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Abstract

Vortéx-induced vibration (V1V) of elastically supported cylinders in cross-flow is studied
experimentally for cylinder mass ratios (average cylinder density / fluid density),
2.1<m*<72. For small mass ratios below 10, a new VIV mode is discovered which does
not involve,a fock-in behavior. The oscillation and the shedding frequencies coalesce and
deviate slightly from the nominal Strouhal frequency of St=0.2 to smaller values with
increasing free stream velocity U. With increasing mass ratio above 10 (m >10), the
frequency growth with free stream velocity U appears to approach the lock-in limit while
the amplitude and the frequency range of oscillations diminish. Additionally, a novel
technique is employed to deduce the unsteady lift coefficient on the body using VIV time

traces of the cylinder displacement and their numerical derivatives.

An analytical Study of the dynamical equation shows that the oscillation amplitude (4/D)
is inversely proportional to effective stiffness, k*eﬁ‘:(n'l*/Uz (1 -0‘/]2,)2 ), where U represents
the non-dimensional flow speed and f7/,, the ratio of the oscillation to natural frequencies.
It is hence maintained that at high mass ratio cases studied previously (m">100), lock-in
behavior (f/f,~1 for U~I) is a prerequisite for nominal vibration amplitudes. At low

values of mass ratio, however, k*éﬂis minimized naturally without a need for lock-in.

Through a detailed study of a large number of cases with low to medium mass ratios in
differeﬁt experimental settings, it is additionally argued that lock-in is a sporadic
phenomenon that appears at various mass ratios. The few occurrences of lock-in at low
mass ratios with nominal damping and the unexpected absence of any oscillations at
medium mass ratios (m ~30), except for a few cases exhibiting lock-in tendencies

indicate that lock-in is not as common as classically believed.
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Symbols

A= éylindef oscillation amplitude
A" = A /D = non-dimensional cylinder oscillation amplitude
C; = lift coefficient = 2 F;, / py Us'D
C, =lift coefficient in y direction =2 F, / pr UsD
D= éylinder diameter
F, = transverse force on cylinder
- L = cylinder length
Re = Reynolds number = U, D / v
St = Strouhal frequenéy =fD/Us
U = U/w, D = non-dimensional flow speed
Utmax = Uso /@umax D = non-dimensional flow speed using @ymax
U, = free strearﬁ velocity
=y/D = non-dimensional displacement
b = damping coefficient
b* =m"¢/U=2b/L/(p U.D) = non-dimensional damping
/= oscillation frequency
/s = shedding frequency
f» = system natural frequency
f = non-dimensional cylinder oscillation frequency =fD/Ua
k= spring constant |
k' =k/L/(1/2pU>) = m"/U’ = non-dimensional stiffness
K o= K27 )'m'= (m' /U (1-(1)?) = effective stiffness
m = 1/4 7 pD’ = cylinder mass
m" = non-dimensional mass coefficient = 2m/(pr2L)

¢t =tD/ U, = non-dimensional time
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. ‘ y* =y/D= non‘.-di’meniionabl‘transVerse cylinder position
p = cylinder density
= fluid density
~ ¢ = phase fluid force and displacement
A —oscillation wave length
v = kinematic viscosity
7= w,t =non-dimensional time
@, =Jk/m = 2 [, = system natural frequency
Odmax = oscillation frequency at maximum amplitude
o = non-dimensional oscillation frequency either @D/U=2 « £, or Vo,

0 = b/vkm = fraction of the critical damping

Abbreviations

EMD= Empirical Mode Decomposition (Huang [1998])
FFT = fast Fourier Transform

VIV = Vortex-induced vibration

WR= Williamson and Roshko [1988]
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1_. Introduction

Vortex shedding behind flexible bluff bodies occurs in many engineering sitﬁations, such
as bridges, stacks, towers, transmission lines, oftshore platforms, heat exchangers, marine
cables, ﬂexﬂ;le risers in petroleum productions and other marine applications (see
Blevins [1990], Ramberg and Griffin [1976]). The vortex wakes tend to be very similar
regardless of the geometry of the structure. The shedding of vortices from alternate sides
creates a periodic surface pressure fluctuation that can cause elastic structures to vibrate.
Until recently, the legendary collapse of the Tacoma Narrows Bridge in Washington was

attributed to vortex-induced vibration (V7V) (Billah and Scanian [1991]).

VIV is generally associated with the so called “lock-in” phenomenon, where the motion
of the structure is believed to dominate the shedding process, thus synchronizing the
shedding frequency. Lock-in is classically defined as the self-tuning of the vortices to the
system natural frequency (fs~f,) within a certain range of stream velocities (Feng [1968]).
Lock-in can also refer to the coalescence of the shedding, oscillation and the natural
frequency of the system (fi~f~ f,) for a range of flow speeds. Numerous studies in VIV
literature support the common existence of lock-in (Blevins [1990], Griffin [1973], Brika
and Laneville [1993] Blackburn and Henderson [1996]). Lock-in is a household term

~ commonly believed to be achieved with any elastic structure in cross flow by varying the
flow speed (Blevins [1990]).

Contrary to this conventional belief, a lock-in behavior as observed by Feng [1968] is
absent from almost all cases encountered in the present study. In fact, a new VIV mode is
discovered that does not rely on lock-in. It is shown that unlike the traditional belief,
lock-in (f~f,) is not the only cause of FIV. A more complete description for VIV involves

minimizing a new parameter termed “effective stiffness”, k*efm*/UZ (1-071)°),
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1ntro ced 'byk;Gharib ¢t al. _[1997], where m” is the structure to fluid mass fatio and U is
 the non-dimensional free‘stream'vel'ocity. With this definition, effective stiffness can be

minﬁnized \through small A,yalues of m" as well as a lock-in behavior (f/f,~I). Since most
~ preyious experiméhté involved large values of m’, considerable VIV amplitudes could be
obsefved if and only if lock-in occurred. At low mass ratios, VIV can occur with or
without a lock-in béehavior. Additionally, the absence of lock-in in most low mass ratio
Cases studied (chapter 4) and the large number of cases with medium mass ratios that
exhibited no steady VIV indicate that lock-in is not as common a phenomenon as usually
believed. When VT V is established at large mass ratios, however, it is accompanied with

lock-in.

The preliminary experiments, O/ and 02, described in chapter 5, involved low density
cylindérs in cross flow that did not show any signs of lock-in. The shedding frequency in
these studies grew proportionally to the increasing flow speeds with a smaller than
.ex'pected Strouhal number. This surprising no-lock-in phenomenon was initially
attributed to either the low structural density or the two-degree-of-freedom (figure eight)
motion of the Cylinder. The reasoning behind the first hypothesis was that the motion of
a light structure is probably dominated by the flow momentum. The latter was solely
based on a main difference between the experimental setup at hand and those described in
literature; a difference that could possibly bring about more system compliance to fluid
forces. Since figure eight oscillation is more common in nature, such deviation from

classical literature.could have major consequences.

An experimental setup involving a variety of mass ratios and one or two-degree-of-
freedom cylinder motion was designed to resolve the non-lock-in behavior. Early on, 1D
dscillatiohs were detected that involved no lock-in behavior. This eliminated the role of
2D vibration in the absence of lock-in. To reduce the number of structural parameters

involved, main focus was turned to 1D oscillations, wheré with increasing values of the
structural mass ratio, a gradual tendency to lock-in was observed (chapter 4). The
oscillation amplitudes, however, seemed to dwindle with increasing mass ratios far from

the values observed in Feng’s experiment. This differentiated the low mass ratio cases at
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hand as a new VIV mode with no lock-in. The large amplitudes detected in Feng’s

- experiment [ 1968] were solely due to lock-in.

Partial lock-in cases detected in few low mass ratio cases in chapter 5 proved that the
~ occurrence of lock-in does not rely on the mass ratio either. This sporadic appearance of
lock-in, however, is the only manner considerable VIV amplitudes can be achieved at

large mass ratios.

In chapter 2, the basic concepts, the previous approaches and the new “effective
stiffness” parameter are discussed in detail.  Additionally, Empirical Mode
Decomposition, a new signal processing tool for extracting frequency information is
introduce at the end. In chapter 3, the experimental setup is described with detailed
views in the appendix A.1. The one-dimensional results are presented in chapter 4 in
increasing values of mass ratio m". The two dimensional results, along with the
preliminary experiments providing the first signs of the non-lock-in response, are
discussed in chapter 5. Chapter 6 concentrates on a new technique for deducing time-
dependent fluid forces using the oscillation trace and dynamical system modeling is

provided.
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‘2. - Basic Concepts, Previous Work and

Introducing Effective Stiffness

In this éhapter, we review the basic concepts such as bluff body wakes, vortex lock-in,
nonQdimensional parameters and the equations of motion relevant to vortex-induced
vibration (VIV). We subsequently focus on previous studies and approaches such as the
harmonic oscillator, computational simulations and forced oscillations experiments. We
- finally introduce the effective stiffness parameter, which is the central foundation for
clarifying the VIV phenomena observed in this thesis. Through this novel parameter, we
will explore the role of mass ratio in determining V7V amplitudes and the shedding

frequency response.

2.1. Bluff Bodies and Vortex Shedding

Bluff bodies are blunt unstreamlined bodies that involve boundary layer separation in a
free stream above a minimum Reynolds number. The fluid flow around two-dimensional
bluff bodies usually involves shedding of spanwise vortices with alternate signs. The
growth and movement of these vortices creates a fluctuating lift and drag force on the
body. The non-dimensional shedding frequency, St=f =fD/U.., where U, is the free
stream velocity and D the characteristic width of the body, is known as the Strouhal
frequency. In the case of a stationary cylinder, the fluid force can closely approximate a
periodic sine wave with a Strouhal frequency close to a constant value of S¢~0.2 for a

large range of Reynolds numbers.

2.2. Flow-Induced and Vortex-Induced Vibration (VIV)
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i Any ﬂuctuatmg fluid force on an elastic structure may cause flow-induced vibration with
vpos‘sible catastrophic éonsequen‘ces.‘ The vortex-induced vibration (VIV) is a form of
.' ﬂoW—induced vibration y{;here the fluctvating lift force is due to vortex shedding and
- where the Strouhal frequency is close to the natural frequency of the system or a fraction
* thereof. As depicted in Figure 2.1, the body movement may affect the wake flow in a
complicated manner resulting in an unpredictable fluid force. The connection between

the vorticity field and the fluid force F)(2) is realized through the vorticity-momentum
.equation (F @)= p%f@ x@(x))dx for a stationary body), where w(x) represents the

vorticity field and the integral is evaluated over the entire field. A modified version is
available for an integral over a finite box encompassing the body (Noca [1996]). The
relationship between the force Fy(#) and the body movement can be imagined via a
structural equation including a restoring force, inertia and damping. A simple case of
such structure is an elastically held cylinder in cross flow with mass m, elastic stiffness k
and a structural damping b with a fluctuating fluid force Fy(#). The least understood
portion of the VIV cycle in Figure 2.1 is the effect of the body displacement y(2) on the
vorticity field. This part can be viewed as a purely fluid mechanical problem involving
the Navier-Stokes equations as commonly done in direct numerical simulations (DNS), or
more simply as a vortex dynamic problem. In the latter view, knowledge of vortex
patterns and properties is employed to obtain a simple physical understanding of the
phenomenon. Experiments involving forced prescribed motions y(#) of a cylinder attempt

- to achieve such understanding.

Momentum equation F,(1)
| my+by+ky=F,(7)
Hydrodynamic Impulse
Vorticity field
Wake interaction —_— y)
Vortex growth/pattern

Figure 2.1 Vortex-induced vibration and movement-induced vorticity
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2.3 vVor}}_texLOck-in

Vortex lock-in is-traditionally described as the coalescence of the Strouhal shedding
frequency and the structural frequéncy, such that for a range of free stream velocities, the
shédding frequéncy tunes or locks itself to the natural frequency of the structure. It is
believed that the motion of the body affects the vortex shedding pattern such that the
vortices are shed at the frequency of structural motion. The phenomenon is thought to
allow a wider range of velocities for a system resonance with possible catastrophic
consequenceg. Lock-in has been observed in numerous laboratory experiments and flow
simulations involving cables, cantilevers, bridge models, and elastically held cylinders
performing one- and two-degree-of-freedom oscillation (Feng [1968], Griffin [1973],
King and Prosser [1972], Blevins [1990], Brika and Laneville [1993], Blackburn and
Henderson (1996)). Feng’s experiment involved self-excited vibration of a cylinder in a
wind tunnel while Blackburn and Henderson studied two-dimensional oscillation of a

cylinder with m =10 at Re=250 through numerical simulation.

2.4. Effects of Structural Motion on Vortex Wake

Free or Forced cross stream vibration of a circular cylinder with frequencies near the
vortex shedding frequency has pronounced effects on the shedding process (Sarpkaya
[1979], Williamson and Roshko [1988], Blevins [1990], Griffin and Hall [1991],
Henderson and Blackburn (1998)). In general, cylinder vibration, at sufficiently large
amplitudes, can affect the vortex growth period and phase, resulting in stronger vortices
- with altered patterns. It can increase the drag, lift and the spanwise correlation of the
wake. The three-dimensionality is suppressed and the near wake is more organized.
Within a range of forced oscillation amplitudes and frequencies, the shedding frequency
may be shifted to, or even be synchronized with, the vibratidn frequency. The effects are
less pronounced when the vibration frequency equals a multiple or a submultiple of the
shedding frequency. Large amplitude forced cylinder vibrations can shift the vortex
shedding frequency by as much as 40%. Such effects are not limited to circular

cylinders. The vortices are usually shed near the maximum cylinder displacément. There
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s ‘aIsjo}:‘éihlabrﬁpt 180 degreés shift in phase as the oscillation frequency passes through
| the Strouhal sheddmg frequency (Blshop and Hassan [1964], Zdravkovitch [1982],
,' Ongoren and Rockwell [1988]) At amplitudes above one-half diameter, a break up of
- the symmetric vortex patterns has been observed and interpreted as a self-limiting fluid
 force behavior at large amplitudes (Griffin and Ramberg [1974], Williamson and Roshko
[1988], Griffin and Hall [1991]). As presented in chapter 5, however, vibration
amplitudes above one diameter are in fact possible. Vortex synchronization may also
‘occur in stream-wise as well as rotational oscillations of a cylinder. Figure 2.2 shows the
- increased lift in arbitrary units in the forced oscillation experiments of Bishop and Hassan
[1964].

Figure 2.2 Increased lift in forced oscillation of a cylinder in cross ﬂow, lift vs.
forcing frequency for 0. 10<A/D<0 75 (Bishop and Hassan [1964])

2.5. Dimensional Analysis
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Flgure 2.3 and Eguatidn 2.1 present a list of related parameters in the VIV problem. The
" input parameters are geotnetfy and dimensions of the body, D and L, the structural
stiffness £, damping b, and mass m, the free stream velocity U, fluid viscosity v and

 the fluid density p .

A f=F@D,L k b m Us v, p; geometry) Equation 2.1

Figure 2.3 Flow-structure parameters in VIV

Since there are three fundamental dimensions in the problem (time, length and mass),
there need to be five non-dimensional input parameters present in the problem. In
Equation 2.2, the most relevant 'input parameters (D, b, m, Us, V) are non-

dimensionalized using (L, ps and k) where ,=27f,=(k/m)"”.

f D U_D m b _U“,\/; ) Equation 2.2
fi L v DL km kD

renaming terms:

A/D, fffy=fID/L, Re, m",¢, U) Equation 2.3

where
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At 2m . b U, =] Re=U°°D

- p,D’L’ ¢ J U Teimp " v

Equation 2.4

- The parameter m* is the cylindef fo fluid mass ratio, ;’ is the fraction of the critical

: damﬁing and U is the ‘hon-dimensional free stream velocity. It is also possible to non-
dimensionalize the parameters using. Us and D so that they are valid at vanishing values
~of kand m (section 2.9). The stfuctural damping ¢=0.5(b/V(km)) is usually about a few

‘percent.

owwe experiments are usually performed in either air or water, the values of fluid density
prand vare fixed. The damping b is usually due to the elastic structural components
'such as cantilevers and springs and hence affected by varying £. In general, changing any
| of the physical parameters (D, L, k, b, m, U, v, py) except prin an experiment can affect

more than one of the non-dimensional parameters (m", & U, Re). Varying pr would only

~ affect viscosity v in an indirect way.

In most materials including metals, structural damping is due to a variety of phenomena
that usually dissipate an amount of ‘energy per cycle proportional to A%, but weakly
-dependent on frequency @ [Bert 1973]. The textbook viscous damping term by’ is simply
a dissipative model and not realistic. The mass ratio m" is mostly O(l) in hydrodynamic
. épplications and O(1 _02) in aeroelastic experiments. Since U=U./(27f,D)= ]/(27zf ) (1),
and f/f, ~1 in VIV and 1 ~0. 2~1/(2}r), U is usually close to 1 (U~I) in VIV. It is worth
notmg that in laboratory expenments a single-frequency penodlc motion may not always

be realized and in fact, multlple frequencies co-exist (Chapter 4).

