Generative Modeling:
An Approach to High Level Shape Design
for Computer Graphics and CAD

Thesis by
John M. Snyder

In Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California USA
1991

(Defended May 22, 1991)

il

© 1991

John M. Snyder

All rights reserved

1l

Abstract

Generative modeling is an approach to computer-assisted geometric modeling. The goal
of the approach is to allow convenient and high-level specification of shapes, and provide
tools for rendering and analysis of the specified shapes. Shapes include curves, surfaces,
and solids in 3D space, as well as higher-dimensional entities such as surfaces deforming in
time, and solids with a spatially varying mass density.

Shape specification in the approach involves combining low-dimensional entities, espe-
cially 2D curves, into higher-dimensional shapes. This combination is specified through a
powerful shape description language which builds multidimensional parametric functions.
The language is based on a set of primitive operators on parametric functions which include
arithmetic operators, vector and matrix operators, integration and differentiation, con-
straint solution and global optimization. Although each primitive operator is fairly simple,
high-level shapes and shape building operators can be defined using recursive combination
of the primitive operators.

The approach encourages the modeler to build parameterized families of shapes rather
than single instances. Shapes can be parameterized by scalar parameters (e.g., time or
joint angle) or higher-dimensional parameters (e.g., a curve controlling how the scale of a
cross section varies as it is translated). Such parameterized shapes allow easy modification
of the design, since the modeler can interact with parameters that relate to high-level
properties of the shape. In contrast, many geometric modeling systems use a much lower-
level specification, such as through sets of many 3D control points.

Tools for rendering and analysis of generative models are developed using the concept of
interval analysis. Each primitive operator on parametric functions has an inclusion function
method, which produces an interval bound on the range of the function, given an interval
bound on its domain. With these inclusion functions, robust algorithms exist for computing

solutions to nonlinear systems of constraints and global minimization problems, when these

iv

problems are expressed in the modeling language. These algorithms, in turn, are developed
into robust approximation techniques to compute intersections, CSG operations, and offset

operations.

Acknowledgments

My adviser, Jim Kajiya, first presented me with the idea of generative models at the end
of 1987. It was an intriguing approach that encompassed many of the shape representa-
tion schemes I had often pondered, and even implemented. Jim and I began work on a
SIGGRAPH paper, setting out to test the effectiveness of the idea by modeling some com-
plicated shapes. Although our SIGGRAPH paper was rejected, we learned many things in
that initial flurry of activity, not the least of which was that there much more research that
could be done. I decided to investigate generative modeling further as my Ph.D. project.

Jim gave me wide latitude in this work, but he has closely watched my progress, He
has given me good global advice about the right way to implement the interface. He has
helped me in the theoretical basis of this work as well. I can recall many discussions with
Jim about such things as how the language should be designed, how to connect boundary
intersections in implicit curve approximation, and how to prove some of the interval analysis
results of Chapter 5. I also thank Jim for his enthusiasm for the project, even when it took
unexpected turns.

Jim’s other graphics graduate student, Tim Kay, has been my friend and helpmate
throughout my long graduate carcer. Tim and I have worked together on computer an-
imation projects, SIGGRAPH papers, and hardware installation and maintenance. Tim
has always given me good advice about this project and many others, which I have always
listened to and sometimes even followed. I also owe Tim thanks for his help to make the
hidden line eliminated figures in this thesis.

I would also like to thank my software guinea pigs, those who have used some version
of my modeling program: Jed Lengyel, Devendra Kalra, Paula Sweeney, Cavi Arya, and
David Laidlaw. Nothing so brings a software designer down to earth as users. Jed Lengyel
deserves special thanks for many thoughtful suggestions during the formative phase of this

project. I look forward to showing Jed the more mature version of the incipient program

vi

he used so extensively.

I owe thanks to Al Barr and his graphics group for the use of his workstations to do
much of the typesetting work of this thesis. Thanks also go to my examining committee:
Jim Kajiya, Al Barr, Jim Blinn, Steve Taylor, and Joel Burdick, for their time to read my
thesis, and for their helpful suggestions. Special thanks go to Jim Blinn for finding a long
list of typographical errors not one of which was also found by the Caltech proofreader.
Jim Blinn and Clark Brooks have pointed out many imprecise or confusing sections, which
I hope I have corrected.

