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Abstract

Various known and original inequalities concerning the structure of combinatorial de-

signs are established using polyhedral cones generated by incidence matrices. This

work begins by giving definitions and elementary facts concerning t-designs. A con-

nection with the incidence matrix W of t-subsets versus k-subsets of a finite set is

mentioned. The opening chapter also discusses relevant facts about convex geometry

(in particular, the Farkas Lemma) and presents an arsenal of binomial identities. The

purpose of Chapter 2 is to study the cone generated by columns of W , viewed as an

increasing union of cones with certain invariant automorphisms. The two subsequent

chapters derive inequalities on block density and intersection patterns in t-designs.

Chapter 5 outlines generalizations of W which correspond to hypergraph designs and

poset designs. To conclude, an easy consequence of this theory for orthogonal arrays

is used in a computing application which generalizes the method of two-point based

sampling.
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Chapter 1

Preliminaries

1.1 Definitions and facts concerning block designs

Let N denote the set of positive integers, and N0 = N ∪ {0}. Suppose t ∈ N0 and

λ ∈ N. A t-wise balanced block design (tBD) of index λ is a triple (V,B, ι), where V

and B are (disjoint) sets of points and blocks, respectively, and ι ⊂ V × B is a set of

flags with the property that for any t-subset T of V , there are precisely λ blocks B of

B satisfying (x,B) ∈ ι for all x ∈ T . The supplement of such a tBD is (V,B, ι′) with

ι′ = (V × B) \ ι. When (x,B) ∈ ι, it is said that x and B are incident. For a block

B ∈ B, notation will be abused by writing B also for the set of points in V which are

incident with B. In this case, a collection of blocks can be regarded as a multiset of

subsets of V . With this in mind, it makes sense to drop the flags from this notation

and discuss the “cardinality” of a block, or the “membership” of a point in a block.

If the collection of all blocks (each regarded as a set of points) is itself a set, or in

other words when there are no repeated blocks, the tBD is called simple. Note that

these set systems are rather uninteresting when t = 0, 1; so it is generally assumed

that t ≥ 2. The well-known Fano plane is an example of a 2BD with index unity and

all blocks of size 3. Until Chapter 5, all blocks will be assumed to have a common

size k with t ≤ k ≤ v = |V |. The relevant structure is then often referred to by its

parameters as a t-(v, k, λ) design, or simply a t-design. However, it is common to use

the term “design” when speaking of certain other structures.

A configuration D is a collection of subsets from some relatively small generic set



2

U . To say that a design (V,B) contains a configuration means that there exists an

injection U ↪→ V so that (the image of) D is a subcollection of B. A very large

amount of research has gone into the construction and enumeration of designs con-

taining or avoiding various configurations. Under consideration here will be structural

constraints, or nonexistence results, for designs containing a given configuration.

The first fact along these lines is a well-known family of necessary numerical

conditions on the parameters of a t-design.

Proposition 1.1. For 0 ≤ i ≤ t and I ⊂ V with |I| = i, the number of blocks

containing I in a t-(v, k, λ) design is a constant λ
(
v−i
t−i

)
/
(
k−i
t−i

)
. In particular, there are

λ
(
v
t

)
/
(
k
t

)
blocks in a t-(v, k, λ) design.

Proof: Count in two ways the number of ordered pairs (T,B), where |T | = t and B

is a block with I ⊂ T ⊂ B.

It follows that every t-design is also an i-design for i ≤ t. As the count of blocks

above is obviously an integer, this result implies the conditions
(
k−i
t−i

)
|λ
(
v−i
t−i

)
for 0 ≤

i ≤ t. Parameters t, k, v, λ which satisfy all these divisibility requirements are said to

be admissible. A detailed treatment of this and other standard necessary conditions

on t-designs can be found in [24], chapter 19.

A somewhat more subtle family of constraints exists on the parameters of a t-

design. Let H be any subset of V with |H| = w. Suppose there are zj blocks which

intersect H in j points for j = 0, 1, . . . , k. Count the ordered pairs (I, B), where B is

a block and I ⊂ B ∩H with |I| = i in two ways. Starting with a choice of either B

(and using the zj) or I (and using Proposition 1.1) yields the system

k∑

j=0

(
j

i

)

zj = λ

(
w

i

)(
v − i

t− i

)(
k − i

t− i

)−1

, i = 0, 1, . . . , t. (1.1)

These are the moment equations. The existence of nonnegative integral zj solving

(1.1) has been frequently exploited to obtain inequalities or other nonexistence results

on designs. This technique is often called the method of moments. Dropping one of

either the integrality or nonnegativity condition on the zj makes the solubility issue
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for (1.1) more tractable. This work essentially pursues the nonnegativity condition

to a more general system. Working from the integrality condition results in signed

designs; see [28], for example.

Let t, k, v ∈ N with t ≤ k ≤ v. From now on, the v-set V will be assumed to have

some arbitrary ordering. The term t-vector will be employed to mean a vector in R
(v

t)

indexed over t-subsets of V . If X ⊆ V , let eX be the characteristic t-vector of X,

eX(T ) =







1 if T ⊆ X,

0 otherwise.

The
(
v
t

)
×
(
v
k

)
matrix W v

tk has rows and columns indexed by all t-subsets and k-subsets

of V , respectively, with

W v
tk(T,K) =







1 if T ⊆ K,

0 otherwise.

Let j denote the vector (whose dimension is understood from context) with all entries

equal to 1. In this language, there exists a t-(v, k, λ) design if and only if the equation

W v
tkd = λj has a nonnegative integral solution d. The vector d simply encodes the

number of occurrences of each possible block. Note that since W v
tkj =

(
v−t
k−t

)
j, it is

always true that this equation has nonnegative rational solutions. In the work which

follows, two basic modifications of this equation will be used so that the existence of

nonnegative rational solutions may, in fact, provide useful results.

First, the structure present in a certain design could allow for restricting the

possible choices of blocks. For a set K of k-subsets of V , define the matrix W = W v
tk|K

to be a
(
v
t

)
× |K| submatrix of W v

tk consisting of those columns indexed over K.

Additionally, suppose a design contains a certain configuration D. The existence of

such a design is equivalent to a nonnegative integral solution d of

Wd = λj −
∑

B∈D

eB, (1.2)
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and relaxing to rational (or real) d becomes nontrivial in general. It will be shown in

Section 2.3 that the case |D| = 1 of (1.2) is equivalent to a variant of equations (1.1).

1.2 Tools from convex geometry

For more on the definitions and proofs omitted in this section, see the book [25]. A

(convex) cone κ in a finite-dimensional real vector space U is a subset of U , for which

c1x1 + c2x2 ∈ κ whenever x1, x2 ∈ κ and c1, c2 ≥ 0. The (polyhedral) cone generated

by {x1, . . . , xn} ⊂ U is the set κ = {c1x1 + · · · + cnxn : ci ≥ 0}. Should these xi be

linearly independent, the cone is said to be of dimension n. A cone κ ⊂ U is full if its

dimension agrees with that of U , and is pointed if x,−x ∈ κ implies x = 0. Here, all

cones will be assumed to be full, pointed, and generated by a finite set. A face of κ

is a cone η ⊂ κ such that for all x ∈ η, if x = x1 +x2 with x1, x2 ∈ κ, then x1, x2 ∈ η.

A face of dimension 1 is called an extremal ray of κ, while a face of codimension 1 is

called a facet of κ.

The following is a “cone version” of the Krein-Milman Theorem, which states

that every compact, convex set in a finite dimensional space is the convex hull of its

extreme points.

Proposition 1.2. Let κ ⊂ U be a (closed, pointed, full, and convex) cone and suppose

{x1}, . . . , {xn} generate all the extremal rays of κ. Then {x1, . . . , xn} generates κ.

Let U ′ be the dual space of U and let κ be a cone in U . Then κ′ = {y ∈ U ′ : yx ≥ 0}

is a cone called the dual of κ. The space U ′′ will be identified with U so that κ′′ = κ.

The following correspondence will be of particular interest:

(?) The dual of a facet of κ is an extremal ray of κ′.

For y ∈ U ′, y 6= 0, the dual of the cone generated by {y} is a half-space of U , and

y is a supporting vector for any cone contained in this half-space. If y is a supporting

vector for κ and η = κ ∩ y⊥ is a face of κ, then y is said to support κ at η. A

result of fundamental importance is that a cone κ is the intersection of all half-spaces
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described by supporting vectors of κ. Theorem 1.3 below states this in the concrete

setting which shall be used herein.

The discussion from now on focuses on cones in real Euclidean space generated by

the columns of some matrix A. The reader is cautioned about a change of notation.

The vector x is used below to represent a (column) vector in the domain of A as

a linear transformation, rather than a typical element of a cone. After this section,

x will have a different meaning; however, y should be regarded throughout as a

supporting (row) vector in the dual space.

Given an m × n matrix A, the set CA = {Ax : x ∈ R
n,x ≥ 0} is a closed and

polyhedral cone in R
m. The dimension of CA is equal to the rank of A. The following

result provides necessary and sufficient conditions for a point to belong to CA.

Theorem 1.3. (Farkas Lemma) Let A be an m × n matrix, and b ∈ R
m. The

equation Ax = b has a solution x ≥ 0 (that is, b ∈ CA) if and only if y · b ≥ 0 for

all y ∈ R
m such that yA ≥ 0.

Remarks: One direction of this result is immediate. Suppose Ax = b has a nonnega-

tive solution x ∈ R
n, and let y be such that yA ≥ 0. Then

y · b = y(Ax) = (yA)x ≥ 0.

The converse is deeper, relying on the existence of a separating hyperplane between

CA and a point not in this cone.

When CA is full and pointed, it is enough by (?) and Proposition 1.2 to check

the condition in Theorem 1.3 for y corresponding to facets of CA. Roughly speaking,

facets of CA provide the family of strongest tests for b ∈ CA. Since there are a

finite number of facets of CA, it is a finite problem to determine whether Ax = b

has nonnegative solutions x. However this problem is seldom easy in practice, as

evidenced by the expanding study of linear programming. A variant of the well-known

simplex algorithm can, in principle, be implemented on computer to find facets of CA.

This is given below for completeness, with col(A) denoting the set of columns of A.
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1. Start with a random y ∈ R
m such that yA ≥ 0.

2. If dim(span{a ∈ col(A) : y · a = 0}) < m − 1 (that is, if y does not already

support CA at a facet), choose a random z ∈ R
m such that zA has a positive

coordinate but vanishes on at least the same coordinates as yA.

3. Let

ε = min
(yA)i
(zA)i

,

where the minimum is taken over all i for which the quantity is defined and

positive.

4. Set y := y − εz and return to step 2.

It should be noted that the columns of W (defined in Section 1.1) are linearly

independent and all lie in the nonnegative orthant of R(v

t), so step 1 in the above

algorithm is trivial. For all K to be considered, W = W v
tk|K will be of full rank

(
v
t

)
, so CW is indeed full. Unfortunately, when the parameters (particularly t) are

large, the simplex algorithm is too slow to be of much use, though infinite families

of facets of may be guessed by observing the output from this algorithm. For proofs,

it is often the case that other supporting vectors y of CW , which do not necessarily

define a facet, are easier to use with Theorem 1.3. However, facets of CW are of some

combinatorial interest on their own, as will be seen in Section 2.2. In any case, with

b = λj −
∑

B∈D eB, constraints of the form y · b ≥ 0 can be established on t-designs

containing D.

1.3 Some binomial identities

For use in later chapters, some identities involving binomial coefficients1 are presented

here. The simple relation

(
α

β

)(
β

γ

)

=

(
α

γ

)(
α− γ

β − γ

)

(1.3)

1In the usual way, top arguments of binomial coefficients may take on non-integer values.
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will be used frequently. For identities involving summations, it may be convenient at

times to use the hypergeometric notation

pFq




α1, α2, . . . , αp ; ξ

β1, . . . , βq



 =
∞∑

j=0

(α1)j(α2)j . . . (αp)j
j!(β1)j . . . (βq)j

ξj,

where (α)j = α(α + 1) . . . (α + j − 1). The transformation from a (finite) sum of

products of binomial coefficients into this notation is routine and will be omitted in

what follows. References and proofs for many hypergeometric identities can be found

in [1]. A vintage formula of Gauss is now given as a starting point.

