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ABSTRACT

Dispersion theory has been applied to proton
Compton scattering at all angles. Unitarity of the
S matrix determines the imaginary part of the scattering
amplitude; the only absorptive process considered is
pion photoproduction. The problem of analytic continuation
of amplitudes has been handled in a natural way, which
should be valid for scattering energies up to several
hundred Mev. Numerical results calculated in a static
approximation are in essential agreement with present

experimental data.
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Introduction

Even if one accepts present-day field theory - including pions -
as valid, it is very difficult to calculate any quantity involving
plons, since the size of the pion-nucleon coupling constant renders
perturbation methods of dubious value. Hence it is very desirable
to seek out properties of field theory not requiring a perturbation
expansion,

An example is the derivation of so-called dispersion relations
for scattering amplitudes. This originated with the work of Kramers

(1)

and Heisenberg, which relied on the correspondence principle and
closely paralleled the classical theory of dispersion. In recent years
the concept of "microscopic causality," the commuting of field operators
at points separated by a space-like interval,'has been applied by
Gell-Mann, Goldberger and others(z)-(A) to derive dispersion relations
within the framework of quantum field theory.

Another important property of field theory is the basic idea of
conservation of probability, or, more formélly, the unitarity of the

(5)

S matrix. The most familiar theorem related to unitarity is the
well-known relation between the imaginary part of a forward scattering
amplitude and the total cross-section.

The program of this thesis is as follows: Dispersion theory is to
be used to predict the elastic gamma-ray scattering from free protons.
Since dispersion relations are conveniently written as relations
between the real and imaginary parts of scattering amplitudes, we use the

unitarity of the S matrix to deduce the imaginafy Compton amplitude,

and then get the real part from dispersion theory. The unitarity



principle gives the imaginary part of the scattering amplitude as a
bilinear form in amplitudes for all procetses resulting ffom gamna-rays
incident on protons. The only such process we ghall take into consideration
is pion photoproduction,

There are at least three aignificant processé¢s which occur when
gamma-rays with energies of several hundred Mev strike pﬁotons. The
predominant one is electron pzir production. The dispersion scattering
resulting from this process is known as Delbruck scattering.¥* Not much
is known quantitatively about non-forward Delbruck scattering, but
" the cross-section is certainly negligible except for extreme forward
angles (Gmagv k/m, where k is the photon energy and m is the electron
mass). At such angles experimental difficulbies make it impossible
to measure Compton scattering anyway.

The second absorptive process is pion photoproduction, which has
been studied guite thoroughly for photon energies up to 500 Mev.

Since the charged and neutral crose-sections both show a regonance
at about 300 Mev, we should be able to obtain reliable low encrgy
results without knowing the photoproduction cross-sections at higher
energies; the relevant integrals converge rapidly and contributions
from beyornd 500 Mev are apparently only small corrections which can
be estimated by extrapolating the experimental curves.

Incidentally, one can estimate the effect of this resonance by
the Breit-Wigner single«level formula for total crouss-section. If the

pion and gamma-ray widths are determined from scattering and photoproduction

* A brief discussion and some references are given in reference (6)e



data,(7)

one finds that the total gamma-ray cross-section contributed
by this resomance at 300 Mev should be about 3.5 times the zero-energy
cross-section. The more precise calculations of this thesis, and the
few experimental points in this region, suggest that this considerably
underestimates the true effect, which is some five or more times the
zero-encrgy cross—section.

Finally, the third process is elastic gamma-ray scattering, which
is the process ﬁe are trying to predict. Fortunately, the cross-section
is several orders of magnitude smaller than photomeson cross«sections,
g0 that it is a reasonable approximation to neglect the absorptive
effects of Compton scattering. This procedure is clearly equivalent
to neglecting all terms of order e4 and higher in the Compton scattering
amplitude. The situation is quite different for pion scattering; here
the dispersion relations become integral equations for the scattering
amplitudes, rather than integrals which give the amplitudes directly.

In Section I of this thesis we derive the unitarity relations thch
give vua the imaginary parts of the Compton amplitudes in terms of photo-
production amplitudes. In Section II we discuss tﬂe dispersion formalisnm
in general, and its application to Compton scattering amplitudes.

The unitarity relations are expressed most naturally in the center~of-
momentum (hereafter CM) system, whereas a different coordinate system is
used for the dispersion relations; the transformation of amplitudes
between these two systems 1s discussed in Section TlI, Finally, in
Section IV, approximations are made and some numerical computations

are given. OSeveral appendices contain formulas and calculations which

would be inconvenient interruptions in the main body of the thesise.



1 — Unitarity Relations

We begin by mentioning some conventions to be used in this thesis.
Units are chosen so that i = ¢ = 1, In numerical work M, the proton

mass, is also set equal to unity. The unit of cross-section is then

OLAWc)z = Leh2 x 10-28 em® = 442 microbarns

- denotes the rationalized charge of the electron:
5 .
e/l = 1/137

Three-vectors are written @ ; if -8 = 1 we often write a instead.

In general by 4 we mean 3 /\3‘. A four-vector is written a or a ;
v "

by a-b we mean

- - _23
apbp" aobo - albl - a2b2 a3b3 = aobo a-b
We shall begin with the formal relation
— 4
Sy = Opy = (M1 8(py - py) Ry

relating the R and S matrices for scattering from a state i, with

total four-momentum Pys to a state f with total four-momentum Ppe When
we calculate a scattering amplitude, even in the forward direction, ﬁe
get Ry not S, since we are calculating limf»i Sy so that we do not
pick up the gfi term. Calculation with the well-known Feynman rules
gives -iR. In this thesis we shall refer to R as the "scattering
amplitude.”

The cross-section for a process i-»f is
- 4 2
Gop = (/) 3 () S(p, - bR,

where the summation extends over all final states observed. For example,



if we have a two-particle final state,

t

3 3 >3 ‘ 2
1 (97, ‘d Pp  (2m)* 3(pa+pb—pi) S(Ea*rEb—Ei)‘Rﬂ‘

Vi (2n)3 (277)3
3
=1 (P (am) 82 48 ) R, |2
Vi (2n)? : ’
" & pelrel W
i

which is the usual rules.
/

We now assume thaé the S matrix is unitary, which is equivalent

to conservation of probability.(S) From the relation
s's =1
we deduce immediately
Ry, = R, = —(2m)* 1 2 8(p - p) RX. R, (2)
i if n n nf "ni
(p; = pp = p)

We shall now specialize: State 1 is a photonig, e and a proton
;g, Ek‘ State f in a photon.;', ;' and a proton ;;', Ek' State n
is a mesonfa; wq plug a nucleon ;3; Eq. The notation is fairly
conventional, k denoting photon momenta; e, polarizations; q, meson
momenta; ®, meson energies, and E, proton energies.

wg = q2 + m2 Ei = kz + Mg

It is clear we must work in the CM system. I1If, for example, the
initial proton were at rest, the final one would be recoiling at some
angle, so that Rnf would refer to photoproduction in some odd system,
neither lab nor CM nor anything else in particular. The states in (2)

are related by their total four-momenta p; for the CM system-; = 0,



vwhereas no such characterization in terms of totel momentum defines
the lab system.

With these substitutions, (2) becomes

13

4 3 g "l
A * k3 |
Rpy = B (Zn)* 1 32 Sd g 1 (w +Eq hkuk) R*;.Rni

b))’ (an)?
- _._i__é qu E ih(dﬂq RER (3)
bun E

E = + B =k +
( @ ; B, }

Note that we must sum over the possible charges (+ and 0) of the pion.
Also we have omitted reference to the nucleon spin states; the O matrices
will take care of themsolves if we interpret * as Hermitian conjugation.

