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ABSTRACT

A theoretical analysig of the flow around slender blunt-nosed
bodies was made by applying the flow similarity concept to the hyper-
sonic small-disturbance equations. The flow field around a class of
bodieé of the form Ty x " exhibits a certain similarity in the sense
that the pressure, density and transverse velocity are described by
relations of the form Q(x, r)/Q(R) = f(r/R), where R is the distance
from the axis to the shock wave., This similarity holds when the
Mach number is infinitely large, and when the exponent in the equation
defining the body shapc lies in the range § <m g£ 1 for axially-syminetric
bodies and in the range 2/3 < m g 1 for two-dimensional bodies. For
large but finite Mach numbers a second approximation was obtained

2(1-m)/Mmz 52,

by expanding solutions in series of powers o x
An experimental investigation of the flow around "similar-
flow'" bodies of revolution was conducted at Mach number 7.7 in the
GALCIT hypersonic wind tunnel. The surface pressure distributions
agreed closely with the theoretical predictions, after a simplified
correction was made for the boundary-layer displacement effect.

The results indicated that the boundary layer interaction effect needs

a {further investigation.
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LIST OF SYMBOCLS

a specd of sound

ay coefficient in expression for shock shape
c, » specific heat at constant volume

CD drag coefficient, D/ (% Poo u.oo2 (T\’/4)k dl+k]
Cp pressure coefficient, (p - pw)/(% Peo umz)

d diameter, or thickness

b drag

).» energy

£, F, fl function of z appearing in expression for pressure

k geometric index, 0 for two-dimensional flow
1 for axially-symmetric flow

L body length
m
m exponent, NS
M Mach number
P pressure
18] any physical quantity
T distance normal to body axis or chord line (x~ axis)
R distance of shock wave from x- axis
Re;  Reynolds number, p_u L/Iuoo
s distance along body surface measured from forward
stagnation point

® 2k
g distorted distance = 3 PePe e ds

o ele’e
t time
T absolute temperature
u, v velocity components parallel and normal to x~ axis
x distance along body axis or chord line measured from forward

stagnation point
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Z f/z‘ixn

o exponent, (1 - m)/m

B shock wave angle

B pressure gradient parameter, %é ggf

1 ratio of specific heats

) thickness ratio of body; or shock shape parameter

6% viscous houndary layer displacement thickness

£ (/1) 2/ 2 62

e angle between x- axis and tangent to body surface; also flow
deflection

N semi-vertex angle of cone

o, shock wave angle

/.l viscosity coefficient

p density

¢ &.,9 functions of z appearing in expression for velocity

‘/‘, 5“, functions of z appearing in expression for density
w = (/T /T

{ )b quantity evaluated at body surface

( )e quantity evaluated at edge of boundary layer
{ )S quantity evaluated at shock wave

{ )oo quantity evaluated at free stream

O) non-dimensionalized quantity
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I. INTRODUCTION

The flow around a slender body traveling in a stream of a gas
at a uniform very high speed may be adequately described by the
hypersonic small disturbance theory. The basic idea of this approxi-
mation is that the flow perturbation along the siream caused by the
body is an order of magnitude smaller than that trangverse to the
stream, This fact may be deduced from a gtudy of shock wave
relations.

The relation between Mach number M, wave angle 3, and
deflection angle 9 for an oblique shock wave may be written in the

form

Y+ 1 2 sin fp sin 0

2 . 2
M~ sin ‘3-}.: > M m

>
For small values of @, and large values of M, such that Mé& ~ 1, @ is
also the same order of magnitude as 0 for a branch of the solution
usually called that for weak waves (the part of the shock polar curve

lying outside the sonic tirele), and hence the above relation reduces Lo

2 2
Mipt-1 = EEL Mg

or

The components u, v of the velocity behind the wave are related to the

upstream velocity u, by

2M” sin® p - 1)
(y + 1) M°

- = ] =




v 2(M> sin® 5 - 1)
u

= cot B
] (y + 1) M°

which, for small values of § and large values of M, reduce to

! 2 2 1
e T T ysr PoU )
v 2 1

_— T e— 1 -

o - oywr PUL o)

This clearly indicates that the perturbation u - uy is order of 92
while v is order of 9.

When the approximation based on this fact is introduced, the
equations of motion of an inviscid gas reduce to the equations of the
hypersonic small-disturbance theory, which are, as pointed out by
Hayesl, identical with the equations of unsteady motion in the transverse
plane., Although the equations are very much simplified, they are still
uonlinear and, in geaeral, caunnt he solvel,

Co»le2 applied an expansion in powers of (y - 1)/( ¥ + 1) to these
equations and obtained a general solution of the first approximation,
which is valid when (Y - 1)/ jy+ 1) is small and (¥ + 1974 [( Y - 1) }Mm2 GZJ
is order of unity or smaller., In particular the formula for the surface
pressure distribution agrees with the Newtonian formulaB’ 4 which
includes the centrifugal force correction,

As Leess’ 6 pointed out, for a class of slender blunt-nosed
bodies of the form Ty %" in hypersonic stream, the flow field exhibits
similarity of the type originally found by G. L Taylor7 in his analysis
of a constant-energy flow behind an intense spherical shock wave. In

Taylor's analysis, the pressure, density, and transverse velocity are



described by relations of the form
Qr)/QR) = £(r/R)

This similarity holds only in the intermediate zone not too close to the
origin, yet not so far away that the shock strength has decayed to a
level where the strong shock approximations are no longer applicable.
For bodies of the form Ty xm, the flow in a transverse plane is analogous
to flow generated by an expanding cylinder (rbm tm) or a moving plane
wall in tae two-dimensional case.

This similitude reduces the partial differential equations of the
hypersonic small disturbance theory to a system of non~linear ordinary
differential equations which is capable of solution by numerical methods
of integration. A detailed analysis of the equations in Part II shows
that, for the similar flow to exist, the exponent m of Ty =™ must lie
in the range 2/3 <im f 1 for two-dimensional bodies, and in the range
F<m S for a.ﬁally- symmetric bodies.

To extend the solution for similar flow bodies to large but finite
Mach numbers, the pressure, densily, and transverse velocity are

expanded in series of the form

o0
Q(x, r) — ’ 2 2.n
58‘;—:;— = q, (r/R )/ % RYY)
n=0

where Ro(x) is the shock wave shape from the first approximation.

8,9

Sakurai ’ ” analyzed not-so~strong blast waves by constructing solutions

in series of similar form. This analysis may be carried out for any
value of y , and the solution serves to investigate the dependence of

flow fields on the values of Y-

The Newtonian flow theory and the similar flow theory for



Hpower! bodies give the surface pressure depending only on the local
body slope. A solution of this form is obviously not applicable on the
afterbody of a blunt-noged cylinder in axially-symmetric flow, since it
gives Cp = 0 on the afterbody, On these bodies, the drag is concen~
trated at the nose, and the flow in a transverse plane behind the nose
resembles the flow generated by the explosion of a long, highly con-
centrated cylindrical charge. 5. C, Linm, hy extending Taylor's
analysis to the case of a cylindrical blast wave, found that, in this

case, the radius of the shock wdve is given by
V/4 (172
R~ (E/p )% 1Y

Hence by identifying the time with x/ u and the energy of explosion
with the nose drag, ine shock shape for a blunt-nosed cylinder is

descrihbed by

R ~ (D/p )¢ (/u )/
or

R/d ~ (Cp )M w/at/?
N
and the pressure on the afterbody is given by
p/(d by, v, ) ~ (Cp )P Gy
PIa Py Y DN -

This analogy is readily extended to a flat-plate with blunt leading
edge at zero angle of attack., In this case, the analogy with the plane

blast wave analyzed by Saku1'ai8’ ? gives

R/ W(CDN)1/3 (x/a)2/3



p/(3 b v, %)~ (CDN)Z/ 3w

This particular analogy was also noticed by Cheng and Pallone. H

" In Part II, the equations of motion are analyzed in detail for
both classes of flow, Ii iz zZown that the constant-energy solution
is a singular limit of the solution for bodies of the form r, ~ ™ as
m — 2/3 in two-dimensional flow and m — 1/2 in axially-symmetric
flow.

