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ABSTRACT

In connection with a recurrent event E, random variables of
interest include Yn’ the time since the last occurrence of E, Nn’ the
total time during which E occurs, and Tn’ the time between occurrences.
In this thesis theorems are given concerning the limiting distributions
of these and other quantities az3 n » «», It is shown that the same
distributions apply in certain cases where E is not a recurrent event;
this suggests the concept of an “almost recurrent event"™ which is
shown to have the same asymptotic behavior as an "associated" recurrent
event. Thegse results extend and correlate previous work of Feller,
Dynkin, Spitzer, and Darling and Kac. Finally, an occupation time
theorem is proved for processes whose states comprise two classes

separated by the occurrence of a recurrent event.



1., Introduction.

In this thesis we study the asymptobic behavior, for large
values of the time parameter, of some random variables associated with
certalin types of stochastic processes, The simplest type of process
considered is a "recurrent event”, Intuitively, this means some
repetitive pattern or event associasted with a process such that when-
ever the event (say E) ocours, the process Ystarts over® as far as

a1l future probabilities are concerned., More precisely, we state

Definition 1,1: Tet xn be the state at time n of a stochastie
process in discrete time with state space X. Denote by «w = {Xi}

a path function of the process. let I‘n(w) = I‘n(}!1, eor Xn) be a
measurable function of w depending only on the first n coordinates
and sgsuming the value 1 or 0. Suppose that

(0 {w @) =1, @ =1} = {w e =1, 5, 1}

where Tw = T{X;, Xpp vee] *{X,0 X5 cou] , and also that
(ii) Pr(r‘i(w) = xi’ i = m*‘!"‘immirm(w) = 19 Pj(w)= .b’j! 321!""m"'1)
= Pr(fy (@) = Tyy 1 = mH,.0.,mm|r (@) = 1)

‘ where 3’1 =Q0or 1,
Then the event E which occurs at time n if and omly if T, («) =1 is
& recurrent event, (This is similar to Feller's definition in (7) but
somewhat more genersal.)
When concerned with such an event, it is matural tc study the
random varisbles which measure the time during which the event occurs, and
the elapsed time (measured at a fixed value of n) since E last occurred,



- -

until it next occurs, and between occurrences. We shall investigate these
quantities in greater generality than for recurrent events however, and
so give a definition which includes all the cases to be considered.

Definition 1.2: Iet crn(w) be a stochastic process with only the two

points O and 1 4n i%s state-=space, Then we denote:

, n

1) Nn(w) =2 T 1(‘-0) (the occupation time of state 1)
1=1

(i1) Y =n=~ mx (i} o, = 1) (tims since last visit to 1)
i=1,...,n

(141) Z_ = min (1] oy =1) =n (time until next visit)

n i='-n,n+1,...
(iv) T, =T, +2, (time between visits).

It is clear that this includes the case of a recurrent event, for we have
only to choose

(1.1) T, = 1 if E oceurs at time n, o, = 0 otherwise.

More generally, processes 7. arise naturally from any

stochastic process Xn by choosing a fixed subset A of the state space
and letting

(1.2) c-n=¢A(xn); iey o =1 if X €4, o, =0 if xnﬂA.

In the theorems we shall derive concerning the limiting behavior of the
random variables of definition 1.2, T ‘does arise in this way, where
the underlying process Xn is a Markov process with stationary transition

probebilities. The basic results concern the convergence, under suitable
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conditions, of the distribution of ¥ /n to & limit lav which is one of
the "generalized arc-sin# laws found by Spitzer (11) in the study of sums
of random variables, From this, theorems can be derived converning the
quantities Zn and T These resulta both extend the theory of
recurrent events, and suggest the concept of an "almost recurrent eventt
poeseasing many of the properties of recurrent events and generalizing
them,

Dynkin (6) haa studied the random variables Yﬁ, Zn and T,
for recurrent events in continuous time, and has obtained a4 necossary
and sufficient condition for limiting distributions to exist, His point
of view is %o consider the sum of indapendent, identically distributed,
positive random variables, and to identify the events (E ocours for the
kth time at time +t) and (sk = t). In his approach the gquantity Z
is basic. In this thesis we proocsed quite differently, by using the double
generating function of Pr(Yh = k). From this the limiting behavior of
Y mey be derived, using essentially a method employed by Spitzer in (11).
The condition obtained for a limit distribution appears different fronm
Dynitint's; the equivalence of the twe yields a theorem on slowly varying
functiona (this is the subjsct of sec. 4) which is very useful in the
sequel. This approach is adaptable to generalization to the case of (1.2)
when the set A c¢ontains more than one state,

In sec. 2, we consider the case where E 13 a recurrent svent.
The main theorem gives necessary and sufficient conditions for Iﬁ/n to
have a limiting diatribution. It is also shown timt Spitzer's theoren
mﬂntioﬁsd above can be obtained as a corollary with the aid of a coumbina=

torial theorem due to E.S. Andersen {1). The next section is devoted to
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generalizing the results of sec. 2; here the random variable Yn is
defined by definition 1.2 together with (1.2), where A .is a suitable
"small" subset of the state space of a Markov process. In this case,
the same limit laws are found to hold as for recurrent events.

In 8ec. 54 we discuss the limiting behavior of Hn’ Zn and Tn'
N has been quite extensively studied by, for instence, Feller (7) in
the case of recurrent events, and Darling and Kac (2) for a more general
situation. Here we observe with the aid of the theorem of sec. 4 that if
a suitable regularity condition is satisfied, in particular in the case
of a recurrent event, then the condition previougly found for Yh/n to
have a limiting distribution is also the condition required for the distri=
bution of Nn/cn to converge to a non-degenerate limit for suitable
constants c,e The limiting bhehavior of Zn and Tn’ on the other hand,
may be quite easily derived from that of Yn.

Also in sec. 5, we study another random variable beside the
ones already discussed. We note that the event Yn/n >t is the same as
the occupation time of the interval (n(1-t), n] being zero., Thus it

is natural to ask more detailed questions about this quantity.

Definition 1.3s If Ty is the same process as before, denote

n
Nh(t) = b oy (where [x] means the integer part
1=1+[n(1-¢)] of x).