We write our photoproduction amplitude as

R, = £ (k%) o-kxg + £, (ky ) i3-6 + £4 (k%) e-q 10k + £, (eyx) e-qic-g

(x = k-q) (4)

(1]

Since R must be of the form %fK, with‘K a pseudovector, the four
amplitudes in (4) are the only ones poseible. We shall always ascume
transverse gauge 1n this thesis; ﬂ-g = 0,

In order to substitute (4) into (3) and integrate over g,

we must do some integrals, such ag
I, = |aQ £ (x') £,(x) (xzk-q 5 x*2k% Q)
1 = d q fl X f2 X %xz=k.q 5 X'kl q

Choosing k an axis of spherical polar coordinates, and changing the

integration variables to x and x', we obtain



I, = 2{‘ dx dx! £ (x') £, (x) (y = ﬂ-ﬁ')
1 K(X,X',Y) 1 2
where

Kz(x,x',y) =1ex - (x')2 - y2 + 2xx'y

and integration is to be performed only over regions for which K
is real.
Proceeding in similar fashion we do the other required integrals;

the results are in Appendix A,

We now write the Compton scattering amplitude in the form
R,, = g1(k,y) 6-&' + g,(k,y) o-k' elk + g,(k,y) 15+ x o
5 gl 'y g2 oy 53 ‘M
A A 3 N LY - AN A " A A ~
+ gA(k,y) e-ef 10-k x k' + g5(k,y) io(ek' e xk = e'-k @ x k')
= AN A ~ A A »
+ gé(k9Y) jo-(e-k! o' x k' - e'"k e x k)

We have omifted two amplitudes, obtainable by replacing the minus

signs by plus signs in the fifth and sixth terms. In general, these
amplitudes will be expected to occur, but only in order eA; we are
neglecting such terms. The vanishing of these amplitudes to order

e2 results from two effects: There are no such terms in the Born
approximation (i.e., the Klein-Nishina amplitude), and the appearance
of such terms in the dispersion contributions is forbidden by the
theorem(7) equating the phase of a meson photoproduction matrix element
to the corresponding meson scattering phase shift., This theorem
breaks down for terms of order e3 in the photoproduction amplitude,

and go terms of order 94 will appear in the Compton amplitude.

If the amplitude (5) is squared and averaged over spins and

(5)



polarizations, and if the appropriate density of states is used, we

find for the Compton cross-section in the CM system:
2 2 2 2 b
(a O’/d_Q)cm = (kEk/an) [%‘gl\ (1+cos™8) + %|g2 8in™® + (~Re ere,

+he g§g4+6ﬂe g58¢2Re g§g5-2Re 3286) sin“Bcos®

- 2Re ngﬁ $in°B cos® + ‘g5\2 6ine (1+200529) (6)

+ ;‘gB‘z (3-30329) + ;|g4}2 sin“6 (1+coszﬁ)
2 2
+(3!g4 2 . ke gje,) sinzﬂ]
We shall write this in the form
(dcy/aﬁl)cm = (ez/'lmM)2 (A + B cos® + C cos”® + D cos 8 + E cos™d) (7)

If we now do the integration in (3) by means of the formulas
in Appendix A, we obtain the imaginary parts of the amplitudes g;
as bilinear integral forms in the quantities f; and fi » These
integrals are given in Appendix B, The formulas appear to be too
cumbersome for direct application.

In the forward direction (y=1) the kernels of Appendix B become

singular. For example

1 =ng(x-x')

K(x,x7,1)
Working out the limits of the remaining kernels as y-*1l, we obtain
the formulas of Appendix C for Im gi(k,l)e We have a check available
for the first and third of these, since the former must be (~E/2Ek)
times the total photomeson cross-section for unpolarized light, and

the latter must be (-E/ZEk) times the total cross-section for circular



polarization parallel to proton spin minus the total cross-section
for polarization opposite to proton spin. Both of these checks,
which are derivable from (2), are easily verified. It should be
noted that the correct velocity v; to use in formula (1) is the sum
of photon and proton velocities, 1 + (k/Ek) » if we are in the CM
system. (See Appendix F)

Since we need the imaginary parts of g; at all angles, and the
formulas in Appendix B are very complicated, we shall take advantage
of the fact that photomeson production at energies up to 500 Mev
appears to be capable of description in terms of a very small number
of multipole amplitudess We shall adopt the notation of Gell«Mann
and watson(7) and write |

.,g_“ [t\ A A _g ~ A) ,.}
R, =fp i0e ~fiplk xeq -4 (kxe)xg

~ A A - A ~ ~ P A A A A N A
- f [2kxe~q tic(k xe) xq| +1 fi, 16°(k erq + & k-q) (8)
M3 > 2
Note that we use M3 to mean magnetic dipole in the J=3/2 state,
not magnetic octupole.

In the notation of (4),

1750 T2 &y fsz“fm‘LfMB*%sz
f2 = fEl +x fMl - X fM3 +1x sz f4 =0

2
We may now insert (8) directly into the unitarity relation (3),
and obtein formulas for Im &y which are much more tractable than

those of Appendix B:

Im g = ~(qquq/2‘lTE) izh (‘fEl 2. ylfm‘ 24 zy'fMj‘z + %y!fEle )
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In g, = .-(qquq/ZﬂE) i:h ( '“IfMl‘ 2. 2lfM3\2 + %]szlz;.)

gy = -(qquq/éﬂE) ih ( -\fEl\z - y\fmﬂ 2 y\fMB\z = %E y\fE2‘2

+y B, ) 9
In g, = ..(qquq/an) ih ( -\fmk %y \fMg,} ? - %E\sz\ ® - R Hi37E2 )
2
Tm g = _(qquq/QﬂE) zh ( ”'fMl' + \fM3\2 + %E‘sz‘z )
Im g6 =0

I1 - Dispersion Formulas

Before discussing our specific applications, we shall briefly
review the dispersion formalism. It should be emphasized that we
are not concerned with the rigorous foundations of dispersion theory,

a subject which has received considerable attention recently.(s)

The derivations of this section will be heuristic in nature, with
little or no mention of necessary and sufficient conditions, etc.
We begin with Dyson's formula for the S matrix (in interaction

representation)
8 =3% (oi)" ol (1) H (1)
- n=0 "‘31' dtl . o ® dtn I tl . & @ I tl'l

HI being the interaction Hamiltonian and P the time-ordering operator.
The S matrix element for scattering a photon with four-momentum

g and polarization i to a photon q'y, f , while a proton p goes into

a proton p', is

oo n > B
Ses = Zog (—i% dby o o o At @p, , af(q')PlHI(tl) HI(tn)] ai(&)?\? p)
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&3 denotes a bare proton; a and a+ are photon destruction and
+
creation operators. By commuting the a and a through the P—bracket,(g)

we obtain (assuming initial and final photon are not identical)
-1/2[4 4 =igex dqty . ]
- t
Sfi = (4qoqo) dxdye e (qut ’ P[ﬁi(x)jf(y)ipb)

1D'denotes & physical nucleon, and we are in Heisenberg representation.

Making a change of wvariable and using translational invariance,

this becomes
Sfi = —(I'qoqé)_l/%ﬂs‘g(pm-p’-q'){d4x e_ix.(q+q!)/2 GDFP' ’P[ji%)jf(ﬂgk)

We now follow Goldberger(z) and consider instead of R a new quantity

M, defined by

u,, - “i(moqé)-l/.? fd/*x oix-(a+gt)/2 ({Ppn , [51'%)’ ji(..%-ﬂqu) n(x) (10)

where

k((x)={1 ifxo>0
0 if xo< 0

R = M for physical scattering energies, i.e., positive energies such

that all momenta are reals

We shall adopt the coordinate system of Figure 1:

~5-%

Figure 1

S
The initial and final protons have three-momenta -4 /2 and 42’/2,

respectivelys the initial and final photon momenta are '§4§ and'B%Z R



The photon energy is £. With these substitutions, (10) becomes

20, = -1Sa4x oibtmip X ¥z, L1, /2), 3, (a/2)) ¥ ) e (11)
2 2

We now consider M to be defined by (11) for complex values

of £, with A% being held fixed. Since

_g = p(‘&):}\, with p2(‘z) = &2 - _/.3_2

~

there are branch points at {4 = + 4/2 ; the precise way we cut
the £~plane is not important provided the cuts are confined to the
lower half planes. A convenient arrangement of cuts is given in
reference (4).