Since no measurements were available for these classes of
bodies at hypersonic speeds, an ex,périmental investigation was
carried out in the GALCIT M = 7.8 wind tunnel to check the accuracy
and limitations of theoretical analysegand to study what parameters
are important in determining the flow field.

The surface pressure distributions on, and the shock waves
and the impact pressure profiles about a hemisphere-cylinder,
"3/4-power" bodies, "2/3~power' bodies, and “'1/2-power' bodies of
revolution were measured, and profiles of static pressure, density,
and velocity, etc. were computed from the mcasured data.

The description and results of the experiment are presented

in Part III



1I. THEORETICAL INVESTIGATION

A. Equations of Hypersonic Small Disturbance Theory for Two-

Dimensional and Axially-Symmetric Flow

Consider a slender body placed in a steady uniform strcam of
an inviseid gas. As shown in the introduction, when Mo0 >>1, 6<<«1

such that Moo ) i 1, the flow perturbations are
(um2 )/ u ~ 5 and viu ~ &
T 90 W

and

2 .2
p/p,~ M " b

where § is the parameter determining the order of magnitude of the
flow deflection angle in the disturbed region. For "power' bodies of

finite length, & is chosen to be r, /L or (rb/L)/(x/L)m, and in the
max

"constant-energy' case, § = (R/d)/(x/d)z/(ff"i'k} )

For m <1, however,
the flow deflection angle is much larger than § near the nose of the
body, and the small-disturbance assumption is not fulfilled in the nose
region, On the other hand, far downstream {rom the body, the flow
deilection approaches zero because of the decay of the shock wave,
and the assumption (Mach number)} x (deflection) > 1 is violated.
Hence, the hypersonic small disturbance theory is valid only in some
intermediate zone, and not uniformly valid throughout the region
except for the case m = 1 (cone and wedge).

The consideration of the order of magnitude of perturbations

suggests the following change of variables:



X = x/L, T=r/(L§)

T o= (u-ug/le, 89, T = v/ 6)
P = »/ sz P, 6%, 7= o/py,
R(®) = R(=)/(L8), Ty,(x) = ry(x)/(L8)

When this transformation of variables is introduced into the full
equations of motion of an inviscid gas, and terms which contain 62

explicitly are discarded, the differential equations reduce to

x- momentum fJ' (% v ;——g) + %_F- =0
continuity 4;—):: + %}%\_f k f’,:l: =0
I=- nlomenturﬁ ﬁ -a—V—- + i’- ?—V 3__P_ = 0
ax Y aF) T 3F T
eneryy (53—)-(: +V :_f) (/g-’) =(

where k = 0 for two=-dimensional flow and k = 1 for axially-symmetric

flow. The boundary conditions become

tangency Vo= %
upstream U=v =20
P= L AyM 5%
y

and the conditions at the shock become



_ 2 R* - I ME 8y

velocit =
: y Vs Y+ R—/Z

 pressure /_@ = (ﬁ/z Ll >

b’+ { ZyMES®
_.,2
- R
density L= ;fj—; ~ > 7
R+ 57 mMZs®

A significant feature of the reduced equations is that the axial
velocity U is absent from the equations governing ¥, p, and p. After

v, p, and —‘; are obtained, u can be determined from Bernoulli's equation

¥ _ /
Y-1 p Y-1 MiS8*?

=~

—2

= 4

W+ = +
2

As pointed out by Hayesl, if X/U’oo is identified with time, these equations

of motion are exé.ctly those of unsteady flow in the transverse plane.

B. First Approximation; Similar Flow

1. Similar Flow Field

A solution of the hypersonic small disturbance equations is

sought which exhibits flow similarity in the sense that

WE ) = V(R @(a)
BET) = D& f(2)
PE T = B (D 4(a)

where z = r/R.

2

By utilizing the above expressions, the operator 2 + v 50

ox



which appears in the differential equations of motion, becomes

9 R' Vs 0 e L . .
— t — ( — g - z) == . Therefore, if the similar solution is
R ® o

to exist, ?S/K' must be independent of x..  From the shock relation,

this condition is satisfied either when

M —sx {1
]

or when R'= const. (wedge or cone) for arbitrary M.

For MOG —s= o0, the flow variables become

VE V) = - B @¢la) = B @B

BE T) = oy K% . f(2)= R @ F (2)

2z

and the equations of motion become

Coutinuity
'%[(é—z) ¢+ vk “;—E] ~0

Momentum

(Sﬁ“Z)@,‘f“g + RR 5 ~p

Energy

(& —z)(—;—;—’ ~ ¥ -;f-,}+ Z F_i” =0
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Hence the assumption of flow similarity is satisfied when
—Rﬁ”/f{‘z = const, = -a, oOr
R' = const. = A, andhence R = (A/m)x (II)

where m = 1/{(1 + a).

Also the boundary condition on the body requires

ry v X (III)

and the shock wave and the body shape are similar,
When the conditions (I), (II), and (III) are satisfied, the flow
field in a transverse plane is governed by the following set of ordinary,

non-linear, first-order differential equations:

"MContinuity"

(B-m9’+ 93 +x 22 o o (1)
"Momentum'"

(2-20¢ + F'/gp -ad = 0 (2)
"Energy'"

(8 -2 [P/ - g (#/9)] -2 = 0 (3)

where ¢ = (1/m) - 1.

The conditions at the shock become



i1

2
O i MR R (4)
and the boundary condition on the body becomes
$(z) = = (5)

2. Drag and Energy

Consider a symmetric body at zero angle of attack in a uniform

flow, and take a volume enclosed by a surface shown in the sketch.

Shock Wave

~r——————=

<

If_-‘ u, P, p
u

|

o) Body Surface
| | Body
|

POO | R rb

Peo

N R —

e x .

For steady flow, the momentum of the gas in the volume remains un-
changed with time. Hence by Newton's second law applied to the

axial component of the momentum and force

R
R I
2% Puzf‘kdr—— 2R RH/‘;U,:
n f+
R
£ k+i
'3 R Rz
= ~Dx)-z2n®| priar + 2T " p
f, k+/

where D(x) is the drag acting on the hody. Rearranging terms and using

the integral form of the coniinuity of mass
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one obtains

R

, k k 2 k-1
D(x) = -2« / [p+ pu(u—um)} r dr + k:l R P (6)

r

b

For inviscid flow, the conservation of energy gives

R R
*
27rk[ Pll[—zl,—(uz+ vz) +cVT] rkdr + anqur dr
%

By utilizing the continuity of mass, this may be written as

R

& £ K gl
-2 am/r[/o(u-u,)+,b]rdr+ %R B, 4y
b

R
L4
= erk/ Pa(—zl- v2+C‘,,T+ ki(u-am)jrkdr
%

R
% k LA 2
+2ﬂj?(u-u¢,)r dr _%R Lo 4 Sy T
%

Therefore, by combining the equations (6) and (7),
*

R
k
D)= 277.} Py [-z—’v2+ c,T+z—’(u—u‘,)z] r dr

b
R
® & ® bt
2w 2n (7)
. 2T frf(u-um)f dr - ZR BT
b



13

When the hypersonic small disturbance approximation is introduced,

the last formula becormes

b K+ -
D(x)-zzr‘;g, 21’“’6‘3* R /(-21-]}72 Y—/—p)z dz (8)
24

in the limit of MQO - w0 .

It is interesting to note that in this approximation the cnergy
of the transverse flow is the drag acting on the body from the nose to
that transverse plane.

