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ABSTRACT

Part 1.

The purpose of this study is to establish that the
reflection of a plane wave ( at normal incidence ) by a non-
homogeneous layer with properties varying only in the direction
of wave propagation may be deduced by a limiting process irom
the formulée which are valid in the case of discrete homoge-
neous layers. In this limiting process the number of layers is
made to increase without bounds while the thickness of each
layer tends to zero in such a way that the total thickness
remain constant.

This is done by using the matrix relation which binds
the up and down-going wave amplitudes in two layers of a pile
of homogeneous layers on tep of a semi-infinite homogeneous
medium. Then the number of layers is increased as described
above and the limit of the matrix relation obtained. It is
then verified that the result thus gotten is identical to the
guantity obtained by solving the differential equation for the
disturbance in a non-homogeneous layer whose properties are
the ones which the discrete case is made to tend to.

Part II.

A method for calculating velocities in homogeneous
isotropic layers and the position oi their interfaces from
surface reflection seismic measurements is described. The
problem is discussed only in the case of parallel strikes.

Conditions of applicability are plane interfaces and
good lateral correlations.



Al so th‘e accuracy of the determination of the velocities
and the position of the interfaces depends very much on the
velocity, the dip' and a distance which gives the position
of the interface. One should be careful to estimate in each
particular case whether the method may safely be used.
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MAIN SYMBOLS OF PART I.

amplitude of down-going wave.
amplitude of up-going wave.

c=a+b.
d=a->b.
£(z) = 14 (log ¢ V) .
2 4z
g(z) :‘-3-
ratio of 2 values of fV : km+l,m - (ﬁzlm+y

(eV)y

source amplitude when source is sinusoidal.
in Appendix 4, integer.

time .
total displacement of particles.
depth ( positive downward ).

constant .
density.
time taken by waves to travel through a layer
o Zp =%
( designed by subscript ) T = -
Vv
m

angular frequency of sinusoidal waves.

b4
integral operator Fx = f 2 f x.dz.
Z
1
F = 2F.
22
integral operator Gx - f & X dz .
2
1

unit matrix.

( with a subscript ) interface.
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MAIN SYMBOLS OF PART I.

(continued)
Wy, W
(“'kwu,w) e (v kuﬂ,w\‘
matrix Mm+1,m = et g .
'Q’h@wyhe (1+% e

wwllw

w-~1 !
the elements of matrix ( §1| P«%+”%\ (o‘>.

reflection coefficient of a system of layers
( in mumber indicated by subscript ).

Lucas polynomial of lst kind. —
A+lp
r

velocity of longitudinal waves: V-

solution of the differential equation

é:; +-é- L) A, 93L2-=0
A %( 'g,f"")o\,y (V)

{a product of operators F and G> = this
product operating on 1.



1. Hoﬁogeneous layers with parallel interfaces.

1.1 Introduction.
a) The model.

A section of layers of homogeneous and isotropic materials
will be considered. The interfaces are supposed to be parallel,

No absorption is assumed; the materials are supposed to
obey Hooke's law.

The last medium down is semi-infinite ( see fig. 1 ).
b) The problem.

The reflection of plane waves at normal incidence will be
studied. Their time dependance will be sinusoidal in all that
follows.

A source of planes waves being situated at the surface
of the pile of layers, find the relation between the amplitude
and phase of the disturbance ( as it can be measured at the
surface ) on the one hand and the amplitude and phase of the
source on the other hand.

c¢) The method.

As Sommerfeld points out ( Ref.l, p.41 ) about the problem
of light propagation in a system of transparent plates, which
has many analogies to the seismic problem, there is a choice
between two meﬁhods.

Either a summation method can be used, adding up all the
multiple reflections, or a boundary-value-type method, fitting
waves into each layer so as to satisfy the conditions at the
interfaces.
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The first method gives a betier insight into what happens
to the multiply-reflected waves but is awkward to use when there

are many layers.

The other one permits the discovery of general results and
will be used here after Lord Rayleigh ( Ref. 2 ).
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1.2 Relation between the wave amplitudes in different layers.

1.2.1 Hotations.

The interfaces are numbefed from O to n, if n is the number
of media, starting from the upper surface ( see fig. 1 ).

Th@ mth
The depths ef the interfaces are 2

layer is thus bounded by interfaces Im- and Im'

1

a-1 and Zg counted positively

downward from the surface Ie'

The material in layerﬁi]has the density f and the longitu-
YA
dinal wave velocity Vm'

Let it be recalled that the waves considered are sinuseidal
in their time-dependance and that medium[nlextends to infinity
downward.

Above the surface Ie there is a vacuum for all our purposes.

l.2.2 The fundamental relation.

Let the amplitude of a particle's motion at depth z and
time t in layer m be written as
- . T~V
iwk éw(b-? ?w"\ "“’(b"' Vew )
u—we = Q e Vw -|-Qr e (1.202.1)

Va A

where ay and bm are the amplitudes of waves traveling in[ml
respectively down and up, andwthe angular frequency of the waves.

It is important to notice immediately that a and b are
in general complex quantities in order to take into account
the delays due to the transmission through the various layers.

In all layers expressions similar to that of equation 1.2.2.1
can be written, but since n is semi-infinite

b Q . (l. 2. 2. 2)

n -
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At interface Iy there must be continuity of displacement
of the particles and of normal stresses for all times.

The first condition gives

'(’wT\M \-,'-\’T'w\ /Q,-
with
. - ™ Vo
W Vw

L ?
du du
\l hy - V wat !
fae (——-'M L{w €orl m,( e >‘m (1.2.2.4)
yields
W Ty LW T,
%wm € - krWt e = kw.‘,.'w(aw.\," k’wxh) (L.2.2.5)
where
(Vs
wrt,w (fv)w

The system of equations 1.2.2.3 and 1.2.2.5 can be written

in matrix form

a e e - | 1 At
™
X Wt L Wi
w o bwne [RTYS
e - € k’"W\H,w -Q‘*\M—n,w\ ‘Qrw“
(1.2.2.6)

Hence the following result :

The matrices of the amplitudes in [m] and [m+1] can be
obtained one from the other by multiplication by a sguare matrix,

(#) see Bullen (Ref. 3, p.20)
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itself the product of two square matrices.

One of these depends only on « and t,,, the other, on the
contrary, only on the ratio of eV on both sides of Iy.

Bquation 1.2.2.6 may be put in the form

m\N\ q\M<\-|
4 /"\M‘ " > (1.2.2.7)
krw\ ,. ) QTW\,{,\

with the following notation '
LT, Wiy,
. (‘ ¥ hw\-\—l,\M\ e (\- ‘PL\MA\-\ '\M\ e

/V\VV\'P"V\\: . (l. 2. 2.8)

W 1w,

R I (PO TP

Equations 1.2.2.7 and 1.2.2.8 give immediately a relation
between matrices

( [~ NI . Rwl
/ A
‘QY\M wal
whatever m and m*' between O and n, ma',
AW N'..w.(w:—‘ le
\ ﬂ M )
=1 - ) PR ° (lo 20 20 9)
er. (!) L Sl X* Al 'R"w'
In particular,
& w-l -t A w | )
\ .
Nk (ﬂ (ﬂ /"\%“’%) ( . ) (1.2.2.10)

'}:l

The mairix product that enters the preceding equation is

of the form
P
Q

This will be used to find the value of the reflection
coefficient and to discuss theorems concerning it ¢ see section 1.40.



1.3 Other matrix relations,.

Bquation 1.2.2.7 is of course noti the only possible one
that can be written between quantities attached to waves in
different layers.

For instance, instead of using quantities ay and by one

could use cm_and dm such thai

CVV\ - “Vﬁ*’ A"\N\ )
(1.3.1)
Aw = Q.\M - L‘M
Since
Cw 1 ! mW\
= /
A ! =t /efw
one finds the relation
A WT c
cw\ Co> wtw‘ WAL WA b weti
(1.3.2)

Another type of matrix relation can be obtained by conside-

ration of

v,
] A n
where 4;\6 is the sitress across Iy

and Ag“e}“’ the particle velocity at I.

A'tZ:Zm,

£ -l V);“ e (eV),.