" To simplify Equation 2.3, one may assume that the outplit paraméters are less sensitive to
the Reynolds number (Re) and three-dimensional effects (L). Since U is usually close to
one in VIV, one may consider a fixed value of U where the amplitud_e A/D is the

maximuim.
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'Ama‘x/D:“f/fn=f(m*’§) ~ Equation 2.5

4

Figure 2.4 Maximum oscillation amplitude A./D vs. m” and ¢ (conceptual)

Conceptually, the 4p./D defines a surface as a function of ¢ and m” (Figure 2.4). The
oscillation amplitude at zero mass ratio and damping is finite due to the added mass
effect due to body accéleration. The amplitude can reasonably be assumed to diminish
with increasing struc_tufal mass ratio or damping. The added mass is sometimes included

in the mass ratio values reported in literature (Blevins [1990]). -

bMany scholars such as Gri.fﬁn [1973] have considered the dependence of An/D on a
single parameter Sg = 27 m*é known as the mass-damping or the Scruton number.
Gharib et al. [1997] and Shiels [1998] have computationally explored the limiting cases
of zero mass and/or zero damping. In su.chvlimits, the number of parameters is reduced

and the effects of m” and ¢ can be studied separately (see SeétiOn 2.9).
2.6. Differential Equation of Motion

The fluid-structure syStem can be treated as a mechanical system with a fluid forcing

function

my+by +ky = 1/2¢,(t)p,UsDL Equation 2.6



16 , “ ; . Basic Concepts, Previous Work and Effective Stiffness

wherethe terms on theéleﬁ-hand side represent the mechanical system and the terms on

' the right-hand side are due to the fluid. Letting

y=DY, t=w,t, dSt=(30A) (IO)=an IS Equation 2.7

and substituting in Equation 2.6 gives:

mDw",Y +bw,DY +kDY =1/2C,(1)p,U DL Equation 2.8
.. . 2 L .
Y+ b Y+ k —Y=C, (t)_Ui&_ Equation 2.9

me ma’, ®%n 2m

n

multiplying the right—hand side by DYD? and reorganizihg m':

2 2
.. . LD i
Y + bv Y + k2 Y=C,(f) U Pr Equation 2.10
mw, mo's 7 | @D 2m
after renaming terms:
_ . |
Y+20Y+Y = U* c, Equation 2.11
- m
where the following identities are valid as before
2 = b U= U, m = 2m o, = k Equation 2.12
mo, w,D p,LD" m

The dot in Y refers to a derivative with respect to 7. As seen in Equation 2.11, the fluid
- force is inversely proportional to the mass ratio m" and hence quite,‘small in aeroelastic
applications (m >100). The free stream velocity U is close to 1 in VIV as mentioned

- before.



- Basic ,-ancep_ts, Previous Work and Effective Stiffness ; 17

2
H:il(y2 +¥Y?%)= v
dt 2 2

cyy_za‘ﬂ Equation 2.13

*
m

Figure 2.5 VIV equilibrium

The energy conservation equation is given in Equation 2.13, where %%(YZ +7Y%)
t

. 2
represents the rate of change of the energy stored in the system and

-C,Y-2¢Y? is the

m
work done by the fluid minus the energy dissipated by the structure per unit time. Since

any damping model has a negative contribution, it is imperative that C,¥ on average

~have a positive valué for VIV to oécur, that is C, and Y must hold a phase difference
|g|<#/2 and as close to zero as possible. As shown in Figure 2.5, assuming C, is

independent of ¥, the system has one equilibrium point for V7V where <H>=(0. Since

2

C, is on the order of 1, a maximum ¥ value from C,Y-24Y* =0 requires a

*

m

m¢

minimum value of o

which is related to and sometimes used as the mass-damping, Sg

parameter mentioned in section 2.5. Although this parameter may affect the amount of
energy input into the system, it may not solely be responsible for the maximum amplitude
of vibration achieved. The lift coefficient C, has been shown to have unpredictable

behavior at various values of oscillation frequency and amplitude (Gharib et al. [1997]).

2.7. _ Preyious Studies

In this section, we -briéﬂy summarize some of the general experimental and numerical
approaches used in the literature. Experimental methods usually involve either forced or
free vibrations of a cylinder in cross flow and the theoretical approaches range from

simple harmonic (sine wave) wake forces to complex Navier-Stokes solvers.
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¢ °271.  Harmonic Oscillator

This technique models vbﬁéx shedding as a harmonic lift force at a fixed or amplitude-
| * dependent lift coéfﬁ}:ierit Cyd’) (Bléviné and Burton [1976]). It gives consistent results
for maxiﬁlum amplitudes A yq: when Cy(4") is obtained from free elastic experiments. It
does not model lock-in and is limited to resonance. The technique is often modified to
include a phase in lift forée C;. That is the lift component is assumed to have two
, ‘components in and out of phase with the displacement y*(t) (Sarpkaya [1978], Staubli
- [1983], Moe and Wu [1990]). The force components are calculated by fitting lift force
traces from forced oscillation éxperiments to terms in and out of phase with the
displacement. - This method assumes amplitude-dependent lift and vortex
synchronization, that is the fluid and the structure are assumed to be synchronized. This

inethod does not model near-resonant behavior.

2.7.2.  Fluid or Wake Oscillator Models

In fluid oscillator models, vortex shedding is represented as a non-linear, usually van der
Pol type, oscillator that is self-limiting (Hartlen and Currie [1970]). The wake oscillator
ODE is usually forced through cylinder displacement velocity (Parkinson [1972]) as:

¢, - 4Q,C, +B/Q,C? +Q,’C, = DY Equation 2.14

In this equation, £2 =fy/f, is the ratio of the shedding to natural frequency and 4, B, and D
: ..are cé)nstants obtained from étationary and forced cylindér experiments (Sniirnov and
A Pavlihina' [1957], Bishop and Hassan [1964], Jones [1968], Tanaka and Tanahara
- [1969]). Some physical basis ‘fovr this model comes from the fact that it produces a
sinusoidal lift coefficient for a stationary cylinder where the forcing term is zero and a
self-limiting behavior through the van der Pol nonlinearity. Wake oscﬂlator is an ad hoc
model simplifying the combl_icated separated flow by a simple one-degree-of-freedom

equation and a “poor man’s computational flow solution” (Blevins [1990]). It fails to
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: . capture many agpects of VIV in a convincing manner. A few researchers (Berger [1987],
Griffin and Skop [1973], Hall and Iwan [1984]) have produced various modifications to

this model with limited improvements.

2.7.3. - Vortex Patterns and the Williamson-Roshko (WR) Plane

A classical experiment by Bishop and Hassan [1964] involved forced oscillations of a
cylinder in cross flow. By studying the unsteady forces through a force balance, the fluid
force and ph‘ase were examined for a set of oscillation amplitudes and frequencies (see
Figure 2.2). An abrupt shift in phase and a largé increase in lift and drag forces were
observed as the oscillation frequency was swept through the shedding frequency in cross

flow.

Following the same thought, Williamson and Roshko (WR) [1988] studied patterns of
vortex shedding from a towed cylinder forced in sinusoidal motion for a large variety of
oscillation amplitudés and frequencies. No force or vorticity field measurements,
however, were made. Figure 2.6 shows the resulting plane, where the vertical axis
represents the forced 6sciliation amplitude 4/D and the horizontal axis indicates the
oscillation to shedding period ratio, 7/Ts (or alternately, the towed distance traveled,
A/D). Vortex patterns of two alternate single vortices and two pairs (or two stretched
single) per shedding cycle are indicated as 2S and 2P while P+S refers to a pair and
single vortices éhéd in one Shedding cycle. »' The usual von Karman 28 pattern is naturally

recovered at small amplitudes and/or small frequencies.

It was found that the resonance region explored by Bishop and Hassan [1964] lies across
the boundary between the 25 and 2P regions. According to Williamson [1988], the
critical curve in F igure 2.6 corresponds to the tfans_ition from 28 to 2P while I and II are
curves where the forces on the body show a sharp “jump” in Bishop and Hassan’s
experiment [1964]. The changes observed in the lift and drag forces could hence be
attributed to the change in vortex shedding pattern.
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" ' A senes bf COmputatioQal ‘éipériments Awere later conducted by Blackburn and Henderson
' ,”[1'9'_96] at a low Reynolds number of Re=250 crossing the presumed 2S-2P boundary.

The results ranged from stable asymmetric 2§ and S+P pétterns to transient ones with no
“steady 2P m’odes.l It is worth noting that A/D in free oscillation studies is equivalent to

i ‘

A/D=UT/D=(ID/U" =1/f

Figure 2.6 Williamson and Roshko plane‘[1988]>, forced oscillation shedding modes,
A/D vs. J/D (non-dimensional distance traveled)

Since f in free VIV experiments is usually shifted to values less than 0.2 (f'<0.2, Feng
[1968], Shiels [1998]), A/D tends to shift to A/D>5 at large amplitudes. It is also
_ plausible that the vortex pattern and lift coefficient rgsulfs for a forced experiment (pure
sine wave) may differ ‘fromv thdse observed in a free elastic oscillation (quasi-periodic

oscillations with co-existing shedding and structural frequencies).
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2.7.4. , - Direct Numerical Simulations

Computational Fluid Dynamibs (CFD) erhploys a variety of techniques including discrete
vortex (Sarpkaya [1989], Blevins [1991]) and vortex blob methods (Shiels [1998]), as
Wéll as’ grid-b:ased_ finite-difference (Hall and Griffin [1993]) and spectral element
techin'ques (Newman and Karniadakis [1996], Blackburn and Henderson [1996]), to
achieve flow field solutions to the Navier-Stokes equations. The lift force computed
from the surface pressure on the cylinder or the hydrodynamic impulse within a box
ethmpassing the cylinder are used to obtain the cylinder motion through an assumed
structural equation. vDes.pite the valuable detailed information provided by such
techniques, the flow-structure problems are usually limited to low Reynolds number
values. Figure 2.7 shows the root-mean-square values for 4/D and the oscillation
frequency response in the two-degree-of-freedom VIV simulation by Blackburn and

Henderson.
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Figure 2.7 A/D (rms) vs. U, 2D, x and y oscillations, Re=250, (=0.01, m' =20,
o $7=0.2077 (Blackburn and Henderson [1996])
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- 32P-2S boundary, forced vibration, Williamson and Roshko [1988]
~© - Shiels, DNS, VIV, Re=100 {1998]
® Blackbum and Henderson, DNS, VIV, Re=250, [1996]
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Figure 2.8 Computational VIV results at Re=100 and Re=250 on the Williamson-
Roshko plane using /D= l/f

'Figure 2.8 shows the free V7V computational results of Shiels [1998] and Blackburn and
Henderson [1996] on the WR plane. Since the Strouhal shedding frequency (St=(A/D)™")
for a stationary cylinder (A/D=0) is 0.208 at Re=250 and slightly lower (S§r=0.172) at
Re=100, we obserye a shift in values of /?/D‘bétween the two studies. Despite the two-
dimensional nature of oscillations in the BH data and the difference in the Reynolds
numbers, the A/D-A/D (or A/D-f ) domain seem to be quite similar. Unlike experimental

~ studies, every point in both .studies was started from rest. The 2P-2S boundary is purely

for reference. Shiels reporfed’éingle vortex wakes only. It is noteworthy that unlike most
laboratory ‘experiments', Both studies seem to present deviations from the nominal

Strouhal shedding to larger values (f*y>nominal St, Figure 2.7).
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275, Passive VIV Experiments

Figure 2.9 Feng’s experimental data, /D=4, f./f,=o, f/f, =V, C,=0, vs. U (ref.
' Parkinson [1989])

Measurements on scaled laboratory models (Griffin and Ramberg [1982], Blevins
[1990]) or explorative studies are usually made on elastically supported cylinders. They
~ include elastically held circular cylinderé limited in one dimension (Feng [1968], Khalak
and Williamson [1997]), two dirﬁensions (Sarpkayét [1995]), or flexible cantilevers in
cross flow (King and Prosser [1.972], Brika and Laneville [1993}). The non-dimensional
parametefs involved are A/D, f/f,=f(D/L, Re-,‘ m,¢, U) as mentioned before. Detailed flow
information such as the vorticity field can be obtained uSing Digital Particle Image
’_Velocimetry (DPIV). The unsteady fluid forces can be calculated using a force balance
connected to the model. Such experiments are limited by scale and non-zero values of

the viscous or structural damping. The application of a force balance and a DPIV setup,
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,althdﬁgﬁ ’irh'mensely helpful, can be quite challehging. Figure 2.9 shows results by Feng
 [1968] and Figure 2.10, additional data by Feng and Parkinson [1972] as quoted by

Berger [1987]. - ¢ | |

Figure 2.10 Oséillation amplitude 4/D vs. free stream velocity U for various
damping parameters (0.0206<5=27<0.0648, m’=1/n=389, additional data by Feng
quoted by Berger [1987], not present in other papers)

Figure 2.11 shows the cantilever results by Brika and Laneville [1993] on the Williamson
and Roshko plane. In this case, since f/f, is very close to 1 (lock-in), /D=27U.

To overcome limitations with mass ratio and damping, Hover and Triantafyllou [1997]
~combined force—feédback with on-line numerical simulation to create a virtual structure

" in a water tunnel.

Most experiments have reported the existence of the lock-in behavior at various values of
mass ratio and damping. Experiments conducted by Feng [1968] and Brika and Laneville
[1993] also reported a hysteretic behavior indicating the importance of history (as in the
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.'5:i‘:(‘iir‘e'cti(')n,~- in vg\hic‘:h.ab certain flow speedv U is approached). Khalakh and Williamson

- [1997] also repdrgcd the ‘[.')o‘ssibility of multiple branch behavior (oscillation modes) at
low values of mass and damping. Brika and Laneville [1993] and Tamura [1998] have
pointed oﬁf 'Ehe é}‘fecté of initial displacement on the final VIV amplitude. The Reynolds
number is usuélly’_treatéd as a less important factor. Complex wake conditions such as
large variations in the size of the near wake in range 2000<Re<5000 have been observed

by various researchers (N orberg [1994]).
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Figure 2.11 One-dimensional oscillations df a cantilever (Brika and Laneville [1993])
on WR plane

2.8. Em_pirical Mode Decomposition (EMD) and Quasi-Periodicity

Empirical Mode Decomposition (EMD) is 'a modern technique for extracting modes with
different frequency scales from a given expei'imental signal (Huang [1998]). It employs a
siftiﬁg technique connecting the local extrema (or alternatively the inflection points)
within a trace as a measure of fhe characteristic time scales and possible intrinsic modes.
Through successive iterations, EMD extracts components with different time scales that
are numerically orthdgbnal and complete. EMD is capable of extracting such phenomena

as sudden jolts, different sources of noise, intermittency, and most important of all
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B vanoussource signals a%nsmg from different physical phenomena. EMD is an alternative
to the well-known Fast Fourier Transform (FFT) and Wavelet Spectrum. EMD replaces
'the idea of a sinusoidal fundamental with higher harmonics with that of a non-linear or
- quasi-periodic signal that is not necessarily stationary. The sifting technique can be
‘combined 'With Hilbert: transform to obtain tinie‘édep‘endent frequency and amplitudes.
EMD signal processing has produced invaluable results in various areas from earthquake
engineering to environmental and non-linear mechanics. Empirical Mode Decomposition
will be used in chapter 4 to analyze the separate effects of fluid and structural forces and

the nature of quasi-periodicity within VIV signals.

2.9. Introducing Effective Stiffness

In order to have Vaiid parameters at vanishing values of £ and m and also to separate the
contribution due to structural forces, inertia, stiffness, and damping and the fluid force,
Gharib et al. [1997] and Shiels [1998] non-dimensionalized time and other parameters
using flow variables D and U, This resulted in development of a new non-dimensional

parameter called effective stiffness. Effective stiffness k5 relates the lift force C, to the
oscillation amplitude 4/D (C, =k, A/D) just as a spring stiffness relates an exterior

force F to the spring displacement y (F = -ky). This concept is the central part of the
arguments behind VIV phenomena observed in the present work. Starting with the
dimensional ODE in Equation 2.6:

my+by +ky =1/2C, ()p,U.DL " Equation 2.15
and using U./D and D to non-dimensionalize time and space:
y=DY, t' =tU,ID, d0t=(&"/81) (A&)=U/D 9ot Equation 2.16

through substitution, one obtains:
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b

2 ‘ ‘ . -
’"gw DY L g‘” DY +kDY =1/2C,(1)p ULDL Equation 2.17

‘ 81mp11fy1ng and' d1v1dmg by the right-hand side terms,
mlL b/L- k/L

Y+ Y+ Y=C (¢ Equation 2.18
1/2D2pf Y2p,U,D 1/2pr2 y()
renaming terms
mY+b'Y+kY=C, Equation 2.19
where
m =__m{L_ . b/L k= k/L Equation 2.20
2 ’ ’ 2
1/2D%p, 1/2p,U,D 1/2p,U,
Comparing identities in Equation 2.12 and Equation 2.20
k*#%,b'=2m§,m*=_ m/zL ,ftz_ﬂ_)_z 1 _L A’=£ Equation 2.21
U U 1/2D%p, U, 2aU f,° D

_ Alternately, comparing the coefficients in Equation 2.11, %—(Y‘ +20Y+Y)= C,, and

Equation 2.19, m'Y+b'Y+k'Y =C,, while distinguishing the difference between

derivatives with respect to £ and 7 (ﬁY/o’"FU oY/é ) makes the first two identities in
Equation 2.21 evident. | '

Assuming a sinusoidal oscillation, Y(t")=A4" sin(@"t’), and fluid force with a phase ¢,

Cy(1) = Cyosin(w't"+¢), we proceed with Equation 2.19 by substitution:
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—om A sin(e") + b'w A’ cos(w’t’) +k" A sin(w’t") = Equation 2.22

. C,sin(@"t" ) cos(@) + C, cos(@'t ) sin(g)

' Since the above identity is true for all values of £, coefficients in front of sin(t’) and

cos(t) must be equal.

sin(@t): ) (~0"m" +kA" = C, cos(¢) Equation 2.23
cos(@t):  be'4 =Csin(g) Equation 2.24

*

The term k'r =-0" m" +k" is called the effective stiffness. Since k' =zn;—2— and

@ =wD/U=a/a,(1/U) the effective stiffness may be related to the classical parameters

" in the following manner:
L ; A Equation 2.25
k*eg=—w*2m'+k*=$—{l~—(—f—} ] quation 2.