Since the drag is also given by

3+k
Dix) = 2x%p, 4 1%8 fg 4k ; 7%
¢

the rate of increase of drag with = is

k 2 _k 34k k

In terms of similarity variables, eq. (8) becomes

%-
Lh/ gk Z[R(x)]H 2 (3"¢§2+’_f/ )zkdz (10)

Zy

D)= Zz/:o”

where A = K*. R' = const. for similar flow.

Evidently from eq. (10) the drag is constant when 2a = 1 + k
or m = 2/(3+k), and by eq. (9) vy = 0 everywhere except right at the
nose, This corresponds to the case of a blunt-nose followed by &

cylindrical or flat-plate afterbody, and for two-dimensional flow
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m= 2/3 and Ra XZ/S, and for axially-syminetric flow m = + and
1

R~x?. When 2a <1+ k, or m > 2/(3+k), then dD/dx > 0, and
vy >0, 2y, > 0; and similar solutions exist, if at all, only for these
values of m.

For this constant-drag case, eq. (10) becomes
% & 2! z 4 %
= 2 4 /
D= 27:;;”% [R /Q(X)] /(z(/fé +}-_7F) Zdz
0

Hence, this case is analogous to the constant-energy flow behind a
blast-wave produced by a strong explosion if the energy E of the
explosion is identified with the drag D/Zl-k and the time t is

identified with x/ u -

In this case the shock shape is described by

/ 2
2 Vol 3+K 3+
5 _ .[(3+k) 0 ] (x) an

22% Itk y) .

and the pressure on the afterbody, not too close to the nose, is given

by
&
z % S
_'E — a’/',,2 4 (3+k) C.D ] F(O}(—x") (12)
(" T (kP | 47 I(ky) o
where
Gy D

£ p Ul (r/a)* 4%
d = nose diameter, or thickness of blunt leading-edge

!
and _Z(*ij}:/(-é—sbéz+ x,TI/F)Z/(dZ
[
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As the study of the mathematical properties of the solution
shows (Section 2), the special constant~-drag solution with m = 2/(3+k)
is a singular limit of solutions for bodies of the form rbrvxm. The
similar-flow solution yields a shock wave that lies farther and farther
away from the body surface as m tends to 2/(3+k), and the small
disturbance approximation must become poorer as this critical value

of m: is approached.

3. Mathematical Study of Similarity Solution

The criterion m 2 2/(3+k) is a necessary condition for the
existence of a similarity solution, but a study of the mathematical
properties of the equations of motion is required to determine whether
this cbndition is also a sufficient one.

Since Eqgs. (1), (2), and (3) are invariant under the transformation
(—>ad, z—»az, F—;—az F, ¥ —» ¢ ), these equations are
reducible to a single non-linear first-order equation in the new variables
t = d®/dz and s = $/z. This reduction is accomplished by first
eliminating F' and ¢' to obtain the relation

2a - kys + as(i-s)Z°4F

t = .
Y - C1-35)%2%4/F (13)

The quantity ¢/F is then eliminated by differentiating Eq. (13) and

utilizing Eqs. (2), (3), and (14). By employing the identity

z% = (t—s)d%- (14)
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the following equation is finally obtained

dt _ N(s,t) 15
ds C1-5){ays +(i-5)(2a - kys)](5-¢) vl

where

NG, t)= (yt-2a +4qs){(3+ /)(1—5)t2+ [(d]«f- 3x4+2)s -(3a+2)
+ k(x-r)(t-s)s]t-a:(2¢+ 1S+ k&(g-l)sz}

~4y(iI-5) [( [-5)t +as](s-t)

At the shock wave z= 1, = F = 2/(y+ 1), ¥ = (3+ 1)/(y- 1).

Hence, from eq. (14), the shock wave corresponds to

_ _ 2
$=8/2 = 25
(16)
. o _ 4y
L= T TR GeR

in the s ~ t plane.

At the body surface £ = z,

s= 1

for 2a <1+ k (17)
t= Zu/z‘ -k

For the case 2a = 1 + k, both ¢ and z approach zero, and hence

s —tnear z = 0. Therefore,

s=t=1/y for 2o=1+k (17a)

Except for the special case 2a = 1 + k, near the body

=2+ (E-4)(z-2)+ ..
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and from eq. (1)

ar n
4 = const. (z - zb)
where

f e e _ Z2(-m)
(1+K)y -2& m[C+k)g+2] -2

Thus n must be positive if the density is to be finite at the surface, or

2 <

=
2+ (1 + Ky B

i

I

In fact the density is zero at the surface, exactly as in Taylor's case,
unless m takes one of these extreme values in which case the density
has non-zero value on the body. But for any real gas the lower limit
is always less than or equal to the value 2/(3 + k) imposed by the
drag considerations (Article 2), so that actually m is confined to the
range 2/(3 + k) S m < 1 for a body with a positive slope.

For two-dimensional flow k = 0%

dt N(s,t)

ds — @ (r-s5)[1-(2-5)s](t-5) (15a)

N(st)= (yt-2a) {(gu)c/-5)t2+[(ax+3a+2)5-(3mz)_]t - au(2w+1)s}

= y(y+1) (t- —‘%—5)(1-5)[1:- t,(s))[t- ta (5]

where t = tl(s) and t = ty(s) are the upper and lower branches of the

curve defined by the relation

* The analysis for axially-symmetric flow is similar, but
the algebra is more extensive.
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(3+1) -2+ [(@y+3a+2)5 =~ (3a+2)] ¢ - a(2a+1)5 =0

and
za . 2
t,(5) > 5 > tz(S) for 0 <3< land a< 2—_—?—

There are nine singular points of Eq. (15a), but only four of these are
relevant to the present discussion. These four singular points are

(Figure 7):

(1) s=1, t= 2a/y , a node (point B)
(2) s=t=2a/y , a saddle puint (point A)
(3) s=1, t=(1+ za)}x (point C), a node when
a > (g - 1)/2, or a saddle point wher a < (¥ - 1)/2
(4) s=t= 2(1 + cx.)/(g 4+ 1), a saddle point when

o> (%~ 1)/2, or a node when a < (¥ - 1)/2

In the region s b3 I, ¢t :=> &u/y the slope dt/ds is negative below the
line t = s, while above this line dt/ds is positive, provided that t < t,(8).
Along the line t = s the slope dt/ds is infinite, except at ihe saddle
point A, and the integral curves must behave as shown in Figure 7.
Every integral curve contained in the "triangular! region ABC passes
through the body surface point, and the shock point s = 2/(3' + 1),
t= 6a/(y + 1) lies within this region so long as a < 3; therefore,
analytic solutions exist in the s-t plane for 0 <a < 3. The fact that
dt/ds becomes infinite at t = ¢ for 1/3 < o < % does not lead to any
singularity in the physical plane.

To summarize: similarity solutions exist in the entire range
2/3 <m =1 for axially-symmetric flows., From the present point of

view the constant-drag (or emergy) solution m = 2/(3 + k) is a singular
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solution passing through the saddle point (Figure 7 .) with a slope
d$/dz =t = 1/3 at s = 1/§ .

Included within the admissible range of values of my are of
course the wedge and cone (m = 1), and also the '"hypersonic optimum
shape!! T, x3‘/4, or body of revolution of minimum zero-lift drag
for a given slenderness ratio, as determined from Newtonian imipact
theory,neglecting centrifugal force,by Eggers, Dennis, and Resnikofflz.
J. D. Cole2 obtained m = 2/3 for this optimum shape by including centri-
fugal force. For two-dimensional flow Cole obtained an optimum

ghape with m = 0.87; both of his cases also lie within the similar flow

range.