Proposition 1.4. If a, b, c ∈ R with c > a + b, then

2F1




a, b ; 1

c



 =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

When meaningful, the right side can be written as a quotient of two binomial

coefficients. Some easy consequences are the “convolution” identities

t∑

j=0

(
x

j

)(
y

t− j

)

=

(
x + y

t

)

, (1.4)

t∑

j=0

(−1)t−j
(
x

j

)(
y − j

t− j

)

=

(
x− y + t− 1

t

)

, (1.5)

t∑

j=0

(
j

i

)(
t− j

r − i

)(
x

j

)(
y

t− j

)

=

(
x+ y − r

t− r

)(
x

i

)(
y

r − i

)

, (t ≥ r), (1.6)

r∑

h=j

(
h

j

)(
j

r − h

)(
x

h

)

=

(
x

j

)(
x

r − j

)

, (1.7)

and

t−r∑

j=0

(−1)j
(
t

j

)−1(
x

j

)(
y

t− j

)

=
t+ 1

x+ y − t

[(
y

t+ 1

)

+ (−1)t−r
(

x

t− r + 1

)(
y

r

)(
t + 1

r

)−1
]

, (0 ≤ r ≤ t).

(1.8)
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Proof of (1.6) and (1.7): Apply equation (1.3) to the summand, shift the index of

summation, and use (1.4).

Proof of (1.8): The given (terminating) sum is

((
y

t

)

− (−1)t−r+1

(
x

t− r + 1

)(
y

r − 1

)(
t

r − 1

)−1
)

2F1




1, −x ; 1

1 − t+ y



 ,

which simplifies to the right side by Proposition 1.4 and the special case β
α

(
α
β

)
=
(
α−1
β−1

)

of equation (1.3).

For another important summation to be used, a classical identity of Saalschütz is

required.

Proposition 1.5. Suppose 1 + w + x− n = y + z with n ∈ N0. Then

3F2




−n, w, x ; 1

y, z



 =
(y − w)n(y − x)n
(y)n(y − w − x)n

.

Lemma 1.6. For v ≥ k + s,

s∑

j=0

(−1)j
(
v − i− j

k − i− j

)(
v − s

j

)(
k − j

s− j

)

=

(
v − s

k − s

)

.

Proof: Let f(k, i) denote the given sum. The familiar
(
x−1
i−1

)
+
(
x−1
i

)
=
(
x
i

)
gives rise

to f(k, i) = f(k, i+ 1) + fSaal(k + 1, i+ 1), where

fSaal(k, i) =

s∑

j=0

(−1)j
(
v − i− j

k − i− j

)(
v − s

j

)(
k − 1 − j

s− j

)

=

(
v − i

k − i

)(
k − 1

s

)

3F 2




−s, s− v, i− k ; 1

1 − k, i− v



 .

By Proposition 1.5, fSaal(k, i) = 0 unless i = 0. So

f(k, i) = f(k, 0) =

s∑

j=0

(−1)j
(
v − j

k − j

)(
v − s

j

)(
k − j

s− j

)
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=

(
v − s

k − s

) s∑

j=0

(−1)j
(
v − j

s− j

)(
v − s

j

)

=

(
v − s

k − s

)

,

where equations (1.3) and (1.5) have been used.
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Chapter 2

General Theory

2.1 Automorphisms and invariant partitions

In this section, b is some fixed t-vector as defined in Section 1.1. Consider the

action of the symmetric group SV on V . For σ ∈ SV and y a t-vector, define yσ

by yσ(T ) = y(σ−1(T )). This vector is obtained from y simply by permuting its

coordinates according to the inherited action on t-subsets of V . It is clear that

yσ · bσ =
∑

|T |=t

y(σ−1(T ))b(σ−1(T )) =
∑

|T |=t

y(T )b(T ) = y · b. (2.1)

If bσ = b, then it will be said that b is invariant under σ. The set of all such

σ ∈ SV is a group because (bσ)τ = b(στ) follows immediately from the definition.

Define this group to be stab(b).

Let H
d(V ) denote the set of partitions of V into d parts which are ordered accord-

ing to the implicit ordering in V . For a set S ⊂ V and Ω = (U1, . . . , Ud) ∈ H
d(V ),

define S ∩Ω = (S ∩U1, . . . , S ∩Ud) ∈ H
d(S). For s ∈ N0, define the simplex of lattice

points H
d(s) =

{
(n1, . . . , nd) ∈ N

d
0 :
∑
ni = s

}
. Let |Ω| denote the integer partition

(|U1|, . . . , |Ud|) ∈ H
d(v). The set of σ ∈ SV which leave each Ui invariant is the

subgroup stab(Ω) = SU1
× · · · × SUd

of SV . Consider the usual ordering �1 and the

associated lattice structure on H
d(V ).

Call Ω ∈ H
d(V ) an invariant partition for b if stab(Ω) ⊆ stab(b). Of primary

1If each part of Ω1 belongs to a single part of Ω2, then Ω1 � Ω2.
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interest will be invariant partitions which are maximal in H
d(V ), in the sense that

any other such Ω′ satisfies Ω′ � Ω. For the remainder of this section, assume Ω =

(U1, . . . , Ud) is some invariant partition for b, with ω = |Ω|.

Define

y =
1

|stab(Ω)|

∑

σ∈stab(Ω)

yσ.

An elementary consequence of the definitions and equation (2.1) is that y ·b = y ·b.

for any y ∈ R
(v

t).

Two subsets S, S ′ ⊂ V , which satisfy τ(S) = S ′ for some τ ∈ stab(Ω), will be

called equivalent under Ω. Note that S, S ′ are equivalent under Ω if and only if

|S ∩ Ω| = |S ′ ∩ Ω| ∈ H
d(s), where s = |S| = |S ′|.

Lemma 2.1. Let T1, T2 ⊂ V be t-sets equivalent under Ω. Then y(T1) = y(T2).

Proof: Let τ ∈ stab(Ω) be such that τ(T1) = T2. Then

|stab(Ω)| y(T1) =
∑

σ∈stab(Ω)

yσ(T1) =
∑

σ∈stab(Ω)

y(σ−1(T1))

=
∑

σ∈stab(Ω)

y(σ−1τ−1(T2)) =
∑

σ∈stab(Ω)

yτσ(T2)

=
∑

σ′∈stab(Ω)

yσ
′

(T2) = |stab(Ω)| y(T2).

This allows for writing

y =
∑

ϕ∈Hd(t)

aϕ
∑

|T∩Ω|=ϕ

eT (2.2)

for some real coefficients aϕ. Of course, the contribution to the sum is 0 unless ϕ ≤ ω.

For x = (x1, . . . , xd) and ϕ ∈ N
d
0, define

xϕ =

d∏

i=1

xϕi

i and

(
x

ϕ

)

=

d∏

i=1

(
xi
ϕi

)

.

Let k ∈ N. Consider the real algebra Λ = R[x1, . . . , xd]/(−k +
∑d

1 xi). Then Λ can
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be expressed as an increasing union Λ = ∪∞
t=0Λt, where

Λt = span{[xϕ] : ϕ ∈ H
d(t)}.

It is easy to show that another basis for Λt is {[
(
x

ϕ

)
] : ϕ ∈ H

d(t)}. Indeed, the

transition matrix expressing the binomial coefficients in terms of the monomials is

upper triangular (after appropriate indexing) with diagonal entries 1/ϕ!. Consider

any [f ] ∈ Λt. It follows that when
∑d

1 xi = k,

f(x) =
∑

ϕ∈Hd(t)

aϕ

(
x

ϕ

)

for some aϕ ∈ R. For such an f expressed in this way, define the corresponding

t-vector yf as on the right side of equation (2.2).

Lemma 2.2. Suppose K is a k-set with |K ∩ Ω| = ψ ∈ H
d(k). Then yf · eK = f(ψ)

Proof: The dot product on the left counts aϕ times the number of t-subsets T of K

for which |T ∩ Ω| = ϕ, summed over all ϕ ∈ H
d(t). There are

(
ψ
ϕ

)
such t-sets for a

given ϕ, so this count agrees with the right hand side.

Theorem 2.3. Suppose Ω ∈ H
d(V ) is an invariant partition for b, and let ω = |Ω|.

Define W = W v
tk|K. Then b ∈ CW if and only if

yf · b =
∑

ϕ∈Hd(t)

aϕbϕ

(
ω

ϕ

)

≥ 0

for all f ∈ R[x1, . . . , xd] of degree ≤ t nonnegative on {|K ∩ Ω| : K ∈ K}, where

f(x) =
∑

ϕ∈Hd(t) aϕ
(
x

ϕ

)
and b =

∑

ϕ∈Hd(t) bϕ
∑

|T∩Ω|=ϕ eT .

Proof: By Lemma 2.2, the nonnegativity constraint on f is equivalent to yf · eK ≥ 0

for all k-sets K, or yfW ≥ 0. Theorem 1.3 states that b ∈ CW if and only if y ·b ≥ 0

whenever yW ≥ 0. Thus it is enough to prove this condition is equivalent to that

when quantified over the Ω-invariant vectors yf . Suppose yW ≥ 0 implies y · b ≥ 0

for all y ∈ R
(v

t). Then certainly yfW ≥ 0 implies yf · b ≥ 0 for all polynomials f



13

of the given form. Conversely, suppose yfW ≥ 0 implies yf · b ≥ 0 for all f . Let

y ∈ R
(v

t) be arbitrary and assume yW ≥ 0. Observe for any σ ∈ SV that the vector

yσW is a rearrangement of yW . So yW ≥ 0. But y is of the form yf for some f . So

y · b = y · b ≥ 0.

2.2 Facets and the extremal polynomials

Here, let W = W v
tk. Define W σ(T,K) = W (σ−1(T ), K). This can be viewed as

changing W by either a row or column permutation. For Ω ∈ H
d(V ), set

WΩ =
1

|stab(Ω)|

∑

σ∈stab(Ω)

W σ.

Note that the cone CWΩ is full if and only if d ≥ 2. It is a straightforward observation

that Ω′ � Ω implies CWΩ ⊆ CWΩ′ . This motivates the view of CW as a refinement

of cones

CW =
⋃

Ω∈Hd(V )

CWΩ

indexed over the lattice of partitions of V .

Proposition 2.4. Suppose Ω ∈ H
d(V ), (d ≥ 2) is an invariant partition for y. Then

yWΩ ≥ 0 implies yW ≥ 0. Moreover, if y supports WΩ at a facet, then y supports

W at a facet.

Proof: Since y is Ω-invariant,

yW =
1

|stab(Ω)|

∑

σ∈stab(Ω)

yσ
−1

W =
1

|stab(Ω)|

∑

σ∈stab(Ω)

yW σ = yWΩ.

This proves the first statement and, since each column of WΩ is in the span of the

columns of W ,

span{col(WΩ) : yWΩ = 0} ⊆ span{col(W ) : yW = 0}.
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So if the subspace on the left has codimension 1, then so does the subspace on the right

provided it is not full. But y supporting a facet of WΩ implies y ·
∑

σ∈stab(Ω) eσK > 0

for some K. Again by invariance under Ω, it must be that y · eK > 0, and so y does

in fact support a facet of CW .

Theorem 2.3 essentially describes the dual cone of CWΩ. Rather than directly

considering the supporting vectors, it is interesting to view this dual as the cone of

d-variable polynomials of degree ≤ t which are nonnegative on the appropriate lattice

points. By the remarks in Section 1.2, there is a correspondence between facets of

CW and extremal rays of these cones of polynomials. It is not the aim of this work

to thoroughly investigate such extremal rays. Indeed, this appears to be related to

the subject of polynomial interpolation in several variables, for which relatively little

is known in general [9]. However, the remainder of this section will contribute some

initial observations along these lines.

For a set S ⊂ R
d, let P d

t (S) denote the cone of d-variable polynomials of degree

≤ t which are nonnegative on S. It may be of interest to the reader that the (non-

polyhedral) case when d = 1 and S = [0, 1] ⊂ R is investigated in [2]. Here though,

it is assumed that S is a finite set.

Lemma 2.5. Let f, g ∈ P d
t (S), g 6≡ 0, and suppose {x ∈ S : f(x) = 0} is a proper

subset of {x ∈ S : g(x) = 0}. Then f does not generate an extremal ray of P d
t (S).

Proof: Choose ε > 0 such that f − εg ∈ P d
t (S). Neither this polynomial, nor εg are

identically zero by the condition given. Furthermore, εg is not in the ray generated

by f . Thus by the definition in Section 1.2, f cannot generate an extremal ray since

f = (f − εg) + εg.

While characterizing the nonzero “maximally vanishing” polynomials in P d
t (S) is

difficult in general, there is an easy solution in one variable. The following is a variant

of Gale’s evenness condition, which characterizes the facets of cyclic polytopes, [25].

Theorem 2.6. Suppose |S| ≥ t+ 1 and let f ∈ P 1
t (S) with Z = {x ∈ S : f(x) = 0}.

Then f generates an extremal ray of P 1
t (S) if and only if |Z| = t and every two points

of S \ Z are separated by an even number of points of Z.
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Figure 2.1: Edge weights for a facet of W 8
23.