Finally, my greatest thanks is reserved for my wife, Julia, and my parents. My wife
has borne a great deal, especially in the hectic last months of writing. I only hope that I
respond similarly when the time comes for her to finish her thesis. My parents too have
always been supportive. Unintentionally (I believe), they have provided perhaps the most

urgent reason for the completion of this work in the form of nonrefundable plane tickets.

vii

Contents

1 Introduction

1.1 Criteria for Evaluation of a Shape Representation.
1.2 Previous Work in Shape Representation
1.21 Polyhedra
1.2.2 Piecewise Parametric Polynomial Shapes
1.2.3 Algebraic Shapes L o
1.24 Sweeps. e e e e e
1.2.5 Deformations oo
1.2.6 Parametric Shapes e
1.2.7 Implicit Shapes e
1.3 Areas for Improvement in Shape Representation

1.4 Overview of the Generative Modeling Approach
1.4.1 Previous Work Related to Generative Modeling
1.42 New Workin this Thesis.

2 Shape Representation
2.1 Generative Models: A Domain of Shapes.
2.1.1 Why Generative Models?
2.2 Specifying Generative Models
2.2.1 Parametric Functions and the Closure Property
2.2.1.1 Terminology
2.2.1.2 Non-Cartesian Topology Using Parametric Functions

2.2.2 Using Recursive Operators To Specify Parametric Functions

U=T e e I T - R N e ..

e e T o S " G
S s W = O

viii

2.2.2.1 Characteristics of a Set of Operators. 28

2.2.2.2 SpecificOperators v 30

2.2.2.2.1 Constants and Parametric Coordinates 30

2.2.2.2.2 ArithmeticOperators 30

2.2.2.2.3 Elementary Operators 30

2.2.2.2.4 Vector and Matrix Operators 31

2.2.2.2.5 Differentiation and Integration 31

2.2.2.2.6 Indexing and Branching Operators 32

2.2.2.2.7 Relational and Logical Operators 34

2.2.2.28 Curve and Table Operators 34

2.2.2.2.9 Inversion of Monotonic Functions 34

2.2.2.2.10 Constraint Solution Operator 36

2.2.2.2.11 Minimization with Constraints Operator 37

2.2.2.3 Operator Methods 38

2.2.2.3.1 Locally Recursive Operator Methods 38

2.2.23.2 EvaluationataPoint 39

2.2.2.3.3 Differentiation 40

2.2.2.3.4 Evaluation of an Inclusion Function 41

2.2.2.3.5 Other Operator Methods 42

2.3 Development of the Generative Modeling Representation 42
2.3.1 System 1 — Nonrecursive Transformations and Generators 43
2.3.2 System 2 — Limited Recursive Transformations 44
2.3.3 System 3 - Fully Recursive Transformations and Generators. 46
2.3.4 System 4 - Using A General Purpose Language 49

3 Shape Specification Examples 50
3.1 Generative Surfaces e 50
3.1.1 Linear Cross Section Transformations 50
3.1.1.1 Profile Products, 50

3.1.1.2 Wire Products L oL 52

3.1.1.3 Rail Products 56

ix

3.1.1.4 General Quasi-Linear Transformations 59

3.1.2 Nonlinear Cross Section Transformations 60
3.1.2.1 Interpolating Cross Sections 60

3.1.2.1.1 Linear Interpolation 60

3.1.2.1.2 Hermite Interpolation 63

3.1.2.1.3 Matching Interpolated Cross Sections 67

3.1.2.2 Cross Section Offsetting 69

3.1.2.2.1 Offset Products 69

3.1.2.2.2 Cross Section Formation Using Offsetting 71

3.1.2.3 Cross Section Deformations 71

3.1.3 Boolean Operations on Planar Cross Sections 73
3.1.3.1 CPGwith Filleting 77

3.1.4 Parameterizing Cross Sections 79
3.1.4.1 Matching Parameter Schedules 80

3.2 Other Generative Shapes 82
3.2.1 Solids 82
3.2.2 Time Dependent Shapes 83
3.2.3 Vector Fieldson Surfaces 83

4 Shape Rendering 87
4.1 Methods of Shape Visualization 88
4.1.1 Rendering Low-Dimensional Shapes 88
4.1.1.1 How Important Is Realism? 89