It then follows from the asgumption of microscopic causality
[jf(x/2), ji(—X/Qﬂ = 0 for x2< 0

that 2IM has no singularities above the real axis. This is the
key step in establishing dispersion relations. The conclusion

may be rendered plausible by the following reasoning: 2&M is of

the form
w *
. . \) 2 7.2
_jdt/fdx elxt - ix VA5-(a%/4) F(x,t)
o Zt

This is & function of 4, If we take its Fourier transform by multiplying
by eisﬂ and integrating over ¥ from = o® to + 00, we obtain
R 2, 2
fdﬂjdt}dx Gib(srt) = 1x VIS (a7/4) e, 4y
-0 O =t
If the real part of s is positive, and if we can interchange the

order of integration so as to integrate over 2 first, we can complete



13

the 4 contour by a large semicircle in the upper half of the %-plane,

and it is easily seen that the integral vanishes. Therefore 24M

is a function whose Fourier transform vanishes in the upper half

plane. With certain mathematical assumptions about boundedness .

at infinity, it then follows that 2IM is analytic in the upper

half of the l—planec The necessary and sufficient conditions are

discussed in great detail by Toll.(s)
From this fact we can deduce alternative dispersion relations,

depending on the behavior of M for large ‘Re £\¢ For example,

if £2M(£) is bounded for lRe l\”’co, an elementary contour

integration gives

2L M(&,Az) = (i/m) sz)&'. M(!Lt,'Az) alt (12)

where P indicates that the principal value is to be taken aﬁ EA T A
If M does not decrease rapidly enough at high energies for (12)

to be valid, we may obtain an alternative relation by formally
subtracting from (12) the corresponding relation for £=0 (or any

other constant value). Thus, for example,

2L M(L,8%) - [2:; uy02) heo = (14/m) szzrimézv 2°) alt (13)

This "subtraction" technique is very important in obtaining dispersion
relations, Note that (13) could alternatively have been derived

by applying the relation (12) to the function

M(4) - m(0)

The actual relations which we shall use are obtained by taking



1

the real part of both sides of (12) or (13); thus we obtain the
real part of M as an integral involving the imaginary part.
We now write M in a form analogous to (5):
A A ATY A > —> » A
M, (4,8%) = h, (£,4%) e-e! + b, (£,8%) e-4 6" A + h (4,4%) i 056 x o
fi 1 2 3 5 3
F'y - ¥ -
+ hlp(l,Ag) P iopxa
2
(14)
> e
+ hﬁ(f,,Az) 16- (e-

- -~ al
+-h6(£,A2) jo-(e-4 8t xp + e’-z e x D)
2 2

Again two amplitudes have been omitted, for reasons discussed after (5).
Since the only important requirement for the derivation of

(12) and (13) was analyticity for Im £> 0, we conjecture without

proof that the quantities h, (4,48%) obey independent dispersion

relations. A fact which makes this assumption very plausible is the

following: If we attempt to derive the Klein-Nishina formula from

dispersion relations, we can formally obtain an imaginary, or

absorptive, part of M from the process represented by this diagram:

The process is forbidden by momentum conservation, but it has a
non-zero matrix element. We obtain the Klein-Nishina formula
exactly if we "factor out" the amplitudes hi and apply dispersion

relations separately to eachs. See Appendix D for details.



15

Thus we have the basic relatioeﬁ

' v AR
24 Re hi(i,Az) = (1/w) Fxfz& i%-hiéi"ﬂ ) qﬁ' (15)

In order to obtain Im hi for 41'< 0, we consider the symmetries

of Moo If we write the 11(x) of (11) as

[}

§J.ifx<0
(o]

nx) =Llelx +1 where £(x)
2 +1 if Xo7 ¢]

2

Mfi becomes the sum of two terms, called its dispersive and absorptive

parts, respectivelys:
Meg = Dpy + 34y

Correspondingly, each hi can be written

R U CY
1 1 1

It then follows from (11), by reasoning practically identical to that
of Capps and Takeda, ™) that the functions h§d) and hia) are real,

that for i=1,2 , h§d) is an even function of 4 and h§a) is an odd
function, and that for i=3-6, h§d) is odd while hia) is even.

Therefore (15) becomes

o

12 '
28 Re b, () = (2/n) Pale In by (L) 44, (1=1,2) (16)
° 2 g2
2L Be b, (1) = (24/n) P f 28t Im b, (81 45, (1=3-6) (17)
’ o 1R g2

Our formalism has all been derived for fixed A2. We shall

expand relations (16) and (17) in powers of Az, applying dispersion



16

relations separately to each power, without worrying about convergence
of the series for large Az. We are not particularly interested

in large A2 for two reagons: In ouwr numerlcal applications we will

be forced to make approximwations which 1limit us %o low energies,

and the dispersion formalism used here appears to require sgerious
modification for large Azo 4t the end of this Section we shall
discuss this matter in somewhat more detail.

After expanding into a power series in Az, we shall neglect
the terms in AA, A6, e « o This is quite reasonable in view of our
emphasis on low energies. If the difficulty mentioned in the preceding
paragraph can be resolved, and if it appeared that significantly
greater precision could be obtained, terms in AA, + ¢« o could be
included in the framework of this thesis. With the assumptions
we shall make about photoproduction (Section IV), it is most reasonable
to consider only the first two terms.

We noted before that a relation such as (15) is valid only if
hi(ﬁ) approaches zoro rapidly enough for large 4. Otherwise we must
make a subtraction, as in equation (13)., For example, in the forward
direction (4%:0) it is well-known that limp,  h (1) = e°/20M .

But the right side of (16) for i=l, A%=0, 40 is certainly negative,
since Im hl(Azzo) is just one-half the negative of the total crosse
section for unpolarized gamma-rays on protons. Therefore (16)

cannot be correcty and for A2=0 we write instead
0
2 e b (D) = () + (2t ¢ 2 Im U gy, (18)
| R ATCAL i

This relation, with a similar one for h3, hag been used by
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(10)

Gell-Mann and Goldberger in a discussion of Compton scattering
for near-forward angles, and by Gell-Mann, Goldberger and Thirring(z)
in an extension to all angles by considering the multipoles expected

(11)

to dominate low-energy Compton scattering. Capps has recently
made a similar calculation with the more refined photoproduction
data now available. In principle the method of this thesis is much
more general, since we apply dispersion relations at all angles,
and are not forced to make assumptions about the relative strengths
of various multipole amplitudes. In practice, howsver, we make
assumptions about photoproduction which are essentially equivalent
to these previous épproximations, with the result that our low-energy
calculations should closely resemble those of Capps.

It is important to observe that (18) must be valid; we cannot
be required to make another subtraction. The reason is that as
3‘9‘13, the total cross-section should not increase indefinitely.
It follows that 20 \hl(!i)\ must remain finite as 4>°°. Therefore
2%|h1(€1/%2 is square-integrable at infinity, and satisfies a dispersion
relation. We shall use similar reasoning to limit the number of

subtractions we must make in other dispersion formulas.

