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MOT T GHI DAU
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da viét trong bai tho “Nhd con sdng qué huong”, mic dau khic vdi thi si, con soéng
cda t6i 13 ca mét dong doi bat tan ménh méng. Ngiy tdi di, me t6i budn khéng
néi, gidn con ca may thang trti(}ng. Vay ma cd hai tudn, me da gia van con cim
cui lam chd goi cho t6i &n. Lam sao t6i ¢6 thé néi hét dugc nhing du yém thuiong
yéu goéi gém kin ddo trong nhing tim banh chung ngdy Tét, miéng banh déo ngay
Trung Thu. M&i 1an téi goi day ndi vé thim nha, trong niém lo du tha thiét, hing
hai tran tré me lai day t6i nidu nhing mén ndy mén kia. Me lam bénh, Ba di goi
banh. Chi va cdc em yéu thudng, triu mén, kinh trong. Nim nim cé gi thay déi,
nhung tinh Ba Me, Chi Em van chan chia ndéng nan nhu ngay ndo. Téi 13 nguoi
c6 d#m phiic nhat trén doi. C6 18 ngudi ta ndéi ding, nudc mit chdy xuéi, nhing
ma lam sao dugc téi ciing chi’ 13 nguoi, van tréi theo nhanh sdng ré cda doi minh.

Bac Ca Hoéng va chi Thiy ra dén téi J phi triong Ontario trong con ning
hoi git cia budi chiéu cudi hé 85. Nhung c6 1& nhing hoi 4m that su cda Cali 13

tAm chan tinh gia dinh Bac da danh cho téi, ciing nhu cda hai bac Kién, cda Bill
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duyén dang.

Cudc sdng nao rdi ciing c6 nhing khiic quanh ngé ré, t6i don vé sdng chung
voi Hiung. Téi di vio thé gidi cda Hung vdi nhing dém nim bén anh Hoan via
néi chuyén vua ngd, chung kién sdc séng méanh liét cda anh Hudng bén sy kiéu ky
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hdi ¢6 bao gio téi thuong Hung chua? Rdi ching tdi dung lai, Hing dung lai, téi
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tdi da séng nho dd #n cda chi va Nga nau. Lam sao d& dién ta tinh cam gia dinh
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Ling Van yéu thudng va tat ca thé gidi lodi nguci méng ciing nhu thuc, t6i viét,
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Cuéc nhin thé chao 6i nhiéu bién loan
Vin the tham tiéng néi cudc tinh zia
Hoa ld vin vidng chiéu rit maong

Ai ¢cé vé dom ndng béng ngdy qua?
Anh mdt non zanh bén troi za la

Chit hing ho chua zét ddy niém thiong
Ai ra di ai vé ai cd biét

Mot it long cho dm ting cung nhau.



- vii —

ABSTRACT

Theory and calculations are presented for the evolution of Richtmyer-Meshkov
instability in continuously stratified fluid layers. The initial acceleration and sub-
sequent instability of the fluid layer are induced by means of an impulsive pressure
distribution. It is shown that such an initial condition is an adequate approximation
of the effect of a weak shock impinging on a stratified layer of fluid. We then calcu-
late the subsequent dynamics of the fluid layer numerically using the incompressible

equations of motion.

Both initial conditions having single scale perturbations and multiple scale ran-
dom perturbations are considered. It is found that the growth rates for Richtmyer-
Meshkov instability of stratified fluid layers are substantially lower than those pre-
dicted by Richtmyer for a sharp fluid interface with an equivalent jump in density.
The initial behavior is linear over a time equivalent to the traversal of several layer
thicknesses. It is observed that the nonlinear development of the instability results
in the formation of plumes of penetrating fluid. Late in the process, the initial
momentum deposited by the shock is primarily used in the internal mixing of the

layer rather than in the overall growth of the stratified layer.

At intermediate time, the existence of a weak scaling behavior in the width
of the mixing layer of the instability is observed for the multiple scale random
perturbations, but not for the single scale perturbations. The time variation of
the layer thickness differs from the scaling hypothesized by Barenblatt even at low
Atwood ratio, presumably because of the inhomogeneity and anisotropy due to the
excitation of vortical plumes. The emergence of these plumes at the boundaries of

the density layer is characterized by the elongation of the internal spikes which have
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weak interactions and grow proportionally to their intial perturbed amplitudes. It is

conjectured that the formations of the plumes may correspond to weakly interacting

single scale modes.
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time linearized Navier-Stokes equation. The difference is normalized
with the maximum value of u.

3.12 Time evolution of the difference in the velocity v as computed from
the artificial compressibility method and : a) — the MAC method
b) — — — the first order, and c) + + + the second order solution of the
time linearized Navier-Stokes equation. The difference is normalized
with the maximum value of v.

3.13 Time evolution of the difference in the density p as computed from the
artificial compressibility method and : a) — the MAC method b)
— — — the first order, and c) + + + the second order solution of the
time linearized Navier-Stokes equation. The difference is normalized
with the maximum value of p.

3.14 Time evolution of the difference in the pressure p as computed from the
artificial compressibility method and : a) — the MAC method, and
b) — — — the first order solution of the time linearized Navier-Stokes
equation. The difference is normalized with the maximum value of p.

3.15 Time evolution of the total kinetic energy for the second initial random
profile, A = —0.2, t =0 to 89.34.

3.16 Time evolution of the total kinetic energy for the second initial random
profile, A = —0.8, ¢t =0 to 17.

3.17 Time evolution of the difference : a) — — — Ey4, and b) + + + E,s.
The difference is normalized with the maximum value of u.

3.18 Time evolution of the difference : a) — — — Eu4, and b) + + + E,s.
The difference is normalized with the maximum value of v.

3.19 Time evolution of the difference : a) — — — E 4, and b) + + + E5.
The difference is normalized with the maximum value of p.

3.20 Time evolution of the difference E,,. The difference is normalized with
the maximum value of p.

3.21 Time evolution of the differences in the flow variables obtained by the
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artificial compressibility method and the Newton-Raphson method for
the pseudo-time problem. a) —ub) ———vc¢)+++pd) —-—p.

CHAPTER 4
Dependence of the density on y for a fixed =z.
Motion of a fluid particle in the linear theory model.
The ratio of the Richtmyer average amplitude growth rate (da/dt) over
that of numerical simulation at t = 0 versus log,, L for A = —0.2 : a)
———€=001b)—e=01c)+++e=10d):-- e =10.0. Note
that the actual data points are given in Table 4.1, and just for the
purpose of illustration, they are connected by curves of different styles
as shown above.
The ratio of the Richtmyer average amplitude growth rate (da/dt) over
that of numerical simulation at t = 0 versus log;, L for A = —0.5 : a)
———€=001b)—e=01c)+++€=1.0d)--- e = 10.0. Note
that the actual data points are given in Table 4.1, and just for the
purpose of illustration, they are connected by curves of different styles
as shown above.
The ratio of the Richtmyer average amplitude growth rate (da/dt) over
that of numerical simulation at ¢ = 0 versus log;, L for A = —0.8 : a)
———€e=001b)—e=01lc)+++e€=1.0d)--- ¢ = 10.0. Note
that the actual data points are given in Table 4.1, and just for the
purpose of illustration, they are connected by curves of different styles
as shown above.
The ratio of the Richtmyer average amplitude growth rate (da/dt) over
that of numerical simulation at ¢ = 0 versus log,, L for: a) ——— A =
—0.2,b) — A = -0.5 ¢) +++ A = —0.8, each with four values of ¢ =
0.01, 0.1, 1.0, and 10.0. Note that the actual data points are given in
Table 4.1, and just for the purpose of illustration, they are connected

by curves of different styles as shown above.
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4.7

4.8

4.9

4.10

4.11

The ratio of the Richtmyer average amplitude growth rate (da/dt)
over that of numerical simulation at ¢ = 0 versus log,, € for A = —0.2
:4+++L=100, —-- —L=10,—L=0.1,—-——-——-1L =0.01,

--- L = 0.001. Note that the actual data points are given in Table 4.1,
and just for the purpose of illustration, they are connected by curves

of different styles as shown above.

The ratio of the Richtmyer average amplitude growth rate (da/dt)
over that of numerical simulation at ¢ = 0 versus log;, € for A = —0.5
: 44+ L =100,—-- —L=10,—L =01, — - - L = 0.01,

.-+ L = 0.001. Note that the actual data points are given in Table 4.1,
and just for the purpose of illustration, they are connected by curves

of different styles as shown above.

The ratio of the Richtmyer average amplitude growth rate (da/dt)
over that of numerical simulation at ¢ = 0 versus log;, € for A = —0.8
: +++ L =100, —-- — L =10,—L =01, — - - L = 0.01,

-+« L = 0.001. Note that the actual data points are given in Table 4.1,
and just for the purpose of illustration, they are connected by curves

of different styles as shown above.

The ratio of the Richtmyer average amplitude growth rate (da/dt) over
that of numerical simulation at ¢t = 0 versus log;, € for A = —0.2, —0.5,
-08: +++L=100,—-- —L=10,—L=0.1, - —— L =0.01,

.-+ L = 0.001. Note that the actual data points are given in Table 4.1,
and just for the purpose of illustration, they are connected by curves
of different styles as shown above.

The ratio of the Richtmyer average amplitude growth rate (da/dt) over
that of numerical simulation at ¢ = 0 versus the Atwood number A for
e=001: +++ L =100,—-- —L=10,—L=01,—---1L
= 0.01, --- L = 0.001. Note that the actual data points are given in

Table 4.1, and just for the purpose of illustration, they are connected
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by curves of different styles as shown above.

The ratio of the Richtmyer average amplitude growth rate (da/dt) over
that of numerical simulation at ¢ = 0 versus the Atwood number A for
€=01: 4+++L =100, —-- —L=10,—L =01, ———L
= 0.01, --- L = 0.001. Note that the actual data points are given in
Table 4.1, and just for the purpose of illustration, they are connected
by curves of different styles as shown above.

The ratio of the Richtmyer average amplitude growth rate (da/dt) over
that of numerical simulation at ¢ = 0 versus the Atwood number A for
e=10: +++ L =100, —-- —L=10,—L =01, -—--1L
= 0.01, --- L = 0.001. Note that the actual data points are given in
Table 4.1, and just for the purpose of illustration, they are connected
by curves of different styles as shown above.

The ratio of the Richtmyer average amplitude growth rate (da/dt) over
that of numerical simulation at ¢ = 0 versus the Atwood number A for
€=100: 444+ L =100, —-- —L=10,—L =01, ——— L
= 0.01, --- L = 0.001. Note that the actual data points are given in
Table 4.1, and just for the purpose of illustration, they are connected
by curves of different styles as shown above.

Time evolution of the average quantities for the single scale profile L
=1.0,A=-0.05€¢=02,¢t=0t080: a) p,(z), b) pz(y), ¢) average
amplitude, and d) width of the density layer.

Time evolution of the average quantities for the single scale profile L
= 1.0, A = —-0.05, ¢ =0.2,t =0 to 80 : a) growth rate da/dt of the
average amplitude, numerical and Richtmyer theory (straight line), b)
the ratio of the numerical growth rate da/dt over that predicted by
Richtmyer theory, ¢) In(a) vs In(t), d) In(é) vs In(?).

Time evolution of the positions and velocitites of the average peaks in

the single scale profile L = 1.0, A = -0.05,e =02, ¢t =0to 80 a) y
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4.15.4

4.15.5

4.15.6

4.16.1

4.16.2

4.16.3

4.16.4

4.16.5
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b) = c) dy/dt. The numbers on the curves refer to the peaks on the
curves p, () versus z.
Time evolution of the density contours for the single scale profile L =
1.0, A = —0.05, e = 0.2, t =0, 8, 16, 24. The contours are at p = 0.48,
0.49, 0.50, 0.51, 0.52 in that order from top to bottom of each figure.
Time evolution of the density contours for the single scale profile L =
1.0, A = —-0.05, e = 0.2, t = 32, 40, 48, 56. The contours are at p =
0.48, 0.49, 0.50, 0.51, 0.52 in that order from top to bottom of each
figure.
Time evolution of the density contours for the single scale profile L =
1.0, A = —0.05, e = 0.2, t = 64, 72, 80. The contours are at p = 0.48,
0.49, 0.50, 0.51, 0.52 in that order from top to bottom of each figure.
Time evolution of the average quantities for the single scale profile L
=1.0,A =-0.05,€e=0.5,¢t=0to 80: a) p,(z), b) pz(y), c) average
amplitude, and d) width of the density layer.
Time evolution of the average quantities for the single scale profile L
= 1.0, A = —0.05, e = 0.5, t = 0 to 80 : a) growth rate da/dt of the
average amplitude, numerical and Richtmyer theory (straight line), b)
the ratio of the numerical growth rate da/dt over that predicted by
Richtmyer theory, c¢) In(a) vs In(t), d) In(8) vs In(t).
Time evolution of the positions and velocitites of the average peaks in
the single scale profile L = 1.0, A = —0.05, ¢ = 0.5, t =0to 80 a) y
b) z ¢) dy/dt. The numbers on the curves refer to the peaks on the
curves py(z) versus z. |
Time evolution of the density contours for the single scale profile L =
1.0, A = —-0.05,e = 0.5, ¢t =0, 8, 16, 24. The contours are at p = 0.48,
0.49, 0.50, 0.51, 0.52 in that order from top to bottom of each figure.
Time evolution of the density contours for the single scale profile L =

1.0, A = —0.05, e = 0.5, t = 32, 40, 48, 56. The contours are at p =
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4.17.1

4.17.2

4.17.3
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4.17.5

4.17.6
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0.48, 0.49, 0.50, 0.51, 0.52 in that order from top to bottom of each
figure.
Time evolution of the density contours for the single scale profile L =
1.0, A = —0.05, € = 0.5, ¢ = 64, 72, 80. The contours are at p = 0.48,
0.49, 0.50, 0.51, 0.52 in that order from top to bottom of each figure.
Time evolution of the average quantities for the single scale profile L
=1.0, A =—-0.05,e=1.0, ¢t =0 to 80 : a) py(z), b) pz(y), c) average
amplitude, and d) width of the density layer.
Time evolution of the average quantities for the single scale profile L
= 1.0, A = —-0.05, e = 1.0, ¢ = 0 to 80 : a) growth rate da/dt of the
average amplitude, numerical and Richtmyer theory (straight line), b)
the ratio of the numerical growth rate da/dt over that predicted by
Richtmyer theory, c¢) In(a) vs In(t), d) In(é) vs In(t).
Time evolution of the positions and velocities of the average peaks in
the single scale profile L = 1.0, A = —0.05, e =1.0,t =0to 80 a) y
b) z ¢) dy/dt. The numbers on the curves refer to the peaks on the
curves py(z) versus z.
Time evolution of the density contours for the single scale profile L =
1:0, A =-0.05€e=1.0,t=0,8, 16, 24. The contours are at p = 0.48,
0.49, 0.50, 0.51, 0.52 in that order from top to bottom of each figure.
Time evolution of the density contours for the single scale profile L =
1.0, A = —-0.05, e = 1.0, t = 32, 40, 48, 56. The contours are at p =
0.48, 0.49, 0.50, 0.51, 0.52 in that order from top to bottom of each
figure.
Time evolution of the density contours for the single scale profile L =
1.0, A = —0.05, e = 1.0, t = 64, 72, 80. The contours are at p = 0.48,
0.49, 0.50, 0.51, 0.52 in that order from top to bottom of each figure.
Time evolution of the average quantities for the single scale profile L

=10,A=-02,e=02,t=0to80: a) p,(z), b) p:(y), c) average
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4.18.3

4.18.4

4.18.5

4.18.6
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4.19.2
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amplitude, and d) width of the density layer.
Time evolution of the average quantities for the single scale profile L
=10,A =-02,e=0.2,t =0 to 80 : a) growth rate da/dt of the
average amplitude, numerical and Richtmyer theory (straight line), b)
the ratio of the numerical growth rate da/dt over that predicted by
Richtmyer theory, c) In(a) vs In(%), d) In(§) vs In(2).
Time evolution of the positions and velocities of the average peaks in
the single scale profile L = 1.0, A = -0.2, e =02, =0to 8 a) y
b) = ¢) dy/dt. The numbers on the curves refer to the peaks on the
curves py(r) versus z.
Time evolution of the density contours for the single scale profile L =
1.0,A =-02,¢=0.2,¢t =0, 8, 16, 24. The contours are at p = 0.41,
0.45, 0.50, 0.55, 0.59 in that order from top to bottom of each figure.
Time evolution of the density contours for the single scale profile L =
1.0, A = -0.2, e = 0.2, t = 32, 40, 48, 56. The contours are at p =
0.41, 0.45, 0.50, 0.55, 0.59 in that order from top to bottom of each
figure.
Time evolution of the density contours for the single scale profile L =
1.0, A =-0.2,e= 0.2, t = 64, 72, 80. The contours are at p = 0.41,
0.45, 0.50, 0.55, 0.59 in that order from top to bottom of each figure.
Time evolution of the average quantities for the single scale profile L
=10,A=-02,e=0.5,t=0to080: a) gy(z), b) p(y), c) average
amplitude, and d) width of the density layer.
Time evolution of the average quantities for the single scale profile L
= 1.0, A = -0.2, e =0.5,t =0 to 80 : a) growth rate da/dt of the
average amplitude, numerical and Richtmyer theory (straight line), b)
the ratio of the numerical growth rate da/dt over that predicted by
Richtmyer theory, ¢) In(a) vs In(t), d) In(é) vs In(¢).

Time evolution of the positions and velocities of the average peaks in
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the single scale profile L = 1.0, A = —0.2, e = 0.5, t = 0 to 80 a) y
b) z ¢) dy/dt. The numbers on the curves refer to the peaks on the
curves py() versus z.

Time evolution of the density contours for the single scale profile L =
1.0, A=-02,e=0.5,% =0, 8, 16, 24. The contours are at p = 0.41,
0.45, 0.50, 0.55, 0.59 in that order from top to bottom of each figure.
Time evolution of the density contours for the single scale profile L =
1.0, A = -0.2, e = 0.5, t = 32, 40, 48, 56. The contours are at p =
0.41, 0.45, 0.50, 0.55, 0.59 in that order from top to bottom of each
figure.

Time evolution of the density contours for the single scale profile L =
1.0, A = —0.2, e = 0.5, t = 64, 72, 80. The contours are at p = 0.41,
0.45, 0.50, 0.55, 0.59 in that order from top to bottom of each figure.
Time evolution of the average quantities for the single scale profile L
=10,A=-02,e=1.0,% =0to 53 : a) py(x), b) pz(y), c) average
amplitude, and d) width of the density layer.

Time evolution of the average quantities for the single scale profile L
=10, A =-02 e=1.0,%t =0 to 53 : a) growth rate da/dt of the
average amplitude, numerical and Richtmyer theory (straight line), b)
the ratio of the numerical growth rate da/dt over that predicted by
Richtmyer theory, c) In(a) vs In(t), d) In(é) vs In(?).

Time evolution of the positions and velocities of the average peaks in
the single scale profile L = 1.0, A = -0.2, e =1.0,t =0to 53 a) y
b) z ¢) dy/dt. The numbers on the curves refer to the peaks on the
curves py(z) versus z.

Time evolution of the density contours for the single scale profile L =
1.0, A =-0.2,e=1.0,t =0, 8, 16, 24. The contours are at p = 0.41,
0.45, 0.50, 0.55, 0.59 in that order from top to bottom of each figure.

Time evolution of the density contours for the single scale profile L =
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1.0, A = —0.2, e = 1.0, t = 32, 40, 48, 52. The contours are at p =
0.41, 0.45, 0.50, 0.55, 0.59 in that order from top to bottom of each
figure.
Time evolution of the average quantities for the single scale profile L
=1.0,A = —-0.5,e=0.2,t =0 to 80 : a) py(z), b) p:(y), c) average
amplitude, and d) width of the density layer.
Three-dimensional surface of p,(z,t) for the single scale profile L =
1.0, A = -0.5, e =0.2, and t = 0, 80.
Three-dimensional surface of p;(y,t) for the single scale profile L =
1.0, A = —-0.5, e=0.2, and t = 0, 80.
Time evolution of the average quantities for the single scale profile L
=1.0,A = -05,¢=0.2,¢t =0 to 80 : a) growth rate da/dt of the
average amplitude, numerical and Richtmyer theory (straight line), b)
the ratio of the numerical growth rate da/dt over that predicted by
Richtmyer theory, c) In(a) vs In(t), d) In(é) vs In(?). \
Time evolution of the positions and velocities of the average peaks in
the single scale profile L = 1.0, A = —0.5,¢=0.2,t =0to 80 a) y
b) z ¢) dy/dt. The numbers on the curves refer to the peaks on the
curves py(z) versus .
Time evolution of the density contours for the single scale profile L =
1.0, A =-0.5,e=02,% =0, & 16, 24. The contours are at p = 0.26,
0.3, 0.4, 0.5, 0.6, 0.74 in that order from top to bottom of each figure.
Time evolution of the density contours for the single scale profile L =
1.0, A = —0.5, e = 0.2, t = 32, 40, 48, 56. The contours are at p =
0.26, 0.3, 0.4, 0.5, 0.6, 0.74 in that order from top to bottom of each
figure.
Time evolution of the density contours for the single scale profile L =
1.0, A = —0.5, e = 0.2, t = 64, 72, 80. The contours are at p = 0.26,
0.3, 0.4, 0.5, 0.6, 0.74 in that order from top to bottom of each figure.
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194 4.23.1a
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Time evolution of the average quantities for the single scale profile L
=1.0,A =-0.5,e=0.5,t =0to 53 : a) p,(x), b) p(y), c) average
amplitude, and d) width of the density layer.
Three-dimensional surface of p,(z,t) for the single scale profile L =
1.0, A = —0.5, e = 0.5, and t = 0, 53.
Three-dimensional surface of p;(y,t) for the single scale profile L =
1.0, A =-0.5,e=0.5,and t = 0, 53.
Time evolution of the average quantities for the single scale profile L
=1.0,A = -0.5¢e=05,% =0 to 53 : a) growth rate da/dt of the
average amplitude, numerical and Richtmyer theory (straight line), b)
the ratio of the numerical growth rate da/dt over that predicted by
Richtmyer theory, ¢) In(a) vs In(t), d) In(é) vs In(2).
Time evolution of the positions and velocities of the average peaks in
the single scale profile L = 1.0, A = —0.5, e = 0.5, t =0 to 53 a) y
b) = ¢) dy/dt. The numbers on the curves refer to the peaks on the
curves py(z) versus z.
Time evolution of the density contours for the single scale profile L =
1.0, A =-0.5,e=0.5,t =0, 8, 16, 24. The contours are at p = 0.26,
0.3, 0.4, 0.5, 0.6, 0.74 in that order from top to bottom of each figure.
Time evolution of the density contours for the single scale profile L =
1.0, A = —0.5, e = 0.5, t = 32, 40, 48, 52. The contours are at p =
0.26, 0.3, 0.4, 0.5, 0.6, 0.74 in that order from top to bottom of each
figure.
Time evolution of the average quantities for the single scale profile L
= 1.0, A =-0.5,e=1.0,% =0 to 40 : a) gy(z), b) p.(y), ¢) average
amplitude, and d) width of the density layer.
Three-dimensional surface of p,(z,t) for the single scale profile L =
1.0, A = —-0.5, e = 1.0, and ¢t = 0, 40.
Three-dimensional surface of p,(y,t) for the single scale profile L =
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1.0, A = —0.5, e = 1.0, and ¢ = 0, 40.
Time evolution of the average quantities for the single scale profile L
= 1.0, A = —-0.5, ¢ = 1.0, ¢ = 0 to 40 : a) growth rate da/dt of the
average amplitude, numerical and Richtmyer theory (straight line), b)
the ratio of the numerical growth rate da/dt over that predicted by
Richtmyer theory, c) In(a) vs In(t), d) In(é) vs In(?).
Time evolution of the positions and velocities of the average peaks in
the single scale profile L = 1.0, A = —0.5,¢e = 1.0, t =0to 40 a) y
b) z ¢) dy/dt. The numbers on the curves refer to the peaks on the
curves py(z) versus z.
Time evolution of the density contours for the single scale profile L =
1.0, A = —-0.5, e = 1.0, ¢t =0, 8, 16, 24. The contours are at p = 0.26,
0.3, 0.4, 0.5, 0.6, 0.74 in that order from top to bottom of each figure.
Time evolution of the density contours for the single scale profile L =
1.0, A = —0.5, e = 1.0, t = 32, 40. The contours are at p = 0.26, 0.3,
0.4, 0.5, 0.6, 0.74 in that order from top to bottom of each figure.
Time evolution of the average quantities for the single scale proﬁie L
=10,A =-08,e=05,t=0to34: a) py(z), b) p:(y), ) average
amplitude, and d) width of the density layer.
Time evolution of the average quantities for the single scale profile L
= 1.0, A = 08, e = 0.5, t = 0 to 34 : a) growth rate da/dt of the
average amplitude, numerical and Richtmyer theory (straight line), b)
the ratio of the numerical growth rate da/dt over that predicted by
Richtmyer theory, c) In(a) vs In(t), d) In(é) vs In(2).
Time evolution of the positions and velocities of the average peaks in
the single scale profile L = 1.0, A = -0.8,¢e =05,t =0to 34 a)y
b) z ¢) dy/dt. The numbers on the curves refer to the peaks on the
curves py(z) versus .

Time evolution of the density contours for the single scale profile L =
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1.0, A= —0.8,e=10.5,t =0, 4, 8 12. The contours are at p = 0.11,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.89 in that order from top to bottom
of each figure.
Time evolution of the density contours for the single scale profile L
= 1.0, A = —-038, e = 0.5, t = 16, 20, 24, 28. The contours are at
p=0.11, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.89 in that order from top to
bottom of each figure.
Time evolution of the density contours for the single scale profile L =
1.0, A = —0.8, e = 0.5, t = 32, 34. The contours are at p = 0.11, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.89 in that order from top to bottom of
each figure.
Time evolution of the average quantities for the single scale profile L
=10,A =-08,e=1.0,¢t =0to 16 : a) py(z), b) p:(y), c) average
amplitude, and d) width of the density layer.
Time evolution of the average quantities for the single scale profile L
= 1.0, A = —-0.8, e = 1.0, ¢t = 0 to 16 : a) growth rate da/dt of the
average amplitude, numerical and Richtmyer theory (straight line), b)
the ratio of the numerical growth rate da/dt over that predicted by
Richtmyer theory, ¢) ln(a) vs In(?), d) In(é) vs In(z).
Time evolution of the positions and velocities of the average peaks in
the single scale profile L = 1.0, A = —0.8,¢ =1.0,t =0to 16 a) y
b) z c) dy/dt. The numbers on the curves refer to the peaks on the
curves py(z) versus z.
Time evolution of the density contours for the single scale profile L =
1.0, A=-08,¢=1.0,t =0, 4, 8 12. The contours are at p = 0.11,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.89 in that order from top to bottom
of each figure.
Time evolution of the density contours for the single scale profile L =

1.0, A = —-0.8, e = 1.0, t = 16. The contours are at p = 0.11, 0.2, 0.3,
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0.4, 0.5, 0.6, 0.7, 0.8, 0.89 in that order from top to bottom of each
figure.

Time evolution of the vorticity contours for the single scale profile L
=1.0,A =-0.5,¢e=05,t=0,8, 16, 24. The contours are at — -
— —0.25, —0.20, —0.15, —0.10, —0.05, and — 0.25, 0.20, 0.15, 0.10,
0.05 in that order from the innermost contour line.

Time evolution of the vorticity contours for the single scale profile L
= 1.0, A = —0.5, e = 0.5, t = 32, 40, 48, 52. The contours are at —
- — -—0.30, —0.25, —0.20, —0.15, —0.10, —0.05, and — 0.30, 0.25,
0.20, 0.15, 0.10, 0.05 in that order from the innermost contour line.
Time evolution of the average quantities for the single scale profile L
=1.0,A =08,¢=1.0,t=0to13: a) py(z), b) pz(y), c) average
amplitude, and d) width of the density layer.

Three-dimensional surface of gy(z,t) for the single scale profile L =
1.0, A =0.8,e=1.0, and t = 0, 13.

Three-dimensional surface of pz(y,t) for the single scale profile L =
1.0, A=08,e=1.0,and t = 0, 13.

Time evolution of the average quantities for the single scale profile L
=1.0,A =08,¢e=1.0,%t =0 to 13 : a) growth rate da/dt of the
average amplitude, numerical and Richtmyer theory (straight line), b)
the ratio of the numerical growth rate da/dt over that predicted by
Richtmyer theory, ¢) In(a) vs In(2), d) In(8) vs In(2).

Time evolution of the density contours for the single scale profile L =
1.0, A=08,e=1.0,t =0, 1, 2, 3. The contours are at p = 0.11,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.89 in that order from bottom to top
of each figure.

Time evolution of the density contours for the single scale profile L =
1.0, A=08,¢e=1.0,t =4, 5,6, 7. The contours are at p = 0.11,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.89 in that order from bottom to top
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of each figure.

Time evolution of the density contours for the single scale profile L =
1.0, A =08,e=1.0,%¢ =28,9, 10, 11. The contours are at p = 0.11,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.89 in that order from bottom to top
of each figure.

Time evolution of the density contours for the single scale profile L =
1.0, A = 0.8, e = 1.0, t = 12, 13. The contours are at p = 0.11, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.89 in that order from bottom to top of
each figure.

Time evolution of the vorticity contours for the single scale profile, L
=10,A=08,¢e=1.0,¢t =0, 1, 2, 3. The contours are from —0.9 to
0.9 fort =0, —1.0 to 1.0 for ¢ = 1, 2, 3, with incremental step size of
0.05 from vorticity —0.1 to 0.1, and of 0.1 for bigger vorticity |w|. The
negative contours are indicated by — - — and positive ones by —.
Time evolution of the vorticity contours for the single scale profile, L
=10,A=08,e=1.0,1% =4, 5, 6, 7. The contours are from —1.0
tol0t=4,-12t012¢t=5,-14toldt=6,-16to1.6¢t=7,
with incremental step size of 0.2. The negative contours are indicated
by — - — and positive ones by —.

Time evolution of the vorticity contours for the single scale profile, L
=10,A =08,¢e=1.0,¢ =8,9, 10, 11. The contours are from —1.8
to1.8t =8, -22t02.2t=9,10, —2.6 to 2.6 t = 11, with incremental
step size of 0.4. The negative contours are indicated by — - — and
positive ones by —.

Time evolution of the vorticity contours for the single scale profile, L
=1.0,A =0.8,¢=1.0, ¢t =12, 13. The contours are from —3.0 to 3.0
t = 12, 13, with incremental step size of 0.4. The negative contours
are indicated by — - — and positive ones by —.