4. Solution for Constant-Energy Case

1 _—
For the case of a strong spherical blast wave Latter 3 ohbiained
the solution in a closed form. This result can be extended to include
axially-symmetric and two-dimensional flow,

For this case, a = (k+ 1)/2 and the equations become

(8- 28" + (F/g) - (x+1)/2 &= 0 (18)
($-21¢'+¢& + k($¥z) = 0 (19)
(g-2(5F - g% ) -+l = 0 (20)

where the prime indicates differentiation with respect to . Eq. (20)

may be rewritten with the help of eq. (19) as

(& -2 (F/F)+ §($'+k 2 ) - k+1) = 0 (20")

By multiplying eq. (18) by z ¥ &, eq. (19) by z°& °/2 and adding the
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results, one obtains

k 2,71 k
Lz (§-z)</’§/2] + z &F' = 0 .
By multiplying eq. (20') by sz and rearranging terms, one also
obtains
[“(8-2F] + 3-DF@=3) = o .
By adding the two results, one obtains finally

2 ’
[zk{(é—z)(xﬁf—F-!-%Zé )+ *2} ] = o

which can be integrated readily and upon determination of the integration

constant by the condition at the shock

{f = F = 2/(3+1), %= (g+ 1)/(§-1) at z= 1} yields

2

By putting 2a = 1 + k in eq. (14), one obtains

(k+ 1) z-9k® + Lk+ 1) z&(z -8) ¥/F
2]y -(z-2)° ¢/F}

$' =
From eq. (21)

1/’/F = 2 - 2
(Z'é) é (1__1)é2

Hence, finally

201004 -1) 28° - ky (g1 - (ke 1)(am ) 2%
2 {3(4-18° - 23-1)(z-2) @ +2(=-%)"}

él

lLett= &' and s =&/z, and then



21

~ky(4 -1) 5° + (k1)(29 1) s> - (k1) s
4 (7+1) s2 - 2(y+1) s+ 2

Also
dz/ds = z/(t-s)
or

log =z ds/s~t)

i

S

After the integration, the result is in a parametric form

q
g+l n [+l Pro(q+1){x3 - [(1+K)7 +(1-K)] s}
z = (F5—s) [ﬁ(”'“] [ 1F 3K+ (I-K)y ]
é‘= SZ
for 1/-/§s§,)(§l L (22)
where
n = -2/(3+k), p=(y-1)/(27-1+k),
_ (5+2ktk%) 72 + (142k = 3k%)7 ~4(1-Kk°)
17 7 Grzy -7 [(+K) g #1-K]J /

By dividing eq. (19) by -¥($-2z)/(7-1) and eq. (20') by (& -z)
and adding the results, one obtains
FY/F - (4-1) ¢'/¢ +(#'-1)/(&-2) + Kz = 0

which yields after determining the integration constant by the con-

dition at z = 1%

* Also in general case, an integral of this form may be obtained
which reads

zak 22 _(y- ) y, g
z TN E(z-5)" %y = 2(y-1)/(7+1)
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y ~(
zZ F(z-9) ¥ = 2(1—/)1/(74-/)'/“ (23)

From egs. (13) and (15)

1 _ ; 3
F = [z’(w-/)] 27 (78-2)"" ] z-7
(1_*,)1” zk (Z"‘ é)féz(f"’)

}(24)

A1y !

40r-0) | 2T [ IE-Z ] z-f
z

Y =
re0)7t! “z-3)% $*

Thus F and ¥ are expressed in terms of z and €, and the solution

is completed.

5. Solutions by Numerical Integration

For the cases other than the constant-energy case, the
solutions were obtained by integrating thbe equations in the physical
plane rather than in the s - t plane.

Equations (1), (2), and (3) are integrated by means of a numerical
method. The procedure is to start the‘ integration from the shock
wave where @ , F, and ¢ are known and integrate numerically towards
small values-of z. Near the body sﬁrface, a singular point of the
equations, power series representations of the golution are matched to the
numerical solution at some value of z close to Zpye

The results of integration for the axially symmetric case are shown
in Figures 9 through 13 together with results from Cole'sZ approxi-
mation for comparison.

Similarity solutions give the surface pressure distribution as



_ ZF'(Zb) 202 X 2(m-1)
Cp = z m=§ (L )
or
S 2F(Z) (25)
(5 /dx )? zf

As shown in Figure 13, the result from Cole's Newtonian flow theoryz
agrees fairly well with the more exact present solution when m is
close to unity, but the agreement becomes poorer as m approaches the
critical value of 3. Cole's result for the surface pressure in first

approximation is

_ dp)* 2 4%
c,,_z( L 4 dhB

—

ax) T wgh d x?

which is identical with Busemann's expression. But the first term
implies that ¢ ¥ 1 and that the shock wave coincides with the body
surface. Actually for 9 pot too close to unity the inclination of the shock
with respect to the body surface ig responsible for an increase in
surface pressure that almost counterbalances the "relieving'' effect

of the centrifugal force term,

The tangent~cone (or wedge) approximation replaces ZF(zb)/zbZ,
which varies with m, by the value at m = 1 for all m's, and for these
bodies it overestimates the pressure by an appreciable amount.
However, the variation of this parameter with m is rather slow, and
for bodies slightly different from rbmxm it may be possible to approxi-
mate the pressure distribution by the formula CP = (ZF/zbz)(drb/dx)z,
using the actual body slope and the value of 2]5‘/zb2 at some average
value of m. This approximation is used later to estimate the effect
of the boundary layer on the surface pressure distributions on similar-

flow bedies.
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C. Successive Approximations

l. Expangion Procedure

In the similarity solution of the previous section, Mach number
was assumed to be infinitely large. When Mach number is not infinite,
the examination of the shock relations suggest a scheme of expansion,

For example, the density ratio across the shock

__8___ 7""’ / -_z_ﬁ /
Lo  T-1 [+N 7-1 ME R

may be expanded as

@
LA A 2 (_/)"N" when N >1.

foo Y1 peo

This fact suggests an expansion of the form

)1'1

L]
Qx,r) = Q(R) Z o, (+/R)/(M_° R1?
n=0

In fact, Sakuraig’ ?

used this form of expansion in hig analysis of
constant-energy flow produced by a blast wave.

In the case of "power'" bodies, however, this form of expansion
will result in some difficulty, since the body surface is not given by
r/R = constant in the higher approximations, and since the solutions
of the first approximation have singularities at the body surface. In
order to avoid this difficulty, the physical quantities are expanded

in inverse powers of M2 RO'Z, where Ro(x) is the shock shape obtained

from the first approximation. The coefficients of the series are

functions of T/RO, so that the body surface is always given by r/R0 = const,
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The transverse velocity, pressure and density are expanded in the

following series:

]

FET) = mEet 3 ~’,Pi(z)£i
i

2 22(m=1)

N

BET) S ot (=g
1

p(x, T)

5 Yme
1

The shock wave shape is expanded as

RF = 8 2 aifl, a =1
i

- 2 2
where z = r/x " and & = <2 m)/Mm 6 .
By substituting these expressions into the hypersonic small
disturbance equations of motion, and equating the sum of coefficients

of powers of & to zero separaiely, one obtains a sequence of equations

for (¢, £, % L (P £, #4)s « + o ooy Where &, £, ¢ are

o

identical with ¢, F, ¥ studied previously, and the equations of
higher approximations are linear.