The CM differential cross-section may be written

as = (1/4.172) (!L'E:A/E)2 \M\z as.
2

This formula is derived in Appendix F, formula (F~2). Now consider
the limit £->°0, with A remaining finite (£M). Then we are
considering near-forward scattering, into a solid angle dfbvk_z.

The kinematical relations we shall need are
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1/2 ~ ~
E~kad p~4 Eﬁ/z M

and in order that the total cross-section in this forward cone
shall not diverge, we must therefore require \M‘,é las &>, To
derive restrictions on the high-energy behavior of the hi we apply
this condition to formula (F-3). Considering each term in (F-3)
separately, we deduce the following restrictions as 4> »

‘hi|$ 1 1=1,2,3,5

(19)
lhi' £ &-l i=4,6

There is one possible source of error, however; the hi may be larger
at high energies than (19) suggests, with the dominant terms in the
cross-section cancelling each other. It can be seen from (F-3) that

this is in fact the case for h3 and h5. If h,~4L and h, = A2h + 0(1),

5 3 5

then ‘MIZ is still of order unity. If one examines M for different
spins and polarizations, we find that this cancellation occurs in
every case, The possibility h3ﬂ*h5*'£ can therefore not be excluded
by these arguments. We believe it quite unlikely that this relation
between h3 and h5 at high energies holds (it certainly is not true
in Born approximation), but even if it were true our dispersion relations
and all succeeding arguments would be unaltered.

We must also consider restrictions in the other direction,
requiring us to make subtractions. We pointed ocut that equation
(16) would be incorrect for h1 in the forﬁard direction, since the
low-energy amplitude has the wrong sign. A stronger argument results
if we "switch off" all meson effects. Then the dispersion integral

vanishes to order 32, gince there are now nho absorptive effects

of this order. But we should still get the Phomson term
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ez/M. Therefore our unsubtracted formula is wrong. The same reasoning
applies to all ez terms in the Born approximation.
We may go farther and represent the proton anomalous moment
by by & Pauli term in the Hamiltonian, Terms in b, and pi now
occur in the scattering amplitude. The following theorem has been

(12) and by Gell-Mann and Goldberger(13): If we set

proved by Low,
L~ A~ some low energy w<«M, then it follows from field theory, to
all orders in a perturbation expansion, that the Borm spproximation
calculation is correct for terms in M of order w ~ and 1. We shall
hereafter refer to this theorem as "the low-energy theorem.! We shall
c¢ertainly subtract out such terms, since we are thereby assured of
getting_the low-enecrgy terms exectly right, and the new integrals
will converge faster at high energies. The status of the remai ning
terms in ep and pz is somewhat dubious; we have no assurance that
the validity of a Pauli-type moment extends to such terms.

If we vrite In b (4,6%) = In b, (4,0) + % Tn n!(£,0) + . . .,
and make use of (19), the most general form for our dispersion

relations is
o

2L Re nl(t,zsz) = by o+ (z%z/n) Pf gl [2&* In hl(f,*,oﬂ
WAL I
+ a2 Ay + B 4 (24282 /) PJ[ ad! x
12 o L1 (L1 4?)

A
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o0

2% Re hz(!;,Az) =B +B, + (28%/n) P( A 24 In hz(f,',o):[
:é‘g o Rt (L1312

+ 8% B3 4 By 55) + (2022 /m) Pf att [w Im hé('ﬂ',o)]
142 SRATCALS
24 Re ha(i,,Az) = clfi, + (2)&3/11) Pf att {zﬁf Im h3(£',o)1
s &,2(£,2J2)
+ A2( Co 4 03)?,) + (28283 /m) Pf al {2&: Im hé(*?"oﬁ
T ¢ 112112 42
24 Re hA(f:,Az) = ;; + (24/n) Pf A [2&* Tm h4(£',0)}

d pyR y2
Lok (20)

¥ A2(Eg +’fz’3) + (208%/) P/ ab! {2&* Tm h£(£',o)l
E 0 g2 _gR

2% Re hﬁ(t,z@) =5y ng; + (282 /) P[ A {2/&' Im hs(t',o)]
T ¢ L2412 Ry
+ a2 (ﬁ +§A + E5eﬂ) + (2&3132/") Pf___i‘e;.’___. [25‘ Tm h}j(l',O)]
3 d 11241212
2L Re he(l;,Az) = (24/x) Pf at! [2&! Im hé(l;',o)]
T d 11242

o0

+ a2 (32_ ¥ ;:;) + (208%/m) P[ d! {z&! Tn hé(!;',o)]
£3 5 {'2.432
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We must now attempt to determine the constants appearing in
these dispersion relations. Our first step will be to use the

low-energy theorems. This fixes the following values:

2 - vl = —-—
Al-e/M A, =0 B, =0 By =0 Cy = —2
C. = po D, = 4p? D, =0 E. =4u e+ p E.z 0
2 T H 1 # P 1 M a 3
Fl z 4ppa F2 =0
(p=g_+p)
zM a

This fixes 12 of our 22 constants.
The remaining 10 constants can not be fixed precisely at present.
Three alternatives suggest themselves for each:
(a) The constant may be equated to its value in Born approximation.
(b) The constant may be evaluated by eliminating a subtraction.

For example, we may suppose that

o

Ay = (2/n) Pig%,:_ 281 Im hi(!;f,o)

in which case the first dispersion equation becomes

oL Re hl(L,A?') =4, + (%) Pf A [2!:' n hl(b,o)]
b &‘(&'2—12)

+ A2A2/£2 + (20%/n) P Lral [z&* n hi(zt,o)]
A £|2_£2

(¢) Finally, we may suppose that neither (a) nor (b) is correct,
and leave the constant unknown, ultimately to be fitted to

experimental data.



22

In this thesis we have decided to adopt alternative (a), but we
shall briefly discuss to what extent (b) may be applicable., If the
Born approximation for a constant contains an e2 term, then (b)
cannot be correct, as we mentioned earlier. This applies to AB’
D3 andEA, whose Born approximations we give here:

By = =/ Dy = A £, = (/) | 56° + 2¥a 4 6u2
2M2 ™

The remaining seven constants admit all three alternatives. We can

not decide unambiguously among these, but we can compare the values

assigned to each constant by (a) and by (b)e We list these values

below; the dispersion integrals have been evaluated numerically

with the statlic approximations of Section IV.

Congtant (a) (b)

132 %(ﬁ + p.a> = .620 (2/11)!1:%_;_[2‘&‘ Im hz(’t',Ois = «3,20
2l - f -

B, —f(ﬁ' + pa) = =4310 (2/n)0£td£f [2&* In hé(fﬂ',o)] =0
-.-p. - -

B, }_4_% (ﬁ + ua> = -o155 (2/11)!%% Ez)l' In by (41,0)| = O

Cy tafe+ p.a> = ,039 (z/n)fg_@;[zit Im hé(l*,o) = 4610
4M2 M 5 pyR -

£ :—%(ﬁ ¥ F'a) = 155 (2/ﬂ)fd*i' [2%* Inm h (!L',o)] = 2.44



23

Constant (a) )
E, - _5_pz_a.__(g + ”a> = =.048 (2/1:){@_@_[2%! Iml hé(%*,o;‘ = 0
1604\ » o p1%
Fy - ig_(g + p-a) = =078 (2/ﬂ)fd5'[2%’ Im hé(%t,oi =0
o ! 5

The integrals are over experimental photomeson cross=sections up to
500 Mev and are unlikely tc be in error by more than 20%. No small
differences of large quantities are involved. The zeros under (b)
result from neglecting meson angular momenta greater than 1 in the
photoproduction processs
It appears that (a) and (b) are quite distinct alternatives.
In connection with our choosing (a), it is interesting to note that
in every case the Born approximation supplies exactly the desired
number of constants; all terms involving higher powers of 4 vanish.
Finally, there is the possibility that C1 and Fl’ two of the
constants guaranteed by the low-energy theorem, may in fact be given
by dispersion relations, as in alternative (b) above. The two possible

sum rules are
oo

C, —Zpi z (2/ﬂ)f_d_%[2£' Tm hB('ﬁ',O)}
[} ,%t
or —old, = me240 + ,222
Fy bpp, = (2/m) J al [21&' Im h6(£',o)]

2288

1]

or o456
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The integral in Cl reduces to the difference of two nearly equal
quantities, which are given separately. The agreement is not satis-
factory in either case.