Time evolution of the average quantities for the single scale profile L
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= 0.5; A=-05,e=02,¢t=0to80: a) py,(z), b) p:(y), c) average
amplitude, and d) width of the density layer.
Time evolution of the average quantities for the single scale profile L
= 0.5, A =-05,e=02,¢t =0 to 80 : a) growth rate da/dt of the
average amplitude, numerical and Richtmyer theory (straight line), b)
the ratio of the numerical growth rate da/dt over that predicted by
Richtmyer theory, c) In(a) vs In(t), d) In(é) vs In(2).
Time evolution of the positions and velocities of the average peaks in
the single scale profile L = 0.5, A = —0.5, e = 0.2, t =0to 80 a) y
b) z ¢) dy/dt. The numbers on the curves refer to the peaks on the
curves py(z) versus z.
Time evolution of the density contours for the single scale profile L =
0.5, A =-05,e=0.2,¢=0,8, 16, 24. The contours are at p = 0.26,
0.3, 0.4, 0.5, 0.6, 0.74 in that order from top to bottom of each figure.
Time evolution of the density contours for the single scale profile L =
0.5, A = —-0.5, e = 0.2, t = 32, 40, 48, 56. The contours are at p =
0.26, 0.3, 0.4, 0.5, 0.6, 0.74 in that order from top to bottom of each
figure. |
Time evolution of the density contours for the single scale profile L =
0.5, A = —-0.5, e =0.2, t =64, 72, 80. The contours are at p = 0.26,
0.3, 0.4, 0.5, 0.6, 0.74 in that order from top to bottom of each figure.
Combined time evolution of the average ‘amplitude for the single scale
problemL =1 7T A=-005,—-—-—A=-02—A=-0.5,
+++ A = — 0.8. The numbers 1, 2, 3 on the curves refer to the values
of e = 0.2, 0.5, and 1.0 respectively.
Time evolution of the width é of the stratified layer for the single scale
problem L = 1: "7 A = —-005 ———A=-02,—A=-05,
+++ A = — 0.8. The numbers 1, 2, 3 on the curves refer to the values
of e = 0.2, 0.5, and 1.0 respectively.
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4.29.4
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Coml;ined results of In(average amplitude) versus In(time) for the sin-
gle scale problem L =1: """ A =—-0.05, ——— A =—-02, —A =
— 0.5, +++ A = — 0.8. The numbers 1, 2, 3 on the curves refer to
the values of € = 0.2, 0.5, and 1.0 respectively.
Combined results of In(width of stratified layer §) versus In(time) for
the single scale problem L =1: """ A =—-0.05, — —— A = - 0.2, —
A =-10.5, +++ A = — 0.8. The numbers 1, 2, 3 on the curves refer
to the values of € = 0.2, 0.5, and 1.0 respectively.
Asymptotic time exponent a for the growth of the width § of the
stratified layer in the single scale problem. The circles, the triangles,
and the squares refer to the values of € = 0.2, 0.5, and 1.0 respectively.
Time evolution of the total kinetic energy for the single scale problem
L=1"A=-005-———A=-02—A=-05+++A =~
0.8. The numbers 1, 2, 3 on the curves refer to the values of ¢ = 0.2,
0.5, and 1.0 respectively. |
Time evolution of the ratio of the numerical growth rate over that of
Richtmyer theory for the single scale problem L = 1: "™~ A = — 0.05,
———A=-02,—A=-05, +++ A = — 0.8. The numbers 1, 2,
3 on the curves refer to the values of € = 0.2, 0.5, and 1.0 respectively.
Time evolution of the numerical growth rate of the average amplitude
(da/dt) for the single scale problem L = 1: """ A = — 0.05, — — — A
=-02,—A=-05,+++ A = — 0.8. The numbers 1, 2, 3 on the
curves refer to the values of e = 0.2, 0.5, and 1.0 respectively.
Time evolution of the average quantities for the single scale profile L
=1.0,A = —0.5, ¢ = 0.5, £ = 0 to 40 using the linear model : a) p,(z),
b) pz(y). Combined results — numerical simulation, —~ — — linear
model c) average amplitude, and d) width of the density layer.
Time evolution of the average quantities for the single scale profile L

=1.0, A =-0.5, e = 0.5, t =0 to 40. Combined results — numerical
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simul’ation, — — — linear model : a) growth rate da/dt of the average
amplitude, numerical and Richtmyer theory (straight line), b) the ratio
of the numerical growth rate da/dt over that predicted by Richtmyer
theory, c) In(a) vs In(t), d) In(6) vs In(2).

Time evolution of the density contours for the single scale profile L =
1.0, A = -0.5, e = 0.5, t = 0, 8, 16, 24 using the linear model. The
contours are at p = 0.26, 0.3, 0.4, 0.5, 0.6, 0.74 in that order from top
to bottom of each figure.

Time evolution of the density contours for the single scale profile L =
1.0, A = —0.5, e = 0.5, t = 32, 40 using the linear model. The contours
are at p = 0.26, 0.3, 0.4, 0.5, 0.6, 0.74 in that order from top to bottom
of each figure.

Time evolution of the average quantities for the single scale profile L
= 1.0, A =08, e=1.0, £ = 0 to 12 using the linear model : a) g,(z),
b) pz(y). Combined results — numerical simulation, — — — linear
model c¢) average amplitude, and d) width of the density layer.

Time evolution of the average quantities for the single scale profile L
=10,A=0.8,e=1.0,¢ =0 to 12. Combined results — numerical
simulation, — — — linear model : a) growth rate da/dt of the average
amplitude, numerical and Richtmyer theory (straight line), b) the ratio
of the numerical growth rate da/dt over that predicted by Richtmyer
theory, ¢) In(a) vs In(t), d) In(6) vs In(2).

Time evolution of the density contours for the single scale profile L
=10,A=08,e=1.0,¢t =0, 4, 8 12 using the linear model. The
contours are at p = 0.11, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.89 in that
order from bottom to top of each figure.

Time evolution of the average quantities for the first initial random
profile, A = —0.05, ¢t = 0 to 80 : a) p,(z), b) p.(y), ¢) average ampli-
tude, and d) width of the density layer.
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Time‘evolution of the average quantities for the first initial random
profile, A = —0.05, ¢t = 0 to 80 : a) growth rate da/dt of the average
amplitude, numerical and Richtmyer theory (straight line), b) the ratio
of the numerical growth rate da/dt over that predicted by Richtmyer
theory, ¢) In(a) vs In(¢), d) In(6) vs In(¢).
Time evolution of the density contours for the first initial random
profile, A = —0.05, ¢t = 0, 8, 16, 24. The contours are at p = 0.48,
0.49, 0.50, 0.51, 0.52.
Time evolution of the density contours for the first initial random
profile, A = —0.05, ¢t = 32, 40, 48, 56. The contours are at p = 0.48,
0.49, 0.50, 0.51, 0.52.
Time evolution of the density contours for the first initial random
profile, A = —0.05, t = 64, 72, 80. The contours are at p = 0.48, 0.49,
0.50, 0.51, 0.52.
Time evolution of the average quantities for the second initial ran-
dom profile, A = —0.05, t = 0 to 80 : a) py(x), b) pz(y), c) average
amplitude, and d) width of the density layer.
Time evolution of the average quantities for the second initial random
profile, A = —0.05, ¢t = 0 to 80 : a) growth rate da/dt of the average
amplitude, numerical and Richtmyer theory (straight line), b) the ratio
of the numerical growth rate da/dt over that predicted by Richtmyer
theory, ¢) In(a) vs In(t), d) In(6) vs In(2).
Time evolution of the density contours for the second initial random
profile, A = —0.05, ¢ = 0, 8, 16, 24. The contours are at p = 0.48,
0.49, 0.50, 0.51, 0.52.
Time evolution of the density contours for the second initial random
profile, A = —0.05, t = 32, 40, 48, 56. The contours are at p = 0.48,
0.49, 0.50, 0.51, 0.52.

Time evolution of the density contours for the second initial random
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proﬁléz, A = —0.05, t = 64, 72, 80. The contours are at p = 0.48, 0.49,
0.50, 0.51, 0.52.

Time evolution of the average quantities for the third initial random
profile, A = —0.05, ¢t = 0 to 80 : a) p,(z), b) p.(y), ¢) average ampli-
tude, and d) width of the density layer.

Time evolution of the average quantities for the third initial random
profile, A = —0.05, ¢t = 0 to 80 : a) growth rate da/dt of the average
amplitude, numerical and Richtmyer theory (straight line), b) the ratio
of the numerical growth rate da/dt over that predicted by Richtmyer
theory, c¢) In(a) vs In(t), d) In(é) vs In(2).

Time evolution of the density contours for the third initial random
profile, A = —0.05, t = 0, 8, 16, 24. The contours are at p = 0.48,
0.49, 0.50, 0.51, 0.52.

Time evolution of the density contours for the third initial random
profile, A = —0.05, t = 32, 40, 48, 56. The‘contours are at p = 0.48,
0.49, 0.50, 0.51, 0.52.

Time evolution of the density contours for the third initial random
profile, A = —0.05, t = 64, 72, 80. The contours are at p = 0.48, 0.49,
0.50, 0.51, 0.52.

Time evolution of the average quantities for the fourth initial random
profile, A = —0.05, t = 0 to 80 : a) py(z), b) p(y), ¢) average ampli-
tude, and d) width of the density layer.

Time evolution of the average quantities for the fourth initial random
profile, A = —0.05, t = 0 to 80 : a) growth rate da/dt of the average
amplitude, numerical and Richtmyer theory (straight liné), b) the ratio
of the numerical growth rate da/dt over that predicted by Richtmyer
theory, c) In(a) vs In(t), d) In(8) vs In(t).

Time evolution of the density contours for the fourth initial random

profile, A = —0.05, t = 0, 8, 16, 24. The contours are at p = 0.48,
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4.36.5
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0.49, 0.50, 0.51, 0.52.
Time evolution of the density contours for the fourth initial random
profile, A = —0.05, t = 32, 40, 48, 56. The contours are at p = 0.48,
0.49, 0.50, 0.51, 0.52.
Time evolution of the density contours for the fourth initial random
profile, A = —0.05, t = 64, 72, 80. The contours are at p = 0.48, 0.49,
0.50, 0.51, 0.52.
Time evolution of the average quantities for the first initial random
profile, A = —0.2, t = 0 to 71.46 : a) py(z), b) pz(y), c) average
amplitude, and d) width of the density layer.
Time evolution of the average quantities for the first initial random
profile, A = —0.2, ¢t = 0 to 71.46 : a) growth rate da/dt of the average
amplitude, numerical and Richtmyer theory (straight line), b) the ratio
of the numerical growth rate da/dt over that predicted by Richtmyer
theory, c) In(a) vs In(t) , d) In(6) vs In(t). |
Time evolution of the density contours for the first initial random
profile, A = —0.2, t = 0, 8, 16, 24. The contours are at p = 0.41, 0.45,
0.50, 0.55, 0.59.
Time evolution of the density contours for the first initial random
profile, A = —0.2, t = 32, 40, 48, 56. The contours are at p = 0.41,
0.45, 0.50, 0.55, 0.59.
Time evolution of the density contours for the first initial random
profile, A = —0.2, t = 64, 72. The contours are at p = 0.41, 0.45, 0.50,
0.55, 0.59.
Time evolution of the average quantities for the second initial random
profile, A = —0.2, t = 0 to 89.34 : a) p,(z), b) p:(y), c) average
amplitude, and d) width of the density layer.
Time evolution of the average quantities for the second initial random

profile, A = —0.2, t = 0 to 89.34: a) growth rate da/dt of the average



280

281

282

283

284

285

286

287

4.37.3

4374

4.37.5

4.38.1

4.38.2

4.38.3

4.38.4

4.38.5

— XXxVill —
ampli'tude, numerical and Richtmyer theory (straight line), b) the ratio
of the numerical growth rate da/dt over that predicted by Richtmyer
theory, ¢) In(a) vs In(t), d) In(é) vs In(2).
Time evolution of the density contours for the second initial random
profile, A = —0.2, t = 0, 8, 16, 24. The contours are at p = 0.41, 0.45,
0.50, 0.55, 0.59.
Time evolution of the density contours for the second initial random
profile, A = —0.2, ¢t = 32, 40, 48, 56. The contours are at p = 0.41,
0.45, 0.50, 0.55, 0.59.
Time evolution of the density contours for the second initial random
profile, A = —0.2, t = 64, 72, 80, 88. The contours are at p = 0.41,
0.45, 0.50, 0.55, 0.59.
Time evolution of the average quantities for the third initial random
profile, A = —0.2,t =0t0 80 : a) p,(z), b) p.(y), c) average amplitude,
and d) width of the density layer. |
Time evolution of the average quantities for the third initial random
profile, A = —0.2, t = 0 to 80 : a) growth rate da/dt of the average
amplitude, numerical and Richtmyer theory (straight line), b) the ratio
of the numerical growth rate da/dt over that predicted by Richtmyer
theory, ¢) In(a) vs In(?), d) In(é) vs In(¢).
Time evolution of the density contours for the third initial random
profile, A = —0.2, t = 0, 12, 16, 24. The contours are at p = 0.41,
0.45, 0.50, 0.55, 0.59.
Time evolution of the density contours for the third initial random
profile, A = —0.2, t = 32, 40, 48, 56. The contours are at p = 0.41,
0.45, 0.50, 0.55, 0.59.
Time evolution of the density contours for the third initial random
profile, A = —0.2, t = 64, 72, 80. The contours are at p = 0.41, 0.45,
0.50, 0.55, 0.59.
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Time'evolution of the average quantities for the fourth initial random
profile, A = —0.2,t =0t0 80 : a) g,(z), b) p(y), c) average amplitude,
and d) width of the density layer.
Time evolution of the average quantities for the fourth initial random
profile, A = —0.2, ¢t = 0 to 80 : a) growth rate da/dt of the average
amplitude, numerical and Richtmyer theory (straight line), b) the ratio
of the numerical growth rate da/dt over that predicted by Richtmyer
theory, c) In(a) vs In(t), d) In(6) vs In(t).
Time evolution of the density contours for the fourth initial random
profile, A = —-0.2, t = 0, 8, 16, 24. The contours are at p = 0.41, 0.45,
0.50, 0.55, 0.59.
Time evolution of the density contours for the fourth initial random
profile, A = —0.2, ¢ = 32, 40, 48, 56. The contours are at p = 0.41,
0.45, 0.50, 0.55, 0.59.
Time evolution of the density contours for the fourth initial random
profile, A = —0.2, t = 64, 72, 80. The contours are at p = 0.41, 0.45,
0.50, 0.55, 0.59.
Time evolution of the average quantities for the first initial random
profile, A = —0.5, t =0t040: a) py(z), b) pz(y), c) average amplitude,
and d) width of the density layer.
Time evolution of the average quantities for the first initial random
profile, A = —0.5, t = 0 to 40 : a) growth rate da/dt of the average
amplitude, numerical and Richtmyer theory (straight line), b) the ratio
of the numerical growth rate da/dt over that predicted by Richtmyer
theory, ¢) In(a) vs In(t), d) In(8) vs In(2).
Time evolution of the density contours for the first initial random
profile, A = —0.5, ¢t = 0, 8, 16, 24. The contours are at p = 0.26, 0.3,
0.4, 0.5, 0.6, 0.74.

Time evolution of the density contours for the first initial random
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4.41.1a

4.41.1b

4.41.2

4.41.3
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4.42.1

4.42.2

4.42.3
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proﬁle':, A = —0.5, t = 32, 40. The contours are at p = 0.26, 0.3, 0.4,
0.5, 0.6, 0.74.
Time evolution of the average quantities for the second initial random
profile, A = —0.5, t =0t0 60 : a) py(z), b) p-(y), c) average amplitude,
and d) width of the density layer.
Three-dimensional surface of py(z,t) for the second initial random pro-
file, A = —0.5 and t = 0, 60.
Three-dimensional surface of pz(y,t) for the second initial random pro-
file, A = —0.5 and t = 0, 60.
Time evolution of the average quantities for the second initial random
profile, A = —0.5, t = 0 to 60 : a) growth rate da/dt of the average
amplitude, numerical and Richtmyer theory (straight line), b) the ratio
of the numerical growth rate da/dt over that predicted by Richtmyer
theory, c) In(a) vs In(¢), d) In(é) vs In(t).
Time evolution of the density contours for the second initial random
profile, A = —0.5, t = 0, 8, 16, 24. The contours are at p = 0.26, 0.3,
0.4, 0.5, 0.6, 0.74.
Time evolution of the density contours for the second initial random
profile, A = —0.5, t = 32, 40, 48, 56. The contours are at p = 0.26,
0.3, 0.4, 0.5, 0.6, 0.74.
Time evolution of the average quantities for the third initial random
profile, A= —-0.5,t =0to042: a) p,(z), b) p.(y), c) average amplitude,
and d) width of the density layer.
Time evolution of the average quantities for the third initial random
profile, A = —0.5, t = 0 to 42 : a) growth rate da/dt of the average
amplitude, numerical and Richtmyer theory (straight line), b) the ratio
of the numerical growth rate da/dt over that predicted by Richtmyer
theory, ¢) In(a) vs In(t), d) In(8) vs In(t).

Time evolution of the density contours for the third initial random
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4.43.1

4.43.2

4.43.3
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Time evolution of the average quantities for the fifth initial random
profile, A = 0.2, t = 0 to 75.4 : a) p,(z), b) p,(y), c) average
amplitude, and d) width of the density layer.
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proﬁlé, A = —0.8, t = 16 using the linear model. The contours are at
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CHAPTER 1

INTRODUCTION

It is well known that in a gravitational field directed downwards, a surface
separating two fluids of different densities is stable provided the heavy fluid is at
the bottom, and the lighter fluid is at the top. Any ripple on the surface due to
perturbations will soon disappear and the surface returns to its normal flat shape.
On the other hand, if we accelerate the whole system at a downward acceleration
of magnitude greater than that of the gravitational field, any ripple on the surface
will grow exponentially fast. Late in the process, spikeé of heavy fluid penetrate
the lighter fluid. This is an example of the well-known Rayleigh-Taylor instability,
which is a type of baroclinic instability.

Lord Rayleigh (1900) was the first to study this problem. He obtained the
initial flow field both for a sharp interface and a stratified fluid with an exponential
density profile. Taylor (1950) extended this result to include a general acceleration
and applied his result to the study of a liquid sheet of finite thickness. Birkhoff
(1955) has given an extensive report of this instability that includes the effects
of surface tension and discusses the different stages of the resultant laminar and
ultimately turbulent mixing. The effects of viscosity are considered by Bellman
and Pennington (1954), of gradual density gradient by LeLevier et al. (1955) and
Case (1960), and of molecular diffusion by Duff et al. (1962). The growth rate
of the instability is reduced with the inclusion of these effects. Recently, Sharp
(1984) has given a survey of Rayleigh—Tz;ylor instability and suggests important

issues which require further investigations such as the three-dimensional nature,
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the role of statistiéally distributed heterogeneities, as well as the possible chaotic
limit due to the fractal geometric structure of this instability.

The baroclinic instability arises from the misalignment between the pressure
gradient and the density gradient and this is responsible for the generation of the
vorticity in the flow. In addition to Rayleigh-Taylor instability, other examples of
baroclinic instability are the Landau-Darrieus instability due to the mass transfer
across an interface, and the Richtmyer-Meshkov instability due to a normal shock
wave passing normally to a perturbed interface.

In this thesis we are concerned with the study of the Richtmyer-Meshkov in-
stability due to its importance in many technical applications. Some examples of
its occurrence are in the laser implosion of deuterium-tritium (DT) fusion targets
(Lindl & Mead 1975), in supersonic combustion (Marble et al. 1987), and in the
interaction between pressure waves and flame fronts (Markstein 1957). The per-
formance of the implosion of a DT pellet depends, among other factors, upon the
behavior of the Richtmyer-Meshkov instability at the abléting pellet surface. In an
oversimplified view of the process, a spherical DT pellet is surrounded by a glass
or metal tamper. When this tamper is irradiated with intense laser light, it accel-
erates inwards. The outer surface of the tamper is the interface between a heavy
fluid (metal or glass) and a light fluid (vaporized tamper) and is unstable during
the initial phase of the implosion. At late times, when the pellet is compressed to
about 1000 times its normal density, its pressure increases enough to slow down
the inward motion of the tamper, and the inner surface between the tamper and
the deuterium-tritium becomes unstable. If the modes of the instability reach large
amplitude, they will cause a breakup of the shell and gross mixing of high- and
low-density matter. In the other mentioned applications, the instability produces
pockets of unburned gases to deteriorate the flame front or to reduce the efficiency
of the combustion process. A fundamental understanding of the physics underlying
the instability is therefore useful in tempering these undesirable effects.

If compressibility of the fluids is neglected, the Richtmyer-Meshkov instability
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can be considered as the limit of the Rayleigh-Taylor instability when the accel-
eration is impulsive, i.e., it acts for almost zero time but the magnitude of the
acceleration is very large so that a finite amount of momentum is transferred to the
fluid as in the case of a shock. This approximation is reasonable when the shock
strength is weak. Its validity has been verified by Ritchmyer (1960) in his consid-
eration of the effect of the compressibility to the inital growth rate of a perturbed
sharp interface. He concluded that for a weak shock, the extension of the Rayleigh-
Taylor formula for a constant acceleration of finite magnitude to an impulsive one
yields results which are accurate to within 5% to 10% of the results obtained from
a full compressible calculation.

Saffman and Meiron (1989) used this approximation in a slightly different way
for a continuously stratified fluid, and showed that the growth of the instability is
reduced when one decreases the density gradient across the interface. It is important
to note that a fundamental difference between the two instabilities, Rayleigh-Taylor
and Richtmyer-Meshkov, is that in the absence of the gravity, the Rayleigh-Taylor
instability occurs only when a light fluid is accelerated into a heavy one but not
in the opposite direction, while there is no directional dependency for Richtmyer-
Meshkov instability. This difference, according to Saffman and Meiron (1989), is due
to the line of action of the pressure gradient which is responsible for the generation
of the vorticity. In the Rayleigh-Taylor instability, this pressure gradient is parallel
to the direction of the flow, while it is perpendicular in the Richtmyer-Meshkov
instability due to the action of the impulsive acceleration on the transverse density
fluctuations. Hence, in the Richtmyer-Meshkov instability, the direction of the
acceleration is not important. Note also that the growth of the R-M layer is initially
linear in time, in contrast to Rayleigh-Taylor instability.

Meshkov (1969) experimentally observed the linear growth rate predicted by
Richtmyer theory, and confirmed the directional independence of this instabil-
ity. Recently, Brouillette (1989) have investigated the shock-induced Richtmyer-

Meshkov instability of a sharp and continuous interface, and verified the rate re-
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duction due to a décreasing density gradient.

The theory of Richtmyer, and of Saffman and Meiron are applicable to a small
perturbed interface. In the present investigation, we examine both small and finite
amplitude perturbations of the interface. We perform long-time numerical simula-
tions of the instability. We consider the effect of the density gradient on the growth
rate, the detailed structure of the time evolution of a single scale perturbation,
and of a random perturbed interface. We also attempt to answer the question of
the existence of a self-similar long-time asymptotic limit of the Richtmyer-Meshkov
instability, which is known to exist for the Rayleigh-Taylor instability.

From a dimensional analysis for the dominating length scale in the late stage of
the Rayleigh-Taylor instability when memory of inital configurations has been lost,
it can be shown that the width of the mixed region is proportional to ¢gt?, where ¢
is the constant acceleration, and ¢ is time. Youngs (1984) numerically verifies this
scaling behavior at late times for the penetration of the instability into the denser
fluid provided the initial perturbation is random and uniformly distributed. In
other words, the quadratic law ceases to be valid if large amplitude long wavelength
perturbations are initially present. This result is also confirmed experimentally by
Read (1984).

In contrast to the Rayleigh-Taylor instability in which there is a continuous
flow of energy into the system, i.e., constant acceleration of finite amplitude, in
Richtmyer-Meshkov instability the momentum is only deposited at the interface ini-
tially by the impingement of the shock. Moreover, as noted by Brouillette (1989),
for a single scale perturbation, the deposited energy is a function of the initial
wavelength for Richtmyer-Meshkov instability, but not for the Rayleigh-Taylor in-
stabililty. From these considerations, Brouillette conjecture that a power law gov-
erning the mixing of Richtmyer-Meshkov instability can hardly exist at late times.
In their experiments, they found that perturbations of a sharp interface evolve
quickly into the non-linear turbulent mixing regime, while those of a continuous

interface exhibit growth only at late times. For both cases, scaling behavior is not
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On the other hand, from a consideration of the time evolution of inital tur-
bulent energy deposited at a plane interface, there seems to be another possibility
as indicated by the work of Barenblatt (1983). Using a turbulent energy balance
equation whose closure is accompﬁshed by certain Kolmogorov-type similarity hy-
potheses, together with an assumption that the turbulence length scale is equal to
a certain fixed part of actual turbulent layer depth, Barenblatt is able to show that
there exists a self-similar asymptotic solution for the propagation of turbulence from
an instantaneous plane source originally concentrated in a horizontal plane layer of
finite depth.

For an idealized problem of an incompressible homogeneuous fluid, i.e., zero
Atwood number, initially having an infinitely thin instantaneous turbulence source
of finite bulk intensity, Barenblatt shows that the depth of the turbulent layer grows
as t2/3 purely from a dimensional argument. For a viscous fluid, he finds that a
self-similar solution can only be obtained if the initial depth of the turbulent layer
is different from zero. The self-similarity, however, is incomplete, i.e., it only exists
for intermediate time, and of the second kind so that the time exponent in self-
similar variables cannot be determined from a purely dimensional consideration.
The value of this exponent is instead obtained from a nonlinear eigenvalue problem,
and shown to range from 0 to 2/3.

Results of our simulation seem to indicate the existence of a weak scaling
behavior at intermediate time for the width of the stratified layer having initial
multiple scale perturbation. The scaling shows a weak dependency on the initial
configurations with the time exponent lying in the neighborhood of 1/4. On the
other hand, results from single scale perturbations definitely show a lack of univer-
sality relative to the initial conditions. This verifies the observation of Brouillette
(1989) on the behavior of a single scale perturbation, namely the instability de-
pends strongly on the initial wavelength. However, the extension of this behavior

to multiple scale perturbations should be taken with extreme care. Due to limits
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of our present computational resources, a much longer simulation and higher reso-
lution is not possible. The question of whether a steepening of the time exponent
from 1/4 in our present simulation to the value of 2/3 as predicted by Barenblatt
(1983) could ever be reached can only be answered with a much longer simulation.
The discrepancy of 1/4 and 2/3 in the time exponent even at low Atwood ratio is
presumably due to the existence of inhomogeneity and anisotropy arising from the
excitation of vortical plumes as opposed to the uniform character of the random
turbulence assumed in the work of Barenblatt (1983).

In the rest of this thesis, the topics considered are presented in the following
manner. In Chapter 2, we review the theories related to the Richtmyer-Meshkov
instability. We verify the applicability of the flow generated by an initial impulsive
acceleration as an approximation to one produced by a weak shock by applying
methods of analysis from the work of Paterson (1948) and Chisnell (1955) to a one-
dimensional problem. We also formulate and summarize the important dimension-
less groups in our problem. In Chapter 3, we discuss the time-dependent numerical
scheme used for the simulation, and describe in detail the different numerical tests
used to validate the algorithm. The results are discussed in Chapter 4, and Chapter

5 concludes the work with some possible future extensions.



CHAPTER 2

THEORETICAL CONSIDERATIONS

When a plane shock wave passes normally or obliquely through a flat interface
separating two fluids of different densities, any perturbation on the interface will
grow in time. This interfacial instability is known as Richtmyer-Meshkov instability.
It is an example of baroclinic instability, due to the misalignment between the
pressure gradient and the density gradient. In order to understand and quantify
the growth of this instability, experimental results, for example, work by Meshkov
(1969) and recently Brouillette (1989), have been analyzed based on Richtmyer’s
extension of Rayleigh-Taylor instability.

Lord Rayleigh (1900), and G. I. Taylor (1950) studied the instability of a liquid
interface subjected to a finite acceleration in a gravitational field. They found that in
the absence of gravity, the interface undergoes instability whenever the lighter fluid
is accelerated into the heavier fluid, and the growth is initially exponential in time.
Richtmyer (1960) extended the incompressible theory of Rayleigh and Taylor to the
case of an impulsive acceleration, i.e., an acceleration having large magnitude and
acting for a short time, such as one generated when a shock wave impinges normally
on a planar interface. He showed that the instability develops independently of the
direction of the acceleration and grows linearly in time. Since the magnitude of
the shock-induced impulsive acceleration is large, the initial compressibility effects
cannot be neglected. However, as the shock moves a large distance away from
the interface, one expects this effect to be less important, and the growth rate

of the instability will qualitatively follow that predicted by incompressible theory.
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Richtmyer studied the growth rate of the instabilty taking into account the initial
compressibility effects, and showed that his results are within 5% to 10% of that
given by incompressible theory.

On the experimental side, using the shock tube, Meshkov (1969), and recently
Brouillette (1989), studied the instability resulting from the impingement of a shock
on a perturbed interface separating two different gases such as air, helium, Freon-22,
and carbon dioxide.

Meshkov (1969) verified the initially linear growth and the independence on
the direction of the instability. His result on the growth rate, however, was lower by
more than 10% than predicted from Richtmyer theory. He suggested that among
other experimental factors, such as asymmetry of the form of the disturbance, the
impurity of the test gases, and the porosity of the film membrane separating the
gases, the marked diffusion of the gas interface during the experiment is one of the
important factors contributing to this discrepancy.

Brouillette (1989) studied this effect in detail, and observed a reduction in
growth rate by lowering the density gradient at the interface. He found that the
initial growth rate for a single scale perturbation can be reduced as much as tenfold
if the discontinuous interface is replaced by a continuous one for which the ratio
between the thickness of the continuous stratified layer to the initial perturbed
wavelength is around three. For a discontinuous interface formed by a thin plastic
membrane, Brouillette (1989) found that the perturbation introduced on the inter-
face by the rupture of the membrane due to the passage of a shock evolves rapidly
into the non-linear turbulent mixing regime. Due to a large uncertainty in his data
at early times, he could not determine a power law describing the time evolution of
the interface. For a diffuse interface, perturbations are introduced as gravitational
waves by retracting a plate initially separating two gases. The results from this
experiment show a dramatic reduction in the growth of a possible turbulent mixing
zone. After an initial compression, the thickness of the layer remains essentially the

same, and it exhibits growth only at late times, after the development of perturba-
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tions introduced b}; the reverberation of waves between the end wall, the side walls
and the distorted interface under the influence of boundary layers.

In this study, we hope to gain some insights into the long time behavior as well
as the effect of the smoothness of the interface on the growth rate of the instability
using a full 2-D numerical simulation of the time dependent incompressible equa-
tions. We model the initial effect of compressibility by approximating the action of
the shock as an impulsive pressure using an incompressible impulsive theory. This
idea was used by Saffman and Meiron (1989) to study the kinetic energy deposited
by an impulse at a layer of stratified fluid with a weak density perturbation in the
transverse direction to the flow. This incompressible approximation is a reasonable
one for an impulsive acceleration induced by a weak shock, since the induced ve-
locity is subsonic. Moreover, one expects that for such weak shocks, the effect of
the compressibility is limited to some initial modification of the density distribu-
tion, since the residence time of the shock in the nonuniform region is very small
compared to the characteristic time for the evolution of the instability.

In section 1, we summarize the theory of Rayleigh-Taylor instability for finite
acceleration and its extension by Richtmyer to the system subjected to an impulsive
acceleration. The justification for the use of the discussed incompressible impulsive
approximation as well as an assessment of its range of validity are done by examining
the solution of a planar shock passing a region of non-uniform density distribution
using one-dimensional gas dynamics. In section 2, we review the basic theory of
one-dimensional normal shocks, and summarize the Rankine-Hugoniot relations for
later reference. Sections 3 and 4 present the results from our study on a normal
planar shock passing through a sharp and continuous interface using the methods of
analysis due to Paterson (1948) and Chisnell (1955). The incompressible impulsive
theory of Saffman and Meiron is reviewed in Section 5. Finally, in section 6, we

describe the geometry and the governing equations for our problem.
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2.1 Linear Theory

2.1.1 Rayleigh- Taylor Instability

Lord Rayleigh (1900) considered the nature of the equilibrium of a system
containing incompressible stratified fluid in a gravitational field. The well-known
condition for equilibrium for this system is that the fluid must be arranged in
horizontal strata, i.e., the density o is only a function of the vertical distance, z. In
the following discussion, z is the vertical coordinate pointing upward. If this state
of equilibrium is altered slightly, a stability criterion can be obtained using linear
theory.

Let u, v, and w be the perturbed velocity components in the z, y, and =z

~direction respectively, and let p and p be the perturbed density and pressure. To
the first order of amplitude perturbation e in a regular expansion, the continuity

equation becomes,

Ou Ov Ow '
E+—5§+E—O. 7(2.1)
The three momentum equations are

Op  Ou

E:. = —0 3t ’ (22)
Op  Ov

5:;; = Uat, (23)
Op ow

3, = 9P (2.4)

The condition of incompressibility for a system of stratified fluid requires the

material derivative of the density be identically zero, thus we have

dp do
F+wr =0 (2.5)

Since the above sytem of equations is linear, we can use the superposition
principle. Using Fourier theory, the dependence of the flow variables on z, y, and

t can be expanded respectively into the eigenmodes e**s%, e**v¥ and e'™*, where
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k;, and k, are the wavenumbers in the z- and y-direction respectively. If the
disturbances in time, and in the z-, and y-direction are decomposed into these
eigenmodes, then for a particular set of k;, ky, and n, the above set of equations

is reduced to a second order O.D.E. for the perturbed velocity component w as

follows, ‘
2w ldo [dw g(k.?+k,?)
T R U

In the case of a flat interface (2 = 0) separating two fluids of uniform density o4,
and o,, neglecting any disturbances in the y direction, (i.e., a two dimensional

problem), for each region of fluid, the general equation (2.6) is reduced to

d?
=5 —kw =0, (2.7)

of which the general solution is
w = Ae¥** + Be7Fe7. (2.8)

Since the fluid is at rest as z — +oo for the upper fluid, and as z — —oo for the
lower fluid, we have A = 0 for upper fluid, and B = 0 for lower fluid. Due to the
continuity of w across the interface, the solution for the upper fluid is w = Be %=
and that for the lower fluid is w = Be*+?. The eigenvalue for the time disturbance n
is related to the wave number k., by integrating equation (2.6) across the interface.