The conditions at the shock are satisfied approximately by ex-
panding physical quantities about the shock location of the first approxi-

mation Mco ~—2> 0. For example

7(R)= i7(R,) +(5¥)@(E"@)+-'~
/

= m 3z (B +{BU +BLI}E ]

3

On the shock, on the other hand,

= 2 4= 1
V(R)= ;7;7(1‘? - Wg)



20

Hence

%(1) =

\*
It\a

L)+ a, @) = r_ff[(ﬂé—/)“""}%]

The tangency condition on the body becomes

Sﬂo (Zb) = 4y

P (z) = 0, i

1y

2. Second Approximation

The equations for the second approximation are

Continuity

ATCE Z) % (-‘fﬂ-?)&g»t[z.:r—(sg-z)%

Momentum

1750 L (£t L) g ry(n+h B

The conditions at the shock are as follows:

L (26)
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P(1)= __5"_.{-(/+a)2+ a {/+2’cz- _72"1 93'(/)”

I O ol 2 ALY ,
ﬁ(l) = Py [ 27({4-4) +a.,{2+4—¢t 2 'ﬁ,(l)}] > (27)
/ 2 s
%)= - 2 L2 (1+af'~a, 70
where a = (1-m)/m as before. On the body
ql(zb) = 0 (28)

The conditions at the shock ¢ontain an unknown constant 245
and the differential equations can not be integrated directly by a

numerical method. An obvious method ig to integrate the equations

by assuming several values of a, and to obtaln the value of a,

satisfying the boundary conditions. However, as Sakuraig noted,

since the equations are linear with respect to the functions to be

solved, %, £ 1/’1 may be split into two parts as

¢

$ =7 w2 g

- (1) . . (2)
£,0=2 70 v

H

1 2
% ¥ v ey,

Then the differential equations satisfied by Cfl(}'), fl(l), Vl(l) and

901(2), fl(a), "7"1(2) are identical with the original equations 26, with

the conditions at z = 1
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.
AL 7{._1_ (1+a)°
.- )E';Jrli) 1+ ( (292)
(i) _, _ 2(+l) 2
1 = (7—_1;2— (l + ﬂ) )
and
\
601(2) = 7 f I (1 + 2a) - ?0'
54 - .7—%_ (1+ 20) - £’ > (29b)
(2) )
wl -7 y’o )

After these two sets of functions are obtained, a, is determined by the

boundary condition on the body

?l(zb) = ¢l(l) (Zb) + al 5"1(2) (Zb) = 0

Numerical integrations have been carried out for axially-
symmetrical flow with 7 = 5/3, 1.4, 1.15, and m = %, 4/7, 2/3, 3/4,
and 1, The results are tabulated in Table L

For bodies of revolution rb/L = 5(x/L)", the formula for

shock location is

R _ _1_[’+ a,?-'bz Lz(l-m)J
MF§* L

r,<x) Z,
and the surface pressure coefficient is given by

¢ 2 Fz) z? (x/L )™
= + —L e I my ) - | 1
(dty /dx)* z? m*yF(%) { 7 } ME §* J

For example, the sormulas for shock location and pressure

coefficient on the surface of a cone are,up to the second approximation:
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0.332

QW/QC = 1,092 (L + )
M 4]
w C
2 0,402
CP/GC = 2,090 + W
w

The present result is compared with that from a numsrical integrational

of the exact equations for flow around a cone | Tahle II}. It is seen
that the present approximation agrees very well with the exact value
for M tan QC > 1.

According to the first approximation of Cole's Newtonian
flow theory, the shock location for bodies of revolution

rb/L = 6(x/L)™ is given by

1
B-(-E;-l) = l+ 1"}- £33 j dY
r, (x +1 I-m — - 3ru=1\ (T=m)/m
’ ’ o <Y+ J )Y
+ log [2111/(31—;1—1)] (X/L)Z(l—-rn)
m(l"m) ° i yJ
Muo 5

This result is compared with the present solution in the following table.

(7x 1, 40)

Present Approximation Cole's 1st Approximation
m A B A B
1 1. 092 0.332 1. 083 0.461
3/4 1. 143 0.518 i.123 0. 8606
2/3 1.192 0. 558 1. 202 1. 077
4/7 1,379 0,457 1. 439 1.333

where

i

R(x)/7p () A [1 + B (x/L)Z(l'm)/Mooz 5%
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The agreement between the present results and Cole's first
approxXimation ig fair for m closge to unity, but it becomes poorer
as m decreascs., However, the agreement would be impr'oved if
Cole's calculation were carried out further to include terms of higher

powers of (o =1)/(q +1).
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I11I. EXPERIMENTAL STUDY

An experiment was conducted to determine the surface pressure
distribution, shock wave shape, and flow quantity profiles such as
static pressure and density profiles about simple bodies of revolution.
The tesls were designed to permit 2 check on the accuracy of the
predictions of the similarity solution developed in Part II

On these models the surface pressure distributions were
measured by means of small orificed distributed in the surface; the
shock wave shapes from schlieren photographs of the flow; fhe Lnpact
pressure profiles by means of a small ﬁrobe. The flow quantity
profiles were computed from the shock wave and impact pressure

data,

A. Description of the Fxperimoent

1. Models and Equipment

The experiment was conducted in the GALCIT hypersonic wind
tunnel leg no. 2, which ig of the contihuous-flow, closed-return type
using air as a working medium. A semi-flexible nozzle — golid throat
blocks and flexible~plate nozzle liners -— of five inches by six and a
half inches tesgt gection was installed in the circuit and adjusted to
produce uniform flow at Mach number 7.8 in the test section,* With
this nozzle in the circuit, the compressor plant supplied the maximum
reservoir presgsure of 350 psig at the maximum supply temperature of

800 deg. ¥. which is obtained by means of an electric resistance heater.

* The original nozzle used in the experiment was later replaced
by an improved nozzle,
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The reservoir pressure was held constant within T 0.04 pui
during the operation of the tunnel by means of a differential pressure
controller, The supply temperature was maintained within A 3 deg. B,
by means of a pneumatic controller, using standard thermocouple
input, regulating the power to the electric heater.

All tests were made with & reservoir pressure of 300 psig and
a supply temperature of 700 deg. F. Uunder this condition Mach number
and Reynolds number per inch in the test section were 7.7 and
1 .73 x 105, respectively, and a preliminary test showed that the air
was {ree of condensation in the test section, and that the static pressure
was constant withini 4 per cent along the centerline of the tunnel.

The stainless~gsteel hemisphere cylinder model was 10 in.
long and 0. 75 in. diameter, and was supported from the rear by a
sting of 0.5 inch diameter., For the measurement of the pressures
there were fiftecn orifices along the surface. Four orifices were
located at 45° from: the nose, spaced equally around the axis, on the
hemisphere cap, and these were used to align the model with the flow
direction.

The ""power-law" models were made of bragg, and their shape
and dimensions were

. ~ 3/4
(1) "3/4-power'" bodies, r/rmax = (x/L)

(l-a) r  =0.75in., L = 1.545 in.
max

(1-b) T onax 0.75 in,, L= 3,19 in,

. . . 2/3
T - faplt = (=

(2) "“2/3-power'" bodies, r/r ax’ (x/L)
(2-a) r ax = 0- 75 in,, L = 1,442 in,

(2-b) r___=0.75in., L= 3.19 in.

max
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(3) "1/2-power! bodies, r/r = (X//L.)]’/2

Indx
(3-a) r, ., =0.75in., L= 1,236 in,

{3~b) r = 0.75in., L= 3,19 in.

max

Pressure orifices of 0,013 in. diameter were located at distances of
every tenth of the total length from the nose. At the last station three
orifices were provided, equally spaced about the axis, for aligning
the model to the flow direction. Figure 14 shows the construction of
these models.

A tota]l pressure probe, of the type commonly used in boundary
layer sui-veys, with a frontal height of 0, 005 inch, was used in the survey
of the flow about the models.