In a series of computational experiments, Gharib et al. [1997] and Shiels [1998] showed
that at vanishing values of b’ the fluid may respond through a single frequency f (pure

sine wave response) making k. the universal fluid-structural parameter through
kjy A =C,. That is varying values of m" and k' independently while keeping

ko = —a)*zm’f +k" constant resulted in the same flow field, oscillation amplitudes and

_ frequencies. The C, behavior, however, was found quite unpredictable.
ky A =C, ~ (for b'=0) Equation 2.26

Ko =—0"m +k Equation 2.27

In the presence of damping b, Equa'tior'1V2.24 gives
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| (k%z +(b*a)*)2)A*2 = Cy2 Equation 2.28

tan(g) =,l_)"co' lky Equation 2.29

The existence of the damping parameter directly influences the phase ¢ and indirectly
modifies the lift coefficient C, and the frequency /. Ttis also noteworthy that b =2¢(m’/U

is similar to the mass-damping parameter, Sg=27m ¢, introduced before.

2.9.1. Effective Stiffness and Zero Mass and Damping

Gharib et al. [1997] and Shiels [1998] used the idea of zero mass and/or damping to
explore the relative importance of the two parameters. Non-dimensionalizing the
variables using D and U, was necessary for expioring such limits and provided a new
tool for considering individual force components (m", b", k', and Cy). At vanishing
values of damping (b"=0), flow responses close to a pure sine wave resulted in a simple

solution to the flow-structure equation in Equation 2.19 in the following form.

ki, A =C, (for b"=0) Equation 2.30

where the effective stiffness ko =—@"m' +k° became the singular structural

parameter. A unique amplitude response A~ was obtained for every value of ko

regardless of the individual values of mass or stiffness (Figure 2.12).
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Figure 2.12 Un*iversal curve for amplitude, A/D, vs. Effective stiffness, -k*eff, for
b"=0, Re=100 (Gharib et al. [1997] and Shiels [1998])
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A

3.(;Experimental Setup and Procedure

3.1. General Description of the Experimental Setup

Figure 3.1 shows a general schematic of the experimental setup. A cylinder of diameter
D and length L was supported vertically along z in a water tunnel with the free stream
velocity Us in the x direction. The cylinder was attached to a traverse free to move in
cross-stream direction y as well as the stream-wise x. In one-dimensional cases (chapter
4), small clamps were used to confine the traverse to oscillate in y only. The entire setup

rested on a platform that suppressed free surface waves.

The lower end of the cylinder was 0.25 inch away from the bottom wall within the
boundary layer with no end plates. A laser LED, attached vertically to the traverse,
transmitted the location of the cylinder to an optical setup that in turn mapped the above
trace to a smaller area on a position-detector. The x and y trace signals created by the
latter were amplified and finally saved in a Macintosh IIv computer. An LDA setup
upstream recorded the mean free velocity U., and a hot-film anemometer, downstream,
detected the wake shedding frequencies within the shear layer. Two accelerometers
connected to the traverse were used to record the acceleration in the x and y directions.
The signals from all above probes were sampled using a 12 bit MacAudios data
~acquisition card and recorded and analyzed using Superscope data acquisition software.
The data files were later converted and reanalyzed using Matlab computational software
and signal processing toolbox. An analog frequency analyzer was also used to obtain

lonig interval frequency assessments of the wake signals.
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cylinder Superscope

Figure 3.1 General overview of the setup

3.2. Water Tunnel



Experimental Setup and Procedure 35

“The experiments Wer_ebcc')ndu’cted in the Free Surface Water Tunnel (F SWT) housed in
the Hydrodynamics Laboratory at the Graduate Aeronautical Laboratories at the
California Institute of Technology (GALCIT). The Fre¢ Surface Water Tunnel has a
closed circuit circulation system 'lying in a vertical plane. The water stream passing

thrbugh the working section is confined at the side walls and the bottom.

DiFFUSER -y 77 VACUUM CONTROL BOUNDARY LAYER
N B ; ; SKIMMER
SEPARATOR TRAYS —-y SPRAY CATCH Lo WORKING SECTION i - HONEYCOMB
N [T OVT: 1 R T | . NOZILE-: /
\ L /o /
\ S i r] i | /
7',_,5\——-“”'—" Sl aals g3 3
< FLOW | R D T —
S —— H N4
| SN r
- SKIM. TANK o ¢
=—a 18] e T _DPERATING
- 4 & FLOOR !
i E: S— I0FT
T sM PumP Hi ’ !
5 HP I Sy '4“4~4-L4_Jf/ .
2C MOTOR — i /)
\ =~ A1 ¢
PUMP DIFFUSER R4 B & FORUU—
. -

L4z moia !
PROPELLER PUMP -J

i 4lFt et

Laornie !nﬂ;ﬁfrw
PR A st - S 2

Figure 3.3 The closed circuit and the test section on the upper floor

The test section was 20 in. (508 mm) wide and 30 in. (762 mm) deep. The water depth
was kept at 22.5 in. (572 mm) to provide an 8 in. (203 mm) air space above the free

surface. The section was 8 ft (2. 44 m) in length and bounded on all sides by Plexiglas
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‘ ,wmdwaj Water velocity in fhe'section could be regulated from zero to 25 ft/Sec'(7. 62

m/s). All experiments presented involved velocities below 120 cm/s.
3.3. Cylinder Models

A variety of cylindérs were designed to accommodate different possible diameters and
mass-ratios. All but one cylinder model were solid Plexiglas or metal rods. Diameters
fanged from 0.25 to 2.1 inches. To accommodate the smallest mass ratio cases R2 and
R3, a hollow 0.1 inch thick Mylar tube of 2.1 inches diameter was used with plugged
ends. Aluminum caps and a threaded rod running through this cylinder kept it steady and
free of bending. All models had tapped ends such that they could be firmly attached
flush with the traverse without any bending or vibration during the runs. All cylinder
models were 22.25 inches long. The top end of each cylinder was attached to the main
traverse 1.0 inch above the free surface. The actual length of the cylinders submerged in
water was less than 21.25" due to the free surface deformations around the cylinder

during the runs. The length L used in computing the mass ratios m’ was 22.25".

3.4. Traverse

The basic design of the traverse is shown in Figure 3.4. The small inner traverse is free
to move in the y direction through two sets of bearings on rods attached to two sets of
bearing moving along x. Since m, the portion of the traverse moving in x was part of my,
the segment moving iny, m, was leés than m, at all times (m, =700 g, m, =1310g). The
cylinder models were attached to the center plate via bolts running through tapped holes
in the center of each cylinder. The outer rods were held using brackets connected upon a

- stainless steel frame bolted down to a Plexiglas platform described below (Figure 3.4).
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Figure 3.4 Traverse and the bearing setup

3.5. The Plexiglas Platform and the Tunnel Mounting

A rectangular Plexiglas platform of 18 inches width and 2 feet length was used to support
brackets holding the outer rods of the traverse. The Plexiglas platform was 1.0 inch thick
with a rectangular hole in the middle to accommodate an area for the cylinder to run
through and oscillate. This platform was aligned using a level before every run. It did
not reach the side walls of the tunnel and was supported using vertical threaded rods to
the top of the tunnel. The spring holders were brackets that were attached to the platform

in an adjustable manner.

Figure 3.5 The traverse, the tunnel mounting, and the Plexiglas platform
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The spring brackets were separately supported using tape Wrapped blocks of wood to fill
the gap between them and the walls of the tunnel. This avoided any transfer of energy
from the spring to the outside platform. Figure 3.5 shows the top and the side view of the

tunnel mounting.
3.6. Springs

A variety of springs with different values of elastic stiffness from 0.3 to 50 Ib/in were
used. The springs were between 3.5 to 5.5 inches long and from 0.25 to 1.0 inch in
diameter. Special attention was paid to ensure the maximum deflection for each to be
within factory recommended linear range; however, small non-linearities were expected.
A free decay Vibrafion trace of the system was later used to study the nonlinearity of the

springs along with other structural parameters such as friction.

3.7. Structural Damping and Non-Linearity

The damping parameter was minimized at all times to increase the possibility of vortex-
induced vibration. No artificial damping was added in this study. The damping due to
the springs proved to be non-linear to various degrees. The values reported with each
~ case are based on linear theory. Section 6.10 describes a detailed account of the least-

square fit techniques used to model an ordinary differential equation in a typical case.
3.8. Optical Setup

- An optical instrument was designed to map oscillation amplitudes of up to 150 mm to an
area of 8 mm on the position detector. Optimal conditions would have provided a bifocal
system where images would be linearly proportional in size to the objects, that is,
A’B’=a x AB. In addition, thin lenses would have also been desirable to avoid spherical

aberration. This; however, would have called for a distance of about 2 yards between the
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two lenses rendering aﬁ optical setup on top of the water tunnel impossible.' The problem

~ was largely resolvgdby using thick lenses that would cancel the spherical aberration of
one énother and alsoi by manipulating the distance between the two lenses such that the
_ mapping would be as linear as poésible in the predicted range of vibrations. In the first
| series of experiments with m <10, the oscillation amplitudes encountered were the largest
and the optimal calibration curve naturally more non-linear (see Appendix A.2). This
calibration served to map the location of the traverse to a voltage recorded from the
optical position detector and hence included possible nonlinear effects due to the position
detector. The‘ small quadratic coefficients ( O(107)) in the third order polynomials fitted

to the calibration points showed an odd functional behavior as expected (A.2).

3.9. Accelerometers

Two low frequency Kistler accelerometers were used to record the acceleration of the
traverse in x or y directions. The accelerometer outputs were 0.495 volts/g according to
the factory calibration. These signals were needed to confirm values predicted from the
force deduction technique (see chapter 6) and to ensure smooth cylinder motion. Any
discrepancy between the displacement and the acceleration traces would reveal possible
problems between the traverse and the cylinder such as cylinder bending; however, no
such problems were encountered. The accelerometers were Wrapped in plastic covers

and bound to the vertical surfaces of the traverse aligned in the x and y directions.

3.10. Hot-film and LDA

An LDA system upstream of the traverse was used to record U, and a hot-film
anemometer downstream to measure wake frequencies. With increasing flow speeds
above 80cm/sec and groWing oscillation amplitudes, U., fluctuated (see Figure 3.6). An

average value and a deviation were recorded for every tunnel speed.
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3.11. Data Acquisition

A 12 bit MacAudios sa{ﬁpling card was used along with Supersl:ope, a data acquisition
software for Macintosh computers. The sampling card was capable of 128 kHz sampling
through 12 separate c};annels. Sampling frequencieS for this study were either 1 or 2
kHz. This fange wéuld allow an optimum resolution for the 12 bit signals, suitable file
sizes and a sampling rate much larger than the oscillation frequencies predicted ([1-10
Hz]) for ﬁlterin‘g purposes. 'Sampling intervals of 20 to 40 seconds were equivalent to a

few hundred non-dimensional times (tU/D) for each value of U..

3.12. Experimental Procedure

The optical setup and the position detector were calibrated as one system before and after
every set of experiments. Details of this procedure can be found in the Appendix A.2.
The experiments were conducted in two subsequent R and S series. The R series
concentrated on low mass ratio structures with m <10 and involved larger cylinder
diameters and oscillation amplitudes. The S series was aimed at high mass ratios and
involved smaller displacéments and stronger springs. The latter required a different
optical mapping and a larger more robust spring setup. As every case involved specific
values of mass ratio, damping and Reynolds number, each was referred to by a letter
followed by a number, where the letter describes the run series and the number refers to

the specific case.

Case .m 100 mlkg]l k[bfin] f,[Hz]l D[in] Re[10°]
R3 2 7.3 16 104 18 21 13-40

Prior to each case, the following procedure was followed: The platform, the laser beam
and the traverse were checked for the horizontal/vertical alignment. The bearings were
tested for friction and wetness. The accelerometers were checked for possible wetness.

The traverse was positioned to move exactly along x and/or y according to the tunnel
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:"ﬁalls. The posijtion of the optical setup and the position detector were tested for laser

~ beam alignment.

. The systerr'lbpharafneters: mass, natural frequency and damping were recorded before or
after each case.’ The mass of the structure was measured within one gram of accuracy.
The "cylinder' was then replaced by a dense weight of equal mass and a free decay
oscillation of the structure kwas recorded. The natural frequency of the trace and a first
order approximation to the structural damping using linear theory was deduced. A higher
approximatio;l was later attempted using non-linear O.D.E. fits to every trace (section
6.10 for details). This first approximation was used to predict tunnel speeds allowing

vortex-induced vibration.

vThe tunnel speed was kept below 120 cm/sec to ensure optimum steady flow field and
great effort was made to obtain as many points as possible within the VIV window of U..
This, however, proved to be a challenging problem, for with increasing values of the
mass ratio m, the tunnel speed ranges for VIV seemed to dwindle. In certain cases VIV
would only occur at very specific values of Uy, +/- 1cm/sec or less. This was particularly

confounded by fluctuations in U, and hence called for increased investigative effort.

A total number of 11 cases are presented in two series. The free stream velocity in every
case was estimated using U~1‘ and ¢<<I criterion, and a short investigative test was
performed to find the range of possible free stream velocities Us that would resuit in VIV.
The main case would follow afterwards from the slowest tunnel speeds with small
- increments in order to obtain as many points as possible within the velocity'range, given
the accufacy of speeds obtainable in the tunnel. The system was given manual jolts
outside resonant regions. This would explore the possibility of an oscillation mode
requiring initial displacement and at the same time a record of structural decay at speeds
just below the VIV range. Such decay traces may later be used to describe a mechanical
model for the structure-in-shedding-fluid system. At speeds close to VIV, this would

result in a few steady oscillations of small magnitude.
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;

A penod of abbut five to ten minutes was devoted to every data point to allow the ’t_unnel
to stabilize. = The signals from the position detectors, the accelerometer, the hot-film
anerhometef and the LDAV were samples simultaneously for 20 to"40 seconds with 952.8
or 2000 Hz samplihg ratés into the computer. The tunnel RPM, flow speed, approximate
oscillétion'émplitude via a vernier caliper in the laser path, and the frequency through
timing and counting 30 oscillations, and a brief description of the flow condition and the
wake frequency according to the frequency analyzer was recorded by hand for

redundancy.

3.13. Data Analysis

The process of data analysis was sensitive due to the quasi-periodic nature of the signals.
Most cases showed evidence of non-linearity and time-dependent frequencies. This was
mainly due to lack of a perfect synchronization between the shedding and the oscillation.
Large interval and average sectional FFT routines proved to be useful for the steady
traces and not so helpful for others. A simplified technique provided a more accurate
time-averaged frequency by counting a large number of peaks (usually 30) and dividing
the number by the time elapsed. This simple technique in some cases could detect a
small steady growth in frequency with U that simple FFT could not. The other benefit of
a manual frequency{analysis was a focus on areas where a relatively steady oscillation
was in fact occurring. Intermittency in such cases would severely affect mean amplitude
and frequency. A blind FFT routine, on the other hand, would have the advantage of
extracting information at small oscillation amplitudes that could fail to be included. This
also would provide ar more universal way to communicate the results with other

researchers in the field.

' The data was reduced in two manners, one using an FFT over the entire signal and
another using the manual procedure above. To explore extrd elements such as
intermittency, noise, and time-dependent frequencies and amplitudes, selected points
were analyzed using Empirical Mode Decomposition (EMD), a more sophisticated

version of the manual peak counting procedure. EMD employs a sifting technique and
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-‘v;%ﬂ‘-ongwithv theéHilbyert transforms can produce time-dependent qﬁasi—p‘eriodic modes

within a given signal (see section 2.8).

The non-dimensibnal amplitude 4/D and frequency, f/fy, were plotted vs. U according to
~ Feng and Parkinson [1968]. The data was also recast in the new keg format (see chapter
2) where A/D and f =fD/U were plotted against - eﬁr . The - e}y parameter increases with

increasing U.

' 3.14. Discussion of Experimental Errors

Experimental error came from three possible sources. 1) Inherent inaccuracy due to
variations in U., during VIV caused by tunnel breathing and/or large oscillations affecting
the LDA reading. 2) Inaccuracies in assigning frequency and amplitude values to a given
trace due to quasi-periodicity or intermittency. 3) Error in amplitude values due to

optical calibration or unsteady oscillations.

1) Figure 3.6 shows the standard deviation in recorded U as a function of U, for case
R2 covering a wide range of velocities and amplitudes. The oscillation amplitude
reached a high value of A=1.45 inches. This problem is usually due to tunnel
breathing and confounded in this case by cylinder oscillations affecting the LDA

reading.
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o F«lgure 3.6 Tunnel speed variations and amplitudes vs. tunnel speed in case R2

In Figufe 3.6, the large' error around U,=80 cm/sec is due to the large oscillation
amplitudes achieved and the larger deviation around U,=115 cm/sec is due to tunnel
flow iriétability at such velocity. The Reynolds number at this point was about 6x10°.
Such tunnel variations are unavoidable and call for small amplitude-dependent error
bars in U values reported. The variations in U, in this case translate into
small values in non-dimensional U (dU<0.01). The error bars hence are
smaller than the ‘size of the points used in reduced graphs and much less important

than the variations in A4/D and f/f,, values.

2) The second class of errors involves problems in assigning an average frequency to a
given quasi-pefiodic trace. Detailed accounts of time-dependent frequencies in

typical cases have been dealt with extensively and are referred to in section 4.11.

3) The optical calibration is discussed in detail in the Appendix A.2. The main issue
was to safely capture the non-linearity in the optical mapping in the calibration. This
non-linearity was important in cases that involved large diameter cylinders (R3 and
R2 with D=1.5 inches) and only substantial at points with largest oscillation
amplitude 4/D. ’
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CHAPTER 4

Experimental Results: One-Dimensional Oscillation
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4. Experimental Results: One-Dimensional Oscillation

4.1. Introduction |

The prelimingry two-dimensional oscillation experiments with water-filled Plexiglas
tubes showed a steady growth of oscillation and shedding frequencies with U but no signs
of lock-in (Runs 0! and O2 in sections 5.5 and 5.6). A comparison of the experimental
conditions to those of Feng’s [1968] would most likely attribute the lack of lock-in to the
small values of mass ratio and damping (m"=1.7, £=0.004) or the two-dimensionality
of the oscillations in the new experiments. The following experiments were designed to
achieve a wide range of mass ratios as well as one or two-dimensionality in order to study
and isolate the effects of each element. As we shall see in this chapter, many 1D runs
were encountered that exhibited no lock-in behavior. It was hence concluded that the
number of degrees of freedom (1D vs. 2D motion) is not the reason behind the lock-in

mystery and that variations in mass ratio m", however, play an important role.