We obtain (in the case of recurrent events) a 1limit theorem for Nn(t)

containing as special cases previous results for Yn and Nn.
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Next, in sec. 6, the concept of an “almost recurrent event" is
formalized, The previous resulta are shown to apply and yield that these
events exhibit much the same limiting behavior as do recurrent events.
Finally, in the concluding sec. 7, we proceed in a different direotion,
and consider a large set of states not even "almost recurrent", but
having a recurrent event for a boundary. An occupation time theorem ls

proved for this case, in which limiting distributions of a new type uppear,

2. The Random Variable Yn for Recurrent Events,

Suppose that Xn is the state at time n of a denumerable
Markov chain in discrete time; then we may suppose that X, takes the
values 1, 24 35 +ve o We shall also assume that the chain is irreducible
(1.e., that passage from state 1 to state J is possible eventually
for every i and j) and impose the initial condition X, = 1. Undor
these conditions the event E +that the process is in state | is a
recurrent event. Conversely, given a recurrent event E (such that E
occurs 8%t t = 0) we can construct a Merkov chain satisfying the above
conditiona by letting Xn be the time elspsed sinece the last ocourrence
of E prior to tiwme n; this ls the simplest case of theorem 6.1 to be
proved later, Definition 1.2 applies either upon choosing the set A to
be the single state 1 and using (1.2), or by (1.1), giving 8 precise
definition for Yn’ the time pince the last visit to state 1. The purpose
of this section is to study the limiting behavior of Yn for large n,

and to derive as an application a thecrem due to Spitzer concerning sums

of random variables.
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We shall now give the rather trivial results which hold when
E is an uncertain or an ergodic event., (The state 1 is transient or has
finite mean recurrence time and is aperiodic.) It is convenient to first
introduce some notation we shall use throughout this section. A3 in

Feller (8) we let

Lo
fk = Pr(X.k = 1, Xi # 1 for i = 1,2, s6¢ 3 k-‘”XO=1)’ F(X) = % fn xn,
= n
uk=Pr(Xk=1|X°=1), U(x) = Zunx 3
n=o
then it may easily be shown that:

(2.1) U(x) = U(x) F(x) + 1.

We further define

[+
(202) b = £, 4 £+ eer; then T(x) = Eo b, = (1 - Fx))/(1 - x).

Theorem 2.1t If E is uncertain, then Yn/n -+ 1 with probability one,
vwhile if E is ergodic, we have

2.3 lim Pr(Y_ = k) = ’
(2.3) nPr(n k) =t /fu

=¥0D

whers u is the mean recurrence time for the event &,

Eroof: The first statement follows from the fact that with probability one
an uncertain event occurs only a finite number of times. Next we observe
that the event In =k is equivalent to E occurs at time n~k and then
occurs next at least ksl time~units later. Hence

(2.4) Pr(Y =k)=u_, t.
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But since E is ergodic, u + 1/u by a theorem in, for instance, (8)which
proves (2.3). Although it was not included in the theorem; evidently
the periodic case (with finite expected recurrence time) also offers no
difficulty.

Of much more intereat is the case of a certain event (recurrent
state) with infinite expected recurrence time, Concerning this case, the

main theorem of this section will now be proved.

Theorem 2.2: We have, with G(t) a distribution function,

(2.5) 1im Pr(Yn/n < t) = G(t),

n-*eo

if and only if

(2.6) lim E(Y /n) = o exists (0<ax1),

n+wo

If (2.6) holds, G(t) = Fu(t), vhere
F(t)=0 if $+<0, F (¢)=1 if t21, andfor 0<t<1,

(2.7)
%
F(b) = B2 | 1 (-g) % gy 1f O # o # 1, vith F (t) = 1
0
and F.l(t) = QO

Finally, condition (2.6) is equivslent to the following:

- (2.8) 11:;. (1 =-x) P (x)/(1 = Fx))=1=-a.
x-b-

Proof: The proof proceeds by operating with the double generating function

of the Pr(Yn = k)'s. First, by Abelian érguments we show that the



generating functions of the moments of Yn have the proper asymptotic
behavior; this part of the proof is almost identical with Spitzer's proof
of his theorem 6.1 of (11). (See theorem 2.3 below.) Then the Karamate
Tauberian theorem is used to show the actual convergence of the moments
of Yn/n.

Taking double gererating functions in (2.4) we get

(2.9) P(x,j) = kZ 1'-‘1‘(’1n =k) x° yk = U(x) T(xy).
o1

Now following Spitzert's argument, we observe that

o E(T5)
(2.10) (1=x) >_ E(exp(= A(1-x)Y)) L= (=) 2. & [% (,;,’ (=A(1-x) )%
n

n=o

k+1
= % NE fk(x), where fk(x) = Uik%—- (=1 )k[ ZE(!ﬁ)xnl.
n

For lxI< 1, this is an analytic function of x and )\ . We shall show

that the limit as x - 1= exists and is an analytic function of ) ,

say z bn )\n, and hence conclude that the limit of fk(x) is bk‘
It is convenient to define a new sequence of numbers by putting

a8, +a,+ e ta = E(Yn).

Let .
A(x) =Zan x0 3 then A(x)/(1=x) = 2 E(Yn) = .
n

But,

Y
P(x,y) = 2 E(y ®) <5
n

so that
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i 0 Ax)

3P(x.v)
dy

From (2.9), (2.1) and (2.2),

aP ~ - X T {x) |
By =% ) T = T R 5
T (x =A§x)
T(x) x °

hence

Thua we obtain

@11 1) =em( [ A gp) = exp(

o]

TMs
e
“?v‘

We therefore can also urite
=] - 2k _k
(2.12) U(x) = T exp(~ 2. % X ).
k=1
Using these expressions, we have

(2.13)  (1=x) X E(exp(=A(1-x)Y_)) %" = (1=x) P(x, exp(= A(1~x))
n

= (1=x) U(x) T(x exp(= \(1~x)) = exp[-§% xk(‘l-exp(-)\k(i-ﬂx))l.

Next a letma, also from (11),is requireds

+oee ta
—*”"G'?'O,alld )\zO. Then

+
a 82

lemma 2.1: Suppose "

[ : }
im 2 GEE k(1 =~ exp(=A(1=x)k)) = a log(l +A).
x-=t= k=1

Now by definition of the an's, if (2.6) holds, the hypothesis of the

lemma is satisfied. Therefore combining (2.10), (2.13) and the lemma yields



(2.14)  um >N 56 = QN0 () AD gor N <.
n

xo]=-

This implies that

(3%) =1im £ (x)
e S

or

(2.5)  (1=)* [(1=) 37 B 2™ » (=1)% wa (.
n

This completes the Abelian part of the argument.
Next, we shall apply to (2.15) the following form of Karamata's

Tauberian theorem (see, for instance, (12)):

Theorem: Suppose that Z c xi is convergent for x < 1, and that

7 1

lim (1-x)k > cy xt = a exists for some positive integer k.
x>}=- i

Suppose alse that for some polynomial P of degree < k=1, we have

cigP(i).
Then
ey, T e, + ese + ¢
1 2k n-’% ag n > w,
n

(Note that the less gemeral form of the theorem in which it is required
that e, > 0 would not suffice, since E(Y:) is not necessarily

increasing.) Ve apply the theorem by putting
- n n
}; c, X (1-x)Zn E(Yﬁ) X

so that



“Cn T E(Yﬁ - Y§-1) = E[(Yh - Yn*i)(zﬁ-1 * Ii‘z Tpg * 00 *'!ﬁ:%)]ﬁ k nk-i

ket _
since ¥ <n and Y, -7 <1, Therefore c 2k ' = P(n).

Hence we can c¢onclude that as n » w,

@i6) =L > o = (08 () @ HO R - 08 G

But (--1)k (:f) is the kth moment of the "generalized arc sind law Fa(t)
of order a, &s may be verified from the expression (2.7). Since for all n,
0 §,Yn/h £ 1, the convergence of the moments implies the convergence of the
distribution functions of Y /n to F (t). Thus the sufficiency part of
the theorem is proved.