2 2
−1 1

Proof: By Lemma 2.5, any f generating an extremal ray must vanish maximally

on S, so |Z| = t and f(x) = C
∏

ζ∈Z(x − ζ) for some C 6= 0. So in order for

f ≥ 0 on S, the evenness condition on Z must hold. Conversely, if |Z| = t and

f(x) = C
∏

ζ∈Z(x− ζ) ∈ P 1
t (S) can be written as f = g1 + g2, where g1, g2 ∈ P 1

t (S),

then both g1 and g2 vanish on all of Z. As all degrees are ≤ t, it follows that g1 and

g2 are multiples of f .

Vanishing subsets Z as in the theorem will be called good. It should be mentioned

that a lower bound on the number of facets of W can be obtained by counting good

subsets. In what follows, polynomials in the variables x1, . . . , xd which are nonnega-

tive on H
d(k) ∩ {(x1, . . . , xd) ≤ ω} will often be identified with polynomials in d− 1

variables, say x1, . . . , xd−1, that are nonnegative on

⋃

j≤ωd

H
d−1(k − j) ∩ {(x1, . . . , xd−1) ≤ (ω1, . . . , ωd−1)}.

For instance, Theorems 2.3 and 2.6 applied to S = {max(0, k − ω2), . . . ,min(k, ω1)}

give a characterization of facets for WΩ when Ω ∈ H
2(V ) is a bipartition of V . A

concrete description of these facets appears in Section 3.2. The discussion of general

facets will now be concluded with an example which does not arise from a bipartition.

Example 2.1. By implementing the algorithm in Section 1.2 on computer, 18 differ-

ent facets (up to isomorphism) were generated for W 8
23. One of these is illustrated in
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Figure 2.1. The supporting 2-vector yf ∈ R
(8

2
) for this facet is formed from the edge

weights in the diagram. An edge between the circled sets represents all edges between

the two sets receiving the indicated weight. Otherwise, missing edges correspond to

a weight of zero. Of the
(
8
3

)
= 56 possible 3-subsets of V , 36 have total inherited

weight zero. The fact that yf supports a facet means the characteristic vectors of

these triangles span a subspace of R
(8

2
) of dimension

(
8
2

)
− 1 = 27. This vector yf is

invariant under stab(Ω) ∼= S2 ×S2 ×S4. A (three variable) polynomial class [f ] ∈ Λ2

for yf is given by

f(x1, x2, x3) = 2

(
x1

2

)

+ 2

(
x2

2

)

− x1x2 + x2x3.

Reducing modulo the ideal (x1 + x2 + x3 − 3) allows for the simplification [f ] =

[(1 − x1)(2x2 − x1)]. The relevant values of f ∗(x1, x2) = (1 − x1)(2x2 − x1) are given

in the table below.

f ∗ 0 1 2 x2

0 0 2 4

1 0 0 0

2 2 0

x1

2.3 The method of moments

Here, a generalization of the moment equations (1.1) will be proposed. Suppose

Ω ∈ H
d(V ) is an invariant partition for b, and let |Ω| = ω. Define W ∗

Ω to be the

|Hd(t)| × |Hd(k)| matrix indexed by the partitions of t and k, respectively, with

W ∗
Ω(ϕ, ψ) =

(
ω

ψ

)(
ψ

ϕ

)

.

Then W ∗
Ω = MDk, where M =

[(
ψ
ϕ

)]

ϕ,ψ
has the same dimensions as W ∗

Ω and Dk =

diag
((

ω
ψ

))

is a square diagonal matrix indexed over ψ ∈ H
d(k). Let b∗ be the
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|Hd(t)| × 1 vector indexed over H
d(t) and defined by

b∗(ϕ) =

(
ω

ϕ

)

bϕ,

where, as in Theorem 2.3, bϕ = b(T ) for any T with |T ∩ Ω| = ϕ, and bϕ = 0

if no such T exists. Invariance under Ω allows for “averaging” Ω-equivalent entries

of W and b, as in the previous sections. It follows that b ∈ CW if and only if

b∗ ∈ CW ∗
Ω = C(MDk). And since Dk is diagonal with nonnegative entries, this latter

condition is equivalent to b∗ ∈ CM . A concrete restatement of this is now given.

Theorem 2.7. (Generalized Method of Moments) With notation as above, b ∈ CWΩ

if and only if there exist nonnegative rational solutions zϕ to the equations

∑

ψ∈Hd(k),ψ≤ω

(
ψ

ϕ

)

zϕ =

(
ω

ϕ

)

bϕ, ϕ ∈ H
d(t).

The goal for the rest of this section will be to show that the system of equations in

Theorem 2.7 reduces to the moment equations (1.1) when Ω is a bipartition and b =

λj. This will motivate the consideration of the condition b ∈ CW v
tk as a generalization

of the method of moments.

Consider the bipartition Ω = (H, V \ H) with |H| = w and t ≤ w ≤ v − t.

Suppose that some collection of k-subsets from V has the property that every t-set T

is contained in precisely bh members of this collection, where h = |T ∩H|. (From now

on, indexing over the ordered bipartitions of, say s ∈ N0, will be changed to simply

indicate the first coordinate, from 0 to s.) Let zj be the number of k-subsets in the

collection that meet H in exactly j points. The following system of equations holds

by the same double-counting proof as was mentioned before equations (1.1).

k∑

j=0

(
j

i

)

zj =

(
w

i

)(
k − i

t− i

)−1 t∑

h=0

(
w − i

h− i

)(
v − w

t− h

)

bh, i = 0, 1, . . . , t. (2.3)

Define the vector b̃ indexed on {0, 1, . . . , t} by b̃(h) = bh. Note that when b̃ = λj, the

equation above reduces to (1.1) via equation (1.4). Observe b∗ = diag
((
w
i

)(
v−w
t−i

))
b̃.
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Define

N =

[(
j

i

)]

i∈{0,1,...,t}
j∈{0,1,...,k}

,

Q =

[(
w − i

h− i

)(
v − w

t− h

)]

i∈{0,1,...,t}
h∈{0,1,...,t}

,

and D = diag
((

w
i

)(
k−i
t−i

)−1
)

. Then the existence of nonnegative rational solutions zj

to the equations (2.3) is equivalent to DQb̃ ∈ CN.

For Ω a bipartition, the matrix M defined earlier is

M =

[(
j

i

)(
k − j

t− i

)]

i∈{0,1,...,t}
j∈{0,1,...,k}

.

Write M0 and N0 for the square submatrices formed from the first t + 1 columns

(indexed by {0, 1, . . . , t} ⊂ {0, 1, . . . , k}) of M and N respectively. The inverse of M0

is important for later work and will be calculated in Proposition 3.3. Some simple

binomial identities prove that [N−1
0 ]ij = (−1)i+j

(
j
i

)
. From this, computing M0N

−1
0 is

an easy application of Proposition 1.4.

Lemma 2.8. With the matrices defined as above, [M0N
−1
0 ]ij = (−1)i+j

(
j
i

)(
k−j
t−j

)
.

The equivalence between the moment equations and the cone condition for W ∗
Ω

can now be established.

Theorem 2.9. b∗ ∈ CM if and only if DQb̃ ∈ CN .

Proof: It must be shown that the equationsMz = b∗ andNz = DQb̃ either both have

or both do not have nonnegative solutions z for each choice of b̃. By Lemma 2.8 and

equation (1.4), it follows that M = M0N
−1
0 N . So, it suffices to prove M0N

−1
0 DQ =

diag(
(
w
i

)(
v−w
t−i

)
). Using Lemma 2.8 again gives

M0N
−1
0 D =

[

(−1)i+j
(
w

j

)(
j

i

)]

i∈{0,1,...,t}
j∈{0,1,...,t}

.
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Now

(M0N
−1
0 DQ)ij =

j
∑

`=i

(−1)i+`
(
w

`

)(
`

i

)(
w − `

j − `

)(
v − w

t− j

)

=

(
w

i

)(
v − w

t− j

) j
∑

`=i

(−1)i+`
(
w − i

`− i

)(
w − `

j − `

)

=

(
w

i

)(
v − w

t− j

)(
0

j − i

)

,

by equations (1.3) and (1.5). It is evident that the off-diagonal entries of M0N
−1
0 DQ

vanish, and the proof is complete.



20

Chapter 3

Bipartitions

In general, it is difficult to determine if an arbitrary vector b ∈ R(v

t) is contained

in the cone CW v
tk. Dimensions alone often render this question impractical. How-

ever, most design-theoretic applications enjoy abundant symmetry, which is usually

prudent to exploit. This chapter will explore, from the point of view of containment

in CW , certain structures in t-designs which are most naturally or easily handled by

considering a bipartition of the points. There is no intent here to exhaust the possible

application of bipartitions to the cone condition. It should also be noted that most

inequalities presented here are already known for t-designs. Indeed, the main result of

Section 2.3 is an equivalence between the cone condition for bipartitions and the well-

studied method of moments, with which any of the results here have either already

been proved, or can be proved. Regardless, there are various reasons for considering

the cone in this context. It may be interesting to understand a description of the sup-

porting vectors yf and associated polynomials f which produce certain inequalities,

for instance. And perhaps of most interest is the unification of many inequalities for

designs, some of which require finer partitions and are presented later.

3.1 The Raghavarao-Wilson inequality

In [26], the moment equations (1.1) are used with the method of orthogonal projection

to prove a family of inequalities concerning block density in t-designs. One result of

particular interest is a generalization to t-designs of Raghavarao’s upper bound [22]
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on the cardinality of the intersection of n blocks in a 2-design. An interesting special

case is that a 2s-(v, k, λ) design with v ≥ k+s points having an n-fold repeated block

must have at least n
(
v
s

)
total blocks. This generalizes both Mann’s inequality [17], in

which s = 1, and Wilson and Ray-Chaudhuri’s extension [21] of Fisher’s inequality,

in which n = 1. Note that by Proposition 1.1, this condition also holds for t-designs

with t ≥ 2s.

Here, another proof of the generalized Raghavarao inequality for t-designs is given

using bipartitions and Theorem 2.3. Like Wilson’s original proof, several binomial

identities are needed in addition to a family of orthogonal polynomials. For 0 < s ≤

k, w ≤ v, define

g = gws,k(x) =

s∑

i=0

(−1)s−i
(
v−s
i

)(
w−1−i
s−i

)(
k−i
s−i

)

(
s
i

)

(
x

i

)

.

This is a multiple of a (terminating) hypergeometric series of type 3F2 with unit

argument. Alternate presentations of g arise from hypergeometric identities or facts

related to orthogonal polynomials, as is mentioned in [26]. For instance, one has the

relations

gws,k(x) = gk+1
s,w−1(x) = (−1)sgv−w+1

s,k (k − x) (3.1)

and

gws,k(w) =

(
v

s

)−1(
k

s

)(
v − w

s

) s∑

i=0

[(
v

i

)

−

(
v

i− 1

)] (w
i

)(
v−k
i

)

(
k
i

)(
v−w
i

) . (3.2)

The following result is equivalent to Corollary 1 of [26] upon application of Propo-

sition 1.1 and equation (3.2).

Theorem 3.1. ([26]) Let t ≥ 2s, and suppose v ≥ k + s. In a t-(v, k, λ) design with

a collection D of n blocks containing w points in their intersection, (s ≤ w ≤ v − s),

n

λ
≤

(
v

t

)(
v

s

)−1(
k

t

)−1(
k

s

)(
v − w

s

)

(gws,k(w))−1. (3.3)

Proof: Consider the bipartition Ω = (H, V \ H) of the pointset V , where H is the

intersection in question. Then |Ω| = (w, v − w) and (x, k − x) will be used as the
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variables1 for intersection of a k-set with Ω. The stated inequality will be shown to

be equivalent to yf · b ≥ 0 for f(x) = (gws,k(x))
2, which is certainly nonnegative on

{0, 1, . . . , w}, and b = λj −
∑

B∈D eB. The result will then follow by an application

of Theorems 2.3 and 2.4. Let (a0, . . . , at) be such that

f(x) =

t∑

j=0

aj

(
x

j

)(
k − x

t− j

)

and let F (x) =
∑t

j=0 aj
(
x
j

)(
v−x
t−j

)
. Then from 0 ≤ yf ·b = λF (w)−nf(w), it is enough

to show that

F (w) = gws,k(w)

(
v

t

)(
v

s

)−1(
k

t

)−1(
k

s

)(
v − w

s

)

. (3.4)

Now using equation (3.1),

f(x) = (−1)sgws,k(x)g
v−w+1
s,k (k − x)

=
t∑

r=0

(−1)s−r
∑

i

(
v−s
i

)(
v−s
r−i

)(
k−i
s−i

)(
k−r+i
s−r+i

)(
w−1−i
s−i

)(
v−w−r+i
s−r+i

)

(
s
i

)(
s
r−i

)

(
x

i

)(
k − x

r − i

)

,

where the sum on i is from max{0, r− s} to min{r, s}. It follows from equation (1.6)

with y = k − x that

aj =

t∑

r=0

(−1)s−r
min{r,s}
∑

i=max{0,r−s}

(
v−s
i

)(
v−s
r−i

)(
k−i
s−i

)(
k−r+i
s−r+i

)(
w−1−i
s−i

)(
v−w−r+i
s−r+i

)(
j
i

)(
t−j
r−i

)

(
s
i

)(
s
r−i

)(
k−r
t−r

) . (3.5)

One now has an expression for F (x) in terms of these coefficients. Applying

equation (1.3) and equation (1.6) with y = v − x permits the simplification

F (w) =

(
v − w

s

) t∑

r=0

(−1)s−r
(
v−r
t−r

)

(
k−r
t−r

)

s∑

i=0

(
v−s
i

)(
v−s
r−i

)(
k−i
s−i

)(
k−r+i
s−r+i

)(
w−1−i
s−i

)(
w
i

)

(
s
i

) .