In this chapter, the experimental results for the one-dimensional VIV cases are presented
with increasing values of the mass ratio, m". The damping coefficient -4 is slightly
different in different cases, however, the detailed behavior observed is quite different.
For every case, a small number of representative displacement traces are presented along
- with their corresponding Fourier spectra (on log-log or linear scales). Since the non-
dimensidnal time T=w,t 18 used to plot the traces, a period of 2a(f,/f)~2r corresponds to
one complete oscillation. The y-axis range in all y(7)/D traces is —0.8<4/D<0.8. The
amplitude for each trace is based on an equivalent sine Wavé, 1.e. the root mean square of
the signal portion (rmsxV2) and the frequency is based on the FFT peak. For the traces
that contained manual jolts, the frequencies and the amplitudes were computed within

their steady segments only. When steady portions are too small, a transient interval was
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' _choséﬁ 1nstead fora qua}itatiye p‘reséntation. Due to this freedom in selecting the portion
of signal for amplitude and frequency analysis, there may be slight variations between
valués shown on a givenjrace and the reduced plots in a few cases. In reduced plots of
~amplitude and frequency, however, every trace was considered manually. The
'.freque'ncies' were obtained using a combination of FFT and peak counting and the

amplitudes large oscillatory segments as explained above (see chapter 3).

The data sets are non-dimensionalized and reduced in two different ways: primarily, in
 the classical manner as used by Feng and Parkinson (4/D and f/f, vs. U) and
subsequently, according to the new effective stiffness (4/D and f vs. 'k*eff) discussed in
chapter 2. The latter uses flow parameters U, and D to non-dimensionalize other
parameters and is valid at vanishing values of structural parameters. The minus sign in
-k o is 50 that -k "oy increases with increasing U. Details of these formulations and the
data reduction procedure can be found in chapters 2 and 3. Values of 4/D and f/f, vs. U
are plotted using the same scales as much as possible. Table 4.1 shows the cases
considered and their corresponding structural parameters ordered in increasing values of
mass ratio.
Case m ¢x100 m[kg] k[lbfin] f,[Hz] Din], Re[10°]
R3 2.1 7.3 1.6 104 18 | 21 13-40
R6 5.1 35 207 3.2 27 15 13-26

R10 | 89 | 27 16 74 1 115195
§779 21 16 115 1| 13-24
R5 | 9 | 37 16 42 33 1 9-13
S6 1270 | 27 49 30 58 1 | 1724

ST 280 07 503 30 | 57 1 10-25
S5 390 29 713 30 47 | 1 | 1421

S2 720 0 21 @ 506 94 88 062 11-13.6

Table 4.1 List of cases considered with increasing mass ratio
Figure 4.1 and Figure 4.2 show the large scale and the small scale behavior of a typical
large displacement trace, y(¢)/D, at (case S1, U=0.96, -k*eﬁf‘:o.45). Figure 4.2 also shows
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. v

U a sme wave for comparlson The amplitude of the sine wave is cornputed using the

. standard dev1at10n of the original signal multiplied by V2 and the frequency is obtained
through peak countmg’.

"~ Long Term Behavior

L f . 1
100 200 300 400 800 600 700

Figure 4.1 Displacement trace y(z)/D, Long term behavior, U=0.96, S1, m'=28

Companson with a sme wave
08

Soull
<
<

Figure 4.2 y(t)/D, Comparison with a pure sine wave, U=0.96, S1, m =28

4.2. R3: One-dimensional Oscillation with a Mass Ratio of 2.1
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€ase  m  pd00 mikgl k[bAn] f[Hz] Dfin]  Re[107]
R3 21 73 16 104 18 21  13-40

R3 was the lowest mass-ratio case studied. Its structural parameters are listed above.
This émall ‘mass ratio was achieved using a large hollow Mylar tube with a mass of 320
grams. The rest of the mass was due to the part of the traverse moving along y. The
oscillations occurred over a large range of free stream velocities with

13%x103<Re<40x10°.
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Figure 4.3 Oscillation traces and frequency spectra for case R3, m*=2.1, at a)
U=0.41, b) U=0.53, ¢) U=0.69, d) U=0.84, ) U=0.98, f) U=1.12
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Figure 4.4 Oscillation amplitude and frequency response vs. U, R3, ﬁ*=2.1

51



59 , _ One-dimensional Results

e
\1
1

o]
N
'T

A/D
-
=N

025~ T T T T T T T T T T T T T

02

0.15F

0.05F

TI’
BN
¥
]

O- 10 -8 -6 -4 -2 0 2

Figure 4.5 Oscillation amplitude and frequency vs. -k*eff, R3, m'=2.1
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o Both ~th§ O§cilla£ion and thé shedding frequencies here show a steady increase with the
free stream velocity U (Figure 4.3 and Figure 4.4). The amplitude of oscillation reaches a
value of 0.77 at U_:=0.'62. This amplitude is close to 0.75; usually predicted for the zero
limits of mass and damping. The nominal Strouhal shedding frequency with S=0.21 is
" shown as a tilted line for reference. Although the frequency response certainly deviates
from the nominal shedding, there are no signs of lock-in evident. The general shape of

the A/D curve does not indicate any humps as reported by Khalakh & Williamson [1997].

Figure 4.5 shows the reduced values of A/D, f , and fs* as a function of the new -k*eﬁr
parameter. As discussed in chapter 2, this parameter is the universal parameter for single
frequency VIV at given values of damping, b" and Re. The damping parameter
b"=2m"¢/U and Re, however, do not remain constant in any of the cases presented and in
fact, b" in R3 declines with increasing U from 0.68 to 0.24 and Re increases linearly from
13,000 to 40,000.

— - Williamson & Roshko
o A/D
08— 1T T
s .- 00 o :
0.7 F e T . s . 3
VY AN ]
3 | LN - ° E
A 0.5 F 0\\: o
:_ “ \ . e _:
% 0.4E AS ‘l 2P o :
03 F v ) : E
: i 1 | VI R e | v ]
3.5 4 4.5 5 5.5 6 6.5 7 7.5
A/D

Figure 4.6 R3, m =2.1, on the Williamson-Roshko plane
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4

"Figl'i-ré 46sh0ws the data poinfs on the Williamson-Roshko plane with the dashed curved
_ _line indicating the bounda(y between 2S and 2P shedding regimes. The parameter /D is
the stream-wise length traveled by the fluid in one complete oscillation and is simply
equivalent to 1f m ihe "present experiménts. Values of A/D increase with U and are
'mostly on the 2P side. ‘No particular “jump” in amplitude and hence the fluid force is

observed as this boundary is crossed (k*g_ffo/D=C‘,). Figure 2.11 in chapter 2 can be

referred to for comparison with results of Brika and Laneville [1994].

4.3. R6: Mass Ratio of 5.1

Case m 100 mlkg] k[bjin] f,[Hz] DIin] Re[10°]
R6 5.1 35 2.07 3.3 2.7 1.5 13-26

The amplitude for case R6, Figure 4.7, grows gradually with increasing U to a maximum
of A/D=0.56 at U=0.84. The frequencies show steady growth with U. The shedding and

oscillation frequencies are almost indistinguishable at large oscillation amplitudes.

Reduced plots of amplitude and frequency in Figure 4.8 resemble those obtained for R3
(m'=2.1) except for the narrower range of U and k*eﬂ' and smaller values of A/D. The
general shape of the A4/D vs. U curve is smooth for 0.8<U<1.0. The drop in amplitude at

U>1.0 is relatively steep. There is no evidence of lock-in.

Figure 4.9 shows the reduced values of 4/D, f*, and f;" as a function of ‘k*eﬁ”. Damping,
b", in R6 declines with increasing U from 0.68 to 0.44, and Re increases linearly from

13,000 to 26,000. Figure 4.10 shows the results on the Williamson-Roshko plane. The

. A/D values increase with U and seem mostly to be on the 2P side.
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Figure 4.7 Oscillation traces and freqdency spectra for R6, m =5.1 at a) U=0.54, b)
‘ U=0.69, ¢) U=0.78, d) U=0.90, ¢) U=1.01, f) U=1.06
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Figure 4.8 Oscillation amplitude and frequencies vs. U for R6, m =5.1
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Figure 4.10 R6, m =5.1, on the Williamson-Roshko plane

4.4. RI10: Mass Ratio of 8.9

Case m  ¢x100 mikg] k[lbliin] f,[Hz] DI[in] Re[107]
RIO 8.9 2.7 1.6 7.4 4 1 11.5-19.5

R10 involved a Reynolds number range of 11,500<Re<19,500, overlapping that of S7.
The damping, £=0.027, is very close to {=0.021 from S7 and the VIV behavior is similar.
The oscillations start siowly at U=0.8 and build up to A/D=0.46 at U=0.99. The peak
amplitude is only 0.06 diameters below that of S7 and with minimal intermittent
behavior. U varies between U=0.72 to U=1.23. The amplitudes slowly decrease above
U=1.0 and finally quickly decay beyond U=1.06. The frequency response does not

indicate any signs of lock-in and continues to grow with U monotonically.
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Figure 4.11 Oscillation traces and frequency spectra for R10, m"=8.9 at a) U=0.72, b)
U=0.84, c) U=0.88, d) U=0.93, ¢) U=1.04, f) U=1.09

Figure 4.12 shows a steady increase in shedding and oscillation frequencies. Here f7%,
results are shown using both FFT and peak counting to indicate minute differences. The
- overall shape of the amplitude response shows possible hints of transition around
U=1.11. Figure 4.13 shows a narrow range of —k*ejy with the possible branéhing above.
The frequency f reaches a minimum value of 0.153 at A/D=0.26, past the peak
amplitude. The damping, b", ranges from 0.94 to 0.54 with increasing -k*ef]‘.



One-dimensional Rgsults

s AMaasansasanas son apnas
0| PR S AR SRS S - A
| SR S P e o

' AN

0 L1 4L||E_L|llielmn_i|||Lilj_l|iLl||L|1||iLl'
04 05 06 07 08 09 1 1.1 1.2
U

cloa s lae e taay

A: f yfn |
o fs /fn
L - fyfn ]ﬁ

06 07 08 09 1 .1 12 13 14

Figure 4.12 Oscillation amplitude and frequency response vs. U for R10, m'=8.9



One—dimensional Results

0.5

03— L

A/D

O. 1 ;—_ ............................. ...................

0.2F e ................................ ........ S ..................... Vb

PR WO NS N N DA VU NN T N WA TN N W N0 RN N WY W T N W00 MO

0 TS WU WY NN NS SN SUUUN NS WY WU S AN SR TR SUUNE ST SN S NUN NV S S

6 4 2 ) 2 4

(@)}

0'25 LA R T T T T T T T T LI S R T T T LA

0.1

T
g
3

0.05

™

Figure 4.14 Frequency f vs. -k*eff, details, R10, m"=8.9

61



62 , One-dimensional Results

 45.  S7: Mass Ratio of 9
Case m 100 milkg] k[lbfin] f,[HzZ] Dfin] Re[10%]
87 9 21 16 115 5 A 13-24

The steady‘ frequency increase with U in this case is evident in Figure 4.15. For U<0.77,
displacemenfs are small with mixed frequency contents, that is f; and f co-exist or appear
at alternate times. At U=0.77, the amplitude suddenly doubles and the oscillations
become more stéady.‘ The large amplitude of oscillation gives rise to fluctuations in the
values of U as detected by the LDA system by as much as U’=0.005. The two
frequencies f and f; continue to co-exist, although with minute differences. Figure 4.16

shows the large gap between the two frequencies for U<0.77.
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Figure 4.15 Oscillation traces and frequency spectra for S7, m =9 at a) U=0.65, b)
U=0.73, ¢) U=0.80, d) U=0.89, ¢) U=1.00, f) U=1.07
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Figure 4.16 Oscillation amplitude and frequency response vs. U for S7, m =9
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Figure 4.17 Oscillation amplitude and frequency vs. -k*ef_‘f, for S7, m =9

Figure 4.16 also shows a hump in the 4/D curve about 0.96<U<1.05. The amplitude falls
from a value of 4/D=0.39 to 0.27 and does not change much until another drop at U=1.06
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from A/D=0.24 to A/D 0.18. The frequency plot of f/f, does not reflect any particular

change at this value. The osc¢illations become unsteady with a richer frequency content

similar to the U<0.77 range.

' Fig’lire 4.17 shows the amplitude and the frequency behavior for this case as a function of
-k o kThe damping b  ranges from 0.68 to 0.36 with increasing U or -k*eﬁr. The
frequency f is lowered from the usual value of $=0.21 to a minimum value of f =0.145
at -k o;=-0.60 and A/D=0.24 near the hump mentioned above. It is noteworthy that this
maximum deviation does not occur at the largest amplitude. A comparison with the

Williamson & Roshko plane proves most points to be in the so-called 2P region.
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Figure 4.18 S7, m ‘=9, on the Williamson-Roshko plane
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Figure 4.19 The growth in /D with increasing U, S7, m'=9

4.6. R5: Mass Ratio of 9

Case m  ¢x100 milkg] k[b/in] f,{Hz] D[in] Re[10°]
RS 9 3.7 16 42 33 1 9-13

Although this case involved the same mass ratio as the previous case with more damping,
it shows a different behavior. The lower natural frequency called for a lower Reynolds
number range of 9,000<Re<13,000 just below that of S7. The oscillations were unsteady
and would often decay after many cycles. The substantial difference between S7 and RS
is remarkable. The values of A/D and f/f, in Figure 4.20 are based on the trace segfnents
indicated and the frequency spectrum is in log-log scale to magnify the small power

magnitudes and frequency changes.

Due to the unsteady behavior of R3, Figure 4.21 reflects values of frequency and
amplitude obtained from both the large and small amplitude portions of each trace to

represent the existing variation. At very small amplitudes, the nominal Strouhal
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"f-’i‘r'é'qﬁency is detected as expected. The frequency growth seems to be more steady in the
FFT results.

The large variation in frequency makes k*ef[ vary by large amounts and hence plots using
 this ‘parameter are unintelligible. This is mainly due to the fact that the k*eff parameter
was derived for a single frequency oscillation only. The damping parameter b" here
varies from 0.44 to 0.30. The frequency tends to increase with no signs of lock-in. The
unsteady behavior of this case precludes an objective shape study of the amplitude curve.

The range of oscillations is more limited here with 0.7<U<1.05.

/in=0.838 A/D=0.0505

Q
/fn=0.854 § A/D=0.119

/in=0.88 A/D=0.146

#n=0.90% : A/D=0.376

,mnA/\A.I\ A

/fn=0.942, : A/D=0.269

in=0.99 A/D=0.199

s i

W/
n

Figure 4.20 Oscillation traces and frequency spectra for R5, m"=9, at a) U=0.68, b)
U=0.73, ¢) U=0.80, d) U=0.84, ¢) U=0.91, f) U=0.99
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Figure 4.21 Oscillation amplitude and frequency response vs. U for R5, m'=9
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A

4.7.  SI1: Mass Ratio of 28

Case m  ¢x100 milkg] k[lb/in] f,[Hz] DI[inj] Re[107]
§1 280 07 503 3 57 1 1025
Despite the relatively large mass ratio, S shows a steady growth in amplitude response
with small disruption. The usual competition between the shedding and oscillation
frequencies is.detected at small values of U where the amplitudes are small; however, this
does not cause visible disruptions in the oscillation as it did in R5. The amplitudes grow
slowly to a value of 4/D=0. 11 at U=0.86 and through a sudden leap, a value of 4/D=0.57
is reached without any sudden shift in the frequency response. Although this leap falls
within the 2P regime on the Williamson-Roshko plane (Figure 4.28), a sudden
wake/phase transition is the most probable cause for the change (C,=4" k o7 and k o5
stable). For 0.88<U<1.02, the amplitudes decrease slowly with a sudden plunge at

U=1.08.
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Figure 4.22 Oscillation traces and frequency spectra for S1, m'=128, at a) U=0.72, b)
U=0.77, ¢) U=0.86, d) U=0.96, e¢) U=1.02, f) U=1.06
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| Figure 4.23 Oscillation amplitude and frequency resimnse vs. U for §1, m*=28
Figure 4.23 shows what may be considered as a brief tendency towards lock-in for
0.96<U<1.08. Figure 4.24 shows details of this region and indicates a perhaps slight
frequency growth with U.
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Flgupe 425 ShoWs the narrow amplitude response as a function of -k*eﬁ. The brief lock-in
’ 'beha\fior abbut U=1 0 is inaﬁifested as a sharp decline in/” in Figure 4.26. Since k*eﬁ‘:k*-
'(27;7‘* Y’m" and k'=m’/U* ,_,.a decline in /* results in a slower than expected increase in
- values of —k*ejf with increasing U as seen in Figure 4.27. The clustering of data points
'varoun'd —5€ -k*eff <0 in‘Figure 4.25 serves to show the importance of k*eﬁf as a means of
| predicting VIV. Tt is noteworthy that while k", rests around zero, the damping parameter
b* declines according to b*=2m*é'/U and affects the phase ¢ between the fluid force and
the displacement. This explains the different amplitudes around similar k*eff values of
about zero in Figure 4.25. Tn other words, while I o is stable, b” causes a decline in A/D.