One obtains,

2 gk, T2 kA 2.9
A Iha st (2.9)

where A is known as the Atwood number.

If F(z,y, z,t) = 0 is the equation of the interface, then at every point we must

have,

DF
-7 =0 (2.10)

For the two-dimensional case we have considered, the equation of the surface is

z —n(z,t) =0, (2.11)
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where 7 is the perturbed position for a given point on the surface relative to the
equilibrium position (z = 0). Substituting (2.11) into (2.10), and neglecting small

quantities of the second order, the evolution equation for the interface becomes

d
7;] = w‘::o- (2-12)

If the initial perturbation of the interface from the equilibrium position is
no = ag cos(k; ), (2.13)
and the initial velocity is zero, (2.12) can be integrated to give
n = ag exp(int) cos(k, ), (2.14)
where n is the positive root of n? in equation (2.9). If we let
a(t) = ag exp(int) ‘ (2.15)

denote the amplitude of the disturbance at time ¢, then the evolution equatidn for
a(t) is

%a(t) = —nza(t) = gkzAa(t). (2.16)

From equation (2.15), one sees that a flat interface subjected to an infinitesimal
disturbance will oscillate about the equilibrium state when n? is positive, i.e., the
density of the upper fluid (o2) is smaller than that of the lower fluid (o;). On the
other hand, if the density gradient is reversed, then the system is unstable. As long
as the amplitude of the disturbance remains small compared with its wavelength,
the instability grows exponentially in time and the growth rate of the disturbance
increases with increasing k., i.e., smaller wavelength. If the motion is not limited
to two dimensions, then as can be seen from equation (2.6), the relation between n,
and k., is the same with k, replaced by \/k,2 + kyz. Hence, in the later discussion,

we will only use k to stand for wave number in general.
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Taylor (1950) <':onsidered an extension to this problem. Instead of a system at
rest, he assumed the whole system is accelerated vertically upward with an uniform
acceleration ¢y. If we choose the reference frame to be fixed relative to the interface,
i.e., uniform accelerating moving frame, then the governing equations are the same
except the body force gp in equation (2.4) is replaced by (g + g1). Taylor used the
velocity potential formulation for the perturbed system and arrived at the same
stability criteria (2.9) with the modified gravity, (¢ + ¢;). The stability of a flat
interface now depends not only on the densities, o;, ¢ = 1, 2, but also on the
magnitude of ¢g; relative to ¢, and the direction of the acceleration, g;. When the
upper fluid is lighter than the lower fluid, the stability of the interface disappears
when the whole system is accelerated downward faster than free fall. Vice versa, the
instability of the interface when o; < o2 will become stable if the liquid were given a
downward acceleration greater than that of gravity. In the case of no gravitational
acceleration, the system is unstable when accelerated from light to heavier fluid,
and is stable when accelerated in the opposite direction: This is the well-known
Rayleigh-Taylor instability.

It should be noted that the above analysis is valid for an ideal case of two
incompressible fluids without viscosity, diffusion, or surface tension, with an infi-
nite density gradient at their interface. As shown in equation (2.14) and (2.9), an
infinitesimal perturbation with wave number k will increase exponentially in ampli-
tude with the exponent being proportional to k!/2. Hence, the growth rate of the
amplitude increases without limit with increasing wave number. This unrealistic sit-
uation is resolved by the inclusion of the effects of surface tension (Chandrasekhar,
1961), viscosity (Bellman and Pennington, 1954), finite interface density gradient
(Case, 1960), or diffusion (Duff et al, 1962). For an extensive list of references,
see Sharp (1984). The resulting eigenvalue n is then bounded for all values of &,
and has a maximum for some particular wave number. If the initial perturbation
has a fairly complete spectrum of harmonic wave numbers, then after some time,

a particular wave number (k,,., or wavelength A.q;) will dominate the overall
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growth. This devélopment of the instability is usually known as the first stage of
the overall evolution of the Rayleigh-Taylor instability.

The next two stages of the instability are discussed by Youngs (1984) as follows.
After the amplitude of the dominant wave number has reached about half of its
wavelength (%/\mu), the exponential growth of short wavelength perturbation slows
down and longer wavelength perturbations begin to grow more rapidly. This stage is
characterized by the appearance of larger and larger structures which emerge from
the nonlinear interaction and competition of bubbles. If a bubble of the lighter
fluid penetrating the denser fluid is slightly larger than its neighbors it grows more
rapidly and eventually overtakes the surrounding bubbles. This stage ends when
the memory of the initial conditions is lost, and the dominant wavelength A; has
reached about 10,4z

In the final mixing stage of the Rayleigh-Taylor instability, the growth of the
large-scale structures is weakly affected by the viscosity. Since the memory of the
initial conditions is lost, from a dimensional analysis, it can be shown that the
dominant length scale is of the order O(gt?). Hence, the width of the mixed region
must be proportional to t2. This quadratic scaling has been confirmed numerically
by Youngs (1984), and experimentally by Read (1984) for the penetration of the
denser fluid, i.e., the growth of the bubbles of light fluid, provided no initial large
amplitude long wavelength perturbations are initially present. Read (1984) and
Youngs (1984) also noticed that the experimental values of the growth rate tend
to be higher than the values obtained from two-dimensional calculations. They
attribute this effect to the two-dimensional constraint of the numerical calculations,
which presumably inhibits the growth of the large scale structure, as opposed to the
more rapid growth observed in three-dimensional experiments. This phenomenology
of low constant acceleration of the bubbles penetrating the heavy fluid clearly does
not correspond to the instability evolved from a pure sinusoidal perturbation. In
the later case it is known that at late times a single bubble of light fluid penetrates

the heavy fluid with a constant velocity in proportion to \/gA, and the spike of
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heavy fluid falls with constant acceleration (Davies and Taylor, 1950). This fact is
observed experimentally in the work of Lewis (1950).

Recently, using moving source singularities and a scheme for the competition
between bubbles, Zufiria (1987) successfully modeled the dynamics of Rayleigh-
Taylor instability for the case in which the density ratio between the two fluids is
infinity. His results suggest that the constant acceleration observed in the motion of
the interface is due to the competition among the different bubbles which form the
front. He also found that the averaged motion of the front is very insensitive to the
initial conditions, even though the detailed structure of the bubbles is quite sensitive.
In a subsequent investigation using a numerical scheme known as the vortex in cell
method (VIC), Zufiria (1987) includes surface tension in his calculation, and obtains
results in agreement with the experimental results of Read (1984). He concludes
that surface tension is the mechanism for the final selection of the number of bubbles
at the front. He also observes that the motion of these bubbles is not affected by
the behavior of the spikes, and hence he could obtain accéptable results with a very

poor resolution in the region of the spikes.

Later, in this work, we will analyse the results of our numerical simulation in
parallel with the features quoted above for the Rayleigh-Taylor instability for both
single and random multiple scale perturbations. In the next section, we summarize

the extension of Richtmyer (1960) to the case of an impulsive acceleration.

2.1.2 Richtmyer-Meshkov Instability

Richtmyer (1960) investigated the effect of compressibility on the instability
of an interface undergoing shock-induced impulsive acceleration. When the accel-
eration ¢ in the above theory of Rayleigh and Taylor is impulsive, i.e., g = g(1) is
very large during a short time interval and zero or small outside that interval, then
one can integrate equation (2.16) over this time interval to obtain the evolution

equation for the disturbance amplitude a(?).
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Let vg be the induced velocity of the fluid due to the impulsive acceleration

9(®),
vo = /g(t)dt.

If the condition of the interface before the arrival of the acceleration is

a = ag, -a-t- = O, (2.17)

then by integrating (2.16), immediately after passage of the impulse, we have

d
a = ay, d_(tl = kvgap A. (2.18)

Thus, the amplitude of the disturbance grows linearly in time. Notice that in
contrast to the case of finite magnitude acceleration, this instability exists inde-
pendently of the direction of the acceleration. When the acceleration is directed
from a light fluid into a heavy one, the amplitude simply increases. In the reverse
direction, from heavy to light, the amplitude first decreases then reverses its phase
and increases. The underlying physics of this difference is due to the line of ac-
tion of the pressure gradient that is responsible for the generation of the vorticity.
In Rayleigh-Taylor instability, this pressure gradient is parallel to the direction of
the flow, while it is perpendicular in the Richtmyer-Meshkov instability due to the
action of the impulsive acceleration on the transverse density fluctuation. Hence,
Richtmyer-Meshkov instability occurs independently of the direction of the acceler-
ation.

Equation (2.18) is obtained using the assumption of incompressibility. That
is, any disturbance in the flow field is communicated instantaneously to the other
parts of the domain. Therefore, there exists a discontinuity in the rate of change of
the amplitude as shown above. In reality, since the magnitude of the acceleration
is large, the fluid will first be compressed, and there will not be any communication
to the other part of the fluid until there has been time for the shock to pass through

a distance of the order several wave lengths of the disturbance. One expects that
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the compressibility'r effect will be restricted to this initial state as long as the shock
is weak, and after which the growth of the instability will be qualitatively the same
as that predicted by equation (2.18).

In his first order theory, Richtmyer considered a plane shock wave passing
normally to a corrugated interface separating two fluids of different densities as
shown in Figure 2.1. Before the arrival of the shock, the system is at rest and thus
equation (2.17) is applicable. Initially, when the shock impinges on the interface,
a(t) is less than ag due to the compression, and a(t) is zero because the induced
velocity at the crest of the disturbance and the trough are the same. To the first
order of approximation, the transmitted and reflected shocks are also corrugated.
The transmitted shock is slightly converging at the crest, and diverging at the
trough of the disturbance. The opposite is true for the reflected shock. Thus
pressure gradients are generated across the crest and the trough in such a way to
hold back the crest and accelerate the trough further into the heavy fluid.

Richtmyer derived a set of linear partial differential equations for these pressure
perturbations, along with a set of initial, and boundary conditions. He then solved
the linearized problem numerically using finite difference methods, and obtained
the solution of a(t) as a function of time. As shown in Figure 2.2, it increases
monotonically from zero, then after several oscillations, it reaches an asymptotic
limit. The oscillation is physical and has been observed experimentally by Meshkov
(1969). Thus, the corrugation in a shock are superstable, i.e., they oscillate in a
damped fashion. Richtmyer observed that the asymptotic value of a(t) is compa-
rable to that given by the incompressible theory, i.e., equation (2.18), if the post
shock values for the densities, and the initial a(0+), are used. On the other hand,
the incompressible theory overpredicts the value of a(+00) by a factor of 2 if the
pre-shock values are used.

Meshkov (1969) experimentally observed the linear growth rate of Richtmyer’s
theory for single-scale perturbations. However, the disagreement between his mea-

sured growth rate and that based on the theory is more than 10%. He suggested
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Figure 2.1 Shock impinges on a sharp two-dimensional perturbed interface.
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Figure 2.2 Qualitative behavior of the growth rate from Richtmyer’s full com-
pressible calculation.

several experimental factors contributing to this discrepancy, one of which is the
marked diffusion of the gas interface while Richtmyer’s theory is derived for a sharp
interface. Sturtevant (1988) pointed out that Meshkov’s results can be made close

to the theoretical prediction by using the correct post-shock parameters.

Recently, Brouillette (1989) reported experimental results for the Richtmyer-
Meshkov instability in the case of continuous stratified fluid. Due to the lack of a
theoretical study on this problem, they have developed a model based on equation
(2.18), and the so-called growth reduction factor v used by Duff et al. (1962). Since
they can not determine the initial amplitude of the disturbance accurately, they can
not validate their model directly. However, indirectly, from the results of different
set of experiments, they found good agreement between their experimental and

analytical results. This work shows that the shock induced growth of a continuous
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interface can be reduced as much as tenfold compared to that of a discontinuous
interface.

Mikaelian (1988) has performed full compressible calculations of the Richtmyer-
Meshkov instability using an Arbitrary Lagrangian-Eulerian (ALE) code. In his
numerical experiment, the geometry of the problem is the same as the configura-
tion used in Brouillette’s experiment. Three kinds of perturbations are considered
including single scale, double scale, and random multiple scale perturbations. For
a shock going from a heavy fluid to a light one, the time at which the perturbation
undergoes a phase reversal as predicted by equation (2.18) is in fair agreement with
the numerical simulation. For example, for a shock of Mach number 1.2 passing
from air into helium, the numerical simulation predicts 2.5cm for the distance trav-
elled by the interface when a phase reversal occurs as opposed to the value of 2.1cm
predicted by equation (2.18).

As in the work of Meshkov (1969), Mikaelian’s results also indicate the over-
prediction of equation (2.18) on the growth rate of a singie scale perturbation. The
penetration of the bubbles of light fluid into the heavier fluid is observed to be at
a slower rate than the falling of the spikes of heavy fluid regardless of the direction
of the shock. The asymmetric development in the shape of the bubbles and the
spikes are clearly seen with the bubble having a round front, while that of the spike
rolling-up is in the form of a mushroom’s head. In addition to sinusoidal profiles
of the initial perturbations, Mikaelian (1988) also studies initial profiles that are
composed of parabolic curves. He observes that, except for a small difference in
the initial growth of the two profiles, at late times, the growth only depends on the
initial amplitudes. Different profiles initially having equal amplitudes will evolve
into the same height at late times. It should be noted that these qualitative features
of compressible Rictmyer-Meshkov instability will be observed in our simulation of
the incompressible Richtmyer-Meshkov instability presented in Chapter 4.

In contrast to Rayleigh-Taylor instability, there seems to be no experimental

or theoretical evidence that the non-linear development of the Richtmyer-Meshkov
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instability will ever reach an asymptotic stage of self-similar turbulent growth. For
the special case of zero Atwood number and of an inviscid fluid, using a turbulence
model, Barenblatt (1983) is able to construct a self-similar asymptotic solution to
the mixing of uniform turbulence originally concentrated in a horizontal plane layer
of zero thickness. A time exponent of 2/3 is obtained purely from a dimensional
argument. For a viscous fluid, self-similar intermediate asymptotics can only be
obtained for a layer initially having a finite thickness. The self-similarity is of
the second kind so that the time exponent is obtained from solving a nonlinear
eigenvalue problem. In this case, the time exponent ranges from 0 to 2/3. It
should be noted that a fundamental difference between the turbulence propagation
in Barenblatt’s analysis and the development of the Richtmyer-Meshkov instability
is the emergence of larger and larger structures in the later process, while the
turbulence layer considered by Barenblatt remains uniformly distributed for all
times. If a self-similar development of the Richtmyer-Meshkov instability does exist,
the time exponent of the scaling variables may not correspond to the values 2/3
obtained by Barenblatt, but indeed should be lower. This upper bound can be
rationalized by the fact that a fraction of energy has been transferred to the internal
motion of these larger structures and hence reduces the energy available for the
expansion of the overall layer. In an attempt to explore the possibility of scaling
behavior, we develop a model to study the Richtmyer-Meshkov instability using the
incompressible impulsive theory of Saffman and Meiron (1989).

The fundamental ideas behind this theory as a model for the flow generated
by a weak shock wave impinging normally on a continuous stratification are the
following.

1. The induced speed of the gas by a weak shock is subsonic and much less than the
speed of the transmitted and reflected shock. Thus, the residence time of the
shocks in the neighborhood of the interface is small, and the compressibility
effects are limited to a short time interval initially. Hence, the motion of

the interface can be modeled as the response to an incompressible impulsive
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1

acceleration.

2. When the transmitted and reflected shocks have travelled a large distance away
from the region of non-uniform density, the state of the gas will be similar to
that of a shock impinging on a sharp interface. Hence, the velocities of the
gas far away from the interface are uniform. This provides simple boundary
conditions for the impulsive model.

In the following sections, we will give some justifications for the above ideas
using one-dimensional gas dynamics, and a summary of the Saffman and Meiron

formulation along with their results for a small density disturbance.

2.2 Normal Shock Relations for a Perfect Gas

It is well-known that some solutions of the one-dimensional inviscid equation,
which are initially continuous, cannot remain continuous for all time; one has to
allow discontinuities of velocity, pressure, density, specific ‘entropy, and temperature
in its solution. Such a discontinuity is called a shock front. It is a mathematical
idealization of a very thin region containing fluid of very high temperature gradient,
and viscous stress. Courant and Friedrichs (1948) give an interesting account of the
historical development on the ideas of shock waves. They also discussed how the
shock conditions can be derived from the differential equations for viscous and heat-
conducting fluids. The thickness of the shock has been estimated to be of the order
of the mean free path of the gas molecules (see for example, Landau and Lifshitz
(1959)). Thus for practical calculation, it is sufficient to consider the shock as a
discontinuity and calculate the jumps in the equilibrium values across the shock.
For a flow across the shock as shown in Figure 2.3, the three conservation equations,
or the jump conditions for mass, momentum, energy, and the entropy condition take

the following forms:

P1uy = paluz, (2.19)
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(a)

(b) —r" —+—
l

Figure 2.3 Idealization of a normal shock a) flow across a region of nonuniformity,

b) normal shock wave, and c) shock wave normal to the streamline a—b.

p1+p1ul =p2 + p2u3, (2.20)
1 1
s1 < 82, (2.22)

where h, and s are respectively the enthalpy and the entropy of the fluid in the

equilibrium regions denoted by the subscripts 1, and 2.
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For a real gas, it is usually necessary to solve the above general equations by
numerical methods. However, for an ideal gas undergoing an adiabatic process (gas
with equation of state p/ps = (p/po)?), its state behind the shock (those having
subscript 2) can be obtained in terms of the shock strength, z;2 = ps/p:, and the
state of the gas in the front of the shock. The resulting equations are known as the

Rankine-Hugoniot relations, which may be written in the following form:

(/\2 + z12)
=p1—%, 2.23
P2 £1 (1 + A2212) ( )
uz =uy * ¢(212,P1,P1), (2-24)

U =u i,/%i—), (2.25)
$(z12,p1,p1) = (212 — 1)\/-’[525\12—;%, (2.26)

A = 8 :L 3 (2.27)

where

Here U is the velocity of the shock front, and « is the ratio of specific heats of the
assumed ideal gas. For simplicity, in this work, v is taken to be 1.4, the value for
air. The plus (minus) sign in the above equations applies to the forward (backward)
shock, that is a shock moving in the positive (negative) z-direction in the usual z-¢
coordinate.

Since we are interested in the state of the gas when the shock is inside the non-
uniform region as well as its asymptotic behavior when the shock has been a large
distance away, in the following discussions, we will consider two related problems of
a normal shock wave passing through a sharp interface, and through a non-uniform

one-dimensional medium.
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2.3 Shock Passin'g a Sharp Interface

The theory of a plane shock wave impinged normally on an ideally thin and
light partition separating two perfect gases of different molecular weights, and spe-
cific heat constants has been studied by Paterson (1948). In our work, we will
consider two gases otherwise identical having different densities por on the left of
the partition, and por on the right side as shown in Figure 2.4, with

poL < por, and &= _P_o_}_z_ (2.28)
PoL

We consider a plane shock wave S; passing through the gases initially at rest
and falling normally on the interface. Since the flow is one-dimensional, after S;
impinges upon the interface, there is a reflected wave S3, and a transmitted wave S,
leaving it. In his work, Paterson shows that the transmitted wave is always a shock
wave, and the reflected wave can be either a shock wave, or a rarefaction wave. For
the system we consider, the reflected wave is always a shock wave.

Let the subscript 0 denote the initial state of both gases, and ¢ = 1,2,3 the
steady state behind the incident shock (S1), the transmitted shock (S2), and the
reflected shock (S3), respectively. And let u; denote the gas velocity behind the
shock, S;, U;, the shock speed, and z; the pressure ratio across the shock, so that
21 = p1/po, 22 = p2/po, 23 = p3/p1- By the jump conditions (2.23) to (2.27), we

have for S;
P1 A4z
= R 2.29
por 1+ Az (2:29)
uy = (21, Po, PoL ) (2.30)
po(A* +z1)
Uy =/ ————=%, 2.31
= o (1= ) (231)
for S,
P2 A2+ 2
= (2.32)

por 1+ Az’
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PoL,Po : POR, PO
|

a) Initial state, gases are at rest.

Uy
U1, P1,P1 | POR
PoL |

S1-incident shock

b) Before the incident shock arrived.

U. l
3 Uz =Ug3 |_)P2 =p3 Uy
|
U1,pP1,P1 U3z, P3,P3 | U2,p2,P2
S3-reflected shock So-transmitted shock

c) After the shock passed.

Figure 2.4 Shock passing a sharp one-dimensional interface.
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Uz = ¢(22,p0, pOR)’ (2'33)
[ Po(A? + 22)
U, = | ———==, 2.34
2 poR(l _ Az) ( )
and for 53
pP3 A2 Atz
L4 2.35
P1 1 + /\23 ( )
Uz = Uy — ¢(23,P1, P1)7 (2-36)

U3 = Uy — ‘/%i)l, (237)

where the function ¢ is given in equation (2.26).
At the interface, by continuity of the velocity and the pressure, t.e., uy = us,

and p, = p3, we obtain a nonlinear equation for z3

, 1 ) 216(1 + A221) .
(2321—1) 2 ¥ 2371 —-(21—1) N2 T+ +(23-—1)\/()‘2 T 21)(1\2 n 23) = 0. (238)

For given shock strength 2, density ratio §, and A2, this. equation is solved for z3

by the bisection method. Once, z3 is obtained, all flow properties of the gas can be

determined. The ratios of the shock speed U; to the speed u; of the gas behind it

are,
U1 1 ’7+1
I = Ezl — 1()\2 21), (239)
U2 1 ")’+1
el S | 1(A2 + 29), (2.40)
y+1

— — 2 2
gi— 1 2(21_1)\/21(/\ +Z3)(1+/\ 21)

U3 1 Z3 -1 21(1+A221)
z1 -1 A2+23

The density and temperature ratio of the gases across the interface after the passage

(2.41)

of the shock are respectively,

1pg
—-— =1I, 2.42
5o (242)
T, 1
T, (2.43)
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where
0= )\2+22 1+/\2211+/\223
T14 X220 A242; A4z

and T; is the temperature of the gas behind the shock S;.

2.8.1 Motion of the shock away from the partition

or a measure of shock residence time

For six density ratios, 6 of 1.22, 1.5, 3, 9, 19, 39, corresponding to the six
Atwood numbers A of 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, the solutions to the problém of
a shock passing a sharp interface are obtained with the arriving shock strength z;
ranging from 1 to 1000.

Figure 2.5 shows a plot of the speed ratios of equations (2.39) to (2.41) versus
the shock strength z;. For both of the transmitted and reflected shocks, at a given
incident shock strength, as the density ratios increase, the speed ratios decrease.
That is, the speed of the transmitted shock relative to the partition decreases, while
that of the reflected shock increases. As z; increases, the speed ratios of the incident
and transmitted shocks decreases, while that of the reflected one increases. These
ratios quickly approach a limit for z; < 10. For the incident shock, the final limit

can be shown to be

UG _aft (2.44)

Uy 2

For v = 1.4, the limit is 1.2. The limit for the transmitted shock is also in the
neighborhood of 1.2. For the reflected shock the limit ranges from —0.18 to 0.45
for the corresponding values of & from 39 to 1.22 (in decreasing order). Thus for a
very strong incident shock, the transmitted shock leaves the interface at a rate 20%
faster than the speed of the interface, and the reflected shock moves out at a rate
60% to more than 100% backward depending on the density ratios.

In Figure 2.6, we show a detail variation of these speed ratios for z; < 4. Up
to z; = 1.8, the speed of the transmitted shock is more than double the speed of
the gas for all density ratios. This is also true for the reflected shock, except that
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the velocities of the reflected shock and the gas are in the opposite direction. Thus,
relative to the interface, the reflected shock is moving away from it twice as fast as
the transmitted one. For z; = 1.1, the speed ratio Uz/uz is 9 for A = 0.95, and
14.5 for A = 0.1. The corresponding values for U; /u3 are —14.5, and — 52.0.

From this result, we conclude that the residence time of the shocks in the
neighborhood of a sharp interface is small for a weak shock. For a shock of moderate
to strong strength, the residence times quickly approach a limit. The density ratio
has more effect on the residence time of a weak shock than a moderate or strong

one.

2.5.2 Gas properties after passage of the shocks

or a measure of the compressibility effects

Similar to Figure 2.5, and 2.6, as functions of the incident shock strength z;,
we plot in Figure 2.7, and 2.8 plots of the density ratios as given in equation (2.42),
the temperature ratios (equation 2.43), and the strength of the transmitted and
reflected shock. |

For a given 21, the density ratios decrease for increasing §. After the passage of
an incident shock with strength less than or equal to 3, the density ratio normalized
by its initial value is more than 90% for all values of §. As z; increases to 1000, this
ratio decreases to a limit of 40% for 6§ = 39, and 92% for é§ = 1.22. Thus, except for
a very strong shock, the initial density gradient across a sharp interface is slightly
altered.

Before the arrival of the shock, the gases on the either side of the partition
are at the same temperature, and pressure. Because of the continuity condition at
the interface, the pressures remain the same on both sides of the partition. On the
other hand, there exists a temperature gradient across the interface in the direction
of the shock motion. This effect is large for large 6, and quickly approaches a limit

as z; increases. Up to z; = 1.4, the temperature difference on the two sides of
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the interface normalized to the gas temperature on the left side is less than 0.5%
for all density ratios. The corresponding value at z; = 2.0 is 3%. At z; = 1000,
T3 /T3 is around 2.62 for § = 39, and 1.06 for § = 1.22. Hence, we conclude that
after the passage of a weak and even moderate shock, the temperature of the gas is

essentially constant across a sharp interface.

2.3.8 Effect of the reflected shock

It is important to see how much the reflected shock will enhance the compress-
ibility effects. For a sharp interface, this effect is clearly seen by observing the
reflected shock strength. As shown in Figure 2.7 and 2.8, the strengths of both the
transmitted and reflected shock increase as the density ratios increase. For increas-
ing 21, the strength of the transmitted shock is of the same order of magnitude
as that of the incident shock or greater, while that of the reflected shock remains
O(1) and is always smaller than the strength of the incident shock. This suggests
that when a shock passes through a region of non-uniform density, the strengths
of the complicated reverberating waves quickly reduce after several bounces. This
consideration gives strong support for the results obtained using Chisnell theory for

a shock passing a non-uniform region given in the next section.

In conclusion, when a shock wave impinges normally on a sharp interface, the
compressibility effect and the residence time of the transmitted, and reflected shocks
in the neighborhood of the interface is very small for a weak shock. For a moderate
shock, the state of the gases is modified slightly, and the residence time of the shock
quickly approaches a final limit as it would for a very strong shock. For a given
incident shock strength, the change in the state of the gases across the interface

normalized to its initial state is small for small initial density ratio 4.
These results can be considered as the asymptotic limits for the case of a
shock passing through a region of non-uniform density distribution a large distance

compared to the characteristic width of the region. Next, we will study in details
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the response of the gases in this region as the shock moves through it.

2.4 Shock Passing a Continuous Interface

Chisnell (1955) considers the normal motion of a shock wave through a non-
uniform one-dimensional medium. In this theory, he regards the region as a succes-
sion of small-density discontinuities separated by uniform regions, with the density
distribution being a monotonic function of the distance. A full description of the
flow due to the reflected wave of the incident shock is formulated. This reflected
wave in turn generates a doubly reflected wave which eventually catches up to the
transmitted shock. Due to the complexity of the wave interactions, Chisnell only
considers the effect of this doubly reflected wave on the strength of the transmitted
shock. Its effect on the strength of the reflected shock and the flow is not given.
However, in comparision with the results given by Paterson’s theory, Chisnell con-
cludes that his theory is satisfactory even though it only takes into account the first
and double reflections. \

In this work, we apply Chisnell’s theory to a normal shock passing in the

positive y direction through a region having the following density distribution,
1
p(y) = 5 (1 + Atanh(y)), (2.45)

where A is the Atwood number. Note that this density profile is used later in our
work as the average density distribution on which a sinusoidal perturbation in the z
direction is imposed. Figure 2.9 shows a picture of the possible wave interactions at
a weak contact discontinuity. There are three types of incident waves, a shock, an
element of a forward-facing wave, and an element of a backward-facing wave. After
the interaction, the waves are modified in their strengths and propagating speeds.

The element of forward-facing wave is absorbed into the transmitted shock.

Using the general theory of one-dimensional gas dynamics (for example, see

Courant and Friedrichs (1948)), it is possible to prove an important theorem com-
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Figure 2.9 Possible wave patterns at a weak contact discontinuity. A" shock
wave separating regions 1, 2; similarly, an element of a forward-facing wave 2, 3,
an element of a backward-facing wave 6, 7, and a weak contact discontinuity 1, 7.
After the interaction there is a transmitted shock 5, 6, with a velocity nearly equal
to the velocity of the incident shock, a contact discontinuity 4, 5, moving in the
same direction as the shock, and a small disturbance 3, 4, , moving in the opposite

direction. — shock wave, — — — weak contact discontinuity, — small disturbance.

paring the discontinuous transition through a shock with a continuous transition
through a simple wave. Suppose a shock and a simple wave transform a gas in the
initial state given by (7, po,uo) into the states given by (r,p,u), and (T*,p*,u*)
respectively, where 7 is the volume per unit mass. If the shock strength is measured
by any of the three differences 7 — 79, p — po, or u — ug, then a simple wave and a
shock are considered to have equal strength if 7* = 7, or p* =p, or u* = u. The

theorem then states:
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For a shock transition and a simple wave transition with the same initial state
and the same strength the quantities 7* and 7, p* and p, u* and u agree up to second
order in the shock strength and differ in third order.

So far we have called z the shock strength. In regard to this theorem, the
appropriate shock strength is z— 1. However, in the following discussion, we will use
both of the terms interchangeably, and its connotation will be clear from the context.
In Chisnell’s approximate theory, the Rankine-Hugoniot relations whenever used are
expanded to the first and second order in z—1. Therefore, these jump conditions are
valid even for the simple waves, i.e., there is no distinction between shocks and waves
in this theory. In addition to the jump conditions, at the contact discontinuity, the

continuity of the pressures and the velocities gives,
P1=Pp1, P4=PpPs, Up=1U7, Uy=1Us, (2.46)

where p and u denote the pressure and velocity with the subscripts indicating the

regions shown in Figure 2.9. In term of the shock strengt}; z, and ¢, these conditions

become,

212223234 = 276265, (2.47)
¢(z12, p1, 1)+ B(223, P2, p2) — &(234, P3, p3) = — (276, P71, P7)+D(265, D6, ps ), (2.48)

where zpn = Pn/Pm-

In the following discussion, equations (2.47) and (2.48) are used to obtain the
solution of a shock passing a one-dimensional stratified layer of gas. Both the

zeroth, and first order solution (i.e., only the first reflected shock is included) are

considered.

