and the top buffer photoresist should be spin-

coated sequentially and patterned all together. 
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Figure 3-10 Beads sticking to subsequent parylene cover or to the substrate. 

 

 

Figure 3-11 Parylene thickness effect. 

 
In the case where no buffer photoresist layers are used, the thickness of the 

parylene film is found to be important as well. When the parylene film is very thin, for 

example 1 µm, the film cannot provide pinhole-free protection for the bead-photoresist 
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mixture underneath. When such a device is immersed in acetone, the photoresist can be 

stripped within minutes. Figure 3-11 (a) and (b) shows an example where photoresist is 

removed from 1 µm thick parylene “encapsulated” micro-channel. Figure 3-11 (c) and (d) 

shows another device with 3 µm thick parylene encapsulation, in which the photoresist is 

intact even after a long time in acetone. The hypothesis is the bumpy surface and the 

porous beads make parylene inaccessible to some tiny pores. Thus the parylene fails to 

fill some pores when it is too thin, leaving some pinholes around the pores.  

 
3.3.5 Releasing 

After the structural parylene is etched to open access to the mixture layer, the 

sacrificial material can be removed by a corresponding etchant or solvent, such as 

photoresist stripper or acetone when sacrificial photoresist is used. The particles are kept 

inside the structures by on-chip filters, which usually are designed to restrict one 

dimension, such as height, of the flow channel to prevent particles from leaving or 

entering the fluidic system. Figure 3-4 (d) shows a micro-channel with beads released but 

still confined in the channel.  

With the embedded beads, however, this seemingly straightforward process can 

have complications. One phenomenon observed is bead-photoresist aggregation, which 

prevents the photoresist from being removed. Figure 3-12 shows two devices both having 

this problem. Figure 3-12 (a) shows blocks of bead-photoresist aggregates still in the 

device, although some parts are clean. The problem shown in Figure 3-12 (b) is even 

worse. The whole micro-channel seems like a big aggregate in which nothing can be 

removed. This phenomenon usually appears for high bead content in the mixture and high 



   
 

 

72

baking temperature. One hypothesis is polymer-assisted particle flocculation (Figure 3-13) 

[12], where the photoresist polymer helps the beads to form almost irreversible 

aggregates. Flocculation refers to the type of aggregation that arises from inter-particle 

bridging by ligands or macromolecules. In some cases, even without photoresist as a 

binder, beads can still fuse together at high temperatures. Therefore, to avoid aggregates, 

the bead ratio should not be too high and processing temperature must always be kept 

low, for example 60 °C to 80 °C.  

 

Figure 3-12 Photoresist releasing issue. 

 
 

 

Figure 3-13 Polymer-assisted particle aggregation. 
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3.4 LC-ESI/MS Chip with Integrated Bead Column 

3.4.1 Introduction 

The LC-ESI/MS microchip presented here is microfabricated on a silicon wafer 

through a single batch fabrication. The liquid chromatography column, bead filter, and 

electrospray ionization (ESI) nozzle are all integrated on-chip with a process that is 

compatible with CMOS integrated circuit technology. To make the chip, the bead 

integration technology developed in the previous section is incorporated with a parylene 

ESI nozzle process similar to the one used in [10]. 

 

3.4.2 Design  

This microchip has a wafer backside access hole as fluidic inlet. Solvents and 

sample flow through the integrated LC column packed with LC beads, and then enter the 

electrospray nozzle with minimum dead volume in between, which greatly reduces post-

column peak broadening. The freestanding nozzle couples the chip to a mass 

spectrometer for on-line detection and analysis. The inlet bead-filter is comprised of 

multiple independent channels all having a height smaller than the bead diameter (Figure 

3-14 (a), (c)). The redundancy of filter channels is to guarantee the column inlet remains 

open even when some of the filter channels have problems, such as stiction. Since the 

nozzle height is smaller than the bead diameter, it is also used as outlet bead filter (Figure 

3-14 (b), (d)). The on-chip packed column length is 8 mm. The cross section of the 

column is 100 µm wide and 25 µm high, and shares the same cross-sectional area as a 56 

µm ID capillary. The filter/frit is a 3 µm high channel leading to the ESI nozzle. The ESI 

nozzle freestanding overhang is 600 µm in length (Figure 3-14 (e)). The nozzle opening 
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is 15 µm wide by 3 µm high. The column beads are from Grace Vydac (Hesperia, CA). 

They are 5 µm diameter particles with 300 Å pores and coated with C18 groups, which is 

one of the most popular types for reversed-phase LC columns. 

 

Figure 3-14 Fabricated device pictures of the LC-ESI chip. 

 

3.4.3 Microchip Fabrication and Packaging 

3.4.3.1 Fabrication Process 

The process used to fabricate the integrated LC-ESI chip is illustrated in Figure 3-

15. It starts with growing a 1.7 µm SiO2 layer on both sides of a 4-inch silicon wafer by 

thermal oxidation. Then using a delay-mask technique described below, two-level 

backside holes are created with DRIE, leaving only a 50 µm thick diaphragm (Figure 3-

15 (a)).  
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First, the backside oxide is patterned and etched with buffered HF (Transene, 

Danvers, MA) which defines the 150 µm diameter small hole. Then an 8 µm photoresist 

AZ4620 (Clariant, Somerville, NJ) layer is patterned on the backside to define the 360 

µm diameter big hole, which is concentric with the small hole. DRIE is performed to etch 

the small hole 200 µm deep into the silicon wafer backside using the small-hole oxide as 

a mask. After etching the backside oxide using the big-hole photoresist as a mask, DRIE 

is performed again to etch the backside until only a 50 µm thick diaphragm is left. The 

big hole is “delayed” compared to the small hole, which creates a two-level structure 

used as a fluidic access port. The two-level structure can be used as a tubing stopper 

when coupling tubing is directly inserted into the chip. 

The frontside oxide is patterned to open areas for the fluidic access hole and for 

nozzle release. Then a 3 µm thick parylene C (Specialty Coating Systems, Indianapolis, 

IN) film is conformally deposited on the frontside only. The wafer backside is covered 

during the parylene deposition. A 3 µm thick photoresist layer is spin-coated and 

patterned for the inlet filters and nozzle. A second 3 µm thick parylene layer is deposited 

on the frontside, and patterned all the way through the bottom photoresist and first 

parylene layer to the substrate (Figure 3-15 (b)).  

Photoresist AZ4620 is used to mix with the beads at 1:10 (bead:photoresist) 

volume ratio. The mixture is spin-coated at 2.5 krpm after a 2.5 µm thick bottom buffer 

photoresist coating, which is followed by a 5 µm thick top buffer photoresist coating. 

This mixture film is patterned by multiple exposure-developing cycles. The wafer is 

further cleaned in an ultrasonic tank for a short period of time.  
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Figure 3-15 Fabrication process flow for the liquid chromatography – electrospray 

ionization (LC-ESI) chip with integrated bead-column. 
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The third 5 µm thick parylene layer is deposited to cover the wafer frontside 

(Figure 3-15 (c)), and patterned with a thick photoresist mask to open the nozzle. DRIE is 

performed again on the backside to open the access hole. The frontside substrate silicon 

underneath the nozzle and along a trench perpendicular to the nozzle is etched with BrF3 

gas-phase silicon etching, in order to make the nozzle freestanding. Pre-patterned 

frontside oxide is used as the mask. The etching depth is 150 µm. Then, the channels are 

released by dissolving the channel sacrificial photoresist in warm acetone. The freed 

beads automatically pack to the nozzle end during drying, since the nozzle end is a much 

smaller opening compared to the column inlet. The column can be further packed with an 

off-chip pressurized flow. Finally, the nozzle is freed by detaching a piece of the chip 

along the across-chip trench (Figure 3-15 (e)). To further strengthen and passivate the 

device, an optional epoxy overcoating layer can be applied to the device.  

Figure 3-14 shows various parts of a fabricated LC-ESI chip, both before (Figure 

3-14 (a), (b)) and after photoresist removal (Figure 3-14 (c), (d), (e)). Both the multiple 

inlet filters and outlet filter/nozzle can be clearly seen in the pictures. After photoresist 

removal, it can be seen that the beads are released in the channel. Figure 3-14 (e) shows a 

fluorescent picture of the freestanding parylene ESI nozzle. The freestanding part is 600 

µm long. The nozzle opening is 15 µm wide by 3 µm high. 

 

3.4.3.2 Photoresist Releasing Issue  

The main challenge for this device and other long-channel devices is the 

photoresist releasing process. Firstly, the micro-channel is long and packed with beads. 

Therefore it takes a long time for acetone to diffuse deep into the channel to dissolve 
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photoresist. A detailed discussion of photoresist as a micro-channel sacrificial material by 

dissolution in acetone is given in [18]. One effective way to reduce the diffusion time is 

to increase the diffusion constant by increasing temperature of the acetone solution, 

which also increases the dissolution rate. However, heating temperature is limited by the 

acetone boiling point of 56.5 °C and safety concerns since acetone is flammable. It is 

found that ST-22 standard photoresist stripper is much less effective in the micro-channel 

releasing process than acetone, although ST-22 provides a cleaner surface than acetone 

for photoresist film stripping. It is because ST-22 is much more viscous and the diffusion 

constant is much lower. IPA (isopropyl alcohol), another common solvent for removing 

organic residues, is much less effective for dissolving photoresist than acetone even when 

heated close to its boiling temperature of 82.5 °C. 

Secondly, since the photoresist is not etched away but rather only dissolved, it 

remains in the acetone solution in the channels. The only process taking photoresist out 

of the channel is diffusion, until the equilibrium is reached between the photoresist 

concentrations in the channel and in the bulk acetone solution. Therefore, frequent 

changing of the acetone solution can help lower the photoresist concentration inside the 

channel faster. Ultrasonic agitation can also speed up this equilibrium process, but it may 

damage freestanding parylene structures as well. Theoretically, the photoresist cannot be 

completely depleted from the channel, even if the acetone solution is refreshed 

periodically.  

Thirdly, even if the channel has a very low photoresist concentration, which 

usually appears as a clear channel under optical microscope, the photoresist could still 

clog small openings when dried. Since acetone is highly volatile while photoresist is 



   
 

 

79

basically non-volatile, photoresist is usually left at the channel exit when the acetone all 

evaporates. This could cause clogging when the exit is small. Sometime this is so serious 

that even repetitive acetone dissolving and drying cannot remove the clogs. One way to 

avoid this is to use large openings whenever possible. Based on past experiences, 

openings less than 10 µm wide, 3 µm high can be problematic.  

 

 

Figure 3-16 Fluorescent diagnostic technique. 

 
Since low-concentration photoresist could still be present in the channel even 

when the channel looks clear under optical microscope, a fluorescent diagnostic method 

is developed to confirm the end of the releasing process.  Fluorescent detection is chosen 

because of its high sensitivity. Using a fluorescent microscope, the chip can be imaged to 

show the contents of the parylene channels and nozzle. Figure 3-16 shows two 

fluorescent pictures before and after photoresist releasing. Parylene appears to be blue, 

while photoresist appears brown (Figure 3-16 (a)) to red (Figure 3-17) depending on its 

concentration. Multiple layers of parylene, hollow parylene channels, and voids can also 

be easily identified.  
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Figure 3-17 The photoresist releasing issue in various forms. 

 
Figure 3-17 (a) shows an optical picture of a typical photoresist clogging, which is 

caused by an in-channel post array greatly restricting flow. Figure 3-17 (b) to (f) are all 

fluorescent pictures showing a variety of photoresist releasing problems after drying. 
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Figure 3-17 (b) is typical where the photoresist either blocks the channel or just stays 

somewhere in the channel without blocking it. Figure 3-17 (c) shows a clog near nozzle 

tip. Figure 3-17 (d) and (f) show two forms of photoresist coatings on channel wall after 

drying. The photoresist in (f) is extremely hard to visualize with an optical microscope, 

since the photoresist layer is very thin and the concentration is very low (very light color 

in the picture). Figure 3-17 (e) shows photoresist residue in a bead-photoresist mixture 

column after incomplete releasing, which is also difficult to visualize with an optical 

microscope.  

 

3.4.3.3 Packaging 

The microchip is packaged with a custom-made jig (Figure 3-18). Figure 3-18 (a) 

shows the jig body that is 27 mm long, 20 mm wide, and 5 mm thick. The chip is put in 

the 10.2 mm by 8.8 mm recess with o-rings below the chip to provide sealing. Capillaries 

are inserted into the jig back hole to feed liquid to the chip. The inserted capillary OD 

(Outer Diameter) is slightly larger than the jig back hole. The connection withstands tens 

of psi pressure. A 2 mm thick top cover (Figure 3-18 (b)) is screwed down to compress 

the chip, holding the chip in place and helping o-ring sealing. The material for the jig is 

acrylic, since it is commonly available and easy to machine. However, it is found that 

acrylic does not withstand the solvents used in HPLC experiments. Therefore, for later 

jigs, PEEK (polyetheretherketone) (McMaster-Carr, Los Angeles, CA) material is always 

used instead. PEEK is essentially inert to all chemicals and solvents used in HPLC.  
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Figure 3-18 Schematics of the packaging jig for the microchip.  