4.1.1.2 Curves e e e 91

41.1.3 Surfaces. e 93

4.1.1.3.1 Surface Tessellation and Sampling 95

41.1.4 Solids 96

4.1.2 Rendering Higher-Dimensional Shapes 98
4.1.2.1 High Input Dimension 99

4.1.2.2 High Output Dimension 100

4.2 Sampling Shapes 102

4.2.1 Uniform Sampling, 102
4.2.1.1 Uniform Sampling Speedup using Table Lookup 103

4.2.1.2 Uniform Sampling and Uncoupled Transformations 104

4.2.2 Adaptive Sampling e 105
4.2.2.1 Adaptive Sampling Speedup Using Cacheing 106

4.3 Interactive Shape Visualization in the GENMOD System 107
4.3.1 Visualization Methods 107
4.3.2 Non-precomputed Visualization 109
4.3.3 Interactive Rendering 110

5 Interval Methods for Shape Synthesis and Analysis 111
5.1 Interval Analysis for Constraint Solution and Global Optimization 112
5.1.1 Why Interval Analysis? 113
5.1.2 Inclusion Functions, 114
5.1.2.1 Terminology and Definitions 114

5.1.2.2 Inclusion Functions for Arithmetic Operations 117

5.1.2.3 Natural Interval Extensions 119

5.1.2.4 Inclusion Functions for Relational and Logical Operators . 121

5.1.2.5 Mean Value and Taylor Forms 123

5.1.2.5.1 Second Order Convergence of the Mean Value Form 125

5.1.2.6 Inclusion Functions Based on Monotonicity 129

5.1.3 Constraint Solution Algorithm 131
5.1.3.1 Subdivision Methods 135

5.1.3.2 Solution Aggregation 136

5.1.3.3 Termination and Acceptance Criteria for Constraint Solution 138

5.1.3.4 Interval Newton Methods 141

5.1.3.4.1 Interval Newton Methods and Linear Optimization 142

5.1.3.4.2 A Theorem Concerning the Existence of Zeroes. . 146

5.1.3.5 A Constraint Evaluation Enhancement 151

5.1.4 Global Optimization with Constraints Algorithm 152

5.1.4.1 Convergence of the Optimization Algorithm 155

5.1.4.2 Termination and Acceptance Criteria for Optimization . . 158

5.1.4.3 Monotonicity Test 159

5.2 Applying Interval Methods to Geometric Modeling 160

5.2.1 Offset Operations. i 161
5.2.1.1 The B-offset: A Tighter Representation for the S-Offset

Boundary 163

5.2.1.2 A Constraint-Based Approach for Computing B-Offsets . . 163

5.2.2 Approximating Implicit Curves 168

5.2.2.1 An Implicit Curve Approximation Algorithm 170

5.2.2.2 A Robust Test for Global Parameterizability 181

5.2.2.3 A Heuristic Test for Global Parameterizability 185

5.2.2.4 Relaxing the Approximation Algorithm’s Restrictions . . . 188

5.2.2.4.1 Assumption la — No Self-Intersections or Isolated

Singularities 189
5.2.2.4.2 Assumption 1b ~ No Abrupt Endings 190
5.2.2.4.3 Assumption 2 — No Segments along Proximate In-
terval Boundaries 191
5.2.3 Approximating Parametric Shapes Using Adaptive Criteria 192
5.2.3.1 Kd-trees 192
5.2.3.2 Approximating a Surface as a Triangular Mesh 193
5.2.4 CSG-like Operations with Trimmed Surfaces 194
5.2.4.1 An Algorithm for Approximating CSG-like Operations . . 196
5.2.4.2 Kd-tree Algorithms for CSG-like Operations 199
5.2.5 Constructive Solid Geometry with Trimmed Surfaces 206
5.2.6 Approximating Implicit Swrfaces 209
5.2.6.1 An Implicit Surface Approximation Algorithm 212
6 Conclusion 215
A The GENMOD Language for Specifying Parametric Functions 218
A.1 Language Extensions 218