A e-uw‘LM &Lwlw ’Q"M ( ° e )

-thw\ Lwtm K\M

At 2 = zp,; , a similar equation can be written between
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Pm+i (’am+l
and

Vm+l byl

and by use of relation 1.2.2.7 the equation

CH W Ty, ~v(pVv) nbnbqu
R wa (f et * ‘fua+|
= (1.3.4)
A =V AW WT gy, o> W Tyayy Aot
(Vs

is obtained. ‘
The square matrix of equation 1.3.4 will be calledby ., o

It has the character of an impedance matrix similar to that of Ehe
matrices that relate the matrices of voltage and current at the
input and the output of an electrical quadripole.

In particular, the determinant of a matrixdbis equal to 1.

The terms on the main diagonal are numbers whereas on the
other diagonal the lower left term has the dimension ef an
admittance and the upper right the dimension of an impedance
( Brillouin, Ref.4, page 203 ).

This dimension of impedance can be defined as g y and then
we have the well known fact that ¢ V is an impedance.

Relation (1.%.4) enables a complete parallelism to be
established between the theory of electrical quadripoles and
that of a system of layers with parallel interfaces.



1.4 Reflection ceoefficients.

1l.4.1 Definitien.
It was seen in section 1.2.2 (equation 10 ) that the
complex amplitudes 2y and bl are given in terms of the amplitude

a, by formulee.

™
(1.4.1.1)
L" = B—jl *w
1\6

where £ and Q are the two elements of the 2x1 matrix
w-1i |
n M. .
(}’=| |82 o
and n 1s the number of media.
Suppose we have a sinusoidal source of plane waves acting
on the surface ie with an amplitude s , the reflection

coefficient Rn of the whole system of interfaces will be

defined as

o

Rn : _-l , (1.4‘01.2)
s
the ratio of the complex amplitude of the sum of all waves
traveling upward in layer [1] y token at the surface Ie’
to the amplitude of the source.

There ebviously must exist a relation between a) » bl
and s for the equilibrium - a dynamical one - of the surface Ig.

This relation is best found by considering the problem of
an impulsive source.

Let the source produce an amplitude S(t). After multiple
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reflections, the surface I0 will be subject to two disturbances
Al(t) and Bl(t) » analogous to a; and bl of the case with
the sinusoidal source. Suppese S(t) is short enough in time

so that the first reflection arrives at I@ after S has died
out. Then a relation between S(t), Al(t), Bl(t) may be found.

These terms are schematically represented on fig. 2 drawn
according to principles given by Bewley ( Ref, 5 ) and explained
in Appendix 1. Bl(t) is constituted by multiple reflections of
S(t) in layer 1 plus multiple reflectioms in the same layer
of impulses coming from below, Al(t) is the sum of S(t) and
a certain term A'l(t).

5(t) = A (%) - A" (%) - (1.4.1.3)

Consideration of the diagram shows that since a vacuum is

supposed to be above I, A"y is just equal to B, ( perfect

reflection).
Therefore
S(t) = Al(t) - Bl(t) . (1.4.1.4)
Now, writing this equation in Fourier integrals, we have
ol Lk = vwt < iwt
f Alw)e Aw =[ Obl(w) e A w -[ (2 (w) e dw
- a0 - O° - Qo2
and the equation
A(w) - a" (‘A))-— 63l(""’) (1;4.1.5)

must hold. This is obviously true even if the signal §S(t) is
not short. ‘

In the notations previously used, this can be written

which is the relation somght for, valid for all frequencies .
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Putting this in the expression for R, we get

b
R - 1 (1.4.1.7)
8- by

Introducing formulee 1.4.1.1, we obtain

- Q (104.1.8)
LR
or with
Q
rn-_- _I; ,
R,-_'n (1.4.1.9)
1l - rh

l.4.2 Examples.

As a verification,the reflection ceefficients for systems
of one layer and one semi-infinite medium and two layers and
one semi-infinite medium will be computed by this method.

In Appendix 1 and 2 the same reflection coefficients will
be computed by the summation method and the results may be checked.

In the case of one layer over a semi-infinite medium

P (‘+ kl‘l) e-iwt‘

- - (1.4.2.1)

R Y ] '

] (l-'&l‘) e
and
~liwt,
n e
P

R, = o, (1.4.2.2)



12
with

P\V| - FL V2

o m— _ (1.4.2.3)
A AN
This last quantity is naturally the reflection coefficient
for a wave traveling in the semi-infinite medium of properties
¢ 1> Vl and being reflected at a boundary with a semi-infinite
medium of properties (’2, V2 .

Relation 1.4.2.2 shows the relationship between the two
reflection coefficients.

Consider now the case of two layers above a semi-infinite

medium,
We have _ vw(t -T,)
cw|T +T t 2
e ( ! L)+7L‘I?.7l,£'3e.
P
( Q ) ) (&2.\+ |)(&3,1+ )
bo(-Try) ~wo (T4 T) 1 o
n, g e . nge’ (1.4.2.4)
and
liwe, _uw(t‘,tb)
Q nog © A
R = = ', - - I " (1.40205)
> e R (4. n -LiwTy -liwT “liw (T, +Ty).
* e e -y @ -, e
with
eV ~ V2
]L -
113
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Various‘theorems on the reflection coefficients can be
deduced, which are close eguivalents to those which are
obtained in the study of systems of transparent plates or of
electrical quadripoles '( see the bibliographies in References
6, 7y 8 and 9 ).
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2. Non-homogeneous media.

2.1 Introduction.

The problem of the determination of the waves which are
reflected and transmitted by a non-homogeneous layer with
parallel interfaces sandwiched between two homogeneous half-
spaces when excited by plane waves at normal incidence will
be treated using two approaches.

Fifst we will use the differential equation which gives
the amplitude of the disturbance in the non-homogeneous medium,

Secondly the non-homogeneous medium will Be considered
as the 1limit of a system of homogeneous layers when the
thickness of each layer goes to zero, the number of layers
going to infinity in such a way that the total thickness
remain constant.

Finally the two processes will be found to be equivalent,
thus showing that the limiting process which has been often
used in the past ( Lord Rayleigh, Ref. 2; Abeles, Ref. 6, etc...)
without justification is entirely correct in its conclusions.

2.2 Validity of the limiting process.

2.2.1 Use of the differential equation.

Let a slab of inhomogeneocus isotropic material II be
comprised between two half-spaces of homogeneous media I and

III with parallel plane interfaces at abscissee 222, and 2=Z,
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( with the 2z axis perpendicular to the interfaces ).

The properties of medium II will be supposed to vary
enly in the 2z direction and to be continuous across the
interfaces.

Then if a sinusoidal wave arrives in medium I at the
boundary Z=24 with normal incidence part of it will go through
II and propagate in medium III and part of it will be sent
back to infinity in II.

This can be expressed in our notations by

-u‘o}_.j tu"'—.}
= o_ e : X_ e Vz
e T A - ’ (2.2.1.1)
oL, T
ag = %, 2, () % e () (2.2.1.2)
and
-iw’s:z‘
Ve
u_ = O\ﬁ e
n s (2.2.1.3)
with
VI = \/(‘?.\ , Vﬁ—/‘- = \}(‘Y‘L) .
In equation 2.2.1.2 , « and «, are constants and
Z1 and 22 are two independant solutions of the differential
equation

(Qoo} (:Vt) & + (“—\‘—/’)LZ =0 (2.2.1.4)
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which is derived in Appendix 3.