Changing back the indices of summation with r = i + j and applying equation (1.3)

1For convenience, these and future variables will depart from the x1, x2, . . . used in Chapter 2.
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again gives

F (w) =

(
v−w
s

)

(
v−t
k−t

)

s∑

i,j=0

(−1)s−i−j

(
v−i−j
k−i−j

)(
v−s
i

)(
v−s
j

)(
k−i
s−i

)(
k−j
s−j

)(
w−1−i
s−i

)(
w
i

)

(
s
i

) .

The summation indexed by j is handled directly by Lemma 1.6. So one has

F (w) =

(
v−w
s

)(
v−s
k−s

)

(
v−t
k−t

)

s∑

i=0

(−1)s−i
(
v−s
i

)(
k−i
s−i

)(
w−1−i
s−i

)(
w
i

)

(
s
i

)

=

(
v

t

)(
k

s

)(
k

t

)−1(
v

s

)−1(
v − w

s

)

gws,k(w),

as required, where two more applications of (1.3) have been used.

It should be noted that Theorem 3.1 applied to the supplement of the given design

produces a bound on the size of a union of n blocks, or the size of a set disjoint from

each of n blocks (Corollaries 2 and 3 of [26].) When w = k in the theorem, equation

(3.2) recovers the generalization of Mann’s inequality.

Corollary 3.2. ([26]) Let t ≥ 2s, and suppose v ≥ k + s. In a t-(v, k, λ) design with

an n-fold block,
n

λ
≤

(
v

t

)(
k

t

)−1(
v

s

)−1

. (3.6)

For equality to hold in (3.3), the given supporting vector yf must annihilate all

characteristic vectors of blocks eB of the design which are not among the n given

blocks. Lemma 2.2 then implies that there are at most s possible intersection sizes

for a pair of different blocks, and these are the roots of gws,k(x). It is shown in [21]

that at least s + 1 intersection sizes occur in any 2s-design. Thus, the roots of gws,k

being integral and distinct forms a surprisingly stringent necessary condition for the

existence of designs meeting the bound with equality. This observation has essentially

been used, for example, to disprove [20] the existence of any tight 6-designs. Better

understanding the distribution of roots of these polynomials would appear to be

a crucial step toward more sophisticated inequalities and nonexistence results for

designs.
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3.2 Enclosings of designs

An enclosing of a t-(w, k, λ′) design (U,B′) is a t-(v, k, λ) design (V,B) such that

U ⊆ V and B′ is a subcollection of B. When w = k and λ′ = n, this is equivalent to

the existence of an n-fold block in a t-(v, k, λ) design. Since this case is of particular

interest, it will be considered in further detail here and in the next section. It should

be noted that the inequalities in Theorem 3.1 and Corollary 3.2 apply to enclosings

and n-fold blocks via the polynomials gks,w(x). The spirit of this section is that the

facet-defining polynomials of Theorem 2.6 can be used to obtain sharper inequalities

for enclosings. In fact, one obtains necessary and sufficient conditions for λj−λ′eU to

belong to CW , since this vector is invariant under a bipartition. It is worth mentioning

that improvements to Theorem 3.1, though sporadic and not in general optimal, can

also be obtained in a similar manner.

In what follows, the cleaner case of t even will be assumed when necessary. Recall

from Section 2.3 the (t+ 1) × (k + 1) matrix

M =

[(
j

i

)(
k − j

t− i

)]

i∈{0,1,...,t}
j∈{0,1,...,k}

.

By the discussion in Chapter 2, supporting vectors of CW(U,V \U) are of the form

y =

t∑

i=0

ai
∑

|T∩U |=i

eT ,

where a = (a0, a1, . . . , at) 6= 0 is such that aM ≥ 0. The corresponding polynomial is

f(x) =
t∑

i=0

ai

(
x

i

)(
k − x

t− i

)

,

which supports a facet by Theorem 2.6 if and only if f vanishes on a good subset

Z ⊂ {0, 1, . . . , k} of size t, and has f(r) > 0 for any r ∈ {0, 1, . . . , k} \ Z. Let MZ

denote a square submatrix of M formed from the columns indexed by Z∗ = Z ∪ {r},

for some good Z and r 6∈ Z. (In many cases, 0 6∈ Z, and r = 0 is a nice choice for
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the computations which follow.) Any t + 1 columns of M are linearly independent,

so the facets are simply described (up to a positive multiple) by the vector (M−1
Z )r,

i.e., the row of M−1
Z indexed by r.

For interest, the task of computing these facets explicitly will now be briefly

considered. Following the convention in Section 2.2, define M0 = M{1,...,t} (with

“positive coordinate” taken arbitrarily to be r = 0).

Proposition 3.3.

(M0)
−1 =

[

(−1)i+j
k − t

k − t + j − i

(
j

i

)(
k − i

t− j

)−1
]

i,j∈{0,1,...,t}

.

Proof: Both M0 and the given matrix are upper triangular, so it suffices to consider

inner products of row i of M0 with column j of the asserted inverse when i ≤ j. For

i = j, this is evidently equal to

t∑

`=0

(−1)`+i
(
`

i

)(
i

`

)(
k − `

t− i

)
k − t

k − t− `+ i

(
k − `

t− j

)−1

= (−1)2`k − t

k − t
= 1.

For i < j, the inner product is

(k − t)

(
j

i

)(
t− i

t− j

)−1 j
∑

`=i

(−1)`+j
1

k − `− t+ j

(
j − i

`− i

)(
k − `− t+ j

j − i

)

=
k − t

j − i

(
j

i

)(
t− i

t− j

)−1 j
∑

`=i

(−1)`+j
(
j − i

`− i

)(
k − `− t+ j − 1

k − `− t + i

)

=
k − t

j − i

(
j

i

)(
t− i

t− j

)−1(
k − t− 1

k − t

)

= 0,

where equation (1.3) is used three times along with the summation identity (1.5).

Now the matrix (MZ)−1 can, in principle, be computed for general Z by making

use of the (t + 1) × (t + 1) Vandermonde matrix VZ defined by VZ(i, j) = ji, where

i ∈ {0, 1, . . . , t} and j ∈ Z∗. Observe that MZ = EVZ, where E is defined by the

polynomial equations
(
x

i

)(
k − x

t− i

)

=

t∑

`=0

Ei`x
`.
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Now

M−1
Z = V −1

Z E−1 = V −1
Z V{1,...,t}M

−1
0 .

By Proposition 3.3 and a known formula [15] for the inverse of a general Vandermonde

matrix, the required row of M−1
Z can be expressed concretely, if desired. All facets

for a bipartition arise in this way.

Theorem 3.4. Suppose t ≤ |U | = w ≤ v. Then λeV − λ′eU ∈ CW v
tk if and only if,

for all good t-sets Z ⊂ {0, 1, . . . , k} and some r 6∈ Z,

λ′

λ
≤

∑t
j=0(M

−1
Z )rj

(
w
j

)(
v−w
t−j

)

(M−1
Z )rt

(
w
t

) .

Proof: By Theorems 2.3 and 2.6, λeV −λ
′eU ∈ CW if and only if yZ ·(λeV −λ

′eU) ≥ 0

for all good Z ⊂ {0, 1, . . . , k}, where yZ =
∑t

i=0(M
−1
Z )ri

∑

|T∩U |=i eT . The result

follows upon observing that yZ · eU = (M−1
Z )rt

(
w
t

)
and

yZ · eV = yZ · j =
∑

j

(M−1
Z )rj

(
w

j

)(
v − w

t− j

)

.

Note that, for some constant C depending on the choice of r ∈ {0, 1, . . . , t} \ Z,

C
∏

ζ∈Z

(x− ζ) =
t∑

j=0

(M−1
Z )rj

(
x

j

)(
k − x

t− j

)

.

When some such r is understood, define

FZ(x) =
t∑

j=0

(M−1
Z )rj

(
x

j

)(
v − x

t− j

)

.

The following nonexistence result, first proved by Delsarte in [6], is a rather strik-

ing use of Theorem 3.4.

Example 3.1. There does not exist a 4-(17, 8, 5) design. For these parameters, one

has f(x) = gk2,k(x)
2 ≈ C(x−2.48)2(x−4.52)2 for some constant C. Suppose there is an
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n-fold block B, and consider the test of λj−neB ∈ CW v
4k. From the supporting vector

yf , the Wilson-Mann bound of n/λ ≤ 1/4 results, which permits n = 1. Instead,

consider the polynomial (x− 2)(x− 3)(x− 4)(x− 5). The bound from F{2,3,4,5}(k) in

Theorem 3.4 is n/λ < 4/25. This rules out even n = 1. In other words, a design with

these parameters cannot exist.

In general, the upper bound on λ′/λ from Theorem 3.4 is obtained by minimizing

a certain quantity with respect to Z. Some preliminary steps toward understanding

the optimum such Z will now be presented.

Example 3.2. When t = 2, the only possible extremal polynomials (up to a positive

multiple) are x(k − x) or (x − c)(x − c − 1) for some c = 0, . . . , k − 1. The various

cases for Z and corresponding facet weights a0, a1, a2 are computed and presented in

the table below.

Z a0 a1 a2

{k − 1, k} 1 0 0

{0, k} 0 1 0

{0, 1} 0 0 1

{c, c+ 1} c+1
k−c−1

−1 k−c
c

Note the last line in the table is for 1 ≤ c ≤ k − 2, and this case yields the only

nontrivial family of facets for CW v
2k that are invariant under a bipartition.

Corollary 3.5. Suppose t ≤ |U | = w < v − 1. Then λj− λ′eU ∈ CW v
2k if and only if

λ′

λ
≤
c(c+ 1)(v − w)(v − w − 1)

(k − c)(k − c− 1)w(w − 1)
−

2c(v − w)

(k − c)(w − 1)
+ 1,

where

c =

⌊
w(k − 1)

v − 1

⌋

.

Proof: Using the table above, a concrete restatement of Theorem 3.4 for t = 2 is

λ′

λ
≤ min

c=1,...,k−2

c+1
k−c−1

(
v−w

2

)
− w(v − w) + k−c

c

(
w
2

)

k−c
c

(
w
2

) . (3.7)
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(Note that the other three facets give no meaningful bound on λ′/λ.) Now, let

c ∈ (0, k − 1) be a continuous parameter, and define h(c) to be the rational function

in c on the right side of (3.7). Using calculus and some factoring, the minimum of h

on (0, k − 1) is seen to be achieved at

c0 =
(k − 1)(v + w − 1) −

√

(k(v − w − 1) + w)2 − (v − 1)2

2(v − 1)
.

The square root lies in the open interval with endpoints k(v − w − 1) + w ± (v − 1).

After some simplification, it follows that c0 ∈ (γ − 1, γ), where γ = w(k−1)
v−1

. Now

the function h is strictly decreasing on (0, c0) and strictly increasing on (c0, k − 1).

Furthermore, a calculation shows h(γ−1) = h(γ). So, the (1 or 2) integers in (0, k−1)

which minimize h must belong to the interval [γ − 1, γ]. Thus over integers, h(c) is

minimized at c = bγc.

Remarks: For w = v − 1, the inequality in (3.7) reduces to

λ′

λ
≤ min

c=1,...,k−2
1 −

2c

(k − c)(v − 2)
= 1 −

k − 2

v − 2
. (3.9)

Enclosings with w = v − 1 are said to be minimal, and the smallest gap between

λ′ and λ is of interest. Some nice constructions of such enclosings for t = 2 and

k = 3 are found in [13], along with an alternate proof of the bound in (3.9). Similar

inequalities concerning enclosings of group divisible designs are considered (along with

several constructions) in work in progress by Hurd, Purewal, and Sarvate, and these

bounds can also be proved with a modification of Corollary 3.5.

It is interesting to note that γ above is the root of gk1,w(x) = (v − 1)x− w(k− 1).