The surface pressures weére measured by means of a multi-tube
vacuum-~referenced silicone oil rnanometer, The total pressures
were measured by a vacuum-referenced mercury micronmanometer,

The shock wave shapes were obtained from the schlieren
photographs of the flow by means of the Kodak Contour Projector optical

comparator,

2. Test Procedure

A preliminary test was made to determine the minimum supply
temperature for condensation-free flow in the test section. The test
consisted of measuring the impact pressure and the static pressure at
a fixed location as the supply temperature was varied. When the com-
ponents of the air condense, the static pressure increases above its
value without condensation, On the other hand, the imipact pressure

is affected litlle by the condensation. Therefore, when the Mach
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number computed from the ratio of the static pressure to the reservoir
pressure using the dry isentropic relation agrees with the Mach number
computed from the impact pressure and the reservoir pressure, it
is assumed that the air in the test section is in one phase. Thus it
was found that the minimum temperature was 700°F. at the supply
pressure of 315 psia. and Mach number 7.7 (Figure 15)., All sub-
sequent tests were made under these conditions,

All models were tested at zero yaw and positioned on the
tunnel axis, After the pressure leads were connected to the manometer,
the system wids tested for leaks. The tunnel was operated for at
least three hours to allow the equilibrium condition to establish before
taking readings. Surface pressure measurements were taken with a
model in three rotational positions 120° apart around the axis of
revolution and mean values were takeh to eliminate some of the effects
of the flow non=-uniformnity in the test section., The impact pressure
surveys were made in the plane normal to the axis of revolution at
stations 0.3, 0.5, 0.7, 0.9 of the total length from the nose of '"power
law'" models and at a station three diameters downstream from the

nose of the hemisphere-cylinder model,

3. Data Reduction

Because of the mounting mechanism employed, it was difficult
to align the model perfectly with the flow, and a correction was applied
to the surface pressure data in the following rmanner: By assuming
that the surface pressure is proportional to the square of the cosine
of the angle between the free stream direction and the normal to the

surface, the misalignment angle was computed from the three pressures

measured at the last station and the corrections of the order of 5 per
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cent were made accordingly to other pressure readings.

The shock wave coordinates were measuved from the schlieren
photographs of the flow by means of an optical comparator, The
accuracy of the instrument was within 0, 000} inch, and the repeata-
bility of the shock wave measurement was within 0,002 inch, depending
largely on the sharpness of the image. The coordinates of the body
profile were measured at the same time to check distortions of the
images and they were found to be not discernible within the accuracy
of measurement. From the measured coordinates the local inclination
of the shock wave and the local strength of the shock were computed.

In order to improve the accuracy of the results, the following procedure
was used: First, an analytic expression which fitted the shock shape
best was obtained by the least-square method, and the differences
between the measurement and the calculation were obtained and

plotted with ordinates stretched., A smooth curve was faired in the

last plot, and its slope was obtained graphically. The shock wave

slope was the sum of the slope computed from the best-fit analytical
expression and the small correction { ~10 per cent) obtained graphically,
It is believed that by thisz means the shock slope was computed within a
couple of per ceut.

From the impact pressure data and the shock strength, the flow

quantities were computed by the following method:
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Shock Wave

Stream Lines

: V, p
g
Body Surface
T

From the continuity of the mass flow

p.u_ . 2n RdR = pVcos 8. 27 rdr
o0 Y

and by rearranging the factors

ar  Fo Unm R/t

— e
-

R Sy a* (R/8,)(P/5,)(V/a*)cosb

where p/p_, V/a* are obiained by the isentropic relations using Mach
number computed from the ratio of the local impact pressure po' to

the local stagnation pressure Py From the measured shock shape,

the stagnation pressure P, was computed as a function of R. From the
survey of the flow in the transverse plane, po‘ was known as a function
of r, Since the flow direction immediately behind the shock was almost
equal to the slope of the body surface, the flow direction was assumed
to be constant from the body to the shock, Then, the above cquation
became the differential equation relating r and R.

The equation was integrated numerically step-by-step starting
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from the shock, where Py and M were known and alse r = R, In the
course of the integration the profiles of Mach number and stagnation
Pressure were obtained, from which other flow variables were com-

puted.

4. Discussion of Accuracy

The surface pressures were measured with less than one per
cent error,

The total pressure profile may contain errors due to {a) probe
location (b) probe error, The probe locations were accurate within
0.00} inch, Since the {flow behind the bow shock is not uniform, the
total pressure probe was not always perfectly aligned with the flow
direction. The misalignment was, however, not more than 50, and the
error caused by misalignment in the measurcd pressure was less than
0.5 per cent. 14 The probe errors due to velocity gradient and low
Reynolds number effect were very small except in viscous boundary
layers,

The errors contained in the computed profiles were difficult
10 egtimate quantitatively, since they were caused not only by errors
in the data from which the profiles were computed, but also by
the error of step-by~step integration., It is felt that the computed

protiles were accurate to within five per cent.

B. Results and Discussion

l. Hemisphere-Cylinder

The surface pressure distribution on the hemisphere-cylinder

model is presented in Figure 16 as a plot of P/Pmax versus s/d where



38

s is the length along the surface of the model measured from the axis

of synuumetry, and d is the diameter of the cylinder. Also plotted in

the figure are the modified Newtonian approximation and the Prandtl-
Meyer expansion over the hemispherical part and the pressure predicted
by the analogy with the axially~-symmetric blast wave theory,

8,9, 10

According to the blast wave theory , the surface pressure

on the cylindrical afierbody for Moo = 7.7, 7= 1.40 is given by

p/p, = 0.394/(x/d)

o0

in the first approximation, and by
p/p, = 0.394/(x/d)+ 0.405

in the second approximation. ? The slow decay of the pressure over
the afterbody is predicted closely by the second approximation.
For this case the shock wave shape given by the strong blast

wave theory is found to be for I\/I00 = 7.7, 9 = 1.4

1

R/d = 0,78 (x/d)
and the second approximation gives the result
1
R/d = 0.78 (x/d)? [1 + 0.027 (x/d)}

In Figure 17 these predicted shock shapes are compared with the
shock shape determined from schlieren photographs. Evidently the
local slope of the shock is closely reproduced by the blast wave
analogy; in fact the experimental and theoretical shock wave ordinates
differ by an alinost-constant amount of 0.3 d. A better agreement
between the theory and the experiment can be obtained by choosing

an "effective origin'' at about 0.5 diameter upstream of the stagnation
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point of the body. * A further study, however, is necessary to account
properly for the effect of the finite diameter of the body.

The modified Newtonian approximation C_/C = cos? @

Pma.x

predicts the pressure over the nose portion with good accuracy,

but starts deviating from the measured values as the junction of the
hemispherical nose and the cylindrical afterbody is approached. In
this region an attempt was made to predict the pressure by the
Prandtl-Meyer expansion dp/p= -(7 Mz/ )’_I\ZZ__T ) d8 matched to
the Newtonian approximation at the point where both the pressure and

the pressure gradient given by these two formulae are equal.

From the Newtonian approximation

2
P = (Pmax—*poo) cos 8 + Py

By differentiating with respect to 6

“dp/de = -2 (Prrax pw) cos @ sin @

By equating this value of dp/de and the Prandtl-Meyer expansion and

using the value of p given by the Newtonian formula, one obtains

. 2

Z(pmax - poo) cos @ sin @ _ YM
~ = —
(Pmax = PCO) cos @ - POO y MZ -1

where Mach number is computed by the isentropic relation from

P/Pmax using Pax &5 the stagnation pressure. At Mach number of

7.7, the matching is effected at s/d = 0. 485 (or B = 66. 20), where the

% This idea was suggested by W. Chester of Bristol University
(Visiting Research Fellow, California Institute of Technology, 1956-57).
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local Mach number ias 1.37, This approximation is seen to agree very
well with the experiment up to the junction of the nose and the after-
body.