Notice fhat in formula A.3.4 we used the guantity
u(z,t) which is related to u by

x
Lwk

“(f;a,'t): U._E' -2 »

By writing the continuity of particle displacement
and normal stress at the two interfaces we obtain the equations.

a vl = L2 )r 2 2 (%) (2.2.1.5a)
am = X, 2,(3) + % 2, (%), (2.2.1.5b)
- |_(:)_ o ‘_‘\_(:_’ o (ol‘ 0\_1_'(2).\. o dz"h’\)) , (2. 2.1. 50)

t A? ¥

(2.2.1.54)

Z
W o = ( 4 0\—"‘(1’)* Ly 4 Zth))
T D

It may be remarked that on the left-hand side of these

1ati h i -
equations we have exclusively cI ’ dI and aIII' The gquan

tities ¢ and d were defined as a + b and & - b in
section 1,3. |

By elimination of «, and «, from the equations 2.2,1.5

we may obtain the quantities SE ang gi as functions of

am

—

z, and 2z, provided the differential equation 2.2.1.4 is

solved.
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We get

e 2(%\]
w ("ﬂ‘( \ -
_2,(%\[(%3 L. i s 2,(3 \] £ 2

(2.2.1.6a)
Al
Cx = (é}\ 21_(‘5«,\--2.("7;\ 0\‘5« va
“m o v,
uo 2(1()) )
A2, 42, > (2.2.1.6b
al, 4.'“’2(";._)]—(,‘—,\)%[(43)7; Vs
(83 [ Fh &2
Ay _

A2,
. [ ( E')q{ -2..' (%t\ = (',V“) ( E >'¥(.]
d./ Q; Ah, v
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2.2.2 Limit of a product of matrices.

According to equation 1.2.2.9, the matrices (a) in layers
[m] ana [m') are related in the following way

a
m m' - 1 B
- 1 ¥ . . 2.2.2.1
_r] (_2, K3+1 ’a)) ( ) ( )
bm d =1 bm'

When we perform the limiting process that leads toward
a continuously varying medium, the matrices (a) at the termini
b
will becomne

= L

In order to go to the limit, the thicknessof the layers
are allowed to go to zZero while the number of layers goes to

2

infinity, the total thickness remaining constant.

Let us first examine what each matrix 1 M becomes

d+1,J
when the thickness of the layer it represents becomes arbitra-
rily small.

. . 1
It was shown in section 1.2.,2 that 3 Mj +1,j is equal to

S ¥
W ‘20«
V2 LV —‘Y
(l ¥ Ik}*‘:") e ¥ (l - &.Y""Y) e V¥
_'i - (2. 2.2. 2)
-+ W &(w ~.‘w gﬁ‘b’

with

e

fv "H

—

|

‘X—\'\,'}«

~
-
<
—
-
-
-l
-
L
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Introducing the notation
g(f\‘)x = ((’VBQ{H - (eV)'X )

one obtains

¥ (ev)y
k. o= 2 — 7,
T eV,
/k. -1 = S(?V)\(
Yihy (("")')r

This mekes it possible if log ¢V is indefinitely
differentiable to write matrix 2.2.2.2 in the form

/(l“’lz A(O\'}/PV)\'S_YY \-\-lw r.\.) _(.i%YS%, )(\\— V& )\

S
\( o\ﬁ:e\l)wg (‘-"“—64- ) ( 2 Q"? USYX.}..\(\-uw.\%+..)

(2.2.2.3)

The Taylor's expansions being absolutely convergent for
Sarw small enough, the 4 elements of matrix 2.2.2.3, which
are products of such expansions, are themselves absolutely
convergent series. They can therefore, each of them, be written
in any order without their sums being altered.

In particular, these 4 elements of matrix 2.2.2.3 can
be written as power series in S;(V and matrix 2.2,2.3 is
therefore the sum of a power series in Sﬁr with matrix coeffi-
01ents, as follows

' v\l V\._‘,;f:_’ L
' o 1_%?;*-?—5 V'Y 1 A,\(
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It is then seen that, when Sﬁp - 0, matrix 2.2.2.3 goes
to the unit matrix I in the way indicated by (2.2.2.4).

In the same time, the product of matrices of equation 2.2.2.1
becomes the product of an infinite number of such power series
with matrix coefficients as (2.2.2.4).

It will be shown in Appendix 4 that infinite products of
matrices obey the same convergence rules as infinite products
of numbers (¥).

If this is so and since the series of matrices 2.2,2.4 is
absolutely convergent, then the product of an infinite number
of such series is absolutely convergent (**), therefore simply
convergent (*%) and has a certain finite value depending
on z, , 2z, , 0(2), V(z), and » .

All the S%r will be supposed to be equal to a common
value Yz. v

Since series 2.2.2.4 is an absolutely convergent series
in.gz, the product which was just proved to exist, is an absolute-
ly convergent power series in 8 z. It can therefore be ordered
in any fashion without its value being altered.

Let it then be arranged in the following way : First comes
the term that is constant and equal to the unit matrix I , then
the sum of the terms in S}Y , then the sum of the terms of
2nd order in §—z,etc...

Now examine the formation of such terms when the number
of layers is m'-m , still finite.

The terms in S%Y are products of m'-m-1 matrices equal
to I and the coefficient of SHY in one of the series 2,2,2.4.
Similarly, the terms in (Ssjb are the products of m'-m-2
matrices equal to I and the S%r coefficients of two series
2.2.2.4, plus the products of m'-m-1 I's and the (33)

(*) see Knopp ( Ref. 10, p. 211-221 ) Tor these rules.
(*#)in the sense of product-convergence (Appendix 4,def.2 and 3)
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coefficient of one series 2.2.2.4. And So oR ...

call ')"N.U the matrix coefficients of series 2.2.2.4,
the subscript '5«' indicating what power of X’b’ we are consi-
dering the coefficient of ( in the series 2.2.2,4 with the index 'b,)

The constant term of the product is I.

The lst order term in S-—:, is

’(_Z ,Nﬂ Sy (2.2.2.5)
| i
The 2nd order term in Sar is
w'-L w1 w1 L ,
2 ['NY(-Z.-' 'Nirﬂ".z ‘N%] (7 (2.2.2.6)
yew v v

and so on .

So far S—‘l, was kept small but finite and the product did
not have an infinite number of terms. The considerations on
the convergence of the infinite product have ensured us that
the re-ordered form of the finite product will, when X} -0 ,
tend to the same limit no matter how this re-ordering is done.

Therefore, all that remains to do nov;z in order to have the
1imit of the infinite product is to make S—,, tend to O in
formule 2.2.2.5, 2.2.2.6 and the ones that would be obtained
by generalizing the law of formation of such terms.

Term 2.2.2.5 has as a limit

29
N (z) dz (22.2.7)
Z
1
and term 2.2.2.6,
Zo 2o
N (z) dz N (z') daz* . (2.2.2.8)
Zl V4
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The term of 3rd order in 03 would tend to

W v,
[, "ﬂ""%j

1

and so on.

Aoy L jh\'“ ly") oy’

(2.2.2.9)

ownly

The remarkable feature of this is that the matrix K (z) is

used in the formation of the limit of the infinite product. The

other terms remain infinitely small and do not give rise to

any integrals.

For the sake of abbreviation write

3y SUae) L qk) Y

Then .
frivy -4
N(y)= .
P 3 -toy
Formula 2.2.2.7 Dbecomes

wa}”% [y
¥

k0 | ‘
[y [ 2%

and formula 2.2.2.8

e, (B,
Y"«g,ho), -XV [V&%*L[ywv\’ﬁ

¥,

4 Ay -L:”M [:id«/-cg

k2”

)

(2.2.2.10)

(2.2.2.11)

(2.2.2.12)

dy . (2.2.2.13)
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And so on for further terms of the infinite product.

To simplify further the writing, the following notations

will be introduced.

Let the operators F and G be defined by

w
F*‘wﬁf% Ao Ay
°:a (2.2.2.14)

Y

if £ , g and x are functions of 2z such that the integrals

exist.,

These operators are linear, which means that

(F+ G')x= (G’&F)X: Fxas+ Gx,
(Fr6)sF)x - [Fo(6+P]x
&(Fx) z F("‘") :

Multiplication will be defined in the following mannee

vﬂ. 7’
(FG’)‘JC written FGx - F} ozrxv\n’

and similarly for G Fx , and products of a higher number of

operators and X .

Finally the notation { F) will mean

F() - f%/Ha, :
v,

. . ,
(FGY. FG I :f:&%[}/ oy,

setc ..