Roughly speaking, a sharper inequality results because, in the cone of quadratics

nonnegative on {0, 1, . . . , k}, the polynomial (x − γ)2 is closest to the extremal ray

generated by (x − bγc)(x − bγc − 1). In fact, it seems more generally that among

square polynomials, the optimal bounds for enclosings arise from supporting vectors

yf of CW corresponding to f(x) = (gks,w(x))2. But curiously, Corollary 3.5 fails for

t ≥ 4 in the sense that it is not always the case that the minimizing good set Z of
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Theorem 3.4 is obtained from the floor and ceiling of the roots of gks,w; however, such

sets appear to be “very close” to optimal. See Figure 3.1.

Example 3.3. Consider upper bounds on n/λ, where it is assumed that there exists

an n-fold block in a 4-(24, 12, λ) design. With v = 24,

g12
2,12(x) =

11

2
(21x2 − 241x+ 660) ≈ C(x− 4.51)(x− 6.96).

However, F{4,5,6,7}(w) ≥ F{4,5,7,8}(w).

When k−t is small, the choices for Z are limited. In such cases, it may be possible

to obtain, in closed form, a reasonable bound from Theorem 3.4. One such example

is given next.

Corollary 3.6. Let t = 2s. In a t-(2t+ 2, t+ 1, λ) design with an n-fold block,

n(t + 2) ≤ 2λ.

Proof: This follows from Theorem 3.4 with Z∗ = {0, 1, . . . , t}, w = k = t + 1 and

λ′ = n. By Proposition 3.3 and equation (1.3), it follows that

(M−1
Z )0j = (−1)j

1

j + 1

(
t + 1

j + 1

)−1

= (−1)j
1

t+ 1

(
t

j

)−1

.

So

n

λ
≤

1
(
t+1
t

)

t∑

j=0

(−1)j
(
t

j

)−1(
t+ 1

j

)(
t+ 1

t− j

)

=

(
1

t+ 1

)
2(t+ 1)

2t+ 2 − t
=

2

t+ 2
,

where equation (1.8) is invoked to simplify the sum.

Remarks: This inequality is actually strict, because the associated supporting vector

fails to annihilate t-sets fully contained in the specified block or its complement.

Note that the Wilson-Mann inequality, Corollary 3.2, applied to a design with these
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Figure 3.1: Optimal roots (�) with roots of gks,k for t = 4, k = 12 and 15 ≤ v ≤ 75.
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parameters is the weaker statement

n

λ
≤

(
2t+2
t

)

(t+ 1)
(
2t+2
s

) .

It should be said, however, that Delsarte’s inequalities [6] have been recently applied

by Chan and Wilson to small k − t and n = 1 to obtain much stronger bounds than

possible from Theorem 3.4.

3.3 Tables for n-fold blocks

Consider here the existence of an n-fold block in a t-(v, k, λ) design. For t = 2,

Corollary 3.5 provides, in closed form, the most strict upper bound on n/λ possible

from the cone condition. However, the situation is less clear for t > 2, as illustrated

by Example 3.3. By automating Theorem 3.4 on computer, the best bound has

been computed on n/λ in t-(v, k, λ) designs with an n-fold block for t = 4, 6, 8,

t + 1 ≤ k ≤ 12, and 2k ≤ v ≤ 24. In the tables which follow, the entry “λmin” is the

smallest positive integer λ satisfying the divisibility requirements of Proposition 1.1

for a given t, k, v. Any other such admissible λ must, of course, be a positive multiple

of λmin. The column labeled “n ≤” gives the sharpest bound from Theorem 3.4

with λ = λmin, and the corresponding optimal vanishing set Z is included in the

adjacent column. A missing parameter pair (v, k) within range indicates that the

cone condition permits n = λ in that case, thereby yielding no information. Note

that for all t, k, this eventually occurs for sufficiently large v.

The smallest parameter pair (v, k) = (2t+2, t+1) in each table corresponds to the

case in Corollary 3.6. For other examples, the t = 4 table says that every 4-(23, 11, 12)

design is simple, while the t = 6 table asserts the nonexistence of 6-(19, 9, 2) and 6-

(20, 10, 7) designs. The information in Examples 3.1 and 3.3 also appears in the t = 4

table.
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v k λmin n ≤ Z v k λmin n ≤ Z

10 5 6 2 1, 2, 3, 4 21 8 70 25.06 1, 2, 3, 4
12 6 2 0.6 1, 2, 3, 4 22 8 30 10.6 1, 2, 3, 4
13 6 6 1.8 1, 2, 3, 4 23 8 2 0.7143 1, 2, 3, 4
14 6 15 5.4 1, 2, 3, 4 24 8 5 1.857 1, 2, 3, 4
15 6 5 2.6 1, 2, 3, 4 18 9 14 1.6 3, 4, 5, 6
16 6 6 5 1, 2, 3, 4 19 9 21 3.143 2, 3, 5, 6
14 7 20 3.6 2, 3, 4, 5 20 9 168 29.71 2, 3, 4, 5
15 7 5 1.8 1, 2, 3, 4 21 9 14 2.429 2, 3, 4, 5
16 7 20 6.8 1, 2, 3, 4 22 9 252 46.23 2, 3, 4, 5
17 7 2 0.6667 1, 2, 3, 4 23 9 18 3.8 2, 3, 4, 5
18 7 28 9.667 1, 2, 3, 4 24 9 24 5.75 1, 2, 4, 5
19 7 35 13.4 1, 2, 3, 4 20 10 28 2.857 3, 4, 5, 6
20 7 140 63.73 1, 2, 3, 4 21 10 28 2.857 3, 4, 5, 6
21 7 10 5.733 1, 2, 3, 4 22 10 42 5 3, 4, 5, 6
22 7 4 3 1, 2, 3, 4 23 10 42 5.321 2, 3, 5, 6
16 8 15 2.4 2, 3, 4, 5 24 10 60 8.375 2, 3, 5, 6
17 8 5 0.8 2, 3, 4, 5 22 11 72 5.439 3, 4, 6, 7
18 8 7 1.333 2, 3, 4, 5 23 11 6 0.4786 3, 4, 6, 7
19 8 105 28 2, 3, 4, 5 24 11 120 11.17 3, 4, 6, 7
20 8 70 22.05 1, 2, 4, 5 24 12 15 0.9571 4, 5, 7, 8

Table 3.1: t = 4.

v k λmin n ≤ Z v k λmin n ≤ Z

14 7 4 1 1, 2, 3, 4, 5, 6 23 9 20 6.5 1, 2, 3, 4, 5, 6
16 8 15 3.429 1, 2, 3, 4, 5, 6 24 9 24 10.25 1, 2, 3, 4, 5, 6
17 8 5 1.143 1, 2, 3, 4, 5, 6 20 10 7 0.7143 2, 3, 4, 5, 6, 7
18 8 6 1.714 1, 2, 3, 4, 5, 6 21 10 105 10.71 2, 3, 4, 5, 6, 7
19 8 6 2.857 1, 2, 3, 4, 5, 6 22 10 70 8.929 2, 3, 4, 5, 6, 7
20 8 7 6.571 1, 2, 3, 4, 5, 6 23 10 70 14.29 2, 3, 4, 5, 6, 7
18 9 20 2.286 2, 3, 4, 5, 6, 7 24 10 90 27.08 1, 2, 3, 4, 5, 6
19 9 2 0.5714 1, 2, 3, 4, 5, 6 22 11 168 10.71 3, 4, 5, 6, 7, 8
20 9 28 7.571 1, 2, 3, 4, 5, 6 23 11 14 1.611 2, 3, 4, 5, 7, 8
21 9 35 9.286 1, 2, 3, 4, 5, 6 24 11 252 29.76 2, 3, 4, 5, 6, 7
22 9 280 78.04 1, 2, 3, 4, 5, 6 24 12 42 2.381 3, 4, 5, 6, 7, 8

Table 3.2: t = 6.

v k λmin n ≤ Z

18 9 10 2 1, 2, 3, 4, 5, 6, 7, 8
20 10 6 1.111 1, 2, 3, 4, 5, 6, 7, 8
21 10 6 1.111 1, 2, 3, 4, 5, 6, 7, 8
22 10 7 1.667 1, 2, 3, 4, 5, 6, 7, 8
23 10 105 47.22 1, 2, 3, 4, 5, 6, 7, 8
22 11 28 2.222 2, 3, 4, 5, 6, 7, 8, 9
23 11 35 8.333 1, 2, 3, 4, 5, 6, 7, 8
24 11 280 63.33 1, 2, 3, 4, 5, 6, 7, 8
24 12 70 5 2, 3, 4, 5, 6, 7, 8, 9

Table 3.3: t = 8.
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Chapter 4

Finer Partitions

The goal of the last chapter was a fairly thorough investigation of facets and inequal-

ities obtained from CW by using an automorphism that induces a bipartition of the

points. Especially from the point of view of design configurations, this is a rather

limited approach. Here, finer invariant partitions are considered. The primary focus

will again be applications to t-designs. The first section shows how a classical result

on the intersection size of two blocks (and its generalization due to Wilson) follows

from partitions of size four. Still finer partitions are then used to study uniform

intersection of three blocks in a 2-design.

4.1 The Connor-Wilson inequalities

Suppose in a t-(v, k, λ) design that two blocks B1 and B2 intersect in µ points. In

[27], Wilson establishes conditions on µ generalizing Connor’s inequalities [5], which

give upper and lower bounds on µ for t = 2. Here, Wilson’s result is reproduced with

the cone condition. The t-vector under consideration is b = λj− eB1
− eB2

, in which

every entry is either λ, λ−1, or λ−2. Such b are clearly invariant under the partition

Ω = (B1 \B2, B2 \B1, B1 ∩B2, V \ (B1 ∪B2)) .

It is required to consider polynomials f(x1, x2, y) in three variables which are non-

negative on 0 ≤ x1, x2 ≤ k − µ, 0 ≤ y ≤ µ, and x1 + x2 + y ≤ k.
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v − 2k + µ

Figure 4.1: Cardinalities for a typical k-set K and t-set T meeting B1, B2.

B1 B2

k − µ µ k − µ

x1 y x2

i1 j i2

T

K

The polynomials from Chapter 3 will play an important role once again. To

simplify notation, define gs(x) = gks,k(x).

Theorem 4.1. ([27]) Let t ≥ 2s, and suppose v ≥ k + s. In a t-(v, k, λ) design with

two blocks intersecting in µ points,

(
k

s

)(
v − k

s

)

± gs(µ) ≤ λ

(
v

t

)(
v

s

)−1(
k

t

)−1(
k

s

)(
v − k

s

)

. (4.1)

Proof: Theorem 2.3 is used with the partition described above and the (nonnegative)

polynomials f(x1, x2, y) = [gs(x1 + y) ± gs(x2 + y)]2. For {p, q} ⊂ {1, 2}, define the

weights apq(i1, i2, j) by

gs(xp + y)gs(xq + y) =
∑

0≤i1+i2+j≤t

apq(i1, i2, j)

(
x1

i1

)(
x2

i2

)(
y

j

)(
k − x1 − x2 − y

t− i1 − i2 − j

)

.

It is immediate that a12(i1, i2, j) = a12(i2, i1, j) and a11(i1, i2, j) = a11(i1, i
′
2, j) for any

i2, i
′
2, and similarly for a22 with i1, i

′
1. Define

a(i1, i2, j) = a11(i1, i2, j) + a22(i1, i2, j) ± 2a12(i1, i2, j).
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The condition yf · b ≥ 0 is seen to be equivalent to

[
∑

i1+j=t,i2=0

+
∑

i2+j=t,i1=0

]

A(i1, i2, j) ≤ λ
∑

0≤i1+i2+j≤t

A(i1, i2, j), (4.2)

where

A(i1, i2, j) = a(i1, i2, j)

(
k − µ

i1

)(
k − µ

i2

)(
µ

j

)(
v − 2k + µ

t− i1 − i2 − j

)

.

It remains to simplify the sums on the left and right sides of this inequality, which

will be denoted by ΣL and ΣR, respectively. Define ΣL
pq and ΣR

pq to be these sums

with “apq” taking the place of “a,” so that ΣL = ΣL
11 + ΣL

22 ± 2ΣL
12, and similarly for

ΣR. It is a straightforward observation that

ΣL
11 = ΣL

22 = (gs(k))
2 + (gs(µ))2 and ΣL

12 = 2gs(k)gs(µ).

And computing as in the proof of Theorem 3.1 yields

ΣR
11 = ΣR

22 =

(
v

t

)(
v

s

)−1(
k

t

)−1

(gs(k))
2, ΣR

12 =

(
v

t

)(
v

s

)−1(
k

t

)−1

gs(k)gs(µ).

The inequality (4.2) can now be rewritten as

2(gs(k) ± gs(µ))2 ≤ λ

(
v

t

)(
v

s

)−1(
k

t

)−1

2gs(k)(gs(k) ± gs(µ)).