It also clarifies the slow decline in oscillation amplitudes vs. U in the 0.88<U<1.02 range

in Figure 4.23.
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Figure 4.26 Frequency ' vs. -k .y for S1, m =28
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" 4.8. S6: Mass Ratio of 27
The structural parameters for S6 were as follows:

Case ~m  ¢x100 mikg] k[bfn] f,[Hz} D[in]  Re[107]
S6 270 27 49 30 5.8 1 17-24

A/D=0.0269

in=0.942

0
#n=1.08 A/D=0.186

d)

A/D=0.00601

Figugre 4.29 Oscillation traces and frequency spectra for S6, m =27 at a) U=0.72, b)
‘ U=0.80, ¢) U=0.84, d) U=0.89, ¢) U=0.95, f) U=1.01

Most oscillations were unsteady and only a few continuous traces were detected. The
slow time decay of the amplitudes made this case different from most cases studied. S6
is presented as an example of many cases that do not exhibit VIV, despite simple

predictions based on damping, mass ratio and frequency matching. It also serves as a
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ot 'éo'unterpart to 84, for it exhib_its a different behavior despite the close value of the mass

ratio parameter.
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Figure 4.30 Oscillation aniplitude and frequency response vs. U for S6, m'=27 (4/D
~ values are subjective, see Figure 4.29)



76 o - ‘ One-dimensional Results

025 [T T T T l T l T |v T T T T}

" F ; ' . 1

w | ]

- ne—— : » o

O I T W | | W I R | | | R S W | [ S | ]
-10 5 . 0 5 10

' -k
of

Figure 4.31 Oscillation frequency vs. -k*e,y for S6, m =27

The fraction of the critical damping ¢ is considerably higher than‘SI‘ but not very large
compared to some of the other cases studied. This shows the critical role of mass ratio
along with damping. The amplitudes in Figure 4.30 were computed based on the
oscillatory seginénts ’folloWing the jolts and need to be considered subjectively with the
‘actual traces shown in Figure 429in mind. Lack of steady oscillations gives way to the
‘appearance of the nominal Strouhal shedding at some points. The oscillation frequency

shows a slow growth with U. Damping b ranged from 2.0 to 1.36.
4.9. S5: Mass Ratio of 39

Case ~m  ¢x100 mikg] k[b/in] f,[Hz] D[in] Re[10%]
S5 390 29 743 30 4.7 1 14-21
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Figure 4.32 Oscillation traces and frequency spectra for S5, m"=39 at a) U=0.85, b)
U=0.90, c) U=0.91, d) U=0.914, ¢) U=0.95, f) U=0.96
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Figure 4.33 Oscillation amplitude and frequency response vs. U for S5, m*=39

Despite the large mass ratio and dampiﬂg; oscillations in S5 are relatively more stable

than S6 (Figure 4.32). Ampl‘itudes‘ are once again based on the most steady segments
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wlthln every trace and are occasionally subjective. Figure 4.33 shows the unsteady

~ natire of this case in the form of fluctuating oscillations. Remarkably, steady amplitudes
as lz;rge as 0.36 are observed. The darhping, b’, ranged from 3.1 to 2.0. The frequency
. response still shows signs of growth with f/f, crossing a value of 1.0. Significant
‘ response is limifed to the 0.8<U<1.1. Two distinct frequencies are detected throughout

this case corresponding to fand f;.
4.10. $2: Mass Ratio of 72

Case m' 100 milkg] k[lb/in] f,[Hz] D[in] Re[107]
S2 720 21 506 94 88 062 11-13.6
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Figure 4.34 Oscillation t'ljaces‘ and frequency spectra for $2, m"'=72
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Figure 4.36 Oscillation amplitude and frequency vs. -k*eﬁ‘ for S2, m'=72

S2 shows steady growth in amplitudes within 0.8<U<0.95. The damping b was limited
to 4.2>b">3 4. Figure 4.34 shows a slow gradual increase in the frequency. This is the
closest behavior to a lock-in within the one-dimensional cases studied in this chapter.
The amplitude of oscillation A/D and the range of velocities U for VIV are quite limited
as shown in Figure' 4.35. The small slope in f/f, vs. U plot translates into a large plunge
in f* values in Figure 4;36 which in return leads to latent growth in values of -k o5 The
attenuation in -k*eff'd_imension around zero causes the cluétering of points as experienced

in S1. The chaﬁges in amplitude are due to variations of b" and possibly C,.

4.11. Detailed Frequency Analysis of a Case Using EMD

In this section we consider three points in case S7, m'=9 and use Empirical Mode
- Decompositio’h (EMD,'Vs'e_cition 2.8) to aﬁalﬁe the fréquency content of each trace. The
three points involVe freé stream.velocities of U=0.73, U=0.81, U=1.06. For reference,
Figure 4.37 contains the corresponding frequency and amplitude data for this case on the
same plot. The three points are chosen such that‘ they represent different VIV states
within a typical run. Figure 4.38 shows the oscillation traces and the frequency spectra
for the three points at hand. The first and the third traces contain considerable amounts

of instability which usually is an indicator of multiple physical phenomena. The FFT
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peaks’ for ‘the last two traces are quite sharp while the first trace shows indications of

multiple frequencies. - .
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Figure 4.37 Frequehcy and amplitude respolise for case S7, m =9 and the three
points under study
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Figure 4.38 Oscillation trace and spectrlim at, U=0.73, U=0.81, U=1.06, case S7
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Figure 4.39 The oscillation trace y( 7/D and the EMD components at U=0.73

Figure 4.39 shows thé oscillation trace y(7)/D on the first row and the EMD extracted
components of the signal on the following rows (the intrinsic or empirical modes). Each
mode here contains a different physical time scale. The first three components seem to
be simply noise. Noting the small y scale for most components, we may focus our
_attention on rows 5 to 10 and specifically, rows 6, 7, and 8, where the main signal
components reside. Figure 4.40 shows a close-up view of the fourth to tenth modes
(rows 5 to 11). Once again noting the amplitude scales, we may consider the modes 5 to
7 to répresent the main phenomena. The fourth mode seems to be noise with possibly
turbulent intermittency. Modes 8 to 10 seem to be small subharmonic components either
due to the fluid state or a simplé structural response. The 5t mode seems to contain some
profound intermittency that may be attributed to a sudden change in vortex shedding

pattern from the body. Since the oscillation frequency and the shedding are known to be
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dlffefent for this trace, it is ‘pldus‘ible'that vortices fcnd to shed at different points within
the oscillation bpa'th, o'c.casionallyvcau‘sing shifts in shedding pattern. Modes 6 and 7 are
the main physical phénomena and may be related to the shedding and structural motions.
‘The effects of the two modes seem to be Staggered such that one mode gives rise to the
~other | and vise versa.' It seems as if the shedding and oscillation, although not
synchronized, act in a flywheel manner to attain an oscillation first but counteract later

causing the oscillation to decay.

Co el Sl LT T Sl 5N : :
0 50 100 150 200 250 300 350 400 450 500
T

Figure 4.40 Detailed view of the EMD components at U=0.73, case 7

B Figure 4.40 shows a close up vieW of the EMD components for the point with U=0.81.
The first row depicts the originél trace y(7)/D and the following foWs show the third to
ninth modes extracted. Modes 1 and 2 and 10 to 12 are not shown due to their physical
similarity to corresponding modes in the previous point studied. Although this trace

involves a very stable VIV oscillation, the _ovérall nature of the modes is surprisingly
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N 81m11ar Modes;é 3 and 4 seem to be small scales phenomena related to noise or turbulence

while the maif; V[ V pheniomenon seems to be present in modes 5 to 7. Mode 5 shows
intermittent jolts. corresponding to points within the main signal where amplitude and
frequency changes are visible. Mode 6 contains most the signal energy and surprisingly
présents pronounced ihtermittenf behavior. Modes 7 to 9 seem to be subharmonic effects

with' small magnitudes.

0 50 100 150 200 = 250 300 350 400 450 500

) Figure 4.41 Detailed view of the oscillation trace y(7)/D and the EMD components at
) Y : U=0.81, case S7

The next point studied involves a free stream velocity of U=1.06 and a small local peak
in the amplitude response curve in Figure 4.37. 'Figure 4.42 shows a detailed view of the
oscillation trace which present a ’cdnsiderable_ amount of amplitude and frequency

variation. Figure 4.43 shows all modes extracted through EMD. Once again, the three
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k ﬁrstmodes involve lovg{ magﬁitude, ‘high frequency content most probably related to

‘noise.
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Figure 4.43 EMD components at U=0.81, case §7, U=1.06
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Figure 4.44 shov?/s a detailed view of the 4™ to 9" EMD modes. Modes 5 o 7 seem to
represent the main,:’VI V behavior. The overall VIV oscillation seems to be broken into two
~ main phenomena ‘with intermittent jolts about a hundred cycles apart. The amplitudes in
"modes 5 and 6 seem to be more uniform throughout each trace as compared to the

original signal. Once again the shedding and the structural forces seem to be involved in

a flywheel manner to add to or nullify each other’s effect.

0 50 100 150 200 250 300 350 400 450 500
. T

Figure 4.44 Detailed view of the oséillatidn trace y(7/D and the EMD components at
U=1.06, case 87
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" 4.12. Conclusions
4.12.1. Non-lock-in Behavior-

. A new VIV modée dominates most céSes studied that does not involve a lock-in behavior.
Vortex-induced lock—in is simply absent in most cases studied. There are no signs of
lock-in in three experiments involving a mass ratio of 9 (57, R5, and R10) or less (R3 and
R6). The case S with m” =28 showé a small region with slow frequency growth with U
and §6 with m” =27, contains é slow growth at all times. Overall, the frequency response,
flfa vs. U, seems to flatten and approach the limit of lock-in with increasing values of
mass ratio m". The above observation does not preclude the existence of lock-in at low
mass ratios but rather confirms a VIV mode tha_t does not involve lock-in. As will be seen

in chapter 5, lock-in can indeed be present at very small mass ratios.

04 05 06 07 08 09 1 L1 12

Figure 4.45 Frequency response with ilicreasing mass ratios m'=2.1,9.0, 28, 72

Figure 4.45 shows the frequency response for four cases with mass ratios between 2.1

and 72. Although all cases reflect Sirrlila_l" degrees. of deviation from the Strouhal
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ik l*fiiféqﬁency (5t=021), the detail behavior is quite different. Once the oscillation amplitude

is diminished, theﬁStrouhal frequency reappears as expected. It is worth noting that the
frequeﬁcy growth always deviates to values below the Strouhal frequency and not above.

This in general extends the period for the growth of each vortex shed.
' 4122.  Amplitude Response

Figure 4.46 shows the oscillation amplitudes for the same four cases discussed above.
The amplitudc; A/D and the velocity range in U for VIV diminish with increasing values
of mass ratio m". In a few cases studied, larger values of mass ratio attained larger,
steadier amplitudes. Case SI, m" =28, is such exception in that it displays a larger
maximum amplitude than RS and S7, m" =9, despite the larger mass ratio. The lower

value of the damping parameter £ and the flatter lock-in-like frequency in SI explain this

behavior.
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Figure 4.46 Amplitude r_espdnse with increasing mass ratios m*=2.1, 9.0, 28, 72
The amp’l_ivtude'resplonse curves, 4/D vs. U,' have different overall shapes. These shapes
vary from round aﬁd smooth at small values of m" <6 to double-peaks with humps at
medium values of 5<nf<30 as reported by Khalakh and Williamson [1997] (m"=2) and
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. | ﬁnallyta intermittent bghairi_o,r ‘at' lafgé ifalues of m" >30. Damping and possibly different

 shedding modes may be important.

4.12.3. Effective Stiffness k*eﬁr‘, Comparison with Shiels’ Results
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Figure 4.47 Plots of amplitilde vs. effective stiffness

Figure 4.47 shows the amplitude response, 4/D, for a few cases involving a large mass
ratio range of 2.1<m’<72 vs. the effective stiffness. As mentioned in section 2.9,
effective stiffness, k= -m @ +k'= (m*/UZ)(J-(f/f,f),' was proven by Gharib et al.
[1997j to be the-singular-contrblling parameter in VIV for zero values of damping b at
Re=100. In that range, the amplitude response 4/D was shown to be simply 4/D= Cy/k*eﬂ
- regardless of individual values of k and m’. Although damping in the experimental cases
_is non-zero, the data clusters in the —8< 'k*eﬁ" <0 range; The maximum amplitude
variatibn in Figure 4.47 is mainly due to differences in damping and the lift coefficient
C,.
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Figure 4.48 Comparison of case R3 (left) with numerical results of Shiels [1998]

Acéording to the effective stiffness formulation, Cy=A/ka*eﬁ = A/Dx (m*/Uz)(] -G/fn)z ),
large oscillation amplitudes in this chapter are due to small mass ratio. Without lock-in
(f/fu~1), VIV oscillations detected in case S; (nf=28)_ would require an large lift
coefficients greater than 10. The effective stiffness also explains the large amplitudes
detected in Feng’s experiment [1968] with a large mass ratio of m =389. The amplitudes

in Feng’s experiment seem very large compared to the diminishing trend observed in this
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- bchapter w1th 1ncreas1ng mass ratio. The explanation is that a lock-in behavior with fifa~1

- as observed in Feng’s experlment is the only manner effective stiffness parameter can be
mlmmlzed “The product of a large term (m *=389) and a very small term ((I-(f/f) 2)~0)
_rend§rs s1m11ar K, o7 Values as obseryed in this chapter. In fact plotting Feng’s data on

" A/D vs. k' can render similar plots as in Figure 4.47.

Figure 4.48 shows the low m’ case R3 as compared to the computational results of Shiels.
The two curves contain similar overall shape despite the large differences in the Reynolds

number and damping b .

Figure 4.49 Amplitude and single frequency lift estimate according to

Cyop= A/Dx k', for R3, m'=2.1

" Figure 4.49 shows the amplitude response along with a single frequency estimate to the

lift coefficient. It simply uses Cyep= A/Dx k o neglecting the complete frequency content
of the trace and the structural damping. The large lift coefﬁcierits (C,>2) are remarkable.
The values increase when damping and the full frequency content of each trace is

included. A ‘higher order technique will be discussed in chapter 6.
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4.12.4. Comparison with Feng’s Results

. In aeroelasfibastd;clies such as ang’s [1968] (Figure 4.50) where the mass ratios exceed
| 200 (m=389 in Feng’s case), the classical lock-in is the only cause of large VIV
amplitudes. The wide range of the oscillation bregime with respect to U and the large
amplitudes achieved in Feng’s éxperiment are quite remarkable in comparison to the
present results. According to the effective stiffness theory (section 2.9, 4/D=C,/k z), the
oniy cause fo; such large amplitudes at nominal values of the lift coefficient, C,, is very
small values of k*eff throughout the free stream velocity range U. Since by definition
K o= -m" @ +k" =(m"/U*)(1-(#if;)*), to minimize &g, f7f; needs to be very close to 1 as is
the case in Feng’s experiment. Such lock-in behavior has been absent in most VIV
experiments studied in this chapter. -We may conclude that VIV is not necessarily
synonymous with lock-in; however, the vodds of simple VIV due to sheer magnitude of the
fluid forces is higher than.VI' V with a lock-in at such small mass ratios. The existence of
nominal values of damping has little effect on the final conclusion in this argument. In

chapter 5 (section 5.3), a partial lock-in at m =8.9 will be discussed.
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Figure 4.50 Frequenéy and amplitude response in Feng’s classical experiment

4.12.5. New VIV Mode

The new VIV mode is depicted on the left hand side of Figure 4.51 via a series of
" ‘amplitude response curves (2.1<m*<72) that exhibit diminishing oscillation amplitude
with incréasing mass ratio m". This new mode represents oscillations due to large fluid
force compared to the system structural parameters. These cases do not exhibit strict
lock-in in the classical fashion and do not seem to reach the relatively pronounced
amplitudes in Feng’s high mass ratio case. Although damping plays an important role,

lock-in is the primary reason behind the large amplitudes recorded in Feng’s case.
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Figure 4.51 New VIV mode for 2.1<m"<72 with diminishing amplitudes with
increasing mass ratio in contrast to Feng’s large mass ratio experiment (right)

4.12.6.  An Explanation of the Non-lock-in Behavior

A simple explanatioﬂ of the non-lock—iﬁ bhenomenon can be given in terms of the
dominance of the non-dimensional fluid-structural forces present. The two large
structural forces, the inertial and the elastic, tend to nullify as the natural frequency is
,approach'ed. The magnitude of the damping force is usually‘ quite small and that of the
 fluid force is inversely proportional to the mass ratio m.

. 1 )
Y+{Y+Y=—-CU
¥ 2m 7

" In aeroelastic applications with typiéal values of m" above 200, the fluid and the damping
forces are relativély small and the largé structural terms dominate the flow and the vortex
shedding process, that is the structural motion is a forcing term to the “fluid system,”
similar to forced oscillation experiments. In hydroelastic applications, on the other hand,
the smaller values of m" give rise to a large fluid term forcing the structural system as in
classical forced structure problem. -The highér fluid forcing frequency gives rise to a

higher structural frequéncy response.
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L 4127 | Comparisoli with the Williamson-_-Roshko Plane

To properly obtain shedding modes, the vorticity field for everyﬂ'free stream velocity is
needed. The purpbse; of this study was td map the VIV parameter domain so that select
crucial poihts could be chosen for vorticity field mapping using DPIV. Superimposing
the amplitudé and the frequency results upon the Williamson-Roshko plane, however at
this stage, pléces almost all free oscillation data presented»here' on the so-called 2P
region. It is 'wort]:} noting that the W-R plane corresponds to forced oscillation
experiments and may not be applicable for the free quési-periodic oscillations at hand.
The main point here is that unlike the detailed study of Brika and Laneville [1994], our
points do not necessarily follow any 2P-2S boundaries. In fact a variety of behavior is
observed for different mass ratios, fnostly on the higher wavelength side of the map
which corresponds fo lowered values of /* (A/D=1/f). Figure 2.11 in chapter 2 can be

referred to for comparison with Brika and Laneville.