 

3.4.4 Testing Results and Discussion 

3.4.4.1 Bead Releasing and Column Packing 

While the beads are embedded in photoresist during processing, they are loosely 

released inside the column after photoresist removal. The beads pack automatically 

during drying at the nozzle end. They can be further packed into a dense column with a 

pressurized flow of, for example, DI (deionized) water at 15 psi. Figure 3-19 shows series 

of photomicrographs of released beads moving in a channel.  The channel is 100 µm 

wide and 25 µm high. Bead diameter is 5 µm. In Figure 3-19 (a), (b), and (c), beads move 

with liquid; and in (d), air pushes liquid and beads.  
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Figure 3-19 Snapshots of released beads moving with liquid in a micro-channel. 

 

Figure 3-20 Snapshots of packing a column and electrospray to a mass spectrometer. 
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Figure 3-20 shows the column packing process and electrospray to a mass 

spectrometer. Figure 3-20 (a) shows a fluorescent overview picture of the device being 

tested. The full channel length ( )fL is 6800 µm (Figure 3-20 (a)). Since the nozzle end is 

a much smaller opening than the column inlet, the beads pack to some degree at the 

nozzle end automatically during drying of the column, as shown in Figure 3-20 (b). After 

packing (Figure 3-20 (c)), the LC column length ( )cL is 2700 µm, which corresponds to 

40% packing ratio ( / )c fL L . This ratio means 1 cm long channel with beads loosely 

released inside will turn into 4 mm long column heavily packed with beads. The ratio is 

dependent on original bead-photoresist mixing ratio. The higher the bead content in the 

mixture, the higher the packing ratio. The current 40% packing ratio is for the original 

1:10 bead-to-photoresist volume mixing ratio. To have longer packed columns, large 

bead “reservoirs” instead of short channels can be used. The packing is done at 15 psi 

with DI water. The flow rate during packing is, on average, 17 nL/sec. After packing, the 

flow rate drops to 3 nL/sec because of the increased flow resistance. The breakthrough 

time for an unretained sample to travel through this column and nozzle is 2.3 seconds. 

Because of the integration, the post column volume is only 0.05 nL including outlet filter 

and nozzle. Using the original bead volume ratio of 10% in the mixture and the column 

packing ratio of 40%, the porosity, ε , of the bead column is estimated to be 0.75, as 

shown in the following calculation,  

 1 1 0.75beads beads channel

column channel column

V V V
V V V

ε = − = − ⋅ =  (3.1) 

where 



   
 

 

85

        10%     and     40% beads column

channel channel

V V
V V

≈ =  (3.2) 

The porosity of a conventional capillary column (Figure 3-21) packed with the 

same type of beads is also estimated. The bead volume is obtained by the weight 

difference after and before bead packing divided by the silica density of 2.2 g/cm3. The 

column volume is calculated by measuring the column ID and length. The estimated 

porosity is 0.7, which is very close to that of the integrated on-chip column. In fact, most 

commercial porous-silica-bead LC columns have packing densities between 0.3 and 0.6 

g/cm3 [19], corresponding to column porosities from 0.7 to 0.8. Therefore, the on-chip 

integrated column achieves a porosity consistent with conventional columns.  

The testing result of the column physical properties is summarized in Table 3-1.  

 

Table 3-1 Summary of an on-chip column properties.  
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Figure 3-21 Picture of a conventional externally-packed capillary LC column and ESI 

nozzle. 

 

3.4.4.2 Pressure Rating 

Constant-pressure flow is provided to the chip by a pressure bomb. It is comprised 

of a steel chamber with a glass bottle inside filled with a solvent. A compressed-N2 tank 

applies a constant pressure to the solvent inside the chamber, pushing the solvent out 

through a tube inserted in the solvent. The pressure upper limit of the setup can reach the 

tank pressure. Another pressure source used in the testing is a commercial Agilent 1100 

HPLC pump. However, it can not be regulated under about 50 psi. A back-pressure 

column needs to be connected between the pump and the on-chip column. The flow rate 

is regulated, while the real pressure across the on-chip column has to be estimated. 

The pressure limit of the chip is found to be about 20 psi. The parylene channels 

delaminate from the substrate when higher pressures are applied. For microfluidic 

applications, 20 psi is much higher than what most applications require. For liquid 

chromatographic separations, however, much higher pressures (hundreds of psi) are often 

needed. Therefore, on-chip separation is not performed for this chip. Significantly higher 

pressure rating demands great improvements on not only the parylene technology, but 
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also the coupling units involved, such as the packaging jig.  These issues are well 

addressed in Section 4.2. 

 

3.4.4.3 Electrospray to a Mass Spectrometer 

The electrospray test is performed at 15 psi with 98:2 acetonitrile/water and 0.1% 

formic acid. The mass spectrometer is an Agilent 1100 system. The original housing for 

the electrospray interface is removed to allow the on-chip nozzle to access the 

electrospray inlet (Figure 3-22). The nozzle tip is placed a few millimeters away from the 

inlet. It should be noted that MS inlet has a rather high temperature between 170 and 210 

˚C. Therefore, the parylene tip should avoid contacting the inlet. The electrospray voltage 

of 1.2 kV is applied off-chip at the upstream using the method described in [11]. When 

the voltage is removed, the liquid coming out the nozzle can form a droplet (Figure 3-20 

(d)). When the ESI voltage is on, the sample liquid sprays into the mass spectrometer. A 

typical electrospray spectrum and chromatogram figure obtained is shown in Figure 3-23. 

Figure 3-23 (a) is a chromatogram that shows ion intensity over one hour. Some big 

peaks are seen, which are mostly impurities in the system, such as photoresist residue in 

the on-chip column or dissolved acrylic from the jig. An eight-hour continuous 

electrospray test is done without failure or observable performance degradation of the 

ESI nozzle. 
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Figure 3-22 Pictures of the mass spectrometer used in the testing. 

 

 

Figure 3-23 A typical electrospray spectrum and chromatogram from the on-chip LC 

column and ESI nozzle. 
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3.4.4.4 Method Validation  

It is important to validate that the C18 silica beads function as normal after 

photoresist contamination and acetone cleaning. To do so, a capillary column-nozzle 

(Figure 3-21) packed with photoresist-contaminated-then-acetone-cleaned C18 beads is 

prepared. It starts with a 12 cm long, 360 µm OD, and 150 µm ID fused silica tubing. A 

window is burned in the middle of the tubing to remove its polyimide coating, and then 

cleaned with water. Using a standard laser pulling machine, the silica tubing is melted in 

the middle and pulled into two pieces, each with a needle at one end. Then another piece 

of tubing with 140 µm OD and 25 µm ID is inserted into the original tubing, and is cut 

leaving only a few millimeters inside the original tubing. The short piece is pushed all the 

way to the needle end of the large original tubing. Then a glass fiber filter (Whatman, 

Florham Park, NJ) is inserted to form the frit for column bead packing. The packing 

process uses the same type of beads and photoresist as those used for the on-chip 

integrated column. They are mixed thoroughly then suspended in acetone. The 

suspension is packed into a conventional silica capillary column at 400 psi. The packed 

column is washed with acetone for three hours, followed by washing with acetonitrile at 

400 psi for another three hours before separation testing. The prepared column is used to 

separate cytochrome c tryptic digest standard, using reversed-phase LC with gradient 

elution. The separation test uses a sample with 0.1 µM concentration. Injection volume is 

1 µL. The MS data (Figure 3-24) shows the column still achieves separation with 

performance comparable to similar capillary columns packed with fresh C18 beads. With 

more separation testing, it is found that the background noise level does depend on the 
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cleanness of the column, as the background drops with more flush-cleaning of the bead 

column.  

 

 

Figure 3-24 MS spectrum for an LC separation of digested cytochrome c using a capillary 

column packed with photoresist-contaminated-then-cleaned C18 beads. 

 

3.5    Summary 

A novel, inexpensive, batch process to integrate beads into micromachined 

devices is developed. This is a wafer-scale batch process, and can be easily incorporated 

with other processes and devices. This process is suitable for most micro-beads with a 

wide range of bead sizes. With this process, introduction and localization of beads into 

MEMS becomes much less complicated. Considering the many bead applications already 

available, plus the new opportunities created, this bead integration technology is very 

promising to enable many interesting bead-based applications for micromachined devices.  
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The technique is also combined with parylene microfluidics technology to build 

an LC–ESI chip, with integrated column, filter, and nozzle. No external bead is needed 

for the column. The column physical properties have been characterized, which shows 

consistency with conventional capillary columns. The ESI nozzle functions without sign 

of degradation in an eight-hour continuous electrospray. Although the integrated beads 

have been contaminated with photoresist during device fabrication, their separation 

performance is not found to be affected. It is confirmed by standard protein digest 

separation using a capillary column packed with photoresist-contaminated-then-cleaned 

LC beads. Limitations of the device include low pressure rating, lack of on-chip injection 

and detection, and low column capacity, which are addressed in Chapters 4, 5, and 6 

respectively.  
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CHAPTER 4 

 HIGH-PRESSURE PARYLENE 

MICROFLUIDICS 

4.1 Introduction 

The pressure requirements for most microfluidic devices are very low. Ten psi of 

pressure is usually more than enough to drive fluids on-chip. Tens of psi is rare, not to 

mention hundreds of psi. For bead-packed liquid chromatography columns, however, the 

operating pressures can easily exceed hundreds of psi, or even a few thousands of psi, 

due to the extraordinary flow resistance in the column, which holds true even for 

miniaturized on-chip columns.  

The significantly elevated pressure requirements raise challenges in two ways. 

Firstly, the device itself and its packaging need to be able to withstand high pressure. 

Secondly, for a complete on-chip HPLC system, a mechanism needs to be developed to 

generate high pressures on-chip, providing adequate flow rates at the same time. Neither 
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of the two was available for micromachined parylene devices. Therefore, this chapter first 

demonstrates an anchoring technique, which dramatically improves the pressure rating of 

parylene devices from about 30 psi to 1000 psi. Then a high-pressure actuation 

mechanism based on electrolysis of aqueous solutions is described, which is a great 

candidate for on-chip HPLC pumping.  

 

4.2 High-Pressure Rating through Anchoring 

4.2.1 Background 

Parylene adhesion to a substrate is usually improved by using chemical adhesion 

promoter, such as A-174 (gamma-methacryloxypropyltrimethoxy silane, Specialty 

Coating Systems, Indianapolis, IN) solution prepared as A-174:DI Water:IPA = 

1:100:100 by volume. This simple silane surface treatment does not affect the substrate or 

parylene coating properties. Parylene-to-parylene adhesion is usually improved by 

roughening the bottom parylene with oxygen plasma followed by a 5% HF dip prior to 

the 2nd parylene deposition. Proper application of these procedures will ensure a pressure 

rating of about 30 psi, above which delamination happens between the top parylene and 

the bottom substrate/parylene. 

Two types of mechanical anchoring techniques for parylene have been used in the 

past. Prior to parylene deposition, the silicon substrate is treated by either roughening of 

the surface [1] or etching a special DRIE trench in the substrate [2]. It has been shown 

using tape tests that both methods improve adhesion. However, the actual pressure ratings 

for the two anchoring methods have never been measured or compared. In addition, the 

trench-anchoring method has never been utilized in microfluidic devices before.  



   
 

 

97

4.2.2 Design 

Therefore, the two techniques have been adapted here to develop a self-aligned, 

channel-anchoring technique, where a moat self-aligned to the fluidic channels is exposed 

to its silicon substrate and treated by either DRIE (Figure 4-1 (a)) or roughening (Figure 

4-1 (b)) prior to parylene deposition. The subsequently deposited parylene strongly 

anchors to either the special trench in the substrate or a roughened surface, which 

substantially improves adhesion. The anchoring moat surrounds the microfluidic channel, 

thus no weak point is left. An optional epoxy overcoating layer can also be applied on top 

to further strengthen and passivate the device.  

 

 

Figure 4-1 Illustration of parylene trench-anchoring and roughening-anchoring. 

 

4.2.3 Fabrication 

The anchoring moat is fabricated in a way that makes it self-aligned to the 

microfluidic channels. This is achieved by etching the oxide and silicon substrate with a 

mask formed by the channel photoresist and the field photoresist. The only area exposed 

(to-be-etched) by such a mask is the moat surrounding the channels. Since the moat is 

patterned with the channel photoresist as part of the mask, the moat and subsequently 
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deposited parylene is self-aligned to the channel. The other part of the mask, the field 

photoresist, is stripped after patterning the parylene layer.  

The special DRIE trench with a mushroom profile at the bottom is created by 

adding an additional 36-second SF6 isotropic etching to the end of the standard BOSCH 

process, which normally produces vertical trenches. Since the sidewalls of the trench are 

protected by C4F8 during BOSCH etching, only the trench bottom is isotropically etched 

by the added SF6 etching, which creates the enlarged area at the trench bottom. 

Subsequent parylene coating can easily fill in the special trench, due to its conformal 

coating nature, which locks/anchors parylene to the substrate. Figure 4-2 shows two 

cross-sectional pictures of a parylene channel anchored 40 µm deep into silicon substrate.  