2.4.1 Strength of the transmitted shock

Flow at the zeroth order of approzimation

At the zeroth order of approximation, as the shock moves through the non-

uniform region, the strength z of the incident shock will depend only on the density
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p it encounters. This can be seen in Figure 2.9, where there are no backward-facing
waves 6, 7 because the shock moves into a undisturbed region, and the forward-
facing waves 2, 3 will only appear at the next order of approximation. Thus, we
have zo3 = 276 = 1. Since the contact discontinuity is weak, let p7 = p; + dp;y, and

265 = 212 + dz12. The continuity equations (2.47) and (2.48) then give,

d
z3g =1+ 222 (2.49)
212
dzy,
#(z12,p1,01) — (1 + . ,P3,P3) = (212 + dz12, D6, s )- (2.50)

Applying the appropriate Rankine-Hugoniot relations, and expanding ¢ to the first
order in dz;2, and dp;, we obtain an O.D.E. relati‘ng the incident shock strength at

any point of the non-uniform region to the density there :

1 dp; 2 1 2 [ 142z,
= — . + . 2.51
pr1dzia  zi2—1 A2 4215 z12 — 1Y 212(1 + A2) ) ( )

This equation can be integrated into

p(z) = Cf(2), (2.52)

where

2

2
VvVAZ+1
(z — 1) /\+\//\2+—15 VA2 +1-— )\2—{--21—;

f(z)'—()\z_'__z) ) .
“A+ A4 VAZTH 1+ A2+ <

and 232 and p; have been replaced by the current z and p. If the incident shock

(2.53),

strength before entering the variable media is known to be 2;, then the constant C

is determined as

C= fé)zll 1 (2.54)

where p; now denotes the density at the beginning of the variable density region.
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For the densi‘ty distribution given in equation (2.45), we obtain the shock
strength z as a function of the position by solving equation (2.52). The results
for the incoming shock strength of z; = 1.001, 1.01, 1.1, 2.0, 5.0 are shown in Fig-
ures 2.10-b through 2.14-b, each with A = 0.1, 0.2, 0.5, 0.8, 0.9, 0.95. Since at
this order of approximation, we have neglected any effect of the reflected waves as
well as the interactions between the reverberating waves, the flow variables of the
gas behind the shock depend only on the shock strength z through the Rankine-
Hugoniot relations. Figures 2.10-c to 2.14-c present the density distributions of the
gases after the passage of the shock. For comparison, the initial density distribu-
tions are shown in Figures 2.10-a to 2.14-a. The ratios U/u, of the shock velocity to
the velocity of the gas immediately behind the shocks are plotted in Figures 2.10-d
to 2.14-d.

For a weak shock z; = 1.001, 1.01, 1.1 the density distributions are not mod-
ified significantly, especially at low Atwood number, A. The speed of the shock
is very large compared to the gas speed, and this eﬁ'ecti magnifies for smaller A.
For the highest Atwood number A = 0.95 and 2z; = 1.001, the speed ratio U/u,
decreases from 1400 to 561 as the shock goes through the non-uniform region. The
corresponding patterns for z; = 1.01,1.1 are from 141 to §7, and from 15.2 to 6.5
respectively. Thus, the residence time of the shock in the non-uniform region rel-
ative to the characteristic time for the motion of the gas is very short. Hence, for
a weak shock, the compressibility effects are small and restricted to a short initial
time interval, and the assumption of impulsive motion is a good one.

As the strength of the incoming shock increases, the density distribution is
increasingly modified, especially for high Atwood number. The speed of the shock
front exceeds the gas speed by at least 26% for Atwood number A = 0.95, and
the incoming shock strength z; = 5.0. Since at this order of approximation, the
effects of the reverberating waves are not yet considered, the speed ratios as shown
in Figure 2.12-d to 2.14-d are close to the results obtained in the last section for

a shock passing a sharp interface as shown in Figure 2.5-b, and 2.6-b only for the
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Figure 2.10 Zeroth order solution from Chisnell’s theory for z; = 1.001 a) initial
density profile b) shock strength z along y c) zeroth order solution of the density
profile after the passage of the shock d) speed ratio U/u, along y. The numbers 1,
2, 3, 4, 5, and 6 on the curves refer to the Atwood numbers 0.1, 0.2, 0.5, 0.8, 0.9,
and 0.95 respectively.
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Figure 2.11 Zeroth order solution from Chisnell’s theory for z; = 1.01 a) initial
density profile b) shock strength z along y c) zeroth order solution of the density
profile after the passage of the shock d) speed ratio U/u; along y. The numbers 1,
2,3, 4, 5, and 6 on the curves refer to the Atwood numbers 0.1, 0.2, 0.5, 0.8, 0.9,

and 0.95 respectively.
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Figure 2.12 Zeroth order solution from Chisnell’s theory for z; = 1.1 a) initial
density profile b) shock strength z along y c) zeroth order solution of the density
profile after the passage of the shock d) speed ratio U/u; along y. The numbers 1,
2,3, 4, 5, and 6 on the curves refer to the Atwood numbers 0.1, 0.2, 0.5, 0.8, 0.9,
and 0.95 respectively.
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Figure 2.13  Zeroth order solution from Chisnell’s theory for z; = 2.0 a) initial
density profile b) shock strength z along y ¢) zeroth order solution of the density
profile after the passage of the shock d) speed ratio U /u2 along y. The numbers 1,
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Figure 2.14 Zeroth order solution from Chisnell’s theory for z; = 5.0 a) initial
density profile b) shock strength z along y c) zeroth order solution of the density
profile after the passage of the shock d) speed ratio U/u; along y. The numbers 1,
2,3, 4, 5, and 6 on the curves refer to the Atwood numbers 0.1, 0.2, 0.3, 0.8, 0.9,

and 0.95 respectively.
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cases with small jump in density, i.e., small Atwood number. For example, at
z1 = 1.1, from Figure 2.12-d, the shock leaves the non-uniform region at the speed
ratios U/ug of 6.5 and 14.5 for A = 0.95 and 0.1 respectively. From F igure 2.6-b,
the corresponding values for the same shock strength and density ratio are 9 and
14.5. Similarly, at z; = 2, the zero order of Chisnell theory gives the values U [uq of
1.56 and 2.52 as compared to the values of 1.8, and 2.52 obtained from Paterson’s
theory. Hence, the speed ratios U/u; as calculated from the two theories are very
close to each other for small Atwood numbers, and slightly different for the large

ones.

As reverberating waves are considered, one expects that the first reflected wave
(i.e., the singly reflected wave) will slow down the gas in the non-uniform region,
while the second reflected wave will speed it up, and so on. Ideally, a final state of
the gas can be solved for if we include the effects of all reverberating waves. However,
as noted in section 2.3.3, for a sharp interface, the strquth of the reflected shock
remains at O(1) even for a strong incident shock, and is always smaller than the
strength of the incident shock. Thus, for the cases when the strength of the singly
reflected shocks decrease fast enough, a reasonable final solution can be obtained if
we only include the effects of the first reflected wave. In the next section, we will

consider the effects of the singly reflected wave on the flow variables.

2.4.2 Flow induced by the singly reflected wave

As shown by Chisnell, when the density gradient is large (s.e., high Atwood
number), at the zeroth order of approximation, this theory predicts a higher trans-
mitted shock strength than that of Paterson’s theory. This conclusion is confirmed
in our work by comparing results plotted in Figure 2.7-c, 2.8-c using Paterson’s
theory to those in Figure 2.13-b, 2.14-b using Chisnell’s theory. At z; = 2, for A =
0.95, Paterson’s theory predicts z3 = 3.25 as compared to 4.9 by the other theory.
Similarly, at z; = 5, the corresponding values are 13 and 24. When Chisnell takes
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into account the effect of the doubly reflected wave on the strength of the transmit-
ted shock, this discrepancy is reduced significantly. However, due to the complexity
of the calculation, Chisnell’s theory only considers the effects of the singly reflected
wave but not those of the doubly reflected wave on the properties of the gas behind
the shock. In this discussion, we present briefly a summary of Chisnell’s results.

To describe the motion of a particular fluid element, he labels the path of the
fluid particle which originally was at density p(z), related to z by equation (2.52) to
be the ‘z — particle path’. The flow variables behind the shock are thus functions
of two variables, the shock strength z and the particular particle path, zy. For
example, the density on the zo-particle path is p(z0,20) immediately behind the
shock when the shock passes the zg-particle path. The density p(z, 29) reaches the
values of p(z, z0) when the incident shock moved from the zg to the z-particle path.

Consider an element of the first reflected wave generated when the shock moves
from a particle path labeled by z to one labeled by (z + dz). By equation (2.23),
the density p(z,z) of the fluid particles on the z-particleapath immediately behind
the shock is

p(z,2) = p(z)-((—l/\%-_%. (2.55)

From equation (2.49), the strength of the reflected shock immediately behind the
shock is

1+ 2 (2.56)

As discussed earlier, to the first and second order in the shock strength, there is no
distinction between shocks and waves. Since equation (2.52) is derived from a first
order expansion in the shock strength, we can also apply it to the reflected wave.

Let the strength of the reflected wave when it reaches the zg-particle path be:
d
1+ oz, zo)?”', (2.57)
where a(z, 29) is an unknown. Applying equations (2.52) to (2.54) to the reflected

wave, we have

p(z,20) = B(2)f (1 + oz, zo)%) , (2.58)
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where

B(z) = ——”(i%)z_. (2.59)
r(1+%)
z
Using equation (2.53) for f(z), equation (2.58) can be expanded in power of (z—1),

and a(z, zo) is found to be

<>{H} (2:60)

Another relation between a(z,zy) and p(z,2;) can be obtained by the Rankine-
Hugoniot relations as follows. When the reflected wave with the strength given
in equation (2.57) reaches the zo-particle path, it will raise the density p(z, 29) by
an amount determined by the jump condition (2.23). Keeping only the first order

term, it is possible to show that

ap(z7 ZO) _ l dz E
52 dz = 7p(z,20)a(z, 29) gt (2.61)

Substituting equation (2.60) into the above equation, and integrating from -20 to
z, the density p(z,2¢) of the fluid on the zy-particle path when the incident shock
moves from the zp to the z-particle path is

z

-1 -1 1 ~1 d
P i(z,z9)=p ;(ZO’ZO)—Z;Z p 4(."5,:1:)?9:. (2.62)

=2
Let the interval of the shock strength from zo to z be divided into n equal

subintervals such that zp < z; < z,i = 1 ton — 1, and 2; = 2,2, for i = O,n

respectively. By the definition of the reflected shock z, ie., z = 234 = Pa/p3, We

have
p(z, z) P ( Az)
——— = Zr flct( 2, = 1+ i -1, 2.63
P(zo,Po) rt t(z ZO) ,-:HO a(z zo) Z; ( )

where Az = z; — z;_;. Let n — oo. Taking the logarithm of both sides of the

above equation, and using the expansion In(1 +z) = z + O(z?), the total strength
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of the singly reflected wave, z, 5.4, along the zo-particle path when the element of

the reflected wave generated at the z-particle path has arrived is
= d
zrfict(2, 20) = exp { / P iy, v)pd(y, zo)jy}- (2.64)
Yy=2zo

The pressure field p(z, 29) in term of the initial constant pressure p;,; of the fluid

and the fluid velocity at the same point are respectively,

p(z, 20) = 20Dint2rflcty (265)

u2(z 20) (ZO - )\/p(zp(l(;/_\:)zo) L;zo 7—%p%(y7 Zo)P_%(y, y)p-%(y’ZO)%7
(2.66)

since the pressure of the zg-particle path immediately after the passage of the shock
P(20,20) = 20Pint.

For a given density profile, we integrate the above equations for the density
p(z, 20), the reflected shock strength z,f1c+(2, 2¢), and the velocity of the gas u,(z, zg)
as follows. First, equation (2.52) is solved for z as a function of the distance. To
calculate the flow variables u, p, p, we keep the transmitted shock strength z fixed
at the value zs, obtained when the shock leaves the non-uniform region, and vary zg
from the value of the incident shock strength z; to z f- The integrals are evaluated
using the trapezoidal rule. In all calculations, we use 100 grid points for y ranging
from —6.0 to 6.0. The above description of the flow field is expressed in terms of
the shock strength parameters z, and zy. In order to plot the results as a function
of the fluid particle position y, we need to obtain y as a function of z, and z,:

o= [ S || 52 kst

=z =29

x exp{ / ’ aY(z,2' )augﬁ 2 } dfg’) dz, (2.67)

I=zo

‘where U(z) is the shock velocity, y(2) is the location of the shock as a function of

the strength 2, and a(z, z9) is the speed of sound,

2o 20) = 4 P270)
“lnz) = Y o(z,70) (2.68)
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In Figures 2.15'5-a, to 2.15-g, we plot respectively the density, the pressure p/pin:,
the gas velocity uz//Pint, the speed ratio U/uy of the transmitted shock over the
gas speed, the initial density distribution, the ratio of the reflected shock velocity
over the gas velocity, and the strength of the reflected shock versus y(z,z) for A
= 0.1, 0.2, 0.5, and an incident shock of strength 1.1. Figures 2.16-a to 2.16-g
are the corresponding plots for the same flow variables but we have assumed that
every fluid particle is affected instantaneously after the passage of the shock. That
is, the shock only changes the properties of the gas particle but not its location.
Equivalently, we do not use equation (2.67) in plotting the results. Comparing the
two plots, we see that the width of the stratified layer is slightly compressed with
the use of equation (2.67). Apart from this small compression, the variations of the
flow variables in the two plots are identical. The little indentations at the left sides
of the curves in Figures 2.15-a to 2.15-g are due to the difficulty in resolving that
region for the integration of the position y(z, zp) in equation (2.67).

Clearly, the profiles of the velocity and the pressure resemble that of the density.
The higher the Atwood number, the more deviations of the velocity and the pressure
from the mean value become. For 4 = 0.5, the variation of the velocity is within 5%
of the mean velocity. Thus even for a moderate density ratio of 3:1, the assumption
that the gas undergoes an incompressible impulsive motion, i.e., that the velocity
is constant and that the pressure varies linearly with the distance in one dimension,
is a good one. As observed in plots 2.15-d and 2.15-f, the ratios of the velocity of
the transmitted and reflected shock compared to the velocity of the gas are at least
more than 10. Thus, the residential time of the shocks in the non-uniform region is
short.

Extensive results similar to Figure 2.16 are plotted in Figures 2.17 to 2.20 for
the case of z; = 1.001, 1.01, 1.1, 2.0 and A = 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, correspond-
ing to the density ratios 1.22:1, 1.5:1, 3:1, 9:1, 19:1, and 39:1. Again, as the Atwood
number increases, the velécity gradient in the non-uniform region increases. The

strength of the incident shock modifies the magnitudes of the velocities, but not the
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Figure 2.15 Solution including the effects of the singly reflected wave for z; =
1.1 using (2.67) for y a) density profile b) ratio of the pressure over the initial one
c) ua/\/Pint d) U of transmitted shock/uz. The numbers 1, 2, and 3 on the curves
refer to the Atwood numbers 0.1, 0.2, and 0.5 respectively.
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Figure 2.15 (cont’d) Solution including the effects of the singly reflected wave
for z; = 1.1 using (2.67) for y e) initial density profile f) U of reflected shock Jug
g) strength of the reflected shock at the beginning of the non-uniform region as a
function of the transmitted shock’s position. The numbers 1, 2, and 3 on the curves

refer to the Atwood numbers 0.1, 0.2, and 0.5 respectively.
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Figure 2.16 Solution including the effects of the singly reflected wave for z; = 1.1
without using (2.67) for y a) density profile b) ratio of the pressure over the initial
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curves refer to the Atwood numbers 0.1, 0.2, and 0.5 respectively.
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Figure 2.16 (cont’d) Solution including the effects of the singly reflected wave for
z; = 1.1 without using (2.67) for y e) initial density profile f) U of reflected shock
Jua g) strength of the reflected shock at the beginning of the non-uniform region
as a function of the transmitted shock’s position. The numbers 1, 2, and 3 on the

curves refer to the Atwood numbers 0.1, 0.2, and 0.5 respectively.
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Figure 2.17 Solution including the effects of the singly reflected wave for z; =

1.001 without using (2.67) for y a) density profile b) ratio of the pressure over the
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Figure 2.17 (cont’d) Solution including the effects of the singly reflected wave for
z; = 1.001 without using (2.67) for y e) initial density profile f) U of reflected shock

/u2 g) strength of the reflected shock at the beginning of the non-uniform region as

a function of the transmitted shock’s position. The numbers 1, 2, 3, 4, 5, and 6 on

the curves refer to the Atwood numbers 0.1,

0.2, 0.5, 0.8, 0.9, 0.95 respectively.
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Figure 2.18 Solution including the effects of the singly reflected wave for z; = 1.01
without using (2.67) for y a) density profile b) ratio of the pressure over the initial
one c) uy//Pint d) U of transmitted shock/u,. The numbers 1, 2, 3, 4, 5, and 6 on
the curves refer to the Atwood numbers 0.1, 0.2, 0.5, 0.8, 0.9, 0.95 respectively.
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(e) Initial density profile (f) U reflected shock/u2
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Figure 2.18 (cont’d) Solution including the effects of the singly reflected wave for
z; = 1.01 without using (2.67) for y e) initial density profile f) U of reflected shock
Ju2 g) strength of the reflected shock at the beginning of the non-uniform region as
a function of the transmitted shock’s position. The numbers 1, 2, 3, 4, 5, and 6 on

the curves refer to the Atwood numbers 0.1, 0.2, 0.5, 0.8, 0.9, 0.95 respectively.
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Figure 2.19 Solution including the effects of the singly reflected wave for z; = 1.1
without using (2.67) for y a) density profile b) ratio of the pressure over the initial
one c) Uz//Pint d) U of transmitted shock/u;. The numbers 1, 2, 3, 4, 5, and 6 on
the curves refer to the Atwood numbers 0.1, 0.2, 0.5, 0.8, 0.9, 0.95 respectively.
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(e) Inttial density profile (f) U reflected shock/u2
1.2 [ er
1.1 F S
L -28 3-£ —3-—
1.9 F ‘__—””—‘ 5
9 g} / 6
.8} F—————5
- ¥ ~-60 |
s g}t 3 ®
=t 3
c .6} :-ur—
- L -~
(8
-]
5+
© 7 2 _1ea |
4F
r
3 F ~128 -
r
2F
5 ~140 }+ 'S
1 F
ﬂ- P -168 AN TEPINY ST IOV S RS DAPSES EN O B S DA S GENUY A I Y G PR B |
-8 8 -7 -6 -5 -4-3-2-10 1 2 3 4 5 6 7
Y Yy
(g) strength of reflacted wave at 1at pt
1.69 —
1.08 |
1.7 E

1.86

z reflected

29 |
-7 -6-5-4-3-2-108 1 2 3 45 6 7
y = shock position

Figure 2.19 (cont’d) Solution including the effects of the singly reflected wave for
z; = 1.1 without using (2.67) for y €) initial density profile f) U of reflected shock
/uz g) strength of the reflected shock at the beginning of the non-uniform region as
a function of the transmitted shock’s position. The numbers 1, 2, 3, 4, 5, and 6 on

the curves refer to the Atwood numbers 0.1, 0.2, 0.5, 0.8, 0.9, 0.95 respectively.
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Figure 2.20 Solution including the effects of the singly reflected wave for z; = 2.0
without using (2.67) for y a) density profile b) ratio of the pressure over the initial
one c) uz/./pint d) U of transmitted shock/u,. The numbers 1, 2, 3, 4, 5, and 6 on
the curves refer to the Atwood numbers 0.1, 0.2, 0.5, 0.8, 0.9, 0.95 respectively.
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Figure 2.20 (cont’d) Solution including the effects of the singly reflected wave for
zy = 2.0 without using (2.67) for y e) initial density profile f) U of reflected shock
/u2 g) strength of the reflected shock at the beginning of the non-uniform region as
a function of the transmitted shock’s position. The numbers 1,2,3,4, 5, and 6 on

the curves refer to the Atwood numbers 0.1, 0.2, 0.5, 0.8, 0.9, 0.95 respectively.
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velocity gradients. Increasing the shock strength also lengthens significantly the
residential time of the shock.

Similar to the zeroth order solution, for small Atwood number, the solution
from this calculation is very close to the solution obtained by Paterson theory.
From Figure 2.6-b, at z; = 1.1, the speed ratios of the transmitted shock to the
gas speed are 14.5, 13.9, 12.1 for A = 0.1, 0.2, 0.5 respectively. The corresponding
values at y = 2.5 from Figure 2.15-d are 14.5, 13.88, and 12.27. At y = 14.0, they
are 14.5, 13.8, and 11.7. Similarly, from Figure 2.6-c, at 2, = 1.1, the velocity
ratios of the reflected shock to the gas velocity are —14.5, —15.4, —19.0 for A =
0.1, 0.2, 0.5. From Figure 2.15-f, the corresponding values at y = 2.5 are —14.35,
—15.2, and —18.95. At y = 14.0, they are —14.35, —15.1, and —18.1. Moreover,
from Figure 2.15-g, the total strength of the reflected shock when the transmitted
shock has left the region is less than 1.028. For z; = 2.0, from Figure 2.20-g, it is
less than 1.2 for A less than 0.5. The effects of doubly and higher reverberating
waves are therefore small. Thus, we can conclude that the solution obtained from
a sharp interface gives a good approximation to the solution of a shock passing a
continuous interface for low Atwood number.

In conclusion, the constancy of the gas velocity depends strongly on the den-
sity gradient. The smaller the gradient, the more uniform the velocity of the gas -
becomes. After the passage of the shock, when the incident shock strength is weak,
the density profile is essentially the same except for a reduction in the characteristic
length of the width of the density layer. The higher the shock strength, the more
the density profile is altered. The assumption of incompressible impulsive motion
is excellent for a weak shock, and small density ratio. For a moderate strength, and

density ratio, it is a reasonable assumption.

2.5 Saffman and Meiron Impulsive Model

With the justifications discussed in sections 2.3, and 2.4, Saffman and Meiron
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(1989) modeled the motion of a perturbed planar interface undergoing a shock-
induced acceleration as one generated by the impulsive motion of the containing
walls with a velocity V directed parallel to the undisturbed density gradient. Since
the fluid is incompressible, this motion induces instantaneously a pressure field
P(z,y)d(t), where 6(t) is the delta function, and there exists a balance between the
pressure gradient and the acceleration (viscous and inertial terms are negligible).
Note that the function P(z,y) has units of pressure times time.
Let y be the vertical axis parallel to the undisturbed density gradient, and z be
the horizontal axis. The upper fluid has density p4, and the lower fluid has density
p_ as y — oo respectively. Integrating the momentum equations, one obtains the

equations for the induced initial velocities,

1 0P
u = —'—JO-—a-;H(t),
1 0P
= ———H(1), 2.69
v=-2n0) (2.69)

where H(t) is the Heaviside function, and pq is the density distribution at the time

t = 0~. Using the continuity equation, the impulsive pressure is determined by

0 /10P 0 10P
—(—= —|——=) =0. 2.
aa:(po 6x)+8y(po ay) (2.70)
The boundary conditions are
OF L _piV, as y— +oo,
dy
%}—; — —p_V, as y— —oo. (2.71)

At a vertical wall z = constant, there is no flux. Hence 0P/8z = 0. Saffman and

Meiron solved this system of equation for a density profile of the form,

po = py) +€p'(z,y), (2.72)

where € is a small perturbation parameter. This particular distribution enables

them to analyze the problem using perturbation theory. The dependency of p'
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on z is essential, since there is no generation of vorticity unless there is a density
perturbation in the z-direction.

For small disturbances, they predict that less kinetic energy is generated when
the width of the undisturbed density distribution is increased. Hence, in order to
reduce the Richtmyer-Meshkov instability, one should decrease the density gradient
along the direction of the shock.

In the following study, the solution of the incompressible impulsive model is
used as the initial condition for a fully nonlinear simulation of the finite-amplitude
stage of the instability. The next section summarizes the equations of motion and

the boundary conditions considered.

2.6 Problem formulation

In this section, we present a model for the study of the Richtmyer-Meshkov
instability along a continuous interface. As we have shown in the previous sections,
for a weak shock, the compressibility effects are small and restricted to a short
time interval after the passage of the shock. The initial action of the shock on the
interface can be approximated reasonably well by the motion induced due to an
incompressible impulsive acceleration. We consider a planar periodic flow as shown

in Figure 2.21. For ¢t = 07, the fluid is at rest with a density,

po =1+ Atanh (%) + (—2—%) sech® (%) cos(kz), (2.73)

where L is the characteristic width of the stratified layer. This initial density profile
had been considered by Saffman and Meiron. It includes the first two terms of the

Taylor expansion of a more general profile,
1
po =1 +Atanh{z(y —e'cos(ka:))}, (2.74)

where € is related to € by

€ =—— (2.75)
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Figure 2.21 Geometry of the flow field. Two imaginary periodic boundaries are
labelled a and b.

At time ¢t = 0, the whole fluid is accelerated impulsively with a uniform velocity
V as y — +oo. This corresponds to the Neumann boundary conditions given in
equations (2.71). From the divergence theorem, it can be shown that the solution

of the Poisson equation (2.70) is unique up to an arbitrary constant if the boundary
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conditions satisfy the compatibility condition,

/V- (le)dw=/-1-Vp-ndS.
w P s P

The boundary conditions (2.71) meet this requirement, and hence, the solution for
the initial velocity of the impulsive problem is well-posed and unique.
For the subsequent motion, the flow is governed by the two dimensional un-

steady Navier-Stokes equations,

% +u-Vp=0, (2.76)
Ou 2

P 5 +pu-Vu=—VP 4 yV?y, (2.77)

V-u=0, (2.78)

where y is the viscosity of the fluid. The above equations are solved sub ject to the

boundary conditions,
u—(0,V) as y— +oo, (2.79)

p—ptr as y— :}:‘oo, (2.80)

and u, and p are periodic in z, with the period 27 /k. Since we are interested in the
inviscid regime, the magnitude of the viscosity used is very small. Its presence is
solely for the stability of the numerical scheme. In some of the testing calculations,

we scale the above equations using the following characteristic quantities

Ue = IVI7 lc = L7 Pec = pcuga

L
Pc=p++p-, and t.=—.

c

In both cases, the equations have the same forms as shown in equations (2.76) to
(2.78), except that in the non-dimensional momentum equation the viscosity u in
equation (2.77) is replaced by the factor Re™!, where Re = p.u.l, /1 is the Reynold
number. In the actual simulations, we choose V = —1, k = 1,and u = 1078,

The above nonlinear set of equations is solved numerically. This is the topic of

the next chapter.
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CHAPTER 3

NUMERICAL METHOD FOR SIMULATION

A numerical scheme for solving the unsteady two-dimensional incompressible
Richtmyer-Meshkov problem is presented in this chapter. Due to the sharp gradient
of the initial density profile in some parts of the flow domain, we use a non-uniform
grid in a moving frame in order to resolve this region. We use a finite difference dis-
cretization with a staggered grid and with the primitive variables as the unknowns.
The system of equations is discretized in time with an implicit Crank-Nicolson
scheme applied to all terms. Central differencing is used to compute spatial deriva-
tives. The resulting nonlinear set of equations is solved by an iterative technique,

the artificial compressibility method described below.

3.1 Specification of the non-uniform grid

Following Saffman and Meiron (1989), we consider a particular form of the
initial density as given in equations (2.73) and (2.74). This density profile has a
small variation in the tranverse z-direction while it changes rapidly around the
origin along the flow (y-direction). Hence in the y-direction, we use the following

coordinate transformation:

n = tanh(vy), (3.1)

where 7 is a controlling parameter for stretching.
A uniform distribution of the grid points in the n computational domain corre-

sponds to a non-uniform distribution over an increasing range in y in the physical
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domain. As 4y — 0, we have a linear transformation and the discretization in y
becomes uniform. As 7y — oo, we have a very dense distribution of grid points
around y = 0. This transformation is convenient because of the monotonicity and
the smoothness of the hyperbolic tangent. The transformed equations are described
below.

The inversion for y in term of 7 is

14n (3.2)

y_1
5y 1-9

The first and second y-derivative of a flow variable are transformed as follows
0 dno

3y " dyon 9

&  (dq\? 8®  dyp [0 (dy\] O
5?“(@)5?+%{%(@M5? (34
dn
d_y=7(1_7]2)’

dn {0 (dn\] _ o2, (1_r2
i [an ()] = 2rn0 )

In all of the calculations, we use a staggered grid in the z,7 domain as shown

where

in Figure 3.1. The flow region is divided up three different ways resulting in three
kinds of computational cells: the u, v, and p-cell. For the u-cell, the center of
the cell is the node point for the u-component of the velocity. The density and
the pressure equation are discretized at the center of the p-cell. The u-momentum
equation, and the v-momentum equation are discretized at the center of the u, and

v cells respectively.

3.2 Velocity field generated by the impulsive acceleration

The initial velocity field is obtained by first solving equation (2.70) and the
corresponding boundary conditions (2.71) for the impulsive pressure P(z,y). Note
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Figure 3.1 Staggered grid and its three cells.
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that P(z,y) has the unit of pressure times time. It only has physical meaning when
used along with the Heaviside function for computing the initial velocity field. These

equations in the transformed coordinate are,

0 (10PY, 40 (141P)
0z <po 393) T <po dyon) =" (3:5)
and
dn 0P
dy—a;- p+V as 75— %1,

Let h denote the uniform spacing of the grid points in the z-direction, and Apg
that in the n-direction. Equation (3.5) is discretized at the center of the p-cell, and

after rearrangement becomes,

1( 1 1 N T T
=1 "= + = | s+ o) Py
Poi+tj  Poi-%j Poij+41  Poij—1%

11 11 Mo s
o hitit g Piyj+—Pj, +
Poit; 0i~4j Poij+} o Poii—}

(3.6)

nujnvj—-l

Pi_q4,

where p .
Ny = EZ—I"—&;’
v d

My = ;ﬁlvzl;;-
‘The subscripts u, and v denote the evaluation of the derivatives at the center of
the u-cell and v-cell respectively. Equation (3.6) yields a banded matrix, with a
band width of twice the number of the grid points in the z-direction. This matrix
is solved using a band LU decomposition. Since the solution is arbitrary up to a
constant, we have the freedom to fix the value of P at one particular grid point. We
choose Py = 0; this grid point is shown in Figure 3.1, the only one being marked

by a triangle. After solving for the impulsive pressure P, the initial velocity field is
obtained by using equation (2.69),

1 0P
U = —EEH(Q,
v= ——LQ—}—)-H(t),

po Oy
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where H(t) is the Heaviside function, and pg is the density distribution at the time
t = 07. Then, the initial pressure is determined automatically by the momentum
equations. Before discussing the numerical solution for this initial pressure, however,
we would like to formulate the problem in a reference frame moving with the fluid

flow.

3.3 Equations of motion in a moving reference frame

In a fixed reference frame, as the flow evolves, the fine resolution of the region
with a sharp density gradient along the flow (y-direction) will deteriorate in time.
To avoid this difficulty, we solve the problem in a frame moving along with the flow
in the negative y-direction with the far field velocity V. The governing equations
in a general moving coordinate are given in Lamb (1932). For our problem, the

equations of motion become:

%J“a_i (u?) +-%(u(v—-V))+%% ;p—jzev2u =0, (37)
%t‘i+§;(u(u_v))+% ((v—V)2)+%g§—;éV2v=0, (3.8)
—gf+u%+(v—V)g—z= ; (3.9)

% % =0. (3.10)

The boundary conditions for the velocity and the density in this moving frame
remain the same as those given in the last section of Chapter 2. In the remaining
parts of this chapter, we will discuss the numerical solution of these equations for

the calculation of the initial pressure and subsequent motion.

3.4 Pressure field after the impulsive acceleration

The initial pressure is computed by using the method of Harlow and Welch

(1965). We first discretize the u, and v-momentum equation at the center of the u,
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and v-cell respecti\'rely. The resulting equations are then used in the discretization

of the equation,

V'llt =0, (311)

at the center of the p-cell, where u, are derived from equations (3.7), and (3.8).
Imposing the continuity condition at time step (n + 1), we obtain a discretized

Poisson equation for the pressure,

1 { 1 . . ( 1 + 1 ) .. + 1 . .}
h? Puiij-lJ Puij  Pui-1j Pij pui—ljp'—h

' 1 . 77;,' ’7;1'—1 n;j—l
+ {_ e TRLL7 ) . }
Tuj pvijnv’p”H (Pvij Pvij—1 ] " Pvij—lp'] !

uy —ul ;1 2 —2
== {=a [ )

— (uu"’2 — uu_z)

uijy ui—lj}

(o ) — o o)

h
¢ 2
_ { _ 1 (Dzu;]- _ Dgu,’_l_j> _ MNuj Dzuij R D:ui—lj
h3Re Puij Pui-1j hRe Puij Pui-1j (3'112)
_Tauj (Dyuis _ Dywiny;\ _(”?j — ”?j—l)
hRe Puij Pui-1j Tuj At

+ 77;1' [n;j (vv+2 — vv_z)m.j — 77;1-__1 (vv+2 - vv_z)m.j__l]

' ' 2 ' 2
_ Muj (Dﬁv,-j _ ng,-j_l) _ _T)u_] Nyj ngij ~ Nyj—1 Dzvij—-l
h2Re Re Puij Pvij—1

Puij Pvij—1

"

M (Wzijyvij _ nzvj_lDyv,'j_1> }
’

Re Pvij Prij—1

where u, and v are the initial velocities obtained from solving the impulsive accel-

eration problem. The spatial operators D2, Dg, and D, are defined by,

2, _
Diuij = uipry — 2uij + uioyj,

2
Dyu;; = uijpy — 2uij + uijn,
Uij4+1 — Uij—1

Dty = =5
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v _ 1dn(9 (dn
Tw = Apdy \Bn \dy

and a similar expression for 7,,(j). The velocity uu* (uu~) is the forward (back-

with

)
u

ward) average of the u-component in the z-direction, and uv* (uv™) is that of the

u-component in the y-direction. For example,

yyt = LT Yt
2
Similarly, vvt (vv™) is that of (v — V) in the y-direction. The subscript uij (vij)
of a particular quantity indicates the discretization of that quantity at the uij
(vig)-cell.