It is easily seen that multiplication of such operators

is distributive for
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(F+ 6)F x - Frx s 6Fo,
F(FxJ\—G’C): Fre v FGx

and associative for

(FG—)-x = F(G—x)

but multiplication is not commutative : in general

with these definitions and remarks, matrix 2.2.2.12 may
be written in the form

(F) +i {&D - {F?
-<{F) (F) -i{6D
or
F+ & - F
- (2.2.2.15)
-F F-v 6
Matrix 2.2.2.1%3 will be symbolically written
Foie -F !
(2.2.2.16)

- F F_.6
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This way, the infinite product may be written in the
condensed form

FeiG -F o\
oo
] . (2.2.2.17)
W= 0

~F F-v6

The convention will be adopted that the operator matrix
t0 the power O 1is the unit matrix I.

This matrix 2.2.2.17 is thus the ratio between

o a
( and
& X [a .
b 2k 1% TN
that we proposed to find.

In the following a relation between

c c

and

v a
Z=Zl Z:ZZ

will be needed. ( c=za+b , d=a-b ).

It will be obtained by applying our limiting process to
relation 1.3%.2.

g,‘. . .
- o o =87 LR, A XY .
CV \I-\‘ Y™y » V-} cb/-\rl
= < . (2.2.2.18)
A Loimwgqn} ’h . oW :{., d.
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The square matrix may be writien

(1- ‘(%*)1---) ;(w"\_“g_"_)ir;‘n:,..)(w%i,.)
2.2.2.19)
;(w%n--, ) (n&%ﬂ‘%sw..\(,-(ﬁ%i)‘,..
It can be expanded as
l o ° "%K g
o ! " “‘%7{ %—%(Qﬂe“)" o (2.2.2.20)

and the 1limit of the product of an infinite number of such

series is

o v 6 \"
2 2.2.2.21
w=o \ iG iF ( )

with the same definitions and conventions as gbove.

It may be checked that, in the same manner as

( j.)@”w'w) " )

in the same way, ) | -1
LG [} { F+'~6’ "F }
0 '’

cpwt% Lk%,\,,,}/bi/v\wt%

L/.sw,wt'x »‘%ﬂ"\( mwt"
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Also,
(o) L& W § ! Fit & - F “ o Pyt
LG 9 F ) [ - -F F-i6 v -

Notice that the matrices of the sum 2.2.2.21 do net
retain the property that matrices ﬁ4&*,’x had, namely
that the elements on the same diagonal are complex conjugates.

These matrices have the property that the elements of
the main diagonal are real and the elements of the other

diagonal are pure imaginaries.
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2.2.% Synthesis.

Equation 2.2.1.6a shows that g%i is a linear combina-
tion of Zl(zl) and Zz(zI) where Zl(z) and Z2(z) are

independent solutions of the differential equation 2.2.1.4.

[
It follows that - , considered as a function of 1z,
gl

must satisfy the differential equation 2.2.1.4 where the

variable 2z 1is replaced by Zq-

By equation 2.2.,2.21 we have

(o) LG \" o

[ oo o i
_( Z |
( ”\:) weol|ie 1F ot (2.2.3.1)
since
CE—_ = 0\35; = Aﬁ'
Cx

Therefore the quantity am 25 obtained from the limiting
process is equal to the sum of the elements of the upper line
of the matrix

oo o ¢ 6 \"
2
wz o ¢ G F

or

<[Z () "—"‘;'—(’)q] ‘”(”l—-‘;)>v (2.2.3.2)

as computed in Appendix 6 ( formula A.6.2.13a).
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We will now proceed to show that this function of =z

1
satisfies the differential equation 2.2.1.4.
This equation may be written
Az (% A 2
il £ AR i)é_ +72=o (2.2.3.3)
o\/}, U Ayl My

with

the sazme notations as in 2.2.2.10.

Now we have to compute the first two derivatives of the

function S (2.2.%.2) with respect to 2,.
an 1

Phe first one is

. Ar
4 (f_’;) = - ioy) ~ (2.2.3.4)

The second derivative is obtained easily if we know

;-\_(e‘.z).

RN

From Appendix 6 (formula A.6.2.13%b) we know that
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%‘f; <r’? [? lf->“(cv‘_\_'__§)“] (1+:6))

(2.2.3.5)
Then

Az

%‘«.(# -ialx) Pt ) - 16 _—f (2.2.5.6)

for

q:=0

<[.- z(m( }](mcr _E>

2z . <[z () c,~) ](|+LG)+F~ 7 eV (e ))(mc,)>

A-
Vxidey -6 °\I> <F "> ' (2.2.3.7)

Whence

|

Y Am

i'L (Z)-¢ ‘_"x(ﬂ )?) v 4o ly) i(’;;)

(2. 2. 3.8)
and it may be verified by putting formule 2.2.3%.2 , 2.2.3%.4
and 2.2.%.8 into the equation 2.2.%.3, that <X

am

-

as computed
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by the limiting process satisfies the differential equation
for the nen-homogeneous medium.

Furthermore %ﬁ; as evaluated from the limiting process
obeys equation 2.2.3%.4 which is identical to the equation
obtained by differentiating 2.2.1.5a with respect to 2., and

1
(=, Az, x, ”\0\—%—; ay, by its value taken

Ay

replacing
from 2.2.1.5c.
These conclusions are true for all Z1 for we will

assume that the differential equation has no singular point

in the range in which we are interested.

If we make 2 tend toward Z5 keeping the same laws

1l
of variation of density and velocity
e= e,
V: V(‘y\’

it may be seen by the differential equation approach ( see
equations 2.2.1.5 ) that ¢, and d,; tend toward a .

By the limiting process, we also get the same result, as
may be checked on the forms 2.2.3%.2 and 2.2.3.5.

Therefore the function of 2z, , % , obtained from the

limiting process (formula 2.2,3.2), which is a solution of the
differential equation and has the same value(l)and the same
derivative [-ig(z2)) for Z,=%, as the corresponding function
of 24 obtained from the differential equation(and given by
formula 2.2.1.6a),is identical to ithis fonctiom.

dr

It follows from equation 2.2.%.4 that the value of
given by the limiting process (formula 2.2.3%.5) is identical
to the corresponding function of 21 obtained by the differen-
tial equation (formula 2.2.1.6D).

This is true for all values of Z5 .
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Hence the final conclusion that the limiting process and
the differential equation approach give identical values

Az

for $X and 2F and therefore also for AT and 2_’._5 .
am am am axE
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Appendix 1.

Computation of the reflection coefficient R, by the
summation method.

Let us make use of a convenient way of keeping track of
waves during their multiple reflections which was given by
Bewley (Ref. 5)

Time is represented by the abscisse and each interface
is drawn perpendicularly to the ordinate axis, nbt according
to its depth, but to the sum of the thickness of the layers
between the surface and that interface divided by the corres-

ponding velocities.

In other words, the ordinate of an interface will be
proportional to the total time it takes a wave to arrive
there from the surface without any reflections.

This way, the travel time curve of each wave is a straight |
line. All of them have the same slope in absolute value on
the diagram,

As a result, one gets simply the sum of reflected waves
with their time delays at the surface.

Teke now the problem of one layer and one semi-infinite
medium ( see fig. 3 ).

The amplitude of the reflected wave at the surface is

-uun, ¢ “GiwtT

AN (4
L1 tron

since reflection by Io is total.

Therefore ~UeoT,

IL‘I (3

R,:

-Uwt,
| h."i e
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Appendix 2.

computation of the reflection coefficient R, by the

5

summation method.

The process of multiple reflection of an amplitude s
in a system made up of two layers on top of a semi-infinite

medium may be decomposed in the following way :

1) The amplitude s sent by the source is multiply
reflected in layer [1] ( see fig. 4 ). A total amplitude
As ( counted at the surface Io ) is sent back up while an
amplitude A's ( counted at I, ) penetrates into layer [2).

2) A's is multiply reflected in layer [2] and this
process causes a total amplitude Bs (counted at IO) 1o be
sent back up into layer [1] .

3) then Bs is reflected into Bs by Io and steps
1) and 2) can be applied to ( A+ B )8, yielding an amplitude
( AyB )Bs arriving back to I,-

4) by continuing the same process indefinitely we get
finally as a total amplitude reaching Io:

hy
ArBYs + (A+B)Bo + (A+BYBs +--- = ‘:HB ~
and the reflection coefficient
PrD
R,5 =
1-B
Clearly A equals
. —uwt‘ -uwt| _Uw'l'., t
ML, (""h‘,?_e + (h"te ) ""‘)
N -Uor,
e
: 1,1 — . KL ]
Vo | o uuwt,

1 €
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The computation of B requires moere attention.