A1l New Operators 219

xii

A.1.2 Overloaded Operators 219

A.2 Language Types e 220
A.3 Language Primitive Operators. 221
A.3.1 Constants and Parametric Coordinates. 222
A.3.2 Arithmetic Operators, 222
A.3.3 Elementary Operators0.... 223
A3.4 Vector Operators it 223
A3.5 Matrix Operators it it 224
A.3.6 Integral and Derivative Operators 225
A3.7 Curvesand Tables, 226
A.3.8 Relational Operators, 227
A3.9 Logical Operators 228
A.3.10 Conditional and Branching Operators 228
A.3.11 Evaluate Operator 229
A.3.12 Inverse Operator i 229
A.3.13 Constraint Solution and Global Minization Operators 230

A.4 Language Extensibility: Building Higher-Level Operators 231
A.4.1 Interpolation Operator. 232
A.4.2 Concatenation Operator 232
A.43 Reparameterization Operator 233

B GENMOD Code Examples 234
B.1 Sphere/Cylinder Fillet Example 234
B.2 Screwdriver Tip Examples e 236
B.3 Bottle Example 238

Bibliography 242

x1ii

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

Rectilinear parametric surface with R? topology 24
Rectilinear parametric surface with cylindrical topology 25
Rectilinear parametric surface with spherical topology 25
Rectilinear parametric surface with toroidal topology 26
Sets of parametric surfaces yield more complicated topologies 26
Recursive operator definition of a parametric function 27
Doorknob example 53
Patio tile example 54
Lamp stand example 55
Tennis racket example L 57
Briefcase handle example, . 58
Bananaexample 61
Turbine blade example 62
Gearexample L 64
Sphere/cylinder fillet using hermite interpolation 66
Reparameterizing cross sections based on minimum distance 68
Planar curveoffsets 70
Offset product example 72
Defining a cross section using offsets and circular end caps 73
Spoonexample e 74
Key example 75
Constructive planar geometry 76

Screwdriver example L. 78

3.18
3.19
3.20
3.21
3.22
3.23

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20

Xiv

CPG with filleting e 79
Bottle example L e 81
Circular beam example. L L L o 84
Time varying curve example oL oo e 85
Time varying wing surface oo oo, 85
Modeling a furry bear as a vector field over asurface 86
Approximating a parametriccurve o000l 92
Rendering methods for surfaces 93
Uniform vs. adaptive sampling of a parametric surface 97
Visualization of a vector field defined over a surface. 101
Solution aggregation 137
Algorithms for solution aggregation 138
The b-offset is a superset of the s-offset boundary 164
Singularity categorization offset and b-offseto L. 165
Example minimization problem in offset computation. 166
Implicit curve approximation, 172
Collection of proximate intervals bounding an implicit curve 175
Global parameterizability 176
Global parameterizability and the linking of boundary intersections 177
.Boundary intersection sortability 178
Boundary intersection sharing o o L. 179
Corner boundary intersections. 180
Silhouette curve approximation L L. 182
Step 5 connectability vs. global parameterizability 186
Boundary univalence test e 187
Necessity of the nonperiodicity assumption in the heuristic test 188
Pathological case for naive subdivision 189
Approximating a surface as a polygonal mesh 194
Trimmed parametricsurface e 195

Hole drilling with trimmed surfaces (part 1) 200

5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29

B.1
B.2

XV

Hole drilling with trimmed surfaces (part 2) 201
Hole drilling with trimmed surfaces (part 3) 202
Basic kd-tree algorithms L .o .. 204
Kd-tree merging operations Lo oo, 205
Kd-tree projection algorithm 206
CSG operation on parametric surfaces 208
Behavior of an implicit surface in a proximate interval 211
Disallowed bordering of proximate intervals 212
Approximation of a blobby implicit surface 213
Curves used in the Phillips screwdriver example 238
Curves used in the bottleexample 239

