THE HYDRODYNAMICS OF SPHERICAL CAVITIES IN THE

NEIGHBORHOOD OF A RIGID PLANE

Thesis by

Joseph Matthew Green

In Partial Fulfillment of the Requirements
for the degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1957



ii
ACKNOWLEDGMENTS

It is with real gratitude that the author acknowledges both the
technical guidance and the friendly personal encouragement afforded
him by Professor M. S. Plesset. Professor Plesset's unfailing
concern was a most welcome help to the author.

The task of preparing the accompanying tables was carried out
by various members of the computing staff at the Laboratory. The
author wishes particularly to thank John Velman and Jay Kimmel for
their painstaking efforts in his behalf.

The author also wishes to express his appreciation to
Mrs. Rose Grant who so skillfully and conscientiously typed the

manuscript.



iii
ABSTRACT

The velocity potential in a perfect fluid is found for a sphere
which is translating in a direction normal to a rigid plane and which
is simultaneously undergoing a change in its radius. The solution of
the problem is conveniently pursued in the bispherical coordinate
system. The kinetic energy of the fluid is determined.

The dynamics of the motion of the translating sphere of variable
radius is then described in terms of a Lagrangian which is formed
from the kinetic energy of the fluid field and from the potential energy
of the spherical cavity. The general equations of motion are exhibited
and are solved in two cases of physical interest where approximations
may be applied: (1) the case of an air bubble undergoing small
oscillations because of a time varying external pressure, and (2) the
case of a cavitation bubble collapsing so rapidly that the translational
velocity may be neglected.

For the cases in which the dynamics of the problem are specifi-
cally determined, pressure effects on the rigid plane are expressed
in terms of the dynamic variables of the cavity. It is suggested that
these results will serve to aid in the further quantitative experimental
investigation of cavitation damage.

The most important functions are evaluated numerically and are

presented in a series of tables.
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I. GENERAL REMARKS

Introduction

A study of the dynamics‘of spherical cavities in the neighborhood
of a rigid wall would seem to arise in a natural way out of the general
program of cavitation research being carried on at the Hydrodynamics
Laboratory. Early experiments with the high velocity water tunnel
were designed so one could follow the history of cavitation bubbles found
in the low pressure regions existing on the surface of a submerged
ogive. The early work was analyzed by Pl‘essetl with the aid of a
theory which assumed that the bubbles were isolated and remote from
any solid body. The analysis presented here may be regarded as
another one of the many refinements of the original theory that have
come out of this laboratory. Of particular interest in a practical way
is the fact that the present analysis makes available the pressure dis-
tribution across the rigid wall. Such knowledge provides a first under-
standing of the process of cavitation damage. Of course, it must be
remarked that this analysis presuppoées an incompressible fluid; con-
sequently when the fluid velocities approach that of the speed of sound
in water, the analysis will fail.,

The details of the dynamics of the cavity will, of course, depend
on the boundary condition at infinity and upon the specific nature of the
cavity itself. One would normally be interested in holding the pres-
sure at infinity equal to the conétant atmospheric pressure prevailing
in the laboratory. On the other hand, a pressure at infinity varying
sinusoidally with time is of interest in analyzing the interaction of
bubbles with an ultrasonic field. Further, the cavity itself, depending

upon the experimental conditions, can contain either water vapor or air.
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The dynamics of these two bubble types exhibit a qualitétive difference:
the air bubble is stable; the vapor bubble is not. Fortunately, all such
differences serve merely to alter the potential energy of ‘the system.

Whatever the form of the potential energy of the system, the
general problem divides itself into two parts. First it is necessary to
find the kinetic energy of the velocity field. Once the kinetic energy is
known, it is easy to form a Lagrangian. Second we must investigate
the dynamic equations of motion.

To solve the potential problem one can separately consider
(a) the potential produced by a sphere of fixed radius moving normal to
a rigid wall, and (b) the potential produced by an expanding sphere whose
center is a fixed distance from the rigid wall. The total velocity poten-
tial, the sum of the solutions of (a) and (b), describes the velocity poten-
tial produced by a spherical cavity which is undergoing translational and
radial motion. These two problems in hydrodynamics are, of course,
so well known as to have, by now, accumulated a certain venerable
dignity. The classical solution was published by Basset2 and others3’
in the later part of the last century. However, the classical work on
these problems all relied on the seemingly natural approach of super-
imposing an infinite succession of image sources, calculated to fit the
boundary conditions on both the plane and the sphere.

The classical technique for the solution of the relevant potential
problems has several disturbing features. The most serious difficulties
are that: (1) an explicit description of the field is unobtainable; and,

(2) since the images yield for the potential a power series which di-
verges when the sphere and plane are in contact, a discussion of this

important limiting situation becomes impossible. Of course, the
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limitations of the classical analysis were unimportant, until the develop-
ment of thé current interest in cavitation.

Another approach to the field problem is to seek a r;atural co-
ordinate system which matches the geometry of the sphere and the plane,
D. Endo5 used such a coordinate system for the solution of a related
" potential problem having somewhat different boundary conditions. He
used the bispherical coordinate system to solve the problem of two
solid spheres, a fixed distance apart, lying in a uniform velocity stream
which made an angle a with the line of centers of the spheres. Ap-
parently unaware of Endo's work, Karal6 in 1953 used the bispherical
coordinate system to get the velocity potential of a solid sphere moving
parallel to a plane. Of course, Karal's solution was a particular case
of D. Endo's. It seems to be a peculiarity of this coordinate system
that attempts at solutién lead to sets of difference equations. Both
authors left their results in the form of indicated iterations.

The bispherical coordinate is used here to solve the potential prob-
lem of (a) the normally translating sphere, and of (b) the dilating sphere.
Thus, a complete description of the velocity field is made available.

The solution of neither of those potential problems appears in the litera-
ture. Since it was also possible to solve the inevitable difference equa-
tions, an explicit expression becomes available for the velocity potential
and hence for the Lagrangian. Once the Lagrangian is at hand, the
equation of motion of the cavity and all other relevant physical quantities
can be deri‘}ed.

It is necessary to remark at this point that the proposed analysis
contains several assumptions. We assume that the fluid in question is
a perfect one, incompressible and nonviscous. Viscosity and compres-

sibility enter in general only at small radii and high velocities; more
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important, we assume that the cavity retains its spherical shape in
spite of the forces exerted on the bubble by the interacting wall, Photo-
graphic physical evidence exists to support the view that Lthe distortion
is not seriou.s,1 and the theoretical work of Plesset and Mitche117 on the
surface perturbations of isolated bubbles discusses the surface stability
of the cavity. Nevertheless, it should be recognized that the spherical
surface is to be regarded as a first approximation of the true surface.
The free surface problem could be formulated in the bispherical system
by regarding the surface distortion as a perturbation of the spherical
bubble. However, one is eventually led to an infinite family of difference
equations, each member of which, itself, has an infinite number of

terms. An analysis of the free surface problem was not pursued.

The Bispherical Coordinate System

The bispherical coordinate system is formed by three families of
mutually orthogonally intersecting surfaces. The first two of these
families, characterized by the parameters p and n-: cons'ist of inter-
secting spherical surfaces. The third family of surfaces are planes
which are labeled by the azimuthal angle g.

The virtue of this coordinate system is that there is included
among the spherical surfaces one whose radius is infinite. This parti-
cular surface is identified by the parameter p=0, and is, itself a plane.
Thus, if one allows one of the spheres, p,=p,o# 0, to coincide with the
surface of the spherical cavity, the surface p=0 will coincide with the
neighboring rigid plane. It then becomes possible to solve the potential
problems associated with this geometry by prescribing appropriate boun-
dary conditions over the plane and the sphere.

Surfaces of the bispherical system can be generated by rotating
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the two dimensional bipolar coordinate system about its z-axis. The
bipolar coordinate system arises from a Schwartz transformation and is
described, for instance, by Smythe.8 The transformation equations for
the bispherical coordinates are catalogued by Morse and It"eshbach.9 For
completeness those technical matters are repeated here.