Before leaving this Section, we shall briefly discuss the manner
in which tﬁe simple diapersion formalism discussed hére becomes
incorrect above a certain critical photon energy.* We remarked after
equation (10) that the Goldberger amplitude M equals the conventional
scattering amplitude R for physical scattering energies. However,
 the integrals in (20) exterd from 4=0 to 4=90 for any Az; clearly the
range O<C£<<A/? is an unphysiecal energy range. Thus we must examine
the behavior of the absorptive part of M for such energies.

It follows from (11) by inserting 2 complete set of intermediate

states'@'n, with energles En and momenta’ﬁh, that

2 gy = -1 (2n)4i (g0 1,0YDF , 5,0¥ 86D e a0
2 2
(21)

~z s 3,V ¥, 5,0¥ 3 §G 5) 5 (5 -8, +)
2 2 2

This expression differs from the sbsorptive part of the true scatiering
amplitude R by the sign between the two terms within the square
brackets. Therefore as long as only the first term is nonwzero we

are all right, but when the second term begins to contribute, our

results cease to be rigorously correct., The first term exists at tle

lollowing energies:

L= %b = mAZ/LEA/Q for'qfn = 1 nucleon

#* A good discussion for the case of meson-nucleon scattering is

given in reference 4.
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%?f%a =z Mm + §m2[2) - §A2[4} for‘qfn = 1 nucleon
EA/2 plus 1 meson, eteca

where m is the pion rest mass. Similarly the spectrum of the second
term consists of the single point 1= -&b and a continuous spectrum
A
a
We do not need to consider the contributions at i = * £b 3 these
just give us the Born approximation, as we have seen earlier in this
sectiones Therefore the criterion for validity of our dispersion

relations is £a> 0 ;3 the spectra of the two terms in (21) are then

isolated as shown here:
{L—

L

o, 0 +

a a

and in integrating from 1=0 to 4= © we only get contributions from
the first term, which has the correct sign.
if -?,a< 0, however, the situation is different. The two spectra

now overlap, as shown below:

L —

4 ]

\

+ 0 4

a a

When we integrate from £=0 to 4= o0 we now make an error, since in

the interval O<Z%<i-£a we should integrate the absorptive part of
My, not of Rs In order to remedy this defect, a method needs to be

found to relate the absorptive part of M directly to an observed

process, as we have done for R in Section I.

Solving the equation Mm + (m2/2) - (Az/L) =0
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we find for 4/2 a value of about 370 Meve Thus for momentum transfers
in the CM system of less than 370 Mev the two absorptive spectra
do not overlap. Since the static approximations of Section IV would
be quite unreliable at such a high energy, we shall confine curselves
to lower energies and the limitation discussed above is not of practical
importance,

Finally, one more point should be mentioned. For a given value
of Az, we must integrate over all 4 from O to © . But Im hi(l,Az)
vanishes except in the regions %)-ﬁa N x‘:"ta s 580 that the lower
limit of the integral is la if £a> 0, However, the lowest  which is
physically meaningful is 4=4/2. When A/2>>£a , which occurs for
4/2>130 Mev, we have the problem of analytically continuing our
scattering amplitude to the unphysical range £a< L<af2 . This
can be done by expanding in powers of A2/4%2 and then analytically

continuing the amplitude, This amounts to the same thing as the

expansion into lLegendre polynomials discussed by Capps and Takeda,(A)
and is apparently valid until the limit £a=0 is reached; beyond this

point such a continuation clearly fails,

III - Trangformation of Amplitudes

We have derived in Section I.the imaginary parts of our amplitudes
in the CM system, and in Section II we have seen that the dispersion
formalism is conveniently dome in a different system, shown in Figure l.
We must now consider how to transform our amplitudes from one coordinate

system to the other.

There are two effects which complicate the transformation.
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The first we shall call "spin precession"; this effect, closely
related to the well-known Thomas precession of atomic electrons,
simply reflects the fact that an electron's spinbdirection depends on
the Lorentz frame in which it is vieweds In other words, "spin up"
in one system is not necessarily "spin up" in another.

The second effect has to do with our choice of transverse gauge
for the electromagnetic field. The condition ;'ﬁ = 0 is not relativ-
istically invariant, and so if it is satisfied in the CM system it may
not be satisfied in some other systems Therefore the gauge used
in the two systems will not be identical; there will be a gauge
transformation from one to the others

We consider the spin precession first. We start with the well-known
transformation properties of the Dirac equation, If a Lorentz transform-

ation (x,t)>(x',t!') is described by

X =%+ 3:_‘5(5-1) -b’t]
2

(22)
= (b - ¥-x)
where = (1~v )7 ~1/2 » then the Dirac spinor u becomes u'=Su, where
S = Y+1-X'3v (23)
2(y +1) /2

)

This use of the symbol ¥ should not be confused with the Dirac
—
matrices or -
yoor ¥,
Fquation (23) is obtained from the familiar condition S"lypS:avav ,
where a  is defined by x; = a X, o It then follows that the

wy pyy
spinor for a moving proton ig
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N> = P u =Dsu (24)
P P

where ug is the spipor for a proton at reste The normalization is
m = constant. Note that (24) defines what we mean by "spin up," or
any other direction of spinj we transform the proton to rest and then
consider its spin directione

Now denote quantities in two Lorentz systems by the subscripts

1 and 2, Consider a matrix element
u, M ui (25)

We evaluate this matrix element in practice by setting U Dfuf

uy Diui , and omitting the uo’se That is, in system 1 we calculate
Dy 8MD,, =M,

However, if wu,=Suy, then s‘les =M, o From this and the relation

S—]‘B = BS

it follows that

/

1= DﬂSBM SD

il
In system 2 on the other hand, we calculate
My = DgBMDs,
Therefére the matrices‘nql and 7n2 are connected by the relation
M, = 12 My, (26)

vhere T = D S 1D o Straightforward calculation gives
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T o= (E 4M) ( X'*'l) "‘Jpl v + 1F§°: x—;l (27)
1/2

[2( ¥ +1) (B +M) (E2+M)]

We now consider system 1 to be the CM system, and system 2 to
be the one shown in Figure ls The kinematical relations between the

two coordinate systems are summarized here:

=R+ )3 Tk -k
3 A/Z/p |
t = 3R - - 2 1/2
k __%+(EA/2/p)p EA/2 -&M2+%k(l-yﬂ
B = (B /o) (4E, 1) B = (828, ;) (cok)
p 2
y:pE/z-PA/l* o = E
E=p L = (x/2E /2) {ZEk + k(1+y)]