Chapter 1

Introduction

The computer is emerging as a powerful tool in the design and analysis of 3D shape, an
important concern in fields such as computer aided design and manufacture (CAD/CAM),
computer graphics, art, animation, mathematics, computer simulation, computer vision,
and robotics. As the computational speed of computers continues to increase, so does their
potential to model shapes with greater interactivity and sophistication. Recognizing this
potential, researchers in both academia and industry have devoted much attention in the
last twenty years to the area of geometric modeling, the study of the representation and
analysis of shape.

Perhaps the greatest strides in geometric modeling have been made in the use of com-
puters to make fast, high quality images of geometric models. At the same time, many
techniques have been developed to allow human designers to specify and manipulate geo-
metric models inside the computer. Yet, entering 3D shape into the computer remains a
difficult task. In this chapter, a set of criteria are presented for evaluating shape represen-
tations. Methods of shape representation used in the past are examined in light of these
criteria. Problems in these past representations are discussed, and a new approach, called

generative modeling, is proposed as a solution.

1.1 Criteria for Evaluation of a Shape Representation

In this discussion, it is important to distinguish between a user representation of shape, a

representation manipulated by a human designer which serves as an interface between man

and computer, and a machine representation, manipulated solely by the computer. The
criteria for evaluation of a shape representation which follow are intended to apply to user
representations. The overall efficiency of shape design and analysis is directly related to the
quality of the user representation. The machine representation affects design efficiency only
insofar as it affects the speed and robustness of shape manipulations. For example, if the
machine representation is only an approximation to the user representation, then conversion
from user to machine representation introduces approximation errors.

Three criteria may be used to evaluate the quality of a shape representation:
1. Ease of specification — how easy is it for a designer to enter shapes into the computer?

2. Renderability — how quickly and realistically can images of the the shapes be gener-

ated?

3. Analyzability — what analytical operations are allowed on shapes? How fast and

robust are these operations?

Ease of Specification

The first criterion, ease of specification, assesses how efficiently designers can enter and
change their designs. The ease of specification thus relates to the cost of design. Moreover,
the shape specification guides the designer and structures his thinking, making some types
of shapes easy to reason about and specify, some more difficult, and some entirely out of
the domain of consideration. It is possible then that some potentially better designs are
excluded by the nature of the shape specification.

Ease of specification may be further broken down into the following categories:

e Naturalness — does the representation correspond to the way designers think about

the shape?

Compactness — how small is the information required to specify the shape?

Completeness — how large is the class of shapes that can be represented?

Controllability — can the designer predict what shape will result from a given input?

Editability — can the designer modify shapes easily?

e Validity — is it impossible for designers to specify invalid shapes?

e Accuracy — is the representation only an approximation of the designer’s intention?

If so, how faithful is the approximation?

e Closure — if shapes are specified by composing operators on lower level shapes, is the
result of the operations always a valid shape which can be used as input in further

operations?

These categories are adapted from [REQUS80], with some modifications to shift the
emphasis from machine representation to user. For example, [REQU80] also includes as
a criterion the concept of uniqueness; that is, whether a given shape has a single repre-
sentation. It seems unlikely that the designer should be too concerned with uniqueness,
and in fact, would probably prefer that a rich set of representations exist from which he
can pick the most convenient. Uniqueness, however, may be an important consideration
for a machine representation, which may need to test two representations for equality, at

considerable computational cost.

Renderability

The second criterion, renderability, measures the quality of visual feedback given the de-
signer. This visual feedback is the single greatest verification of the design. Ideally, render-
ing should be fast and provide a good idea of the shape. In practice, a rendering method
is a compromise between computational speed and quality of visualization. Different shape
representations admit different forms of rendering, which lie on a spectrum of speed/quality
tradeoffs.