The necessity of (2.6) being obvious, it only remains to prove
the equivalence with (2.8). But we have seen that

n _ x T!{x
z;; E(T,) x° = T

and by an Abelian and a Tauberian argument we can conclude that (2.5) holds
if and only if

j=x) Tt -
(2.17) if:’?- 5——%-(;55‘-1 =q .

But by (2.2), this is the same as (2.8). This completes the proof.

Now we shall show that theorem 2.2 is actually a generalization
of Spitzerts thesorem. Let Sn = X1 + X2 + see + Xi, where the Xi are
independent and identically distributed random variables. Define

(2.18) Nn = no. of Si > Oy i= 1’2, see § I



In (1), Andersen proved that

(2.19) Pr(Nn =k) = Pr(Nk = k) Pr(Nn—k =0) .

With the aid of this result, we shall prove

Lemma 2.2: There existas a recurrent event E such that
Pr(Nn =k) = Pr(Yn = k)

where N is as in (2.18) and Y refers to the event E,

Proof: A recurrent event is determined by the sequence { fnf » provided
that £ >0 and 3 f < 1. We shall see that these conditions are

satisfied if we define w  to be Pr(N = 0)s By (2.19), we have

n
S P =n)xe 3 Pr(N =0k =2 & 3 Pr(y =k)ePr(N_ =0)
n n n k=0
Z n i ) Z n l
n k=¢ n n 1=
Therefore

_ n _ 1
Z Pr(Nn =n)x = (T-x) o(x)

which we must take as T(x); thus we must choose t = 1":L°(Nn = n), ylelding
£ =Pr(N 4 = n~i) - Pr(N, = n) which has the required properties, so {fn;
does define a recurrent event E. But by (2.19),

Pr(lvn =k) = W Y T Pr(?ln 2 k),

Ir a is defined to be Pr(Sn > 0), then

a, +
‘ a

2+000+a.

~ £ = E(N /n) = E(1 /n) »

Hence by theorem 2.2 and lemma 2.2 we can deduce
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a, +a, + **s +a

Theorem 2.3: (Spitzer (11)) If 1 2n -2 5 q , then

lim Pr(Nn/n <) = Fa(t).

n-»o

8, + ees 4+ g
1 -2 does not tend to a limit, then neither does Pr(N /n < t)e

If o

Example. lLet Sn be the "coin-tossing" process; that is, the random

variables Xi are plus or minus one with probabilities 1/2. It is easy

a; +a,+ e ta

to see that = 3 *% and therefore by theorem 2.3 the

fraction of the time that Sn > 0 has the limiting distribution F1 /2(1'.);

this was the first case of the theorem to have been discovered (Lévy (10)).
But theorem 2.2 tells us more, for return to equilibrium (Sn = Q) is

a recurrent event, and it is easy to compute F(x) =1 - (1-x2)1/ 2 vhich
satisfies (2.8) with a = 1/2, so that in the limit, the time since the

last equalization also has the arc-sinelaw distribution 117‘1 /2 °

3. Yn for More General Processes.

In this section we shall prove analogues of theorems 2,1 and 2.2
for a more general situation than that of sec. 2. We shall have as our
state space X, an abstract set upon which a Borel field F of subsets is
defined. We also suppose given a stochastic transition function p(’; sE)
which is to define the probability of a transition in unit time from 3
into the set E; such a function must define, for each ¥ & X, a probability
measure on the sets E £ F, while for each E it must be a measurable

function of 3 . From this funetion, and the Markov property, the n-step



transition probabilities pn(g';E) mey be easily computed. It is well

known that under these conditions, and given the initial condition X = o9

there actually exists a Markov process Xn(ua) having the transition

probabilities pn(g »E)s (For discussion, see for instance (5), chapter

V, no. 5, where will also be found other results to which we will refer.)
We will obtain results in the case in which the process is

"recurrent"; more precisely, we assume the following condition holds:

Condition (G). A countably additive sigma-finite measure m(E) is defined
upon the field F, with the property that mn(E) > 0 implies

Pr(X ¢E infinitely oftenlxo =3,)=1, forall 5 X

This condition, in the case of a denumerable Markov chain (which is
included in the discussion of this section), is equivalent to the statement
that the chain is irreducible and the states are all recurrent.

In (9), Harris has proved the following fundamental result:

Theorem: Let X be a Markov process in discrete time (as above) which
satisfies (C)s Then there exists a non-negative sigmaw=finite measure Q
defined on the sets of F, unique up to a positive factor, such that

m(E) > 0 implies Q(E) > 0, and satisfying
Ga1)  QE) = [p(5.8) a@s )
X
The meapure Q is called the invariant measure of the process. If Q(X)

is finite, it may be normslized so that Q(X) = 1, and then by (3.1)

defines a stationary probability distribution for the process; if Q(X) =,
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no such stationary distribution exists. In case the Markov chaln has a
denumerable number of states, and is (by (C)) irreducible and recurrent,

the cases Q(X) =1 or = correspond to finite or infinite mean recurrence
times for the states. In the denumerable case, a stronger form of the above
theorem is known (Derman (3) based on a result of Doeblin (4)), which
states that the measure (now expressed by attaching the discrete mass 9y

to the ith state) is given by the expression

> o)
q — Y¢
(3.2) e & =1 for any ¢ and d,
4G e i (1)
= 4

where pég) is the transition probability of going from state a into
state b in n-steps. An analogue of (3.2) for the non-denumerable case.
has been proved by Harris under conditions more restrictive than (C).

We shall now turn to the behavior of the random variable Iﬁ
for large values of n. We choose a fixed set A € F, and let In be

defined by (1.2) and definition 1.2. As in sec. 2, we denocte

£(5,8) =Pr(X €Ey X, £A for 1 =152y eeey n-1lx°=§) and
(3.3)

tn(i) = fn+'l(§ sA) + fn+2(§’A) + oree

We also need to introduce the generating functions
Ux( 3 sE) = ngo Pn( 3 4E) xn’ Fx( § sE) = E:-‘:l fn($ sE) Xn: and
(3+4)
€0
T(3) = 2 4(3)x" = (1 = B (5,4))/ (1)
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Next, we shall prove a generalization of theorem 2.1, in the case where

Q(X) = 1. We impose the following regularity condition:

Condition (D). There is a finite measure n on the sets of F (with
w(X) > 0) such that for some positive integer v and positive number &,

p(V)(§ E)<1=~¢g if wE)<e.,

Theorem 3.1: Suppose the Markov process X, satisfles (C) and (D), has
Q(X) = 1, and contains no cyclically moving subclasses of states,
Then, for any initial condition Xo = }'o, we have

(3.5)  lmPr(r =k) = :[tk(S)Q(d's' )e

n-rew

Proof: Again the event Yn = k means that Xn € A and the next k

-k
values of Xi £ A, Therefore,

(3.6)  Pr(y =k) = {pn_k( 5 .45) t.(5) .

But under the hypotheses we have imposed, it follows from theorem 5.7 of
(5), chapter V, that the limit of (3.6) is (3.5).