Consider a two-dimensional y,z Cartesian coordinate system. We
locate on the z-a;cis at the position (y=0, z=% a), two polar points. |
Let us pass an arbitrary circle through the polar points. Those points
lying on the major arc of this circle will subtend an angle | with the
polar points. The major arc is given the coordinate label n . The
minor arc is labeled (mw o | ) The line joining the polar points is charac-
terized byW =w. A circle of radiﬁs a centéred at the origin will also
pass through the polar points; this circle is characterized by ) =7/2.
The foregoingbconstruction fills the v,z plane with a one parameter
family of circles. If d is the radial distance from the origin, then in
region d<a, w/2<M<w. In the region dza, 02V w/2.

It is now possible to construct another set of circles orthogonal
to the first set. We characterize the second family of circles by the
parameter p. The center of the circle, B= s lies on the =z-axis at
a distance b=a cothp.o from the origin. The circle Mo has a radius
r= a'cschpol . Thus the region pn 70 lies above the y-axis and the
region p<0 lies below the y-axis. The circle pw=0 coincides with
the y-axis. The degenerate circles p=+ oo are the polar points. The
three-dimensional system is completed by rotating the y,z plane about
the =z-axis, and the third coordinate becomes the familiar azimuthal
angle f.

The preceding geometrical construction leads to the transformation

equations ?
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- a sincos @ | _ asinwn sin @ . _ _asinhp (1.1)
coshp-cosn '’ coshy -cosn ’ coshu-cosn '

The metric is no longer Cartesian, and it develops that
hpz h)\ = a/f{lcoshp-cosw) ; hg{ = a sinw/{coshp- cosn). (1.2)

We want to solve Laplace's equation in this system. This becomes

29, 1 t hH _
| v Y/— —Th - [rp» " apv smvl a'[(h s1nvlsi . n -§¢& =0.
(1.3)

If we write

% = Vcosh p-cosq F (1.4)

Eq. (1. 3) separates into three ordinary differential equations. After
going through the usual procedure it becomes possible to write the follow-

ing general expression for \If‘ :

+(n+ --) n

f’ m’l ZZP (cosvl) [A sin m5’5+B cosmﬂ]
(1.5)

In the subsequent analysis we will need an expression for

(coshy - cos\t)_‘] * 1/’2,j1 an integer. It is sufficient to evaluate

1 . oh/2 i Z; St 1/2)p P_(cosy) -

VCOShp‘-COS'l Il—-Ze_p“cos pe o

(1.6)

We are now in a position to proceed with a solution of the boundary value

problems.
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II. THE TRANSLATING SPHERE OF FIXED RADIUS

The Velocity Potential of the Translating Sphere

Let ‘Pl be the velocity potential for a sphere of fixed radius r,
translating with a velocity :bfc', in a direction normal to a rigid plane.
Slll is specified in a coordinate system fixed to the plane. Choosing a
sign convention, we require that the velocity, -\/:, at any point in the

field be given by
v --7Y,. (2.1)

The symmetry of the problem requires that the potential be independent

of the azimuthal angle . The boundary condition on the rigid plane,

()-‘"le =0 (%%)Hzo =0 (2.2)

is satisfied by further specializing \Pl to the form

"’1 = m’l nzzo A P (cos)l) cosh(n+ %)p . (2.3)

If we now transform to a congruent coordinate system which differs
from the first only in that it is translating with the velocity of the sphere,

then the velocity potential in the new coordinate system becomes,

\"’1 = )Ll+l.:)z. (2.4)

We consider that the solid sphere, of radius r, is instantaneously
at a distance b from the rigid plane. It then follows that the translating

sphere coincides with the coordinate

Mg = cosh™? (b/x) ; (2. 5a)
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also 1/2
a = r sinh p = (bz-rz) (2.5b)

defines the scale of the coordinate system.
Now, an observer in the coordinate system which translates with
the sphere will find that the fluid flow is always tangential to the sphere

at its surface. Thus, the following boundary condition is imposed on
¢, |
1° !
() ... @
Mlu=p

If one makes use of the transformation equation for =z, the condition

(2. 6) becomes equivalent to

., 2
. coshp sinh™p coshp _-cos
o [Lcoshr, . | Ve
coshp -cosn 2 2
IS o (coshp_-cosy )
: o
2 s ot
An(Zn-!-l) P sinh(n+ -2-) o F (coshy_-cosq) AnPncosh(n+ -2) b b =0.
Q) o 9]
(2.7)
Somewhat more conveniently,
2ba (cosh n-1) 1
a (coshpuo cosf-1) _ 1 .
377 " AnPn(co s‘) [cosh(n+ 2) w, sinhp +
(coshp. -cosvl)
o
. 1 . 1
+(2n+1) sinh(n+ =) kg coshp,o—(Zn+ 1) cosn sinh(n+ ?) p.c]. (2.8)

After some further manipulation, Eq. (2.8) can be recast in the form

(0.0]

2a b(cosh pocos -1 v
- = P R 2.9
(Coshuo_cosq)3/z ;Z; I1(Cosrl) n (2.9)

where

R, = (n+l)(An-An+l) sinh(n+ 3/2) pot n(An-An_l) sinh(n- 1/2) TH

(2.10)
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By making the natural definition of

C =A -A R (2.11)
a further simplicity in form for Rn is achieved:
R =nC_sinh(n- &) p_- (n+1)C__ | sinh(n+ 3) (2.12)
n n 2/ Mo n+1l 2/ Mo * :

It is clear that an expansion in Legendre Polynomials is now needed for
the expression on the left-hand side of equation (2.9).
By differentiating both sides of equations {1.6), one finds that

1 .12 (20+1) e_(m 2"

(cosh i, -COo 57)3/2 sinhp )

© Pn(cosvl) L (2.13)

and also

[e 0]

1 3
coshu, ooy L DU T
2 = ﬁ th n o n+1 e 0] P o .
(coshpo—cos,,‘)3/2 cothp. | Zo [ e +( ) n(c S)l)

(2.14)
Using (2.13) and (2. 14), we can find the expansion for the left-hand side

of (2.9).

2a b(cosh B, cosy -1) .
=2 ¥2ab z S_P_(cosy),
3/2 n n "
(coshp.o—cosvl)

where 1 3 (2.15)

If we compare equations (2. 15) and (2.9), the orthogonality of the

Legendre Polynomials will require that

[ ]
R_=242abs_. (2.16)
n n

- L]
Putting a = 2 rz-ab , a difference equation emerges,
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5 ! -(n- b (st 3oy
-(n+1) Coi1 sinh(n+ —Z-) wornC sinh(n——z—) o= a(ne -(n+1) e | ).
(2.17)

We must now search for a particular solution to the difference
equation. If the first and second terms of (2.17) had exhibited exactly
the same functional dependence on the index n , a solutibn would be
immediate. Such a fortunate circumstance does not quite exist. How-
ever, we observe that the functional behavior of the two terms on the
left is very similar to that of the two terms on the right. We can exploit
this symmetry by remarking that equation (2. 17) is equivalent to the set

of equations

1 ‘
(n-=)u h
: 1 (n-2g By
C,, sinh (n- -2-) Mo = al(e + _ﬁ—)
1 2.18
1 (nt Py B (2.18)
C_sinh(nt =)p_ = afle © 2 l)
n 2 Mo n
h =0
o

hn is, of course, some new unknown function introduced merely for.
convenience,

C, may now be eliminated from (2. 18) to yield,

1 1
h - (ot =)y -(n-3)ug

( 2ol e ) sinh(n—%)puo = (e

h
. 1
+ =) sinh(ntx)p, . (2.19)

Setting, H_ = sinh (n+%) h_, (2.20)

it follows immediately that

1 1
il 1 (- 1
H =H + n(e sinh (n--z-) oo € sinh (n+—2-) p‘o)
n 1 1
- (kt =) - (k- )
= Z k(e 2o sinh(k-%) - € e sinh(k-i--;-p.o) . (2.21)

k=0
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Using equations (2.20) and (2. 18) we find, after some manipulation, that

1
e'(n+§)P*o (n-1) sinh B V
Cn=c T T . (2.22)
s1nh(n+—2-)p,o 2 sinh(n+ E)N'o 51nh(n-i)p‘0

The validity of (2. 22) can be verified by direct substitution into
(2.17).