 

Figure 4-2 Cross-sectional pictures of a trench-anchored parylene channel. 

 
Roughening of the substrate silicon exposed in the moat is achieved with either 

BrF3 [1] or XeF2 [3, 4] gas-phase silicon etching. The roughness of the etched silicon is 

mainly affected by gas type, gas pressure, and etching time. A top-view picture showing 

a roughened moat surrounding a photoresist channel before parylene deposition is shown 

in Figure 4-3. 
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Figure 4-3 Top view picture of a roughened moat surrounding a photoresist channel. 

 

4.2.4 High-Pressure Packaging  

The packaging for high-pressure chips needs to be high-pressure proof as well. It 

should provide convenient access to many fluidic ports on the chip. The ability to view 

the chip in action is highly desired, especially during chip testing. Considering the 

packaging will be used for on-chip HPLC, chemical compatibility with all the HPLC 

chemicals and solvents is mandatory. Finally, for various purposes, such as sensing, 

actuation, and heating, electronic access to the chip also needs to be conveniently made.  

Figure 4-4 shows some of the existing techniques for fluidic coupling between 

standard tubing and chips.  The most primitive one is directly attaching tubing to the chip 

with the help of epoxy (Figure 4-4 (a)). The couplings have to be performed one at a time, 

which is time-consuming and labor-intensive. The yield is low and the access to on-chip 

ports is limited. Also the tubing cannot be removed once glued. Another approach uses 

microfabricated couplers between the tubing and chip (Figure 4-4 (b)) [5], which enjoys 
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the advantages of higher yield and high-density access to the on-chip ports. However, the 

couplings still need to be done one at a time and result in permanent connections. The 

third one (Figure 4-4 (c)) is a commercial product, Nanoport (Upchurch Scientific, Oak 

Harbor, WA), which bonds zero-dead-volume receiving ports onto the chip, so tubing can 

be easily connected and removed. The pressure rating is high. Its main drawback is the 

large footprint of the receiving port, which greatly limits its access to on-chip ports. In 

addition, the bonding still has to be done one at a time and is permanent, thus still 

inconvenient for chip testing.  The last approach shown in Figure 4-4 (d) is a custom-

made jig described in Section 3.4.3.3, which makes convenient impermanent connections 

to the chip. No epoxy is needed. It can easily access over ten ports on the chip 

simultaneously. Its major disadvantage is its low pressure rating of tens of psi, since the 

tubing is merely inserted into the jig.  

 

Figure 4-4 Some of the existing coupling techniques. 
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Here, a new packaging jig is developed to make high-pressure high-density fluidic 

and electronic access to the chip both conveniently and reliably. Figure 4-5 shows the 

exploded view of the packaging scheme. An illustration and a picture after assembly are 

shown in Figure 4-6. 

 

Figure 4-5 Exploded view of the packaging scheme. 

 
The jig body is made of PEEK (polyether-ether-ketone, Figure 4-7) (McMaster-

Carr, Los Angeles, CA), which is one of the standard materials used in HPLC 

instruments. It is inert for most chemicals and solvents. It is only unstable in 
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dichloromethane, tetrahydrofuran, dimethyl sulfoxide, concentrated nitric acid, and 

concentrated sulfuric acid. Its upper pressure limit is about 200 bar (2900 psi), although 

some suppliers claim 350 bar (5075 psi) [6].  

 

Figure 4-6 Illustration and picture of the packaging after assembly. 

 

 

Figure 4-7 Chemical structure of PEEK (polyether-ether-ketone). 

 
Commercial fitting receiving ports are machined in the jig to couple with 

commercial fittings (Upchurch Scientific, Oak Harbor, WA). Horizontal and vertical 

holes drilled in the jig lead fluid from the fitting ports to the jig top surface. The top 

surface has two levels of recess. The square one is used for holding the chip. The circular 

ones are for o-rings (Apple Rubber Products, Lancaster, NY). There are eight holes in the 

recess, which connect to the eight receiving ports on the four sides of the jig respectively. 

Eight holes on the chip can be accessed simultaneously if they share the same coordinates 

with the jig holes. Keeping the chip orientation, another eight holes on the chip can be 
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access by rotating the jig by 90° (Figure 4-8 (a) (b)). So in total a 4-by-4 array of 16 holes 

on the chip can be accessed (Figure 4-8 (c)), at most 8 holes simultaneously. When the o-

rings and chip are placed in their recesses, a PCB (Printed Circuit Board) cover is placed 

on top and is screwed down to compress the chip and o-rings. The compressed o-rings 

seal the chip and jig. Electrical access to the chip is made by wire-bonds from the chip to 

the top PCB.  

 

Figure 4-8 Jig holes configuration. 

 

4.2.5 Pressure Rating Testing Results and Discussion 

Both trench-anchored and roughening-anchored chips are fabricated with the 

same design (Figure 4-9). The device has a backside hole to apply pressurized gas to the 

two dead-end channels, which are 100 µm and 50 µm wide, respectively. The channels 

both have a height of 25 µm and a length of 1000 µm.  

During testing, pressurized N2 gas from a gas cylinder is applied to the device 

through the packaging jig. The testing channels are covered by a water drop. The nitrogen 

pressure is increased with 50 psi steps at a rate of 10 minutes per step until bubbles 

appear in the water, indicating leaks in the channel. The pressure at that point is recorded 

as the burst pressure of the channel. However, the burst pressure is not a clear-cut number 
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in nature, which is why the pressure step is set as high as 50 psi in the testing. In addition, 

it is more useful to find out the practical safe operating pressure for the device, which is 

chosen to be the maximum pressure under which the device does not leak for one hour. 

 

Figure 4-9 Top view picture of the device used in the pressure rating testing. 

 
The results for the safe and burst pressures for roughening-anchored and trench-

anchored channels, with and without epoxy overcoating are summarized in Table 4-1. It 

should be noted that the pressure limits also depend on moat width, trench depth/shape, 

and parylene thickness. It is clear that trench-anchored channels perform much better 

than roughening-anchored ones and epoxy overcoating further improves the performance. 

A maximum pressure limit is achieved with trench-anchored and epoxy-coated channels. 

At the maximum allowable pressure of the testing setup of 800 psi (leak rate is about 10 

nL/min for water and 100 nL/min for air at 800 psi), no leakage is found in one hour.  
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Table 4-1 Summary of the pressure testing results. 

 
It is found that the failure modes for the two anchoring techniques are different. 

For roughening-anchored channels, leaked air slowly emerges outside of the moat as tiny 

bubbles that grow over time, while the trench-anchored ones suddenly burst at edges of 

channels, resulting in big bubbles gushing out. After the channels burst, the structural 

damages to the channels are also different. The failed roughening-anchored channel has 

parylene delamination in the moat area (Figure 4-10), while the trench-anchored channel 

has its channel parylene broken at the channel edges and/or the corners (Figure 4-11). 

Therefore it can be concluded that roughening-anchored channels can leak out working 

fluid through tiny pathways in the roughened moat area at high pressures, while the 

trench-anchored channels do not leak at all until the channel breaks at mechanically weak 

points.  

It worth pointing out here that the chips perform best when cleaned thoroughly 

before applying epoxy. One way to do it is cleaning in piranha solution at 120 °C for a 

few minutes, followed by a 5% HF dip and immediate epoxy coating and baking 

overnight at 80 °C in the oven. With thorough cleaning, pressure ratings as high as 1000 

psi have been achieved for the device presented in Chapter 6.  
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Figure 4-10 Roughening-anchored channel before and after failure at high pressure. 

 

Figure 4-11 Trench-anchored channel before and after failure at high pressure. 

 

4.3 High-Pressure Generation through Electrolysis 

4.3.1 Introduction 

The pumping mechanism for HPLC should be able to generate high pressures and 

high flow rates. Piezoelectric actuators provide large forces but small displacements. 

Electrically driven comb actuators have large displacements but small force. It turns out 

that electrolysis-based actuators enjoy large force (high pressure), large deflection (high 
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flow rate), fast reaction, low power consumption, and low heat dissipation [7, 8], which 

makes it a great candidate for HPLC pumping. Nevertheless, it is interesting to know that 

despite the many advantages, electrolysis actuators largely have not been explored before.  

It is well known that electricity can separate liquid into gases. In an electrolysis 

reaction, two electrodes are immersed in an electrolyte solution. The electrodes need to 

be inert and not easily oxidized. Platinum (Pt), for example, is a good choice. When an 

adequate voltage is applied between the electrodes, electrolysis happens. Oxidation and 

reduction occur at the anode and cathode respectively. When DI water is used as the 

electrolyte, the reactions are, 

 
+ -

2 2
- -

2 2

Anode:      2 H O  4 H  + 4 e  + O  (gas)

Cathode:   4 H O + 4 e   4 OH  + 2 H  (gas)

→

→
   (4.1) 

Therefore, as electric current is injected into the solution, oxygen and hydrogen gases are 

formed at the two electrodes. The accumulated gases can be used for high-pressure 

actuation and pumping.  

It is interesting to note that the electrolysis reaction can be reversed. The 

generated oxygen and hydrogen can recombine into water. Although extremely slow 

under normal conditions, the recombination rate can be greatly enhanced in the presence 

of platinum as a catalyst. The recombination rate depends on the contact area between 

platinum and the gases. It also depends on the gas pressure. The higher the pressure, the 

faster the recombination. The maximum pressure is reached when the gas recombination 

rate equals the generation rate. Theoretically, devices taking advantage of both forward 

and reverse electrolysis can be used repeatedly without refilling the electrolyte.  
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4.3.2 A Parylene Micro Electrolysis Actuator 

4.3.2.1 Design and Fabrication  

A micro electrolysis actuator with a sealed electrolysis chamber (Figure 4-12) is 

described in this section. The device is built with parylene microfluidics technology. The 

chamber is formed by sacrificial photoresist which is later removed in acetone. It has Pt 

electrodes at the chamber bottom and a flexible parylene membrane as the chamber roof. 

Electrolysis-generated hydrogen and oxygen deflect the membrane, which makes the 

actuation. When the electrolysis potential is removed, hydrogen-oxygen recombination 

happens on top of the Pt catalyst, which deactivates the device.  

 

Figure 4-12 Cross-section of a sealed micro electrolysis actuation chamber. 

 
One purpose of the device is to characterize miniaturized electrolysis actuation in 

a parylene device. The other purpose is to investigate deactivation through recombination. 

The actuator can be used for active valves, pumps, and many other microfluidic devices. 

The fact that the electrolyte is sealed in the electrolysis chamber offers several 

advantages. Firstly, no adverse effect such as change of pH value or other properties is 
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applied to the processed fluid, which is contained in a second chamber on top of the 

actuation chamber. Secondly, electrolytes other than water can be used for optimized 

electrolysis actuations. Thirdly, due to recombination effects, the actuator could be 

repeatedly activated and deactivated.  

A top view illustration of the complete device is shown in Figure 4-13. The 

electrolysis chamber diameter is 2 mm. The chamber height is 4 µm. The parylene 

membrane thickness is 2 µm. To ensure uniform gas generation and to enhance the Pt-

catalyzed recombination, the electrolysis chamber bottom is almost completely covered 

with interdigitated Pt electrodes. The chamber is filled by placing the device in the 

desired solution for some time. To make the chamber self-sealing, stiction effect is 

exploited. The two large sealing membranes easily stick to the substrate when the device 

is taken out of the filling solution and allowed to dry in the air. The stiction happens so 

fast that little liquid is lost from the chamber.  

 

Figure 4-13 Top view of a self-sealing electrolysis actuator. 
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A picture of the complete device filled with liquid is shown in Figure 4-14 (a). 

Figure 4-14 (b) shows the sealing membrane after stiction happens. Figure 4-14 (c) 

demonstrates consistent sealing. And Figure 4-14 (d) shows small bubbles being 

generated at an electrode tip.   

 

Figure 4-14 Pictures of the sealed micro electrolysis actuator.   

 
4.3.2.2 Electrolysis Bubble Generation and Recombination   

First, DI water is used as the testing electrolyte. Video snapshots of a bubble 

generation-recombination cycle are shown in Figure 4-15. In Figure 4-15 (a), the device 

is at rest. There is a bubble from the previous cycle at the chamber center. When an 

adequate voltage is applied to the two electrodes, bubbles appear immediately and then 

coalesces into one large bubble (Figure 4-15 (b)), deflecting the chamber membrane. In a 
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controlled actuation, constant current is used instead of constant voltage, which is 

because the amount of generated gas is directly proportional to the charges injected into 

the solution. In the very beginning of the electrolysis, voltage and current approximately 

follows linear relationship. For the particular device tested, the voltage starts at 80 V for a 

current of 0.24 mA, corresponding to a power consumption of 19 mW. The voltage rises 

over time for a constant-current operation, since the impedance in the chamber increases. 

The bubbles continue to accumulate, generating higher and higher pressure, which 

deflects the membrane more and more until the voltage is removed (Figure 4-15 (c)). The 

maximum deflection observed for the device is 120 µm, above which the parylene 

membrane delaminates from the substrate due to high pressures inside the chamber.  