Equation (3.12) is applied at each center of the p-cell, and similar to the above
impulsive problem, the resulting equations are arranged in a band matrix. It is
well known that boundary conditions for the pressure are not needed for a speci-
fied velocity field. For the purpose of the numerical impiementation, however, we
impose an artificial pressure boundary condition using the Neumann compatibility
condition for the Poisson equation, namely the modified normal pressure gradient
-1-Vp -n at the boundary. With the staggered mesh, this condition is satisfied au-
tpomatically as long as a consistent discretization is used both at the boundary and
in the governing equations. Let nuz be the number of the centers of the u-cells in
the z-direction , nuy be that in the y-direction, and similarly for nvz, nvy. Using

the momentum equations, we have at the boundary,

+2
uu 1 N ! —_— _—
p1j = p2j + Pulih{ ot (Wt ovt —uwwTouT ),

1 U2; — 2u1j
puljRe h2

r 2 "
L/ Dzulj + n2uiju1j)}’

+2 -2
(uu —uu )unuzj 4 - -
Pnuz4+1j = Pnuzj — punuzjh{ A + nuj(uv+vv+ —uv vv )unuzj

1 D2u r ] 2 "
— P % ( zh;ulJ + Muj D:Unuz:j + nguijunqu) },
unuzrj
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1

Pvinvy [ (uutTvut — uu™vu ™ )yiny
y
!

h

’ 2 -2
Pinvy+1 = DPinvy — + nvnvy(vv+ - vV )vinvy

vnuy

1 D2'U' ’ 2 "
zUinvy 2
- ( + nvnvy Dyvinvy + UzvnvyDy”invy) }’

pvinvyRe h?
; vutout —uu—"vu~ i1 , 9
pi1 =piz + f;'”l {( h Jo + '7v1)””+vi1
vl
1 Divil ¢ 2 " Vg2
- 2 = 20u) + 15 (2)) }.
pvilRe( pz T (V2 v1)+n21(2))

(3.13)

The pressure obtained in this section and the velocity field generated in section
3.2 provide the necessary initial conditions for a full numerical simulation. In the
next section, we will discuss the unsteady two-dimensional Navier-Stokes incom-

pressible scheme used in this work.

3.5 Numerical solution

A well-known difficulty for incompressible calculations is the need to satisfy the
zero divergence constraint. This condition, which implicitly couples the pressure to
the velocity field, does not appear in a time evolution form. The different ways to
satisfy this constraint yield different numerical methods for solving the unsteady
incompressible equations. Presently, there are many approaches in the literature,
but they can be classified into three main techniques. The first technique uses
the vorticity and the stream function as the primary unknowns. The second one
developed by Harlow and Welch (1965), also by Chorin (1968) is known as the
fractional step method or the projection method. The third technique can be viewed
as a direct coupling between the momentum and the continuity equation. In this
study, this last technique is used with an iterative scheme proposed by Soh and
Goodrich (1988) in which the velocity and the pressure are the primitive variables.
This method is chosen because it shows potential robustness, and stability in the

time dependent calculation. In addition, the extension of the algorithm to include
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the density equation is straightforward and convenient. The overall iteration can be
summarized as follows. First all terms of equations (3.7) to (3.10) are discretized
using the Crank-Nicolson scheme with central differencing for the space derivatives.
Between two given physical time steps, this results in a non-linear set of equations,
which is formulated into a fictitious continuous “pseudo-time” system, and is solved
by the well-known artificial compressibility method.

The Crank-Nicolson approximation to equations (3.7) to (3.10) gives,

n+1 n
P —p l n+1 _n+41 n n _
— +2[F(u ,p" 1) + F(u™,p )]—0,
un+1_un 1 n+1 _n+l  n+l n . .n n — (314)
At +§[G(u 2D 4 )+G(u Py P )] _Oa
V.-u™t! =g,
where
_ 0Op dp
F(u,p)-—uaz+(v-—V)ay,
G(u’p$p) = [GlaGZ]Ta
9,4, 0 10p 1 _, (3.15)
Gl—ax (u )—i—ay(u(v V))+p3w _pRev u,
_9 9 2y, 10 1 o
Gz—ax(u(v-—V))+ay((v V))+pay Vv

Let ﬁ"+1 — un+l - un’ ﬁn-i—l _ pn+1 _pn, ﬁn+1 — pn+1 _ pn’ o = At/2, then

the above equations become,
P+ oF (4" +u”, p" ! + p") = —aF (u",p"),
ﬁn+1 +aG (ﬁn+1 + un,ﬁn+1 +pn,p~n+1 + pn) = —aG (un,pn,pn), (316)

V. .att! =0.

This nonlinear set of equations for the unknown variables with the superscript

n + 1 at the next physical time step is solved by considering it to be the steady
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solution of the foll(;wing fictitious pseudo-time problem,

op . n .
2L fp+aF(i+u,5+p) = —aF (u,p),

or
%+U+aG(U+u,p+p,p+p)——aG(u pp), (3.17)
0p
B +V-a=0,

where the superscripts n, and n + 1 have been dropped for simplicity.
The initial and boundary conditions for this problem are
(4,9,p,p) =0 at =0,
4,0,p—0 as n— 1, 7>0,
along with the periodicity of the velocity and the density in the z direction.
Let k denote the k'* iteration of the pseudo-time problem. Then, one way to
solve this fictious system is by the following iterative scheme:

1. Sweep in the y direction for the 5**! equation. This expression has the fol-
lowing implications. For a fixed ¢, along a vertical line of grid points, we
discretize the 9**! equation with the y derivatives evaluated at step k + 1.
The z derivatives and all of the nonlinearities are lagged at the pseudo-time
step k. The resulting unknowns can be arranged in the form of a tridiagonal
matrix. The pressure in the artificial compressibility equation is coupled with

the v momentum equation. Thus, the v momentum equation becomes,

9% dn 1 dndp
3, tota [7—(21)( -V)+— S o dydn
2 526 dn [ 9 5 (3.18)
__1_ _d_” __2_6 an (3 _
GraRe ((dy) o "y (3n< )) 6n)} o
where
o= [_(U(U_VH(““L“)(””—V)) ETZ‘;‘(Q(v—V)H”)

1 1\ dnop 1 (626 2) 1,
Hl=t— ) == - = + Vi | — =V,
(p p+p) dydn (p+p)Re \Oz? °) " pRe "’
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92 dn\® 8® _dn (8 (dn\\ O
2 _ Y 1 —_—
Vit (dy} Ty (317 ( ) ) on’ (3.20)

2. Sweep the density equation in the y-direction one half pseudo-time step, %Ar

and

to obtain p”“"Ji. The density equation for this sweep is,

5 d
22—+p+a(v+v V) "afI_H,I, (3.21)

where
Hy = [(2u+u)— +(2v-V)+0) S ’76” RACE ) ] (3.22)

3. Sweep the d-equation in the z-direction. The pressure in the artificial compress-
ibility equation is coupled with the u-momentum equation. Only z-derivatives
are considered and all of the y derivatives and the nonlinearities are lagged.

The u momentum equation for this sweep is then,

au 1 Jp 1 a1
E_HH_ [_(2uu)+p+p3x (ﬁ+p)Reaz2] = Hu, (3.23)
where
H,=—-a —a—(2u2+ﬁ2)+—ﬂi( u(v=V)+u+a)(v+9-V))
“ Oz dy On

1 1 dp 1 (dn)2a2ﬁ dn 8 ( ) di 9
At )T ) ==+ \Y%
+<p p+p) Oz (p+p)Re< dy) on* ' dydy 677+ ¢
- __V2
pRe }
(3.24)
4. Sweep in the z direction for the remaining half pseudo-time step for the density
equation. The density equation is

0p . . 0p
257—_+p+a(u+u)-é—£ = H,q, (3.25)
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where
n Op dn 0p
Hy = [(2u+u)-—+(2( v—V)+ )——+( +o-V)gl ] (3.26)

5. Obtain the pressure p*¥*! by the artificial compressibility equation.

3% _ [0a dnav]

ﬂa_‘ = —[5; + dy Bn (3.27)

6. Repeat steps 1 through 5 until the pseudo-time problem reaches a steady state.

For each sweep, the unknowns form a tridiagonal matrix. The discretized

equations at the cell center 5 for the v, first p, u, and second p equations respectively

are,
alvv,’; 1 +a v'Uk+l +a vv,’;-:.ll = G4y,
k+3 k41 " .
air1p;y + azr1p;; * + asrlpij.;.zi =44r1,
~ k41 ~k+1 (3.28)
aluu i—1j +a uu + A3uUjy1; = G4,
G1r2/3,-_1j + Clzrzﬁ,-j + ‘131'2/3,'4.1_,' = G472,
where,
, 2 Aty 1 [ o2 g
=alAr| —1n . (vv=. -V - AL R o 1
a1y = & T[ Tyj (vvvt] ) + .55;'1‘{ B Re Nyj D) ’
' 2aAT | AT ' 1 r 2
azy =1+ A7+ aAT'?ijy”ij + _'*k—_{ IB N (nu1+l + Uu;) + ‘EEQ%J }7
vty
2 Aty 1 [ 2 M
azy, = alA\T wr. -V - Jwtl . °J
2aATy, . Arl
~k ~k ~k ok Ny
A4y = Vj; — _a—kﬁ( ij+1 — Pij — 3 h(“z1+1 Ui1j+1 — U5 + Ui—lj))
pvij
+ ATH,,,'J',

N Sk
Pvij = Pij41 T Pij + pij+1 + pij,



alAT . '
Yr1 ="y (0" + v~ V)t]P Nujs
ot = 14 AT
2rl1 — 2 9
CMAT n ’
a3r1 = —, (vk+1 +v— V)IJP Nujs
AT

Q4ry = pfj + '—2_Hrlz17

_alAr 2aAT AT 1
M =TT MG T T [" ARz~ Reh2]’

utj

_ aAT (uipyj — uiqj 2aAT [2AT 2 ]
azu—1+AT+ h ( 2 ) k+l IBhZ +Reh2 P

_alAT 20{AT[ AT 1 ]
BT TR MG T TG T LT B2 T Reh? )’

uij
. alAT 1 R AT . R .
A4y =Ufj - Ak+§ h{P;+1J Pfj + 3 2 Nuj (”f«:-llg 1~ f:llj +v k+1 vfj-*-l1 }
ut)
+ ATHuij’

k+l k+l k+d
pu;] + 3+13 +p1] +p1+1]7

aAT
a1r2 = ( o+ + u)tJP ’
AT
Aar2 = 1+ _2—
L TA T
azrp = 4h (u + u)zJP ,
k+ 3 AT
Qqr2 = P,J+2 + 5 Hr2ij-

Dirichlet boundary conditions are enforced during the sweep in the y-direction
while periodic boundary conditions are enforced during the sweep in the z-direction.
The iterative scheme of the pseudo-time problem has two parameters At and B that
effect the convergence rate. It should also be noted that other permutations for the
order of the sweeping are possible. However, there is no apriori advantage of one
over the other. In the following subsections, we will discuss the choice of Ar, and

P used in our simulation, and nine other possible sweeping arrangements.
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9.5.1 Optimal choice for B, At, and v

For a particular order of sweeping, there is no guarantee that the overall iter-
ation will converge. However, we can choose the pseudo-time step A7, so that the

tridiagonal matrix is diagonally dominant, e.g.,
laze| > |a1c| + |asel, (3.29)

where ¢ stands for either v, u,r1, or r2. For the v equation, the inequality (3.29) is

satisfied if

Ar s 1o = V)loBn
Y (3.30)

and Re|p(v —V)|ccQ7n > 1.

For the v equation, we have the condition,

AT > ||pul|o Az,
(3.31)
and Rel|puflccDz > 1.

For the density equation, the matrix is diagonally dominant for all Ar > 0 if

a“u”oo
h
ay|lv — Vo
An

<1,
(3.32)

and <1

The first condition of equation (3.32) results from the first sweep of the density
equation in the y-direction, and the second one corresponds to the second sweep in
the z-direction.

It should be emphasized that the conditions derived here only serve as guide-
lines in the actual calculation. As can be seen in equations (3.30), and (3.31), the
optimal value of A7 depends on $, and hence a heuristic choice of the pair (AT, )
1s necessary in order to achieve a fast convergence of the overall system (3.17) to a

pseudo steady state solution.
Since the code is time dependent, an optimal choice for v, hence 3 , and A7 is

also a function of time. Instead of updating these parameters at every time step,
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which is difficult and not very practical, we chose a particular - for a run so that the
maximum residual error in the impulsive pressure calculation is as small as possible.
With some experimentation, for L = 1.0, a good value of v is around 0.2 for which
the error is of the order 107! to 107°. With this v, for a typical grid sizes of
h = .042 (61 grid points), and Ay = .0199 (100 grid points), equations (3.30) to
(3.31) suggest the values of A7 > 50 for At = 0.02. Using trial and error, for
the first physical time step, the number of iterations of the pseudo-time problem is

minimized when # and A7 are chosen to be 25 and 50 respectively.

As seen from equations (3.30) to (3.31) for A7, since the magnitude of the
velocities and the density are the same for all cases considered, the optimal values
of At should be close to each other. Hence, we keep the same value of B and At
for every computation. It is observed that these values of A7 and 4 indeed give a
satisfactory convergence rate. For small Atwood numbers A, the number of pseudo-
time iterations is around 20 to 30 in order to satisfy the divergence free condition
to a level of 1071°. For higher A, it increases to 100 which is the maximum number

of pseudo-time iteration used for all calculations.

For a grid size of 151 by 100, and the time step of 0.02, the computing time
for one physical time step (100 pseudo-time iterations) is around 3.6 minutes on a
Silicon Graphics IRIS 4D/240. Hence, to simulate 4 units of physical time, it takes
around 12 CPU hours (half a day). Note that since our grid is staggered, whenever
we use the term 61 by 100 grid, we mean a grid system having 61 points on the u

grid in the z direction, and 100 points on the v grid in the y direction.

3.5.2 Optimal order of sweeping

In the discussion of the particular scheme presented above, we have neither
criteria nor the overall rate of convergence for the iteration of the pseudo-time
problem. The choice of # and At is heuristic, and depends strongly on numerical

experimentation. Hence the question of a specific order of sweeping for which an
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optimal rate of coﬁvergence is obtained is even harder to answer. In the following

discussion, we hope to resolve this issue using some numerical experimentation.

Assume that the rate of convergence for each arrangement of the sweeping
is consistent in time. Then, it is sufficient to compare the robustness of different
orderings using the results of the first time step. Note that for a sweep in the
y direction, the Dirichlet boundary conditions are used, and for the z sweep, the
periodic conditions are used. Hence, it is convenient to denote the y sweep as D,
and the r sweep as P. Using this notation, the specific ordering discussed can be
presented as Dv, Dp, Pu, Pp. This is the case 1 listed below in Table 3.1 which

includes all of the possible permutations for this 4-sweep arrangement.

Table 3.1
All permutations of the 4-sweep arrangements
Case Order of sweeping
1 Dv Dp Pu Pp
2 Pv. Pp Du Dp
3 Dv Pp Pu Dp
4 Pv. Dp Du Pp
) Du Dp Pv Pp
6 Du Pp Pv Dp
7 Pu Dp Dv Pp
8 Pu Pp Dv Dp

Note that since we must have both z and y sweeps for the density, and alternating

D, and P for u and v, the number of possible arrangements is reduced.

In the 4-sweep arrangement, u (similarly for v) can have either D or P but not
both. It is possible to have both D and P for u in a single pseudo-time step by
including an extra sweep. This results in what we called the 6-sweep arrangement.

In Table 3.2, we present seven possible permutations of this kind.
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Table 3.2

Some permutations of the 6-sweep arrangements

Case Order of sweeping

Dv  Pu Dp Du Pv Pp
Dv Pv Dp Du Pu Pp
Du Pu Dp Dv Pv Pp
Du Pv Dp Dv Pu Pp
Pv. Pu Dp Du Dv Pp
Pv. Pu Pp Du Dv Dp
Pu Pv Pp Dv Du Dp

N OO R WN

To compare the robustness of the different arrangements, we consider the evolu-
tion of the maximum residual errors of equations (3.16) as functions of the iteration
numbers of the pseudo-time problem. Figures 3.2 to 3.4 are the plots of the loga-
rithms of these errors versus the iteration numbers. Figure 3.2 and 3.3 are for the
arrangements tabulated in Table 3.1, and 3.2 respectively, for the case of a single
scale perturbation with A = —0.5, L = 1.0, ¢ = 0.3, and Re = 10%, on a 21 by 100
grid. Figure 3.4 is the combination of Figure 3.2, and 3.3. For all cases, amoﬁg the
four equations of (3.16), the residual error of the divergence free condition is always
biggest as shown in part (a) of Figures 3.2 to 3.4. For the cases in Table 3.1, the
convergence rates of the velocity equations approach the same limit for cases 1, 3,
7, 8. The iterations of the cases 2, 4, 5, 6 diverge for every equation. There is some
spreading in the limit of the convergence rate for the density equation. As shown
in Figure 3.3, this spreading is also true for all cases in Table 3.2 except for the

continuity equation, which has the largest residual error.

Combining Figure 3.2 and 3.3, we see that for both kinds of arrangements, as
the number of iteration increases, the limit of the largest residual error does not vary
significantly from case to case as shown in Figure 3.4-a. Hence, we can conclude
that whenever the scheme converges the order of the sweeping is equivalent for

the overall convergence of the pseudo-time problem. Moreover, the free divergence



— 84 —

la) logi@imax errar) vs iter number (b} log1@(u errorl vs 1ter number

-
T
UL LA LA ]

- T
x ]
] IS
£ B
< 3
s s [
@ -
s S [
PR SRR SHEPEE WY SRS S S WO B n ) JECE, ) NI RO IS SO ST S SR N SR S
2 18 20 3@ 42 50 68 70 82 90 108 ] 18 20 30 48 S8 68 78 88 90 100
1t it
{c) log18(v error) vs iter number (d) logi@{r error) vs iter number

log1B8{v error)
log1Bir error)

[
_12 A H i 1 i L I 1 i 1 1. § S i i o | _15r i | Y S S W VU W B W SN S N . | e i 1 i J
@ 18 28 39 42 50 68 70 B? 90 100 9 190 28 30 40 50 o690 78 B8 99 100
1t it

Figure 3.2 Convergence rate of the pseudo-time problem for the 4-sweep arrange-
ments listed in Table 3.1 a) residual error of the divergence free condition b) residual
error of the u equation c) residual error of the v equation d) residual error of the p

equation
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Figure 3.3 Convergence rate of the pseudo-time problem for the 6-sweep arrange-

ments listed in Table 3.2 a) residual error of the divergence free condition b) residual

error of the u equation c) residual error of the v equation d) residual error of the p

equation
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Figure 3.4 Convergence rate of the pseudo-time problem for the 4- and 6-sweep
arrangements listed in Table 3.1 and 3.2 a) residual error of the divergence free
condition b) residual error of the u equation c) residual error of the v equation d)

residual error of the p equation



— 87 -
condition is not improved with a longer iteration of the velocity as done in the cases

of Table 3.2. The particular scheme selected in this section is an acceptable as well

as efficient algorithm in regard to all of the permutations discussed in this section.

In order to test the accuracy and the efficiency of our scheme, we have compared
our numerical results to five different computational methods. To assure that our
artificial compressibility scheme is second order in space and time, we test the code
with a specific exact solution. For a short initial time interval, we test the numerical
solution against the first and second order time linearized solution of the Navier-
Stokes equation. To verify the efficiency of our scheme, we solve the nonlinear
set of equations (3.16) by the Newton-Raphson method. The stability of our time
dependent scheme can only be appreciated when the problem is solved explicitly
using the MAC method devised by Harlow and Welch (1965) for the momentum
equations, and the explicit Lax scheme for the density equation. Finally, there
is another test for our numerical result due to the weak nature of the instability.
This last check, which also serves as a model for our problem, can be regarded as
the description of the flow using the Lagangian motion of the fluid particles with
the initial flow field remaining fixed. A detailed discussion of this last check will
be postponed until Chapter 4. In the following sections of this chapter, only the

details of the first four numerical tests are described.

3.6 Verification of second order accuracy in time and space

As discussed in section 3.5, except for the time derivative, we discretize all terms
of the Navier-Stokes equation using the Crank-Nicholson scheme. This results in
a nontrivial set of nonlinear equations, but we gain second order accuracy in time
and space. In order to verify this, we compare our numerical solutions against a

known divergence free flow field. We choose the following flow field for numerical
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experimentation: '
u = —sin Az sech y tanh y cos ¢,

v = —Acos Az sechycost,
1 A (3.33)
p= Ecos/\zsechy+§+§tanhy (cost +2),

p = cos Az siny cost.
When the density, the velocities, and the pressure of this flow are substituted into

the governing equations, except for the continuity equation (3.10), equations (3.7)

to (3.9) have respectively the following additional source terms when V is set to 1,
A
(3.7) : sinAzsechytanhy(sint — costtanhy) — ; sin Az sin y cos t

+ sin Az cos tsech®y (1 + A cos Az cos t sech y)

— % sin Az costsechytanhy ()\2 — tanh®y + 55ech2y) ,
pRe

(3.8) : AcosAzsechy(sint — tanhycost)

1
— A%sech®y tanh y cos® t + = cos Az cos y cost
p
- —1—1!;/\ cos Az sech y cost (/\2 —2tanh?y + 1) ,
pRe

(39) : —sint ({ cos Arsechy + —;— + g tanh y)

+ (cost + 2) {{x\ sin? Azsech®y tanh y cost

— (Acos Az sechycost + 1) (—-§ cos Az sechy tanhy + gsech2y) }

We treat these new terms the same way as the other nonlinear terms of the
equations. They only modify the element a4c, ¢ = v, rl, u, or r2 of the sweeping

matrix. For the tests, we use the following set of parameters,
A=4, £€=02, A=0.6,

which appear in equation (3.35). The domain of the flow is discretized uniformly

over the region,

0<z<— .
2

™
d —-—-<y<
an 4_y_

>N
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We solve the problem for two different Reynolds number, Re = 10, and 100. To test
our scheme, we first obtain the solution on a 32 by 32 grid (e.g. Az = 0.051, Ay
= 0.051) with At = 0.05 for Re = 10, and At= 0.025 for Re = 100. Then, another
solution on a 64 by 64 grid with half of the mentioned time step is also obtained.
Since our scheme is second order accurate in space and time, we expect to have a
fourfold reduction of error when the spatial and temporal step sizes reduce by a
factor of one-half.

Figures 3.5 to 3.7 present the results for Re = 10, and those of Figures 3.8 to
3.10 for Re = 100 with time ¢ ranging from 0 to 2x. For each flow variable, we use
the maximum norm for the deviation from the exact solution and normalize it to
the known maximum of the respective variable. There are four plots in each figure.
Plots (a) and (b) show these errors for two set of grids: curve 1 is for 32 by 32 grid,
and curve 2 is for 64 by 64 grid. In plots (c) and (d), we plot in curve 1 the ratio
of the (64,64) error to that of (32,32), and in curve 2 the mean time average E, /s
of this ratio using the trapezoidal integration. )

For Re = 10, the maximum relative errors are less than 0.8% for u, 0.28% for
v, 0.9% for p, and 4.5% for p in the solution with the 32 by 32 grid. With 64 by 64
grid, the corresponding errors are reduced to 0.2%, 0.07%, 0.25%, and 1.3%. The
mean time average E4/, are 0.235, 0.237, 0.277, 0.246 for u, v, p, and p respectively.
For the maximum relative errors, the corresponding values for Re = 100 are 2.8%,
0.6%, 2.4%, and 6.5% in the solution with a coarse grid, and 0.7%, 0.13%, 0.6%, and
1.8% in the solution with a fine grid. The mean time average E; /s are 0.20, 0.225,
0.24, 0.23. Figures 3.7-a, ¢ and 3.10-a, ¢ are the plots of the maximum errors of
the four mentioned relative errors. In most of the time, the error in calculating the
pressure is highest. The oscillation of the errors is due to the rough oscillation that
we impose on the exact solutions. For coarse step sizes, because of the hyperbolicity
of the density equation, the density errors are slowly increasing with time. However,
this effect reduces significantly at higher resolution. In Figures 3.7-b, d, and 3.10-b,

d, we also plot the absolute errors of the divergence free conditions. For both of the
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Re numbers, the divergences are consistently around 28x10~4, and 7x10~* for 32
by 32, and 64 by 64 grid respectively. The order of these errors is consistent with
the step sizes used.

In summary, we conclude that for the particular artificial problem considered,r
our time dependent code gives accurate solutions of errors less than 4.5% for Re =
10, and 6.5% for Re = 100 when a coarse grid is used. The corresponding errors
for a grid with double resolution are reduced to less than 1.3% and 1.8%. On the
mean time average, the errors reduce approximately fourfold when the spatial and
temporal step sizes are reduced by one-half, and hence our code is second order
accurate in time and space. Since our problem is time dependent, it is neccessary
to have some justifications for the validity of the solution as time increases. In the
next section, we will check our solution at initial times using the linearized Navier-
Stokes equations. A discussion of the validity of the solution for long times is also

included.

3.7 Accuracy of the solution in time

The short time and long time justification of our solution are discussed in this
section. We first formulate the linearized Navier-Stokes equations applicable to our
problem. Then, in order to illustrate the stability of our implicit scheme as opposed
to an explicit one, a numerical solution using the MAC method and the explicit Lax

scheme is given. Finally, in the end, we discuss the results of these calculations.

3.7.1 Linearized Navier-Stokes equations

For a short initial time interval, it is possible to check our time dependent
result against the solution of the time linearized Navier-Stokes equations. Let our

solution have the following expansion in time,

u=ug+tu; +t2ug + -+,
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v =0 +tvy + tPvg + -+,
p=po+tp +tipy+---, (3.34)

p=po+itpr +t2py+---.
Substitute this expansion into equations (3.7) to (3.10), we have the following set

of equations:

o@): p1= —{Uopoz + (vo - V)poy}’

ox 1
u + 22 = L), + (w0 (v0 - V), - po—R;VZUO},

Po
Doy _ —_wn\2) 1 2
o+ 222 { (w0 (w0 = V), + (w0 - V) )y p %},
0 = toz + Voy. (3.35)
1
O(t?): p2= —5 40Pz + U1por +(vo = V) p1y + vlpoy},
Diz 1 2
=1 2 _v
uz + %0 %0 u1p1 + (uo)z P1+ 2po (uou1), + p1 (uo (vo )y
1
+po (wovs + (vo — V) ug), — E;Vzul},
Py _ 1 _ _
v + 0~ 20 {vlpl + p1(uo (vo — V), + po (uov1 + (vo — V) uy),
1
+p1 ((Uo - V)2)y +2po ((vo — V) v1), — E‘ﬂvl},
0 = u1z + vyy. (3.36)
1
0 (ts) 3= —'?:{Uopzz + u1p1z + UgPoz + (vo — V) poy + V1P1y T+ UzPoy},
r 1
uz + Por ——{ulpz + 2uzp1 + (ug), p2 +2p1 (wour), + po (uf + 2uguz),
3po 3po
+ p2 (w0 (vo = V), + p1 (uov1 + (vo = V)uy),
1
+ po (avz + w1y + (vo — V) up), — -R—evi'uz}, (3.37)
vs + Py _ ——1'{’01P2 + 2v2p1 + po (uov2 + u1v1 + ug (v — V)),
3po 3po
+p2 (uo (vo — V), + p1 (wov1 + (vo — V)u1), + p2 ((vo - V)2>
y

1
+2p1 ((vo = V) v1), + o (2(vo — V) vs + vf)y - Evzvz},

0=uz; + V2y-
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Similar to the solution of the initial pressure in section 3.4, we use the MAC method
to solve for p;, and ps. The artificial pressure boundary condition is again used.
Once p;, and p2 are determined, the second and third order problems are completely

specified.

3.7.2 Laz scheme and MAC method

A crucial property of a time dependent scheme is its stability as time increases.
Due to the implicit nature of our scheme, we can obtain a stable numerical solution
for a very long time. This stability is not obtained in an explicit scheme. To
experiment, we use the MAC method to solve for the velocity and the pressure field,
and the Lax scheme to obtain the evolution of the density. In the MAC method,
we solve for the pressure field as in section 3.4, and the velocities are updated using
the momentum equations. For a uniform grid with equal step size in both of the

directions, stability condition of the MAC method requires,

2 R
At < min (h ’;Re> . (3.38)

The Lax scheme for the density is,

n 1 n n n
pi = 1 (PRe1s + Ployj + Plgr + PTj-1)
At n n
~on ((pu)i+1j - (pu)i—lj) (3.39)
At

- (0 =V — (o= V)

The Courant condition for this explicit time scheme is
1 (w2 (v—=V)42 -
At < E (ﬁ + BV . (3.40)

A full necessary and sufficient condition for the stability of the overall scheme is
not derived, but the two criteria given above provide a good guide for the choice of

time step size relative to the spatial ones.
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3.7.8 Comparison with perturbation and MAC method

In order to test the accuracy of our solution in a short initial time interval,
we compare it to the first and second order solution of the time linearized Navier-
Stokes equation. The long time accuracy of our scheme is based on a heuristic
extension of the Lax’s equivalence theorem for a linear operator, which states that:
gwen a properly posed initial-value problem and a finite difference approzimation
to 1t that satisfies the consistency condition, stability is the necessary and sufficient
condition for convergence. Since our equations are nonlinear, strictly speaking the
stability criteria has no theoretical support. However, one hopes that Lax’s theorem
is true to some extent in the nonlinear problem, and if it is we can say that our
implicit scheme provides the necessary stability condition, and hence convergence
to a genuine solution. To illustrate this property, we solve the problem using an
explicit algorithm which uses the MAC method for updating the velocity and the
pressure field, and the Lax scheme for advancing the density. )

For this test, we use the initial density profile given in equation (2.73)’, with
A = - 0.5, e=03, and Re = 10° on a 101 by 100 grid. In order to measure the

differences between the various solutions, we define the following quantities for u,

By = lumac — ulloo
i =
llulloo
B, = [uo + tuy — ulloo
w2 =
flulloo
Eu = lluo + tuy + t2u; — ull
w3 =
flulloo
U — Up
1= e
4 =
* llulloo
U — Ugp Uy
5 =
* fulloo

where u, upr4¢, Uo, U1, and u, denote the u component of the velocity as computed

by our numerical scheme, the explicit scheme, the zero, first, and second order
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linearization. For 'v, p, and p, we define similar terms with the subscripts u in the
above expressions for the errors E replaced accordingly.

In Figure 3.11 we plot the time evolution of Ey;, E,3, Ey3, and in Figures 3.12,
to 3.14 similar results for v, p, and p without the term E,3. Our numerical results
show consistency with the perturbation solution. The differences as compared to
the first order problem are larger than those of the second order one. Up to time
t = 2.0, the maximum deviation of the four variables is less than 4.4% for the first
order problem, and 1.5% for the second one. The results of the explicit scheme are
consistent with the implicit scheme except for the density which diverges quickly.
This difference in the time behavior between the density and the other variables
indicates a weak coupling between the density and the momentum equations, which
is an important fact supporting our linear model discussed in the later section.

For a short initial time, the perturbation solution can be regarded as represen-
tative of the true solution. As shown in Figure 3.13, the large deviation between the
explicit and the perturbation solution of the density even at short time is an illustra-
tion of the interdependency between stability and convergence in Lax’s equivalence
theorem. For long time simulation, since we are interested in the inviscid regime of
the instability, a good measure of the stability of the scheme is its ability to conserve
the input energy. Hence, in all of our simulations, we compute the time evolution

of the following total kinetic energy,

KE. = % / / 0 ((v VY4 uz) dzdy.