We note that in the case of thecrem 2.1, the limiting distribution
(2.3) depends very strongly on the perticular form of the recurrence time
distribution { £n§ , and that again the distribution (3.5) is determined in
a complicated way by both the transition probabilities of the process and
the “shape™ of the set A. The case of infinite expected recwrrence tims,
treated by theorem 2.2 (and generalized by theorem 3.2 below) is more
pleasing, in that an easily characterized one-parameter class of limit laws

emerges, to which the limit distribution of ¥ (if ome exists) must belong.
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In order to be able to prove the desired results, we shall need
a regularity condition which insures that the set A4 is "sufficlently
coherent®, From here on we assume that condition (C) is satisfied, X = ;o’
Q(X) = w , and that the measure is normalized so that Q(4) =1; ¥ S

defined with respect to A,

Condition (U). If E is a set belonging to F such that QE) < =,

we can put

(3.7 T.(3,E) = Q) [h(x) + hy(x, 3 4E)]

where h(x) » » as x - 1=, and where

(3.8) lim sup Iht(x, §O,E)/h(x” = Q.
x~»l= ECA

This says that the error, relative to the "size" of the set E, in
approximuting Ux( 5 o?F ) by Q(E) h(x) becomes relatively small uniformly
with respect to E for all sets EC A for the fixed sterting point % .
(U) is not the weakest condition under which the proof of thecrem 3.2

could be carried out, but to asssume it avoids some analytical complication
in the proof. It is not hard to see, however, that (3.8) could be weakened
to uniform boundedness over all sets EC A plus (3.8) holding when A has
been replaced by a set An belonging to a denumerable family such that
each A CA and Q(A -4) -0

The simplest circumstances under which (U) holds are given by:

Lemma 3.1: If the Xn process is a denumerable Msrkov chaln, and A is
a finite set of states, then (U) is satisfied.
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Proof: Denote by {qi} the invariant measures of the states of the chain,
and by Uij(X) the generating function of the pég)'a. Then we may choose
Uy, (x)/q; as the h(x) of (3.7), It follows that

hy (xo1sd) = Uij(x)/qj - Uﬂ(x)/q.l .
Thusg ,

hy(x51,3)/n(x) = (94/a5) Uy (x)/0;;(x) = 1,
which approaches 0 as x - 1= by (3.2) plus an Abelian theorem. The
uniformity with respect to subsets of A required by (U) is sutomatic
gince A consists of a finite number of states.

Anelogously to our choice of h(x) in the above lemma, we next
state

Lerma 3,2: If (U) holds, h(x) may be chosen as Ux( EO,A).

Proof: If (U) holds, (3.7) and (3.8) imply that

lim U (3 .4)/h(x) = 1.

> Ot

With this much preparation we shall now prove the main result of

this section. Firat another notation is convenient:
(3.9)  U(x) =U(5,04) =h(x), and F(x)= J F (5,8)Qas).
A
Thegrem 3.2: Let the Markov process X be as described above, wlth (u)

holding for the set A with respect to which Yﬁ is defined. Then

the statement of theorem 2,2 given on page 7 continues to be true.



Proof. It is easy to see that if we can show that (2.15) continues to be
valid in the present case, then the Tauberian part of the proof of theorem
2.2 will also still hold without modification. We shall again use (2.10),

and so the problem is to evaluate

(3.10)  1lim (1=-x) f' E(exp(~ A(1=x) Y )) X"
x|~ n=o

Introducing the further notation
(3.11) 1) = [ 1(3) @s) = (1 - FE)/(1=),
: A
we proceed to evaluate (3.10) with the aid of two lemmas.

Lemma 3.,3: As in sec. 2, let P(x,y) be the double generating function

0 Y
) E(y ) x®., Thenas x -+ 1=,
n=o

(3.12) P(x,y) = U(x) T(xy) (1‘+ o(1)), and a—ﬂ%[;ﬂ = xU(x)T' (x) (1+0(1)).

y=1

Proof. Taking double generating functions in (3.6), we obtain

- : - k _
(3.13) P(xyy) = nZ’k Pr(Y = k) X"y = {Ux( 5,045 ) 'rxy( g)

But by (3.7) and (3.9) we can write

[0 a@s ) 1050 + {g[q(;) by (s 50 301 1 (3)

Ty =
U(x) T(xy) ~ T(x) T(xy)

80 that




| {Txy( $) ala(s) by 3,91

|ET§'§'%§7 } 1} ) T(5y) Ux)

by Ge, S0 I Te(5) @@s)
= EcA UG T T(xy7)

lh1 (X’ SO’E)I

= gup =
ECA Ulx) ’

and thus by (3.8) we obtain that

lim P(x,y)/U(x) T(xy) = 1.

x*]=
The second statement of the lemma may be proved in exactly the same way
from (3013) and (U)-

Lemma 3,43 lim U(x) (1 - F(x)) = 1.

b B
Proof. Setting y =1 in the first part of (3.12), we obtain

1/(1-x) = P(x,1) = U(x) T(x) (1 + o(1)) = U(x) (1 = P(x))(1 + o(1))/(1=x)

which proves the statement.
With the aid of these results, the procedure of sec. 2 may be
imitated rather closely. We again define { an§ by means of the relation
a; +a, + oo ta =E(Yn) .

By lemma 3.3 we obtain in analogy to (2.11)

(3.14) T(x) = ex;:\(ij)1 % k) s (1 +0(1))

while lemma 3.4 and (3.11) yield with (3.14)



Ga5) v =g ew- X EH - o))

Combining these expressions with lemma 3.3, and using lemma 2.1, we find
a, + *** a
1

that (3.10) is equal to (1+A)"%, provided that > q

n
(1.0.4 that E(Yn/n) -+ a). Thus the proof goes through just as before.

Finally, again with the aid of lemma 3.3, it may be verified that

E(Yn/n) +a if and only if (1=x) F'(x)/(1 = F(x)) » 1 - a.
This completes the proof of the theorem,

4e A Theorem on Slowly Varying Functions.

In a recent paper (6), Dynkin also obtains a necessary and
sufficient condition for (2,5 to hold; however, his condition, which is
obtained by a quite different method from that of sec. 2, does not resemble
(2.8). Comparison of the two suggested the theorem below; the present
proof is due to H.F. Bohnenblust, and is both conceptually simpler and

considerably more general than the original onee.

Definition .13 (Karamata) A real function of a real variable, say L(y),
is slowly varying if it is continuous, positive for large enough y, and

gatisfies

(441) 1lim %é—%l =1 for all ¢ > O.
yriw
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Theorem 4.1t For x > 0, let f(x) be a positive function. If f£'(x)

exists for amall enough x and satisfies

(42)  1im xff; =g, then we have
x-+{ _

(4.3) fx) = x° L(:JE) where L(y) is a slowly varying function.

Conversely, if (4.3) holds for gome number a, and if f'(x) exists and

is monotone in a neighborhood of 0, then (4.2) holds.