 

Figure 4-15 Snapshots of activation and deactivation of the actuator filled with DI water. 
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Since Pt electrodes are used, the recombination of hydrogen and oxygen is 

catalyzed. The mixed gas bubble shrinks quickly over time when some of the gases are 

converted back to water. At the same time, the internal pressure reduces, thus the flexible 

parylene membrane returns to its original position (Figure 4-15 (d)). However, there is 

always a small bubble left which does not disappear even after several days. It is possibly 

because that the small bubble is not longer in contact with the Pt electrodes, and therefore 

the recombination rate is extremely low.  

 

Figure 4-16 Snapshots of activation and deactivation of the actuator filled with 10% of 

acetonitrile in DI water. 

 
Similar experiments are also performed for two devices, one filled with 10% of 

acetonitrile in water (Figure 4-16), and the other filled with 10% of methanol in water 
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(Figure 4-17). Both solvents are widely used in HPLC systems. The obtained results are 

similar to those in the pure DI water case. One major difference is the fluids seem to be 

more viscous, causing apparent sluggish bubble growth and recombination.   

 

Figure 4-17 Snapshots of activation and deactivation of the actuator filled with 10% of 

methanol in DI water. 

 

4.3.3 An Electrolysis Device for High-Pressure Generation 

4.3.3.1 Design and Fabrication 

The previous electrolysis actuator successfully demonstrates activation and 

deactivation. The achieved pressure, however, is still low. The estimated maximum 

pressure, based on simple load-deflection theories, is only around 10 psi, which seems 

correct since non-anchored parylene would be likely to delaminate at that pressure. This 
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maximum pressure is not limited by electrolysis, but rather by the robustness of the 

device. Therefore, a roughening-anchored electrolysis device (Figure 4-18) is used to 

demonstrate much higher pressure generation, which is desired for on-chip HPLC 

pumping. Contrary to the previous sealed actuator, this device has two fluidic access 

holes as inlet and outlet. Two devices with slightly different electrode configurations are 

fabricated and tested. One has 5 µm wide and 5 µm spacing interdigitated electrodes. The 

other has 3 µm wide and 7 µm spacing electrodes. The channel width is 100 µm and the 

height is 25 µm. The electrodes cover an area of 80 µm by 1000 µm. The microchip is 

fabricated in the same way as the one in Figure 4-1 (b), except with the addition of Pt 

electrodes. The electrodes run across the anchoring moat, which creates weak points 

lowering the pressure rating of the device. The Pt is 2000 Å thick with 200 Å Ti at its 

bottom for adhesion promotion. The parylene thickness is 10 µm.  

 

Figure 4-18 Top view picture and cross-sectional illustration of the high-pressure 

electrolysis device.  
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4.3.3.2 Testing Method and Results 

The electrolyte used in the testing is DI water with 10% ethanol and 1% acetic 

acid, which is also commonly used in HPLC systems. The electrolyte solution is pumped 

into the device using a compressed N2 tank. Then the outlet of the device is sealed. The 

solution in the device is kept under pressure from the gas tank.  

First, a bubble is generated using electrolysis with constant current. The bubble 

shrinks or expands, depending on whether its internal pressure is lower or higher than the 

system pressure applied by the compressed nitrogen. By adjusting the nitrogen pressure, a 

balance pressure can be found for each current level, which maintains the bubble size. At 

this balance point, gas generation and recombination rates are equal. This pressure can be 

considered the maximum pressure possible for the device at that fixed current.  

At every balance point, the bubble is monitored for over 5 minutes to ensure its 

size does not change. The error for the obtained balance pressures is about ± 2 psi.  The 

balance pressures are plotted against electrolysis currents in Figure 4-19. The device with 

5 µm wide electrodes and 5 µm electrode spacing always generates higher pressures than 

the one with 3 µm wide electrodes and 7 µm electrode spacing, because the former is 

more efficient in bubble generation. From the figure, it can be seen that 1.1 µA of current 

can generate a maximum of 150 psi in the device with 5 µm electrodes. Pressures as high 

as 300 psi have been achieved when the 5 µm-electrode device was tested at 5 µA.  

The voltages at the balance points are also recorded and plotted against the 

balance pressures (Figure 4-20).  The device with 3 µm–7 µm electrodes always needs 

higher voltage to achieve the same pressure generated by the one with 5 µm–5 µm 

electrodes. The figure also shows a threshold voltage near 3.2 V, above which the 
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balance pressure increases rapidly, meaning significantly more bubble generation from 

the electrolysis reaction.   

 

Figure 4-19 Electrolysis generated pressures at fixed currents. 

 

 

Figure 4-20 Voltage versus balance pressure at fixed currents. 
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4.4      Summary 

This chapter attacks two problems for on-chip high-pressure devices such as 

HPLC chips. One is high-pressure rating, the other is high-pressure generation. Parylene 

devices are especially vulnerable to high pressures since parylene does not bond strongly 

to parylene or to the substrate due to its chemical inertness. The developed mechanical 

anchoring technique successfully increases the pressure rating of parylene devices from 

about 30 psi to 1000 psi. For generating high pressures, electrolysis-based actuator turns 

out to be a great candidate. A micro sealed electrolysis actuator was successfully 

demonstrated. Hydrogen-oxygen recombination was used to deactivate the device, which 

then could be used repeatedly without refilling the electrolyte. Finally, to determine the 

maximum achievable pressures at fixed currents for micro electrolysis actuators, an 

anchored electrolysis device was tested. The pressure of 300 psi achieved at 5 µA is 

already adequate for many HPLC separations.  
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CHAPTER 5 

ION CHROMATOGRAPHY ON-A-CHIP 

5.1 Introduction 

5.1.1 Abstract 

This chapter presents an integrated ion liquid chromatography system with on-

chip bead-packed separation column, bead filters, cross-channel injection structure, and 

conductivity detector. Sample injection, separation, and detection are all performed on 

the single chip. The whole chip is integrated on a silicon wafer with a single CMOS-

compatible batch fabrication, using parylene microfluidics technology. It has a high 

integration level, while maintaining a relatively simple fabrication. Utilizing the parylene 

anchoring technique developed in Chapter 4, the whole chip is tested to be high-pressure 

compatible up to at least 800 psi. It is found experimentally that the on-chip packed bead 

column has higher permeability than conventional ones. On-chip 4.5 nL sample injection, 

pressure-driven LC separation, and conductivity detection of a seven-anion mixture (F-, 
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Cl-, NO2
-, Br-, NO3

-, PO4
-3, SO4

-2) with concentrations from 12.5 ppm to 25 ppm have 

been successfully demonstrated. 

 

5.1.2 Ion Chromatography 

The term “ion chromatography” applies to any modern method for 

chromatographic separation of  ions [1]. Such separation happens in an ion-exchange 

column, which is packed with solid ion-exchange beads. Since the introduction of ion 

chromatography in 1975, the field has grown at a phenomenal rate. A detailed 

introduction of the evolution of ion chromatography is given in [2]. 

An ion chromatography separation starts with pumping the eluent (mobile phase) 

through the system until equilibrium is reached, as evidenced by a stable baseline. During 

this step, the ion-exchange sites on the beads are replaced by ions from the eluent. For 

example, a typical reaction in anion-exchange chromatography is,   

 For Eluent:     Resin ResinE Cl E Cl− − − −+ − ↔ − +  (5.1) 

where the eluent anion, E− , replaces the original Cl−  on the resin (bead). When the 

analyte anion, A− , enters the column, it competes with E−  for the ion-exchange sites,  

 For Analyte:    Resin ResinA E A E− − − −+ − ↔ − +  (5.2) 

When the analyte anions are exchanged off the resin they move down the column with 

the mobile phase. Since different anions have different bonding strengths to the exchange 

sites, they travel down the column at different speeds, thus can be separated.  

Since the solution must be kept electrically neutral during the ion-exchange 

process, the exchange is stoichiometric. Thus, equation (5.2) can be generalized:  
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 Resin Resinx y x yyA xE yA xE− − − −+ − ↔ − +  (5.3) 

An everyday example for ion-change medium is the filter in the popular Brita 

pitcher (Figure 5-1). It is comprised of activated carbon and ion-exchange resin joining 

forces to clean tap water. The carbon absorbs taste and odor compounds. A mixed bed 

ion-exchange resin "column" acts like a magnet for ions, binding to its surface unwanted 

cations and anions. In this case, no eluent is used to refresh the column. Therefore, the 

ion-exchanger will eventually fill up due to its limited capacity. 

 

Figure 5-1 Brita ion-exchange filter. 

 
Detection techniques for ion chromatography include conductivity, UV-visible 

absorbance, amperometric and potentiometric detection, mass spectrometry (MS), and 

post-separation reaction detection [3, 4]. Among these, conductivity detection is the most 

popular one because it offers the following advantages. Firstly it is a universal method for 

ions, which all conduct electricity to some degree. This is especially true for all the 

anions and cations of strong acids and bases, which do not work well with UV detection 

due to their weak UV absorbance. Secondly, it can achieve sub-ppm level sensitivity 

without suppression of the background signal (Table 2-2). Thirdly, it does not require a 

reference electrode to define a stable baseline. Instead, the total conductivity of the 

mobile phase represents the baseline. 
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For on-chip applications, conductivity sensing enjoys even more benefits. It is 

much easier to integrate on-chip than optical detectors.  In addition, it scales favorably 

with miniaturization. Unlike optical techniques that have greatly reduced signals due to 

the small optical path on-chip, the conductivity sensing signal can be substantially 

increased by using smaller electrodes.  

The baseline signal generated by the background eluent can be suppressed to 

enhance detection sensitivity. The most common approach is chemical suppression, 

which significantly reduces background conductance by converting the mobile phase ions 

to a neutral form or removing them, while keeping or increasing the conductance of 

sample ions. The suppression is performed after separation but before detection. A typical 

suppressor reaction for eluent in anion-exchange chromatography is,  

 
3 2 3NaOH           +           RSO H             H O                 +        RSO Na

Eluent                      Suppressor       Suppressed Eluent             Suppressor
(Highly Conductive)              

→

        (Weakly Conductive)
 (5.4) 

And a typical reaction for analytes is, 

 
3 3     NaX           +           RSO H               HX                 +        RSO Na

Analyte Salt              Suppressor       Acid form of Analyte        Suppressor
(Conductive)                    

→

                   (Highly Conductive) 
 (5.5) 

A review on the developments of suppressor technology for inorganic ion analysis by ion 

chromatography with conductivity sensing is found in [5]. Alternatively, the suppression 

can be done electrically [6]. 

Ion chromatography has broad applications ranging from water and food safety [7] 

such as anions in drinking water; environmental monitoring, such as nitrate in soil; and 

clinical exams, such as sodium and potassium level in body fluids and infusions. 
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5.1.3 Nitrate Sensing 

Although the microchip developed in this chapter is really a general-purpose ion 

chromatography chip, its original goal is nitrate (NO3
-) sensing. Nitrate is one of the most 

common contaminants in groundwater. The detection and quantification of nitrate is 

considered essential. 

Nitrogen is an essential nutrient for plants and animals. It exists in the 

environment in many forms as part of the nitrogen cycle, with nitrate (NO3
-) and nitrite 

(NO2
-) being the most abundant ones in water systems [8]. These two anions are retained 

poorly in soil but are highly soluble in water. They remain in water until consumed by 

plants or other organism. Because of nitrate’s stability and solubility, it is often used as 

an indicator of potential water pollution. An elevated nitrate level may also indicate the 

presence of other contaminants, microbial pathogens, or pesticides in the water system,  

A major source of elevated nitrate level is the use of nitrate fertilizers, which 

contributes the most to groundwater pollution. High concentrations of nitrate may have 

significant effects on the environment, as well as on human health.  

High nitrate levels in freshwater and marine ecosystems can lead to algal blooms 

and eutrophication of the ecosystem. Although nitrate is not toxic to humans, once nitrate 

has entered the body, it can be reduced by stomach bacteria to nitrite and further to N-

nitrosamine compounds that are suspected to be carcinogenic. Nitrate does not normally 

cause health problems if not reduced to nitrite. Since infants have immature digestive 

systems that allow more reduction of nitrate to nitrite, excess consumption of nitrate can 

cause methemoglobinemia (blue baby syndrome) for infants. Methemoglobinemia is a 

blood disorder. Blood contains an iron-based compound called hemoglobin, which carries 
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oxygen. When nitrite is present, hemoglobin can be converted to methemoglobin, which 

cannot carry oxygen. Infants suffering from methemoglobinemia can show intermittent 

signs of blueness around the mouth, hands, and feet.  

The current EPA nitrate standard is 10 ppm maximum in drinking water. The 

standard for nitrite is 1 ppm maximum. These concentrations are well above the detection 

limits for ion chromatography systems with conductivity sensing.  