We shall find it convenient to define the set of functions

1
(g
Folig) = ~=— (2.23)
s1nh(n+?)po
Since
sinh Ko
PRI ) (2. 24)

. 1 . 1
51nh(n+-2-)p.o sinh(n- -Z-)p.o ,

Cn reduces to the more tractable form

c =3 [(n+1)rn -(n-l)‘(n_a ) (2. 25)

To evaluate A~ we recognize that equation (2.11) is equivalent to
n
A=A+ kZ; C - (2. 26)

It should be observed that if A isa solution to our original difference
equation, so also is An + k, where k 1is any fixed constant. AO may,
itself, then be regarded as an arbitrary constant which is a solution of
the homogeneous difference equation. We shall have to evaluate Ao
from other considerations.

First it is necessary to find an explicit expression for An.

Making use of the result for C» it follows that
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n ’ n
A=A+ Z_-l_ [(k+1))’k - (k-l)rk_ll Ats@y + Zl‘ ¥)
(2.27)
AO may now be evaluated by recalling that each An is a co-
efficient of a term in an infinite series. Furthermore, An is just that

factor of the term which causes the infinite series to converge. It

follows that a necessary condition for the convergence of (2.3) is that

Lim An =0. (2.28)
11 = 0O

This condition requires that

00

s LA S (2.29)

Thus we finally arrive at an expression for the coefficients in the terms

of the potential functions, or

A = %Erﬂ- Z:_:‘(IJ= Er:b sinhp [n!‘n(p.o)- Z: Yk(po)] . (2.30)

The dimensionless coefficient

Atn(uo) =2 sinhuoElYn(no) - ZHYk(uo) (2.31)

is presented in extensive tabular form for various values of Mo and n
in Table 1.
As might be expected
'an. . .
Lim A~ne °V2br=»0. (2.32)
p.o-)'oo :
On the other hand, as p.g)O ) An leads to the divergent harmonic series,

which usually is associated with a logarithmic singularity. On physical -
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grounds we have good reason to‘expect difficulties when s 0. When
the moving sphere is in contact with the rigid plane, the boundary con-
ditions become contradictotry at the point of contact. Thet boundary
condition on the plane requires that the point of contact be a stagnation
point; the Boundary condition on the sphere requires that the velocity of
the fluid at the point of contact be equal to the translational velocity of
the sphere. Nevertheless the singularity is a weak one, a;qd as we shall
see, the kinetic energy of the field remains finite even in this limiting
case.

To further illustrate the nature of this solution a contour plot of

the isopotentials of the function,

00
'3 . Z ' 1

— = fcoshp - cosm A (n ) cosh(n+ 5)p P _(cose) (2.33)
VZab ¢ ~Zsinm o G M° 2 0t

is presented in Figure II.

For completeness we write out in detail the expressions for the

velocity potential in the fixed coordinate system

L]
+1 (s ;po) = 2 rb sinh Mo fcoshp.-cosn‘ o

ZEYH(MO) - Zjl Tk(uo)] Cosh(n+%)uPn(cosq) :

(2.34)
This completes the solution of the potential problem of the trans-
lating sphere. We should perhaps remark that the velocity at.any point
in space may now be easily obtained by the use of equation (2.1). The
velocity distribution over the rigid plane is exhibited explicitly in a

later section.
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Kinetic Energy of the Velocity Field for the Translating Sphere

As indicated in the first section, early attempts at the solution of
thé potential problem by the image method yielded quite c;'ude results
for the kinetic energy of the velocity field. During World War II, this
problem became of very real practical interest for the analysis of under-
water explosions. In a confidential report which was later declassified,
the Applied Mathematics Group of New York Universitylo made a good
attack on the kinetic energy problem. Though once again image tech-
niques were employed, these authors developed an indicated solution for
the kinetic energy which did not make use of a detailed knowledge of the
potential function. This solution suffered from the Afact that it was no£
explicit but required the use of a lengthy iteration calculation which con-
verged slowly in the region of small Myt Of course, the potential function
and other quantities derivable from it were not available. Nevertheless
the work was adequate for an analysis of the dynamics of gas-filled
explosion cavities. Up to the accuracy with which they were presented
in the report, the AMG values for the kinetic energy agree exactly with
the results we shall develop here,

The kinetic energy of the fluid may be expressed by

le%p Sq'lg-r-?-:ds. (2.35)

The integration is to be carried out over all surfaces enclosing the fluid.
Because of the boundary conditions, this integral vanishes over the

surface at infinity and over the rigid plane. Thus it is merely necessary

to perform the integration over the translating sphere. When a proper

account is taken of the metric quantities, hp" h¢ and h the

K

expression for the kinetic energy becomes
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1 g

Tl=npa_ScoshH_ *}’1 ( p“)_ dw . (2.36)
Y1 L

We have set w equal to cosW.
‘The boundary condition on the surface of the sphere provides a

simple expression for the derivative, (?-i’-l-)

a¢1) L az) i (coshp 'co sq -1)
I = -blaT =a Q. . ‘ (2.37)
( M p':po ( H, sz‘o 2 |

(cosh Moo cosn)

Then, (2.36) becomes

1 Q0

(w cosh 90-51) ? A cosh(n-?--l-)pt P (w){dw . (2.38) ~
72 - n 2’70 " n
=1 |(coshp_-w) n=0

T1= Trpazb

It is now necessary to develop an expansion in L.egendre Polynomials for
the first factor inside the integral. As before, it is possible to make use
of equation (1. 6) and its derivatives. By also calling upon some standard

relationship between the Legendre Polynomials, one deduces that

o'} 1
w cosh p -1 -(n+=)p coshp
ol Y b 2% ) [ (20t1) - e
5/2 — n sinh
(cosh poww) n=o o
(2.39)

If one uses equation (2.39), then (2.38) becomes an integration over a
double sum of L.egendre Polynomials. Because of the orthonormality

properties of the Polynomials, the integrations yield

. o'} 1 . »
_ anazb G '(n+E)Ho (2n+1) sinhp_-coshp 1
T, = A e - cosh(nt+=) .
1 3 n sinh Mg 2’7o
(2. 40)

Equivalently,



-18-

3y ;
T 2npalVZhb Z [ ( )“’ -(n+1)e( +2)“°] cosh(n+%)uo

3 51nhp.
(2.41)
In equation (2.30) we have available an expression for A . If
the coefficient of An in equation (2.41) is reduced to exponential form,
and if the expression for A is used, the summation in equation (2.41)

becomes

2o Xl v ] [t 2 v
+i)-_[nzfn-n i Yk]e-2n90+i -2(n+1)p, (n+1)i K-n(nﬂ)f]

n=o0 k=n+1 n=o k=n+1

(2.42)

After some uninteresting manipulation, double summations can be re-

duced and the expression for the kinetic energy becomes

T1 = 'n'pr3 ?32/3 G(p.o)

where 1
—(Zn-{-l)p.o -(n+ ‘—?‘-)péo

G(p) = 2 sinh’p_ Z n(n+1)(1+ 2e Je . (2.43)

sinh (n+ -) T

Though equation (2.43) is relatively simple, it presents convergence
difficulties at p = 0. Since this is a zero times infinity form at p = 0,
there is some hope that the singularity is removable. Certainly, solely
on physical grounds, a finite energy is to be expected. We now pfoceed
to reduce (2.43) to a form which converges over the entire range of My e

‘ G(p.o) separates into

1 .
; - ~(2n+1)p, (nt1) -(nt 3,
G(p,) =sinh™p | -8 Z n(n+l)e + 6 LSS i (2.44)

sinh(n+ =) g

n=o n=o
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It is possible to express the first of these sums in a closed form.