—= Williamson & Roshko
T o yD=]j*

Figure 4.52 S1, m"=28 and the Williamson-Roshko plane

4.12.8.  Non-dimensionalizing the Parameters Using f1ma Instead of f;

As seen in Figure 4.45 and Figure 4.46, the frequ'ency. and amplitude curves are not
centered about a unique value of U with the higher mass ratio cases centered around

larger values of U. To treat this problem, the natural frequency measured in fluid is used
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¢ ﬁy:sbme researchers td non-dimensionalize the experimental parameters. This technique
works to some extent since the natural frequency of light systems in vacuum is usually
quite larger than thatvi‘n water and that of large massive systems relatively close in water
~ orvacuum. o | |

| Figure 4.53 shows the oscillation and shedding frequencies vs. the free stream velocity
UAma,;-for a few cases with m*<40, where all parameters are non-dimensionalized using
famax, the oscillation frequenéy of the system at the maximum oscillation amplitude
attained within every case. This simple technique tends to remarkably align the
frequency cﬁr\;es along both axes and simplify a slope comparison. The frequency values
for this range of mass ratios seem to cluster within a naffow band displaying a growth in
frequencies with no lock-in buf with a similar deviation from the Strouhal nominal
frequency. |

© 2.1<m*<40
1
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Figure 4.53»Oscillation and Shedding frequencies with m’<40

Figure 4.54 shows a detailed view of the frequency data vs. Ugmex With 2.1<m’<72.
Linear fits are used for points with 0.8< Umax<l1.1. The lines become darker and thicker
with increasing m". According to this view, most cases with m'<30 have similar

frequency slopes and the large mass ratio cases involve slower frequency growths.
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Figure 4.54 Detailed view of the frequency data for cases with 2.1<m’<72

4.12.9.  Quasi-periodicity and Synchronization

Most cases exhibit multiple frequencies with the shedding frequency f; and the oscillation
frequency f co-existing i}nl the oscillation traces. At free stream velocities, where the
shedding and the natural frequency do not coincide, there is usually a large gap between
the shedding and the oscillation frequency. The qompetition between the f and f; to
dominate the oscillation causes rhuch unste,adiness.» The two frequencies, however,
merge and steady oscillations of considerable amplitude are established once the
shedding frequency is within a critical distance from the strubtural frequency. Results
from Empirical mode decomposition reveal that the two frequencies continue to co-exist
within most nominally steadyi traces. They seefn to act in a flywheel effect, perpetuating
the oscillations in steady .regions or nullifying each other in unsteady cases. This effect
proves a fundamental difference between the forced single frequency experiments and
_ free elastic cases such as the one at'hand; Min addition, most fluid models fail to capture

this behavior.
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v

Q.S.' Two-Dimensional Oscillations

5.1. Introduction

This chapter describes four experiments involving two-dimensional vortex-induced
vibration. Two-dimensional oscillation refers to figure eights motion of the cylinders in
the x and y directions. Although the cases studied here show a different behavior from
the most one-dimensional cases presented in chapter 4, they serve to reconfirm the
absence of lock-in within a much different experimental setting. Two-dimensional

oscillations are also important for their common occurrence in nature.

The first two cases presented, R and R2, use the same apparatus as discussed in chapters
3 and 4. They involved mass ratios of 2.1 and 8.9 similar to the one-dimensional cases
R3 and R10/S7 and are noteworthy for their divergent behavior. The last two cases, Ol
and 02, were part of the preliminary experiments and used a simpler free spring system
along x and y. They are signiﬁcant‘ for their extremely low values of mass ratio and
damping, resulting in a much wider range of oscillations and steady frequency growths U

with amplitudes above 1.0.
5.2. R2, Two-Dimensional Oscillation, m=2.1

R2 involved equal values of elastic stiffness &, and k, but different masses my and m, in

the x and y direction.

*

Case m*y m k fo & my me ke fu & D Re[10°]
‘R2 21 162 24 247 034 1.18 1.01 24 296 008 2.1 16-61
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Figure 5.1 Two-dimensional oscillation of R2, m =2.1. Water surface lowered for
. v ' display

‘Equal values of stiffness created a radial restoring force linearly proportional to the radial

distance r from the equilibrium position.
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Thls structural r§st0ring force is similar to that of a clamped/free cantilever structure in
cross flow without the three-dimensionality caused by bending. There are, however, 3D
flow effects due to non-uniform displacements along the span. Figure 5.2 shows the

oscillation traces along the y axis. The oscillations along x exhibit a similar behavior.
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Figure 5.2 Oscillation traces and frequency spectra for case R2, m*=2.1, at a)
U=0.37, b) U=0.54, ¢) U=0.73, d) U=0.87, e) U=0.97, f) U=1.21

The small mass ratio in this case is comparable to that of R3 studied in chapter 4. The
maximum amplitude of oscillation, however, is less than that of R3 despite the smaller
“value of damping. The frequencies f; and f are very close and increase with increasing U,
similar to R3 with no signs of lock-in except for a few wobbles (Figure 5.3). A
maximum amplitude of 4/D=0.69 is reached at U=1.01 and a maximum deviation form
nominal shedding at U=1.16 and 4/D=0.53 with f =0.147. The amplitude 4/D in this
case refers to displacements in y. Although there are two distinct natural frequencies in x
and y, a double peak in amplitude response was not observed. The maximum tunnel

speed was =115 cm/sec which corresponds to U=1.36. This was the upper limit for the
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vLD;/:II system The _large} fluid forces on the cylinder and the higher levels of turbulence in

 the flow prohibited faster runs.
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Figure 5.3 Oscillation amplitude and frequency vs. U, R2, m =2.1
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B F1gureS4 éhows the n§1frow"b'arid of ""‘2<k*eﬁ<-2 for resonant oscillations. Although the
concept of effective stiffness was derived for one-dimensional oscillation, it can be useful
in two-dimeﬁsional casesgs well. This is mainly because the x and y traces are correlated
in frequency. Figuré 55 shows the x(2)/D and y(t)/D oscillation traces and the figure

'veight pauefn at U=0.97. The x(?) trace seems to possess a non-stationary short time
average. Although amplitudes reach a maximum value of A/D=0.8, the least squaré time

averages value is 4/D=0.67.
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Figure 5.5 The x(t)/*D and y(1)/D traces and the figure eight oscillation for R2,
m =2.1, at U=0.97, flow is from left to right

53. RI, Two-Dimensional Oscillation, m =8.9

Case m*y m, k,  Jfuo ¢ m*x My ke fux & D Re[103 ]
RI .90 16 74 45 .032 557 99 46 415 0073 1 12-20

RI involved a mass ratio of 8.9, similar to the mass ratios of S7, R and RI0 studied
before. The ratio of the elastic stiffness in x and y, kx and &y, was set equal to the ratio of
the masses in those directions to achieve equal natural frequencies for each direction,
ki/k, = my/my. This was mainly to achieve a system with one dominant natural frequency

and to avoid a double resonant peak. The natural frequencies in x and y differed slightly
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L malr due to thei{‘corrCSponding values.of damping, but were very close in water (3.97Hz
inx;4.07Hziny).
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Figure 5.6 Oscillation traces and frequency spectra for case RI, m'=8.9, at a)
U=0.61, b) U=0.808, c) U=0.83, d) U=0.877, ¢) U=0.94, f) U=1.00

‘The amplitude response in this case is similar to that observed in S7 with a larger
maximum peak of 4/D=0.88 at U=0.97; however, the frequency response is quite
different from all cases studied up to the present in that it indicates a double partial lock-
‘in. The ﬁequenc,yvséem's to lock to a value of /=3.87 Hz at 0.82<U<0.93 and with slight
growth to f=4.3 Hz at 0.98<U<1.04. The temporary lock-in at 0.82<U<0.93 coincides
with the continuous increase in amplitudes. The peak amplitude at U=0.97 appears to be
unstable and achieved through the slow progression in the free stream velocities. Large
amplitudes of oscillation are a common characteristic of two-dimensional oscillations as

will be seen in cases O and O2.
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Figurey 5.7 Oscillation amplitude and frequency response vs. U for R1, m'=8.9

Without any vorticity field information, it is difficult to assess possible modes of
shedding. Studying transient frequencies using EMD may reveal possible effects not
captured here. Figure 5.8 displays the above behavior as a function of the effective
stiffness ko The partial lock-in is present as a large deviation from St=0.21 around
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’ ';;1<§k*ejy<-2. Similar to run S7 in section 4.7, lock-in attenuates k"o and clusters the data.

This results in a smooth curve similar to most none-lock-in cases studied.
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Figlire 5.8 Oscillation amplitude and frequency vs. -k*e,f for R1, m"'=8.9
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Figure 5.9 -k*eﬂ‘ vs. U, hollow circles assume nominal shedding with £=0.21

Figure 5.9 shows how k', is modified due to the partial lock-in. Hollow circles assume
frequency f held constant at 0.21 and the dark circles indicate how "k*eﬁ" actually behaves
with increasing U. The effective stiffness, k*eﬁ, tends towards zero, k*eﬁ:O, minimum

* which in return maximizes the possible amplitudes achieved.

5.4. Experimental Setup for OI and O2 Tests

The principal goal of these experiments was to study vortex-induced vibration at very
small values of mass ratio and damping. The unprecedented absence of lock-in in these
cases led to further studies of this phenomenon at various values of mass ratio and
dampiilg with a- goal to ‘isolafe thé effects of degrees of freedom and the structural

parameters.

The preliminary cases, OI and O2, used a simple free spﬁng system along x and y as
shown in Figure 5.11. The spring system and the Plexiglas frame holdiﬁg the setup were
within the tunnel boundary layer. The Plexiglas tubes were 22 inches long and were used
with open ends 0.2 inch from the tunnel walls well within the wall boundary layer. The
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","*'.-it\;lc)v-dimensiong}‘ dispIaéement traces- were recorded using a Hi-8 camera and later

~ analyzed frame by frame. The amplitudes are based on most frequent values deduced
from video frameé and kthe frequencies based on counting'a large number of oscillations.
The wake 'ﬁe«que'hcies were probed using a hot-film anemometer located downstream of
the cylinder within Vone of the shear layers and analyzed using an analog frequency
analyzer. The OI experiment was conducted in the Student Tunnel and O2 in the Noah
tunnel at GALCIT. The Plexiglas tubes were filled with water to avoid buoyancy effects.
The natural frequency in this setup depended on the tension in springs as well as the
elastic stiffne:ss of the springs used. The mechanical system, however, was non-linear
due to large angles and extensions of the springs. During the tests, the equilibrium

position of the cylinder shifted downstream depending on the average drag.

Figure 5.11 The experimental setup for cases 01 and 02
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5.5.  OI, Two-Dimensional Free Oscillation, m"=1.7

The frequency response in Ol is very similar to the nominal déhedding frequency of
St=0.21. There is no e\;idence of lock-in and the low values of damping and the large
vamplitudes achieved are noteworthy. The data points in Figure 5.13 were not taken
consecutively but rather with large velocity intervals in between. This experiment served
as the first evidence of non-lock-in behavior with the possibility of oscillation amplitudes

larger than a diameter (Figure 5.12).

Case m & fy & Kk fu & D Rel0]
o1 173 26 21 004 21 18 .003 125 7-146

The amplitude response (Figure 5.13) spreads over a wide range of free stream velocities,
0.35<U<1.2. The frequency, unlike most cases studied, shows a nearly linear growth
with U with small deviations from /"=0.19. |

Figure 5.12 Oscillation amblituﬂe above 1.0,'#0 and =T/2 superimposed, U=1.28
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Figure 5.13 Oscillation amplitude and frequency response vs. U for 01, m'=1.7

5.6. 02, Two-Dimensional Free Oscillation, m =1.7

The structural parameters were slightly different from the previous case as follows:
Case m k fu & ke  fux & D Re[10°]
02 1.7. 26 30 .004 26 3.0 .004 17/16 3-20

This case exhibits no lock-in behavior in y; however, it does exhibit a small range near
U=0.15 where the stream-wise oscillations (along x) seem to lock to a frequency of
ff=1.15. The natural frequencies fy= fu= fy=3.0 are measured in air as usual and U
varies within the range 0.14<U<0.8. As seen in Figure 5.14, the system attains an
amplitude of 4/D=1 at U=0.5 and becomes unstable above U=0.65 as discussed later (see
~ Figure 5.17). Itis worth noting that using the natural frequency of the system in water
(f,120=1.3) to non-dimensionalize the parameters would place the velocity range to
0.31<U<1.8 with 4/D=1 attained at U=1.11.

Figure 5.15 shows the steady frequency response with the brief inline lock-in around
U=0.15 (oscillation frequency along y, f,=f/2 is shown). The shedding frequency in this
interval stays constant about f7,=0.25 while the oscillation frequency reflects a value of
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’. f/f,,=0'f.'5,;”‘i‘ Inhne oscillatign‘abbut' U=1/4 and cross-stream oscillation about U=1/2 for a
~ similar experimental setup have already been observed by King and Prosser [1972] and
Tamura [1998].
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Figure 5.14 Oscillation amplitude vs. U for 02, m'=1.7
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Figure 5.15 Frequency response vs. U for 02, m'=1.7
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Flgure 5.16 shows the cylinder inline oscillation and Figure 5.19 shows the large
amplitude figure eight motion of the cylinder at U=0.4. The fast cross-stream movements
and the phase be;tweén the x and y motion are to be noted. The unstable oscillation
depicted in Figufé 5.17 involved three degrees of freedom including rotation around the
stream-wise diréction. The system mechanical energy would at times be transferred from
one degree of freedom to another and at other times be present in all three degrees of
freedom at the same time. The instability is due to the proximity of the rotational to
translational natural frequency and the large range of possible U’s for VIV. Two modes

of oscillation with wide ranges in U seem to have merged in this case.

Figure 5.17 Unstable oscillations in rotational mode
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" '57. Summary of Results

-Two-dimensional . oscillations involved large amplitudes not encountered in one-
~ dimensional experiments. In the present studies, unprecedented oscillation amplitudes up
to A/D=1.25 were observed. The common occurrence of figure eight oscillation in nature

with such large possible amplitudes makes them a crucial part of VIV research.

- Some of the results invblving inline oscillation may be interpreted differently depending
on whether the natural frequency in air or water is used to non-dimensionalize the
parameters. Two experiments (cases O and O2) involved unprecedented low values of
mass ratio and damping. Systems with multiple degrees of freedom can allow multiple
overlapping ranges of free stream velocities for VIV. Energy transfer between different

modes can give rise large oscillation over a large range in U.

A Lock-in Observed

w m*
Figure 5.18 Lock-in encountered in very low to high mass ratios

Although most cases studied in this chapter did not exhibit lock-in and frequencies in
general grew steadily with U, a partial lock-in in y (case RI) and a minor lock-in in the x
direction (case 02) were observed. The existence of lock-in in these cases is very crucial

for it proves that lock-in is not a necessarily a large mass ratio phenomenon. It is
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et plaus1ble that lock-in Améy' occur at any mass ratio, but at small mass ratios, its presence is

oVefshaddWed by the new“lock-in-free VIV mode. As stated in chapter 4, a low value of
‘m" and a lock-m <behavior (ff,~1) are two different manners in which eﬂ—(m UP)(1-
(i %) may be minimized. The word mode is used here to emphasize the different
physwal process behind the observation; large fluid forces due to large due to fluid

dens1ty vs. frequency locklng
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Figure 5.19 Oscillation trace for 02 at U=0.4 and t=0, T/6, 2T/6, 3T/6, 4T/6, 5T/6, T
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CHAPTER 6

Force Deduction

Y"(x) acceleration
& o
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6. Force Deduction Technique
6.1. Introduction

Knowledge of the instantaneous fluid force can be helpful in understanding flow-induced
vibration phenomena. The magnitude and the frequency content of the lift force, along
with the time-dependent phase ¢, can be of significant use in understanding some of the
unpredictable behavior observed in the previous chapters. In chapters 4 and 5, larger VIV
amplitudes were found in cases that involved largér values of mass ratio and/or damping.
(e.g. cases R2 in chapter 5 vs. R3 in chapter 4). One possible explanation for this is a
higher value of the lift coefficient Cy(t) caused by different fluid-structure conditions. A
knowledge of Cy(), especially the lift amplitude and frequency content could present a

different view of the fluid state.

This chapter describes an experimental technique for deducing the unsteady fluid forces,
F(x), on elastically moving structures using their oscillation trace y(t) , and the free
stream velocity U. The method does not involve a force balance or any knowledge of the
flow field except for the free stream velocity U and can be applied to a strongly non-
linear structure. With minimal extra setup, the method is highly suitable for experiments
involving small mass ratios and multiple degrees of freedom as discussed in chapters 4
and 5. It is computationally fast and can be applied when other techniques are

~ impossible.

In the following section, two other techniques for measuring the unsteady force
coefficient and their specific limitations will be discussed and subsequently the new
technique is introduced aiong with a few experimental challenges. Fourier transform,
Wiener filtering and Empirical Mode Decomposition will be compared in search of an

optimal method to obtain the end results.
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6.2. Force Balance and Fbrce—Vorticity Techniques

A force balance refers to a cantilever arm with a set of strain gauges, connected to a test
model in the flow. The; unsteady fluid forces on the test model are directly transmitted to
the rigid cariﬁlever cell causing a strain in the strain gauges. The signals from the strain
gauges can be calibrated using known forces to deduce the unsteady force on the test
model. A force balance can not be used on freely oscillating models unless it moves in
rigid body translation with the body (Khalak and Williamson [1997]). Force balances
involve considerable mass of a few pounds, not desirable in low mass ratio experiments,
and can not be attached to structures with complex degrees of freedom. They also

involve tedious calibration procedures.