Current technology for shape rendering comes in a variety of forms. Wireframe (line
drawing) and depth buffered, solid shaded images are common and useful forms of visual
feedback. These forms of rendering are fast enough on many of today’s engineering work-
stations to allow real time or near real time rendering of quite complex shapes. More
photorealistic forms of rendering, such as ray tracing and radiosity, are currently too slow
for interactive feedback, but provide additional cues such as shadows, transparency, and
more sophisticated lighting models which may aid in visualizing the shape. It is anticipated

that these higher quality, slower rendering techniques will soon become fast enough for

interactive use.

Analyzability

The last criterion, analyzability, evaluates how suitable the shape representation is for
analyzing and simulating collections of shapes. Shape operations that are important in this

context include

e compute physical quantities about the shape — moments of inertia, center of mass,

surface area, volume

e compute geometric queries about the shape or shapes — proximity with other shapes
and collision detection, finding curves of intersection between surfaces, determining

whether a given surface is a valid solid boundary

e compute feasible/optimal parameters for parameterized shapes — find a parameter for
a parameterized family of shapes that solves some set of constraints and/or optimizes

some objective function

In assessing the analyzability of a shape representation, it is important to consider the
generality of operations that are allowed, the accuracy of these operations, and their com-
putational speed. Often, there is a natural relationship between a shape representation and
its analytical properties [TIMMS80, LEE82a]. For example, the volume of a solid specified
as an extrusion of a 2D closed curve is simply the product of the area enclosed by the curve
and the height of the extrusion. On the other hand, the natural forms of analysis admitted
by a shape representation are not the only ones that need be used. A representation can
be converted to one more amenable to analysis. Of course, the conversion required may

involve substantial computational cost and/or introduce approximation error.

1.2 Previous Work in Shape Representation

Not surprisingly, the major emphasis in shape representation research has been on curves,
surfaces, and solids. Since the beginnings of the field of computer graphics, curve and surface
representation research has largely focused on piecewise parametric polynomials, especially

cubic polynomials such as the Coons patch [COONG7], Bezier curves and surfaces [BEZI74],

and B-spline curves and surfaces [RIES73, GORD74]. Algebraic curves and surfaces, (i.e.,
shapes specified as a solution to a polynomial equation) are another widely used form
[BLIN82, HANRS3, SEDE85, SEDE89]. New shape representations are also being studied,
including deformations, and more general implicit and parametric shapes.

For many applications, such as for computer aided manufacture, shapes must be modeled
as solids. The area of solid modeling is concerned with the design and analysis of 3D solids.
Solid model representations being developed involve two main representational themes,
boundary representations and CSG. Boundary representation or b-rep models represent
solids by their surface, curve, and point boundaries. Constructive solid geometry or CSG
models represent objects as a composition of Boolean set operations on points contained
within the solids [REQU77c, REQU78]. These two techniques are not mutually exclusive.
The Alpha_1 modeler developed at the University of Utah allows CSG operations on b-rep
shapes [COHES3].

The following sections analyze current shape representation schemes according to the

criteria established in Section 1.1.

1.2.1 Polyhedra

Polyhedra are solids bounded by a set of polygons. Because they are defined by the polygons
that form their surface, polyhedra are a simple boundary representation. Polyhedra were in-
vestigated as a computer shape modeling representation by Baumgart [BAUMT72, BAUM?74]
in a system for computer vision research called GEOMED. In the work, he introduced the
idea of Euler operations, which transform objects by adding or removing faces, edges, or
vertices. Baumgart’s work has formed the basis for many systems that allow users to inter-
actively create and edit polyhedral shapes.

Research into polyhedral representations remains active. Chiyakura and Kimura [CHIY83]
combined polyhedra with polynomial parametric patches to round corners of solids and rep-
resent curved faces. Several researchers have investigated computation of Boolean set op-
erations on polyhedra: Turner [TURN84], Requicha and Voelcker [REQUS5], Putnam and
Subrahmanyam [PUTN86], Laidlaw, Trumbore, and Hughes [LAID86], and Naylor, Ama-
natides, and Thibault [NAYL90]. Segal [SEGA90] has studied error control and validity

maintenance for toleranced polyhedral shapes.