_A_z

8 )

p is defined by p2 = E2/2 + 2£EA/2 +

The velocity of system 2 relative to system 1 is

- - NN
V = - = - k!
:E+EA/2 2Ek

With these substitutions, (27) becomes

I, = (M+E /2) (L4 /2+p) +16- p X A/2 (28)
[(M+p) (M+I!|A/2) (’E+ /2+p)] /

The replacement > - A converts Ti into Tfo

Direct use of (28) in (26) is tedious; the results can be expressed
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m Rt m - >
more simply. If 1 A + ic-B 4 then 5 = C + ic-D , where

c

H

A cog 2\ - Bz sin 2\

-~
D

-
A% sin o\ + B w25 B sinA\
1 2 2

> >
the z-axis being chosen along the direction of p x A « N\ is defined

by 2

cos 2\ = EA[z * MEk
Epfo (B

We now turn to the problem of the gauge transformation between
the two coordinate systems. It is well-known that the polarization
four-vector e is always undefined in that the replacement e—> ethk,
N\ being an arbitrary number, is without physical meaning.
Consider a photon with momentum k=(ﬁ,k°) and transverse polarization
e=(8,0); & k=0, Performing a Lorentz transformation (22) we obtain
new four-vectors k’=(§',ké) , e'=(;',eé) ; eé is no longer zero.
However, an equivalent polarization is e" = e' - (eé/ké) k' , in
which the time component now vanishes., Carrying this operation

through, we find that the polarizations in our two systems are related

as follows:

-5 A
o = %2 + P8 2+ Eapotr 3
aEA/2+éE 2 +EA/2+p

’ 4

The formula for final polarizations is obtained by maeking the substi-

IS A ry ~ -3 -
tutions el—aei ’ 92—935 s A=A,

We are now in a position to relate the amplitudes g, of (5)
to the hi of (14)s Since we are considering invariant matrix elements

of the form (25), the quentities to which we must apply the above

transformations are the scalars kB, R and ZEA/ZM. The resulting
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formulas, which are rather lengthy, are given in Appendix E. A
reasonable computationsl procedure might be to expand these formulas
in powers of A2, since this is the way we have handled the dispersion
relationss This, however, leads to very cumbersome formulas, and the
numerical work would be of an order of magnitude to be handled by an
electronic computer. Furthermore, these transformation relations
are kinematical in nature and vary slowly and smoothly with L and Az.
This is to be contrasted with the dispersion integrals in (20), which
fluctuate quite considerably over the energy range we are considering.
In order to get a reasonable estimate of the effects of the absorptive
photomeson process, in particular the well-known resonance, wWe shall
therefore make a static approximation in these transformation formulas;

LM and AZ/Mz are neglected.

In this static limit, we have

abh, = 2kg, 2l = —(4/22) 2Kg, 2th, = 2ke,
2h, = ~(2/4%) 2g, 2An, = ~(2/42) ZKgg + (2/17) 2kg, (29)
2l = =(2/2%) g, ~ (/1) 2gg

IV — Numerical Applications and Discussion

Since the unitarity relations, which we ghall take in the form
(9), involve photoproduction amplitudes, we must deduce these amolitudes
from available cross-section data. In this we shall be guided by the

successful phenomenological approach of Brueckner, Watson and others,
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who show that the data strongly suggest, and can be satisfactorily
explained in terms of, a resomance in the magnetic dipole amplitude
to the state T=J=3/2, plus smaller amplitudes in the other S and P
statess

The usual approach is to analyze differential cross-sections

in the form

(@5/aQ) = A+ Bcos @ + C cos” ©

If we know the three quantities A, B and C as functions of energy,

we have enough information to determine any three multipole amplitudes,
since the phases of these amplitudes are very closely equal to the

(7)

corresponding meson scattering phase shifts.

As a preliminary, we arbitrarily set f,,=0 and solved for f.

M1 E1’
sz and fMB; the notation is that of (4). We used the experimental
(14)

n° data of Corson, Peterson and McDonald. The results are that
sz is negligible, fﬁ? has the expected resonance behavior, and fEl
is quite small, of the order of its Born approximation with a reasonable
coupling constant (gz/Aﬂ’” 10),

It therefore seems valid to consider the photoproduction amplitudes
as PBorn approximation plus an enhanced M3(T=3/2) matrix elements
This was checked by computing the charged amplitudes in this way -
the Born approximation matrix elements are now quite large - and
comparing with experiment. The agreement is quite satisfactory
except that at extreme forward and backward angles the computed
cross-gsection is low; in other words the computed C is too low,

This discrepancy is still present if the exmct Born approximation

is used, rather than its S- and P-wave parts alone.
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In view of all this, it seemed very reasonable to neglect &ll
amplitudes except the charged El and M3(T=3/2) amplitudes. This is
a very good approximation for neutral production, and for charged
production these two amplitudes are certainly the dominant ones.

The work of Chew and Low(ls)

also suggests that these two amplitudes
should be predominant in low-energy photoproduction. To be sure,
we will be doing integrals of photoproduction amplitudes over all
energies, but the integrals converge rapidly beyond the resonance

and contributions from above 350 Mev are quite small,

Thus as a first approximation we simplify (9) to the following:

i3

In gy -(qquq/?nE) (lfﬁl\z + 3y,f§3l2 )

I g, = -(w 5 /28) (3517

I g5 = ~(au B /2n8) ( g5 |? 4 3 y|f§3\2 )

In g, = -(qo E /20E) ( 3]e2.|?)
g4 qmq q/ ot %, M3

- o |2
In g, = -w(qquq/ZﬂE) ( %‘fMB )

In gy = 0

With only these photoproduction amplitudes present, the total

photoproduction cross-sections are

0, : (qququ/rrEz) ( 2'1‘513\2 )

(30)
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6, = (au BB /g2y ( ‘fgl ® s \fﬁz\z )

80 that (30) may be rewritten in terms of total cross-sections:

In g, = ~(B/2E) (6, = %0"0 + %O’Oy)
Im g, = -(E/28) ( —% a,)

In g, = -(8/28) (-0, + %0'0 + %Goy) o

Im g = ~(E/2Ek) ( %CTQ)
In g, = ~(8/2E,) ( %0'0)

0

Im g6

The fact that we have been able to express our amplitudes in terms
of the two experimental quantities CTO and O; is a consequence of

our limiting ourselves to the two independent amplitudes f§3 and

E1*

We should now convert these Im g; into Im hi’ as discussed in
Section III. For purposes of numerical calculation, however, we
shall make the static approximation discussed at the end of that
Section. The result is that we are essentially applying dispersion
relations to the gy We will be guided very significantly, of course,
by our discussion of the correct dispersion relations, as regards
subtractions and Born approximation termse.

The most direct procedure would be to substitute (25) into the

2

dispersion relations (20), replacing A” by 2k2(1~y) and 4 by k,

and then integrate over the experimental photomeson cross-sections.
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This is very nearly what we shall do, but two points need some discussion.
In the first place, we should try to get the low~energy amplitudes
correcty, and in the secord place we should try to understand which
energy, lab or CM, to use in various placeslin the dispersion relations
in order to make the least error in our static approximatlon.

To get the low-energy amplitudes correct, we shall use the
Born approximations for the 859 rather than trying to transform the
Born approximations for the hi' We shall neglect terms of order
(k/M)2 and smaller. In order to decide the second question, we refer
to the exact forward-direction dispersion relations in the laboratory

system.(lo’ll)

The procedure which seems moast reasongble is then to
sot the factor E/Ek of (31) equal to unity, and interpret all
energies appecaring in or multiplying dispersion integrals as laberatory
energies. We equate the free variable in the dispersion integrals

to the lab energy corresponding te the CM energy k which is the

argument of the rest of the equation.