Canceling 2(gs(k) ± gs(µ)), which is evidently positive if the inequality holds, and

using the 2F1 identity gs(k) =
(
k
s

)(
v−k
s

)
completes the proof.

Remarks: The case µ = k of the above reduces to the case n = 2 of Corollary 3.2. In

general, however, Theorem 4.1 is a more stringent condition on µ than Theorem 3.1

is on w for n = 2. When t = 2, Theorem 4.1 reduces (after some arithmetic) to

Connor’s inequalities for a pair of blocks:

k − λ

(
v − k

k − 1

)

≤ µ ≤
2k(k − 1)

v − 1
− k + λ

(
v − k

k − 1

)

. (4.3)

The left inequality results from the polynomial with the “−” sign and the right
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inequality arises from the polynomial with the “+” sign.

It is of interest when equality occurs in the bounds of this section. By Lemma 2.2,

this happens for bounds corresponding to f if and only if for every block B distinct

from B1 and B2 with |B ∩ Ω| = (x1, x2, y, k − x1 − x2 − y), it is the case that

f(x1, x2, y) = 0. So the lower bound of (4.3) is met with equality if and only if

g1(x1 + y)− g1(x2 + y) = 0 for every block B meeting the partition as above. Since g1

is linear, this is simply equivalent to x1 = x2. Therefore, equality results in the lower

bound of Connor’s inequalities for µ = |B1∩B2| if and only if every other block meets

the given pair of blocks in the same number of points. In this case, there are only two

possible intersection sizes in the 2-design for a disjoint pair of blocks. This observation

was first made by Majindar [16]. Similarly, equality occurs in the upper bound of

(4.3) if and only if g1(x1+y)+g1(x2+y) = 0, or |B∩B1|+|B∩B2| = 2k(k−1)/(v−1)

for all B distinct from B1 and B2. The following gives a flavor of the conditions for

equality when t > 2.

Proposition 4.2. When t = 4, equality occurs in the “−” bound of Theorem 4.1 if

and only if, for every block B distinct from B1 and B2, either

(i) |B ∩ B1| = |B ∩ B2| or

(ii) |B ∩ B1| + |B ∩ B2| = 1 + 2(k−1)(k−2)
v−3

.

Proof: This follows from the remarks above with the factorization

g2(x1 + y) − g2(x2 + y) =
1

4
(v − 2)(x1 − x2)

(

x1 + x2 + 2y − 1 −
2(k − 1)(k − 2)

v − 3

)

.

(By comparison, the polynomial g2(x1 + y)+ g2(x2 + y) does not split in R[x1, x2, y].)

With only a minor modification to the proof of Theorem 4.1, a generalization to

blocks with higher multiplicity follows.

Theorem 4.3. Let t ≥ 2s and suppose v ≥ k+ s. Suppose in a t-(v, k, λ) design that
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an n-fold block B1 meets the (different) block B2 in µ points. Then

n

(
k

s

)(
v − k

s

)

± gs(µ) ≤ λ

(
v

t

)(
v

s

)−1(
k

t

)−1(
k

s

)(
v − k

s

)

. (4.4)

Note that this result can be applied to the intersection of an n1-fold block with a

distinct n2-fold block upon multiplication by n2. Undoubtedly, inequalities concerning

the still more general b = λj − n1eW1
− n2eW2

for s ≤ |W1|, |W2| ≤ v − s can be

established by merging the proofs of Theorems 3.1 and 4.1.

4.2 Examples from linear programming

The polynomials used to establish Theorem 4.1 are squares; hence they do not define

facets of CW . As before, tighter inequalities arise from facets, but at the expense of

losing a concise closed form. Rather than looking for the best extremal polynomials

in several variables, the approach will be to find optimal facets of CW using linear

programming. Computational restrictions will force this discussion to the case t = 2.

First, consider bounds on the intersection µ of two blocks B1, B2 in a 2-(v, k, λ)

design. The vector b = λj − eB1
− eB2

is invariant under the partition Ω of size four

described in the last section. The further symmetry between B1 \ B2 and B2 \ B1

allows a reduction to the seven orbits of pairs, or edges, described below.

edge orbit for {x, y} x ∈ y ∈ number of edges

E1 (B1 ∪B2)
c (B1 ∪ B2)

c
(
v−2k+µ

2

)

E2 B14B2 (B1 ∪ B2)
c 2(k − µ)(v − 2k + µ)

E3 B1 ∩ B2 (B1 ∪ B2)
c µ(v − 2k + µ)

E4 B1 \B2 B2 \B1 (k − µ)2

E5 Bi \Bj Bi \Bj 2
(
k−µ

2

)

E6 B1 ∩ B2 B14B2 2µ(k − µ)

E7 B1 ∩ B2 B1 ∩B2

(
µ
2

)
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It is a linear programming problem to determine edge weights a1, . . . , a7 so that

the 2-vector y =
∑7

i=1 ai
∑

T∈Ei
eT minimizes the quantity y · b subject to some

normalization (say a1 = 1) and the constraints y · eK ≥ 0 for all k-sets K. If this

minimum is negative for some v, k, λ, µ, it follows that any 2-(v, k, λ) design cannot

have two blocks with intersection µ. The table below summarizes the results of

implementing this on computer for various small parameters. The columns labeled

“Connor” and “L.P.” give intervals for allowable µ from Connor’s inequalities and

the linear programming bound, respectively. By Theorem 4.1, the latter range on is

always contained in the former.

v k λ Connor L.P. v k λ Connor L.P.

6 3 2 [0, 2] [1, 2] 22 8 4 [0, 5] [0, 4]

8 4 3 [0, 3] [0, 3] 29 8 2 {2} {2}
9 4 3 [0, 4] [0, 3] 36 8 2 [0, 3] [1, 2]

10 4 2 [0, 2] [1, 2] 18 9 8 [0, 8] [1, 8]

10 5 4 [0, 4] [1, 4] 19 9 4 {4} {4}
11 5 2 {2} {2} 21 9 6 [0, 7] [0, 6]

15 5 2 [0, 2] [1, 2] 25 9 3 {3} {3}
12 6 5 [0, 5] [0, 5] 27 9 4 [0, 5] [0, 5]

13 6 5 [0, 6] [0, 5] 33 9 3 [0, 4] [0, 3]

16 6 2 {2} {2} 20 10 9 [0, 9] [0, 9]

16 6 3 [0, 4] [0, 4] 21 10 9 [0, 10] [0, 9]

21 6 2 [0, 3] [1, 2] 25 10 3 ∅ ∅
21 6 3 [0, 6] [0, 4] 25 10 6 [0, 7] [0, 7]

14 7 6 [0, 6] [1, 6] 28 10 5 [0, 6] [0, 6]

15 7 3 {3} {3} 31 10 3 {3} {3}
21 7 3 [0, 4] [0, 3] 22 11 10 [0, 10] [1, 10]

22 7 2 {2} {2} 23 11 5 {5} {5}
28 7 2 [0, 3] [1, 2] 33 11 5 [0, 6] [0, 6]

29 7 3 [0, 7] [0, 5] 24 12 11 [0, 11] [0, 11]

35 7 3 [0, 7] [0, 6] 25 12 11 [0, 12] [0, 11]

16 8 7 [0, 7] [0, 7] 34 12 2 ∅ ∅
17 8 7 [0, 8] [0, 7] 34 12 4 {4} {4}

Table 4.1: Comparison of Connor’s inequalities and the cone condition.

Example 4.1. In a 2-(22, 8, 4) design, for which existence remains open, Connor’s

inequalities state that two blocks can meet in 0 through 5 points. With µ = 5, the
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minimum L.P. bound y · b = −28
15

is achieved with

(a1, . . . , a7) =

(

1,−
1

3
,−

7

5
,
1

5
,
1

5
, 1,

11

3

)

.

Thus two blocks of such a design cannot meet in more than 4 points.

The analogous linear programming problem for three blocks intersecting uniformly

in a 2-design has also been implemented. There are 13 variables and many more

constraints. While small values of v and k permit fairly quick solutions, there is

currently no interesting information to report on µ and ν.

A set of v/k blocks which partitions the points of a 2-(v, k, λ) design is called a

parallel class. A block B ′ is transverse to a parallel class {B1, . . . , Bv/k} if |B′∩Bi| ≤ 1

for all i. This chapter is concluded with an elementary result on parallel classes in

2-designs.

Proposition 4.4. Suppose a 2-(v, k, λ) design with v ≥ (k + 1)
(
k−1
2

)
+ k contains a

parallel class P . Then some block is transverse to P .

Proof: Suppose no block is transverse to P . The vector b = λj−
∑

B∈P eB is invariant

under the partition defined by P . It is necessary that b ∈ CW , where W = W v
tk|K is

the restriction of W v
tk to columns indexed by k-sets not transverse to P . Define the

2-vector y by

y(T ) =







(
k
2

)
− 1 if T is a pair within some B ∈ P ,

−1 otherwise.

At least one pair of points in every K ∈ K is contained in some B ∈ P , so yW ≥ 0.

Let p = |P | = v/k. Then y · b ≥ 0 implies

1 > 1 −
1

λ
≥

k2
(
p
2

)

((
k
2

)
− 1
) (

k
2

)
p

=
k(p− 1)

(k + 1)
(
k−1
2

) ,

from which the result follows.
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It should be remarked that the proof above essentially just relies on counting pairs

within and across blocks of P . Nonetheless, this is another simple example which can

be formulated in terms of the cone condition.

4.3 Pairwise intersection of several blocks

In principle, the same approach as in Section 4.1 can be applied to the pairwise

intersection sizes among n blocks.

Theorem 4.5. ([27]) Let t ≥ 2s and v ≥ k+ s. Suppose B1, . . . , Bn are blocks in a t-

(v, k, λ) design with |Bi∩Bj| = µij for all i, j. Define the n×n matrix G = [gs(µij)]ij.

Then

det(λγG−G2) ≥ 0,

where γ =
(
v
t

)(
v
s

)−1(k
t

)−1(k
s

)(
v−k
s

)
.

Proof outline: It is enough to show that λγG−G2 is positive semidefinite. Consider

the partition Ω of V into 2n subsets defined by intersection with either Bi or Bc
i

for all i, and with associated variables {xS : S ∈ Ω}. Let Xi =
∑

S⊂Bi
xS and

X = (X1, . . . , Xn). Define the vector of polynomials

g(X) = (gs(X1), . . . , gs(Xn)).

For u ∈ R
n, consider the nonnegative polynomial f(X) = (u · g(X))2. With similar

computations and notation as in Theorem 4.1, one has yf ·(λj−
∑

eBi
) ≥ 0 equivalent

to

u>[ΣL
ij]u ≤ λu>[ΣR

ij]u,

where ΣL
ij =

∑n
m=1 gs(µim)gs(µmj) and ΣR

ij = γgs(µij). Since ΣL
ij = G2

ij, it follows

that u>(λγG−G2)u ≥ 0. Since u was arbitrary, this shows that the given matrix is

positive semidefinite.

Remark: The statement det(λγI − G) ≥ 0 is proved in [27] and follows from Theo-

rem 4.5 if it is known that G has positive determinant.
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Example 4.2. Consider 2-(56, 12, 3) designs, for which existence is known, and sup-

pose some three blocks meet pairwise in µ = 4 points. The above determinant

inequality for n = 3 fails, so this block intersection pattern is not allowed. Connor’s

inequalities (4.3) for two blocks permit µ = 4, however.

Some concluding remarks should be made at this point. It is unfortunate that the

bound in Theorem 4.5 is independent of the threewise intersection numbers νhij =

|Bh ∩Bi ∩Bj|. If the variable z represents the threewise intersection, the polynomial

(gs(z))
2 yields an upper bound on νhij; however, this inequality is implied by the

case n = 3 of Theorem 3.1. One important possible continuation of this work is an

exploration of other polynomials which produce meaningful statements depending on

m-wise intersections for 2 ≤ m ≤ n. Additionally, it would be desirable to find a

theoretical link between the method of orthogonal projection used in [27] and the

cone condition.
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Chapter 5

Other Structures and Incidence

Matrices

Thus far, inequalities concerning configurations in t-designs have been established

from a convex cone condition. An initial observation is that the structure of other

combinatorial objects, such as tBDs with different block sizes, Room squares, orthog-

onal arrays, and codes, to name only a few, might be analyzed by modifying the setup

in Chapter 1. The purpose of this chapter is a very brief look at two well-studied

generalizations of t-designs and their connection with more general incidence matri-

ces. This will motivate an application to orthogonal arrays in the next chapter. It is

also hoped that the discussion which follows is a first step towards unifying the cone

condition with Delsarte’s inequalities.