Besides ppm (parts-per-million) and ppb (parts-per-billion), some other 

concentration units, such as mg/L and M (molar, mol/L) are also frequently used. Since 

ppm is a weight percentage and the specific gravity for most dilute aqueous solutions is 

approximately 1, it is easy to obtain the following conversions: 

  1 ppm = 1 mg/L  (5.6) 

 1 ppb = 1 g/Lµ  (5.7) 

Using the molecular weight of the solute, concentrations in ppm/ppb can be converted to 

molar concentrations. For example: 

 For nitrate:  1 ppm = 16 Mµ  (5.8) 

 

5.2 Microchip Design 

5.2.1 Chip Design and Operation 

The microchip has four access ports, as shown in Figure 5-2. Two syringe pumps 

(Harvard Apparatus, Holliston, Ma) are connected, one at port #1 for mobile phase 

delivery and the other at #3 for sample injection respectively. Four valves (Upchurch 

Scientific, Oak Harbor, WA) are connected at the four access ports to control the flow 
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directions. After chip fabrication, LC beads are packed externally into the on-chip 

column from port #1. On-chip filters trap beads in the column and prevent beads from 

entering the side channels used for sample injection (Figure 5-3 (a)). The filters are 

channels with height smaller than the bead diameter. The packed column outlet is right at 

the inlet of the detector, which also serves as a filter (Figure 5-3 (b)). The column is 

packed, with monitoring under a microscope, up to the side channel close to #3, which is 

where the injected sample plug front will be. The integrated chip minimizes dead volume 

between the injection sample plug and column inlet, and between the column outlet and 

detector, thus minimizing extra-column peak broadening. Nano-liter-volume sample 

injection is achieved with a cross-channel injection method [9].  

To perform a separation, first the column is flushed with the mobile phase flowing 

from #1 to #2 pumped by the syringe pump, while valves #3 and #4 are closed (Figure 5-

4). After the column reaches equilibrium and is ready for injection (Figure 5-5 (a)), 

valves #1 and #2 are closed, while #3 and #4 are opened (Figure 5-5 (b)). The sample 

enters the device from #3 and leaves at #4 (Figure 5-5 (c)).  Then by closing #3 and #4, 

and opening #1 and #2, a sample plug can be defined and injected into the column 

(Figure 5-5 (d)). Sample components are separated on the column into bands (Figure 5-5 

(e)), which widen during elution through the column (Figure 5-5 (f)). When an eluted 

sample band enters the conductivity detector, a change of signal is generated on top of the 

mobile phase background conductivity baseline. All of the peak signals are recorded to 

produce a chromatogram for the separation. 
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Figure 5-2 (a) Fluorescent overview picture of the integrated ion chromatography chip 

before column packing. The channels are filled with 0.5% fluorescein. The filters appear 

darker because they are thinner and thus have lower fluorescent intensities. Electrodes are 

not visible in the picture. (b) Optical picture of the device after bead packing. 

 

Figure 5-3 3D illustration of the device.  
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Figure 5-4 Illustration of the ion chromatography chip. 

 

 

Figure 5-5 Illustrations of on-chip injection, separation, and detection of the ion 

chromatography chip.  



   
 

 

128

5.2.2 Conductivity Sensing 

5.2.2.1 Conductivity Response Theory 

Conductivity, κ (S.cm-1), is the reciprocal of resistivity ρ (Ohm·cm).  

 1κ
ρ

=  (5.9) 

Since resistance, R (Ohm), is given by: 

 cellR Kρ=  (5.10) 

Conductance, G, the reciprocal of resistance, can be expressed as: 

 
cell

G
K
κ

=  (5.11) 

where cellK  (cm-1) is the cell constant of the resistance/conductance measuring cell, 

which is determined by the dimensions of the cell and the electrode configuration. Most 

cellK values of commercial conductivity sensors are 1 to 10 cm-1. Based on equation 

(5.11), conductivity can be obtained by directly measuring conductance.  

The conductance (in unit of S) of an electrolyte contributed by one of its ions is: 

 1000
cell

CG
K
λ

=  (5.12) 

where C is the concentration of the ion in equivalents per liter (equiv/L), and  

 equiv/L Molar Charge-on-Ion= ×  (5.13) 

λ (S.cm2/equiv) is the equivalent conductance of the ion. λ is a function of the ionic 

concentration. At high concentrations, ion-ion interactions could decrease the effective 

conductance of the bulk solution. Fortunately, the solutions commonly encountered in ion 

chromatography are extremely diluted. Therefore, the conductance in IC can be 



   
 

 

129

calculated with little error using “limiting equivalent conductance,” which is the λ for 

highly diluted solutions. By adopting the concept of limiting equivalent conductance, 

conductance in IC is linear with concentration. The limiting equivalent ionic 

conductances for some common ions in aqueous solution at 25 °C are shown in Table 5-1. 

 

Table 5-1 Limiting equivalent ionic conductances in aqueous solution at 25 °C [1]. 

 
The total conductance of a dilute electrolyte is the sum of each individual ion’s 

contributions:  

 1000
i i

icell

G C
K

λ= ∑  (5.14) 

Therefore, in an anion-exchange ion chromatography, the background 

conductance is generated by both the eluent cations and anions. Assuming the eluent is 

fully ionized, the background conductance, BackgroundG , is given by: 
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( )

1000 EE E
Background

cell

C
G

K
λ λ+ −+

=  (5.15) 

where 
E

λ + and 
E

λ − are the limiting equivalent conductances for the eluent cations and 

anions, and EC is the eluent concentration. 

During sample elution, the total ion concentration in the column and eluent 

remains constant throughout the elution process. The eluted sample anions displace an 

equivalent number of eluent anions from the eluent. The sample cations need not be 

considered since they are unretained on the anion-exchange column. Thus, the total 

conductance during elution, ElutionG , is:  

 

  

1000          [ ( ) ]

1000 ( )

Elution E E S

E E S SE E S
cell

Background SS E
cell

G G G G

C C C C
K

G C
K

λ λ λ

λ λ

+ − −

+ − −

− −

= + +

= + − +

= + −

 (5.16) 

where 
E

G + , 
E

G − , and 
S

G −  are the conductances of the eluent cations, eluent anions, and 

sample anions respectively; SC and 
S
λ −  are the sample concentration and limiting ionic 

equivalent conductance respectively.  

The change of conductance from the background, ∆G, is the sample signal: 

 Elution BackgroundG G G∆ = −  (5.17) 

It can be derived from equation (5.16) and (5.17): 

 1000 ( ) SS E
cell

G C
K

λ λ− −∆ = −  (5.18) 

G∆  is proportional to the concentration of the sample to be detected, which 

means the minimal detectable concentration is determined by the detection limit of the 
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conductivity sensor. In addition, G∆  is proportional to the difference in λ between the 

sample and eluent anions. A proper choice of eluent could enhance the detection 

sensitivity. Finally, G∆  is inversely proportional to the conductivity sensor cell constant, 

which therefore should be minimized to maximize the detector sensitivity. 

Also from equation (5.18), it can be seen that G∆  could be both positive and 

negative. When the eluent is more conductive than the sample, G∆  is negative, which 

shows as valleys on the chromatogram. When the eluent is less conductive, G∆  is 

positive, appearing as peaks on the chromatogram. Most anion-exchange separations use 

less-conducting eluents.  

It should be noted that the percentage of conductance change over the baseline is 

usually very small. As shown in the following equation, 

 
( )
( )

SS E

Background EE E

CG
G C

λ λ
λ λ

− −

+ −

−∆
=

+
 (5.19) 

This percentage decreases linearly with sample concentration. For highly-sensitive 

detections, the conductance change may approach the noise level, which determines the 

limit of detection of the sensor. For instance, in a typical scenario, 1 ppm (16 µM) of 

nitrate (NO3
-) sample in a 1 mM sodium bicarbonate (NaHCO3) eluent, the change is 

only 0.4%. This small change requires the read-out electronics to have ultra-low noise. 

Moreover, since the conductivity of an ionic solution increases about 2% per degree 

increase in temperature [1], the temperature in the detector needs to be tightly controlled 

or compensated. An alternative approach to further lower the detection limit is 

suppression of the background signal, which can be done either chemically or electrically 

[6].  
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5.2.2.2 Conductivity Detector Cell Analysis 

A typical conductivity cell has interdigitated sensing electrodes (Figure 5-6). The 

electrode fingers have a width of W and a spacing of S. All the fingers cover a detector 

area of DA , which is equal to E DL L× . The total number of fingers is N.  

 

Figure 5-6 Configurations of the interdigitated electrodes in the conductivity detector cell. 

 
As explained in the previous section, in order to maximize signal, the cell 

constant needs to be as small as possible. Theoretically, the cell constant for the electrode 

configuration in Figure 5-6 can be expressed as  [10]:  

 
2

2 ( )
( 1) [ 1 ]

cell
E

K kK
N L K k

= ⋅
− −

 (5.20) 

where ( )K k  is an elliptic integral of the first kind with elliptic modulus k:  

 
1

2 2 2
0

1( )
(1 )(1 )t

K k dt
t k t=

=
− −

∫  (5.21) 

For a two-finger detector:  
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 Sk
S W

=
+

 (5.22) 

And for a multiple-finger (N>2) detector:  

 cos( )
2

Wk
S W

π
= ⋅

+
 (5.23) 

The cell constant does not vary much with k value, instead, it decreases 

significantly with an increasing number of fingers. Practically, it can be assumed that 

S W= and 1N >> . Then 2 / 2k = , and:  

 
2

( ) 1
[ 1 ]
K k

K k
=

−
 (5.24) 

In this case, equation (5.20) can be simplified with little approximation: 

 2       ( , 1)cell
E

K S W N
NL

= = >>  (5.25) 

which can be rewritten as:  

 4
cell

D

SK
A

=  (5.26) 

From equation (5.26), it can be seen that in order to minimize cellK , the width and 

spacing of the electrodes should be minimized, which is limited by the patterning 

technology. Nano-interdigitated electrodes can be made using alternative methods [11–13] 

and are supposed to deliver significantly better performances. In addition, the detector 

area should be maximized; this however must be compromised in consideration of 

minimizing peak broadening and avoiding peak overlapping in the detector. 
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5.2.2.3 The On-Chip Conductivity Detector 

The conductivity detector cell on the microchip has width of 100 µm, height of 4 

µm, and length of 1000 µm, which corresponds to a volume of 0.4 nL. The interdigitated 

electrode fingers are 5 µm wide with 5 µm spacing. The length of each finger is 80 µm. 

Based on equation (5.26), the cell constant can be calculated to be 2.5 cm-1.  

The electrodes are e-beam evaporated platinum (Pt) with a thin titanium (Ti) layer 

at its bottom to improve adhesion. Another popular electrode pair, Au and Cr, is not 

suitable for electrochemical applications that require direct electrode-solution contact, 

since Cr can be easily eroded into dissolvable ions. One way to avoid direct electrode-

solution interface is contactless conductivity sensing [14–17], which is often used in 

capillary electrophoresis, since there is a high voltage applied in the solution. The 

electrodes are buried under a thin layer of insulation material and capacitively coupled to 

the solution. It avoids problems such as electrochemical modification or degradation of 

the electrode surface, and reduces electrolysis bubble generation.  

To obtain the conductance of the liquid in the detector cell, 1 V AC voltage at a 

frequency of 10 kHz is applied to the cell using an HP 3245A universal voltage/current 

source, and the resulting current is amplified and converted to voltage, which is acquired 

by a computer through an HP 34970A data acquisition unit. The amplitude of the AC 

voltage applied is limited by the electrochemical reactions that can happen at high 

voltages. The frequency has to be in the region where resistance dominants the total 

impedance in the conductivity cell [18]. 10 kHz frequency is used in most commercial 

conductivity detectors, for example the model 650 conductivity detector from Alltech 
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Associates [19]. And this frequency is also verified to be in the right region through an 

on-chip impedance frequency response experiment described in Section 5.4.3. 

 

5.2.3 Downscaling 

Based on HPLC theory, the dimensions and operating conditions of a commercial 

ion-exchange LC column PRP-X110 (Hamilton Reno, NV) is downscaled to find the 

corresponding values for the on-chip LC system. The on-chip column uses the same type 

of beads as those in the commercial column. An isocratic separation of seven common 

anions using the commercial column is shown in Figure 5-7 [20]. The column ID is 4.1 

mm and the length is 150 mm. Bead diameter is 7 µm. The flow rate is 2 mL/min. 

Sample injection volume is 100 µL. Non-suppressed conductivity detection is used.   

 

Figure 5-7 Common anions separation using a commercial HPLC system. 

 
The on-chip column has significantly smaller dimensions, only 8 mm long, 100 

µm wide and 25 µm high, and shares the same cross-sectional area as a 56 µm ID 

capillary. This ID is not impractically small, as people have demonstrated improved 
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separation performance with packed 20 to 50 µm ID capillary columns [21], and there are 

75 µm ID packed capillary columns commercially available (Agilent, Palo Alto, CA).  

Based on HPLC theory, the maximum allowed injection volume iV  is [22]:   

 i R
KV V
N

θ=  (5.27) 

where 2θ  defines the fraction of peak broadening, RV  is the retention volume, K is a 

parameter characteristic of the quality of injection, and N is the number of plates. From 

equation (2.21), we know:  

 2
R cV d∝  (5.28) 

where Cd  is the column ID. And from equation (2.19) and (2.20), we can get:  

  c
c

p

LN L
h d

= ∝  (5.29) 

where CL  is the column length, h  is the reduced plate height, and pd  is the bead 

diameter. Therefore, it can be derived that:   

 2
i c cV d L∝  (5.30) 

Based on equation (5.29), it can be calculated that the on-chip injection volume should be 

4.3 nL. 4.5 nL is used in the actual design. This injection volume is four orders of 

magnitude smaller than that of the commercial system.   