In Figures 3.15 and 3.16, we plot respectively the time evolution of the total
kinetic energy of the second intial random profile for the Atwood number A = -0.2,
and A = —0.8. The details of this initial density distribution will be discussed in
Chapter 4. In this discussion, however, it is sufficient to note that for low Atwood
number, the conservation of energy 1s extremely good, and the scheme is very stable
as shown in Figure 3.15. The energy decreases linearly with time, and up to time

t =90, less than 1.23% of the initial energy has been dissipated. Note that around
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Figure 3.11 Time evolution of the difference in the velocity u as computed from the
artificial compressibility method and : a) —— the MAC method b) — — — the first
order, and c) + + + the second order solution of the time linearized Navier-Stokes

equation. The difference is normalized with the maximum value of u.
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Figure 3.12 Time evolution of the difference in the velocity v as computed from the
artificial compressibility method and : a) —— the MAC method b) — — — the first
order, and ¢) + + + the second order solution of the time linearized Navier-Stokes

equation. The difference is normalized with the maximum value of v.
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Figure 3.13 Time evolution of the difference in the density p as computed from the
artificial compressibility method and : a) —— the MAC method b) — — — the first
order, and ¢) + + + the second order solution of the time linearized Navier-Stokes

equation. The difference is normalized with the maximum value of p.
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Figure 3.14 Time evolution of the difference in the pressure p as computed from
the artificial compressibility method and : a) —— the MAC method, and b) — — —
the first order solution of the time linearized Navier-Stokes equation. The difference

is normalized with the maximum value of p.
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Figure 3.15 Time evolution of the total kinetic energy for the second initial

random profile, A = —0.2, t =0 to 89.34.
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Figure 3.16 Time evolution of the total kinetic energy for the second initial

random profile, A = —0.8, ¢t = 0 to 17.
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this time, there is a small oscillation in the energy curve. As the Atwood number
increases, this oscillation appears at an earlier time. As shown in Figure 3.16, the
oscillation starts around the time ¢ = 10 for A = —0.8. In all calculations, the
iterations do not converge after several oscillations. However, it is observed that
the solution is still acceptable when the energy oscillates to around 3% higher than
the initial energy. We use this condition as a criteria for stopping the calculation.
With an enhanced resolution, it is possible to continue the calculation for a longer
time.

Since our scheme is, in theory, second order accurate in time and space, we
expect Eyq, Eys, E 4, and Epy4 to increase linearly in time. This linear dependency
is clearly seen except for Ep4 as shown in Figures 3.17 to 3.20. One possible reason
for the deviation of E,4 from linearity is the lack of a time evolution equation for
pressure in the governing equations. Hence, the pressure is not obtained by the
Crank-Nicholson discretization as in the case of the velocity and the density. The
second order in time and space of the scheme for the pfessure is not guaranteed.
Note that the E,4 decreases as t9, where g is some negative number, initially and
changes to linear behavior near t = 1.0. From this behavior of E,4 versus time,
we can infer that the residual error in the pressure is of the order O(At?), where
0 < ¢ £ 1. We also plot in Figures 3.17 to 3.19 the time evolution of E,s5, Es, and
E 5. Since Fyu4, Fys, E,4, and E, 5 are linear, while E,s5, and E,s behave similarly
to E,4, with arguments similar to the case of E,4, we can infer that the residual
error of the velocity and the density are of the order O(At?), where 1 < ¢ < 2 for
the velocity, and ¢ > 2 for the density.

From the comparison with the perturbation and the explicit solution, we con-
clude that our numerical code gives consistent results in time with the scheme
having the order O(At?), where 1 < g < 2 for the velocity, ¢ > 2 for the density,
and 0 < ¢ <1 for the pressure. The explicit scheme is highly unstable and there
is a weak coupling between the density and the momentum equation. The linearity

of the residual errors E;y 5 where ¢ = u, v, p, p for time t > 1 indicates a weak
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Figure 3.17 Time evolution of the difference : a) — — — Eu4,and b) + + + E,s.
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dependence on time of the flow variables.

3.8 Newton-Raphson method

Another way to solve the nonlinear equation (3.16) is by the Newton-Raphson
method. Let @i = 1ig +1; with similar perturbations for 0, p, 5. The subscripts 0 and
1 respectively denote the present and the guessed values of a particular quantity in

a Newton-Raphson iteration step. A linearization of the system (3.16) gives,

'&1 +a{2(ﬁ0 +u)&1z +2(120; + uz)'&l + ('&oy +uy)i}1 +'&1y (60 +v— V)

o - - " Doz + pr . Piz
+ (g + u) D1y + { Doy + (v = V), ) U1 — p ~
(o +8) ity + (G + (0= ), (Go+p)?" " (Po+p)
V2 (i Vil
Tlhoty), W g, (3:41)
Re (jo + p) Re(po + p)

7:'1 + a{ (ﬁoz + uz)ﬁl + (60 +v-— V) alz + ('ao + u)ﬁl; +ﬁ1 (ﬁoz + ('U - V):c)

_ ﬁoy + Py b1 ﬁly
(ho + p)? po+p
V2 (b V2
(f)o + v)2 P i vy } ~ I, (3.42)
Re(po + p) Re(po + p)

+2(ao+v—V)ﬁ1y+2(aoy+(U—V)y) B

b1 + i (po +p2) + (B0 +1) pra + 1 (Boy + py) + (B0 +0 = V) ry }
-1, (3.43)

1’11, + ’61y - Id, (344)

where

I, = —iio ——a{Z(ﬁo £ ) flop + 2(do + u) g + (doy + 1y) (B0 +v — V)

Doz + Pz _ Vv? (ﬁO + u) (uZ)

+ L + Ao + - V + A o

(do + u) (U g+ (v )y) po+p  Re(po+p)
p,  Viu

+ (u(v =V)), 7",,36}’
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[

I, = =g — a{ (o + tz) (B0 + v — V) + (g + 1) (6 + (v — V),)

ﬁoy +py _ v2 (60 +‘U)
Po+p  Re(po+p)

+2(Be+v—V) (1‘)oy+(v—V)y) +

F-V), + (- v)), + %ﬂ - :—;’;},

I, = —po — a{ (do + ©) (foz + pz) + (Do + v — V) (Boy + py)

+ups + (v — V)py},
Ij = —Gor — Uz — Doy — Vy.
The above four equations for the four unknowns 4, 91, p1, 51 can be discretized and
solved by direct Gaussian elimination. However, due to the number of unknowns,
and the constraints of computer memory, direct solution is prohibitive. Instead
of solving the system directly, we use an iterative method that sweeps in the z-
direction, and continuously updates the variables after each sweep. Let k denote
the k'* iteration of a particular Newton-Raphson step. JFor each iteration, at the
center point ¢j of a u,v, p cell, we have respectively the following discretizations of

the u,v, p, and the continuity equation,

2h ~ h?

2H, Cu  Eum,\ . F, . G, .
+ (B,, — X _2H,n, )uff;l + (— + —) Ort + S — =R

A, H, . . .
(_-—' + ) f;*-llj +Jvf,+111 + pr;Hl] + J f;*-llj

h2 4 2 2 h
A,  H, ~k+1 Cu Euﬂu pk+1 Fy ak+1 Gu .k 1
+(E+_h_2-) 1:+1]+ (_‘*' Uyiti1j +? 1'+13+_h— 1:111
Ey + Ak
(v11+11 1t vlu 1) — D“nuD un] + 5 (”1:’1‘—1 + ”1i+1j—1)

((ulI]+l + uh] 1) nu +772u‘D ulz]) + Ius
(3.45)

B, D, C, | H : :
( 2t 4) ftﬂlﬁ(_ h+h2) o1+ JA + TR

Bv Dv ~k 2H’u k F ~k " ok
+ (5% + T) s + ( v =5 —2Hum, )%31 + 5Py — GonuBi!
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« k+1 Co  Ho\ .t ~k ~k
+J 5+ (_ + _) Vrit1; T J:Dl;'-l-llj + Jpl;'t}-llj

2h  h?
Dv ,\k ,,k B "k N ! -
-7 (“1:‘-1j+1 + Ugijr) — 2_;; (ulij+1 - Ufi—1j+1) - Eu’luDyvfj

Fv ~k 'k 12 ~k ~k " .
-7P1ij+1 - Gvnvp:'j+1 —H, (’7.; (vlij+1 + vlij—l) + Uszy”fij)

+1,,
(3.46)

Ar k41 ~k+1 _ Br 41 ok
9 “1i-1j + IOy 15— E,f/’ntu + JP1,~+_11,-

Ar k41, Cr i ~k A
FAatyt o ot sty 4 oty

~ k41 k41 By k41 N
FJuyi; + 00+ o Privij T Pyt

C,. T
= _évfij-—l - DrﬂuDfo.‘j + I,

(3.47)
_.Il;af;*_ll JHIoN + IaSHE + TR,
PR ok 4 TR 4 Ik
It + I0iE + B, + TR,
=77:4'5{cij—1 + Ig,

(3.48)

where
A, = 2a/(fig + u)
B,=1+a (2(12oz +u2) + oy + (v = V), )
Cu = a(toy + uy)
Dy =a(bo+v-V)
E, = a(d +u)

~ 2 -
Fu=a(—pf”+p’; p Y (o +u)
(Po+p)°  Re(po+p)
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«

potp
«a

_RC(ﬁO'*'P)
A, =1+a(ﬁoz+uz+2(ﬁoy+(v_v)!l))

u:

G
H,

il

B,=a(t,+v-V)

Co = a (i, +u)

Dy = a(oz + (v —V):)
E, =2a(d+v-V)

~ 2 -~
F, =a(_p:,y+p% + v (AUO+U)2)
(Po+p)°  Re(po+p)

(63
po+p

o
Hy=—-——5———
Re(po + p)

A = a(ﬁoz + Pz:)

G, =

B, = a (i, + u)

Cr = a(poy + py)

D, =a(,+v-V)
J=0.

The unknowns are arranged in the following order,

~k ~k ~k ~k ~k Ak ~k  ~k ~k ~k ~k
Ui—1,j2 Vi=1,5> Pi=1,55> Pi-1,5> Ui 55 Vi 5> Pi 55 Pijr Yig1,55 Vit1,55 Pit+1,55 Pi -

This results in a doubly-bordered band diagonal matrix with a bandwidth of 15 ele-
ments. The bordering is due to the periodic boundary condition in the z-direction.
After convergence of quantities at iteration k+ 1, the guess for the Newton-Raphson
iteration is updated and the procedure continues.

Figure 3.21 shows the differences of the flow variables in using these two meth-
ods for the case of A = —0.5, A = 1.0, ¢ = 0.3, Re = 10* with the initial density
(2.73) on a 21 by 100 grid. The differences are taken at time ¢t = 0, 4, 8, 12, 16, and
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Figure 3.21 Time evolution of the differences in the flow variables obtained by the
artificial compressibility method and the Newton-Raphson method for the pseudo-
time problem. a) —u b) ———vc¢)+++ pd)—-—p.
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20. The velocity and the density are normalized to their maximum values obtained
from the artificial compressibility code. At the end of the time ¢ = 20, the differ-
ences are respectively 5.1%, 0.29%, 1.4%, and 3.5% for the velocity u, v, the density
p, and the pressure p. The differences in v between the two solutions are smallest
for all time. The large difference in u and p are due to the magnitudes of maximum
u and p being of order O(10~2 — 10~2%). Up to time ¢t = 4, the difference between
the two solutions are less than 1%. As the time for the simulation increases, the
Newton scheme converges very slowly. This effect is due to the iteration of the
resulting matrix in the Newton scheme instead of a direct inversion. Hence, the
two solutions are slowly separating from each other as time increases. The total
computing time for the Newton scheme is around four and one-half times more than
the artificial compressibility method. Since we are interested in the multiple scale
problem, the required fine grid resolution makes the direct inversion very difficult
to implement, and the computing time too large for the time dependent study.

In conclusion, the above comparison with a solutio:‘n obtained from Newton-
Raphson method provides another accuracy check to our solution. However, the
most important feature of this calculation is to show the robustness of our scheme,
which is essential for the unsteady problem under consideration.

In this chapter, we have formulated a numerical scheme for solving the un-
steady two-dimensional incompressible Richtmyer-Meshkov problem. We have also
discussed several numerical tests to check its accuracy, stability, and efficiency. In
the next chapter, simulation results on the growth of the Richtmyer-Meshkov insta-

bility will be presented.
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CHAPTER 4

RESULTS

The numerical results of the simulation of Richtmyer-Meshkov instability are
included in this chapter. In the first section, we define the average quantities which
characterize the results of our numerical simulations. Section 2 describes the two
kinds of initial density distribution considered. Since the instability is weak, a model
for its initial development based solely on the action of the vorticity field imposed
by the impulsive acceleration is developed. We call this the ¢ linear model’, and its
details are discussed in Section 3. In Section 4, we preéént the growth rates of a
continuously stratified fluid layer as compared to those predicted by Richtmyer for
a sharp fluid interface with an equivalent jump in density. The next two sections
include the results of the simulation for both the single scale and random multiple

scale perturbations of a stratified fluid.

4.1 Characteristic average quantities of the flow

In order to characterize our results, we consider two kinds of average quantitites
for the density, one in the y-direction, and the other in the z-direction. The average

in the y-direction is a function of z and is defined as follows,

Y
2Yp+ — [y p(=,y)dy
P+ — p—

Fy(z) = Y, (4.1)

where Y is the maximum value of y in the region composed of the v cells, p,, p_

1s the uniform density as y — too respectively.
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Figure 4.1 Dependence of the density on y for a fixed z.

For a given r, the density p is a function of y as shown in Figure 4.1, and
equation (4.1) is a kind of area average of the density. The definition for py(z)
defines an average interface for the stratified layer. It gives the exact functional form
of a sharp interface y = f(z) which separates two regions of uniform density p., and
p—. Hence, this definition is convenient for the comparision of the numerical results
to those predicted by the Richtmyer theory (1960), since an average amplitude

based on py(z) can be defined as,

_ max(py (z)) 2— min (7, (“’))_ (4.2)

The growth of the instability is characterized by the time derivative of a. In our
numerical code, we interpolate () using cubic splines before a is computed so

that a smooth growth rate da/dt as a function of time is obtained.
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The second dénsity average is defined as follows,

p) =50 [ o, «3)

which is the standard area average. From j,(y), we can define a width § of the

stratified layer. Let y, be the position of p.(y) such that,

y+ = min (||p=(y) — p+l| < dlp+ — p-1)),

where d is some specified percentage for the cut off. Similarly, let y_ be such that,
y- = max ([pz(y) — p-|| < dllp+ — o).
Then the width of the density layer is defined as,
b=y —y_. | (4.4)

In searching for y4, and y_, we use linear interpolation with d taken to be 2%, 1.e.,
the width & covers a distance over which the variation of the density within the

layer is 98% of the maximum density jump.

4.2 Initial density distributions

In order to understand the growth of the instability, we consider two different
kinds of initial density distributions. The first one which is also known as the single

scale perturbation is of the form,

o(z,y) = % (1 + Atanh (% (v — ecos(x)))) ,‘ (4.5)

where A is the Atwood number, and L is the characteristic thickness of the density
layer. The factor 1/2 normalizes the density to the interval from 0 to 1 for the
maximum possible Atwood number of 1. For L > 0, equation (4.5) describes a

continuously stratified interface. As L approaches zero, the layer reduces to a sharp
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interface with € as the amplitude of the perturbation. In his theory, Richtmyer
(1960) considered the instability of a sharp interface with an infinitesimal pertur-
bation subjected to an impulsive acceleration. With the density profile (4.5), we
can justify our numerical results when L, and € are taken to zero, in that order, for
a sharp interface with infinitesimal perturbations. Besides this consistency check,
this profile is convenient for the study of the nonlinear effects in the growth of the
instability of a highly perturbed interface.

In view of a more realistic perturbation which occurs in experimental studies,
we would like to have some randomness as well as multiple wave numbers presented
in our initial distribution. To accomplish this effect, we replace cos(z) in equation
(4.5) by the sum,

N
D emstk-1)? (% — rkl) cos (kz), (4.6)

k=1

g;e—«k—l)* {(% _ m) cos (kz) + G - r,;;-2> sin(ka:)} . (4T

where k is the wave number, riq, 712 are random numbers with 0 < rr1,Tree < 1,

or

and ¢ is a controlling parameter for the spread of the wave number distribution.
For N =1, rgy = 0.5, and r4; = 0.5, equations (4.6), and (4.7) reduce to cos(z).

For the single scale perturbation, we study the effects of the Atwood number
(A), the perturbed amplitude (¢), and the characteristic length (L) on the devel-
opment of the instability. For the multiple scale calculations, we only consider the
role of the Atwood number on six different random intial profiles. The first four
profiles are computed from equation (4.6), and the fifth and sixth random profiles
from equation (4.7). Before the numerical results of these problems are presented,

we discuss below a model for the initial growth of the instability.

4.3 ‘Linear’ theory model

Due to the weak nature of the instability, we can assume that the initial flow
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field caused by the passage of the shock, which is modeled by the action of an
impulsive motion, is not altered significantly afterward. The role of the energy
deposited at the initial instant in the subsequent growth of the instability is mainly
to increase the mixing of the layer by moving the fluid particles in a Lagrangian
fashion. We call this model of the instability, the ‘linear’ theory model. The linearity
of the model is due to the fact that we have approximated the shock as an impulsive
motion, and only the action of this flow field controls the later development.

Consider the distribution pg(z,7n) of the density at a particular time #,. At a
later time ¢ = o + At, the distribution of the density is p(z,7). The density at
a node point 15, at time ¢, is the density of a fluid particle which has arrived at
the point ¢j from a point having the coordinate (zq,7), at a time At earlier (see
Figure 4.2). Assume that the velocity of the fluid particle during this motion from
the time ¢y to ¢ is constant and equals to the velocity at the node point ; 7, (1.e.,
the redistribution of the density does not affect the flow field significantly,) then the
overall algorithm to obtain p(z,n) from po(z,n) is as foll:)ws. ‘

1. Compute the velocity at center ij of the p cells,

1
Ue =3 (wij + wiz1,5)
(3.8)

1
ve = 5 (vij +vi,j-1) = V.

2. Use this velocity to obtain the position (zq,70) of the fluid particle at time #q,

To = Tij — u At
. (3.9)
Mo = Mij — v At
3. Search for the square grid which contains the point (z9,7). Due to our as-
sumption of constancy of the velocity, we choose the time step so that (zo,m0)
will lie very close to the point ij in one of its four adjacent squares.
4. The final step is to interpolate the density at (z9,79) using po, and assign

this value to the point ¢j. Let the coordinates of the corners of the square be



- 123 -

Ax_i,_va
o O
(x_, M) S
At later &
Ax?._QUv

(1 mp) s / |
node point ij node point ij

t = ﬂO t = ﬁO + Dﬂ

4 = mqu X‘jv 4 = 4 ﬁ X\jv

Figure 4.2 Motion of a fluid particle in the linear theory model.
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(z1,m8), (z4y n},), (%ryMe), (£1,m:), where the subscripts I, r, b, ¢ denote left, right,

bottom, top respectively. Then (z¢,79) is normalized to

To — Iy
xan = ___)
xr - .'E]
1
Tom = 70 — M (3 0)
on 77t“ — "]._b

The density at (zo,70) is calculated from the density at the corners of the

square using bilinear interpolation,

po(0;m0) = (1 = Zon) (1 = Non) Po (T1,76) + Ton (1 = Nor) po (Tr, )
(3.11)

+ ZonMonPo (:L',-, 771‘) + (1 - zon) NonPo (:IJI, 77t) .
The validity of this model for short time is expected to be very good. Hence,

it can also be used as the fifth check on our numerical results.

4.4 Single scale initial growth rate

The initial density distribution in equation (4.5) for the single scale problem
has three parameters. The Atwood number A is a measure of the density jump
across the stratified layer; similarly L is a measure of the characteristic length of
the width of the density layer, and € is the amplitude of the perturbation. The
density profile considered is convenient because it includes the sharp interface as a
special case, i.e., L — 0. In this section, we would like to study the dependence
of the initial growth rate of the perturbation as a function of the three mentioned
parameters.

The problem is solved on a 21 by 200 grid, with p=10"% and At = 0.002. We
consider three Atwood numbers A = —0.2, —0.5, and —0.8, five different character-
istic lengths L = 0.001, 0.01, 0.1, 1.0, and 10.0, with four values of the perturbation
amplitude € = 0.01, 0.1, 1.0, and 10.0. In Table 4.1, we present the results of this

study.
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Table 4.1
Ratio of the initial Richtmyer growth rate over that of numerical simulation
A e} L= 10.0 1.0 0.1 0.01 0.001
+ 0.2 0.01 15.026 2.1280 1.1023 1.0283 1.0187
0.02 0.2 0.8 0.85 0.93
0.1 15.027 2.1304 1.1052 1.0163 1.0125
0.02 0.2 0.8 0.8 0.8
1.0 15.118 2.3657 1.3626 1.1503 1.0971
0.008 0.2 0.2 0.2 0.2
10.0 19.359 10.519 7.5656 7.5863 7.6016
0.008 0.05 0.05 0.05 0.08
+ 0.5 0.01 14.363 2.0371 1.0886 1.0266 1.0187
0.02 0.2 0.8 0.85 0.93
0.1 14.364 2.0365 1.0915 1.0147 1.0127
0.02 0.2 0.8 0.8 0.8
1.0 15.066 2.2155 1.3451 1.3329 1.3326
0.008 0.2 0.2 0.2 0.2
10.0 18.505 9.9856 6.9315 6.9807 6.9815
0.008 0.05 0.05  0.05 0.05 -
+ 0.8 0.01 12.776 1.8298 1.0580 1.0228 1.0187
0.02 0.2 0.8 0.85 0.93
0.1 12776 1.8294 1.0608 1.0153 1.0590
0.02 0.2 0.8 0.85 0.9
1.0 12.842 2.0520 1.3040 1.2310 1.1956
0.008 0.2 0.2 0.4 0.4
10.0 16.554 8.8304 5.6359 6.0836 6.0445
0.008 0.05 0.08 0.1 0.1

There are two numbers in each entry of the table. The first number is the ratio
of the initial growth rate of the average amplitude as predicted by the Richtmyer
theory over that of numerical simulation. In calculating the equivalent Richtmyer
growth rate given in equation (2.18) for a continuous interface, we use the initial
average amplitude defined in equation (4.2) as ag, the velocity V of the flow at
infinity as the jump velocity v of the interface after the impulsive acceleration, and

= 1. The numerical growth rate is computed using forward differences in time.

Since the growth rate is an odd function of A, the ratios of the growth rates for +A4
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are the same. Hence, the results reported here are also those for positive Atwood
numbers. Due to the large variation in the density gradient for the various cases,
we have to use different values of - for the grid distribution. It should be recalled
that v is the controlling parameter for the grid distribution about the origin. The

second entry in the table is the value of v used.

The results in Table 4.1 are plotted in three sets of Figures 4.3-6, 4.7-10, 4.11-
14. The first, second, and third set present respectively the ratios of the growth
rates as functions of the characteristic length L, the perturbation amplitude ¢, and

the Atwood number A.

4.4.1 Effect of thickness on initial growth rate

As shown in Figures 4.3-6, for a given A, as L approaches zero, i.e., a sharp
interface, the ratios approaches finite limits which appe;r to be the lower bounds
except for the cases of A = —0.8, and € = 10.0, in which there is a minimum around
L = 0.1. For small perturbation amplitude e, the limit approaches 1.0 from above,
which seems to happen as early as L = 0.1. For L = 0.1 to L = 0.001, the ratios
of the growth rate do not vary significantly. The ratios increase from L = 0.1 to L
= 1.0. For a thicker interface L = 1.0 to L = 10.0, the ratios continue to grow to
O(10). For € = 10.0, L = 10.0, and A = 0.2, the ratio can be as high as 19.4. The
corresponding values for A = 0.5 and 0.8 are respectively 18.5 and 16.6. Thus our
numerical results are consistent with the predictions of the Richtmyer theory for a
sharp interface. They also confirm the fact that by decreasing the density gradient,
one can reduce the growth of the Richtmyer-Meshkov instability as predicted by the
linear theory of Saffman and Meiron (1989). The results also agree qualitatively
with the experiments of Brouillette (1989) in which he observes a tenfold reduction
in the growth rate for a ratio of thickness to wavelength around 3. Thus, for a

continuous interface, Richtmyer formula (2.18) overpredicts the growth rate.
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da/dt of richtmyer/numerical A = -@.2
2@r

18 |
16 |
14 |
12

10

rich/numerical

Py
vt bttt sttt el

g'11||I||11!|11||1||11||1|l|111|1||1|1||(|
-3.0 -2.5 -2.90 -1.5 -1.0 -.5 %] .5 1.0
log1@(length)

Figure 4.3 The ratio of the Richtmyer average amplitude growth rate (da/ dt) over
that of numerical simulation at ¢ = 0 versus log,, L for A = —0.2 : a) —— — €=
0.01b) —e=01c)+++e=1.0d)--- e =10.0. Note that the actual data points
are given in Table 4.1, and just for the purpose of illustration, they are connected

by curves of different styles as shown above.
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da/dt of richtmyer/numerical A = -@.5

20
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Figure 4.4 The ratio of the Richtmyer average amplitude growth rate (da/dt) over
that of numerical simulation at ¢ = 0 versus log;q L for A = —0.5: a) — — — ¢ =
0.01b)—e=0.1c)+++e=1.04d)--- e =10.0. Note that the actual data points
are given in Table 4.1, and just for the purpose of illustration, they are connected

by curves of different styles as shown above.
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da/dt of richtmyer/numerical A = -0.8
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Figure 4.5 The ratio of the Richtmyer average amplitude growth rate (da/dt) over
that of numerical simulation at t = 0 versus log;y L for A = —0.8: a) — — — ¢ =
0.01b)—e=0.1c)+++e=1.04d)--- e =10.0. Note that the actual data points
are given in Table 4.1, and just for the purpose of illustration, they are connected

by curves of different styles as shown above.
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da/dt of rich/num A = -0.2,.-0.5,-0.8
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Figure 4.6 The ratio of the Richtmyer average amplitude growth rate (da/dt) over
that of numerical simulation at ¢ = 0 versus log;q L for: a) — —— A = —0.2, b) —
A =-0.5c¢c)+++ A = —0.8, each with four values of ¢ = 0.01, 0.1, 1.0, and 10.0.
Note that the actual data points are given in Table 4.1, and just for the purpose of

illustration, they are connected by curves of different styles as shown above.
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4.4.2 Effect of perturbed amplitude on initial growth rate

The behavior of the ratios of the growth rates as a function of the perturbation
amplitude € is similar to that of L. As shown in Figures 4.7-10, the ratios attain a
limit from above when ¢ is less than 1.0. Again the Richtmyer limits are confirmed.
For ¢ = 0.01 to 1.0, the ratios do not vary significantly. The ratios of the growth
rates increase monotonically with the perturbation amplitude. The rate of the
overprediction of the growth rate as a function of the perturbation amplitude is less
than that as a function of the characteristic length. Therefore the effect of increasing
the nonlinearity due to the perturbation amplitude is less important than the effect

of increasing the width of the stratified layer.

4.4.8 Effect of density difference on initial growth rate

Figures 4.11-14 show the variation of the ratios of the growth rates with A. As
€ or L increases, the overprediction is greater for the small density differences. Up
to € = 1.0, and L = 1.0, the amount of overprediction is independent of the Atwood
number, and the actual growth rates are half that predicted from Richtmyer theory
when ¢ = 1.0, and L = 1.0. For higher € and L, the ratios have a maximum at
A = 0. For the particular density profile under consideration, the effect of density
difference as characterized by A on the growth rates is smallest among the three

parameters: A, €, and L.

In summary, for the initial development of the single scale instability, the results
in this section have confirmed the reduction of the growth rates as compared to
those predicted from the Richtmyer theory as L, and € are increased. The effect
of increasing € on the growth rate is smaller than that of increasing L, and that
of A is smallest among the three parameters. The actual growth rate is half the
Richtmyer value for € = 1.0, and L = 1.0 independent of the Atwood number. In

the next section, we will study the time evolution of the instability for the single



- 132 -

da/dt of richtmyer/numerical A = -0.2
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Figure 4.7 The ratio of the Richtmyer average amplitude growth rate (da/dt)
over that of numerical simulation at ¢ = 0 versus log;, e for A = —0.2 : +++ L =
10.0,—-- —L=10,—L=0.1,—~—L=0.01,--- L =0.001. Note that the
actual data points are given in Table 4.1, and just for the purpose of illustration,

they are connected by curves of different styles as shown above.
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Figure 4.8 The ratio of the Richtmyer average amplitude growth rate (da/dt)

over that of numerical simulation at ¢ = 0 versus log,,€ for A = —0.5: +++ L =

100,—-- —L=10,—L =0.1, —— -~ L =0.01, --- L = 0.001. Note that the

actual data points are given in Table 4.1, and just for the purpose of illustration,

they are connected by curves of different styies as shown above.
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da/dt of richtmyer/numerical A = -0.8
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Figure 4.9 The ratio of the Richtmyer average amplitude growth rate (da/dt)
over that of numerical simulation at ¢ = 0 versus log;, € for A = —0.8 : +4++ L =
10.0,—-- —L=10,—L=0.1,——~L=0.01,--- L = 0.001. Note that the
actual data points are given in Table 4.1, and just for the purpose of illustration,

they are connected by curves of different styles as shown above.
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da/dt of rich/num A -0.2.-0.5.-0.8
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The ratio of the Richtmyer average amplitude growth rate (da/dt)

over that of numerical simulation at ¢t = 0 versus log,, € for A = —-0.2, —0.5, —0.8

© 444+ L=100,—-- —L=10,—L=01,———L=00L, -

= 0.001.

Note that the actual data points are given in Table 4.1, and just for the purpose of

illustration, they are connected by curves of different styles as shown above.
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da/dt of rich/num eps = .01
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Figure 4.11 The ratio of the Richtmyer average amplitude growth rate (da/dt)
over that of numerical simulation at t = 0 versus the Atwood number A for ¢ = 0.01
:+++L=100,—-- —L=10,—L=01,-——-L=0.01,---L = 0.001.
Note that the actual data points are given in Table 4.1, and just for the purpose of

illustration, they are connected by curves of different styles as shown above.



16

14

12

10

rich/numerical
@

B

- 137 -

da/dt of rich/num eps = 0.1
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Figure 4.12 The ratio of the Richtmyer average amplitude growth rate (da/dt)

over that of numerical simulation at ¢ = 0 versus the Atwood number A for € = 0.1

: +++ L =100,—-- —L=10,—L=0.1, ——— L =001, --- L = 0.001.

Note that the actual data points are given in Table 4.1, and just for the purpose of

illustration, they are connected by curves of different styles as shown above.



- 138 -

da/dt of rich/num eps = 1.0
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Figure 4.13 The ratio of the Richtmyer average amplitude growth rate (da/dt)
over that of numerical simulation at ¢ = 0 versus the Atwood number A for ¢ = 1.0
t+++L=100,—-- —L=10,—L=0.1,-——L=00L,--- L = 0.001.
Note that the actual data points are given in Table 4.1, and just for the purpose of

illustration, they are connected by curves of different styles as shown above.
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Figure 4.14 The ratio of the Richtmyer average amplitude growth rate (da/dt)
over that of numerical simulation at ¢ = 0 versus the Atwood number A for ¢ = 10.0
:+++L=100—-- —L=10,—L=0.1,-~-—-L=0.01,--- L =0.001.
Note that the actual data points are given in Table 4.1, and just for the purpose of

illustration, they are connected by curves of different styles as shown above.
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scale problem.

4.5 Instability of the single scale problem

In this section, we consider the temporal development of the incompressible
Richtmyer-Meshkov instability at a continuous interface having an initial single
scale perturbation as given in equation (4.5). For L = 1.0, we have studied the
cases with combinations from five Atwood numbers A = —0.05, —0.2, —0.5, +0.8,
and three perturbation amplitudes ¢ = 0.2, 0.5, and 1.0. For L = 0.5, we consider
only one case with A = —0.5, and € = 0.2. In Table 4.2, we summarize the general

information about the cases considered.