5.1 Hypergraph designs and tBDs

A t-uniform hypergraph is a pair (X,E), where X is a set of points (here, a finite set)

and E is a set of t-subsets of X called edges. Suppose H is a finite set of t-uniform

hypergraphs whose points belong to some underlying universe V . The incidence

matrix W = W V
H has rows indexed by all t-subsets of V and columns indexed by all

members of H, and is defined as in [29] by

W (T,H) =







1 if T is an edge of H ∈ H,

0 otherwise.
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As usual, let |V | = v. If |X| = k, the complete t-uniform hypergraph on X has

as edges all
(
k
t

)
t-subsets of X. When H is the set of all

(
v
k

)
complete t-uniform

hypergraphs on some k points of V , the matrix W V
H coincides with W v

tk introduced

earlier. It is then natural to say that nonnegative integral solutions d of W V
Hd = λj

correspond to hypergraph designs. Usually, a graph or collection of graphs is specified

up to isomorphism, and H consists of all possible embeddings into the points of V .

Example 5.1. A k-cycle system of index λ on a v-set V of points is a collection B of

cycles of length k in V , such that every pair of points is an edge of exactly λ members

of B. Let W ′ be the incidence matrix of 2-subsets of V with k-cycles in V . Then

W ′ is a
(
v
2

)
×
(
v
k

)
(k − 1)! matrix. By “averaging” k-cycles over a k-subset of V , it

follows that CW v
2k ⊂ CW ′. This containment of cones is proper, since there certainly

exist supporting vectors of CW v
2k which have negative inherited weight on some k-

cycle. Suppose eC is a 2-vector with entries in {0, 1} encoding the k edges of some

generic k-cycle C in V . Then, for instance, the condition λj − neC ∈ CW ′ generates

a family of inequalities on the existence of an n-fold cycle in a cycle system with the

given parameters. An automorphism group under which this vector is invariant is

isomorphic to Zk × Sv−k.

Example 5.2. The collection of complete t-uniform hypergraphs on k1 < k2 < . . .

points gives rise to a tBD with block sizes k1, k2, . . . . The corresponding matrix is a

compound W =
[
W v

tk1
|W v

tk2
| · · ·

]
of the matrices from Section 1.1. As before, define

eK to be the {0, 1}-vector for incidence of t-subsets with the k-subset K. Note that

for t ≤ l < k,

eK =
1

(
k−t
l−t

)

∑

L⊂K,|L|=l

eL.

It follows that CW v
tk1

⊂ CW v
tk2

⊂ . . . and so CW = ∪jCW
v
tkj

= CW v
tk1
.

A generalized incomplete t-wise balanced design (or GItBD) with index λ and hole

H of strength m is a triple (V,H,B) such that H ⊂ V and B is a collection of blocks of

V with the property that every t-subset T occurs in exactly λ blocks if |T∩H| < t−m,

and exactly 0 blocks otherwise. A GItBD is called proper if all block sizes are strictly
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between t and v. The case m = 0 is the well-studied incomplete tBD (ItBD) with

hole H.

Theorem 5.1. Suppose t − m is even. In a GItBD (V,H,B) with |V | = v, |H| =

h ≥ t, and hole strength m, it is necessary that v ≥ 2h+m+ 1. Equality holds if and

only if every block B ∈ B satisfies |B \H| ≤ t.

Proof: Define the t-vector b by

b(T ) =







1 if |T ∩H| < t−m,

0 otherwise.

By the remarks in Example 5.2, it is required that b ∈ CW v
t,t+1. Clearly, b is invariant

under the bipartition (H, V \H). Define the polynomial f(x) = (−1)t
(
x−1
t

)
, so that

f(x) ≥ 0 for 0 ≤ x < t. The alternate expression

f(x) = (t + 1)

t∑

j=0

(−1)j
(
t

j

)−1(
x

j

)(
t+ 1 − x

t− j

)

is implicit from the matrix M−1
0 of Proposition 3.3. By Theorem 2.3, yf · b ≥ 0, or

0 ≤
t−m−1∑

j=0

(
t

j

)−1(
h

j

)(
v − h

t− j

)

=
t + 1

v − t

[(
v − h

t + 1

)

− (−1)t−m
(

h

t−m

)(
v − h

m + 1

)(
t + 1

m + 1

)−1
]

,

where the closed form arises from identity (1.8). Using equation (1.3), this is equiva-

lent to
(
v − h−m− 1

t−m

)

≥

(
h

t−m

)

,

or v ≥ 2h + m + 1. For equality to occur, no B ∈ B can contain a (t + 1)-set X

disjoint from H; for otherwise yf · b ≥ yf · eX = f(0) > 0. In other words, it must

be that m < |B \H| ≤ t for all blocks B.

Remarks: The case m = 0 was recently proved in [14], and an argument similar to
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the one given here is presented in [29]. Either proof can be modified for m > 0. Note

that the condition on equality, also discussed in [29] for m = 0, implies that all block

sizes are between t+1 and 2t−m+1. It is curious that the inequality in Theorem 5.1

is the same constraint as on an ItBD with v+m points and hole size h+m, yet there

appears to be no easy combinatorial equivalence between these objects and GItBDs

with v points, hole size h, and hole strength m.

5.2 Poset t-designs

The notation and terminology here essentially follows that in [7]. Let (P,�) be a

semilattice with rank function ρ : P → {0, 1, . . . , k}. Define P i to be the ith fiber of

P, namely the set

P i = {x ∈ P : ρ(x) = i}

of elements of rank i. Suppose z ∈ P j and x ∈ X. If the quantities

αij = |{y ∈ P i : z � y � x} and βij = |{y ∈ P i : z � y}|

are constants independent of x and z, it is said that (P,�) is a regular semilattice.

Define the incidence matrix W = Wt, whose rows and columns are indexed by P t

and Pk, respectively, by

W (x, y) =







1 if x � y,

0 otherwise.

Now let (P,�) be a regular semilattice with X = Pk. The vector d ∈ N
|X|
0 is a

(poset) t-design of index λ in (P,�) if Wtd = λj. This definition is extended beyond

regular semilattices to more general “Q-posets” for association schemes in the recent

paper [18].

Example 5.3. The classical t-designs introduced earlier are poset t-designs in the

truncated boolean lattice (P,�), where P = {S ⊆ V : |S| ≤ k} and � is the usual

set inclusion ⊆. The associated rank function is of course ρ(S) = |S|. In [18], it is
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mentioned that both resolutions of t-designs and so-called mixed t-designs [19] can

be formulated as poset designs in the product of two truncated boolean lattices, each

with incidence matrix W defined by the associated Kronecker product of incidence

matrices.

The related lattice of subspaces of the vector space GF(q)n with rank defined by

dimension gives rise to q-analogs of classical t-designs; see [6] and [7].

The Hamming lattice and orthogonal arrays

The remainder of this section, as well as the next chapter, will focus on t-designs in

a different poset. The Hamming lattice (P,�) on a vertex set U (with |U | = n) has

P given by the words of length k over the alphabet U ∪ {∗}. For x, y ∈ P, define

x � y if and only if yi = ∗ implies xi = ∗ and xi 6= ∗ implies xi = yi, for each i. The

rank function for this poset is ρ(x) = |{i : xi 6= ∗}|. The top fiber X = Pk consists

of words with no occurrence of ∗. The incidence matrix W = Wt for this poset has

dimensions
(
k
t

)
nt×nk. A poset t-design in this lattice is known as an orthogonal array

of strength t and index λ, which will be denoted here by OAλ(t, k, n). Concretely, an

OAλ(t, k, n) is a λnt×k array (say A) with entries from U , such that in any selection

of t columns, each of the nt ordered t-tuples of vertices occurs in exactly λ rows.

Unless otherwise noted, only orthogonal arrays of index unity will be considered in

what follows. The subscript λ = 1 is usually omitted from the notation in this case.

There is a standard finite field construction for orthogonal arrays of arbitrarily high

strength.

Theorem 5.2. ([3]) Let q be a prime power and suppose 1 ≤ t < q. Let K = GF(q) =

{e1, . . . , eq} and F = {f1, . . . , fqt} denote the set of all polynomials of degree ≤ t− 1

in K[x]. Then the matrix A defined by

Aij = fi(ej)

is an OA(t, q, q).
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Proof: It suffices to prove that any qt× t submatrix of A has no two distinct rows, say

i, i′, that are identical. This holds because fi′ − fi is a nonzero polynomial of degree

at most t− 1, so it can have at most t− 1 zeros in K.

Equations (1.1) have an analog for orthogonal arrays.

Proposition 5.3. Suppose A is an OAλ(t, k, n) on the points U . Let H ⊂ U with

|H| = m. If there are zj rows which contain exactly j points of H, then

k∑

j=0

(
j

i

)

zj = λ

(
k

i

)

mint−i, i = 0, . . . , t. (5.1)

Proof: The ith equation is a consequence of counting in two ways all ordered pairs

(I, R), where I is an ordered i-tuple of points from H contained in row R of the OA.

A detailed argument for t = 2 can be found in [11].

It will now be shown that Proposition 5.3 follows from the condition Wd = λj.

This is similar to the argument in Section 2.3. Consider block matrices from W , d,

and λj with indexing according to the number of points of H in words of the tth and

kth fibers of the Hamming lattice. The situation is summarized in Figure 5.1. There

are
(
j
i

)(
k−j
t−i

)
members of the tth fiber with i points from H which are dominated by a

given word in the kth fiber with j points from H. Also, there are
(
k
t

)(
t
i

)
mi(n−m)t−i














W j
· · · · · · · · ·

...
(k

j)mj(n−m)k−j

︷ ︸︸ ︷

i ↓ }(k
t

)(
t

i

)
mi(n − m)t−i

... col. sum

...
(
j
i

)(
k−j
t−i

)
































d

...
sum
zj

...

...



















=














λj

...

...

...














Figure 5.1: Block matrix diagram for Wd = λj indexed by intersection with H.
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total members of the tth fiber with i points from H. So with zj as before,

k∑

j=0

(
j

i

)(
k − j

t− i

)

zj = λ

(
k

t

)(
t

i

)

mi(n−m)t−i, i = 0, . . . , t. (5.2)

Let r1, r2 ∈ R
t+1 be vectors whose ith coordinates are given by the right side of

equations (5.1) and (5.2), respectively. To show the two conditions on the zj are

equivalent amounts to a calculation similar to that in Theorem 2.9. One has, by

Lemma 2.8,

M0N
−1
0 r1 = λ

t∑

j=0

(−1)i+j
(
j

i

)(
k − j

t− j

)(
k

j

)

mjnt−j

= λ

(
k

t

)(
t

i

) t−i∑

j=0

(−1)j
(
t− i

j

)

mi+jnt−i−j

= λ

(
k

t

)(
t

t

)

mi(n−m)t−i = r2,

where the second line follows from two applications of (1.3) and a shifting of the index

of summation.

For convenience, the application to follow in the next chapter will make use of

the “moment equations” (5.1) rather than their counterparts (5.2) from the cone

condition λj ∈ CW .
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Chapter 6

An Application: t-Point Based

Sampling

This chapter is essentially a reproduction of the paper [8].

6.1 Background

While many decision problems have no known fast deterministic algorithm, it is often

the case that they can be settled using randomized algorithms. A survey of such

algorithms and their applications can be found in [12]. One standard randomized

algorithm is the Monte Carlo algorithm, in which an answer is always returned for

any instance I; however, the answer may be incorrect with some probability. Here,

we will consider yes-biased Monte Carlo algorithms having error probability ε, which

satisfy the following conditions:

1. If I is a no-instance, then the algorithm answers “no.”

2. If I is a yes-instance, then the probability that the algorithm answers “yes” is

at least 1 − ε.

Therefore, any “yes” answer from such an algorithm is guaranteed to be correct. A

no-biased algorithm is defined similarly, but there is no loss of generality in considering

only yes-biased Monte Carlo algorithms.

Let U be some finite universe with |U | = n. A yes-biased Monte Carlo algorithm

can be viewed as a two-stage procedure, in which a random “sample point” r in U is
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first chosen, and then given as input to some deterministic algorithm. If the answer

returned is “yes,” then r is said to witness the decision. The collection of all witnesses

in U is sometimes called the set of good points. Primality testing is one important

example mentioned in [10]. A yes-biased Monte Carlo algorithm to decide if a positive

integer n is composite amounts to running a test on a single randomly selected integer

a between 1 and n− 1. These a are the candidates for witnessing the compositeness

of n.

Despite the fact that Monte Carlo algorithms can give wrong answers, the error

probability can be made as small as desired by repeated application of the algorithm.

Running a yes-biased Monte Carlo algorithm k times independently in succession, and

returning “yes” if at least one “yes” answer occurs among the k trials, reduces the

error probability to εk. In the case of primality testing above, the error probability

for a single test is ε ≤ 1/2, but in some cases this probability can be larger. In

many common applications, the deterministic portion of a Monte Carlo algorithm is

fast enough to allow for repeated trials. Unfortunately, it may be more difficult to

guarantee true randomness (independence) of the chosen sample points. The work

which follows here will explore the trade-off between error bounds and the cost of

random bit generation from a combinatorial viewpoint.