The maximum allowed detector cell volume, D MaxV − , is given by:  

 
2

i
D Max

VV − =  (5.31) 
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Thus, the on-chip detector volume should be less than 2.25 nL. The volume of the actual 

cell (100 µm wide, 1000 µm long, and 4 µm high) is 0.4 nL, which minimizes peak 

broadening and avoids peak overlapping in the detector. The detector cell volume of the 

commercial system is not given. Generally, most such conductivity cells have volumes on 

the order of 1 µL, such as the one from Alltech Associates [19], which has a cell volume 

of 0.5 µL. 

As described in Chapter 2, the optimal linear flow velocity, u , is mostly on the 

order of 1 mm/s, regardless of the column dimension. This can be verified by calculating 

the u  value for the commercial column, based on the following equation:  

 
C

Fu
Aε

=  (5.32) 

where F  is the volumetric flow rate, ε  is the column porosity, and cA  is the column 

cross-sectional area. Assuming ε  is 0.8, u can be found to be 3 mm/s for the commercial 

column. For on-chip separation, if 1 mm/s flow velocity is used, then the corresponding 

volumetric flow rate is 0.12 µL/min, again assuming ε  is 0.8. For simplicity, 0.2 µL/min 

flow rate (1.7 mm/s flow velocity) is used in the real separation experiments. This flow 

rate is four orders of magnitude smaller than that of the commercial system.   

The operating pressure can be calculated based on the following equation:  

 2
c

p c

L FP
d A
η

ε
Φ

∆ =  (5.33) 

where Φ is dimensionless flow resistance of the column, and η  is the solution viscosity. 

Φ  is assumed to be 500, which is an empirical value for a column packed with porous 

spherical beads. Since all solutions used in ion chromatography are very diluted aqueous 
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solutions, η  is about the same as water’s viscosity, which is 1 mPa·s = 71.455 10−×  psi·s. 

Therefore, the operating pressures for the commercial and on-chip columns can be 

calculated to be 703 psi and 20 psi respectively. The calculated pressure for the on-chip 

column is close to, but slightly higher than what is measured. As described in Section 

5.4.2, it is due to the reduced flow resistance of miniaturized on-chip columns. 

Table 5-2 summarizes the downscaling results from the Hamilton LC system to 

the on-chip LC system.  

 

Table 5-2 Downscaling from the Hamilton LC system to the on-chip LC system. 

 
5.3 Microchip Fabrication 

5.3.1 Fabrication Process Flow 

The process used to fabricate the ion chromatography chip is illustrated in Figure 

5-8. It starts with growing a 1.5 µm SiO2 layer on both sides of a 4-inch silicon wafer by 

thermal oxidation. Then using a delay-mask technique described below, two-level 

backside holes are created with DRIE. First, the backside oxide is patterned and etched 
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with buffered HF, which defines the 150 µm diameter small holes. Then an 8 µm 

photoresist AZ4620 (Clariant, Somerville, NJ) layer is patterned on the backside to define 

the 510 µm diameter big holes, which are concentric with the small holes. DRIE is done 

to etch the small holes 200 µm deep into the silicon wafer backside using the small-hole 

oxide mask. After etching the backside oxide using the big-hole photoresist as a mask, 

DRIE is performed again to etch the backside until only a 50 µm thick diaphragm is left. 

The big holes are “delayed” compared to the small holes, which creates the two-level 

structure used for fluidic access ports. The two-level structure can be used as a tubing 

stopper when coupling tubing is directly inserted into the chip. 

Following frontside oxide patterning, 300 Å titanium/2000 Å platinum/1000 Å 

gold are e-beam evaporated and patterned through wet etching processes. Au is used only 

for wire bonding purpose, since it is very difficult to directly bond to Pt. Au is patterned 

with Au etchant (Transene, Danvers, MA), and is left only at the bonding pads. Pt is the 

sensing electrode and is patterned with Aqua Regia (HNO3:HCl:H2O=1:6:3 by volume) 

at 80 °C.  The etching solution has to be heated to a relatively high temperature in order 

to start etching the Pt. Ti is used as an adhesion layer between the Pt and the substrate, 

and it is patterned with Ti etchant (HF:H2O2:H2O=1:1:20 by volume).   

25 µm thick photoresist AZ4620 is spun on the front side of the substrate and 

patterned with two masks to form a two-level photoresist structure using a double-

exposure method. One full exposure (1st mask) and one partial exposure (2nd mask) are 

performed prior to developing the photoresist. Areas around the fluidic channels are fully 

exposed, which reveals a 15 µm wide oxide ring underneath. Bead filters and field areas 

are partially exposed to leave only 4 µm high photoresist after developing. The 
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unexposed photoresist is for the 25 µm high liquid chromatography column and 

inlet/outlet chambers. After photoresist patterning, the revealed oxide ring around fluidic 

channels is etched away with buffered HF. Then 40 µm deep trenches with a mushroom 

profile at the bottom are created in the moat area using a modified DRIE Bosch process 

[23], which adds a 36-second isotropic SF6 plasma etching at the end of the standard 

DRIE Bosch process. Alternatively, the moat area can be roughened in XeF2. This is 

using the self-aligned trench/roughening-anchoring technique described in Chapter 4, to 

increase the pressure rating of the parylene device.  

10 µm thick parylene C (Specialty Coating Systems, Indianapolis, IN) is then 

conformally deposited on the wafer frontside, filling up the trenches and covering the 

photoresist structures. Parylene is patterned and etched with oxygen plasma from outside 

the channels and anchoring moats. Field photoresist outside the channels and moat is then 

stripped.  Backside holes are opened with DRIE. Finally the channels are released by 

dissolving the photoresist in the channels. To further strengthen and passivate the device, 

an optional epoxy overcoating layer can be applied to the device. 

Then chromatographic beads can be packed into the column from the chip 

backside hole, as shown in Figure 5-9 (a). The beads are trapped by the on-chip filter. 

The detailed packing process is described in the testing part, Section 5.4.1. Figure 5-9 (b) 

shows a picture of a device after bead packing. Some individual beads can be clearly seen 

at where the column and filter meet. The column and filters are anchored to the substrate. 

Figure 5-9 (10) shows a fluorescent picture of a section of column packed with beads.  
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Figure 5-8 Fabrication process flow. 
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Figure 5-9 Illustration and pictures of the fabricated device after bead packing. 

 

5.3.2 Chip Packaging 

Fluidic and electronic access to the chip is achieved with a custom-made 

packaging jig, as described in Section 4.2.4. The jig body is made of PEEK (McMaster-

Carr, Los Angeles, CA), which is inert for all the chemicals and solvents used in the 
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testing of this ion chromatography chip. The jig is capable of accessing a 4-by-4 array of 

16 holes on the chip, at most 8 holes simultaneously. The ion chromatography device 

only uses four of the holes. O-rings provide sealing between the jig and chip. A PCB 

(Printed Circuit Board) cover is placed on top and is screwed down to compress the chip 

and o-rings. Electrical access to the chip is made by wire-bonds from the chip to the top 

PCB. A packaged chip after wiring bonding is shown in Figure 5-10.  

 

Figure 5-10 Packaged chip after wire bonding.  

 

5.4 Testing Results and Discussion 

5.4.1 Separation Column Packing 

The separation column is the heart of an LC system. In order to get good and 

repeatable separation, column packing has to be void-free, dense, and uniform, which 

usually has to be packed at relatively high pressures. Packing of beads into the on-chip 

column is achieved with the conventional slurry technique. The packing slurry is 

prepared by mixing beads with deionized water, followed by agitating the mixture with a 
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vortexer (Scientific Industries, Bohemia, NY) to homogenize the solution and prevent 

beads from precipitating. The mixture solution is sucked into a syringe and injected into a 

section of tubing, which is used as a bead solution reservoir. The tubing is switched on-

line, and an off-chip pressure source is used to pack the beads into the on-chip column at 

200 psi. Pressurized nitrogen gas is used as the pressure source, which is filtered with 0.5 

µm filters before entering the chip packaging jig. The gas pressure is controlled through 

metering valves and monitored with a pressure transducer (PX120-2KGV, Omega, 

Stamford, CT) in conjunction with an Omega DP25-S strain gage panel meter. The setup 

has an upper limit of 800 psi with a precision of 1 psi.  

The stationary phase material used to pack the on-chip columns is PRP-X110 

anion exchange resin from Hamilton (Reno, NV). The resins are the same as those used 

in Hamilton’s anion exchange column PRP-X110, which has been popular in anion-

exchange chromatography systems. The resins are 7 µm diameter spherical porous PS-

DVB (poly(styrene-divinylbenzene)) beads with trimethyl-ammonium functional groups 

(N(CH3)+3) (Figure 5-11). The bead polymer base material has a specific gravity of 1. 

The average pore-size is 100 Å. And the exchange capacity is 0.11 mequiv/g. 

 

Figure 5-11 Anion exchange beads used in the column packing. 
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Resin capacity is an extremely important parameter in ion chromatography. Ion 

chromatography usually employs low-capacity ion exchangers, ranging from 0.01 to 0.2 

mequiv/g. For anion-exchange, and especially for non-suppressed IC to be successful, it 

is necessary to have resins with a low exchange capacity. Low capacity will result in 

faster elution and/or elution with weaker eluents. Capacity is usually given in “milli-

equivalents (of exchangeable ions)/gram (of resin).”  

 

5.4.2 Pressure–Flow Rate Relation 

By measuring the pressure–flow rate relation of the on-chip packed column, the 

column permeability can be acquired, which is usually a good indicator of the column 

packing quality. Moreover, based on the pressure–flow rate relation, the operating 

pressure of the on-chip column can be estimated for variations in column length, bead 

diameter, solvent viscosity, and flow rate. In the testing, DI water is pushed through the 

column with pressurized nitrogen gas, and the volumetric flow rate is obtained by 

measuring the liquid front moving velocity in a capillary connected at the column outlet.  

Since the column is packed at 200 psi, the measurement pressure is only up to 200 psi. 

Theoretically [22], the column volumetric flow rate, F , is proportional to the pressure 

applied, P∆ . The linear relation is expressed as: 

 

2
p c

c

d A
F P

L
ε

η
= ∆
Φ

 (5.34) 

where ε  is the column porosity, Φ  is the dimensionless flow resistance, pd  is the bead 

diameter, cA  is the column cross-sectional area, η  is the fluid viscosity, and cL  is the 

column length.  
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Figure 5-12 Pressure vs. flow rate curve for an on-chip packed column. 

 
The measured pressure–flow rate data and fitted linear curve is shown in Figure 

5-12. The straight line does not extend back to the origin because of a non-linear pressure 

–flow rate relation at very low pressures. From the fitted line, it is found that / 444εΦ = . 

Assuming the porosity of the packed column is 0.7 to 0.85, which is normal for porous-

bead column, then Φ is 311 to 377, which is close to but smaller than its empirical value 

of 500 for conventional LC columns. This result is confirmed again in Section 6.3.2. The 

high permeability of the on-chip column is due to the fact that the column dimension is 

approaching the order of magnitude of particle size. In this case, the column becomes 

effectively “less dense” than conventional ones because walls disturb the regular 

structures of the packed bed. Similar results have been reported before [21], where Φ  is 

found to decrease with decreasing capillary column IDs from 50 µm to 20 µm. Although 
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the permeability is higher, the micro-columns actually have better separation 

performance according to the same paper, which also means the pressure requirement can 

be lower for micro-columns. 

 

5.4.3 Impedance Frequency Response 

Since the electrodes are in direct contact with the solution, double layer 

capacitance ( )DLC and detector cell capacitance ( )CellC also contribute to the total 

impedance. The equivalent electrical circuit (Figure 5-13) and impedance frequency 

response analysis for the interdigitated planar electrodes are presented in [18]. In Figure 

5-13, CellR  is the resistance of the solution to be measured in the detector and leadR is the 

resistance of the electrical leads.  

 

Figure 5-13 Conductivity detector cell equivalent circuit. 

 
When the frequency is low, DLC  dominates the total impedance, until a cut-off 

frequency of lowf is reached.  

 1
low

Cell DL

f
R Cπ

=  (5.35) 
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Above this frequency, CellR  dominates the total impedance, and the impedance becomes 

almost frequency independent. When the frequency reaches highf , CellC  starts to dominate 

the total impedance.  

 1
2high

Cell Cell

f
R Cπ

=  (5.36) 

Above highf , the impedance once again drops with increasing frequency. The theoretical 

impedance frequency response is shown in Figure 5-14. The conductivity measuring 

frequency has to be in the resistance dominant region to minimize capacitive effects, 

which is the frequency range between lowf  and highf . 

 

Figure 5-14 Theoretical impedance frequency response. 