The first row in an entry of the table indicates the grid resolution used. Since
we are interested in the long time behavior of the instability, whenever possible, we
will let the simulation proceed up to a time ¢ around 80. In the second row of the
table’s entries, we record the time around which there is numerical oscillation if the
time ¢ equals to 80 is not yet reached. The oscillation occurs due to the appearance
of small scales which our grid can not resolve properly. With an increase in the
number of grid points, the calculation can be extended to a longer time. The next
two numbers of the entries are respectively the maximum norms of the pseudo-time
derivatives of the unsteady problem in equations (3.18), (3.21), (3.23), and (3.25)
and the residual errors of the nonlinear system of equation (3.16) at the recorded
time in the second row. The fifth number is the Figure number which has the results
for that particular case. The letters I, w, and 3-D indicate respectively the cases
displaying results using the linear theory model, and those cases for which vorticity
contours and three-dimensional surfaces of p,(z), and p.(y) are provided.

For each case, we summarize the results in a set of Figures in which are plotted
the time evolution of the average quantities, the position of the peaks of py(z),
and the density contours. For the average quantities, we have the results for py(z),

pz(y), average amplitude a, width of the density layer §, the growth rate da/dt, as
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Table 4.2
Parameters for single scale problem.
L Ale= 0.2 0.5 1.0
—0.05 61, 100 61, 100 101, 100
80 80 80
8.99x10711 946x10~1 9.27x10~11
9.76x10% 2.38%10~8 1.78x107¢
4.15 4.16 4.17
-0.2 61, 100 61, 100 151, 100
80 80 53
9.97x10711 950%x10710 6.44x10710
9.39x107%  3.58x107%  1.60x10~*
4.18 4.19 4.20
-0.5 61, 100 141, 100 151, 100
80 53 40
2.28x10710  1.46x10° 1.04x1077
1.0 1.56x106 1.21)(10—? 1.18x10¢
4.21 422 4.23
3-D I, w, 3-D 3-D
—0.8 141, 100 151, 100
32 16
3.47x10~7  1.26x1077
1.28x10™* 1.91x10~¢
4.24 4.25
0.8 151, 100
13
5.18x10~7
1.76x10™
4.27
L, w, 3-D
—0.5 61, 100
80
0.5 7.56x10710
9.93x10°°

4.28




- 142 -

well as its magnitude relative to that predicted by Richtmyer theory, In(a) vs In(¢),
and In(6) vs In(t). The combined results for the single scale problem are presented
in the set of Figures 4.29. In the following discussion, we will focus our attention on
the general structure of the instability, the overall growth of the stratified layer, and
the intial development of the instability as predicted by the linear theory model.

4.5.1 General structure of the instability

For a given A, as € increases, the middle peak of p,(z) flattens. This effect
becomes more pronounced as seen in Figures 4.15.1a—4.17.1a for A = —0.05, and
Figures 4.18.1a—4.20.1a for A = —0.2. For higher Atwood numbers, after a maximal
flattening, §,(z) reduces in width and develops additional symmetry peaks as seen
in Figures 4.21.1a—4.23.1a for A = —0.5, and 4.24.1a—4.25.1a for A = —0.8. A
similar development of the asymmetry in p,(y) around p = 0.5, and y = 0.0 is also
seen in part (b) of the mentioned set of Figures for p,(z). As ¢ increases, p,(y)
tends to change from a monotonic function into one having a relative maximum
and minimum. As A increases, the asymmetry of p,(y) moves toward the front of
the stratified layer indicating that on the average the entrainment of the globule of
heavy fluid into the lighter one is faster than the entrainment of lighter one into
the heavy fluid. This asymmetry in the structures of the spikes of heavy fluid, and
the bubbles of light fluid is also observed in the full compressible simulation by
Mikaelian (1988), and Youngs (1984).

Detailed information on the average speed of the spike and the bubble is ob-
tained from Figures 4.15.3 to 4.25.3 in which we plot the time evolution of the
position of the peaks in the average density profile p,(z) along with their time
derivative. In general, for small A, and ¢, the speeds of the bubble and the spike are
equal and opposite. The light fluid penetrates the heavier fluid at the same speed
as the heavy fluid falls into the lighter one. As time increases, the speeds decrease

at the same rate. For higher A, and e, initially, the spikes and the bubbles have
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(a) da/dt rich, num (b] (dasdt) of num/rich vs time
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Figure 4.15.2 Time evolution of the average quantities for the single scale profile
LL.=1.0, A =—0.05,¢=0.2,¢t = 0 to 80 : a) growth rate da/dt of the average ampli-
tude, numerical and Richtmyer theory (straight line), b) the ratio of the numerical
growth rate da/dt over that predicted by Richtmyer theory, c¢) In(a) vs In(t), d)
In(é) vs In(t).
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Figure 4.15.3 Time evolution of the positions and velocities of the average peaks
in the single scale profile L = 1.0, A = —0.05, e = 0.2, t = 0 to 80 a) y b) z ¢)

dy/dt. The numbers on the curves refer to the peaks on the curves p,(z) versus z.
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Figure 4.15.4 Time evolution of the density contours for the single scale profile
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Figure 4.15.5 Time evolution of the density contours for the single scale profile
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Figure 4.16.1 Time evolution of the average quantities for the single scale profile

L =1.0,A=-0.05,e=0.5,t =0to80: a) py(x), b) p-(y), c) average amplitude,

and d) width of the density layer.
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Figure 4.16.2 Time evolution of the average quantities for the single scale profile
L=1.0,A =-0.05€¢=0.5,¢=0to80: a) growth rate da/dt of the average ampli-
tude, numerical and Richtmyer theory (straight line), b) the ratio of the numerical
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Figure 4.16.4 Time evolution of the density contours for the single scale profile
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Figure 4.17.1 Time evolution of the average quantities for the single scale profile
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and d) width of the density layer.
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Figure 4.17.4 Time evolution of the density contours for the single scale profile
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Figure 4.17.5 Time evolution of the density contours for the single scale profile
L=1.0,A =-0.05¢=1.0,¢ = 32, 40, 48, 56. The contours are at p = 0.48, 0.49,
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Figure 4.18.1 Time evolution of the average quantities for the single scale profile
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Figure 4.18.2 Time evolution of the average quantities for the single scale profile
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Figure 4.19.4 Time evolution of the density contours for the single scale profile
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Figure 4.20.2 Time evolution of the average quantities for the single scale profile
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Figure 4.20.4 Time evolution of the density contours for the single scale profile
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Figure 4.21.1a Three-dimensional surface of p,(z,t) for the single scale profile L

1.0, A = -0.5,¢e=0.2,and t = 0, 80.
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Figure 4.21.2 Time evolution of the average quantities for the single scale profile
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Figure 4.21.3 Time evolution of the positions and velocities of the average peaks
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Figure 4.21.4 Time evolution of the density contours for the single scale profile
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0.5, 0.6, 0.74 in that order from top to bottom of each figure.
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Figure 4.21.5 Time evolution of the density contours for the single scale profile
L=1.0,A = -0.5, e = 0.2, t = 32, 40, 48, 56. The contours are at p = 0.26, 0.3,
0.4, 0.5, 0.6, 0.74 in that order from top to bottom of each figure.
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Figure 4.22.1a Three-dimensional surface of j,(z,t) for the single scale profile L

0.5, and t = 0, 53.

1.0, A = —0.5, ¢
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Figure 4.22.1b Three-dimensional surface of 5,(y,t) for the single scale profile L
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Figure 4.22.2 Time evolution of the average quantities for the single scale profile
L=1.0,A=-05,e=05,1¢=0to 53 : a) growth rate da/dt of the average ampli-
tude, numerical and Richtmyer theory (straight line), b) the ratio of the numerical
growth rate da/dt over that predicted by Richtmyer theory, c) In(a) vs In(t), d)
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Figure 4.22.4 Time evolution of the density contours for the single scale profile
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growth rate de/dt over that predicted by Richtmyer theory, c) In(a) vs In(t), d)
In(é) vs In(t).



- 197 -

(a) peak posttion lyl vs time [b) peak position (x) vs time
6 r 6.5
L p——3 3
sk 6.0 F
3/ E
[ SSE
4 :
3 5.0F
3t - 3
- | :4.5:
s 2T o Se0f
I Zasf
» 3 E
e 7 dy9F2 2
. B % F
N 225
-1 3
™ 2.8 F
-2 5 E
L 1.5
3r 22— 1.8F
_‘ At A 2 ) 2 1 4 R 2 ) 2 R a2 d 3 A a2 L o 4 o & o 1 2 A 4t 4 .5:ll“lll‘lllllllllll‘l‘lllll‘llll
W N T O DO NYT ODENY OD® N BN WY O DO NT OO®NT O DS N
- e - NNNNNN®® - - e, NNANNNOO
time tine
(¢} y-component of peak velocity
.25;-
.28 ::\e
RERS
.18 F
E 3\
.05 I
,: :
3 e
o [ e e
-os | 2
-18 F
-5k
-.2e '—/q’
_'25:llllllllll|l|lllllll|l‘lll1l|l|l

Q@ N9 OO 8 N< O D080 N OO0 8
N N N ONON O™

- o e o -

tine

Figure 4.23.3 Time evolution of the positions and velocities of the average peaks
in the single scale profile L = 1.0, A = —0.5, e = 1.0, t = 0 to 40 a) y b) z ¢) dy/dt.

The numbers on the curves refer to the peaks on the curves p,(z) versus z.
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Figure 4.24.2 Time evolution of the average quantities for the single scale profile L
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Figure 4.24.3 Time evolution of the positions and velocities of the average peaks
in the single scale profile L = 1.0, A = —0.8, e = 0.5, ¢ = 0 to 32 a) y b) z c) dy/dt.
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Figure 4.24.4 Time evolution of the density contours for the single scale profile
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Figure 4.24.5 Time evolution of the density contours for the single scale profile
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0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.89 in that order from top to bottom of each figure.
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Figure 4.24.6 Time evolution of the density contours for the single scale profile
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Figure 4.25.1 Time evolution of the average quantities for the single scale profile
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Figure 4.25.2 Time evolution of the average quantities for the single scale profile L
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Figure 4.25.4 Time evolution of the density contours for the single scale profile
L=10,A=-08e=1.0,¢=0,4,8, 12. The contours are at p = 0.11, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.89 in that order from top to bottom of each figure.
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L =1.0,A = —-0.8,e= 1.0, t = 16. The contours are at p = 0.11, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.89 in that order from top to bottom of each figure.
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approximately the same speeds. The nonlinearity, however, causes the bubbles to
decelerate much faster than the deceleration of the spikes.

The characteristic behaviors of p,(z) and p,(y) are consistent with the roll-
up phenomena of the stratified layers as shown in the time evolution plots of the
density contours in Figures 4.15.4—6 to 4.25.4—5. For small ¢, the roll-up is delayed
in time. For larger e, the nonlinearity sets in faster, and the rolling up of the heavy
fluid globule causes the pocket of the light fluid to widen horizontally instead of
forming an elongated bubble of light fluid.

In Figures 4.26.1—2 for the case of L = 1.0, A = —0.5, and ¢ = 0.5, we plot the
time evolution of the vorticity contours. The dynamics of the vorticity contours is
‘parallel to the development of the roll-up. Two pairs of vorticity with opposite signs
are deposited initially in the stratified layer due to the impulsive acceleration. As
time increases, they elongate. Around the time ¢ = 24, the beginning of roll-up of
the vorticity contours is seen. It becomes more pronounced at late times as shown
in Figure 4.26.2. 4

In contrast to Rayleigh-Taylor instability, the Richtmyer-Meshkov instability
occurs independently of the direction of the acceleration. As shown in the set of
Figure 4.27 for L = 1.0, A = 0.8, and € = 1.0, when the acceleration is directed
from a heavy fluid to a lighter one, the interface undergoes a phase reversal, then
continues to grow. The growth of the average amplitude is linear in time and
symmetric around the time t, where da(t9)/dt = 0. The bubbles in this case are
much wider than in those with negative A, i.e., equivalently, the spike is narrower.
In Figures 4.27.7-10, we show plots of the evolution of the vorticity field in this case.
The roll-up of the vorticity contour is also seen, although it is not as pronounced
as in the case of the negative Atwood number. The reason is that the interface
has to reverse direction before fully developed growth is observed. Other than this
difference, the general asymmetry of the spikes and the bubbles is also observed with
the characteristic mushroom head of the spikes and rounded front of the bubbles.

To conclude the discussion in this section on the general structures of the
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Figure 4.26.1 Time evolution of the vorticity contours for the single scale profile
L=10,A=-05,e=05,t=0,8, 16, 24. The contours are at — - — —0.25,
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Figure 4.26.2 Time evolution of the vorticity contours for the single scale profile
L=10,A=-05,e=0.5,t =32, 40, 48, 52. The contours are at — - — —0.30,
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Figure 4.27.1 Time evolution of the average quantities for the single scale profile
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Figure 4.27.1a Three-dimensional surface of py(z,t) for the single scale profile L
1.0, A =08, ¢ '
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Figure 4.27.1b Three-dimensional surface of p,(y,t) for the single scale profile L

0, 13.

1.0, A = 0.8, e = 1.0, and ¢
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Figure 4.27.2 Time evolution of the average quantities for the single scale profile L
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0.5, 0.6, 0.7, 0.8, 0.89 in that order from bottom to top of each figure.
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Figure 4.27.4 Time evolution of the density contours for the single scale profile L
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Figure 4.27.5 Time evolution of the density contours for the single scale profile
L=10,A=08,¢=1.0,%t=8,9, 10, 11. The contours are at p = 0.11, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.89 in that order from bottom to top of each figure.
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Figure 4.27.6 Time evolution of the density contours for the single scale profile
L=10,A =08, e=1.0, ¢t =12, 13. The contours are at p = 0.11, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.89 in that order from bottom to top of each figure.
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Figure 4.27.10 Time evolution of the vorticity contours for the single scale profile,
L=10,A=08,¢e=1.0,¢ =12, 13. The contours are from —3.0 to 3.0 ¢ — 12,
13, with incremental step size of 0.4. The negative contours are indicated by — -

— and positive ones by —.
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instability, for the 1purpose of completeness, in the set of Figure 4.28, we have the
plots for the case of L = 0.5, A = —0.5, and € = 0.2. The overall features of the
instability are similar to the case of L = 1.0, A = —0.5, and € = 0.2 as shown in
Figures 4.21.1-6 except that the roll-up of the spikes seem to be weaker in the latter

case.

4.5.2 Overall growth of the layer

For the cases with L = 1.0, the average amplitude a and the width of the
density layer § are monotonically increasing funtions of time as shown in Figures
4.29.1-2. For a given ¢, the instability grows faster for higher A. For a given A,
increasing € leads to an increase in the growth. Due to the roll-up, the growth rate
of the average amplitude Ja /dt, and the width of the density layer d6/dt decreases
in time as shown in Figures 4.29.1—2, 7. The higher the Atwood number A and
the perturbation amplitude e, the faster is the decay of the growth rates due to
the nonlinear effect, even though they are large initially. To study the effect of
the continuous density gradient on the growth rate, we plot the time evolution of
the ratio of the numerical growth rate over that of Richtmyer theory in Figures
4.15.2b— 4.25.2b, and 4.29.6. For all A, and € considered, the numerical growth
rate is about half that predicted by Richtmyer theory. This conclusion is consistent

with the result of the previous section 4.4.

As mentioned earlier, the only energy deposited into the layer is dué to the
initial impulsive acceleration, and since we have a small kinematic viscosity v = 107¢
in the simulation, energy is approximately conserved. This constraint is satisfied in
our calculation as shown in Figure 4.29.5 for the time evolution of the total kinetic
energies which has been discussed carefully in section 3.7.3. Due to this constancy
of the total kinetic energy, and its dependence on the initial wavelength in the case
of a sharp interface, it has been argued by Brouillette and Sturtevant (1989) that

the Richtmyer—Meshkov instability will not approach a self-similar asymptotic limit.
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Figure 4.28.1 Time evolution of the average quantities for the single scale profile
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and d) width of the density layer.
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Figure 4.28.4 Time evolution of the density contours for the single scale profile
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Figure 4.28.6 Time evolution of the density contours for the single scale profile
L=05,A=-05,e=02, t =64, 72, 80. The contours are at p = 0.26, 0.3, 0.4,
0.5, 0.6, 0.74 in that order from top to bottom of each figure.
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Figure 4.29.1 Combined time evolution of the average amplitude for the single
scale problem L =1.0: """ A=-005 -——-A=-02—A=-05,+++ A
= — (.8. The numbers 1, 2, 3 on the curves refer to the values of ¢ = 0.2, 0.5, and

1.0 respectively.
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Figure 4.29.5 Time evolution of the total kinetic energy for the single scale
problem L =1: """ A=-005 ~-~——-—A=-02—A=-05,+++ A = —
0.8. The numbers 1, 2, 3 on the curves refer to the values of ¢ = 0.2, 0.5, and 1.0

respectively.
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Figure 4.29.7 Time evolution of the numerical growth rate of the average ampli-
tude (da/dt) for the single scale problem L = 1: """ A = — 0.05, — — — A = —

0.2, — A=-05, +++ A = — 0.8. The numbers 1, 2, 3 on the curves refer to
the values of € = 0.2, 0.5, and 1.0 respectively.
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To determine whether a universal power law in time exists for the average amplitude
a and the width layer 8, we plot in Figures 4.15.2¢,d—4.25¢,d, and 4.29.3—4 In(a),
and In(é) versus In(t). From these Figures, we can conclude that there is no simple
power law for the single scale problem. The time asymptotic limits of a and §
depend on both A and € in some complicated way. In Figure 4.29.4a, we plot the
asymptotic time exponent « in the asymptotic expression: § ~ t* for the growth
of the width 6 of the stratified layer. Their values are given in Table 4.3. For a
given €, a is a decreasing function in the Atwood number. Similarly, for a given A,

a decreases with the increase in e.

Table 4.3
Asymptotic time exponent « in § ~ t°.
Ale> 0.2 0.5 1.0
-0.05 - 0.170
-0.2 0.280 0.273
-0.5 0.384 0.366 0.304
-0.8 0.483 0.423

4.5.8 Initial growth predicted by linear model

Since the instability is weak, it can be modeled by fixing the initial flow field
after the impulsive acceleration, and let the flow evolve as discussed in section 4.3.
Using this model, we obtain the solution for case 1 of L = 1.0, A = —0.5, €= 0.5,
and case 2 of L = 1.0, A = 0.8, ¢ = 1.0 as shown respectively in Figures 4.30 and
4.31. The model accurately describes the growth of the layer at early times. For
example, up to time ¢ = 15 for case 1, the differences in the average amplitude a,
and the width layer § relative to the actual calculation are small, 4.43%, and 0.62%
respectively. This agreement corresponds to travel of the layer over a distance
comparable to 2% to 3 layer widths. At lower Atwood ratio,A this agreement extends

for even longer times. For case 2, the reversal of phase is in very good agreement
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Figure 4.30.1 Time evolution of the average quantities for the single scale profile
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0.5, ¢ = 0 to 40 using the linear model : a) p,(z), b)

pz(y). Combined results — numerical simulation, — — — linear model c) average

amplitude, and d) width of the density layer.
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with the actual flow as seen in the plots of a and § shown in Figures 4.31.1c,d.
For both cases, at late times, the model predicts a growth slower than the actual
calculation. The roll-up is more compact and symmetric for the linear case. This
results in a more symmetric form for the average Quantities pz(y). The widening of
the light fluid globule is not seen and thus a sharper lower peak of () is observed.

In conclusion, the single scale problem has been studied for a wide range of
the Atwood numbers A, and the perturbation amplitudes e. We have learned that
the nonlinear effect causes a roll-up of the interface which reduces the growth of
the whole layer, and increases the internal mixing. The instability is driven by the
induced flow due to the interaction of the two initially imposed vortex rolls, and
grows faster as A and ¢ increase. For all cases considered in this section, the initial
growth rates are around half of that predicted by Richtmyer theory. In addition,
there is no simple power law governing the long time asymptotic limit of the average

amplitude a, and the width of the stratified layer 6.

4.6 Instability of the multiple scale problem

The simplicity of the single scale problem offers us an understanding of the basic
physical mechanism underlying the instability. In most experimental studies, and
realistic applications, however, the interface is composed of many random modes
of perturbation. In this section, we study the instability of a continuous interface
having a random initial density distribution as given in equations (4.5)7to (4.7)
with L = 1.0, and € = 0.2. We consider six different initial profiles. The first
four profiles are based on equations (4.5) and (4.6), and the fifth and the sixth are
based on equations (4.5) and (4.7). In Table A-1 (see Appendix), we list four sets
of random numbers ri; used for the first four initial profiles. For the fifth profile,
we use rg; listed in the second column of Table A-1 as our rg;. Similarly, for the
sixth profile, r¢; is the same as ri; listed in the third column of Table A-1. We

use up to 120 modes, i.e., N = 120, and choose ¢ to be 0.01. It should be noted
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that ¢ is a controlfing parameter for the distribution of the wavenumbers. Since the
calculations are carried out using double precision, i.e., 16 significant digits, with
this value of ¢, the wavenumbers bigger than 61 will only effect the last significant
figures. For all cases in this study, we use a 151 by 100 grid. Hence, up to mode 61
which already has very small amplitude O(10~1¢), we have at least two grid points

per wavelength. The flow field is therefore reasonably resolved.

Table 4.4
Parameters for the first four multiple scale problem.
A lstprofile  2nd profile  3rd profile  4th profile
-0.05 80 80 80 80
8.67x10711 9.07x10711 9.09x10-1! 9.98x10-11
3.20x107% 2.38x10~¢ 2.15x107¢  2.15x10°6
4.32 4.33 4.34 4.35
-0.2 71.46 89.34 80 80
1.01x1071% 9.98x10~1! 3.98x1010 1.35%10-10
3.44x1077  3.92x1077  3.44x10~7  3.61x10~7
4.36 4.37 4.38 4.39
1
-0.5 40 56 41 44
2.06x1077 7.64x107%  4.46x10~°  4.88x10~7
9.57x10™°  1.79x10~*% 8.52x10™% 4.06x10™*
4.40 4.41 4.42 4.43
| 3-D
-0.8 14 17 16 17 _
1.07x10"¢ 2.07x10°¢ 1.16x107%  2.00x10~%
3.27x10™% 2.10x10°3 6.42x10~% 2.97x10~3
4.44 4.45 4.46 4.47
L w

In Table 4.4, and 4.5, we summarize some general information regarding the
multiple scale problem. The arrangement of the table is similar to that described
in Table 4.2 for the single scale problem except for the information concerning

the grid size. In the following sections, we will consider the general structure of
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Table 4.5
Parameters for the fifth and sixth initial profiles.
A 5th profile  6th profile
—0.2 75.4
3.98x10~10
2.52x107°
4.48
w, 3-D
-0.8 9 9
4.08x10~7 1.54x10~7
3.43x10~* 6.68x10~°
4.49 4.50
w w

the instability, the overall growth of the stratified layer, and the initial growth of

instability as predicted from linear theory model.

4-6.1 General structure of the instability

For A = —0.05, as shown in Figures 4.32 to 4.35, the growth of the peaks of the
density layer is weakly dependent on each other, as seen in the average py(z) and
the density contours. The speed of each peak on average as shown in plot for g, (z)
depends on the initial amplitude. The larger the amplitudes, the faster the peaks
grow. The growth seems to be strongest in the middle of the layer, and decreases
in the strength as the upper and lower boundaries of the layer are a.pprodched. A
possible explanation for this behavior is that since on average, the density varies
as a hyperbolic tangent in the y-direction, the density gradient is maximum in
the middle of the layer. From these observations, we can possibly conclude that the
instability is in the linear regime, and there is little interaction between the different
peaks. There is essentially no change in the average p, (y). The growth rates da/dt
decrease slowly, and there is very small change in the width 6 of the stratified layer
as shown in the combined plot 4.52.2. A discontinuity in the plot of da/dt for the
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Figure 4.34.2 Time evolution of the average quantities for the third initial random
profile, A = —0.05, ¢ = 0 to 80 : a) growth rate da/dt of the average amplitude,
numerical and Richtmyer theory (straight line), b) the ratio of the numerical growth
rate da/dt over that predicted by Richtmyer theory, c) In(a) vs In(t), d) In(é) vs
In(t).
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Figure 4.35.2 Time evolution of the average quantities for the fourth initial random
profile, A = —0.05, ¢ = 0 to 80 : a) growth rate da/dt of the average amplitude,
numerical and Richtmyer theory (straight line), b) the ratio of the numerical growth
rate da/dt over that predicted by Richtmyer theory, c) In(a) vs In(t), d) In(é) vs
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Figure 4.35.3 Time evolution of the density contours for the fourth initial random
profile, A = —0.05, t = 0, 8, 16, 24. The contours are at p = 0.48, 0.49, 0.50, 0.51,
0.52.



- 270 -

r contour, time = 32 r contour, time = 43
5r 5
F
4 4
3+ 3t
2 2

~2 F -2F
-3 PRI RSN VRN TR S YUY U S ST NN S WU E ST | -3 AR TSR WP SR VA SH SN W T S W S TP S
-1 2 1 2 3 4 5 6 7 -1 2 1 2 3 4 5 [ 7
X X
r contour, time = 48 r contour, time = 56
s 5[
4 FEs
at 3t
2| ZL

-2 | -2
_3 1 1 1 1 I3 ] -1 ) _3 1 1 1 1 1 1 oy 1 - |
-1 ] 1 2 3 4 5 6 7 -1 [ 1 2 3 4 5 6 7
X X

Figure 4.35.4 Time evolution of the density contours for the fourth initial random
profile, A = —0.05, t = 32, 40, 48, 56. The contours are at p = 0.48, 0.49, 0.50,
0.51, 0.52.



- 271 -

r contour, time = 64 r contour, time = 72
5r 5[
4 4+
3F 3F
z[ 2t

-2k -2}

JEC Y SSNPISUENY NUUP SR S WS TR SR S S VU SR — PR ) IO U S S U SV ST S T |

-1 [} 1 2 3 4 5 6 7 -1 ] 1 2 3 4 5 6 7

r contour, time = 80
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third initial random profile is observed in Figure 4.34.2. This arises from the shift
in the peak from which the average amplitude a is computed.

For A = —0.2, the instability grows faster. As the internal péa,ks reach the
boundaries of the density layer the nonlinear effects become strong and we see the
emergence of globules of fluid as in the cases of the single scale perturbations. As
the instability develops, the appearance of roll-up of these globules is observed as
is clearly shown in Figures 4.36.4—5 to 4.39.4—5. We also plot the position of
the peaks of the average density p,(z) of this random profile as shown in Figure
4.51. Clearly, at initial time, the growth rates of the peaks are proportional to
their initial amplitudes. Peaks with higher amplitude grow at greater speeds. As
seen in Figures 4.36.2a, 4.39.2a, and 4.48.2a of the first, fourth, and fifth random
profile, the growth rates of the average amplitude da/dt decrease rapidly to zero and
oscillate afterward. This results from the mixing action of the roll-up in reducing
the local density gradient. The consistent growth of the average amplitude a in the
second and third profile is due to the symmetric mixing 1n the second profile while
for the third profile its tallest peak has not yet developed into a globule. These
behaviors can also be deduced from the shifts in the highest peaks of p,(z) and
the asymmetrical development of p.(y) as shown in Figures 4.36.1b, 4.39.1b, and
4.48.1b. The delay in the formation of the globules until the peaks have reached
the boundaries is clearly seen in Figures 4.48 for the fifth profile. As the instability
grows, the formation of vortical pair structures of opposite signs interacting in a
very complicated nonlinear fashion is also seen clearly in these Figures. |

For higher A, A = —0.5, and A = —0.8, the characteristics of the flow discussed
for A = —0.2 and A = —0.05 are greatly amplified and occur much earlier in time.
In Figure 4.44.3V—4V, we plot the evolution of the vorticity contours for the first
random profile with A = —0.8. Similar plots are shown in Figures 4.48.3V-5V,
4.49.3V for A = —0.2, —0.8 of the fifth profiles, and Figures 4.50.3V for A = —0.8
of the sixth profile. As in the single scale peturbation, there exist dipolar regions

of vorticity consisting of elongated vortices of equal and opposite strength. Until
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Figure 4.36.1 Time evolution of the average quantities for the first initial random
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Figure 4.36.2 Time evolution of the average quantities for the first initial random
profile, A = —0.2, ¢t = 0 to 71.46 : a) growth rate da/dt of the average amplitude,
numerical and Richtmyer theory (straight line), b) the ratio of the numerical growth
rate da/dt over that predicted by Richtmyer theory, c) In(a) vs In(t) , d) In(é) vs
In(t).
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Figure 4.36.3 Time evolution of the density contours for the first initial random
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Figure 4.36.4 Time evolution of the density contours for the first initial random

profile, A = —0.2, t = 32, 40, 48, 56. The contours are at p = 0.41, 0.45, 0.50, 0.55,
0.59.
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Figure 4.36.5 Time evolution of the density contours for the first initial random

profile, A = —0.2, ¢t = 64, 72. The contours are at p = 0.41, 0.45, 0.50, 0.55, 0.59.
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Figure 4.37.3 Time evolution of the density contours for the second initial random

profile, A = —0.2, ¢t = 0, 8, 16, 24. The contours are at p = 0.41, 0.45, 0.50, 0.55,
0.59.



- 281 -

r contour, time = 32 r contour, time = 49
5 r 5
4 rys
3F 3tk
2t 2r
> 1} > 1
ar e}
-1} -1 F
L L
-2} -2l
-3 A [ VU S S B I P S WO | PN S | -3 P —te 4 i PRSI S )
-1 [} 1 2 a. 4 5 6 7 -1 ] 1 2 3 4 5 6 7
X X
r contour. time = 48 r contour, time = 56
5r sr.
I I
4} 4}
[
3 3 .[
i r
2r 2F
> 1 L > 1F
-] L [N d
" M 'l M
-2t -2F
_3 S | I 1 i i N N Py F— P _3 il P I R S 1 A I 1 i | IS L i J
-1 -] 1 2 3 4 5 6 7 -1 -] 1 2 3 4 5 [ 7
X X

Figure 4.37.4 Time evolution of the density contours for the second initial random
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Figure 4.38.3 Time evolution of the density contours for the third initial random
profile, A = —0.2, ¢t = 0, 12, 16, 24. The contours are at p = 0.41, 0.45, 0.50, 0.553,
0.59.
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Figure 4.38.4 Time evolution of the density contours for the third initial random
profile, A = —0.2, ¢ = 32, 40, 48, 56. The contours are at p = 0.41, 0.45, 0.50, 0.55,
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Figure 4.38.5 Time evolution of the density contours for the third initial random
profile, A = —0.2, t = 64, 72, 80. The contours are at p = 0.41, 0.45, 0.50, 0.55,
0.59.
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Figure 4.39.1 Time evolution of the average quantities for the fourth initial random

profile, A = —0.2, ¢t = 0 to 80 : a) p,(z), b) p.(y), c) average amplitude, and d)

width of the density layer.



~ 289 —

la} da/dt rich., num (b) {dasdt] of num/rich vs time
.845

ana]

848
835 |

.83d8

num

.e25 |

.028 [

da/dt rich,
{da/dt) of num/rich

.815 f
.819 |

.80s |

C PR S " a 1 M " n
2 19 28 38 42 59 69 79 BB [} 10 28 30 48 52 60 - 78 8a
tine tine

{c) In(average amplitude) vs Inlt]) (d) In{width of fluid, delta) vs Inlt)
.54

Inldelta)

1.44 ¢

1.42 F

lnlaverage amplitude)

layer thickness,

1,490 |

-1.6 RS TS S O VO N WU S TR B T | A
-4 -3 -2 -1 ] 1 2 3 4 5 -4 -3 -2 -t e 1
tnttime) Inltime)

1.36 M T N ST R SR T
2

w
-~
(%]

Figure 4.39.2 Time evolution of the average quantities for the fourth initial random
profile, A = —0.2, ¢ = 0 to 80 : a) growth rate da/dt of the average amplitude,
numerical and Richtmyer theory (straight line), b) the ratio of the numerical growth
rate da/dt over that predicted by Richtmyer theory, c) In(a) vs In(¢), d) In(8) vs
In(t).
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Figure 4.39.3 Time evolution of the density contours for the fourth initial random
profile, A = —0.2, ¢t = 0, 8, 16, 24. The contours are at p = 0.41, 0.45, 0.50, 0.55,
0.59.
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Figure 4.39.4 Time evolution of the density contours for the fourth initial random

profile, A = —0.2, t = 32, 40, 48, 56. The contours are at p = 0.41, 0.45, 0.50, 0.55,
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Figure 4.39.5 Time evolution of the density contours for the fourth initial random
profile, A = —0.2, ¢ = 64, 72, 80. The contours are at p = 0.41, 0.45, 0.50, 0.55,
0.59.
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Figure 4.40.2 Time evolution of the average quantities for the first initial random
profile, A = —0.5, ¢ = 0 to 40 : a) growth rate da/dt of the average amplitude,
numerical and Richtmyer theory (straight line), b) the ratio of the numerical growth
rate da/dt over that predicted by Richtmyer theory, ¢) In(a) vs In(t), d) In(d) vs
In(¢).
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Figure 4.40.3 Time evolution of the density contours for the first initial random
profile, A = —0.5, £ = 0, 8, 16, 24. The contours are at p = 0.26, 0.3, 0.4, 0.5, 0.6,
0.74.