If we let

Q0
-2np -2u
o]
g(uo)=z e =1/1-e °
o

then,
d - _an’o
-a—g- = -2 ne s
Mo n=o
and thus
[o's)
. -2p -(2n+1)p.
e <l e O—i-g(p.)=42 n(nt+l) e °.
dp‘o d}""o © " N=0

(2.45)

(2. 46)

(2.47)

If we perfofm upon the right-hand side of (2.45) the differentiations indi-

cated in (2.47), we eventually conclude that

= -(2n+1)p. )
4 n(nt1) e = — .
n=o (sinh p:.o)

The expression for G(p,o) now becomes,

[0 —(n+-12-)po
n(n+l) e

G(p,o) =-2+6 sinh3p.o 7
n=0  sinh (ni+s)p

The summation in (2.49) may be rewritten as follows:

1
~(nt= -(2n+1
in(n+l) e i Z)HO - f n(n+1)e( i )P"O
S, sinh (n+-%)p.o SR e-(zn+l)""o
= -(r+1)(2n+1
=2 i Z n(n+1) e (rr1)(zn o
n=o r=o

If we use (2.50) and (2.48), (2.49) becomes the very simple form

3 3

i sinh Po i sinh Mo
Glpg) = -2+3 & sinhrp ) 1+3 sinh r . :

=1 [e) r=2 [0}

(2.48)

(2.49)

(2.50)

(2.51)
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It can be shown that, to any desired order in r/b, the resulting value
for the kinetic energy is consistent with that derived from the classical
approximate solution by images.
In accompanying tables, values of the function G(p,o) are tabu-
lated for various values of Moo We observe that
Lim G(p )= 1 (2.52)

B =P O ©
- When po-?oo the kinetic energy reduces to that of a free sphere. The
form in (2.51) has the additional virtue that it can be evaluated when the

sphere is in contact with the plane (po=0). In that case

1
r=1 (r+1)

™

G(0) =1+ 3 = 1.606213 . (2.53)

3

For convenience, we now define the quantity
2 fsinhp ¥
fI(M'o) - ; sinhr Mo, ’ (2.54)

Gluy) = 143 £,(n)

SO

fl(po) is a measure of the effect of the wall on the kinetic energy. It can
be noted that the convergence of fl(p*o) is poorest at p.o=0. Even
there, the convergence is like 1/k3, which is certainly respectable.

For larger values of Mo the convergence is exponential.

The Force on the Translating Sphere of Fixed Radius

Since all the work done by the sphere is used to increase the
kinetic energy of the velocity field, the force, FZ, that the fluid exerts

on the éphere in the positive direction is immediately given by



dT 3 of
_ 1 1 _wrp o 3 1
FZ = - 'g Ti-f_ - 3 [_ZbG(p‘O) - 3b (—ibT)r . (2- 55)
Since
0 - () i .56
ob . Mo b - T sinhp.o dp.o ! *
then,
1] df
%2 2 2 br 1 1 ‘
Fz— b nmr P [— 3- b—' G(HO) - Sinhp.o dp-o . (2.57)

Performing the differentiation, we find

0 . 2 -
] 1 dfl s Z ( sinh Mo rcothrp. coth b b
sinh Mo dp.o = sinhr u sinhr o z

o)
(2.58)

PZ , a dimensionless stress, is just the average stress the fluid exerts
over the projected area of the sphere if the sphere is translating in a
fluid of unit density with a uniform velocity of unit magnitude. Pz is
positive for all values of Mo Thus the solid sphere is always repelled
by the wall if it moves with a uniform velocity which is normal to the
wall. The sign of the velocity is irrelevant. This is, of course, a
classical result.

We observe, in passing, that the force becomes infinite when
B = 0. This is a pleasant guarantee that the sphere will not penetrate
the plane. Values of PZ have beeﬁ calculated and tables of these re-

sults are included.

The Speed of a Freely Translating Sphere of Fixed Radius

If the sphere of fixed radius is permitted to translate freely, then
of course the total energy is a constant, and in this case it is equal to

the kinetic energy
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E, = T, = == Gp) . (2.59)

G(p.o) increases near the wall. Since E, is constant, the speed must
decrease as the sphere approaches the wall, and must increase as the
sphere recedes from the wall. This is precisely the result of the
previous subsection. If {)oo is the speed of the sphere when it is in-

finitely far from the wall, then, since G(oo) = 1, we have

b =b_Wa() . (2. 60)

-1/2
Values of [:G(po)] have been calculated, and a table of these values is

included. Table III shows, in particular, that the ratio of the speed of .

the sphere when it is touching the plane to its speed at infinity is . 789.
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'III. THE EXPANDING SPHERE OF FIXED CENTER

The Velocity Potential of the Expanding Sphere of Fixed Center

We now seek the velocity potential produced by a sphere whose
center lies at a fixed distance, b, from a rigid plane, and whose
radi.us,’ r, changes at a given rate i'; We use a bispherical coordi-
nate system fixed to the rigid plane (u =0), and so constructed that B
instantaneously coincides with the surface of the sphere. Thus equa-
tions (2.5) of the previous section still apply. If we let ‘PZ be the velo-
city potential in the fixed coordinate system, then the boundary condi-

tion over the plane

G

specializes the velocity potential to

+2 = Vcoshp-cos.l i BnPn(cosol)_ cosh(n+-é-)p. . (3.2)

n=o

The sign convention has been chosen so that, if V is the velocity

anywhere in space,
V= -V‘PZ : (3.3)

The boundary condition on the moving surface of the sphere is that
the radial component of the relative velocity between the fluid and the

surface must vanish over the surface of the sphere. This is equivalent

to



}:-X-f-r i coshp - cosn | (2&_) )

a

) (cosh ko, -COSY

)1/2 0
. 1 '
5= ‘ (cosh p,o-cosn) Z Bn(2n+l) P s1nh(n+-2-) o T

n=o

Q0 ‘
+ z B_P_sinhp cosh(n+-l—) (3
n n o 2/ Mo} :

n=o

Terms in Pn and cosn Pn arise. If we use the recursion formulae
for the Legendre Polynomials, equation (3.4) can be transformed into

[0.0]

2t a _ E P U (3
/2 = = n n’ :
(coshpo—cos ) =0
where
U =(n+t1)(B_-B__.) sinh(n+—3-) +n(B_-B )sinh(n--l) (3
n n n+l 2/ o n n-1 2/ Mo :
We make the substitution,
D =n(Bn-Bn l)
D =0 (3
o
n
B =B_+ 21: D, /k
to get
U =D sinh(n—-]:-) -D sinh(n+-?i) (3
n n 2/ Mo n+1l 2 Fo :

But from equation (1. 6) we can conclude that

s. . - ‘(n*'l")iio ‘
2 7z = 2t 242 Z e 2 Pn(cosil) . (3.

(coshp _-cos n=o
N |

If we use (3.9), (3.8) and (3.5), the orthogonality of the Legendre

Polynomials leads us to another difference equation
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1
-(n+ '2') Mo

X 3 . 1 _
U =D, 51nh(n+i)p,o-Dn51nh(n——2-)p.o—-Be (3.10)

n n+1
where

p=2a 2 1 =2 Z;rsinhp,o

The form of the solution of the analogous difference equation in
Section 2 suggests the substitution,

d
n

D = . (3.11)

. 1 . 1
sinh(n- -2-) T sinh(n+ -2-) Mo

It then follows that

1
-(n+5)p -(2n+1)p
2’0o . 1 :
d,  -d =-Be sinh(nt3)p = - & (1-e ) (3.12)
The solution of (3.12) is immediate:
ool -2np
- - o
e B T ctmeing g (1) 5.13)
n o eto.e Mo

Since dn is now determined, it is possible to find Bn by making

use of equations (3.7) and (3.11). After some algebra, one finds that

_ B 1
B, = Bo” TRy, E’O(uo)-)’n(uo) T . _
7
Sm e © Tk-ll(!‘j‘o)—}e ° "k(p'o) (3. 14)
k=1 k

It may be recalled that “n(p.o) has been defined in equation (2.23).
As in the previous section, we are left with a solution with one
arbitrary constant. The arbitrary constant, Bo’ is the solution of the

homogeneous difference equation. We proceed as we did in Section 2
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and remark that

Lim Bn =0 (3.15)
1) mgp OO

is a necessary condition for the convergence of the series in (3. 2).