 
The impedance frequency response for the ion chromatography mobile phase 

solution (1.7 mM sodium bicarbonate/1.8 mM sodium carbonate, Alltech, Deerfield, IL) 

with on-chip interdigitated platinum electrodes is measured with an HP 4192A LF 

impedance analyzer and the result is shown in Figure 5-15. The trend largely follows 

what is predicted in Figure 5-14 except for the middle region, which is shown to have 

decreasing impedance with increasing frequency, although much less sharply than the 

low and high frequency regions. This is due to the fact that the resistance does not 
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completely dominate over the capacitances from the double layers and the cell.  From this 

experiment, it is verified that the chosen measuring frequency of 10 kHz is in the 

resistance “dominating” region. 

 

Figure 5-15 Impedance frequency spectrum of the mobile phase solution in contact with 

the on-chip interdigitated platinum electrodes. 

 
5.4.4 Ion Chromatography Separation 

Isocratic anion-exchange ion chromatography is used to separate seven common 

anions on-chip. The bead-packed column is 8 mm long, 100 µm wide, and 25 µm  high, 

and shares the same cross-sectional area as a 56 µm ID capillary. The beads are anion 

exchange 7 µm diameter PS-DVB resins. 1.7 mM sodium bicarbonate/1.8 mM sodium 

carbonate solution is used as mobile phase. The flow rate is 0.2 µL/min, provided by a 

syringe pump. The injection volume is 4.5 nL achieved on-chip. Certified ion 

chromatography seven-anion  mixture in water with known anion concentrations (Alltech, 
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Deerfield, IL) is diluted to obtain a sample solution containing 12.5 ppm fluoride (F-), 25 

ppm chloride (Cl-,), 25 ppm nitride (NO2
-), 25 ppm bromide (Br-), 25 ppm nitrate (NO3

-), 

25 ppm phosphate (PO4
-3), and 25 ppm sulphate (SO4

-2).  

The seven anions have been successfully separated and the chromatogram is 

obtained with the on-chip conductivity detector (Figure 5-16). The ion identifications are 

determined by the sequence of peaks, since the ions have fixed affinities to the column 

stationary phase.  All seven anions are resolved in about 90 seconds, demonstrating a fast 

separation and detection on-chip. The precise time when the injected sample plug enters 

the column is difficult to determine, due to the external pumps, valves, and o-rings used 

in the packaging. The peaks are sharp due to the small column dimensions and minimized 

dead volume of the integrated system.  

 

Figure 5-16 Chromatogram of an on-chip ion chromatographic separation of seven anions.  
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Since non-suppressed conductivity sensing is used, the background signal is 

relatively high and the sample ion signals are only about 0.3% to 0.7% of the background, 

which is the main factor determining the limit of detection of the current device. 

Assuming the minimum tolerable signal-to-noise ratio is three, the limit of detection for 

the common anions is estimated to be around 1 ppm using the current chip and 

conductivity read-out electronics.  

 

5.5 Summary 

A microchip with an integrated LC system has many promising applications that 

are impossible or impractical before, such as remote-site environmental monitoring, 

networked sensing, and consumer health care. The ion chromatography chip presented in 

this chapter has on-chip bead column, filters, sample injection structure, and conductivity 

detector. The microchip is made with a single CMOS-compatible batch fabrication, 

which is low-cost, high-volume production, and allows the measuring electronics and 

signal conditioning circuitry to be integrated on the same chip.  

The current system has a detection limit of 1 ppm for the common anions. A 

lower detection limit is expected with electronic baseline suppression [6] and/or better 

read-out electronics. Better injection, in terms of accuracy, repeatability, and precise 

injection time control, can be achieved by integrating more conductivity sensors on the 

chip to monitor the injection process better. While common anions are used in the 

separation experiment, other conducting samples such as organic acids and some peptides 

can also be analyzed. By packing the column with cation exchange beads, the chip can be 

used to analyze cations as well.  
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Unlike the bead integration method developed in Chapter 3, a new method to 

introduce beads into the column is used, which is the slurry-packing technique. This 

method can reduce the complexity and increase the yield of device fabrication. The 

anchoring technique developed in Chapter 4 is used in this chip to achieve a high-

pressure-rated device. However, this chip is not intended to be a high-pressure, high-

capacity LC chip. Also it does not have the capability of direct coupling with mass 

spectrometry for really powerful compound identification and analysis. These will be the 

focuses of the device presented in Chapter 6.  
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CHAPTER 6 

 A NANO HPLC/MS CHIP 

6.1 Introduction 

This chapter presents an integrated microchip with high-pressure liquid 

chromatography column, bead filter, and electro-spray ionization (ESI) nozzle. Compared 

to what has been done in the previous chapter, this microchip intends to demonstrate 

higher operating and maximum pressures, higher performance LC with longer column 

and smaller beads, and the integration of ESI nozzle with this HPLC chip platform for 

direct coupling with on-line mass spectrometry (MS) detection. An important application 

of this chip is HPLC-MS, which is the workhorse for today’s proteomics and 

pharmaceutical industry. There is much interest in significantly cutting sample 

requirements, reducing cost and size, and dramatically boosting the throughput of 

existing HPLC-MS systems. A total realization of all these dreams will be revolutionary, 

which could help scientists reveal the secrets of life faster, combat aging better, and 
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discover drugs sooner. It is a difficult problem, however. This microchip will serve as an 

important step towards achieving those goals. 

 

6.2 Design and Fabrication 

6.2.1 Microchip Design 

 

Figure 6-1 Overview of the HPLC-ESI/MS microchip before and after bead packing. 

 
The microchip (Figure 6-1) has one access port. The fluid enters the chip from the 

chip backside, flows through the column and filter, and exits from the nozzle. The 

separation column is 6.5 cm long, 100 µm wide, and 25 µm high with rounded cross-

sections. And it is packed with 5 µm C18 silica beads using a conventional slurry packing 

technique described in Section 5.4.1. The filter is a 3 µm-high channel leading to the ESI 

nozzle. The freestanding nozzle is 600 µm long with a 15 µm wide, 3 µm high opening. 
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The filter traps beads in the column and prevents beads from entering the ESI nozzle. The 

packed column outlet is the inlet of the nozzle, which minimizes extra-column peak 

broadening.  

Figure 6-1 (a) is a fluorescent overview picture of the device before bead packing. 

The fluidic channel is filled with fluorescein. A close-up picture of the freestanding 

electrospray nozzle is shown in Figure 6-1 (b). The fluorescent solution is seen traveling 

half-way through the nozzle. An optical picture of the device after bead packing is shown 

in Figure 6-1 (c). It can be seen clearly in the picture that the freestanding nozzle extends 

600 µm off the edge of the chip.  

 

6.2.2 Fabrication Process 

The chip is microfabricated on a silicon wafer with a single batch-fabrication 

process compatible with IC technology. The fabrication process is shown in Figure 6-2. 

The process starts with growing a 1.5 µm thick SiO2 layer on both sides of a 4-inch 

silicon wafer by thermal oxidation. Then the backside oxide is patterned with an AZ4620 

(Clariant, Somerville, NJ) photoresist mask and etched with buffered HF, which defines 

the 150 µm diameter backside fluidic access hole. With the backside patterned 

photoresist and oxide as mask, DRIE is performed to create the backside fluidic access 

hole, leaving only a 50 µm thick diaphragm. The frontside oxide is patterned to open 

areas for the fluidic access hole and for nozzle release. Then a 3 µm thick parylene C 

(Specialty Coating Systems, Indianapolis, IN) is conformally deposited on the frontside 

only. The wafer backside is covered during the parylene deposition. This first parylene 

layer is patterned to form the bottom of the electro-spray nozzle. 25 µm thick photoresist 
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AZ4620 is spun on the front side of the substrate and patterned with two masks to form a 

two-level photoresist structure using a double-exposure method. One full exposure (1st 

mask) and one partial exposure (2nd mask) are performed consecutively prior to 

developing the photoresist. Areas around the fluidic channels are fully exposed, which 

reveals a 15 µm wide oxide ring underneath. Bead filters and wafer field areas are 

partially exposed to leave only 3 µm high photoresist after developing. The unexposed 

photoresist is for 25 µm high liquid chromatography columns and inlet/outlet chambers. 

After photoresist patterning, the revealed oxide ring around the fluidic channels is etched 

away with buffered HF. Then an approximately 100 µm deep moat around the fluidic 

channels is etched into the silicon wafer with a modified DRIE Bosch process [1], which 

adds a 36-second isotropic SF6 plasma etching at the end of the anisotropic standard 

Bosch process. It creates trenches with a mushroom profile at the bottom, which provides 

excellent mechanical anchoring strength for the subsequently-deposited parylene layer. A 

10 µm thick parylene C layer is then conformally deposited on the wafer frontside, filling 

up the trenches and covering the photoresist structures.  Parylene is patterned and etched 

away with oxygen plasma outside the channels and anchoring moat. The field photoresist 

outside the channels and moat is then stripped.  The backside hole is opened with DRIE. 

The frontside substrate silicon underneath the nozzle and along a trench perpendicular to 

the nozzle is etched with XeF2 gas-phase silicon etching, in order to make the nozzle 

freestanding. The etching depth is approximately 150 µm. Then, the channels are released 

by dissolving photoresist in the channels. Chromatographic beads are packed into the 

channels by a conventional slurry packing technique described in Section 5.4.1. The 
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packing pressure is 750 psi. Finally the nozzle is freed by detaching a piece of the chip 

along the across-chip trench.  

 

Figure 6-2 Fabrication process flow for the chip.  
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Figure 6-3 shows the anchored parylene channels in two cross-sectional device 

pictures.  The top fluorescent picture shows multiple channels anchored to the silicon 

substrate, one of which is shown in the close-up optical picture at the bottom.  The depth 

of the anchor is approximately 100 µm. 

 

Figure 6-3 Cross-sectional pictures of the fabricated device. The parylene microfluidic 

channels are anchored to the silicon substrate, greatly improving its pressure rating.  
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Figure 6-4 Comparison of two anchored-channel cross-sections. 

 
The anchor and the channel profile of this chip are compared to those in the 

previous chapter (Figure 6-4). The previous one (Figure 6-4 (b)) has shallower anchors, 

and the cross-section is roughly rectangular. The current one (Figure 6-4 (a)) has much 

deeper anchors, and has a semi-circular cross-section. The rounded cross-section is due to 

the channel-forming sacrificial photoresist reflow during the trench DRIE etching. This 

shows the capability of this process to tailor the column cross-sectional shape, which is 

considered a factor for column optimization.  

 

Figure 6-5 Epoxy overcoating for device strengthening and passivation. 

 
To further strengthen and passivate the device, an optional epoxy overcoating 

layer can be applied to the device. Figure 6-5 (a) shows a packed device with top epoxy 

coating. Since the two-part epoxy preparation involves mixing the resin with the hardener, 
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bubbles may occur as shown in the picture, which should be avoided when possible.  

Figure 6-5 (b) shows the inner side of the epoxy coating after it is peeled off from the 

chip. It is smooth and conforms to the shape of the channels on the chip.   

 

6.2.3 Processing Challenges 

6.2.3.1 Bubbling 

During the etching step for the second parylene layer, bubbles can form inside the 

photoresist channels (Figure 6-6 (a)). When the etching continues, the bubbles can grow 

drastically, deform the top parylene into a balloon, finally explode and break the parylene 

cover (Figure 6-6 (b)). This dramatic phenomenon was unheard of before. It is mainly a 

thermal process, which happens when the channels have a deep moat filled with thick 

parylene anchors.  

 

Figure 6-6 Bubbling in the photoresist channels during parylene etching. 

 
Since parylene is an excellent thermal insulator (parylene C’s thermal 

conductivity, 0.84 mW/(cm·K), is only four times that of air, 0.21 mW/(cm·K)), heat 

generated during the plasma etching of parylene cannot be removed from the photoresist 
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channel fast enough. In fact, most bubbles appear at places that have the worst thermal 

conduction, like the corner in Figure 6-6. The plasma heating can bake out the photoresist 

solvents that were not eliminated during photoresist baking. The solvents vaporize into 

gas, which is trapped by the top parylene due to its ultra low gas permeability. Finally, 

continued heating increases the size of the bubble, which pops the parylene channel.  

This bubbling issue is very serious, since it destroys the device irretrievably at 

almost the last step of the whole fabrication. Reducing heating by decreasing plasma 

etching power and time helps in some cases. But it is far from solving the problem.   

Since the gas bubble comes from the photoresist solvent, one solution is to more 

effectively bake out the solvent. An experiment is carried out to investigate this option 

in more detail. All the chip samples are fabricated on a silicon wafer with a 1.4 µm 

thermal oxide layer. The photoresist is patterned to have two thicknesses, 25 µm and 3 

µm, using the same set of masks for the real device. The patterned photoresist is 

postbaked for 15 minutes at 100 °C, followed by standard descum process. Then the 

samples are divided into three groups and treated differently. Group 1 is kept the same, 

no parylene coating is performed. Group 2 is coated with 15 µm thick parylene. And 

group 3 is baked for five hours at 100 °C prior to a 15 µm thick parylene coating. All 

baking processes are performed in a convection oven. For testing, the sample chips are 

directly placed on hotplate for uniform heating across the chips at various temperatures.  