- 296 —

r contour, tine = 4@

r contour, time = 32

Figure 4.40.4 Time evolution of the density contours for the first initial random

0.26, 0.3, 0.4, 0.5, 0.6, 0.74.

profile, A = —0.5, ¢ = 32, 40. The contours are at p



- 297 -

" (a) rbargk) (b) rbarfy}
& - 4
.69
.65
.60
.55
& A4
H s .50
[ =
.45
.48
.35
.38
.zrlllllllllllll
Mewemwenene0enaen 7-6-5-4-3-2-18 1
‘¢ - = N N M M « % W 0 9 © y
x
(c) average anplitude vs time (d} width of fluid delta vs time

average amplitude

.2 3.8
@ 5 10 15 286 25 30 35 40 45 58 55 6@ 65 @ 5 18 15 28 25 3@ 35 48 45 58 55 68 65

tine tima

Figure 4.41.1 Time evolution of the average quantities for the second initial
random profile, A = —0.5, t = 0 to 56 : a) jy(z), b) p.(y), c) average amplitude,
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Figure 4.41.1a Three-dimensional surface of y(z,t) for the second initial random

profile, A = —0.5 and ¢t = 0, 60.
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Figure 4.41.1b Three-dimensional surface of pz(y,t) for the second initial random

profile, A = —0.5 and ¢ = 0, 60.
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Figure 4.41.2 Time evolution of the average quantities for the second initial ran-
dom profile, A = —0.5, t = 0 to 60 : a) growth rate da/dt of the average amplitude,
numerical and Richtmyer theory (straight line), b) the ratio of the numerical growth
rate da/dt over that predicted by Richtmyer theory, c) In(a) vs In(t), d) In(6) vs
In(2).
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Figure 4.41.3 Time evolution of the density contours for the second initial random
profile, A = —0.5, t = 0, 8, 16, 24. The contours are at p = 0.26, 0.3, 0.4, 0.5, 0.6,
0.74.
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Figure 4.41.4 Time evolution of the density contours for the second initial random
profile, A = —0.5, ¢ = 32, 40, 48, 56. The contours are at p = 0.26, 0.3, 0.4, 0.5,
0.6, 0.74.
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Figure 4.42.2 Time evolution of the average quantities for the third initial random
profile, A = —0.5, ¢ = 0 to 42 : a) growth rate da/dt of the average amplitude,
numerical and Richtmyer theory (straight line), b) the ratio of the numerical growth
rate da/dt over that predicted by Richtmyer theory, c) In(a) vs In(t), d) In(6) vs
In(t).
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Figure 4.42.3 Time evolution of the density contours for the third initial random
profile, A = —0.5, t = 0, 12, 16, 24. The contours are at p = 0.26, 0.3, 0.4, 0.5, 0.6,
0.74.
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Figure 4.42.4 Time evolution of the density contours for the third initial random
profile, A = —0.5, t = 32, 40, 44. The contours are at p = 0.26, 0.3, 0.4, 0.5, 0.6,
0.74.
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Figure 4.43.2 Time evolution of the average quantities for the fourth initial random
profile, A = —0.5, t = 0 to 44 : a) growth rate da/dt of the average amplitude,
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rate da/dt over that predicted by Richtmyer theory, c) In(a) vs In(t), d) In(é) vs
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Figure 4.43.3 Time evolution of the density contours for the fourth initial random

profile, A = —0.5, t = 0, 8, 16, 24. The contours are at p = 0.26, 0.3, 0.4, 0.5, 0.6,
0.74.
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Figure 4.43.4 Time evolution of the density contours for the fourth initial random
profile, A = —0.5, ¢t = 32, 40, 44, 46. The contours are at p = 0.26, 0.3, 0.4, 0.5,

0.6, 0.74.
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Figure 4.44.3 Time evolution of the density contours for the first initial random

profile, A = —0.8, t = 0, 4, 8, 12. The contours are at p = 0.11, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.89.



- 314 -

r contour, time = 14

°T
5|
4+
3}
2-
» 1F
AWA
\/,
] a\
-1} \/
-2 ~N A AN
—3-
-4 el P Y B S N . |
-2 -1 "] 1 2 3 4 5 [.) 7

Figure 4.44.4 Time evolution of the density contours for the first initial random
profile, A = —0.8, t = 14. The contours are at p = 0.11, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.89.
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Figure 4.44.3V Time evolution of the vorticity contours for the first initial random
profile, A = —0.8, t =0, 4, 8, 12. The contours are at — - — —1.6, —1.4, —1.2,
-1.0, —-0.8, —0.6, —0.4, —0.2, and — 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 in that
order from the innermost contour line. There are no +1.6 contours at ¢ = 0, 4, 8,

and no 14 at t = 4, 8.
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Figure 4.44.4V Time evolution of the vorticity contours for the first initial random
profile, A = —0.8, t = 14. The contours are at — - — —1.6, —1.4, —1.2, —-1.0,
-0.8, —0.6, —0.4, —0.2, and — 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6 in that order

from the innermost contour line.
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Figure 4.45.1 Time evolution of the average quantities for the second initial
random profile, A = —0.8, t = 0 to 17 : a) py(z), b) p=(¥), c) average amplitude,
and d) width of the density layer.
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Figure 4.45.2 Time evolution of the average quantities for the second initial ran-
dom profile, A = —0.8, ¢t = 0 to 17 : a) growth rate da/dt of the average amplitude,
numerical and Richtmyer theory (straight line), b) the ratio of the numerical growth
rate da/dt over that predicted by Richtmyer theory, c) In(a) vs In(t), d) In(é) vs
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Figure 4.45.3 Time evolution of the density contours for the second initial random
profile, A = —0.8, t = 0, 4, 8, 12. The contours are at p=0.11, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.89.
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Figure 4.45.4 Time evolution of the density contours for the second initial random

profile, A = —0.8, ¢
0.7, 0.8, 0.89.

16, 17. The contours are at p = 0.11, 0.2, 0.3, 0.4, 0.5, 0.6,
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Figure 4.46.2 Time evolution of the average quantities for the third initial random
profile, A = —0.8, t = 0 to 16 : a) growth rate da/dt of the average amplitude,
numerical and Richtmyer theory (straight line), b) the ratio of the numerical growth
rate da/dt over that predicted by Richtmyer theory, ¢) In(a) vs In(t), d) In(é) vs
In(?).
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Figure 4.46.3 Time evolution of the density contours for the third initial random
profile, A = —0.8, t = 0, 4, 8, 12. The contours are at p = 0.11, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.89.
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Figure 4.46.4 Time evolution of the density contours for the third initial random
profile, A = —~0.8, t = 16. The contours are at p = 0.11, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.89.
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Figure 4.47.2 Time evolution of the average quantities for the fourth initial random
profile, A = —0.8, t = 0 to 17.98 : a) growth rate da/dt of the average amplitude,
numerical and Richtmyer theory (straight line), b) the ratio of the numerical growth
rate da/dt over that predicted by Richtmyer theory, c) In(a) vs In(t), d) In(é) vs
In(t).
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Figure 4.47.3 Time evolution of the density contours for the fourth initial random
profile, A = —0.8, t = 0, 4, 8, 12. The contours are at p = 0.11, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.89. o
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Figure 4.47.4 Time evolution of the density contours for the fourth initial random

profile, A = —0.8, t = 16. The contours are at p = 0.11, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.89.
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Figure 4.48.1a Three-dimensional surface of Py(z,t) for the fifth initial random

profile, A

0.2 and ¢ = 0, 75.4.
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Figure 4.48.2 Time evolution of the average quantities for the fifth initial random

profile, A = —0.2, t = 0 to 75.4 : a) growth rate da/dt of the average amplitude,

numerical and Richtmyer theory (straight line), b) the ratio of the numerical growth
rate da/dt over that predicted by Richtmyer theory, ¢) In(a) vs In(t) , d) In(6) vs

In(t).
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Figure 4.48.3 Time evolution of the density contours for the fifth initial random

profile, A = —0.2, ¢t = 0, 8, 16, 24. The contours are at p = 0.41, 0.45, 0.50, 0.55,

0.59.
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Figure 4.48.4 Time evolution of the density contours for the fifth initial random
profile, A = —0.2, t = 32, 40, 48, 56. The contours are at p = 0.41, 0.45, 0.50, 0.55,
0.59.
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Figure 4.48.5 Time evolution of the density contours for the fifth initial random

profile, A = —0.2, t = 64, 68, 72, 75. The contours are at p

0.59.
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Figure 4.48.3V Time evolution of the vorticity contours for the fifth initial random

profile, A = —-0.2, ¢

. — —0.35, —0.30,

0, 8, 16, 24. The contours are at

~0.25, —0.20, —0.15, —0.10, —0.05 and — 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 in that

order from the innermost contour line.
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Figure 4.48.4V Time evolution of the vorticity contours for the fifth initial random
profile, A = —0.2, t = 32, 40, 48, 56. The contours are from —0.40 to 0.30 for ¢ =
32, —0.55 to 0.30 for ¢t = 40, —0.80 to 0.30 for ¢t = 48, 56 with incremental step size
of 0.05. The negative contours are indicated by — - — and positive ones by —.

The maximum and minimum vorticities are at the centers of the innermost circles.
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profile, A = —0.2, t = 64, 68, 72, 75. The contours are from —0.60 to 0.30 ¢t = 64,
—0.65 to0 0.40 ¢ = 68, —0.60 to 0.60 ¢t = 72, and —0.60 to 0.70 ¢ = 75 with incremental
step size of 0.05. The negative contours are indicated by — - — and positive ones

by —.



- 339 -

{a) rbark) (b} rbcr(y)
1.4F 9r
1.2 [
[ .8F
1.8
.8 e
.6 F -
4t -6 F
T 2f |
Y [ Y.t
2 2 s |
-.2F .4}
-.4F -
—6F 3F
-8r 2F
-1.0 L
-1.2 buuulnuuodoccatlual et i sl I L e S I S R W B 4 L > S W T W ]
n @ N @ e NN e N e NS -7-6-5-4-3-2-108 1 2 3 4 5 & 7
' - -~ NN N MW M e % I N O O y
x
(c) average anplitude vs time (d) width of fluid delta vs time
1. 5.2[-
5.1F
1. 3
S.0r
1. 4.9 |
s 5
5 34.8:
2 .4.7F
= a [
o e 4.6}
H £ |
° 9 45}
o e L
< “ 4.4
s %
s $4.3
s
4.2
4.1
4.0
3 1 A2 Il A 1 i i 1 A i L 'l A J 3'9 1 N L ' n 1 i 1 L A 1 1 I} J
[} 1 2 3 4 5 6 7 8 9 10 [ 1 2 3 4 S 6 7 8 9 1@
tine tima

Figure 4.49.1 Time evolution of the average quantities for the fifth initial random
profile, A = —0.8, t = 0 to 9 : a) p,(z), b) p.(y), c) average amplitude, and d)
width of the density layer.
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Figure 4.49.2 Time evolution of the average quantities for the fifth initial random
profile, A = —0.8, t = 0 to 9.5 : a) growth rate da/dt of the average amplitude,
numerical and Richtmyer theory (straight line), b) the ratio of the numerical growth
rate da/dt over that predicted by Richtmyer theory, ¢) In(a) vs In(t) , d) In(6) vs
In(t).



~ 341 -

r contour, time = P r contour, time = 4

-t

-2}

-3
-1

-2 r

-3
-1

Figure 4.49.3 Time evolution of the density contours for the fifth initial random
profile, A = —0.8, t = 0, 4, 8. The contours are at p = 0.11, 0.2, 0.3, 0.4, 0.5, 0.6,

0.7, 0.8, 0.89.
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Figure 4.49.3V Time evolution of the vorticity contours for the fifth initial random
profile, A = —0.8, t = 0, 4, 8. The contours are from —1.75 to 1.25 for t = 0, ~2.0
to 1.50 for t = 4, —2.5 to 2.0 for ¢ = 8, with incremental step size of 0.25. The
negative contours are indicated by — - — and positive ones by —. The maximum

and minimum vorticities are at the centers of the innermost circles.
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Figure 4.50.1 Time evolution of the average quantities for the sixth initial random
profile, A = —0.8, t = 0 to 9 : a) p,(z), b) p.(y), ¢) average amplitude, and d)
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Figure 4.50.2 Time evolution of the average quantities for the sixth initial random
profile, A = —0.8, t = 0 to 9.5 : a) growth rate da/dt of the average amplitude,
numerical and Richtmyer theory (straight line), b) the ratio of the numerical growth
rate da/dt over that predicted by Richtmyer theory, c) In(a) vs In(t) , d) In(é) vs
In(t).
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Figure 4.50.3 Time evolution of the density contours for the sixth initial random
profile, A = —0.8, t = 0, 4, 8, 9. The contours are at p = 0.11, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.89.
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of the second initial random profile, A = ~0.2, t = 0 to 89.34 a) y b) z ¢) dy/dt.

The numbers on the curves refer to the peaks on the curves p(z) versus z.
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the emergence of ‘the globules, the growth is in the linear regime. Hence it is
proportional to the initial strength of circulation, which is in turn proportional to
the density gradient. For all of the multiple scale calculations, the conservation of
energy is satisfied as shown in Figure 4.52.5. In the next section, we try to explore
the possibility of scaling behavior that governs the late time asymptotic growth of

the layer.

4.6.2 Overall growth of the stratified layer

An important issue in this study is the development of a self-similar asymptotic
limit independent of the initial random distribution. From Barenblatt’s analysis
(1983), the propagation of a uniform turbulent layer initially deposited in an inviscid
homogeneous fluid is self-similar in time. From a dimensional argument, he found a
time exponent of around 2/3 for the thickness of the layer. Due to the presence of
large structures in our problem, there may not exist a scaling behavior governing late
time growth. Even if there exists a limit, the value of 2/3 for the time exponent
is questionable. In an attempt to answer this issue, we plot in Figures 4.52.1,
and 4.52.2 the time evolution of the average amplitude a, and the width é of the
stratified layer, and in Figures 4.52.3 and 4.52.4 the terms In(a) and In(§) versus
In(?) respectively. The curves for a seem to have a slope of 2/3 while for § the slope
is close to 1/4. As seen above, the information from the average amplitude a can
be misleading in regard to the growth of the layer. In fact it is the quantity 6(¢)
which should exhibit growth varying with time as t2/3, if Barenblatt’s theory were
valid.

4.6.8 Initial growth predicted by linear model

In Figures 4.53 to 4.55, we plot the time evolution of the instability using the
linear model for the first initial profile with three different Atwood numbers A =

—0.2, —0.5, and —0.8. As in the case of single scale perturbations, the linear model
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Figure 4.52.1 Time evolution of the average amplitude for six different initial
random profiles : -+ A =—-0.05, - —~A=-02,—A=-05,+++ A = —
0.8. The numbers 1, 2, 3, 4, 5, and 6 on the curves refer to the first, second, third,

fourth, fifth, and sixth initial random profiles respectively.
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Figure 4.52.2 Time evolution of the width 6 of the stratified layer for six different

initial random profiles : --- A =—-0.05, - ——-A=-02,—A =-05,+++ A

= — 0.8. The numbers 1, 2, 3, 4, 5, and 6 on the curves refer to the first, second,

third, fourth, fifth, and sixth initial random profiles respectively.
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0.5, +++ A = — 0.8. The numbers 1, 2, 3, 4, 5, and 6 on the curves refer to the
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Figure 4.53.1 Time evolution of the average quantities for the first initial random
profile, A = —0.2, 1 =010 70.5 : a) p,(z), b) p.(y). Combined results — numerical
simulation, — — — linear model c) average amplitude, and d) width of the density

layer.
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Figure 4.53.2 Time evolution of the average quantities for the first initial random
profile, A = —~0.2, t = 0 to 70.5. Combined results ~— numerical simulation,
— — — linear model : a) growth rate da/dt of the average amplitude, numerical and
Richtmyer theory (straight line), b) the ratio of the numerical growth rate da/dt
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Figure 4.53.3 Time evolution of the density contours for the first initial random

profile, A = —0.2, £ = 0, 8, 16, 24 using the linear model. The contours are at p =
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Figure 4.53.4 Time evolution of the density contours for the first initial random

profile, A = —0.2, t = 32, 40, 48, 56 using the linear model. The contours are at
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Figure 4.53.5 Time evolution of the density contours for the first initial random
profile, A = —0.2, ¢ = 64, 68 using the linear model. The contours are at p = 0.41,
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Figure 4.54.2 Time evolution of the average quantities for the first initial random
profile, A = —0.5, ¢t = 0 to 56. Combined results — numerical simulation,
— — — linear model : a) growth rate da/dt of the average amplitude, numerical and
Richtmyer theory (straight line), b) the ratio of the numerical growth rate da/dt
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Figure 4.54.4 Time evolution of the density contours for the first initial random
profile, A = —0.5, ¢ = 32, 40, 48, 56. The contours are at p = 0.26, 0.3, 0.4, 0.5,
0.6, 0.74.
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Figure 4.55.1 Time evolution of the average quantities for the first initial random
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simulation, — — — linear model c) average amplitude, and d) width of the density
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Figure 4.55.2 Time evolution of the average quantities for the first.initial random
profile, A = —0.8, t = 0 to 16. Combined results — numerical simulation,
— — — linear model : a) growth rate da/dt of the average amplitude, numerical and
Richtmyer theory (straight line), b) the ratio of the numerical growth rate da/dt
over that predicted by Richtmyer theory, ¢) In(a) vs In(¢), d) In(é) vs In(2).
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Figure 4.55.3 Time evolution of the density contours for the first initial random
profile, A = —0.8, t = 0, 4, 8, 12 using the linear model. The contours are at p =
0.11, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.89.
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Figure 4.55.4 Time evolution of the density contours for the first initial random

profile, A = —0.8, t = 16 using the linear model. The contours are at p = 0.11, 0.2,
0.3,04, 0.5, 0.6, 0.7, 0.8, 0.89.
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correctly predicts the average growth of the instability at the initial time. For
example, this agreement extends to times of the order of ¢ = 20 in the case of A =
—0.2. This corresponds to travel of the layer over a distance comparable to 5 layer
widths. For higher Atwood ratio, the corresponding distances are 2 1/2 and 1 for
A = —0.5, —0.8 respectively. For long time simulation, it underpredicts the overall
growth. From the density contour plot, one obvious limitation of the linear model is
its inability to simulate the emergence of the large scale structures. The formation of
the globules at late times is therefore definitely a nonlinear effect. Their interaction
gives rise to a relatively faster growth than the linear model predicts.

In summary, for an initial random profile, during the first phase of its develop-
ment, the growth is in the linear regime where the internal peaks interact weakly
with each other. The higher the peaks, and the closer they are from the middle
horizontal plane of the layer, the faster they grow. As the peaks emerge from the
layer, they form fluid globules that roll up. The initial energy deposited in the
layer is used to drive the mixing process rather than the growth of the layer. There
appears to exist a weak scaling behavior of the layer thickness § with time exponent
of 1/4 in the later development of the instability, which depends mildly on the ini-
tial density distributions. A much more definite answer can only be obtained with
longer simulations. In the next chapter, we conclude our work by summarizing the

results obtained, and discuss some possible alternatives for further study.
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CHAPTER 5

CONCLUSIONS

An extensive simulation of the two-dimensional incompressible Richtmyer-Mesh-
kov instability of a continuously stratified fluid is presented in this study as a model
of shock induced Richtmyer-Meshkov instability. The initial motion after the pas-
sage of the shock is assumed to be equivalent to the motion generated by an im-
pulsive acceleration except for the small effect of compressibility. Using Chisnell’s
theory (1955) of a shock passing a diffuse interface, we found that the assumption
of incompressible impulsive motion is excellent for a weak shock, and small density
ratio. Uniform motion of the fluid that is indicative of an impulsive start, how-
ever, depends strongly on the density gradient. The smaller the gradient, the more
uniform the velocity of the gas becomes. The density profile, on the other hand,
depends strongly on the shock strength. A weak shock can modify the characteristic
length of the density profile to a great degree, but does not alter significantly the
density jump. For a strong shock, both the length and magnitude of the interfa-
cial density gradient are modified. Given the observation that under the conditions
discussed above, shock induced motion is equivalent to impulsive motion, we use
the velocity field generated by an impulse as an initial condition for our numerical
simulation of Richtmyer-Meshkov instability. We note that our simulation is purely
incompressible, since as shown in Chapter 2 if the shock is weak, the residence time
is short and the subsequent dynamics should be incompressible.

For the simulation, since there is a region of sharp density gradient in the

flow domain, we solve the problem on a non-uniform grid. The initial impulsive
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acceleration problém is solved by inverting a Poisson-type equation for the pres-
sure. The governing equations in a moving reference frame are discretized using the
Crank-Nicholson scheme on all terms. The resulting nonlinear system of equations
is solved iteratively by introducing a fictitious pseudo-time problem known as the
artificial compressibility method. The numerical scheme is tested using five different
techniques which ascertain its accuracy, efficiency, and stability.

For a small single scale perturbation on a sharp interface, our numerical growth
rates of the instability are the same as those predicted by Richtmyer theory. For
a continuous interface, and similarly for a highly perturbed layer, the Richtmyer
formula overpredicts the growth rate as discussed in Chapter 4. The growth rate
varies most strongly with variations of the layer thickness. Variation of the growth
rate with amplitude and Atwood ratio are less pronounced.

For the single scale problem, with L = 1.0, our simulation covers the range
of A from —0.8 to —0.05, and € from 0.2 to 1.0. The numerical growth rates for
these cases are about half of the Richtmyer results for the sharp profiles with an
equivalent jump in density. The rate decreases in time in proportion to the nonlinear
effects. The higher the perturbation amplitude and the Atwood number, the greater
the reduction in the growth rate da/dt. The initial behavior is linear over a time
equivalent to the traversal of several layer thickness. It is observed that there is
no existence of a self-similar long-time asymptotic limit, as in the case of Rayleigh-
Taylor instability in the single scale regime. For all cases, we observe the emergence
of fluid plumes due to roll-up where the nonlinear effects become significant. This
phenomenon causes the overall growth of the layer to decrease, and the initial
deposited energy is used to increase the internal mixing of the stratified layer.

For the multiple scale problem, we observe a weak scaling behavior in the
growth of the density layer. The layer thickness § seems to scale with ¢1/4 in contrast
to the t2/3 power law of Barenblatt even at low Atwood ratio. We believe this is a
consequence of the inhomogeneity and anisotropy which is related to the presence

of large scale vortices. The late time behavior of the instability is dominated by
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the emergence of plumes of fluid, once an internal peak reaches the boundaries of
the layer. These fluid globules resemble the nonlinear development of the single
scale problem. The formations of the plumes may correspond to weakly interacting
single scale modes.

The detailed structure of the time evolution of the incompressible Richtmyer-
Meshkov instability has been studied extensively for both of the single and multiple
scale problem. Due to the difficulty of resolving the small scales in mixing stages of
the instability, we cannot readily extend the simulations at their present resolutions
to longer times. This problem can be overcome with enhanced resolution. Since the
nonlinear development of the instability is connected to the time evolution of vortex
pairs of opposite signed vorticity, it may be possible to construct a model for the
late time behavior through the use of vortex dynamics and appropriate modeling

of the baroclinic interactions.



The random numbers ri; used in the multiple scale problem are listed in Table

A-1 below.
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APPENDIX

Table A-1
Random parameters rg; for four initial density distribution.
k 1st profile 2nd profile  3rd profile  4th profile
1 0.2751921 0.3298150 0.9529670 0.6640730
2 0.8888904 0.7173490  0.1626060  0.9854710
3 0.6348671 0.8679210  0.6224670  0.8386250
4 0.4398165 0.8192670 0.6426410 = 0.3251820
5 0.0007059 0.8600640 0.3859950  0.3385220
6 0.1755233 0.6563750  0.7847900  0.6320470
7 0.9761031 0.2583430 0.9588820  0.4574180
8 0.5681258 0.3082260 0.3315980 0.1176570
9 0.2711180 0.6972540 0.6831200 0.7242860
10 | 0.5584524 0.5975760  0.2575900  0.9374660
11 | 0.0573481 0.6791700 0.5677850  0.7264860
12 | 0.5488701 0.6054280 0.9451590  0.5130380
13 | 0.9679297 0.9568540 0.0394958  0.3754490
14 | 0.4032842 0.2474830 0.1942990 0.4602190
15 | 0.0975372 0.5564400 0.7869740 0.3619470
16 | 0.4471384 0.3467640 0.6032460  0.1429350
17 { 0.0023837 0.2345760 0.8757100  0.8710980
18 | 0.4674150 0.4922850 0.0836847  0.3497710
19 | 0.7002206 0.0352285 0.1166330  0.5868370
20 | 0.7126347 0.5981560 0.1046270 0.8136450
21 ] 0.6703379 0.6970640 0.2422350 0.0863009
22 | 0.8928567 0.0868583  0.6474060  0.4931420
23 | 0.8535640 0.1167580 0.1775080  0.6293650
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Table A-1(cont’d)

Random parameters ri; for four initial density distribution.

k 1st profile 2nd profile  3rd profile 4tk profile
24 | 0.1796786 0.4968310 0.9111100  0.8493050
25 | 0.6522657  0.3333960 0.9809520  0.4097850
26 | 0.2062365 0.1098270 0.4699440  0.0956409
27 | 0.9303484 0.8252460 0.9024920  0.8438360
28 | 0.0672049 0.0583677  0.8460980  0.5748300
29 | 0.0132558 0.7709130  0.6588570  0.1527100
30 | 0.3187970 0.1898910  0.4803390  0.1316690
31| 0.6879703 0.8672080 0.0156801  0.5854020
32 | 0.9787641 0.5904350  0.6873580  0.8615760
33 | 0.2030125 0.8597640  0.7575580  0.9781390
34 | 0.5263962 0.6907290  0.4087590  0.5421870
35 | 0.2684416 0.9638210  0.3229550  0.3386810
36 | 0.9025217 0.2730060 0.9637420  0.3884610
37 | 0.0558552 0.2479040  0.2458840  0.8707220
38 | 0.5095074 0.3096030  0.5987440  0.4023370
39 | 0.1983894 0.6606930  0.5912930  0.5534480
40 | 0.2112587 0.1071700 0.5788170  0.8501400
41 | 0.7907189 0.5666290  0.2982190  0.6232370
42 | 0.3332194 0.8906300 0.8560400  0.1824640
43 | 0.3890564 0.7383150  0.2092770  0.5732810
44 | 0.6623718 0.5111380  0.4455750  0.4359340
45 | 0.0111537 0.6301070  0.7486700  0.1972440
46 | 0.4472364 0.3847200 0.6011690  0.0872308
47 | 0.1363005 0.3698950  0.5457880  0.2972370
48 | 0.3978726 0.0359175 0.8713210  0.4610430
49 | 0.7053255 0.9693060 0.9175900  0.9333250
50 | 0.6858780 0.1373090  0.1912720  0.0213102
51 { 0.1205952 0.3030890 0.2301880  0.4353170
52 | 0.9443885 0.2414900 0.0332621  0.8974640
53 | 0.2460152 0.6730200 0.6332500  0.7872860
54 | 0.2680789 0.6489650  0.0594251  0.7442220
55 | 0.4070292 0.7394200 0.3640520  0.7644790
56 | 0.2131620 0.0159938  0.2881370  0.7454290
57 | 0.3906194 0.3663180  0.0539127  0.3042640
58 | 0.7973894 0.6700200  0.5050870  0.9956230
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Table A-1(cont’d)

Random parameters rg; for four initial density distribution.

k 1st profile 2nd profile  3rd profile 4th profile
59 | 0.4453065 0.4865920  0.2968580  0.7726590
60 | 0.5000511 0.3929410  0.4655970  0.8357490
61 | 0.2811498 0.4873610  0.8183020 0.2556550
62 | 0.2619754 0.4922710 0.8331750  0.4203810
63 | 0.0697469 0.4235170  0.3287940  0.8568030
64 | 0.4855292 0.9375300 0.1868340  0.6276940
65 | 0.4442337 0.7423630 0.4777340  0.4931760
66 | 0.0346178 0.4252360 0.4115180  0.2377350
67 | 0.4992850 0.6802980 0.8630860  0.2988350
68 | 0.2346851 0.3203810  0.2170190  0.8921940
69 | 0.7911138 0.1470350 0.8673660  0.5502020
70 | 0.8727131 0.2306600 0.0322412  0.4708060
71 0.3374714 0.0813921  0.4499450 0.9307080
72 | 0.1972228 0.2100330  0.8042510  0.0924435
73 | 0.6176479 0.3453810  0.2295910 0.9111870
74 | 0.9182732 0.7151320  0.7959290  0.6442160
75 | 0.5724716 0.0617709  0.0446693  0.0445251
76 | 0.2074619 0.9490350  0.6230990  0.6675190
77 | 0.6043094 0.4005110  0.9091990  0.3648400
78 | 0.6979252 0.6538890  0.3088130  0.1325390
79 | 0.5770667 0.7475680  0.5620360  0.1294020
80 | 0.4843374 0.5880580  0.5847250  0.7407560
81 | 0.8161871 0.9448910  0.5470380  0.7895700
82 | 0.1229117 0.2796750  0.4358520  0.1618540
83 | 0.1086531 0.8488480 0.3766750  0.0712566
84 | 0.6313995 0.4446890  0.8064230  0.2962610
85 | 0.7029852 0.9759220  0.9699620  0.8691930
86 | 0.4890907 0.6362230  0.1736890  0.6792960
87 | 0.3092427 0.6743220 0.5012440  0.3355680
88 | 0.6368139 0.9337780  0.3967100  0.7162790
89 | 0.0990231  0.4988120 0.2350740  0.7347920
90 | 0.4769357 0.7760290  0.1791900  0.1879780
91 | 0.7054627 0.6025780  0.3536580  0.3132330
92 | 0.8733616 0.2838600  0.3719450  0.2328900
93 | 0.2232359 0.0717426  0.7061530  0.1164620
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Table A-1(cont’d)

Random parameters ri; for four initial density distribution.

k 1st profile 2nd profile  3rd profile 4tk profile
94 0.1515353 0.2781840  0.2674890  0.6305280
95 0.2085557 0.2902240  0.8062350  0.9578420
96 0.0984391 0.7382770  0.8165190  0.3532260
97 0.6791737 0.6123010  0.6314950  0.8301110
98 0.9625938 0.2745030  0.8362330  0.5586490
99 0.1143797 0.2940850  0.3436660  0.5021530
100 | 0.4540583 0.9313510 0.3537050  0.9232530
101 | 0.4550023 0.1972970  0.0512559  0.2097480
102 | 0.7444305 0.8170820 0.1672410 0.3686480
103 | 0.1034082 0.7448600 0.4589170  0.3788650
104 | 0.4668464 0.4301310 0.8943570  0.7267360
105 0.9235027 0.4983330 0.9287220  0.3210250
106 | 0.7159805 0.7190420  0.4888930  0.4291190
107 | 0.2407297 0.1422980 0.6303700  0.6046750
108 | 0.0480459 0.2916960  0.6571930  0.9832160
109 0.8420714 0.1285730  0.0272329  0.5829890
- 110 0.4807941 0.8829370  0.1427400 0.9739510
111 0.9760485 0.9882400 0.4877620  0.6409270
112 | 0.4935150 0.7753030  0.2015100 0.6749860
113 | 0.3527201 0.4227630  0.2175950  0.9384760
114 | 0.0270369 0.3941020 0.8581300  0.5908800
115 | 0.1436840 0.0838640  0.2984240  0.6506380
116 | 0.4837268 0.7902540 0.1174540  0.0325423
117 | 0.9820763 0.3333360  0.9208430  0.8539210
118 | 0.7274899 0.2667320  0.2527570  0.3318320
119 0.9625714 0.3887480  0.0348783  0.1689140
120 | 0.0837702 0.3356210  0.9850060  0.5478490
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