Force-vorticity technique is a modern technique that involves mapping of the flow field
around a body within a control volume via Digital Particle Image Velocimetry, DPIV,
and employing a set of momentum integral equations to compute the integral fluid force
on the body as function of time (Noca [1996]). This method is thorough for it contains
time-dependent knowledge of the flow field velocity and vorticity. Two-dimensionality
within the flow field greatly simplifies the application of this technique. This is generally
the case in forced and free oscillation expetiments. This method is quite experimentally

involved and computationally laborious.
6.3. Force Deduction Using Oscillation Trace y(7)

The new force deduction technique involves an accurate modeling of the elastic structure
- as an ordinary differential equation and employing time-dependent oscillation traces,
¥(t), to extract the lift coefficient C,(z) from a fluid-structure force balance equation such

as the following:
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e SR m* ve . -
_ (Y +2&Y +Y)=C,(7) Equation 6.1

U
vFigure 6.1 Fluid structural model

where Y (1:) =y(t)/D is the non-dimensional displacement, m*=2m/pr2 the structural mass
ratio, and 2¢=b/(km)™? the fraction of the critical damping and U=U. /w,D the non-
dimensional flow speed (chapter 2). The structural parameters { and @, are determined

by fitting a free oscillation trace in vacuum to the appropriate dynamical equation of type
Y+257+Y =0 Equation 6.2

and the mass ratio m " and the free stream velocity U can be measured independently.
The displacement velocity, ¥ , and acceleration, ¥, can be obtained through successive
numerical derivatives. Having obtained numerical values for all terms on the left-hand
side of Equation 5.1, a numerical value for Cy(t) is evaluated by substitution. This
methodology, however; involves a few intricate points discussed in the following

sections.

6.4. Practical Implications |

Experiméntal pfoblems are primarily noise in the captured signal Y(t) and non-linearity
within the elastic structure and displacement measuring devices. A free decay oscillation
of the elastic structure can be used to model the systerh as a non-linear ordinary
differential equation and a variety of filtering techniques can be applied to separate the
noise from the signal. Since modeling the system requires numerical derivatives of y(7),

the proper filtering of the data becomes the most crucial issue. In the following two
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" sections, the general n;@th()dé for modeling the system and filtering the data will be

~ discussed and details of each subject will subsequently be addressed.
6.5. Modeiing the Structural System

A decay vibfétion, Y(z), and its derivatives can be fitted to a nonlinear O.D.E. of the

following form

Y+2§Y+Y+kY3+bnYYr+csgn(Y)+...=0 Equation 6.3

to obtain possible coefficients on the left-hand side. The kY term represents the nonlinear

spring stiffness, b,Y

Y |" is the nth order “fluid-type” damping and csgn(¥) stands for

Coulomb friction. The displacement trace Y(z) needs to be filtered before obtaining the
higher derivatives. The need to assume a functional form for the non-linearity is a

limitation of this approach.

One may, however, resort to a more general form of the above equation
Y+Z(¥,Y)=0 Equation 6.4

where Z represent a non-linear damping and stiffness term. Since the phase portrait for
the free decayed oscillation involves a relatively large domain, numerical values for a
contir;uous Z function may be obtained through interpolation and stored for various
values of Y and ¥ (Figure 6.2). After studying various filtering techniques, the simple
- mass-damping model in Equation' 6.1 will be attempted. Higher order corrections will

be made if necessary.
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Free Vibration
°

Figure 6.2 Free decay vibration trace Y(z), phase portrait, ¥ vs. ¥
6.6. Frequency Spectrum
5.1.1. FFT High Frequency Behavior

Figure 6.3 shows a trace from S/ run at U=0.956 and the following parameters:

Case ~m 100 mikg]l Klbin] f,[Hz] Diin] Re[10°]
St 280 07 503 30 5.7 1 10-25

Figure 6.3 Oscillation trace and Frequency spectrum for U=0.956, S1, m'=28
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The ﬁeﬁﬁeﬁcy spectrum in. Figure 6.3 shows the presence of a few Harmonics of
important magnitude, a large range of high frequency noise with a peak about &/a,=22.5,
(128 Hz) and a frequenéy tail of f/f;! type decay. The noise peak may be related to the
harmonic of the uéuai 60 Hz noise. The harmonics decay with O(-5) power based on a
line conneéting the first and the second harmonics and O(-4) by connecting the following
two harmonics. A comparison with the frequency spectrum of a sine wave of same
length, frequéncy, phase and equi\)alent amplitude in Figure 6.4 serves to show that the
(71,7 tail is a simple byproduct of the FFT technique. This O(-1) tail arises from the
periodicity assumptic;n in Fouriér transform and the discontinuous boundary conditions in

the sample at hand.

Sine wave

o

Y(w/mn) sine wave

Yo/l

Figure 6.4 A sine wave of equal length, frequency and equivalent amplitude

The noise, the FFT tail, and the harmonics need to be separated in a definite manner.
Taking two derivatives of Y(z) is ideally equivalent to multiplying the frequency
spectrum Y(a/w,) by a (a¥a,)’, however, the existence of the nonphysical FFT tail
precludes manipulation of data in frequency space. Derivatives can both amplify the high

- frequency noise or the higher harmonics.

6.6.1. Hann Window
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| ’Vai_'ious' ‘windows such as Hann are usually used to create periodic signals with smooth
boundary conditions to avoid the FFT tail mentioned above. Figure 6.5 shows the Y(z)

and its spectrum after applying a Hann window of wy=1/2[1-cos(2z t/T)] =sin’(7 t/T) to

o thevdafa shown in Figure 6.3. Alt'hough‘ Hann does not change the O(-4) rate of decay of

the harmonics, it helps' delineate two noise tails from the rapidly decaying signal base
about 2<(W@)<7. The apparent O(-1) tail in vFigurev 6.3 is absent in Figure 6.5. The
noise spectrum in the range 8<(a&/®,)<20 is quite flat. The power spectrum, however, is
reduced becatise of thé Window and requires apprbpriate correction. As shown in Figure
6.6, Hann window applied to a pure sine wave reduces the tail observed in Figure 6.4
from O(-1) to only about O(-4). This is another indication that the main signal within the
displacement trace in Figure»6.5 may m fact be decaying faster than O(-4).

£
g
£
£
e
=

wave with Hanning

Y(x) Sina wave with Hanning

Yio/o n) Sine

Figure 6.6 Hann window on a sine wave and a (ﬂf,)"’ decay tail
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6.6.2. Smooth Boundary Truncation

As an alternative to Hann, the trace can be truncated at its local minima near the
boundaries. The tracé is also raised by an appropriate amount so that it smoothly
increases from zero to the original trace and reduces to zero at the end. The results are
very similar to that of a Hann window without the large power loss (Figure 6.7). A
reference line with O(-5) decay is used to denote the decay from the fundamental
frequency to the second harmonic and to note that the main signal most probably lies
within the O(-5) pyramid. In Figure 6.8, a short segment of the original signal with a few
oscillations of about 1024 points is truncated in the same manner to obtain the same
results as in Figure 6.7 with less resolution in the power spectrum. This is mainly to
achievé a less crowded spectrum with more clear harmonics. The frequency peak,
however, is shifted f7f,=1.12. This is mainly due to the quasi-periodicity within the signal

and serves to show yet another limitation of the FFT averaged estimates of the frequency.

For simplicity, a Hann window is used in all spectra presented in the following sections.

i)

Figure 6.7 The original trace smoothly truncated at ends
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T
m/a)n

Figure 6.8 A short segment of the original trace smoothly truncated
6.6.3. Computing the Acceleration ¥ (o

Figure 6.9 shows the second derivative of the displacement signal with its FFT spectrum
after application of a Hann window. The first few harmonics decay like O(-2) as
expected and the high frequency noise is amplified to dominance. The noise displays a
growth in frequency Wlth a positive ramp of about O(2). In the next few sections,
different filtering techniques will be examined in search of an appropriate one for the

purpose of this chapter.

accsleration

o

© Y') acceleration

" Yot

Figure 6.9 Acceleration trace ¥ (7) and the spectrum, ¥ («/o,)
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6T, Filtering Techniques

Simple filtering techniques require a cutoff frequency that mayrbe difficult to choose.

- From Y(a/®,) spectrum, the first two harmonics seem to be substantial in obtaining

correct values of ¥ ; however, the exact rate of harmonic decay is not known. This is
mainly due to the large amount of high frequency noise and the FFT tail that even Hann
could not completely remove. Since analytically, the harmonics of a periodic square
wave decay like O(ca/a),,)'l and those of a periodic triangular wave with discontinuous
derivatives decay like O(a¥e,)?, it is clear that the harmonics of the trace at hand with
discontinuous second derivatives will decay faster than O(a/w,)”. The FFT spectrum of
the trace (Figure 6.3) shows a harmonic decay of at least O(-4). It is plausible that the
main signal lies upon a tail due to noise or the FFT complications and that the actual
harmonic decay is even faster than that observed between the fundamental and the second
harmonic (O(-5)). Such fast decay would minimize the contribution due to higher
harmonics in the acceleration. In the following subsections, an attempt will be made to

find an appropriate filtering technique for separating the noise and the signal.

6.7.1. Butterworth Filter

Butterworth filter provides the best Taylor Series approximation to the ideal low pass
filter response at =0 and w=co. For é,ny order N, the magnitude squared response has
2N-1 zeros derivatives at these locations. In other words, Butterworth involves a
magmtude response that is maximally flat in the passband and monotonic overall
(max1mally flat at @=0 and a)"oo) Butterworth filters sacrifice rolloff steepness for
monotonicity in the pass and the stopbands (Figure 6.10). Unless the Butterworth’s
“smoothness is needed, an elliptic or Chevyshev filter can generally provide steeper rolloff

characteristics with a lower filter order.
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S

Figure 6.10 Butterworth frequency response curve

Figure 6.11 shows Y(z) before and after a 5" order Butterworth filter and its FFT
spectrum with a cutoff at a;/w,,=5..5 to exclude the sixth harmonic. The tail is the result of
the Butterworth, FFT and Hann schemes. Figure 6.12 shows the original displacement
trace Y(z)and the deduced acceleration after filtering Y(z). The acceleration in Figure
6.12, obtained from the filtered data, shows strong evidence of the 2" and the 3"

harmonics.

o8 ; i i H H ; PN RS MRt e S A i
] 2 ) [ [] 10 12 10° o ?

T . @k

n

Figure 6.11 Displacement trace ¥ (- r) after a 5™ order Butterworth filter with
f/f,=5.5 and the second derivative of the filtered data
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o8 1 ! ; ! '

Y&). Y'6)

Figure 6.12 Original Y(7) trace and Y (7) obtained from the filtered trace

6.7.2. Sharp Frequency Cutoff

An ad hoc approach for filtering the data is to obtain the acceleration spectrum without
filtering and to truncate it at some point before the noise ramp. In Figure 6.13, a line with
an order O(-3) decay connects the main peak to the second harmonic. The noise ramp
encountered about d/a)n=10 intercepts the above line at 4;5<a;/a),,<6. The Fourier
transform is then set to zero for all freq‘u’encies above w/w,=5.5 .and the inverse transform
used to obtain the accelerat'ion.' - The resulting signal can be compared with the raw

acceleration trace in Figure 6.9.
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acceleration

8

Y"(r} acceleration

Yo/

Pii H
10' 10
ol T

n

Figure 6.13 Acceleration spectrnm, left, and ¥(7) and ¥ (z) on the right.

6.7.3. - Wiener Filter

Wiener filter is a simple technique for removing uncorrelated noise tails from
experimental signals. When the power spectrum of the signal plus noise shows a distinct
signal peak added to a noise tail, the tail is extrabolated into the signal peak as a noise
model. The model does not have to be accurate for the method to be helpful. Subtracting
the noise from fhe whole trace can produce a signal model. A simple algebraic
combination of the noise and the signal models is usually used to create the optimum (or

Wiener) filter.

The Wiener filter fails to improve the signal in this case (Figure 6.15). Although the
noise is uncorrelated in this case, it is difficult to create a signal or noise model
effectively. The noise in Figﬁre 6.14 is modeled as a straight line and continued through
" the main. signal. - This actual noise spectrum involves large amplitude variations and
hence subtracting the noise model (straight line) reduces the noise level by less than one

order of magnitude.
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Wiener filter ¢
.8

Wiener filter

Y{z) before and after

Figure 6.15 Displace trace and power spectrum after Wiener filter

6.7.4. Empirical Mode Decomposition (EMD)

Empirical Mode Decomposition (Huang [1998]) ié a new technique for extracting modes
with dlfferent frequency scales from a given expenmental data (section 2.8). It employs
a sifting techmque connecting the local extrema or alternatlvely the inflection points
within a trace as a means of defining the instantaneous frequency scales and through

" successive iterations extracts components with different frequency ranges.

It is possible to use EMD to extract high frequency components from the displacement
trace at hand. Applying EMD produces the modes shown Figure 6.16. The first three

rows, cl to ¢3, are what seems to be high frequency noise components (note scales). The
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maln signal “comlgphénts', ¢4 to c10, seem to indicate the presence of the shedding and
structural frequelicies. The two traces in ¢4 and c5 have the largest magnitudes and
contain two differeﬁt frequency ranges. The curve at the'bottom, c11, indicates a small
- moving average. "It is worth noting that the large frequency difference between the high
' freqiiency noise (rows cl to ¢3) and the main signal (rows c4-c11). The are no harmonics
present here. ‘Assuming rows 1 to 3 as either noise or extraneous signals, we proceed to

subtract them from the raw signal.

Figure 6.17 shows the Poincare map of the raw and the filtered signal. The displacement
trace Y(7) is plotted vs. Y( 7+7/2).  The main noise component here seems to be the
@/ ®,=22.5 peak mentidned before. The tiny wobbles in the Poincare map compared to
the large loop indicate the large difference in frequencies. The flattened circular shape of
fhe Poincare maps is due to the non-linearity within the signals. An FFT routine exhibits

such non-linearity as harmonics.
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Figure 6.16 Y(z) and the EMD cbmponehts with the displacement signal Y(7)
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Y() filtered
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Figure 6.17 Poincare map of the Y(7) with and without the high frequency EMD
components

Figure 6.18 shows the frequency content of the noise subtracted and that of the remaining
signal. Although the main harmonics seem to be well captured within the signal, there is

still a considerable amount of noise present between the second and the tenth harmonic

shown.

acceleration

=

Y {ewho

Figure 6.18 The frequency spectra for the EMD noise and the remaining signal

Figure 6.19 shows the EMD filtered signal Y(7) and its second derivative. The
acceleration term shows a more discontinuities than what we obtained using the simple
Butterworth filter. We will look more closély at the signal to extract more noise

components.
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The ‘vacc,eleratiog is analyzed using EMD once again in Figure 6.20; Figufe 6.21 shows
details of the first eight modes. It is not yet possible to make a valid judgement about the
third and the fo;‘lrthv modes. Modes 1 and 2 are however subtracted as noise and
intcrmittericy: Figure 6.22 shows the new acceleration trace and the displacement Y (%)

for reference.

08—

Yi), Y'&)

Figure 6.19 The EMD filtered oscillation trace Y(7) and its second derivative
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Figure 6.20 EMD components of the acceleration trace



One-dimensional Results -~ + -~ - . 139

S

0.8 T L T T L T

Y andY*

Figure 6.22 The EMD filtered oscillation trace ¥(7) and the filtered acceleration
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Figure 6.23 Acceleration spectrum before and after EMD filtering

Figure 6.23 shows the frequency content of the acceleration before and after subtracting
the first two modes. Comparing the two figures, the two modes removed appear to have
-a large high frequency content about &/@,=10. Figure 6.24 shows the raw displacement
trace Y(z) and the deduced acceleration after subtractirig the third EMD component in

acceleration.

acceleration -

Y (o/s ")

|
10’ 10
mﬁnn

Figure 6.24 Deduced acceleration and the raw displacement Y(7)

6.8. An Optimum Filterihg Method
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o , The acceleratlon6 traces in Figure 6.13, Figure 6.12, and Figure 6. 22 appear to indicate a

convergence in amphtude and frequency content As indicated in 5.6.2, the application
of Hann on a discrete sine wave leads to a frequency tail of only O(-4). This and the O(-
. 9) decay tail connectlng the first two harmonic peaks of the spectrum indicate that the
| harmonics of main signal within the trace may decay like O(-4) or faster and that they
may not be as crucial beyond the fifth harmonic. The EMD approach, on the other hand,
replaced the idea of harmonics with a new view of a non-linear signal affected by
different sources of noise. A sharp frequency cut off f/f,=5.5 eliminating the 6™ and

higher harmonics seems to be a safe limit and will be used in the following sections.

6.9. Free Decay Oscillation in Air and Modeling a Dynamic

| Equation

Figure 6.25 shows a free decay oscillation trace of the structure used in case S1. The
cylinder was replaced by a small piece of lead of the same mass. The trace is quite
smooth with many oscillations; an indication of the small damping coefficient present.

Using the conventiona1 linear formula for damping:
¢=-1/2m) in(P,/P)) Equation 6.5
where P; and P,., are Y(7) at the ﬁret and the nth peak under consideration, gives
0.0065<¢‘<0._012» :

depending on the number peaks selected. ~ The frequency peak before non-
dimesionalization is at @,=5.7 Hz and the spectrum in Figure 6.25 shows a harmonic
decay of order O(-6) between the fundamental and the second harmonic. The trace
considered has non-oscillatory (y=0) segments contaminating the spectrum and hence 1s
truncated so that it 'repre'sents oscillation e.mplitudes with 0.1<4/D<0.5 most commonly

present in the VIV experiments (Figure 6.26). The final damping parameter is slightly
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sensmve to the exact ‘tr'*un.cation' point, however damping plays a less importént role in
‘computing the liﬂ coefficient Cy,(7) than the natural frequency f,. The frequency
speétrum of the truncated trace shows a sharper decay of order O(-7) and a natural
frequency of | f=5.95 Hz After rescaling the trace according to the new natural

frequency, the accele,ratidn trace in Figure 6.27 and its frequency spectrum are obtained.