Was transmitted into [2] , measured at I, , the

1
amplitude

-lWT
D(\-n'ﬂ.)e ‘.\_/3(\—71“7'\(72,"13 )* -

—\‘.w:\
»Ali-n 1) e

~LiwT,

n

was reflected upward, at I, , an amplitude equal to

2
L (T, T)
sr-n, 4)e

\nh‘te

-ini,_

n. e --- >
- LWT, ("'1,3*' 3 2,\’“1,3 v

—tw(r, v Ty
”("' nl,i) h'l,% e

= -%iwT,
("’lv,le— )(l’“—l,\nlr'se

0f this quantity,

- ?_iwt,.)

v tw (T,
~ (|’,"I't) nt,‘& e

~liwT,
(“""',Le )(‘-"7_,\711.,3 e

-liw tt)

enters [l] ( measured at I ).
And finally arriving at I9 s, we have

¢ -uw(ln‘*'Tt,)
(""'1,1,)"*?,,3 e »
= T ~tlwT
(1-m, g e-uwt')("lt\"lﬁ ¢ L>

BA

Hence e, Uw (T.-!-'EL)

n e
L"le, + 1’3

R ht+d

37 = ~Uwr, ~LWwt, -Uw(T,+T)
t-B v-nge * R, R 2 -Rya e

)
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Appendix 3.

The differential equation for a non-homogeneous medium.

In the most general case this equation is

dui, 2 (n0). 2 [ (¥ b‘“}
e bbt_ bxg_( )+ {P 2 )\

(A.3.1)
where the indices 1 and | - and a 3rd one Xk -~ are used

to label the three directions of space ( Bullen, Ref. 3%, p.21 )
In this equation u and x denote the displacements and the
coordinates in the direction i, Jj, k;

© is the dilatation and ¢ , A\ and pmare the density and
Leme's constants of the material.

Considering plane compressional waves propagating in
the 3_2 direction in a medium whose properties € \ and ™~
vary only in this same 2z direction, we have

0. M
Y
?_?_‘_ _b_}_z’é_‘: :'bﬂ =0,
dx, dx, x, 2%
“x‘—"‘—xt—o

Then, calling u, , u, equation A.3.1 becomes

('D th\k
=L = =) . .3.2
ot ("D"r(e oy (A-3-2)



37

Were the density constant, this equation would reduce %o

T D (ytde

——

Dt‘ 'b‘\/ 'b%/ ’ (A' 3' 3)

Separating the time and space dependances in u , one
transforms equation A.3.2 into

yAN L3

ev My

(ev) 2 «(2) 2 =0 (A-3.4)

with
Lwb
w(y,b)- 2(y) @

It is interesting to note that equation (A.3.4) depends
only on

i(—Qooh, ()Vt)v and % .

Aother form of it would be the TLiouville form
oL 1 A2
2 (ev __)a—(o el=0 (A.3.5)
(e 5 |
. 2 2
depending on eV~ and EwW".

This form makes it easy to use Sturmian theorems on

the number of nodal planes in a given non-homogeneous layer.
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Appendix 4.

On the convergence of infinite product of matrices.

Definition 1.

The modulus of a matrix A is defined as the matrix whose
element r,s ( row r, line s ) is the modulus of the element

r,s of A.

It will be written [A4].
Then

( 1Al )r,s= (¢ A )r,s“

Definition 2.

M infinite product of matrices 1 (I+A.) is said to be

ye

convergent if, a number ¢ >0 being given, no matter how small,
there exists a number A »o such that

. A
, "V:l(]:-'. Y R,»r <

for all r,s and for all m's such that m)k.

Definition 3.

o0
An infinite preduct of matrices 1 (I +4A. ) is said to be
=4
absolutely convergent if the infiniteypreduct 1 (I+A.]) is
convergent. re K

Lemms 1.

When three matrices with non-negative real elements Al, A2,
A3 are such that

then

(A)n s & (&), o forallrs
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This is ebvious since by the law of matrix addition,

( A )r,s = ( Ay )r,s + A3 )r,s'

Lemma 2.

If four matrices Al

elements are such that, fer all r's and s's.

(M )pg € (A5 g

( A2 )r,s £ ( A4 )r,s'

’ A2, A3, A4 with non-negative real

then
(& A )r,s < ( A3 Ay )r,s for all r and s.
In effect, by the law of multiplication of matrices,
( v ) )r,s = (4 )r,p - (4 )p,s
with Einstein's summation convention.

Similarly
(A5A4)r,s=(A3)r,p‘(A4)p

But by hypothesis, the non-negative quantities ( A, )r,p ’
( A, )p,s ) ( A3 )r,p , Ay )p;s are such that
(A dpp € (A ) o
( Ay )p,s g Ay )p,s ;
therefore ( A A, )r,s is not greater than ( Ay A, )r,s

whatever r and =s.

Lemma 3.
Lemma 2 may easily be extended to run as follows.

If n matrices Al’ A2 cose An, An 1 e A2n with
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non-negative real elements are such that

(Al )r,s < (An+1 )r,s ,
CAy)rs € (A 0 ) ,

se e

(An)r,sé (AZn)r,s ;

then

,( A Ay eeee Ay )r,sé( Ay vl Bngoerer Aoy )r,s

whatever r and s.

Lemma 4.

If two matrices Al and A2 with non-negative elements are
such that

( A1 )r,s < AZ )r,s

then

(e Al) r,s é(e Az)r,s

By definition of the exponential of a matrix

(Al TyS

A
[0 M) paz (Tp v (h )y v =20

Since by hypothesis ( A )r,s < ( A, )r,s y by lemma 2,

( A12 )r,s € ( A22 )r,s

and by lemmaz 3
' n n
( A1 )r,s ¢ A2 )r,s

A
All the terms of the expansion of ( e 1 ) are smaller

’
or equal to the corresponding term of the expansion of ( eA'Q )r, s
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It follows that
: A
(el

Jps & (e )r,S .

Lemma 5,

If the series of matrices with non—negaiive real elements
O zA.
2 A.b’ converges to a sum L, the matrix e' ¥ jis bounded
¥=!
L

. | Z. Py -
by e ( in other words (ew"' )a » < (e )a,o ).

If by hypothesis thz‘feries Z Ay converges to a
sum L, the partial sums Z A . are such that their

'}:l b,

elements are bounded by the elements of same row and line in IL:

Then by use of lemma 4

L
ZA?f

(7

Theorem 1.

O
A sufficient condition for an infinite product [1 (T+A§)

a’,:l

of matrices with non-negative elements to be convergent is

o
that the series 2 f\k be convergent.
3=
In effect, noticing that
Ay o A
¥ 5 Av
+ A, = ¢ - - ’
ws1 wl
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we deduce by lemma 1 that
. ‘ A
(I +A )r’ss(e W)r’s

By application of lemma 3,

L A;
p 2 ¥
(n (T+ ﬁx)) < (.ﬂ e )h,/)
a,

%‘-?—l ):I
or ‘ % )
k ’}:Ih‘(
(ﬂ (T + ﬂﬂ) < (e
%:l ny A )l’/-)

Now, if 4 is allowed to go to infinity and the series

o°
2z A;‘ converges to a sum L, then certainly the partial
): ! A

sum 2 A is bounded by L.
e ¥

Because of lemma 5
9
%=|A$, ( L)
(e £ & Iy,
n.o»n

7

and

! 1A
L
The partial product [l (T +A V) is bounded. As all
. );:-I

the elements of A are real non-negative, when /Q increases

¥

the partial products increase monotonically.

Therefore the infinite product is convergent. We might
add tha‘t it converges to a limit such that its element r,s is

not superior to ( e L )r s
’
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Corollary to theorem 1.
A sufficient condition for an infinite product of matrices

o>
n (Ia Axf) to be absolutely convergent is that the series

Yz eo°
Las A}f be absolutely convergent.

'v:l

Lemma 6.