Polyhedral representations are clearly natural in representing a useful class of objects —
objects that are bounded by planar facets. They are not appropriate as a user representation
for general, curved solids but can be used as an approximate machine representation. Such
an approximation has many drawbacks which will be discussed later. Perhaps the greatest
advantage of polyhedral representations is their renderability. Polygons are easy to render,
especially with graphics hardware available today. The analyzability of polyhedra may
also be attractive. Lien and Kajiya [LIEN84] have presented algorithms for the direct

computation of integral properties for polyhedra.

1.2.2 Piecewise Parametric Polynomial Shapes

Piecewise parametric polynomials are the main shape representation of computer graph-
ics and CAD/CAM. The research literature contains numerous specializations, extensions,
surveys, and applications of the piecewise polynomial form ([DEBO72, DEBO78, COHES0,
TILL83, KOCH84, BOHMS84, BARN85, BART87, BARSS8]). Parametric polynomial shapes
are typically specified through a series of control points, which the curve or surface inter-
polates. The resulting shapes tend to be easy to control and edit for free form specification
and allow designers control over simple aspects of the shape, such as its continuity.

A very general form, called NURBS, for nonuniform, rational, b-splines, is being used in
many new geometric modeling systems. The advantage of NURBS over traditional (nana—
tional) representations is their ability to represent simple quadrics like spheres, cones, and
cylinders exactly.

Piecewise parametric polynomials are a complete representation. Given enough patches
to interpolate the desired shape, any shape, however complicated, can be specified to any
degree of accuracy. Despite its generality, specifying a multitude of control points over a
shape is often an undesirable method of modeling. Specification tends to be uncompact.
It is hard to edit a collection of many, unstructured control points. Shapes can not be
parameterized with parameters meaningful to designers.

The rendering of piecewise parametric polynomial surface has received much atten-
tion. Conversion of parametric polynomials into polygonal meshes can be done by very
efficient algorithms. New hardware is also being developed to directly rasterize these

shapes [SHAN87, SHAN89]. Rendering using ray tracing is an ongoing area of research

[KAJI82, SEDE84].

Analyzability of parametric polynomials is quite good. Global properties, such as vol-
ume and moments of inertia of solids bounded by nonrational polynomial patches, can
be computed analytically. Proximity and intersection testing involves solving polynomial
equations. Such polynomial solution becomes numerically intractable as the degree of the

polynomial grows.

1.2.3 Algebraic Shapes

An algebraic shape is a shape formed by the zeroes of a polynomial equation, typically of
low degree. For example, algebraic cubic curves (the solution of a third-degree polynomial
in two variables), and quadric surfaces (the solution of a second-degree polynomial in three
variables) have been used many times in geometric modeling.

Algebraic shapes have been used in some very early modeling/rendering systems [WEIS66,
WOONT1]. These systems used quadric surfaces as the basic modeling tool, and were there-
fore not general in the types of specifiable shapes. Sederberg [SEDES5] has proposed the
idea of piecewise algebraic shapes. Like the parametric polynomials shapes discussed pre-
viously, these shapes form a complete representation, but a very low-level one.

Several algorithms exist for direct, scan line rasterization of quadric surfaces [WEIS66,
WOONT71, SARR83]. Algebraic shapes may also be rendered by ray tracing. Quadric
surfaces are especially simple, since ray/surface intersections can be computed by solving
a quadratic equation. Ray intersection for more general algebraic shapes is investigated in
[HANRS3, HANRSY]. Both direct rasterization and ray tracing fail to take advantage of fast
graphics hardware geared towards the rendering of polygons, making piecewise parametric
shapes more attractive for real time rendering.

The analyzability of algebraic shapes is attractive for several reasons. Point classifi-
cation (determining whether a point is inside or outside the shape) can be done with a
simple polynomial evaluation. Intersections between algebraic shapes also require solution
of polynomials of lower-degree than with parametric polynomials. Computation of the in-
tersections between quadric surfaces, for example, is described in [SARR83] and [MILLS87).
Both characteristics of algebraic shapes are useful in solid modeling systems. Quadric sur-

faces and polyhedra have also been combined in a geometric modeling system [CROC87].