Equation (3. 15) determines B

pLo Mo
-2—
i “Y, . 1(p-)+ Y le,) | (3-16)
By= Z.Slnhp, T("L ) - o T ’
2cosh——
2
and hence B
n
Mo Mo
e T (g vl Wl
_ B 1 k-1'%o ko
B =pmrti Y (b ) - ——— , .(3.17)
n ZSlnhp.o n*Yo o hemtl k
Zcosh—z-

Just as in Section 2, Bn vanishes as psPoo, and diverges when B 0.
t
Values of the dimensionless coefficient B have been calculated
for a large range of p,(;s and n's. These values are presented in

i
tables. Bn is defined by

T U

- T Y2

t _ n 1 f € Yk—l(p‘o)_l-e Yk(p‘ )

B (p )_érﬁ'zrn(“o) - 5, el = .(3.18)
cosh—- :

For cbmpleteness we exhibit the full expression of the velocity potential
of the expanding sphere

"’2 ([J-,n;uo) = (coshp,- cosq (rz' r;') o

0 [

Jos) —29'
i v L5 B R ET vkm]
n=o {[‘1(“0) Zcoshﬁg k=n+1 K
2

Pn(cos\]) cosh(n+%)u} . : (3.19)
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This, in principle, solves the potential problem of the expanding
sphere. The velocity of any point in space is given by equation (3. 3).
Explicit results for the velocity distribution over the rigi.d plane will be

presented in a later section.

The Kinetic Energy of the Field Produced by an Expanding Sphere

The determination of the kinetic energy, TZ’ of the field pro-
duced by the expanding sphere of fixed center is analogous in technique
to the corresponding éalcﬁlation of T. One engages in a somewhat
tedious algebraic exercise, using the recursion formulas for the Legendre
Polynomials and their defivative s, until eventually a convenient form
emerges. As far as possible, the technical details of this uninteresting
exercise will be suppressed in the following section. There are, how-
ever, two points of minor interest which should be considered.

First, one's general experience with solutions of Laplace's equa-
tion brings to mind the fact that field energies can usually be expressed
as quadratic forms of the coefficients which appear in the expansion for
the potential function. A quadratic form does not appear in the calcula-
tion of the preceding section, because the expansion coefficients were
explicitly evaluated. In this section the quadratic form will be exhibited.

Second, it develops that the convergence of the kinetic energy
function near p_= 0 is not as éood as in the previous case. Indeed,
some delicacy is required in order to evaluate T2 when the sphere and
plane are in contact.

By following the same reasoning as in Section 2, one obtains an

expression for the kinetic energy which is analogous to equation (2. 38),

1
Bncosh(n-l--z-) Mo Pn(w) dw . (3.20)

™

1
T,=m aZ;' i
2= TP (COShp.O-W)3/2
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The factor multiplying the summation must be expanded in Legendre

Polynomials. The integration may then be performed, and one obtains

Tpa ZOO -(n+-;-);¢o 1

At this point we depart a bit from the procedure of the preceding section.
. . -(n+ 1/2)!4-0

We do not substitute for Bn’ but instead we replace Be
its value obtained from the difference equation. The kinetic energy then

becomes,

T2= 51nhp. z::[n(B -B )smh(n z)p -(n+1)(B nt1”B )s1nh(n+—)p.]
B cosh(n+-2-);.no . (3.22)

After some algebraic manipulation, (2:33) finally reduces to the quadra-

tic form

© 2 5
32 . t t £ .
T,=mpr'r n2~o [s1nh T (Bn) +n(Bn-Bn_1) sinh an.o]. (3.23)

t
The dimensionless coefficient Bn has been defined in equation (3. 19).
Although equation (3. 23) exhibits the kinetic energy as a quadratic
t
form in the an, it is not suitable for calculation. We shall define the

quantity fz(p,o) by the equation

*2 3
T,=2wpr (1+f2(po)). | (3.24)

We now return to equation (3.21) and make the appropriate substitution
for B - After a series of rather tedious computations similar to those

in Section 2, one can conclude that,
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(0]

Z Slnhp -Zp,o
51nh r+2 ) + In(1-e ) -

n:

-2(n+1)p
A

e © sinh” (ug/2) (3. 25)

n=0 (n+1) sinh (n-l--é—)p,o sinh(n+-§-)l¢o

p.o) 0.
As might be expected, we find that

Lim fz(uo) =0. | (3.26)

=P ®©

We recognize that fz(po) is a measure of the effect of the wall upon the
kinetic energy of the field, and equation (3.26) expresses the fact that
when the sphere is far fror;n the wall the kinetic energy reduces to thét
produced by a free sphere. Values of fz(p,o) are presented in accompany-
ing tables.

One must now consider with a little care, the problem of evalua-
ting fZ at p_= 0. The series of equation (3. 25) converges only if
p,» 0. However, on physical grounds, we know that some value for fZ(O)

must exist, and certainly

fZ(O) = Lim fz(p.o) . (3.27)
p.od—’ 0

We shall use (3. 25) to find

Lim f(p) .

Y 0+ 2o
The difficulty with the series in (3. 25) occurs in the first two terms.
Our procedure will be to approximate the first two terms by a closed

form which is continuous at By 0. If we have an adequate estimate of
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the error introduced by this approximation, it will be possible to evalu-
ate the limit we seek.

Let us rewrite the first summation as,

sinh Fo
e AGH s (u) + r (b)), (3.28)

where

‘ n o)
_ sinh _ sinh o
°n ~ Z sinh (r+2)p_ n = : sinh(r+2)p._ (3.29)
[§) (] n+ o) ~

The remainder term r ~may be bounded by two integrals,

12 r 21

n n+l (3.30)

sinh p,odx X sinh o dx

In:S sinh(x+2)n_ 1™ sinh(xt3)u_ (3.31)
n “Fo n o

The error due to replacing r by one of its bounding integrals is

given bg.r
n+tl .
h
. dx SInE g 1
Irn_ Inl ﬁ sinhp., 5 sinh(x+2.)p,o - sinh(n+2)po - n+2 (3.32)
n
The integral in question may be evaluated exactly.
sinh g pd dx sinh Mo e(n+2)po 41
I = e——— - = In . (3.33)
n o sinh \ Mg (n+2 h‘"o
n+2)p.o e -1

Thus we may say
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= sinhp sinh p (n+2)uo -2
fo(p ) > + 2 1 = LI (1-e  °) -
2'\"o — sinh(r+2)u M (n+2)p
r=0 o o o
e -1
00 . L2
-2(n+1)p sinh® u /2
o o
- Z e - T — (3.34)
k=0 (k+1)smh(k+—2-)p,0 smh(k+—2—)p,o

The error in the estimate of (3. 34) is independent of o and depends
only on n. This error is bounded in equation (3.32). We now take the

limit of equation (3.34) as . goes to zero. We find

n _ZMO

1 l-e
Lim , £5(p >¢~’*Z iy *ln2+ Lim In )
= n+l
- Z 1 = 1]?14:—1 + Z 1 _ ln(n+2) )
b= TerT)(2k+T)(2k+3) [
Q0
2 1 |
T & TEDERF(ER) (3. 35)

The error of the estimate in (3. 35) is still given by (3.32). We can now
make the estimation error vanish by letting n go to infinity. The limit

of the function involving n is an expression of Euler's constant. Thus

(0.9]

It also happens that
00
In 4-1 = Z : (3.37)
= (&+D)(2k+1)(2k$3) ° )

Thus we are finally led to the simple result

£,(0) = InY = .57722 : (3.38)
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IV. THE SPHERE WITH A GENERAL MOTION

The Potential of the Sphere with a General Motion

As we have mentioned in the first section, the potential produced
by the sphere which is undergoing both a translational and radial motion,
is the sum of the potentials of the two previous sections. We may im-

mediately write down the potential \IJ3 of this general motion.

~ [oe)
[} 3 . ! l
\,/3: ofll+)l12: r Jcoshp,—cosol nzzo EoAn(p.o)+ V2 an(p_o)] cosh(n+2-)an(cos'l).
(4.1)
1 4 .
An(p,o) and Bn(”o) have been determined in Sections 2 and 3 respectively.

The Kinetic Energy of the Field Produced by the Sphere with a General

Motion

We shall find that the kinetic energy of the field, in the case of the
general motion, contains an interaction term in addition to those terms
which arise separately from the translational and radial motion. The

expression for the kinetic energy is

S(+1+1’2) 5% (111++2) ds=T +T,+% S()bl—ét +2 %ﬁ)

(4.2)
T1 and TZ have been determined in Sections 2'and 3 respectively.