If A and B are two matrices with real or non-real elements,
then for all r's and s's

ABlpe € Clalizl),,

where |[A]| and |B| are the moduli of matrices A and B as
defined by definition 1.

By the rules of the multiplication of matrices and with
the summation convention, we have

(AB) = A B

r,s = “r,p “p,s
Then
|43 rys — lAr,p Bp,sl
and
(allBl) o= 1AL, S Bl o -
Since

we deduce that

A Bl s € CI1al.IBl), 4

Lemma 7.

If n matrices A‘, AL,....,JX“ have real or complex

elements,
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|4 Ap ceee Al p g & O TA e 1A ] )y o

for g811 r's znd s's.

The sign - corresponds to the case of real elements.
This can be shown in exactly the same way as lemma 6.

Theorem 2.

If an infinite product of matrices is absolutely conver-

gent, it is also simply convergent.

OO0
By hypothesis N (I+ |A-b,\) converges ( see defini-
tion 3% ). Y=!

Since

II+A8l rs sl If‘A%l )r,s

for all r and s, by lemma 3

(ﬁlll_ﬂq.}j])no 4 (il(1+‘ﬁ%\))
v : ‘

with m 4.

By lemma 7, we can write

l ;1(11» A}f)\",o g(_;‘l_—‘elx»f AX\)A

and finally we obtain from this inequality and the preceding

PR

one the relztion.

| 0 (T4a) é(,ﬂ (IHA-l)
'v=l 1 II,D y:l U ﬂ,l) /
otherwise written

WA

£ \ n l(x*m%’\nn

-

1 (zapl,, Y

2

a¢
)
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since

(;ﬁzk(r»f\hm)h,b ;‘sl(‘;"‘%‘)\,‘,,} ’

o0
since the product [ (I‘HH-U\) converges, by definition
X:—i

2, given a number €>o0 , there exists a number Ao such
that

] ;\“l (I”Aw\no x:
x: )

whatever r and s and m such that m > L .
It follows that

‘ﬂ (I'\'A'UB\ <&

non
}:L 1]
for the same value of /f, and also whatever m such that m>2 .

Do
therefore the product 1 (I &+ ('\b,\ is convergent.

y=4
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Appendix 5.

On Lucas polynomials and their computation.

They can be defined ( see Lucas, ref. 11, p. 308 ) by
the recurrence relation

Unz Y Yot - 20uiy
where Yy and Y are integers positive or negative whose product
is not zero.

this definition will be here extended to any values of
and Y , real or complex,

The initial values have to be given and will be taken by
definition

If \| and \1 are roots of the equation

\t_\()\ +Y:° ’
\\A w
_)\_"_\1 is the polynomial VY (¥,? )

ThlS is shown easily by writing the first terms nsl, n=2

and showing that the quantity \ = )‘ obeys the recurrence

formula . M - )\
n =1 , }Ll;}_:‘ = 1
PNER
n =2 , MeMoNa N Y
A-~)\

|
I
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The general formula for U“ (\‘,S) is

) ) TR
U“(Y’S)____ Y“-l—(“:l) V“‘%X,,_,___, (_‘)Y(v\-;-p);‘ Y- );””

-1 -1
It terminates at the term of rank ‘ﬁ-z— if n is even, %
if n is odd.
This development will be verified by recurrence toeo.

It can be seen to be true forn = 1 and 2.

Let it be true for Vwn.. and Un.-o
" ; \.\-l' . “-.‘ -2 “-2?7"‘ .
Swe [T e T )y T ]

B VA o RO @-)"’"(“;}"l}Y“'l"‘ﬁ'ﬁ -

and since
w-y-t w-y-1 Wyt
( . + . = ( o > ’
L v y
the expansion for U, is verified.

Lucas defines another polynomial ( Vn in his notations )
which will be denoted Wn here such that it has the same
recurrence law '

W :\(W“_‘-XW

w w-9

but different initial values
L
W‘ - Y ’ WL - Y - 2' 5- .

It is easily shown by the same methods as above that
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w W
‘N“- \+X1
and that
w=V Wa
1 w
Wy 2 (Wy) - 13
Also
.1 + U W )
U“+“, - 1[U“W“. A" “]

These last two formulse together with
. e -9 -
% w-§ w-yh M
* w(n-3) § +--+(-‘\Y:-( ¥ /Y -

W“(\‘,S):Y -1\‘-‘6 é—+h—_l.‘l Y Y

and
L[ W wy- (Y- 43 000 ]

can be used to compute U. when n is large. This process is
faster than using the general expansion for U,,.

Suppose 023(j(,5) is needed. We can use the follewing

equations
- )
Ugy = ’i_( 3o W3 + U3 Wy, )

L
Lo

11]
-
L
-
o

s
1
—~
2
°
‘/f‘
'
o
o1
°

fo <

{ ]
—
o
(7N
—
~
1
ro
oA
v
e
F
]
ro
o
Y
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2

Us = \6"'_3\‘?'3‘4-3‘

’

t

Wee x-Sy TR sy

A
U3= X‘%—,
3
R SV O
\/\/5~x ?’} 7

and UL‘5 may be computed quite rapidly.



Appendix 6.

oo o te \
On the series Z ~
"o\ L6 F
A. 6. 1. Summation of operator series.

The operators F and G have been defined by the
equations 2.2.2.14 and F is simply %F.

The notation ¢ )  and properties of the operators
F and G have been defined or deduced also in section 2.2.2.

Bquation 2.2.3%.10 shows that the quantity % is equal

t0 the sum of the elements of the upper line of the matrix

oo o LGV
22 | (A.6.1.1)

W=z 0 l-G' ?5

and the guantity g is equal to the sum of the elements of
the lower line of the same matrix.

. Cr °l'1 -
So in order to compute o om 'V need to explicit

the matrix sum A.6.1.1 in terms of F 's and & 's.

This series cannot be summed &s a geometric series of
ordinary matrices would since this woﬁld necessitate the use
of inverses of éperator matrices, This in turn would be possible
if inverse operators to F and & could be defined and this
in general cannot be done if these inverses are to be of the

P

same type of operators as F and 6.

In order to see that, it can be shown that there is not
in general any unit operator of the same type as F anda 6 .

Suppose K be such a unit operator; by definition it satisfies

Kx = X
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or

%2

/ A x Ay = x (A.6.1.2)
v,

where k¥ and x are two functions of =z such that the
integral exist.

This integral equation cannot be solved unless X 1is a
constant. Therefore K cannot be the unit operator we wanted
it to be.

And if there is no unit operator, there is no definition
possible for inverse operators. Also an operator matrix does
not have any eigenvalues or eigenvectors.

Therefore we must resort to other means of computing
the sum of series A.6.1.1.

The first step will be to compute the form of the general
term of the series

. n
0 ¢ G

i & F
in terms of products of F's and G's. This will give the
ef

general form of =% and %I
am am

Finally various formulse will be found that tie ¢, and ;.

A. 6. 2. Computation of the general term of the series..

We will here make use of the formal similarity between
matrix

o LG
h: ~ (A06-2ol)
L6 F

and a matrix of numbers.
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A matrix of numbers can be diagonalized by a " similarity
transformation " and then any power eof that matrix is easily
computed.

This cannot be done with matrix A but we can nevertheless
symbolically write it as

e  iG N o SN, 6T -

xT\ : (A.6.2.2)

which will behave as true so long as we observe the follewing
empirical rules :

a) \L and \‘ which would be the seigenvalues if A
were a matrix of numbers, will by definition be such that‘\r+kl
will be put equal to F  and N\, \,_ and \L\ equal to G".

This is exactly parallel to the result we would have,
were F and G numbers. Then the characteristic equation
of A would be

\}\t_ ";}\-\' G’Lzo

and we would have

b) the multiplications in the matrix product A.6.2.3
must be done in order and XH\\_Gfl will be put equal to G .

c¢) the division by )\L - >\, may be done any how, from
the right or left.