The impact pressure profile at x/d = 3 is shown in Figure 18,
The other profiles gshown in Figure 19 were computed from the experi-
mental data on the impact pressure and the shock wave., The local-
stagnation~pressure gradient is quite large, as expected for the flow
behind a highly curved shock wave in high Mach number flow, Outside
the viscous boundary layer the flow may be regarded as isoenergetic,
and the stagnatiou pressure gradient is related to the vorticity by

Crocco's vortex theorem

|.rz],-: (1/V) ' grad H - T grad 8 | = {V/(7 M- po)}

grad PDI

It was found that, immediately outside the viscous boundary layer, the
vorticity is less than one per cent of the vorticity in the houndary layer,
and its effect may not be important, However, at Reynolds number
much lower than the present experiment, or at stations further down-
stream from the nose, the boundary layer emerges from the wake of
the nearly normal part of the bow shock wave and growe ihto a region
of large entropy gradient, and the vorticity ai the edge of the boundary
layer hecomes larger, and its effect on the boundary layer may become
appreciable,

In Figure 20 the static pressure profile is compared with that
computed by the blast-wave analogy. The close agreement between
the experiment and the second approximation is rather surprisging
gince the blast-wave theory does not take into account the presence of

the afterbody of finite diameter,
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2. "3/4- and 2/3~ Power Bodies"

The surface pressure distributions on ”3/4-_pow‘er” and "2/3-
power! bodies of revolution are plotted in Figures 2la and 21b in the
form Cp versus x/L. Also plotted in the figures are the values given
by

Newtonian flow theory (with centrifugal force correction)

Sinuilar-flow solution
It is seen that the Newtonian flow theory prediction is consistently
lower than the experiment, For slender bodies the similarity solution
predicts the pressure distribution quite closely when the effect of the
viscous boundary layer is taken into account (B.5). The agreement
is poor for thicker bodies because of the fact that the similarity solution
is based on the hypersonic small disturbance equations,

The shock wave locations for these bodies are presented in
Figures 22a and 22b. In these plots solid lines drawn through shock
points represent curves similar to the body shape. For thicker models
the shock waves are seen to be similar to the body shapes, but for the
slender models the bow shocks are not quite similar to the body shapes.

The best-fit expressions for the experimental data are

rb~x3/4; R/r_ = 1.27for §= 0.485

R/r, = 1.29 [ 1+ 0.081 (X/L)%] for & = 0.235
Ty~ XZ/B; R/rb = 1.28 for 6§ = 0.520 4

R/r, = 1.31 [1+0.113 (x/1)%/?] for & = 0. 235

On the other hand the similarity solution predicts
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H

ro~x’% R/ry = 1143 [14 0,037 (x/L)3] for § = 0. 485

1
R/ry, = 1.143 [1+0.158 (x/L)2] for 5 = 0,235

n

rbmx‘?‘/3; R/r, 1.192 [1 40,035 (x/l.,)z/?’] for § = 0.520

R/r, = 1192 [1+0.170 2/1)2"3) for 5= 0.235

The causcs of the discrepancy between the theory and the experiment
are;

(a) As shown by the total pressure profiles (Figure 23) the
viscous boundary layer thickness ig an appreciable fraction of the
distance between the shock dand the body, and the effective body shape
is considerably altered from the geometrical shape by the displacement
thickness.

(b) Strictly speaking, the theory is applicable only for very
strong shock waves or (7 -1) Mm2 62/2 >>1, When this parameter
is close to or less than one, a large error occurs in the predicted
density distribution (Figure 24). However, the computed pressure
profile ghowsg a relatively small variation with the parameter, as seen
in Figure 25, and the pressure field is predicted quite accurately
even by the first approximation (Moo ——3=50).

Figure 20 shows the profiles of flow variables computed from
experimental data at the nine-tenth station of the "2/3-power! slender
body., One important feature of this flow is that the local stagnation
pressure gradient is quite high atl the edge of the boundary layer. In
boundary layer calculations one ordinarily assumes that every flow
variable is known outside the viscous layer, either from inviscid flow

calculations or from surface pressure measurements, However,

around a body which produces a shock wave with large curvature, the
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stagnation pressure changes rapidly with normal distance near the
surface, The actual stagnation pressure, and in turn the Mach number
and temperature at the edge of the boundary layer, depend on the mass
flow in the layer, which determines where the streamline at the edge
of the layer crossed the bow shock, For example, with the model
tested, if the stagnation pressure at the edge is assumed to be the
value behind a normal shock the Mach number at the edge is 2.7,

while the measured value is 5. 1. This result suggests the necessity

for further study of this interaction effect,

3. Paraboloids of Revolution

The similar {low solution investigated in Part Il and also the
Newtonian flow theory of Cole¥* break down for paraboloida of revo-
lution. DBoth theories are based on the hypersonic small-disturbance
theory., Evidently the nose of paraboleid is too blunt, and its effect
is felt throughout the disturbed flow field, (It is intercsting to note
that the radius of curvature at the nose is zero for m > % but finite
for m = 3, and that the supersonic small-perturbation theory for slender
bodies of revolution breaks down also as m ~—a= %.) At the present time,
no theory is available which is capable of accurately predicting the
flow around bodies with round nose.

The surface pressure distributions measured on two paraboloid
models are presented in Figure 27 as a plot of pressure coefficients

versus x/L. Also plotted in the figure are the modified Newtonian

* This fact was not pointed out in Cole’s paper, but the shock
distance from the body computed by his formula becomes infinite
for paraboloids of revolution,
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p .
approximation C cos 6 and the Newtonian flow approximation
Pmax 3 4 15
including centrifugal force correction., The latter approximation™ ™

is

(1/4)8° (-;;a)‘* In T 4 Y5 +(1/4)6°

O

+-

T2 (R4 1/4 857 ° g

P S+ 1/4 6°
for arhitrary values of 6 and reduces to

c, = /9%

for small 6 as given by Cole. 4

The modified Newtonian approximation agrees with the experi-
ment on the blunt model, but the agrecement is poor on the slender
model, where houndary layer effects may be important, The Newton-
Busemann {low theory seems to ovérestimate the effect of centrifugal
force.

The shock locations for the two models are presented in
Figure 48, where (r/]_.)2 is plotted against (x/L). For the model of
6 = 0. 60, the shock wave ig also parabolic near the nose, and the
stand-off distance and the radius of curvature at the nose are 0.178
and 1. 72, respectively, in terms of the radius of curvature of the model
at the nose. A theoretical analysis has been made by W. Chesterlb
to predict the flow around a paraboloid in hypersonic flow. His analysis
gives the shock stand-off distance and the radius of curvature as 0.12
and 1, 25 of the bady radius at the nose. The analysis of Li and Geigerlg,
which also assumes a very large density ratio across the shock and
incompressible flow behind the shock, gives a value of ¢, 115 of the nose-

radius for the shock stand-off distance. Their analysis makes no
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distinction between the shock curvature and the body curvature,
When the stand-~off distance is normalized by the shock radius,
the experimental value agrees closely with theoretical predictions.
The measured shock wave of the slender model was not para-

bolic and the best~fit expression is

1
R/L = 0.317 (x /L)% [1+ 0.238 (XS/L)]

where X is the distance measured along the axis from the vertex of
the shock,

The flow guantity profiles at the nine-tenth station of the
slender body are shown in Figure 30. They are seen to be similar
to those for the "2/3-power' model. The static pressure outside the
boundary layer is lower than the measured surface pressure. A
similar phenomenon was observed on a flat plate at Mach number 5.8
by Kendall 4, but in the present case it may have been caused by the

accumulation of errors.

4. Foredrag Coefficient

The foredrag coefficients in Figure 23, which were obtained
by integrating the pressure distributions, are presented as the ratio
of the drag of the test hody to the drag of a cone of the same slender-
ness versus the exponent in the equation defining the body profile. It
shows that the drags of the "3/4~power!" and "2/3-power" bodies are
less than that of a cone, and at the same time it shows that the experi-
mental points lie appreciably above the theoretical prediction. A
large part of the difference can be accounted for by including the

boundary layer interaction effect. The modified impact theory of
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Eggers, Dennis, and IDV,nesnikcﬂ:'f}“z gives the trend of the drayg increase
with decreasing exponents where the small disturbance theories fail,
and the measured drag on paraboloids compares favorably with the

prediction,

5. Boundary Layer Lffect

The survey of the flow field between the shock wave and the
body revealed that the boundary layer thickness is appreciable compared
with the body radius, and an attemnpt was made to estimate its effect
17

by using the local similarity concept of Lees .