We define the interaction kinetic energy, T3, to be

T,=% §(+1¥f- ++2-3-a-é1-) ds . (4.3)

By Green's theorem it follows immediately that

Ty=p Hﬁah ds . (4.4)
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Because of the boundary conditions on the plane the integral
vanishes over the plane. Thus T3 extends only over the surface of the
sphere, defined by p= Hoe The normal derivative, because of the boun-
dary conditions on the sphere, is equal to r . Aftera proper account

is taken of the noncartesian metric, equation (4.4) becomes

2 1 3/2
A cosh(n+-2—)p.oPn(w)/(cosh p.o-w) / dw

T3= pr{'a
-1 n=o

(4.5)
where w is set equal to cosn .

The irrational factor is expanded in Legendre Polynomials by the
same technique used in the previous sections. The integration can then
be performed over the double sum of Polynomials, and one obtains

1
T =4ﬁwe§a2 -(n+'§.-)p“o

1
3™ “sinhp, . A e cosh(n+2-)po . (4.6)

An is replaced by the use of equation (2.30). After some lengthy alge-

braic manipulation, one arrives at a final form

o) .
oo 3| vy -(n+1)p‘0 sinh p_
T3=-4dmprbr-fe "2z Zo © sinh(r+l)p.o

n=

(;‘Lo_l Zoi -2(n+l)pb sinhp .
B ¢ 4 sinhlr+lipb - (&7)

For convenience, we define the dimensionless kinetic energy of

interaction by

T, =-4dnprbro f
377 mPpror 3(!*0)’_
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Q0 . 2
B 1 Z -(n+ Dp sinhp e""o_l
f35e -3 € sinb(nt1)p_ ) ~ 7 2 ¢

Q0

Z -2(n+ 1)p*0 sinhp
- e . —S—m . (4. 8)
n=o o] )

Physically, one expects f3 to vanish as M(;) oo, since £3 is
produced entirely by the interaction between the sphere with the plane.

This presumption is indeed correct.

_2”0
Lim f (p )~ = —-» 0. (4.9)
3o 2
=¥ oo
When Ho = 0, f3 exists, and may be evaluated.
(o)
1 1 11'2
£,(0)=1-= =] - =— = ,177533 (4.10)
3 2 — 2 12
n=o0 (n+1)

Values of f3(p,0) have been computed for various values of p_  andare
presented in Table III.
Finally, for completeness, we write out the kinetic energy expres-

sion in terms of all the dimensionless kinetic energies.

02 ' . .
T=2'n'pr3 {[1+3f1(p,on %—- Z;bf3(po)+(l+f2(po))rz}. (4.11)
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V. GENERAL REMARKS ON THE DYNAMICS OF THE SYSTEM

The Equations of Motion

If the gravitational effects are neglected, the potential energy, U,
of the system will be independent of b. The exact form of U will de-
pend upon the physical nature of the cavity and upon the conditions at
infinity. We shall not here specialize U(r). The Lagrangian of the

system can, then, be written as

'2
L=T-U=2mpr [(1+3f (. ))—E—— Zbrf3(p. )+(1+f2(p. )) r] - U(r)

(5.1)

Because of equation (2. 5), it follows that

3) _ ! a . ( ) cothp d
(-551' rsinhp.o dp.o ’ T, dp (5.2)

(o]

The equations of motion follow immediately.

7-- 213 [r(l-l—fz(p. )- b, )] =3r [(l+3f )%—- Zbrf + (1+fz)r]

2 df df df
2 b > 3 °2 2 1 dU
- T Cothp. [2 a—};‘— 2br a——- +r 'a——]—z—-*-a-— > (5.2&)
. e 0
and
2 %2 df
d 3(: . _ by b 1 : 3
T[T 2T [b(1+3f1(p“o)/6 - rfs('*oﬂ = SThw, ['2' T, 2b fa T
df
+ ;‘2 'a—% . (S.Zb)
E'}‘O

Equatiohs (5.2) and (2. 5) give, in principle, a description of the dynamics

of the spherical cavity, The function fl, fz, and f, have been ex-

3
hibited and tabulated.
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Because of the complicated form of the dimensionless kinetic
energies, it does not seem possible to solve the equations of motion in
their full generality. One must now turn either to a numerical integra-
tion or to some approximation method. Approximate solutions for two

cases of physical interest are presented in subsequent sections.

The Pressure Distribution Across the Plane

The pressure P anywhere in the velocity field is given by

Bernoulli's equation

P-Poo=p%:.;t%—%p(v-7). (5.3)

p is the density of the fluid under consideration; Poo is the pressure
at infinity. The time derivative of the velocity potential follows from
equation (4. 1).

00

2;.’:2: coshp-cosn E [I‘b'C%A H)“'ﬁrr B(H)"‘

n=o

+(rb+1D)A" e )+ V2 (24 e ) B (p.a cosh(nt5)p P_(cosq) -

(5.4)
If we make use of (5.2), we recognize that
dAt
d ' _ 1 n L)
Tt Pn T rsinhp  dpg (b -t COShpo)
’ (5.5)

.
L Bt = 1 ' dBn 1.3 - ¥ cosh
dt “n  rsinh by dpg Fo

He

1 1
To find the derivatives of the An s and Bn s we will need the result

that
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¥y a 2 _ -(2n+1) (5. 6)
du ~ dp (2n+1)p - . 2 1 ’

o o . °o_; 2 sinh (n+-2-)p.o
It then follows from equation (2. 31) that
dA' inh =

i ! SR P, n(2n+ 1) (2k+ 1)
T = cothrgh (k) - > 1. 7 1

o sinh“(n+ =) k=n+1 sinh”(k+5)u

2’"o 2’7o
(5.7)
Similarly, it follows from equation (3. 18) that
Mo Mo

d B‘ d sinh /2 o e- TY + e—Z_Y

n_“¥n to k-1 ko, 1 R
dp‘o dM'o 2 Yo k=ntl k Mo

4 cosh > » 4cosh-—z-
Po Mo
o 2. 2.
Z e "Y1t ¥k 1 .
k=n+1 k Ho
Zcosh-z-

(e.0] HO d p’o dv
Z (e : dik'lﬂez k)/k. (5.8)

k=n+1 o dp’o
It takes some manipulation to reduce (5.8) to its final form
dB_ ‘n+ tanh p.O/Z

= - > + cschz(k-l-
o sinh”(n+ v )p.o k=n+1

4 : 51nhp,o
2Me” T 2

-k

¥

o .
e sinh kp

21 2. 1 (5.9)
k=n+1 ksinh (k+—2-)p,o sinh (k-_Z-)p‘o



-38-

Though (5.3) is perfectly general, we are primarily interested
in the pressure on the rigid plane. We thus evaluate (5.4) when

p=0.

(34') - m’l ni;o [(1‘0-? coshp, ) cschp Qgg_g: + 2 f_i_;) .

+ (b 2h) Al )+ M2 (2T B;(po)‘] P (cosW)  (5.10)

The velocity of the fluid over the rigid plane is also required. The
boundary conditions tell us that the velocity vector must lie parallel to
the plane. Furthermore, the symmetry of the problem makes it clear
that the velocity will be directed radially from the point on the plane
which lies directly beneath the center of the sphere. We will define

- two nondimensional velocities V1 and V,: V. is the radially out-

2 2

ward directed v’elocity over the plane which arises from the expansion
L]

(or contraction) of the sphere; and -b V, is the radially outward directed
velocity over the plane which arises from the translational motion of the
sphere.v Since both velocities lie along parallel vectors, ;:he total velo-
city over the plane is just the algebraic sum of these two, ;'VZ - bVl.

Taking the gradient of the appropriate potential function we have

v, = . _{l-cosW) /’*l) : v = {l-cos®) (34’2) (5.11)
= u=0

1 B r sinh g \319_0 2 frsinhp, \ N

We use equation (2.5) to obtain

Qo
1 n h i dP_(cosy) 1 .
1 - { s&ﬁrlsp.) = (1- cos'l) n “dcosw coshy "2z Z An Py
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Equivalently,
1

— [e o] «
2 ... ' dP dpP 1
V.= (1-C(?S‘) Slnn - A P -2 ___I.l._.-|- 2 Ccos — -A P
1 2 snahp,o o n n dcosv\ dcos o" o

(5.13)

If we make use of the relationships between the Polynomials, we ha&e

1
— 00 )
V.= - (l’-(:os‘l)2 sinW A' P 4+ Z At (dPn+l + dPn—l _ 2 d‘Pn )
1 Zsmhp.o 0’0o &= "n dcosvl dcosu‘ dcos)'
(5.14)
Since
i dPn
Pn(COs") = s1nl) E-CO—SI:[ s (5. 15)
we finally obtain, after some reshuffling,
1
-2- Q0
_(1-cosn) z tor vt 1
Vl_ m-ﬁ—o— (— (An-An-l) + (An-An+1) Pn(COS‘) . (5. ].6)
Similarly, the Aanalagous expression for V2 is
1
: T e !
_(1-cosm) Z [ t t ! !
v,={ B . -B)+ (B .-B)] Plcosn). (5.17)
2 6Sinhp.0 = n+l " n n-1 "n n 'l

More explicit forms may be obtained for V. and V‘2 by sub-

1
: ! t
stituting the appropriate values for the Ans and for the an. We will

once again have to call on the recursion formulas for the Polynomials.