The purpose of group 1 is to verify that the bubbles are indeed solvent gas trapped 

under the parylene. As shown in Figure 6-7, photoresist channels appear intact after 10 

minutes of baking at 180 °C, meaning parylene sealing is responsible for the solvent gas 

trapping. 
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Figure 6-7 Samples without parylene coating are intact after baking 10 minutes at 180 °C. 

 
Samples from group 2 show no sign of bubbling after 5 minutes at 150 °C and 

another 5 minutes at 160 °C. However, when placed on hotplate at 170 °C, which is over 

the vaporization threshold for the solvent, the samples almost immediately generate 

bubbles everywhere. In Figure 6-8 (a), bubbles are generated along the channel and cause 

the parylene to delaminate, since the parylene is not anchored. The situation is even 

worse in Figure 6-8 (b), where most of the channel photoresist is pushed out of the 

channels by the bubbles, and large areas of parylene delaminate from the substrate.  

 

Figure 6-8 Samples with parylene coating generate bubbles in the channels immediately 

after being heated at 170 °C. 



   
 

 

167

Group 3 delivers the most successful result. For most of the sample chips, there is 

no bubbling at all even after 10 minutes of baking at 180 °C (Figure 6-9 (a) (b)).  While 

for some chips, there are a few little bubbles appearing at the channel ends and cross-

sections. They grow very slowly over time and do no damage to the channels after 10 

minutes of continuous baking (Figure 6-9 (c) (d)).   

 

Figure 6-9 Samples with 5 hours of extra baking before parylene coating, baked for 10 

minutes at 180 °C. 

 
It can be concluded from the above experiments that thorough removal of 

photoresist solvent, through extra-long postbake before parylene coating, solves the 

bubbling problem effectively. In addition, this extra baking has little effect on the length 

of the channel releasing process, because postbake has little impact on the channel 
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photoresist dissolution rate [2]. Therefore, if necessary, much longer baking times can be 

used.  

 

6.2.3.2 Black Silicon 

In order to reduce the dead volume in the backside hole, the hole is usually 

designed to be as small as the DRIE process allows. This, however, can result in black 

silicon [3] with too narrow a trench and/or a dirty wafer/machine. Dense silicon needles 

generated during DRIE etching form “grass” at the trench bottom, which appears to be 

black. Figure 6-10 (a) shows silicon needles at the bottom of a trench. The dotted line 

illustrates the profile of the trench. A close-up picture of the trench-bottom silicon 

needles is shown in Figure 6-10 (b). When black silicon appears, it is almost impossible 

to remove and it becomes very difficult to etch the trench through the wafer. To avoid it, 

larger holes should be used and the wafer needs to be cleaned more thoroughly.  

 

Figure 6-10 Silicon needles at the bottom of trench. 
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6.2.4 Packaging 

 

Figure 6-11 Packaging for the chip.  

 
High-pressure fluidic access to the chip is achieved with a custom-made 

packaging jig. The jig body is 3.01 cm long, 2.2 cm wide, and 2 cm thick. Figure 6-11 

shows the packaging scheme. The jig body is made of PEEK (polyetheretherketone) 

(McMaster-Carr, Los Angeles, CA), which is chemically inert for most chemicals and 

solvents. Commercial fitting receiving ports are machined in the jig to couple with 

commercial fittings (Upchurch Scientific, Oak Harbor, WA). Horizontal and vertical 

holes drilled in the jig lead fluid from the fitting ports to the jig top surface. The top 

surface has two levels of recess. The first level is square and is used for holding the chip. 

The second level has circular recesses for o-rings (Apple Rubber Products, Lancaster, 

NY). The o-rings have a durometer hardness of 70 and are made of ethylene propylene, 

which is compatible with all the chemicals and solvents, such as acetone and acetonitrile, 

used in the chip testings. When the o-rings and chip are placed in their recesses, a PEEK 

cover is placed on top and is screwed down to compress the chip and o-rings. The o-rings 

are compressed by about 25% to 30% in thickness, which seals the chip and jig. Four 

fluidic channels on the chip can be accessed simultaneously with this jig, although only 
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one of them is used for the testing of the device described in this chapter. This jig is used 

for both the bead packing and separation test, with thorough cleaning in between.  

 

6.3 Testing Results and Discussion 

6.3.1 Column Pressure Rating 

The parylene microfluidic channels are mechanically anchored deep into the 

silicon substrate (Figure 6-3), which greatly improves the channels’ pressure 

compatibility. From earlier studies [4] presented in Chapter 4, we know that the trench-

anchored parylene structures can withstand an upper pressure of about 700 psi without 

failure.  The failure mode is not delamination of parylene from the substrate, but rather 

breakage of the parylene layer. Thus, with an epoxy overcoating layer, the chip is 

strengthened and passivated.  The chips perform best when properly prepared, which 

includes cleaning in a piranha solution at 120 °C for 5 minutes, followed by an HF dip 

and immediate epoxy coating and baking overnight at 80 °C in the oven. The pressure 

upper limit achieved with this device is 1000 psi.  

 

6.3.2 Pressure–Flow Rate Relation 

As explained in Section 5.4.2, pressure vs. flow rate measurement is a useful tool 

for determining the column packing quality and calibrating the column operation. In this 

testing, deionized water is pumped through the column using pressurized nitrogen gas 

from a compressed gas cylinder. The liquid front moving velocity is measured in a 

capillary connected at the outlet, which is then used to calculate the volumetric flow rate 

using the capillary I.D. Since the column is packed at 750 psi, the measurement pressure 
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is only up to 700 psi. Based on equations (2.2) and (2.13), the column volumetric flow 

rate is proportional to the pressure applied, and the linear relation is expressed as: 

 

2
p c

c

d A
F P

L
ε

η
= ∆
Φ

 (6.1) 

where F is the volumetric flow rate, ∆P is the pressure drop across the column, ε is the 

porosity of the packed column, Ф is the dimensionless flow resistance, dp is the bead 

diameter, Ac is the column cross-sectional area, η is the viscosity of the fluid, and Lc is the 

column length.  

The measured pressure–flow rate data and fitted linear curve are shown in Figure 

6-5. The straight line does not extend back exactly to the origin because of a non-linear 

pressure–flow rate relation at very low pressures. From the fitted line, it is found that 

Φ/ε=449 for this 6.5 cm long, 100 µm wide, and 25 µm high column packed at 750 psi 

with 5 µm diameter porous silica beads. This agrees well with the result from last chapter, 

in which Φ/ε is found to be 444 for the on-chip 8 mm long, 100 µm wide, 25 µm high 

column packed at 200 psi with 7 µm diameter porous PS-DVB beads. It can seen that 

although the column lengths and bead types differ, the permeability is almost unchanged 

when the column cross-sections are the same and packing pressure is roughly 

proportional to column length. Now assuming the porosity of the packed column is 0.7 to 

0.85, which is normal for porous-bead column, then Φ is 314 to 382, which is close to but 

smaller than its empirical value of 500 for conventional-scale LC columns. The high 

permeability of the on-chip column is due to the small on-chip column to bead size ratio, 

which makes the column effectively “less dense” than conventional ones. Similar results 
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have been reported before [5], which also points out that the micro-columns actually 

should have at least the same, if not better, separation performances. 

 

Figure 6-12 Pressure vs. flow rate testing result for the on-chip packed column. 

 

6.3.3 LC Separation with On-Line MS Detection 

On-chip reversed-phase gradient liquid chromatographic separation coupled with 

on-line mass spectrometry detection is successfully demonstrated with tryptic digested 

cytochrome c sample. The on-chip separation column is packed with 5 µm C18 porous 

silica beads. The column is 6.5 cm long, 100 µm wide, 25 µm high, and shares the same 
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cross-sectional area as a 56 µm ID capillary. The electrospray potential is added to the 

flow path upstream of the chip [6, 7]. A commercial LC gradient pump and autosampler 

are used to provide the gradient flow and sample injection. Mobile phase A is water with 

0.1% formic acid. Mobile phase B is acetonitrile with 0.1% formic acid. The flow rate is 

0.4 µL/min. Thus, the pressure across the on-chip packed column is estimated to be 

around 450 psi, based on the measured pressure–flow rate curve. 1 µL (1 pmol) sample is 

injected with autosampler. Figure 6-6 shows the MS chromatogram result of a successful 

separation. Compared to the chromatogram of a similar separation obtained with 

commercial system, this separation result is not optimal, mainly due to the dead volume 

associated with the packaging jig. There is still much room for improvement in the jig in 

terms of dead volume reduction. Significantly smaller dead volume is expected to 

produce much better separations.  

 

Figure 6-13 Separation result of tryptic digested cytochrome c sample using on-chip 

reversed-phase gradient separation coupled with online mass spectrometry detection. 

 

6.4 Summary 

This chapter presents a batch-fabricated high-pressure liquid chromatography 

microchip for HPLC-MS applications. The chip is conventionally-packed and used for 
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pressure-driven separation. This integrated chip provides high-pressure separation in a 

miniaturized column and direct coupling for mass spectrometry detection. Higher 

permeability of on-chip packed column is again confirmed through pressure–flow rate 

measurements. On-chip separation and on-line MS detection of digested cytochrome c 

protein is successfully demonstrated at an operating pressure of 450 psi. This chip further 

extends the line of parylene microfluidic and liquid chromatography devices that have 

been developed, which brings us even closer to a totally integrated HPLC system on-a-

chip.  
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CHAPTER 7 

CONCLUSION 

 
The enormous success of the integrated circuit industry demonstrates the power of 

miniaturization and integration. The field of µTAS has the potential of accomplishing a 

similar revolution in the fluidic world. One of the challenges in µTAS today is integrated 

liquid chromatography on-a-chip. Miniaturized LC chips offer significant advantages 

over conventional LC systems. The chips are smaller and cheaper, provide better 

sensitivity without loss of separation efficiency, and require less sample and solvent. Due 

to their small sizes, on-chip LC systems are inherently nano LC. 

Totally-integrated LC on-a-chip needs a truly versatile and powerful technology. 

Parylene microfluidics technology appears to be a great candidate. In this thesis, the 

parylene technology is greatly enhanced, and the line of parylene microfluidic devices is 

significantly extended. Some of the issues facing LC chips, such as bead integration and 

high-pressure generation, are well addressed. Moreover, three different LC chips are 

demonstrated.  
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The bead integration technology, for the first time, provides a way to introduce 

beads into the on-chip column in a batch-fabrication fashion. Besides a few novel aspects, 

it is basically a modified photolithography process, which makes it convenient to 

integrate with other processes and devices.  

The first LC-ESI/MS chip presented here uses this bead integration technology to 

make its on-chip bead column. The column is found to have consistent porosity with 

conventional capillary columns. It is verified that the beads contaminated with photoresist 

during fabrication are unaffected in terms of their separation performance.  

The pressure requirements for LC chips are well above those for most 

microfluidic devices. Two types of self-aligned parylene anchoring techniques are 

developed, which increase the pressure rating of the parylene devices to 1000 psi. 

Trench-anchoring with epoxy-overcoating delivers the best performance.  

Since bead-packed columns have significantly increased flow resistance, it takes 

high pressures to pump liquid through the columns. Electrolysis-based micro-actuators 

are demonstrated to generate high pressure and large deflection, with low power 

consumption. The deactivation of the actuator through gas recombination in the presence 

of a platinum catalyst is also explored. A sealed electrolysis actuator has the potential of 

running many actuation and deactivation cycles without refilling the electrolyte.  

The second LC chip presented is an ion chromatography chip that has applications 

in water safety, environmental monitoring, and clinical exams. Sample injection, 

separation, and detection are all performed on a single chip. Seven common anions are 

separated, based on an anion-exchange mechanism, and detected with unsuppressed 

conductivity sensing. In addition, it is found that the on-chip column has higher 
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permeability than conventional ones, which actually lowers the operating pressure 

requirements for on-chip LC. This effect is due to the small size of the column compared 

to the bead dimension. The regular bead packing structures are disturbed by the column 

walls, which makes the column less dense.  

The last nano HPLC-MS chip is mainly targeted for the fields of proteomics and 

drug discovery. The presented chip is capable of running high-pressure, high-capacity 

separations on-chip, and capable of coupling for on-line MS detection through its 

integrated ESI nozzle. A digested protein sample is successfully separated and detected. 

The high permeability of on-chip columns is confirmed again. Despite the fact that this 

column has very different column length, bead size, and packing pressure from those of 

the ion chromatography chip, the obtained dimensionless column flow resistance values 

are very close. 

Complete LC chips may one day become portable and/or disposable. They can be 

used for field tests, networked sensing, real-time environmental monitoring, and so on, 

which would be impossible with today’s bulky LC instruments in the labs. LC on-a-chip 

can also be integrated with other on-chip chemical and biological sensors, eliminating the 

need for highly-specific sensing. Moreover, LC chips have the potential of achieving 

high-throughput LC separations, which can make the drug discover process much faster. 

While we are still a long way from achieving these goals, the work described in this 

thesis serves as an important step in that direction.  