Proof: Assume (4.2), and define L(y) by putting f(x) = x° L(%). Then
log £(x) = a log x + log L(%) = a log x + g(x), say. We must show that
L{y) satisfies (4.1); this is equivalent to

(4ed) 1im (g(ex) = g(x)) =0 for all e > 0.

x=0
But
CX oy (4
glex) - g(x) = Llog f(ex) = log £(x) —a loge = f 7o) dt - a log c.
x
Hence by (4.2),
: ex
lim (g(ex) - g(x)) = 1iu f tdt ~aloge =0,
x>0 x*0 x

To prove the converse, suppose f£'(x) is non-decreasing and that (4.3) holds,
(Exactly the same argument works also for f!' non-increasing.) By the
mesn value theorem, we have for x < x1,

£(x, ) = £(x)

f1(n) = X - %

for some x < 4 <x1.
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Choosing x, = cx where ¢ > 1, and since f£'(x) is non-decreasing,

we can write

) g o (n) = UL < pi(ex) , or
f' 1f
= < ¥ -1 Sy sex f(ﬁ'ﬁ c 'f°z§§

Now by (4e3) and (41) we obtain upon letting x - 0,

limxgxx < (c° ~1)J“<c°1;_igl_x£'xx .
x-0 -0

M

But this holds for all ¢ > 1; letting ¢ = 1 we get precisely (4.2).
In the case (as in the original form of the theorem) that

fx)=1=- f e dc(t) where G(t) is the distribution function of a
positive random variable, it follows that f"(x) = ~ f 12 oW da(x) < 0

80 that f£'(x) is a decreasing function of x. Thus we have:

L3~

Gorollary 4.1t Iet f(x) = J e X da(t). Then the following are
o

equivalent:

|
A) 1lim E2ERREL = o g
01 x

B) 1~ g(x)=x" L(l) where L(y) is a slowly varying functiom.
x

Stating this in terms of generating functions, we have:

Corollary 4.2: Iet P(x) = Zp x* where P, 20 and Z p, = 1.

n=1 n=}
Then the following are equivalent:
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=x) P'{x

&) um Ty

b ad b

B) 1 = P(x) = (1=x)° L(T}x-) where L(y) is slowly varying.

Applying corollary 4.2 to the situation of theorem 2.2 yields

Corollary 4.3: Condition (2.8), which is neceésary and sufficient for
(2.5), 18 itself equivalent to:

1 - F(x) = (1-}:)1-“ L(-i-};-x) where 0<a<1 and L(y) is

a slowly varying function,

5. Limit Theorems for N , Z T, and Nn(t).

In the case of a recurrent event with infinite expected recurrence

time, the condition for the existence of

(5.1) v(t) = il;i-fo Pr(Nn <e t),

where V(t) 1is a non-degenerate distribution function and the ¢~ are
appropriate norming constants, has been known for some time (see (7)
theorem 6) to be

(5+2) 1 - 6(t) ~ ol L(t) as t = o,

where G(t) is the distribution function of the recurrence times, 0 < @ £1,
and L(t) is a slowly varying function. If (5.2) holds, V(t) turns out
to be the Mittag=Leffler distribution M1_Q(t ) of index 1-a, given by



st -1
(5.3) Mﬁ(t)ﬁ;;'?fdz: i1 sin(ﬂ@j)r‘(p;]-l-ﬂ'zd dT .,

! [] =3
Letting, as in sec. 2, F(x) denote the generating function of the recurrence
time distribution, we find (using Karamata's and Abel's theorems,

regpectively) that (5.2) holds if and only if
(544) 1= Fx) = (1*x)1'“ L(T%;) ’

with L(y) slowly varying. But by corollary 4.3 and theorem 2.2, (5.4)
is the condition under which the limit distribution Fq(t) holds for
Yn/n .

Recent work of Darling and Kac (2) has shown that essentially
the above situation for Nn holds under more general conditions than
for recurrent events. We consider again the Markov process Xn of
sec. 3, and define the random variables with respect to a set A4 of

invariant neasure one. Sufficlent for our purpose is the following:

Condition (U'). (U) holds for all 3 o €4A» and the convergence in (3.8)
is uniforn over A with respect to § .

We sumparize the relationghip of Nn and Yn in

Theorem 5,1: Suppose the Markov process Xn and the set A satisfy
(ur). If

(.5)  h(x) = (10 L)

where L is slowly varying and 0 < a <1, then Y n/1:1 has the limiting



distribution Fu(t) (given by (2.7)) while, provided a # O, N, suitably
normalized is distrituted in the limit by M, (%), If (5.5) does not hold,
then Pr(‘!n/n < t) does not have a 1imit, and (as is alsolthe cage if

o = 0) there is no normalization for which N, has a non-degenerate

limit distribution,

Proof:s The statements about N, follow from (2); condition U' 4is some=~
what stronger than necessary, but allows a unified statement of results,
The statemente about Yn are seen to be a paraphrase of thecrem 3.2 when
it is observed, with the aid of lemmas 3.2 and 3.4 and corollary 4.3, that
(5.5) is equivalent to (2.8),

The study of Zn and '.l‘n will be based upon the identity
(5.6) Pr(z, >m, ¥, > k) = Pr(Y,, >mwk),

The truth of (5.6) is obvious from definition 1.2. This identity is
analogous to ones used by Dynkin in (6) for a similar purpose; as previously
comented, in his approach Zn rather than Yn is the known quantity,

lemma 5.,1: Under the conditions of theorem 3.2, Zn and ‘In have a joint
limiting distribution if and only if Yn/n has a 1imiting distribution.
If (2.8) or equivalently (5.5) does hold, then

uty
(5.7 i}z PriZ/m>u, ¥ /n>v) =1~ F GGr) for uzo.

Proof: Suppose that (5.5) holds, and choose two sequences {mn} and {kn}

of non-negative integers with kn <n and satisfying

(5.8) im m/n=u, lim k/n=2vsi,
a0 o



- 27 -
Now since Fu(t) is (for a # 0 or 1) a continuous distribution function,

we have from theorem 3.2, (5.6) and (5.8)

-F, ( ) 1im Pr(! /n > (u+v)/(14)) = 1lim Pr(I >m + kn)
n-eo o n

=3im PrfZ_ >m, Y > k) =1im Pr(Z /n>u, Y./n > v).
- n” ®a 'n” %n preco n n/

The converse 1s clear, as is the situation for the trivisl ceses when

a=1or0,
The lemme immediztely yields as an application

Theorem 5,2: Under the conditions of theorem 3.2, if (5.5) holds then

Ta~l
(5.9) lim Pr(z /n<t) = F () = 82I8 [ omm g T,
nree ]

We cen also use Lemma 5,1 to obtain a result on Tn’
Theorem 5,3: Under the conditions of theorem 3,2, if (5.5) holds then
n=o

in v 2 1
(5.10) 1im &(Tn/n < t) = ﬁ—.ﬁ-—g f T(l- (1 - (1-’1.') G) 4T for Oﬁtﬁ'l'
o

= 8in Ta ft T,a—2

- 4T for + > 1,
0

Proof: TFrom lemma 5.1 we can compute the joint limiting density of
(2 n/n, Yn/n), obtaining

(5.11)  p (u,7) = (1=q) BT (1u4)"0 (uey)

for 0<n, 0<v<l,
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But since T, =2, + ¥ we have for the density of Tn/h

min(t,1)
t,(t) = jo‘ p,(t=v, v) dv;

upon substituting (5.11) we obtain (5.10).