One eventually arrives at final forms for V1 and VZ'

DN W
8

VyE Q‘%SAL 2;1 (2n+1) ¥ (1) Pi(cosv‘) | (5.18)

and
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1

2 .
l-cosW) sin W
V,= ( . - (l-cosY)e
2 fZ sinh o | Sinb, "

00 e /2
Z 2n+1 ! e © o 5 1
- n+l Yn * 2n coshp, /2 n(cosil) : (5.19)
n=1 o

Values of Vl and V2 have been calculated and are presented in
the accompanying tables.

Since,
2
)

——— —— . ]
V.V =(rv,-bV

bV (5. 20)

we can now use equations (5.3), (5.10), (5.18), and (5.19) to describe
the pressure distribution across the rigid plane.
Some particular pressure effects will be calculated in more detail

in the subsequent sections.
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Vi. THE DYNAMICS OF AN AIR BUBBLE SUBJECTED TO A
; SINUSOIDALLY VARYING PRESSURE

The Solution of the Linearized Equations of Motion of the Oscillating Air

Bubble

In attempting ‘to arrive at an approximate solution to the general
equations of motion, one first considers the technique of small oscil-
lations. The motion of an air bubble is pa‘rticularly amenable to this
technique since, for any given external pressure, the air bubble has
some equilibrium radius, In the following analysis we of course assume
that pressure differences are transmitted instantaneously. This is
equivalent to saying that the frequency of oscillation must be "low"

(i.e. the product of frequency times the bubble radius must be much
less than the speed of sound in the ﬂuid). Since the speed of sound of
Water is about 1.4 x 105 cm/sec, the limitation of compressibility does
not become important until frequencies of the order of tens of kilocycles
are reached.

We consider that the pressure at infinity, Poo’ makes small sinu-
soidal oscillations of freguency w, about some fixed pressure Po’ We
let TS and bo be the equilibrium values of r and b which correspond to
Po‘ This leads us to define the quantities ¢, &, and § by the following

relationships

iwt
)

P = P0(1+ee ; ro= ro(1+§) ; b= bo(l +6) . (6.1)

(e 0]

A suitable dynamic potential for the gas filled bubble is

4.3 200, 4oV 0V 2
U(r) = zMe"P__ + (P + T, ) ?—lo\FTY—— + 4lroz” . (6.2)
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The first term is the potential of the pressure at infinity. y is, as
usual, used to denote the ratio of the specific heat at constant pressure
to the specific heat at constant volume, for the gas within the bubble.
O’is the surface tension of the gas-liquid interface. The second term
in (6.2) is a measure of the work done in adiabatically compressing the
gas within the bubble, The third term is the surface energy. It can be
seen by differentiating (6.2), that when Poo = Po’ the bubble is in stable
. equilibrium when r = T
| We now proceed to write a Lagrangian which is accurate to second
order in €, £, &, and their time derivatives. Because of the form of

the Lagrangian, it will be sufficient to take

— _1 —
By = cosh (bo/ro) = a constant (6.3)

If we make use of (6,1), (6.2) and (4.11), and if we neglect constants terms

and terms higher than second order, the Lagrangian becomes

2
bo 22

T [N ]g} aftr P _ege™* - $ (411 )E:yP +5€(’3v ]|

_ 3
L = anro

(6.4)

The linearized equations of motion follow immediately from (6.4)

g 13t 1) . .
dt —?T—'—éb - 2r.¢ f3(%8= 0 (6.5a)

gfp{ﬁ+f2(“o1groz B robof?)(p'o)a}: ~eet = 3yP + i—oz3‘/'1ﬂ (6.5b)
o
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We shall now define the following quantities

)’(.2'

1

E\/Po + 2#'-’(3'\1 - 1D / rozp (6. 6a)

r
o

1+ 3f
2 - KPn? - L X2 (6. 6b)

2
(L+3£)(1 +£,) - 6f,

o)
I

3yP0
c = (6, 6¢c)
: 20

In terms of the definitions of (6.6), the solutions of equation (6.5)

become

2 . |
£= = ———L-— cet™® (6,72)

3y wZ ] XZ
» o f3

c is a dimensionless constant which is nearly equal to one for
most cases of interest, l is the natural frequency of vibration of the
gas bubble near the rigid plane, KX is the natural frequency of vibration
of a free gas bubble, We see that k has been defined as a measure of
the effect of the wall upon the natural frequency of vibration, When
By = 00 and the bubble is remote from the wall, k = 1. The value of
k at b = 0 is 0.830, The effect of the wall is to decrease the natural
frequency of the bubble, This is then consistent with the physical notion
that the wall tends to increase the inertia of the fluid field,

It is probably relevant to note that if we apply equation (6,6a) to

a one centimeter free water bubble under one atmosphere pressure we
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get a natural frequency of about 1/3 k,c. This is certainly well within
the limits set by the compressibility condition.

Equation (6.7a) shows the standard resonance beha\}ior. For low
frequencies the bubble radius is 180° out of phase with Fhe external pres-
sure, This resultis in accord with our physical intuition., We should
remark that the singularity at ) = w would dis;'ippear were we to con-
sider the energy losses that are always present because of viscosity
and acoustic radiation,

Equation (6.7b) shows that the vertfical motion of the bubble is in
phase with the radial motion, When the bubble expands it also recedes
from the plane; when it contracts it approaches the plane. The factor
in front of £ in equation (6.7b) goes to zero rapidly as g /bo approaches
zero, This is consistent with the notion that the translational and radial

motions of the free bubble are not coupled,

Pressure Effects on the Plane Due to the Oscillating Air Bubble

Now that the equations of motion are solved we can easily discuss
the pressure effects across the plane., Since we have made a lineariza-

tion approximation, equation (5.3) specializes to

a+3
p=P-P_=r\3 _ (6.8)

Bo=0

Of course, p is the amount by which the pressure at any point on the
plane exceeds the pressure at infinity,
We now use equation (4.1) and (6.7), and once again neglect second

order terms, It then follows that (6.8) becomes
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6f5 (k)

p = -Epr W fT - cos m Z T 3f A;(MO) + 12 Bl (k)| Pylcos m)

(6.9)
Of course, the magnitude and time dependence of & is given by equation
(6.7)e
We define Fw(n;p,o) by

- __E_Z__Z = Fw(n;“,o) = Jl - cOos 1

gpro w n=

) Anleg) + 2 BL(u )P (cos m)

(6.10)
In particular, we may find Fw at M = . This is the point on the

plane which lies directly below the center of the sphere,

r | 6f,(hy) [
F(;(IT,HO)= 2 - (-1)* H—_q’f—(——y A (p ) +12B (H (6.11)

Fw("’ P‘o) is computed for variokus values of Ho and is presented in the
accompanying tables,

The distribution over the plane, F(:o(n;p_o ), is also computed for fixed
Koo and the different values of n. The results are presented in the ac- -
companying table,

We have used n as a natural measure of position on the rigid plane.
It will help to remember that if d is the radial distance from (n=JF, p=0)

to any point on the rigid plane, then

d=r sinh B, cot n/2 (6.12)
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VII. THE DYNAMICS OF THE COLLAPSING CAVITATION BUBBLE