In Reference 17 the displacement thickness is given by

w2 p®

8*5 (28) (_ - L) d

k) \p T w)
where

) s

~ 2 2

s = pe/“e Ye Tp ds = @ poo/"‘oo uoo (Pe/'pm) Y ds
o) o)

assuming /"{’:/Te, = consgt., = W /U%/Tco and u, = u_.
With the additional assumptions
Prandtl nammber = 1

insulated surface

F(=z) dr

2 b b .2

PelPip = Y My S ()
b

The growth of the displacement thickness on a body of revolution

rbfvxm is described by
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& % [1+ ) Me IJZMMMQ e m (_&)%-m
L~ fray T 20 2 mys R, famr \L
where
20
I, = 1~ —— ) d
1 SO ( ue) p
1 =

x4}
5 3 u/ug (1 =5-) af
o e

The values of I1 and I2 are obtained from the similar flow

solution of an incompressible boundary layer, corresponding to the

~ dM
ressure gradient parameter f = 25 ¢ (See, for example, Table
P g Pa' M d” P >
e ds

I, Reference 18.)

The parameter § is given approximately by the relation

2+ (7-1) Mez 4(1 - m)

Z1Mez 4m - 1

by using the same assumptions as before,
When Mach number is much larger than unity everywhere, the

above expressions reduce to

2 -m

s*_ 11 % Mp Jo m (5_)
L vV [FZ) 8 JRe, (4m-1 \L

=_ Y-/ =2(/-m)
P t4 4dm-{

The surface pressure distribution is corrected for the boundary

layer approximately by

— +

o - EF) (d/'; _@‘f)z
£ Z7 aX ax
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where the value of ZF(zb)/zb2 corresponds to the value of m for the
geometrical shape.

= 5.5x105, 6§ = 0.235

J

For = 1.40, Mm = 7.7, ReL

[ U]

m = 2/3:  C_=0.0424 (x/1)~2/3 [1 + 0.204 (x/L)

1
m = 3/4: c, = 0,0637 (x/L)"?

From the equation for &6%/1, it is seen that §%a x3/4 for
N xg/}:}, i, e., the boundary layer growth is similar to the body
shape, and in this case the transverse flow field exhibits complete
gimilarity as pointed out by Stewartsunm for the two-dimensional
case and by Yasuharazo for the axially-symmetric case,

From the expression for §%/L, the ratio of the displacement

thickness to the body radius is given by the relation

OB M m (_x;)%"z’”
b (2yF@)  §*fRey jdm-1 \ L

2 .
which is proportional to 1/6, and the interaction of the boundary

layer becomes more important as the body becomes more slender,
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IV, SUMMARY OF RESULTS

A. Theoretical Investigation

(1) A similar flow field is possible for MOo — w and for
slender bodies of the form LN ra provided m' < m <1 where
m' = 2/3 for two-dimensional cage and m' = 1/2 for axially-symmetric
case, In these cases, lhe shock wave is similar fo the body shape,

and the surface pressure is given by a relation of the form

C, = fm,y). (dr, /dx)®

(2) In the case of a blunt-nosed circular cylinder (or a flat
plate with a blunt leading-edge) at zero angle of attack, the energy
of the transverse flow is constant with respect to the distance from
the nose, The solution for this case is a singular limit of the solutions
for a class of bodies of the form rbmxm as m -~ ', and the shock
shape and the pressure on the afterbody are described by the relations

of the form

R/drN(CDN)L/@ +k) (x/d)z/cs +k)

and
C_~(Cp )2/(3 ) qy21HR)/(34K)
P N
(3) The results from the similarity theory agree closely with
those from the Newtonian flow theory for m close to unity, but the

agreement becomes poorer as m —a m',
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B. Experimental Investigation

1. Hemisphere«Cylinder

(a) The slope of the shock wave and the pregsure distribution
on the afterbody agreed closely with the prediction of the blast-wave
analogy. However, the difference between the measured location of
the shock and the predicted location indicates the necesgily for further
study of the effect of finite diameter of the afterbody,

(b) The pressure distribution on the hemisphere agreed very
closely with the modified Newtonian approximation plus Prandtl-

Mevyer expansion.

2. "“"Power-law!! Bodies

(2) The pressure distributions on the slender models agreed
with theoretical predictions with the boundary layer correction.” The
pressures on the thicker models were proportional to the square oi
sine of local slope of the body and agreed closely with the modified
Newtonian approximation,

(b) The shock wave was found to be similar to the body shape
for the thicker models, but for the slender models the decay of the bow
shock was not as rapid as the similar-{low theory predicted.

(c) The total pressure profile was found to possess a iarge
gradient near the boundary layer, which suggests the need for a critical

examination of the boundary layer calculation for these bodies,
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3. Paraboloids of Revolution

(&) The surface pressure distributions agreed cinsely with
the modified Newtonian approximation, and they were markedly
higher than the prediction of the Newtonian flow theory which includes
the centrifugal force effect.

(b) The shock wave was also parabolic around the nose, but
its stand-off distance and radius of curvature at the nose were con-

siderably larger than theoretical predictions.

These results suggest that it would be worthwhile to investigate
further the following:

(1) The inviscid flow around "similar-flow!' bodies at small
angle of attack.

(2) The behavior of the solution for ¥ Z=landm=m',

(3) The effect of the finite diameter of the cylindrical afterbody
and a proper procedure for joining the soluiion arcund the nose to the
golution in the downstream region,

(4) The boundary layer interaction including the effects of
vorticity outside the boundary layer, and also including the effects

of transverse curvature for slender bodies of revolution.
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TABLE I

SUMMARY OF RESULTS OF INTEGRATION

FOR AXIALLY-SYMMETRIC FLOW

¥ = 1. 67
m 2y F(zb) ay fl(zb)
1/2 0 0. 241 0.826  0.90
4/7  0.652  0.403  0.732 1.76
2/3 0. 776 0.544  0.663 1.93
3/4  0.819 0.634 0.575 1. 61
1 0.870  0.811  0.350 0.78
1 = 1,40
m Zy F(Zb) a; fl(zh)
/2 0 0.311  0.937 1.07

4/7 0.725 0.467 0.870  2.36
2/3 0. 839 0.607 0.793 2.38
3/4 0.875 0. 696 0.677 1.93

1 0.915 0.875 0.396 0.92
7 = 1.15

m Zy, F(ab) ay fl(zb)

/2 o0 0.411 1. 07 1.35

4/7 0,845 0,553 .15 3,53

2/3  0.924 0.688 0.982 3,05
3/4 0.945 0.775  0.829  2.43
0.965 . 0.948  0.455 1,10
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TABLE II
SHOCK WAVE AND SURFACE PRESSURE OF A CONE

Shock Wave Angle 6_ /9
w e

Present
M tan OC Approx, Exact
4= 1,40 7 = 1.405
g =5° 9 =10°
c C
0. 660 1.919 1.815 1. 849
1,150 1. 364 1.378 1.390
2. 469 1. 149 1. 163 1,168
3,988 1,113 1.121 1. 124
o0 1. 092 1. 094 1. 095

Pressure Coefficient Cp/gcz

Present
M tan QC Approx. Exact
7 = 1.40 9 = 1.405
- g0 — 1n©
8. =5 0, =10
0, 660 3.012 2, 642 2. 659
1. 150 2.395 2.330 2.320
2, 469 2. 156 2, 148 2. 138
3.985 2,115 2.110 2. 097

o 2,090 2,085 2,070
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FIG. 7 INTEGRAL CURVES IN s-t PLANE,
k=0



e el ]

FIG.8a  SOLUTIONS IN s-t PLANE,k=0
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FIG.8b SOLUTIONS IN THE PHYSICAL
PLANE, k=0
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FIG. 26 — FLOW QUANTITY PROFILES
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FIG. 27 — SURFACE PRESSURE DISTRIBUTION



FIG. 28 — SHOCK WAVE LOCATION
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FIG- 30 — FLOW QUANTITY PROFILES
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