Finally we shall prove some results about Nn(t) (definition
1.3) which provide an extension of theorem 2.2. For simplicity we confine
the discussion to the situation of sec. 2, where the set A is a single
state in a denumerable Markov chain. HNow the event Yh/h <%t is the
same as the event Nn(t) > 0. Since we have already found in theorem 2,2
conditions for the probability of this event to have a limit a8 n - «,
it is natural to ask if any further information can be obtained about the
limiting behavior of Nn(t). First we shall show that Nn(t) itself
does not remain of moderate size, bu£ either is zero or grows arbitrarily

large.
Theorem 5.,4: We have, provided the left hand side exists,

(5.12) lim Pr(N (t) > 0) = 1im Pr(N _(t) > k) for any k > O.
n n -
N> n-reo

Proof: Since we are dealing with a recurrent event, Sn’ the time at which
the event occurs for the nth time, is the sum of n positive independent
random variables (the waiting times) with generating funetion PF(x).

We can write

[at]
(5.13)  Pr(N (t) > k) = rg Pr(Zr, (1-4)]w=T) Pr(S, < nt = r).



But since the limit on the left in (5.12) exists, by theorem 2.2 condition
(2.8) must hold, and so from theorem 5.2 the limiting distribution

% .
1:-*&(1 H_}) holds for Zn/n. Also, since k is fixed

11mPr(sk5nt.-r)=1 for r/n < t=c , £ > 0.
n-roo

Therefor on teking the limit in (5.13) as n » « we get letting

e L
n(i=t) ’
£/1-t <
lin Pr(N_(t) > k) = [ 1 aF (777) = F (%)

n-eo o

which proves the theorem,

It is possible to obtain more information about Nn(t); we
shall now show in conclusion of this section that the existence of the
limit in (5.12) is sufficient for Nn(t), when suitably normalized, to

have a limit distribution which is non-degenerate provided a # 0 or 1.

Theorem 5.5 : Suppose that (2.8), and hence (5.5), holds for the event E.

Then for a suitable sequence { cng of positive numbers, and u > 0O,
/1=t

(5+14) Lin Pr(N (t) > ¢ u) = { Gy (T = T(1=)]) oF (37)s

vhere Gy _, is the distribution of the positive stable law of index
T=a ((7)y secs 5).

Proof. Our procedure is based upon (5.13). As in the proof of theorem
5.4 the right hand side will, if (2.8) holds, converge to an integral
over the range 0 to t/(i=-t) with respect to Fa(Tg;?) + The problem is

to choose the cn so that
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Pr(S[can < nt = ) » function of t, uy T .
The possibility of doing this is based on a lemma proved in (7).
Lemma. If (5.2) holds (equivalent as we have seen to (2.8)) then

(5.15) 1im Pr(S_<vb ) =G, (v)
I n n i-a
where the bn are a sequence satlisfying
(5.16) 1im n(1 = G(bn)) = 1.
n-+o
We next see that it is possible to choose f£{u) and c, so that for

each A,

(5.17) 1im Px-(s[c u] S n) = lim Pr(S < Anf(u)) = G.l_u(Af(u)).
n

n-rx n-Heo [ c!l:!

Fory by the lemma, the second term equals the third provided

lim [cn] (1 ~an)) =1,

n-eo

while in order for the first to equal the third we need
lim [cnn3(1 - G(n/f(u)) = 1.
nr*x
Combining these two expressions, with the aid of (5.2) and the definition

of a slowly varying function, we find that the choice

(5.18) f{u) = u1/a“1 : c = n1“a/L(n)

n

is sufficient for (5.17) to hold.
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, L T .
In the passage to the linit we are letting ETT:ET - 3
therefore we substitute A = t = T(1=t) in (5.17) and ere now able to

complete the limiting process. Since (5.17) holds we obtain

t/1-t -
Lim Pr(N (t) 2 enu) = J\ Gi_a(f(u) (t=T(1=t)) dFa(Tf;;;) »
n+rou 2]

wiich upon making the choice (5.18) is the samwe as (5.14) and proves the
theorem, Note that in order to obtain the complete limit distribution of

Nn(t) it is alsc necessary to attach msss 1 - Fu(t) to the point zero.

6. Almost Recurrent Events.

In this section we shull farﬁalize the concept of an
Yalmost recurrent event%. To do so we consider processes Xn(uJ)
which are not necessarily Markovian; the bagic idea is that the proof cof
theorems 2.1 and 2.2 and their generalizations in sec. 3 do not really
depend on the Markov property for all the states of the process bul only
on the behavior of the procese at the state 1 or set A, If this
behavior has certein properties we can construct a new process which is
Markovian and in which the set A has been "embedded".

We will start by giving another defipition of recurrent event
which is easily seen o be equivalent to defimition 1.1 although

apparently stated in a more special form,

Definition 6.1: Let xn(aJ) be a not necessarily Markovian stochastic

process with stationary transition probabilities and state-gpece X. Ilet
e be a stete of X and let the event E be equivalent to the oecupation

of state e by the process., Assume



(601) Pr(ﬂe(xm*i) = Km."'i, i = 19 eds 9 n l xm

e)

L)

= Pr(f, (Kpeg)® Spugs 4= ToeeesnlX =0y Xp = Foe X, § = 1,000,01)

where ¥, = Oor 1and § is the characteristic function of {e} « Then

E 1is a recurrent event.

Note that (6.1) essentially says that the process Xn is Markovian at the

particular state e although it need not be elsewhere, If Yn is defined

with respect to the state e, then !n is a demumersble Markov chain

with occupation of the state Yn = 0 equivalent to the occurrence of E,.
We will now turn to the more general case and give analogues

of these facts. Again let X (w) be a process with stationary transition

probabilities, and let A be a fixed subset of the state space X; we

define E to be the event that xn ¢ A, We shall formulete a definition

with the aid of several postulates om the process.

P.1) 1f S e, §:l e X, and E, is elther a measurable subset of A or
the complement of A, then

Pr(X .4 .4:131, 1% 1, 4ue s nlxm = %)
=Pr(X ,, €F 121, oo, |k =5, Xg = SJ, J =1, eee s m=1),

This is the analogue of (6.1) and requires the process to be "Markovian
in the set A",

It will be convenlent to speak of the "embedded process" x;x(w)
which is obtained by observing the Xn process only at those times when
E ocours; thus X!(w) = X (w), where N is the time of the nth occurrence
of E, The states of the embedded process are the points of A, Of
course 1f A is not visited infinitely of'ten the X; process can be
considered defined for 21l n only by aedding an extra state in which the
process is absorbed after itsg last visit to A, If this is done the

embedded process will, by P,1, always be a Merkov process. The cases of
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interest here, howsver, will be those in which A is visited infinitely
often with probability 1, and in which the embedded process itself has

suitable recurrence properties; we insure this by

Ps;2) The embedded process X; satisfies condition (C) of sece. 3.