Approximate Solution of the Equations of Motion of the Cavitation Bubble

Cavitation damage is produced by the very high velocity fields that
arise during the collapse of vapor bubbles. The bubbles are formed in
some region of low pressure and then collapse in some region of high
pressure. The details of such a collapse of course depend upon the
time behavior of the pressure at infinity. A good understanding of the
phenomenon can be obtained by assuming that the pressure at infinity
is constant, and that the pressure within the cavity is just the equili-
brium vapor pressure corresponding to the temperature of observation,
If we let pa be the excess of the atmospheric pressure over the vapor

pressure, the potential energy of the system becomes

U = ——'h‘r3pa + 4""0'1'2 (7.1)

When we search for an approximation to the general equations of
section 5, we find a helpful clue in the results of section‘ 6. Equation
(6.7b) is independent of the forcing function, and can be expected to
hold for a sufficiently small period of time if the space derivatives of
the kinetic energy functions remain finite. Now the coefficient of £ in
(6.7b) is always less than one, and rapidly goes to zero as r/b de-
creases. Initially, then, 1.3 igs of less magnitude than ; « Thus for a
collapsing bﬁbble r will decrease much faster than b, Thisr compounds
the initial effect of (6‘75), and, insofar as equation (6. 'fb) is correct,
1.3 beconﬁes nég‘ligible with respect to ;. This conjecture is verified

1

by experimental observations: a bubble will collapse to a zero radius;

yet during the entire period of observation its position with respect to a
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‘neighboring wall remains nearly constant. We therefore make the ap-
proximation that b is constant over the period of collapse, and solve
the resulting equation, With this approximation the total ;energy, E, of
the system reduces to

| 3 3 3 2 -
E=T+U-= §Tlr (p, %'—%.-3 + 2Mer 1+f2(P’o))r ({.Z)

It is convenient to define the dimensionless quantities R, s, and ‘T’

- = 30° 23 » 2
r = er sy 8 = w ;= Eiprm/Z(rmpa+ 30‘37 (7. 3)

If r is the radius of the cavity just as the collapse begins, then E,

which is a constant, is given by

E = %—"r; (pa + %—g) (7.4)

When (7.2) is divided by (7.4) the following equation results

L= R%(1-s) + sR% + (1 + £,) R°R (7.5)

e

R is the derivative of the dimensionless radius, R, with respect to
the dimensionless time, T .

Equation (7.5) may be solved for R to give a complete description

of the dynamics in terms of the dimensionless radius of the cavity

. 3 2
R = - ]/1 - (1‘§)R - sR . RZ1 (7.6)
R(1 +£,)

We can, if we wish, integrate (7.6) to give time dependence of the



-48 -

radius

1

v §f

[1 il )]

1-(1s)x - x

(7.7)

In particrular the total dimensionless time of collapse is

1
3
- ]/ x (L +£p)
Ttotal B § 1 (1-s)x3 } sxz dx - (7.8)

The integration of (7.7) must be done numerically, This com-

putation was not performed. We mention for completeness that

Z(p. ) = 2(cosh 1[%{ cosh um]) (7.9)

where cosh b, = b/rm R

When the bubble is far from the wall, f2 = 0 and all the equations
reduce to those familiar in the cavitation theory of the free bubble, It
can be seen that the presence of the wall serves, through fZ’ to increase
the inertia of the fluid and to increase the characteristic times of the
problem.

This result fits qualitatively with the experimental facts. When
the free-bubble theory is used to compare with data taken near an ogival

1
surface, the times of collapse are underestimated,

Pressure Effects of the Collapsing Cavitation Bubble

Since equation (7.6) determines the velocity, and hence the ac-

celeration, of the bubble wall in terms of the radius as a parameter, one
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can, in principle, use (7.6) and (5.3) to get a complete description of
the pressure across the rigid plane, in terms of the dimensionless
radius of the bubble, Then, if desired, this can be transiated into a
time dependence with the use of equation (7.7). All the functions
necessary for this computation have been exhibited in section 5.
Also of interest in cavitation damage is the pressure impulse, I,

which is defined by

I(n) = 5 (P-P_)dt (7.10)

Since the point on the plane directly under the center of the bubble,
(. = 0, m =Jr) is a stagnation point, (5.3) may be immediately integrated
there,

t

I(n =M = OS pmtz dt = p‘f)(u su=0,m=1T) = erpi( 1B (1)
(7.11)

We have used the fact that since r = 0 when t = 0, \PZ also vanished
at the lower limit of integration,

If we make use of equation (7.3) it follows that

r_(r_p. +30) .
I(n =) = 2/ mome T PRRIZ/ (B (uy) (7.12)
' n=0

For convenience, we also define the dimensionless pressure impulse,

J.

F | (7.13)
leprm(rmpa t 30) |
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Now, if we use equation (7.6), it follows that

3 2 =
1o ]2 [1 - q-5)R> - sR2] (UPB! (1) (7.14)
R[1+ £, ()] &0

Clearly J vanishes when R = 1, Furthermore, by considering the asymp-

totic values of Bn’ it follows that when R approaches O,

3 2
2R [1 - (1-S)R - SR] s cosh Mm = }.b— (7.15)

Jav -
_ cosh2 B - R2 m
m

Thus J also vanishes when R is 0, We conclude that J must have an ex-
tremum between 0 and 1. Indeed if we use the asymptotic value for J

and take s = 0, pm>7 1, we see that the extremum occurs when

R = (0.25)1/3. If we recall that J is an integral of the pressure, the
existence of an extremum in J indicates that the pressure on the point

of the plane we.are considering actually changes sign during the collapse
of the bubble. J is computed as a function of R for various initial values,
Eoy with s = 0. The results are presented in figure 3. Of course
during the collapse Po varies, since b is fixed but r changes. Mo is
calculated in the same manner as it is calculated in equation (7.9).

As yet, no quantitative experiments on cavitation damage related
to this analysis seem tlo be available. Some preliminary qualitative
work was done by Ellis 1a.t the Hydrodynamics Laboratory. It is be-
lieved that this analysis will be of use in helping to plan future experi-

ments in the field of cavitation damage.
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FIGURE tl

THE DIMENSIONLESS IMPULSIVE PRESSURE PRODUCED BENEATH
A COLLAPSING CAVITATION BUBBLE

OIMENSIONLESS RADIUS, R
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Table VI

Pz(;.(,o), The Dimensionless Repulsive Stress
on the Translating Sphere of Fixed Radius

TR | P (1)

.01 4.0311

.02 3,3229

.05 2.,40325

. 1,72798

.2 1,08423

.3 742227

.5 .377945

R .198153

.9 .10308

1.0 7.3734 x 1072
1.2 3.6992 x 1072
1.5 1.2532 x 1072
2.0 1.8814 x 10~

-5

3.0 306513 x 10
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Table Vil

The Dimensionless Pressure Distribution, ﬁn(Q”io)
Produced over the Plane by the Oscillating Air Bubble

Values of Fca when

['LO
.3
5

1.0

2.0
3.0
4,0

n=w

ﬁn(ﬂ = ﬂBﬂb)
1.81159
1.71375
1.22760
»835225
529184
«198595
,073237

15°
30°
45°
60°
75°

105°
120°
135°
150°
165°
180°

Values of F when

w

B, =1

F (g =1)
.000000
«220322
424184
+609196
« 173072
«891032
« 91789
1.070431
1.130344
1.176039
1.186691
1;221849
1.22760
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1.5
2.0
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4.0
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Table VI

The Dimensionless Impulsive Pressure, J, Produced
Beneath a Collapsing Cavitation Bubble

[Jm=o 1

R
1.00000
.96141
89125
«65129
«42722
«26713
«099824
036793
.00000

-
00000
52466
75080
37852
.81038
.67837
43377
26755
00000

P&n:: 105

R
1.00000
+62528
«23366
.086122
.00000

-J
.00000
«38915
.28186
17431
.00000

M =3
R -J

1,00000 .00000
092702 61427
67744 84054
«44437 79038
27785 466432
.10383 ,42530
.038270 .26233
.00000 .00000

um=2.0

1.00000 .00000
»37369 .21839
J13773  L13810
.00000 .00000

1.00000
« 73076
«47935
«29973
11205

.00000
« 76126
«75160
63786
«40937

»0412825,25257

00000

«00000

’J-m=3 . 0

1.,00000
«36858
00000

.00000

.082611
.00000

1.00000
«65596
.41015
15327
«056492
«Q0000

00000
57701
.53333
«34962
«21592
.00000
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