These conventions will, when observed, make the preduct

A.6.2.3 , otherwise absolutely meaningless, represent the
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operator matrix A.
If they are applied to the product
. -1
(6 G\ [N\ o\ (-t G -

) (A¢6o2.3)

w-! w-t “ “
_G\"-\‘ G L(y\t'\' \
\,- N, LY
(A.6.2.4)
“ w4t w4t
v \‘L-\t G’ \1 - \‘
VY N, -\,
This can be written
-6y, (F 66 (6 U, (F, 6%
(A.6.2.5)
L U“ (E,G}) G U\o\i-n( F)G})

where Uu( F,G}) is the Lucas polynomial of order w of F
and G . Lucas polynomials of numbers are discussed in
Appendix % where the original definition of Iucas's was
extended to complex numbers. Here a further extension is done
by considering polynomials ef operators F' and G- . The
recurrence relation is

~ L
V. = FU“H-GU\.-L

wn

where the multiplications must be done in that order. This is
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a convention that has te be observed in order to assign a
meaning to the matrix A.6.2.5 , as well as the following
further rule.

The terms of the form
woy -t )
Y ~ Wn-1y -\ R
At S

¥
obtained in the expansion of the Lucas polynomials ( and they
will all be of this type ) must be interpreted as the sum of
all the permutations of n - 2j - 1 F's with j(62)'s.

As examples, 2%@2 must be put equal te §G24—G2§;

3F6Y 10 G FG +FGy ¢'F | etc...

This interpretation is consistently parallel to the

2

expansion we would obtain, were F and G~ numbers, for the

n-j-1
coefficient ( ) is precisely equal to the number
J ~ 0
of permutations of n - 2j - 1 F's with j(62)%.

This final convention has the merit that by its use
the matrix A.6.2.5 becomes " equal " +to the matrix AD.

It is easy to verify it for small values of n and by
recurrence for any value of n (*) , thereby providing a
general check and justification for the step taken in writing

A2 in the form A.6.2.5.

From this we can immediately write

o /O LG\" C ot om -60, G VR
2 ( =( )+z (A.6.2.6)

w01\ / E (2] ' s
‘-6 L N ;U“G Uh“"

(*) Note that by this recurrence demonstration, A" may be shown
to be equal to A A%' and not to A""'. A. For under the
form A.6.2.5 A" and A do not commute. This is due to
the convention on the recurrence relation for Lucas poly-
nomials of F and G for otherwise A can be shown to
commute with any of its powers.
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with the previously described conventions, which yield the
following useful formulee

F

oo ~ . =t
VT o e s ()
am = |

(A.6.2.7Ta)
D
2 14T L UL(F 6N 6 U, (F,G)> ) (A.6.2,7b)
A!ﬁ— Wz |
with

U, -0 when j £0,

Y
U, = 1,

’ ~ L
U“= FU\»\—I -6 U“_L ’ n > 1

-~ (s
From this, and noticing that U, (¥, & ) is an even
function of &G , if ng ’ C2q+l ’ qu ’ D2q+1 ( g beihg an

integer ) are respectively the sums of the terms of SX and "_L;C.
which contain 29 and 29+1 G's , we have _ ‘s =

‘.. (--)q<6[2“ (“:\:l)?wzﬂ Gz(q—')]6> ,
n >2¢> 0, (A.6.2.8a)

e e [3 (T,

n>2q+1>1, (A.6.2.8b)
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& u—Q) ~w-1q9 Uq
= (—l\ <Z‘;‘ ( q F G’
n>,2q>0 ’ (Ao6.2.80)

> _ (-»\\qi <$§ (\A-:-‘)'F\V\-lq-l G‘l“] 6’?;

Lo+

These quantities are related by the following equations

GP :‘) = C G- 7 q >/O ] (Ad6¢2a9)
Lo Lo+
- - G >0 A.6.2,10
C‘Lq+ . G:DQq , q ’ ( )
th“_' - [ 32‘\ G ’ q > O L] (Ao6. 2.11)
“Also
- . Ax
= .6 g AR (A.6.2.12)
L am Ty

may be derived directly from the equations A4.6.2.7 .

c—-
A generzl form for 0—; and % may be written which~
is a function of & and i;L:: only, meaning £ F

I-F I-F y=o

([2 (\c‘(G———-G)]('“G—~)> , (A.6.2.13a)

1-F

A \ e Y Lyl L
:‘:’_;<T}[Z e (6 T‘?>](H (’)> (A.6.2.13b)
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L |
where, for example, (G- T—ﬁ;) means

3

Lt G-l | - e - G

G I-F I-F : I-F

\__/ \_/. \_/
~~-_qtv\~\.v>_-"

These two expressions may be checked to be true by
verifying that they give for each quantity ch ’ 02q4—1 ’
qu ’ D2q+_1 exactly the same number of terms as formulea.
A.6.2.8 predict without omission nor rep#tition.

It will suffice to give one example .

D2q is given by A.60.2.1%b as
o i v 1 \4
- — G —
) -?( I-E\ >
or
0°~‘, LOO o\—-), t”F¥ ‘0’??
(N FT) CEFT R et e

~ n-gq
The terms which contain n - 2q F 's are ( ) in
. A q
number as can be verified for the first values of ¢ and n

and by recurrence for higher values., Therefore the expression
A.6.2.14 has all the terms given by A4.6.2.8c and mone other.

Formulse: A.6.2.9 %o 12 may be checked on the forms A.6.2.13%.

Further relations may be obtained immediately by inspection
from the equations A.6.2.13% :

-~ G D =D & S
l-o";- zq" l‘\ 7 (Aob. 2.15)
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(A.6.2.16)

(A.6.2.17)
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" II. THE DETERﬁINATIOK OF SEISMIC VELOCITIES IN LAYERS WITH
NON-PARALLEL INTERFACES.
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INTRODUCTION

The problem of the determination of the velocities in
homogeneous isotropic layers separated by plane interfaces
has been solved exactly when these are parallel ( Durbaum,
Ref. 1; Dix, Ref. 2 ).

When they are not parallel, approximate methods had to
be used.

However such iteration methods as were described by
purbaum and Dix are not necessary since velocities and dips
can be computed by exact formulas to be given in the present

paper.

GENERAL. FORMULAS

Hypotheses.

The only case where all strikes are parallel will be
considered.

The interfaces are assumed to be plane surfaces and all
layers isotropic and homogeneous.

First layer determination.

By the use of Pflueger's (Ref. 3) formula the velocity
can be determined through the knowledge of times and distances
at the surface.

Favre's formula (Dix, Ref. 2) mzkes the calculation of
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the dip possible from time measurements only.

Finally the position of the interface can easily be
determined.

_Determination of any layer knowing the layers above.

The principle of the present method is to determine
the layers one by one in the order in which they send
reflections to a given set-up of a shot-point and a surface

receiver.

Let the velocities in the mn-1 first layers and the
dips and positions of the mn-1 first interfaces be known.

By shooting reversals the angles at which any ray
reflected on the n-th interface starts from and arrives
back at the surface may be known ( Dix, Ref. 2 ).

Therefore the branches of any one ray going down from
the surface toward the n-th interface and up from this
interface toward the surface can be either constructed on
a section or computed by methods analogous to those of
Dix and Lawlor ( Ref. 4 ). ( See also Durbaum, Ref. 5 ).

Also the travel-time of any ray inside the n-th layer
can be computed.

We are then confronted with the problem : how to find
the relative dip € of the interface I, with respect to
I,.1» the position of point O ( see fig. 1 ) and the
velocity V of the n-th layer knowing the travel-times

Tl, T2, etc... of rays between A1 and A!

l L]
. ®
It Ay and A'i are corresponding points of the two
families of points Al ’ A2 eos and A'l ’ A'2 ees and if

l H A2 aﬂd A'z,
etc... of known position on In

X; = 0A; and x', - OA', , we have with m - tan 6



L.

€3

Fis. |
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1+t

NI - l'.wtact /(|+\Mt)t+[ac;v(l-wt)/(\+v~})~x’[} . (1)

2

Taking one of the points A as a reference point and

calling X its abscissa QA , equation 1 can be rewritten as

VT e (303 o T Te (X030 o) (2)
where
.= x;-X
o« s bow flew)
and

Three such equations as (2), where the unknowns are V ,
& and X , will suffice to determine these 3 quantities
knowing Ti,gg ,X} .