«0O(-7)

Y(z)

Figure 6.26 Truncated free vibration of the systéml in air
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Figure 6.28 Free‘vibration acceleration filtered at f/1,=5.5

6.10. Least Square Fit

" A least square fit is used to find the structural parameters from the values of Y(7) and its

derivatives at the sampled points. We start with a simple mass-spring model
(Y+2£Y +Y =0) and proceed to higher order models if necessary. Assuming a DC
component within Y(7) to be included in the fit and evaluating the ODE at sampled

points, we have

aV +bY +cF+d=0 Equation 6.6
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where Y represents the time series of ¥ at sampled points and a, b, and c the structural
coefficients and d- the possible DC Component. Since the time trace is already non-
diméri‘sionalizéd according to =ayf, the coefﬁcients a and ¢ should be close to 1.
Equation 1.4 represents a redundant system of linear equations With as many rows as the
number of signal points used and only four columns. Manipulating the above equation,

we have
[Y Y I] cla|= [Y] | Equation 6.7
which is in Ax=b form. Using the usual technique for solving such redundant systems,
we multiply both sides by AT and solve the resulting square matrix equation
(A" D%=A"b Equation 6.8
by multiplying both side by (474)”

F=(A"AAb Equation 6.9

This method is equivalent to defining and minimizing a fit remainder function

R=Y+b/a¥ +c/a¥ +d/a through derivatives. The following values are obtained:

c/a=0.9241

 b/a=0.0416
d/a = -0.0008

The parameter d/a is quite small since an estimate of the offset based on a non-oscillatory

segment of the original trace was already subtracted. The value of c/a is close to one, but



"Onge-dimensio'nal Results - o ' : 145

| "Alt'he' small difference indicates that @, based on the FFT of the segment was slightly
~ different from that determined by the fit. Comparing the two equations below

F+bla¥+c/aF+dla=0  and F+260,Y +0,° T =0
the natural frequency o, and damping ¢ are obtained as

wn=(c/a)” =0.962 and 2¢= bla/(c/a)"*=0.043.

Since the trace was non-dimensionalized using @,=5.95 Hz, the fitted physical value for

Wy 1S

®,=5.95 x0.962=5.719 Hz
which is very close to the FFT natural frequency computed based on the entire trace
(0.720). The damping coefficient £'=0.022 is somewhat larger than the previous estimate
based on the linear theory (0.0065<¢<0.012 from Equation 5.5). This large discrepancy
is most probably due to an inherent non-linearity which the fitting technique attempts to

capture in the linear damping term.

It is worth noting that the signal at hand does not appear to be strongly non-linear at sight
and that linear estimates such as Equation 5.5 are commonly used by researchers. As we
shall see, the exact value of. § does not play an important role in deducing the force
" magnitude. Reporting -an exact value for ¢ is, nevertheless, crucial in comparing VIV

results for it influences the amplitude response curve.

Figure 6.29 shows a comparison of the acceleration term ¥ and ¥ prediction for the
acceleration b/ af/ +c/a¥ +d/a based on the fit and the fit error on the right, the part of

the signal not accounted for by the fit R = T+b/ a¥ +c/a¥ +d/a. The amount of the
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‘error dé&lines to half as ‘the signal is filtered more strongly (cutoff at f,//,=2), the @, value
is quite stable and ¢ declines slightly to £=0.02.

comaprison . error
T T T T T T T T T

)
T

Y'(x) acceleration

acceleration error

oalpb-1F S

Figure 6.29 Fit success, ¥ and b/ aI?/ +cla¥ +d/a on left and the error on the right

The values of damping reported in chapters 4 and 5 are based on the linear theory in
Equation 55 =-1/2m) ln(P,,/PI)) so that they can be compared to the values reported

by other researchers.

6.11. Fluid Force

In this section a linear model of the structure along with the parameters found through the

fitting technique in the previous section is used to find the instantaneous fluid force

coefficient C,(z) for the time trace studied in section 6.6.
Cy(r)=%(f;+2§Y+Y) o . Equation 5.1

The two terms Y and Y are O(l) and the damping term 2¢ Y is O(0.01) and hence less

crucial. Close to the natural frequency ¥ and ¥ nullify to a large eXtent, and only then, is

the exact values of £ of importance. For the same reason, accurate non-
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 dimensionalization* of time is important. “The flow structure parameters ére as follows:
case S1, m'=28, 2£=0.043, U=0.956, @,=5.719 Hz. Figure 6.30 shows the time trace ¥(7)

and its second derivative after a filter with fo/f, =5.5. The sum of the two traces Yand ¥

is also shown on the left and the force coefficient on the right.

-Y'&), YeHY)

o

Ye),

Figure 6.30 ¥, ¥, Y+Y (left) and Cy(7) and ¥(7) (right) f/f, =5.5 (the sinusoidal-like
signal on the right is the displacement ¥(7) rescaled for comparison)

Since @/, =0.984 for this trace is very close to 1, the two main components of the force
Y(7) and Y(7) nullify to a large extent and the sum contéins large high harmonic content.

The lift coefficient C,(7) seems to have a larger than expected amplitude (C,=3.24) and

much harmonic activity.

10° —

Figure 6.31 C, frequency spectrum
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A

This harmdnic content is obviously sensitive to the filter cutoff f;. Choosing a cutoff
frequency of f/f, =3.5 with large risk of over-filtering the data yields C,=2.7 and the

curves in Figure 6.32.
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Figure 6.33 C,(9) with and without the damping term EY (fo/fn=5.5)

Figure 6.33 shows the lift coefficient C,(7) where the damping term &Y is excluded along

with Y(7) for reference. It serves to show that the damping parameter does not play an

important role in retrieving the instantaneous fluid force.
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&

6.12. Higher Order Structural Models

- After studying the fit error trace in Figure 6.29, it is possible to employ higher order

models to minimize the energy frequency content of the fit error. Assuming the model in

Equation 6.3 ¥+ 247 +Y +»kY3 +b Y] Y|n +csgn(¥)+...=0 and even higher order models
(up to 18 terms tesfed) can help reduce the maénitude of the error to only a half. Using

the a general equatidn for the system as in Y+ Z(Y ,Y)=0 leads to the general structural

function Z(Y,Y)=-Y depicted in Figure 6.34. The warped shape of this function does

improve with lower filter cutoff. However at fo/f,=5.5, there is only so much one can
accomplish with higher order structural models. In other words, capturing such warped
asymmetric shape by assuming Simple non-linear terms is quite challenging. As
previously mentioned the fit error diminishes as stronger filters are employed. Although
the final lift coefficient is not sensitive to accurate contributions to damping, the phase of

the force sighal relies solely on such terms.

Y"(x) acceleration

U Y&)

SYayot

Figure 6.34 Free decay vibration ¥ =Z(Y,Y), filter cutoff at f/f,=5.5.
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613 Coneluvéion*" |

A novel technique for deducing time-dependent fluid forces was introduced that involves
numerical evaluation of the structural forces such as inertia, damping and stiffness to
deduce the ﬂuid force causing the vibration. A least-square fitting technique was
employed to obtain the structural parameters from a free decay oscillation of the
structure. A variety of ﬁltering experiments was conducted to obtain a safe filter cutoff
in order to achieve the second derivative of the displacement traces. A frequency cut-off
at f,/f, =5.5 was finally chosen to exclude the high frequency noise as well as preserving
the signal contents. The magnitude of the force signal obtained is more sensitive to an
accurate measurement of the natural frequency than the damping parameter. Force traces
show large harmonic activity and relatively small content at the fundamental f=f,
depending on values of f/f,, When f/f,=1, the force trace contains little fundamental
* frequency content. An accurate modeling of the damping terms While negligible in force

magnitudes is crucial in deducing the force-displacement phase.
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‘Summary

Vortex;induced vibrations (V1V) of an elastically held cylinder in cross flow was studied
for low to Vmedium values of the mass ratio pararneter 2<m’<72. A new VIV mode was
discovered with. no lock-in behavior. Lock-in, as observed in Feng’s [1968] experiment,
was absent in most cases studied. The osciliation and the shedding frequencies coalesced
but their values increased with increasing flow speeds and smoothly deviated from the
nominal Strouhal frequency of St=0.2 to smaller values. For mass ratios m >10, and with
increasing mass ratios, the frequency growth with the free stream velocity U either
approached the lock—in limit or no VIV was détected. The oscillation amplitude and
frequency range diminished‘With increasing m . Tlﬁs general trend does not support the
relatively large arriplitude's observed in the high mass ratio study of Feng. A lock-in
interval was observed in a 2D oscillation run involving m"=9 where no frequency growth

with U was detected.

The common absence of lock-in at low mass ratios, the Signiﬁcant deviation from Feng's
results, and the common absence of any vibrations at medium to high mass ratios were
explained using the effective sﬁffness introduced in chapter 2. According to this novel
approach, for a single frequency response, the lift coefficient C, and the oscillation
amplitude 4" are related as C,=4" k.7 where the effective stiffness k oy is defined as
k*eﬁ: m*/Uz(I-Wf,JZ). A minimum value of the effective stiffness thus can result in
pronounced oscillation amplitudes. Although a large mass ratio as in Feng's experiment
can maximize the effective stiffness according to the above definition, a lock-in behavior,
Jf»=1, can minimize it effectively rendering large vibration amplitudes. When the lock-in
condition is not encountered, increasing mass ratios resﬁlt in smaller response amplitude
and range. Lock-in may be observed at any mass ratio; however, at high mass ratios,
lock-in is a prereQﬁiSite for VI V. VIV at hlgh mass ratios is thus synonymous with lock-

in.
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: 5
“At small to medium values of the mass ratio such as in the experiments at hand, effective
stiffness is relatively small and the sheer fluid momentum can dfive the system without
any lock-in requirement. Lock-in may obccu‘r however and cause large oscillations in this

range.

A novel technique was also developed to deduce time-dependent fluid forces using time
traces of the structural vibration and its derivatives. The lift coefficients obtained are
significantly larger tha;l values from previous studies and involve much high frequency
content. An accurate modeling of the structural parameters and an accurate filtering
technique for obtaining numerical derivatives of the displacement can help reconstruct
accurate fluid forces. The force magnitude relies on the exact measurement of the system
natural frequency. On the hand, the force-displacement phase ¢ requires an accurate
 modeling of other system parameters. Improved fitting techniques may help model such

small terms.
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A

Other Observations |

* Two-dimensional figure 8 oscillations of cylinders in cross flow with m <10 supported
the common absence of lock-in for the most part. Unprecedented oscillation amplitudes

above one diameter were observed.

Feng’s results seem to involve relatively large amplitudes compared to the trends studied
in this Chapter._ According to the effective stiffness theory, lock-in behavior, that is f7f,=1
for a certain range in U is the only possible explanation for Feng’s result. The fluid
mechanical reason behind such behavior is not fully understood. The present study
simply shows that lock-in small at values of 7" is either less likely to occur or is engulfed

by a different phenomenon, VIV due to large fluid forces.

Forced oscillation experiments involve a different physical phenomenon where the
structural motion dominates the fluid mechanics. The natural competition between the
structural and fluid forces and their corresponding frequencies is absent there. The
dominance of the fluid forces and frequencies in small mass ratios as observed in this
study is not reflected in such experiments. More experiments need to be conducted on
freely oscillating structures. Simple models can not capture the complexities revealed in

this work. Models may need to include history.

Steady VIV for medium to large mass ratios (m >30) was difficult to achieve within
laboratory limits. The cases presented are part of a large number experiments that did not
result in VIV. Free stream velocity predictions based on natural frequency, linear

damping and mass ratio did not always guarantee a VIV behavior.

Using effective stiffness, k*eﬁé=-a)*2m*+k*, the amplitude response curves seem to exhibit
largest amplitudes in a range 0< k*eﬁ' <5. Assuming nominal values of the lift coefficient,
one can estimate the oscillation amplitudes for zero values of damping b~ using this

parameter. It is, however, impossible to predictf behavior a priori. In the present study
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the variations in amplityde for given values of k5 are due to variations in b". ‘It is also
- possible to obtain a single frequéncjt estimate to the lift coefficient using this concept

according to C,=4" k 5 -

Comparisoh of the amplitude response, 4/D vs. k*ejf,‘ with Numerical results of Shiels
[1998] at Re=100 shows great similarity, emphasizing the similarities in wake dynamics

for different values of the Reynolds number.

VIV Oscillations studEed seem to occur within the 2P region on the Williamson-Roshko
plane. The actual shedding modes for these experiments are not known and may not
necessarily be 2P. The results do not necessarily resemble those obtained by Brika and
‘Laneville [1993].

The mass-damping parameter, m ¢, doeé not seem to uniquely determine a trend for the
maximum amplitude 4., Larger values of mass-damping may involve larger oscillation
amplitudes. This is mainly due to the unpredictable frequency response. The absence or
existence of a lock-in behavior can greatly influence the amplitude of oscillation. Other
factors such as history and shedding modes that affect C, may also change the Amax

values.

The amplitudé A/D vs. U response curve may have different overall shapes. These
Shapes vary from round and smooth at small values of m” to double-peaks with humps at
medium values of m’ (similar to those reported by Khalakh and Williamson [1997]) and
finally to intermittent Beﬁavior at large values of m. Damping and possibly different
shedding modes may be important. .The frequency response on the other hand exhibits

similar deviation from Strouhal curve to various extents.

The maximum amplitude of oscillation, A, may not be reached at U=1. Damping and
nonlinearity may be important (Hover and Triantafyllou [1998]). Using f4max, the

oscillation frequency at maximum o_sCillatiOn amplitude may help compare the amplitude
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ok ‘aﬁd,_‘frequency ggaphs,\}s.,’the free stream velocity. Frequency data from various runs

seem to fall in a narrow band using this method.

. Simple FFT 'rrnlay'not reflect small changes in frequency as peak counting or Empirical
Mode Decompos‘ition do. Quasi-periodicity and nonlinearity within signals can result in
inaccurate FFT frequency results. Both EMD and sectional FFT analysis, however, show

the existence of multiple frequencies. Present plotting methods may be too simplistic.
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A Appendices

A.1 Detailed View of the Experimental Setup

A detailed view of the experimental setup and their components is presented. A brief
description will be given in figure caption. The reader may refer to chapter 3 for further

explanation of the setup.

_ Fig. 1 The traverse and the cylinder attachmentv,in the center with a center piece
-capable of moving in x and y. Flow from left to right conceptually
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Fig. 3 The Plexiglas platform, the complete traverse, springs, and the water tunnel
’ attachments
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Fig. 4 Cylinder models, springs (1.2[lb/in]<k<46[Ib/in]) and a 4 inch zip disk for
comparison

Fig. 5 Tunnel mounting, LED laser, braces against tunnel walls and cylinder
attachment
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Fig. 6 The entire setup including the platform on the free surface, a Plexiglas
cylinder and the optical setup on top of the tunnel. The LDA and the hot film not
clearly visible. Flow from right to left

Fig. 7 Superscope data acquisition and the computer interface
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Fig. 8 IFA-100 Flow Analyzer for hot film anemometery, power supply, a HP
frequency analyzer for the wake signals and an oscilloscope
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Fig. 9 The optical mapping system with the objective lens, lens adjustment screws
‘and the position sensor on top and an ocular lens inside

Fig. 10 Inner components of the optical setup



Appendiccs — ' o _ 179

Fig. 12 The optical setup, the two lenses and the position detector inserted on the
right

Due to the short length of the setup, thick lenses were used that would not allow a linear
“or bifocal mapping (spherical aberration). The distance between the two lenses were
adjusted in such a manner as to minimize the nonlinearity of the mapping and the overall
calibration. The large cylinder diameters called for in the low mass ratio cases (the R
series) gave rise to slightly more non-linearity in the R runs’ (see Fig. 14). The smaller
cylinder diameters D and the smaller ainplitudes A/D achieved in the high mass ration

cases (the S series) made the corresponding calibrations more linear.
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Fig. 13 The optical mapping for a bifocal system

The calibrations shown in Fig. 14 and Fig. 15 were obtained by recording the final
acquired voltage (amplified signal from the photo position sensor sampled by
Superscope) for each incremental displacement of the traverse. The calibration was
repeated in both R and S experimental series at least four times, before, during and after
the experiments. In order to subtract the offset values in voltage Vy/Volts] and
displacement y [in], each data set was first fitted to a 3™ degree polynomial. The
inflection point for each set of data was then calculated from the coefficients of the
polynomial and subtracted from the data in order to shift all data to a common center at
the origin. After two iterations of the above procedure, the polynomial fits contained
large odd tefms with even term coefficients that were at least 6 orders of magnitude
smaller. All calibration data for each series (R or S) were then combined to find a final fit

to all data.
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R Series Calibration
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Fig. 14 The optical calibration for the R cases (m <10) and the maximum range
achieved (A4, In case R3)
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Fig. 15 The bptical calibration for the S cases (m >10) and the maximum physical
amplitude achieved (4,4 in case S7)
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‘The ﬁnél"pblynoﬁlial fit for R series was as follows:

ylinch]=3.48x107-0.1475Vy+ 1.37x10°%V3-1.025x10° vy’

i

The final polynomial fit for S series was as follows:
Y[inch]=6.34x10°-0.1516Vy+ 5.72x10°Vy*-6.39x10° V3

The offset and the even terms are negligible and the calibration polynomial can be
considered an odd function as expected. This reassures us that the challenging task of

aligning and positioning the laser beam and the optics was performed correctly.

Is is also worth noting that any error in the non-linear calibration can be possible source
of problems in the force deduction technique discussed in chapter 6. This is mainly due
to the fact that higher derivatives amplify the effect of a nonlinearity. Assuming the
calculated displacement, yc, to be a nonlinear perturbation of the true displacement, y, we

have:

ye=y(1+ay+py’)

which yields the following second derivative:
ye"=(20+3 Py "+ (1+20y+3 5y )y”

Since the y and its derivatives are O(1) after non-dimensionalization, the 1% order error in
yc is proportibnal to the nonlinear coefficients & nad f. Considering the ratio of the
non-linear to linear coefficients in the above calibration polynomials would suggest that
such an error would be at most O(-2) if we assume that the calibration error is as large as
the nonlinear terms present, i.e. the difference between a linear and a non-linear

calibration.