We now intreduce again the notations
= n
Pr(f eECX|X =%)=p (5,8); go Po(3,B) x° = U (5,E)

Now by P.2 and the theorem of Harris gquoted in sec. 3, there exists a
measure Q(E) defined on subsets E of A which is the invariant
measure for the embedded process. Making use of this measure we further

postulate an analogus of condition (U):
P.3) Q(a) =1, and for 53 €Ay E CA we have

U, (5.5E) = Q(E) (h(x) + h,(x, 5 +E) vhere as x = 1= ,

hy (x, %,E)l
TR0

hi{x) + w, and sup
Ec A

We may similarly give an equivelent to (U'):

P.3') P.3 holds for all §,& A, and the convergence is uniform in §,

over A.
Now we can state the following:

Definition 6.23 If an event E satisfies P.1, P.2 and P.3 or P,3!,

then E iz an "almost recurrent event,



The main motivation for this definition is that almost recurrent
events have many of the same 1limit theorems holding as do recurrent events,
We shall show this with the aid of the theorems of the preceding
sections, plus the following result which makes it possible to apply the

theorems we have previously obtained.

Theorem 6.1: Let the process Xn(w) and the set A satisfy P.1. Then
there exists & (non-unique) Markov process Mn vhose state space con=
tains a subset A' in one to one correspondence %' £ Al'<w=> Y g A
with A such that the transition probabilities q (§',E') of M, for
y' € A' and E'< A, satisfy

(6.2) q,(§%E') =p (§5,E) for all n.
Furthermore, if P.2 holds for X , then (C) holds for M .
Proof: The states of M may be taken to be the pairs (§ »n) where
$¢A amd n is a non-negative integer. The event that M = (5 om)
is taken to mean that Xn__m = § € A, and that Xi t A for i= n—m+1,...,n.
For the Xn process we again define

fn(g ’E) = Pr(Xn £ E E Xy Xi t A for i=1,2,...,n-1|1{0=§ )o

We choose for the Mn process the one=step transition probabilities

q1[( 5 90)5(E,0)] = f1(§ sE)y q1[( b3 ,0),(Ea1)]=¢E(§)(1-f1(§ sh))s
n-H(S » E)

Z f(;.A)

i=n+1

(6.3) q4{(34n),(E,0)] =



=n+2

(63) a,[(§sm)s(Bymt1)] = (5 ) =

o

«@w

i=nt

all other transitions have probability O. Since Hh is assumed to be &
Markov proceads, the other transition probabilities ure determined by
these. et A' = {(3,0)f. Then it is easy to verify that (6.3) do
indeed from & Markov tranaition operator, and that under the natural
mapping of A!' onto A (6.2) holds. This construction is the natural
generalization of the way in which, for A a single state (E a
recurrent event), Y, provides an "equivalent" Markov process.

T verify that (C) holds for the process M » note that P.2
provides a measure n(E) on subsets of A such that sets of positive

meagure are visited infinitely often. Fer a given set E C A, let
Sg = {1lPr(_ € (B41) Lnf. often) = 1} ;

this set is well defined rcgardless of the initial state of the process
by P.2. Now we define

m'(Byn) = n(E) ¢

S

This provides a measure on the states of the Mﬁ proceas satisfying the

(n)-

requirements of (C). Theorem 6.1 is now proved.

By (6.2) the probability distribution of any of the random
variables of definition 1.2 or 1.3 is the same for either the process X
or the process M , if the respective initial conditions are X = io £A
and M = 3! =(3,,0)¢eA's Purthermore, P.3 er P.3' holds for X mouns

thay the M process satisfies condition (g) er (U') respectively for



the set A'. Thus the results of sec. 3 and sec. 5 on limiting distri-
butions can be applied in the somewhat more general settlng of definition
642y 30 that the "almost recurrent” event E justifies its name by
exhibiting much of the same limiting bshavior ag the "assoclated"

recurrent event whose recurrence times have the generating function

rx) = [ i £.(594) x" Q(ag ).
A =i

7+ Occupation Time for "Continuous" Processes.

The preoblem of cccupation time for a "amall" set of states in
a Markov process has been discussed in sec. 5, and we have seen that the
limiting distributions obtained are the Mittag~Leffler laws of (5.3).

In sec. 2 we have proved Spitzer's theorem which asserts that the occupa=
tion time for the positive half-line in the case of sums of independent
identically«distributed random variables approaches a generalized arc-sine
law distribution. PFew other general results are known, In this section,
we shall treat a fairly extensgive class of processes and obtain conditions
for the occupation time of half«lines to have & limiting distribution.

Lot Xn(u)) be a real-valued Markov process satisfying
condition (C) of sec. 3, with the initial condition X, = O« The funde-
mental aasumption 1s that the path functions are continuous at O, in the
sense that

(7.1} X..q 8nd X . have different signs ==> X = O,
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Let Nh be the occupation time of the positive half-line up to time n,
with the convention that if X = 0, it is counted or not counted as
contributing to Nn according to whether the last preceding non-zero
state agssumed by the process wag positive or not. (The interesting case
will be when the expected recurrence time of state 0 1s infinite, and in
this case the time spent in O is a vanishingly small fraction of the
total, 80 that the convention will not alter the limiting distribution
of Nn/n.) We denote by F(x) = é £ %" the generating function of
the probabilities fh that the re;urrence time of state zero is n.

Now the main theorem can be sgtated:
Theorem 7.1: Let X, be as above with (7.1) holding. Then
(7.2) 1im Pr(Nn/n <t)=v(t), a distribution function,

n-»w

if and only if

(7.3) 1lim E(Nn/n) = g exista, and also
n-reo

(7+4.) li? (1=x) P (x)/(1-F(x)) = § exists, 0 < §< 1,
x~+1=

If these conditions hold, V(t) = F S(t) 18 the distribution with the
$

moments (--1)k ¢, » where

§-1 . 1 =-g¢q

[ (1 + z) F e

(705) Z < zk = _‘u.
k=0 k 1+ z)s + l_..;.&
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Proof: The proof proceeds by finding the double generating function of
N, and operating with it in a similar manner to that used in the proof of
theorem 2.2, let p = Pr(X ,, > Dan = 0); it is convenient for the time

being to assume that state O can not repeat itself, so that
g=1-p= pr(xm_1 < olxn = 0).

We now define

(76) 0@ 2pp(x =0, % #0, 051 <nlx =0, X > (<) 0),

and
=]

> gld) 4m, i =12,

n
n=1

Fj(x) =

and as we have done before denote

0 1=-F (x)
(’7.7) t:gj) = fr(r‘:’.% + fl(li:;, + sse  and TJ(I) = I?-::O tl(]j) xn = 1 _T 3
j = 1,2:

Then by the Markov property the following difference eguation holds on
letting Pe,n = Pr(Nn=k):

- (1) (2) (1) (=)
(7.8)  py =P Z]; 5 Pgama tO 4:— 07 PPy Sintaty e
Teking double generating functions in (7.8) yields

P(riy) = 2 p o ¥ 7 = pP () Ply) + aB,(x) Plxy) + o7y (xy)
k,n
+ qT,(x)
so that upon rearrangement

pT, (xy) + qT,(x)

(7.9)  P(xs¥) = 5y Ty ) + qUi=x) T,(x)
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If Nn/n is to have a limiting distribution, it is necessary

Z E(YNn) zns
n

for the first two moments to converge. Since P(x,y)

this implies that

(7.10) E%?Q

it

lim E(Nn/n) ’

- n___a
= % E(Nn) X ( 5 where «

=1 1=x) n-rco
and also that
ang 3y) n 28 N2
(7.11) 32‘ = Z E(Nf1 - Nn) X o~ 3 where g = lim E((-;) Do
ay y= n (1<) nw

(Above, and throughout this section, A(x) ~ B(x) means that

lim A(x)/B(x) = 1.) To see what this means for the generating functiona,
x>}=-
we can find the left hand side of (7.10) and (7.11) directly from (7.9).