We thus take for approximate dispersion relations:

% Ro gy = () - (zki/rr) J zasz, icjki) + 0 o(ki)]
° kST
g [ 2 o )
» (P
% To g, = ~(e%AP) + b [ ML o )

2

ki (kL =k
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1
% Re g, = 2&k(uP?) - 20y - (Ag/m) (UL | 50, (k) - 0,0
3 a g f 3 5 7 ° L L
o kL(kL -kL)
k3 ]
+ (3k /211)(1-3')]__________ O;(KL)
le(ktz 2)
o (32)
% Re g, = ~2kp? - (3k%/2 ) / dkL o (k1)
6 k! (k' 2)
%% Re g, = -2kp2 = (3k3/2ﬂ) * o @)
5 L 55 oL
1 (115
kL(kL kL)
2k Re 8¢ = epk/M

We define the following integrals:

o +(kL) - (kL/ )‘f’ 2 o,+(k )
¢ Ktk
L
3, ) = G2/m) [ 7o, ()

k'(k'

K (k) = (/) [ dkef o (k)
o k'z(k' 2)
L () = (/m) m_,j‘._}f_____ o (k)

1«:'3(kL
Then (32) becomes (with M=1):

e2

#

% Re g, - 2(1o +I,) + 3(1—y)K°

l§]

2 Re g, = =’k + 3K_
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2 Re gy = %07 - D) =y - (5/27, + 29, v gL, ()
33
%% Re g, = =2kp> = 37 )
e g, = =2kp” - % o
2
2k Re g = ~2Kp - %Jo
2k Re B¢ = epk

The arguments of the dispersion integrals in (33) are understood to

be kLo

The integrals I, J, K, L were computed numerically, using experimental
photomeson data up to 500 Mev. The results are graphed in Figures
2 and 3. In our calculations we have made small corrections for
extrapolated tails beyond 500 Mev; it was assumed that O ~k£3 in
this region. The real parts of the amplitudes g; were computed

from (33) and are given in Table 1.

Table 1
ke (Mev) kM 2k Reg, 2k Reg, 2k Reg; 2k R.eg4 2k Reg, 2k Regy
2 2 2 2 2 2
=] e e e e e
0 0 1 0 0 0 0 0

50 0507  4959ma00ly «e050  J117-.197y =199 =199 LO071
100 40968  o825w.013y  —e084  0234-e379y =396 =396 136
140 21309 2604=0061y  —=o070 037205255 =a571  =a571 .183
190 J1709  o211w0298y  W127  o570-.775y =885  —885 4239
230 02008 o235-06T4y o473 o209-1.020y 10234  «1.234 o281
270 42293 o419m,0lly o682  =e208-1.199y -1.297  -1.297 o321

In Table 2 we list the imsginary parts of the g9 obtained from

(31) without further approximation:
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Table 2

Img, 2k Img
k; (Mev) g% Tmg, gg Img., gg Img, 2% Tmg, 2% 85 & mE,
e e e e e e

190 —=366=,078y o078  +366=.039y =.039 =.039 0
230 e TLbmeddly o441 oT16me22ly  —a221 =221 0

270 o 748-1aT19y 14719  oT48=0860y  =a860  —,860 0

We can now use (6) to calculate the coefficients & = E of (7).
In Table 3 we list the results, and in Table 4 we give the differential
cross-section at representative angles, in units of the Thomson

cross~section: (ez/AnM)2 z 236 x 10722 en? o

Table 3
kL(Mev) A B c D E
0 650 0 050 0 0
50 A8 .00 Al 05 .00
100 950 _‘10 ‘24 "“007 oOO
140 056 w31 205 =05 »01
190 1,17 =713 -s20 01 .01
2.30 2055 -—o 52 "'051 008 .OO

270 4481 65 .06 03 201
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Table 4 - (A0 /aQ) 3+ (e*/4m)?

k; (Mev) 0° 45° 90° 135° 180°
0 1.00 75 250 75 1,00
50 <84 67 48 70 294
100 .56 .51 49 Kl .90
140 .26 .35 56 .83 .98
190 26 .56 1.17 1.59 1.70
230 1.60 1.96 2.55 2.63 | 2.48
270 5,56 5.31 4,.81 4,437 4e20

The most significant comparison of these predictions with experimental

data would appear to be that of Figure 4, where the 90o excitation

curve from Table 4 is plotted against the existing experimental data

from MIT

(16) and Illinois.(l7) In Figure 5 we show the predicted

angular distributions at various energies; the experimentzl data at

angles other than 90o is so fragmentary that no real comparison

is possible. In Figure 6 we give the predicted 135o excitation

curve, Wwith the existing experimental points.

We have performed an alternative calculation along the same

lines as the one described in this thesis, except for the subtraction

procedure (and some minor kinematical differences). In Section II

we discussed the alternatives available to us, and chose t¢ make the

maximum number of subtractions allowed if our total forward crosse

section is to remain finite at high energies. In our previous

calculation we made fewer subtractions than would be allowed by our

criteria of Section II; subtractions were made only when the subtracted
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term was guaranteed correct by the low-energy theorem. In several
instances, for example the A2 part of the first equation of (20),
this meant that we were omitting 32 terms which must be present

even in the absence of mesons. In Figure 7 we give the predictions
of this meodel. It is interesting to note that the excitation curves
at 900 for the two models are practically identical up to the highest
energies considered. The angular distributions at high energies

are markedly different, however. In the calculation discussed in
this thesis, forward scattering exceeds backward scattering by 30%

at 270 Mev; in our previous calculation the 180° cross-section is
nearly twice the 0° cross-section at this energy. rFurther experimental
data at high energies would help distinguish among the alternative
subtraction possibilities.

Capps(ll)

has recently considered this same problem, by a somewhat
different approach., He has only used the two forward-direction
dispersion relations in the lab system, and has extended his work
to other angles by considering the multipole amplitudes expected to
dominate the scattering. We have included two angular distributions
predicted by Capps in Figure 5. He states that he expects his curves
to overestimate the backward scattering by a factor of about la.5a
Watson, Zachariasen and Karzas are attacking this problem in the

(15), (18)

framework which Chew and Low
(19)

have applied to meson scattering
and photoproduction. Numerical results are not available at the
present time, but are expected shortly.

Finally, we should mention that Compton scattering may be analyzed

in terms of multipole amplitudes, although we have not chosen to
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do su in our calculations. Details of the general analysis are

given in Appendix G.
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Appendix A ~ Ugseful Integrals
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We use the notation x =z k-q , x!

AD N
ay, by c are comstant vectorse.

K(zyx'yy) = 1= x2 - 1’2 - y2 + 2xx'y

A1l double integrals range over those values of x and x' for which

K is real.

' x dx' " x
(40, ple) 40 = 2] dedx (G40
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Appendix B -~ General Unitarity Relations

Again we set K2 =1 - x2 - x‘2 - y2 + 2xx'y and integrate

only over regions where K is real. The common ][GCtOV - %_,LEZ kd’S
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Appendix C - Unitarity Relations in Forward Direction
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Appendix D - "Derivation" of Klein-Nishina Amplitude by

Dispersion Theory

We start with equation (21):

2 ag = =1/ @M 3 (hp, 1OV, 3,0V §GP) (5 E,4)
2 2 2

- (b, 3,0V, 5,0V ) §6,3) 85 5, +4)
2 2 2

The states'qrn mist either contain one fermion or two fermions and one
antifermion.
If the first term is to contribute, we must have

5
pn

1
k=R

; En=!; + By
2

The only possibility is a one-~fermion state, with

1 =

I

2 2

Similarly the only contribution from the second term occurs for a
one-fermion state, with

L=+ (0%4E) , B =M/E
2

The matrix elements of j are easily worked out:

- ~ - A x P

Ty, 5,19 = e(¥y 5 Yye, \h‘]f-ﬁ) = e u]-;s'i'ei us
e[(E +M) 33'1??3 + (B +M) ;'g 2"{]

=20 >y B i- P

EAEK(EkJI)Ep (Ep-l-M)] Vi




53

The last expression is a matrix in the initial and final spinsj

we have omitted the spinors.