Such a system of equations will be writtem with point A,
as a reference (?) = 0 ) - It will be chosen such that rays
1 end 3 are normally reflected on I (fig. 2). This simplifies
the equations but, what is more important, just one surface
set-up will furnish all the necessary information.

As a matter of fact, although one set-up of two surface
points'is enough, it will have to be shot once at each end.
Furthermore additional receivers will have to be laid on the
line near the two shot-points in order to give a time-distance
curve from which to get the angles of arrival of the rays at
the surface.
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The system of equations is

Vzilzz «" X", (3)
t

B PR A I ST AT R R] PR A

VP2 o at (%3 (5)

since 5_‘ = IS =0 ( rays reflected along themselves ).

From the system of equations 3, 4, 5 the following can

be derived :

X. 8, T/ (-7, (6)
Ve T[T X (13, r TR L3, (35O @
sim 6= V(R-T)/L3 =VT, /aX (8)

or expressing all quantities in terms of T, T,, T, >c,’s“§3
and r,_

’

VI DT 5 05, 8 TS ) B ) (5 T )

and
st 0 5, (5T [ 3 (003 (13, BT )-3 60550

(10)

In order to get X, V and © , use can be made of
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equations 6, 7 and 8, as follows.

Equatioﬁs 6 and 8 give X and O easily and then we
can extend Pflueger's formula to obtain V.

Let T and T'3
normal reflection on I, of fictitious rays going through
A, and A', (fig. 2)

be the times in layer n for a

The velocity is given by

R A A R (11)

end the fictitious times T'l and T'3 are

Tl

1= @+ %2 / X1y . (12)

and

T'

5= (L +(F,+8,)/ 0 =141 &0 3)

As can easily be verified, equatiog 11 is of course
but another way of writing (7). This form is the basis of
the slide rules construction ( see fig. 3 ).

The rule with two sliders gives the quantity

A=T'.T

13

by following the procedure here described : Put the arrow
of the lower slider ( the one that bears the scale of |+
opposite the desired value of l4—§é on the very lowest scale.

3+) )
X
Then put the arrow of the upper slider ( with the scale of Ty )

opposite the desired value of | + ?{7F5’ and read the value

of A on the higher scale opposite the value of Tl on the
upper slider.

When this is done, use the other slide rule. Put the
arrow of the slider opposite the value of T22 - A, correspon-
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ding to the given T, and the A Jjust calculated and oppe-
site the value of 52 on the slider read V on the upper
scale.

If a value of a given variable is not on the correspon--
ding scale, one must use the homogeneity properties of formu-
la 11. For instance, suppose 5; equals 600m., use EQQ? = 200m
which is on the scale, read V opposite and multiply 3this

value by 3 .

LIMITATIONS OF THE METHOD

- Accuracy of the method itself.

The errors made in the determination of X , € and vV
of a layer depend on the errors made on all the previously
calculated layers. This is a very serious disadvantage.

However, when the geological section contains a series
of consecutive parallel interfaces the Dix-purbaum method can
be used for this series with benefit.

Namely, the error on the velocity in any of the layers
in the conformable series will be indepehdent of the errors
on the velocities in the layers of the same series above.
However it will still depend on the errors on the velecities
in the layers above that series.

We saw that, at the beginning of the procedure for the
determination of each layer, we have to trace 3 rays reflected
~on the lower interface which limits that layer. Two of these

rays are parallel since both of them fall perpendicularly on I,

Use can be made of this fact by employing the formula of
J. de Caleya ( Ref. 6 ) :
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\ i - - 14
2§3,i sin s; = V; ( %, = Ta,3 ) (14)
where gs; is the distance between the two parallel rays

/

on the interface 1 » Sy is the angle of the rays in

i-1

medium i with the normal to Ii—l ’ Vi is the velocity

in layer 1 , tn 1 and tn 3 the total times along the two
14 ?

rays ( numbered 1 and 3 ) that are going to be reflected

normally on In'

Applying the formula 14 to the first layer, we get

2D sins =V, (1% ty (15)

1 n,1 = %) )

where D 1is the distance between the shot-points.

This formula can be used for the determination of s ,

instead of or as a check to the method using the x2 - sz
graph ( Dix, Ref. 7, p. 125; first proposed by @reen in 1938,

Ref. 8 )

But in order to determine the angles of departure and
arrival of the ray number 2 not reflected normally,no other

method than the x2 - TX2 graph is available yet.

This method requires for a good accuracy that, by the
use of Hansen's field technique, as large a distance D be
used as possible ( Dix, Ref. 2 ). But a limit has to be set
to it because of the limitations imposed by the hypotheses
we set ourselves first., The larger D , the more influence
the curvature of the interfaces will have. Furthermore, the
more danger there will be not to find good correlations from
record to record.

As all errors on previously calculated layers influence
the calculation of any layer, an error estimation becomes
rapidly involved.
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However, an order of magnitude of the errors to be
expected can be computed without difficulty for the first
layer,

Maximum errors have been computed for the determination
of the first layer in various cases. They are given in the
following table where D was taken equal te 500m and the
maximum errors on D and the times were supposed to be 1m.
and .010 sec. respectively ( but the times T, » T, and T,
do not differ by more than 2 milliseconds ).

The figures in each block indicate from top to bottom
respectively the maximum error on the velocity, the distance
X and the angle 6 .

V = 1500m/sec

© 50 10° 300
T0m/ sec 100m/ sec 165m/ sec
500m 122m 62m 23m
16t 18! 20¢
180m/sec 340m/ sec
1000m 270m 140m
131 13t
330m/ sec
5000m 455m
12?
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V = 4500m/sec

e 50 10° 300
625m/ sec 885m/ sec 2100m/ sec
500m %65m ' 185m 65m
49¢ 55¢ 61!
1595m/ sec 3010m/ sec
1000m T795m 405m
39¢ 391
2950m/ sec 5790m/ sec
5000m 1%3%0m 680m
351 351

The blank blocks were left so because they corresponded
to reflection times too large for the corresponding evenis
to be recorded ( times greater than 2 seconds ).

It may be seen that other things being equal, the
accuracy on V 1is better when the dip is small, or X small,
or V itself small ( that is to say if X and V are kept
constant, for small @ , or if V and & are constant, for
small X , or if X and O are kept constant, for small V ).
Naturally when V and X and © are small, the accuracy
on V is the best.

The accuracy on X is higher when V is smaller,
larger, X smaller.

The accuracy on O is higher for smaller V , larger X ,
smaller © .

We may presume that these qualitative results can be
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extended safely enough to the determination of a second
layer, ‘

If this method were‘used, an error estimation should
be done because in inadequate cases, the error may be guite
large. For example, see in the case of one layer, for
V = 4500m/sec and X = 5000m , the error on the velocity is
larger than 100%.

It weuld}be difficult to give a general idea of the
values of the maximum errors to be expected even in the
rather simple case of two layers because of the number of

parameters involved.

-Limitations due to hypotheses.

The present method is applicable only when the hypotheses
for which it is valid are verified in the geological problem
to be explored.

First it was éssumed that all strikes are parallel and
that the profiles are shot in the plane that contains the dips.
If this is not true the method can be extended but to the cost
of increased complication and time-consumption.

Secondly the interfaces should be plane and the layers
isotropic. This is a weak point of the method since curvature
as well as smooth lateral velecity changes may be expected
to be quite general. Moreover if Hansen's field set-up is
to be used good correlations should be available. ‘

However it is suggested that the procedure above described
might be of some help in the cases where layer interfaces are
rendered non-parallel either by some sedimentary pinch-out
effect or by a thinning of beds due to compaction ( Athy, Ref. 9)
or to tectonic causes ( such as for example structures related
to salt dome; see an example in Deecke, Ref. 10 ).
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Posseibly also, it might be applied when salt layers
have introduced dysharmonic folding of the type of, say,
the S, W. Iran oil fields ( O!' Briem, Ref. 11 ) although in
that particular case it seems rather dubious that the salt
layers have retained enough homogeneity for this method to
apply.

~But in most cases the interfaces are very'unlikely to
be plane on large distances. It seems then that the present
method cannot be used without much caution if meaningful
results are to be oebtained.
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