A straightforward computation ylelds

Ty (x)
w1 PHE X
. ) p(i-x) Tj(x) 5 _ 5
(7.12) 3;1?. 57, T qu(;)- =¥, where B =Y(l-a) +a" .,

Now a degenerate distribution results if a =0 or 1, or, if this is not
the case, if ¥ = 0. Therefore assume that 0 < a < 1, and that 0 < ¥ .

Then by means of (7.12), (7.13) may be reexpressed as

(-x) Mx) 4
T1(x) T a

(7.14)  1im =1=-4, § <1,

x] -

We shall show that (7.12) and (7.14) are sufficient as well as necessary

for (7.2) to hold for a non-degenerate distribution V(t).



Now {7.14) is the same as

(1=x) FI(x)

lin -
x->]= 1 = F.‘(xs =4,

so that by corollary 4.2 we have

(7.15) 1-F (x) = (1-9:)8 L(1/(1=x)), where I is slowly varying.

Using (7.12), it also follows that

(7.16) 1 = - F, (x) = - = o(x) (1-::)8 L(1/(1-x)), where c(x)*1 as x+,
From these two equatlon, using corollary 4.2 and the faet that
F(x) = PF, (x) + sz(x), the necessity of (7.4) mey be seen.

After this preparation, the method of sec. 2 can be applied.

To do so, it is necessary to evaluste

111;1 (1=x) Z E(exp(= 9\(1~x)N )) %7 = 111;1 (1=x) P(xyexp(~ A{1=x)))
b g L4 b ad B

= g(A), say.

But upon substitution of (7.15) and (7.16) into (7.9) there results

(7.07) (1) Plxye” A I%)) <

(1‘!!3*(1_x)k)8-1 L{ _,}1_5[)‘\ ) + _"' c(x) (1"3)5‘1 L("L"

1-xe

(1™ NS (L) + 2 o) ) (= 1)
-Xe

Using the slowly varying property of L{u) and the fact that

-(1=x)A

1 = xe ~ (1=x) (1+A), taking limite in (7.17) yields
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) A+ f 4 1-_‘_!-_2
7.18 = —
(18] BA) = T

which is analytic at A = Q, and so may be expressed there by

<0

(7.19)  g(M) =3 o AF.

k=0

From (2.,10) applied to the present case, it follows that

(7.20)  (1=x) 3~ B(Y) = ~ (=1 o k1/(1x) .
n

Karamata's Tauberian theorem (in its customary form) applies since Nn
is & non-decreasing random variable, and yields

(7.21) lim E((Nn/n)k) = (-1)F o -
n-»ee

Each Nn/n is a random variable taking only values between 0 and 1, and
we have just shown that each moment converges. Therefore the icﬂ's must
form the moment sequence for a distribution to which the distribution of
Nn/h cOnverges.

Little remains to complete the proof of the thecrem. We have
shown the necessity (for (7.2)) of (7.3) and (7.4)s and the sufficiency
of (7.3) and (7.14). However, (7.3) implies (7.12), and (7.12) together
with (7.4), corollary 4.2, and the relation F = pFy + qF, imply (7.14),

80 that the conditions of the theorem are also sufficient. Next, we
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observe that the assumption (which was used in writing (7.8)) that state O
does not repeat itpelf ias superfluous. For, provided §#1, (7+4) 3implies
that the expected value of the recurrence time for state 0 is infinite,
and therefore the fraction of the time, up to time n, during which the pro—
cess 38 in atate O approaches O with probability one, Therefore the altered
process obtalined by deleting all repetitions of the state O has the same
limiting behavier for Nn/n as does the original process, and the result
we have derived may be applied to it. (For the same reasom, if § # 1 +the
convention used for the state ¢ in the definition of Nn could be dropped
and N simply defined as the ocoupation time of the positive half=line.)
Finally, we must examine the previously excluded cases which
lead to trivial distributions. If a =1 and (7.4) holds for some § ,
the argoment leading to (7.18) is valid, and (7.21) states that all moments
converge to 1 so that N /o =1 4in distribution. If e = 0, by the same
nethod we can see that the relative ccoupation time of the negative halfw
line aspproaches 1 and therefore Hn/n c-1*'0.\ The remaining case is when
a#0y,1and § = 13 this occurs in particular when the recurrence time
is finite. Hers (7.18) still holds, and the moments of Nn/n turn out
to be the powers of a , so that for this case, Nh/n 4 0. {If o #F 0y1
and § = 0, all the moments are a, so that the limiting distribution
Fa’o(t) has mass o at t =1, and mass 1-¢ at t =0.) The proof
of theorem 7.1 is now complete.
It is poasible to cbtain Fa,g (t) itself in certain cases.
Ilet o =1/2 (as in the case of a process symmetric about 0), If also

d = 1/24 as for coin tosging, we have



g(A) = —L— =3 (W) 2k,
Ji + A k
But (-1)k (“;/2) are the moments of the classical arc-sirelaw. Nore

generally, if q&(t) are the generalized arc—sinelaws (2.7),

_2n"1 i+l
(7.22) sz’z_m(t)-jg (=177 Fy on(t)s
This fact follows from (7.18) upon repeatedly rationalizing the denom=-
inator until all radicals have been removed, and then recognizing the
quantities (-‘i)k (fs ) as the moments of Fb(t); we use the fact that
the moment problem on a finite interval has a unique solution.

It is interesting toc observe that this result is, like
Spitzer's theorem 2.3 on sums of random variables, a generalization of
the ordinary arc-sinelaw which holds for coin-tossing; the intersection
of the two theories is the class of recurrent processes consisting of
sums of independent, identically distributed random variables (apatial
homogeneity) which are also continuous at some point, and is therefore es-
gentially the case of coin~tossing. It also seems noteworthy that,
provided the expected value of Nn/n converges, the condition (7.4) for
a limiting distribution is again the condition which implies that for
the state 0, Yh/n and Hn/cn (for suitable constants cn) have limit
distributions, as we have seen in sec. 2 and sec, 5. In conclusion, we
obgerve that theorem 7.1 holds as well for non-real valued processes which
need not even be Markov, provided that there is a state, say "0V,
occupation of which by the process is a recurrent event, and which
divides the state-space of the process inteo two disjoint parts such that

the process can pass from one part to the other only by occupying state O.
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