1.2.4 Sweeps

A sweep represents a shape by moving an object (called a generator) along a trajectory
through space. The simplest sweep is an eztrusion which translates a 2D curve along a
linear path normal to the plane of the curve. Surfaces of revolution are also sweeps of 2D
curves around an axis. Sweeps need not use only 2D curves; for example, sweeps of surfaces
or solids are useful operations. Sweeps whose generator can change size, orientation, or
shape are called general sweeps. General sweeps that use 2D curve generators are generalized
cylinders [BINFT71].

Several researchers have studied sweeps ((GOLD83, CARL82b, DONAS85, WANGS6,
COQUST]). Barr’s spherical product ((BARRS81]), is an example of a sweep that uses a
constant 2D curve generator with translation and scaling. Carlson [CARL82b] introduced
the idea of varying the sweep generator. Wang and Wang [WANGS86] explored sweeps of
surfaces for use in manipulating numerically controlled milling machine cutter paths.

Sweeps have been used in solid modeling systems for many years (e.g., GMSolid, RO-
MULUS). Lossing and Eshleman [LOSS74] developed a system using sweeps of constant 2D
curves. Alpha_l, a modeling system developed at the University of Utah, has a much more
sophisticated sweeping facility [COHES83].

One of the advantages of sweeps is their naturalness, compactness, and controllability in
representing a large class of man-made objects. For example, objects which are surfaces of
revolution or extrusions are best represented as sweeps. Sweeps are not complete however.
Verification of the validity of sweeps also causes problems. For example, it is easy to generate
degenerate closed sweeps which do not enclose a solid area by translating a generator curve
in the plane of the curve.

Direct rendering of general sweeps is difficult. Rendering using ray tracing has been
studied [KAJI83, VANW84a, VANWS84b, BRONS5] for various limited forms of sweeps.
Kajiya [KAJI83] studied ray tracing of extrusions. van Wijk studied ray tracing of conical
sweeps which translate and scale a 2D cubic spline curve ([VANW84a]), and ray tracing of
tubes formed by sweeping a sphere ((VANW84b]). Bronsvoort and Klok [BRON85] give an
algorithm for ray tracing curves swept along arbitrary 3D trajectories.

Rendering may also be achieved through conversion of the sweep to another form such

as a polygonal mesh. Since sweeps are naturally converted to general parametric functions,

this method is fast and easy as will be discussed in Section 1.2.6.

Analyzability of sweeps is good. Calculation of volume integrals over the region enclosed
by a sweep can often be simplified using Gauss’s theorem from vector calculus. Under
certain conditions, integrals can further be simplified into products of line integrals over
appropriate sweep curves. As in the case of renderability, the discussion of analyzability of

general parametric functions in Section 1.2.6 applies.

1.2.5 Deformations

Deformations are operations that transform simple shapes to more complex by deforming
the space in which the simple shape is embedded. For example, given a sphere in R3, a more
complicated shape can be designed by deforming the sphere via a function D : R3 — R3,
Each point on the sphere is transformed through the function D, yielding a deformed sphere.
The concept of deformations has received little attention in geometric modeling. Barr
[BARRS4] has examined a set of primitive deformations (bending, tapering, and twisting)
that are useful in modeling, as well as differentially specified deformations. This work
demonstrated the usefulness of deformations as a geometric modeling tool, but left open
many problems of how to represent and specify a general set of deformation primitives.

Several researchers have also examined 3D deformations that are represented using cubic
polynomials specified with 3D control points [SEDE86a]. Such deformations tend to become
unwieldy for complicated shapes since many control points must be specified, but may be
useful for free-form sculpting of shape.

Rendering and analysis of shapes formed with deformations varies with the types of
primitive shapes that are deformed and the types of allowable deformations. A deformation
of a parametric surface, for example, yiclds another parametric surface and so can be treated
in the same way (see Section 1.2.6). Deformations of implicit surfaces can also be treated

as implicit surfaces, if the deformation is invertible.

1.2.6 Parametric Shapes

It is reasonable to expect that parametric shapes based on a more ge