We therefore find for the contribution of the first term in (21):

2 2 p2 2
—e® § ( #;-% By )y s R
2 Mﬁgge'+%0e‘fp x
30 2 -
LM Eé 2
2
“P D oA - A =D
3:1Ek<f-;>a'e -M&ed A
2
2
Using the identity
N AN A A-w A A AA A A AA A A Aaoa - A A A A A -
0. af®-bod ¢0d =abed=a-chd+adbec+H0 (abcxd +cdaxhb
~acbxd=Dbdaxec+adbxec+beaxd)

we find the following contributions to the amplitudes defined in (14):

Tn hy ¢ ~MAZ/4

1 Im hA : EQ
2
In h, : M2/, Tmhy : M +E

NI

We have omitted the common factor
..(ne?'/zmzﬂA) § (242> A-E, )
2 4 2
To get the contribution from the second term we
(1) change the overall sign
(2) change the signs of £ and p
(3) exchange e and &',

If we integrate over positive energies %, the second term is the

only one whose delta~function is picked up.
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The Klein-Nishina amplitudes in this coordinate system are

2% Re hy = 0° 2L Re h, = o? 1
222 ak 172 - a%
= 16 = 16
5 2
2 Re by = e?  Mah 2 Re hy = a2 (Ea/z + M) ]
15s - o 4R RS - M
3 16 2 3 16

It is now easy to verify that relationms (16) and (17) are satisfied;

(16), with one subtraction, for h., and (17) for the other three.

1

The important fact is that the amplitudes hi themselves obey

the dispersion relations. It would be very difficult to apply the
2= 2 >

relations to a quantity such as hA(%) i6.p x A/2 , since p would

vary with l, and perhaps the polarizations should also vary in order

to remain transverse.

Appendix E = Transformation of Amplitudes
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Appendix F — Cross-Sections in Arbitrary Coordinate Systems

This discussion is based on part of an article by Moller(zo)

on the scattering matrix. The problem is to derive a cross-section
from a matrix element in an arbitrary coordinate system.

We shall consider the problem of a particle 1 colliding with a
particle 2 to give a particle 3 and a particle 4. The generalization
to arbitrary numbers of particles is immediate. In the lab system,

with particle 2 at rest,

= (/") (B plL),R'Ll : I Ppyy I Wy (%L"g& - Py

x%(E

31 ¥E BBy (F-1)

We must write this in a covariant way, so that the subscripts L can

3

be removeds In the first place, integration over 3 variables d'p

is not inveriant, so we multiply and divide by EBL and EAL’ giving

PE
(1/4'“ ) (E]_L/PlL) IRLF 3L L1 I_E.i_ ’..._A; é (';BL;I:AL';J_L ';ZL) >4
3L AL
X S(E -E_)

3L AL lL 2L

Secondly, we recall that ‘R'z is not an invariant, since it contains

the reciprocal energy of each particle. Therefore we write

3

B

: 3
& = (/) (pyyEa) (IR | PBy B, By B, ) f 3Pyp
BL

xs—)—?—)

-—
(Pgy,*P1 P11 Por) & (g

314 E o)
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Finally, we must find an invariant which equals plLEzL in the lab

systems Moller suggests the scalar

1

2

Wp12"'P ) "‘(Plxpz)
> .2 2 = 2

E,E, Wvl - vz) - (vl X v2)

Therefore an invariant expressgion for cross-section is

W(l/z) (pl}.l-pzf - pll’p2p,)2

36 = (l/Aﬂz)[(:f?’g)Z - (':1’;2)2] -1/2[33103# BPz, IR‘Q 5(;3*—;4";1:1;2) X

x & (F,+E,~E, -F,) (F-2)

This is the correct gemeralization of (F-1) to an arbitrary coordinate

systems

> >
)2

-9
The "effective velocity" ¥ (v Vy=v,) T - (v1 2)2 has the following

values in the three coordinate systems with which we are concerned:

Lab: vy F 1
-
CM: '-a l TVt v, = E/Ek
System of Figure 1 : ({E, + é?)/&EA
— 4 —
2 2

The density of states is obtained when we integrate over the
energy delta~function of (F-1) or (F-2). Various expressions for the
density of states in the CM and lab systems are well known. For

Compton scattering in our special system the integration over the

delta-functions gives

rdBpB fd3945(33+;4“—;1'p2 S(E +E By =K o) = 2nd a(at/2)

It is more convenient to have an element of CM solid angle in our
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expression. Therefore we obtain a cross-section from M by writing

R = (f,EA/kEk) M
2

and substituting into the cross-section formula in the CM system.

The result is

46 = (£2E§/4n2E2) M2 aq
2

Finally, for reference we give the summed and averaged \M\z
of (14):
¥ z
= av |M? = M }‘3 (1,"4»‘%'.') + (R hlh,- Z.Egk,k..}_%’_%f (1?'-?.%-)
+(\h’_‘t‘8&‘;'“b}ﬁ_%‘ + |l‘3'1-.—é7(1q* 27’1.%_1")
2,2 Y _“ 1 A‘f z+2£
UETI I B L )
1 2
+lhljgo (42) - kb he £ 20 1% 247)

cafeh h 2 ,e A‘(afzl 18] + 2 Re it he _f;%/lt-z%‘f)

_2Re bt h f:_%_‘ (28]
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Appendix G - Multipole Analysis of Compton Seattering

In reference (2) a phase-shift analysis of the scattering of
electromagnetic radiation by a particle of spin 1/2 is given.

However, the possibility of mixed electric-magnetic scattering (for

example, M1-E2 with J=3/2) is omitted. To include this, we merely

note that unitarity and time-reversal invariance require the S

matrix for a channel of given total angular momentum and parity

to have the form

21 &

,1 i sind 31(81+ 5,

cost e

(G-1)
1{ §.+8)

i sint e 1 "2 cosf eZi 82

where the two rows (or columns) refer to electric and magnetic

radiation. The quantities ©, § 1 52 are real, 1t then follows

in a quite straightforward'fashion that the scattering amplitude

for circularly polarized light on spin-up particles is
{,7-%

h T3 -'5_ 133 -
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For J=1/2, © ;70 since the only multipoles are El and Ml and no mixing

oceurs. We have defined:
._)

s ‘-i"-
. X o X
Xrn ¢ g Crjn-s,s ST
1]

-) | I - «
Lrin * T Caynass Tuns

- -
XL is the normalized angular distribution of A for (EL)M radiation;
-

M
YLM similarly characterizes (ML)M radiations In terms of vector

. c o (21)
spherical harmoglcs, o - F’r: ; "
Il.h z dun Y‘-.‘-“.' MAE AL A
- -_—n
YLH : YL,L,I

LY /2 defines the spin of the scatterer in the final state.
} If J=3/2, the six terms in (G-2) give El, M2, El1-M2, E2, M1,
and E2-Ml scattering, respectively.

We do not feel that a phase~-shift analysis of Compton scattering
is very meaningful, however, because of the absorptive effects of
photomeson production. When this channel is taken into account, the

form of (G-1) becomes

A+ ia VA_‘.B-#iB
(a-3)

VAR + ip B+ 1)

where A and B are squarss of photoproduction amplitudes, and A, B,a,B,X
are real. Thus the scattering is now characterized by five real
parameters, not the three of (G-1), and we see no natural phase shift
description of this scattering. One might try making 81 and 62
in (G=1) complex, but this form is not equivalent to (G=3).

We shall therefore analyze our amplitude (5) into E1(1/2),
M1-E2(3/2), etc. without using phase shifts. We expand R in normalized

multipole amplitudes:
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Then if we define as 31 by
g1m1+Bl}’ ’ g3:c13+63y . 85704 (3=2,4y5,6)
maltipole analysis gives
N
-l
?E, s T;-J—s_;r ( Q" (2 3)
¥ (
R e R R

3
0l + ol (20, 2400 fr 20" 2%
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