Many researchers have attempted to construct pseudo-random number generators

for which provable bounds can be obtained on the probability that none of k successive

values is a witness. One simple and effective method known as two-point sampling was

developed in [4] by Chor and Goldreich. Their idea is to generate only 2 independent

sample points (requiring 2 logn random bits), but to then generate a total of k sample

points deterministically from the chosen pair. The specific construction given in [4]

is to first choose a random linear function f(i) = ai + b over U = Zp, p prime, and

then to compute the k residues f(0), f(1), . . . , f(k). If ε is the error probability (that

is, the proportion of elements in U which are not witnesses), it is proven that the

probability that none of f(0), f(1), . . . , f(k) is a witness is at most

ε

k(1 − ε)
.



51

In the context of random pattern testing of VLSI chips, Spencer [23] developed a

pseudo-random generator, also based on two-point sampling. The corresponding

worst-case error bound for k sample points is roughly equal to

1

1 + k(1 − ε)
.

In [11], both of these methods was generalized and improved by pointing out a con-

nection with orthogonal arrays. The approach is to use an OA(2, k, n) with two

specified columns, and to generate k pseudo-random points by identifying the unique

row indexed (in the specified columns) by an initial chosen pair of points. By using

Proposition 5.3 for t = 2, that paper establishes the upper error bound

ε

1 + (k − 1)(1 − ε)
,

which is shown to be stronger than each of the two bounds above. Additionally,

the bound is proved to be optimal (for OAs of strength 2) by using maximal arcs in

projective planes.

While two-point based sampling aims to ensure pairwise independence of the gen-

erated points, it may be desirable in some applications to have t-wise independence

for larger t, [4]. Also, it may be feasible to construct more than 2 logn initial random

bits for the reward of a smaller error bound, closer to the ideal εk. These two possi-

bilities motivate us to study t-point based sampling using orthogonal arrays of higher

strength t ≥ 2. The sampling method is analogous to that in [11] mentioned above,

but it remains to calculate a generalized error bound and analyze its behavior.

6.2 Calculation of the error bound

Let A be an OA(t, k, n) with t = 2s an even positive integer. Suppose there is a set

G of the points, which we call good. Let |G| = m and ε = 1−m/n. For x = 0, . . . , m,

let ω(x) denote the number of rows of A which include exactly x points of G. We

desire an upper bound on the probability that a randomly chosen row contains no
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good points. This will be called the error and denoted by E. We have E = n−tω(0),

because there are ω(0) rows avoiding all good points, and nt total rows. Consider the

polynomials

p(x) =
s∑

i=0

(−1)i
(
k − 1 − i

s− i

)

(1 − ε)s−i
(
x− 1

i

)

.

An alternative expression is

p(x) =
s∑

j=0

(−1)j
(
x

j

)

g(j),

where

g(j) =

s∑

i=j

(
k − 1 − i

s− i

)

(1 − ε)s−i.

By equation (1.7), the square of p(x) can be written as

(p(x))2 =

t∑

r=0

(−1)r
r∑

j=0

g(j)g(r− j)

r∑

h=j

(
h

j

)(
j

r − h

)(
x

h

)

.

Now from the inequality
k∑

x=1

(p(x))2ω(x) ≥ 0,

it follows that

t∑

r=0

(−1)r
r∑

j=0

g(j)g(r − j)

r∑

h=j

(
h

j

)(
j

r − h

) k∑

x=1

(
x

h

)

ω(x) ≥ 0.

By Proposition 5.3, the sum on x is nt
(
k
h

)
(1− ε)h when h > 0. If h = 0, the entire

sum vanishes except when r = j = h = 0, in which case the sum is (nt−ω(0))·(g(0))2.

(Note the sum omits x = 0.) Therefore,

nt
t∑

r=0

(−1)r
r∑

j=0

g(j)g(r− j)
r∑

h=j

(
h

j

)(
j

r − h

)(
k

h

)

(1 − ε)h ≥ ω(0) · (g(0))2,
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and so

E ≤ (g(0))−2
t∑

r=0

(−1)r
r∑

j=0

g(j)g(r− j)
r∑

h=j

(
h

j

)(
j

r − h

)(
k

h

)

(1 − ε)h.

Changing the order of summation and using equation (1.3) gives

E ≤ (g(0))−2
t∑

j=0

(
k

j

)

g(j)
t∑

h=j

(1 − ε)h
(
k − j

h− j

) h+j
∑

r=h

(−1)r
(

j

r − h

)

g(r − j)

= (g(0))−2
s∑

j=0

(
k

j

)

g(j)

s+j
∑

h=j

(−1)h(1 − ε)h
(
k − j

h− j

) j
∑

r=0

(−1)r
(
j

r

)

g(r + h− j)

= (g(0))−2
s∑

j=0

(−1)j
(
k

j

)

g(j)(1 − ε)j

×
s∑

h=0

(−1)h(1 − ε)h
(
k − j

h

) j
∑

r=0

(−1)r
(
j

r

)

g(r + h), (6.1)

where we have shifted the indexing of the sums on r and on h, while using that g(j)

vanishes for j > s. We now show that all terms of the outer sum vanish, except when

j = 0.

Lemma 6.1.

s∑

h=0

(−1)h(1 − ε)h
(
k − j

h

) j∑

r=0

(−1)r
(
j

r

)

g(r + h) =







εs if j = 0,

0 otherwise.

Proof: Let S denote the required sum. To start, we expand the powers of (1− ε) and

change the order and indices of summation.

S =

j
∑

r=0

(−1)r
(
j

r

) s∑

h=0

(−1)h
(
k − j

h

) s∑

i=r+h

(
k − 1 − i

s− i

)

(1 − ε)s−i+h

=

j
∑

r=0

(−1)r
(
j

r

) s∑

h=0

(−1)h
(
k − j

h

) s−h∑

i=r

(
k − 1 − i− h

s− i− h

) s−i∑

`=0

(−1)`
(
s− i

`

)

ε`

=

j
∑

r=0

(−1)r
(
j

r

) s−r∑

`=0

(−1)`ε`
s∑

i=r

(
s− i

`

) s−i∑

h=0

(−1)h
(
k − 1 − i− h

s− i− h

)(
k − j

h

)

.
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Applying identity (1.5) to the innermost sum on h, and then using equation (1.3)

gives

S =

j
∑

r=0

(−1)r
(
j

r

) s−r∑

`=0

(−1)`ε`
s∑

i=r

(−1)s−i
(
s− i

`

)(
s− j

s− i

)

=

j
∑

r=0

(−1)r
(
j

r

) s−r∑

`=0

(−1)`ε`
(
s− j

`

) s∑

i=j

(−1)s−`−i
(
s− j − `

i− j

)

.

The alternating inner sum of binomial coefficients reveals that only the terms with

j + ` = s are nonzero. So

S =

j
∑

r=0

(−1)r
(
j

r

)(
s− j

s− j

)

εs−j =







εs if j = 0,

0 otherwise,

where the last equality follows from another alternating sum.

A simplified error bound of E ≤ εs/g(0) now follows from (6.1) and Lemma 6.1. It

should be noted that this reduces to the Gopalakrishnan-Stinson bound in [11] when

s = 1, as in this case our polynomial p(x) agrees with their quadratic used with the

moment equations.

Theorem 6.2. Let t = 2s. The error probability of the t-point based sampling tech-

nique for a universe of n points, using an OA(t, k, n), is at most

εs
∑s

i=0

(
k−1−i
s−i

)
(1 − ε)s−i

.

While our discussion thus far only applies to OA of even strength, a small im-

provement in the error bound can be obtained by using 2s + 1 independent sample

points and an OA(2s, k − 1, n).

Corollary 6.3. Suppose t = 2s+1. The error probability of the t-point based sampling

technique for a universe of n points, is at most

εs+1

∑s
i=0

(
k−2−i
s−i

)
(1 − ε)s−i

.
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6.3 Analysis and comparison of error bounds

Weaker bounds from the generalized Chebyshev inequality

Chor and Goldreich mention in [4] that their result can be generalized to larger t

by application of the generalized Chebyshev inequality, which in their context is the

statement that

Prob[|X − µ| ≥ ρ] ≤
Exp[|X − µ|t]

ρt
,

where t > 0 and X is a random variable with mean µ. Suppose that in the t-point

based sampling method we pick points vi for i = 1, . . . , k. Define the indicator random

variables

Xi =







1 if vi ∈ S,

0 otherwise.

Then with X = 1
k

∑

iXi and ρ = µ = 1−ε, the generalized Chebyshev inequality with

exponent t leads to an upper bound on E = Prob[X = 0]. When t = 2, the authors

prove the bound E ≤ (1 − ρ)/kρ (stated in section 2), with the classical Chebyshev

inequality. However, it appears a mistake occurs in their assertion (without proof)

that the inequality with the tth moments of X yields E ≤ (1 + 1/k)((1− ρ)/kρ)bt/2c.

Here, we compute the error bound directly for t = 4 using the generalized Chebyshev

inequality and refute their claim.

E ≤
Exp[|X − ρ|4]

ρ4

=
1

k4ρ4

∑

i1,i2,i3,i4

Exp

[
4∏

j=1

(Xij − ρ)

]

=
1

k4ρ4

(

kExp[(X1 − ρ)4] + 6

(
k

2

)

Exp[(X1 − ρ)2] · Exp[(X2 − ρ)2]

)

,

where we have used that the Xi are 4-wise independent and identically distributed

with mean ρ. The required moments can be explicitly calculated to give the bound

E ≤
(1 − ρ)(1 + 3(k − 2)ρ(1 − ρ))

k3ρ3
,



56

which is easily shown to exceed the claimed bound of (1 + 1/k)((1 − ρ)/kρ)2.

In any case, the bound from Theorem 6.2 is always sharper than that given by

the generalized Chebyshev inequality. However, it appears these are close for large k

and small ε.

Comparison of the bounds for different values of t

For analysis in this section, define C(s, k) to be the upper error bound given by Theo-

rem 6.2. Similar consideration can be given to the bound for odd t from Corollary 6.3.

A first observation is that this bound is (asymptotically in k) on the order of the sth

power of the bound in [11] which uses strength-two OAs. We compute

lim
k→∞

C(s, k)

(C(1, k))s
= lim

k→∞

(1 + (k − 1)(1 − ε))s
∑s

i=0

(
k−1−i
s−i

)
(1 − ε)s−i

= lim
k→∞

(1 − ε)sks + . . .

(1 − ε)sks/s! + . . .
= s!.

In light of this fact, there at first appears to be no advantage of 2s-point based

sampling over s independent trials of two-point based sampling. Indeed, the limit

above even approaches s! from above, so for small values of k the error may be much

less when repeated two-point based sampling is used. However, some practical reasons

support using t-point based sampling for larger t. For instance, a fair comparison

of sampling errors ought to take into account the sk tests that must be run when

s independent trials of the two-point method are used. Allowing sk tests for one

application of 2s-point based sampling using an OA(2s, sk, n), we have by a similar

calculation as above that the quotient of errors can be made arbitrarily small by

increasing s. The graphs in Figure 6.1 illustrate this behavior as s and k vary.

Proposition 6.4.

lim
k→∞

C(s, sk)

(C(1, k))s
=
s!

ss
.

Since we have worked under the assumption that t log n independent random bits

can be generated in the first place, it is of interest to compare C(s, k) with ε2s. There

always exists k0 (depending on s and ε) such that k > k0 implies C(s, k) < ε2s. When

ε ≥ .5, we have k0 ≤ 2s + 1; however k ≥ 2s + 1 is necessary for the mere existence
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Figure 6.1: Plots of C(s, sk)/C(1, k)s for ε = .5.

s = 1

s = 2

s = 3

s = 5

of an OA with k columns and strength 2s. When ε < .5, it may be required to take

larger k. Luckily, it appears that this k0 grows at most linearly in s for a fixed ε. The

table below gives some values of k0 for certain s and ε.

s 1 2 3 4 5

ε = .1 11.00 16.11 21.09 26.00 30.86

ε = .2 6.00 9.09 12.11 15.09 18.05

ε = .3 4.33 6.78 9.19 11.57 13.94

ε = .4 3.50 5.65 7.79 9.91 12.02

ε = .5 3.00 5.00 7.00 9.00 11.00

We conclude with a remark about independence. The main strength of sampling

using OAs is that it bypasses the need for selecting a full k log n independent ran-

dom bits. But for some applications, expending the cost of t log n random bits may

be worthwhile if t-wise independence is desired over pairwise independence. It is

straightforward from the definition that sampling from the rows of an OA of strength

t ensures t-wise independence.
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