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Abstract

The large plastic deformations at the tip of a crack in a ductile heat treatment
of 4340 steel are studied experimentally and numerically to investigate the details
of the deformation in a tough material. The specimen is loaded in a three—point—
bend arrangement. The finite-element model of the experiment uses a small-strain,
incremental plasticity law, with a power—law hardening behavior. Both the in-plane
and out-of-plane deformations were measured on the same specimen at the same

time.

The experimental technique of moire interferometry is used to measure the
in-plane displacements. This technique is described in detail, including an analysis
of the effect of out-of-plane rotations on the use of the technique. A four-beam
interferometer for measuring orthogonal displacment components is described, and

its performance analyzed.

The three-dimensional, finite—element model has 11913 degrees of freedom,
and provides data for comparison with the experiment between 4000 N (linear
behavior) up to 73.5 kN (continuous fracture of the steel specimen). The model
material properties are determined from a uniaxial test on specimens taken from
the same bar as the fracture specimens and with identical heat treatment. This
model characterizes the crack as a rounded notch to match the notch in the steel
fracture specimen. The effects of tunneling of the crack are introduced through the

release of nodes along the crack plane corresponding to measured crack profiles.

Results indicate that the numerical model matches the experiment quite well
up to a load of 52.3 kN; mismatch at higher loads may be caused by a lack of
finite-strain formulation in the code. The finite notch tip negates the singularity in
either the stress or strain fields; the HRR field seems to have no region of dominance.
However, the function of the J-integral appropriate to the HRR field does normalize
the stresses and strains well, indicating that the J-integral is still a good fracture
criterion. The effects of the added tunnel indicate that failure of the material

depends on both the plastic strain and the hydrostatic stress.
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CHAPTER 1

Introduction

1.1 Motivation

Traditionally, the study of fracture mechanics has concentrated on providing
for design purposes a measure of the resistance to fracture of a material. This
resistance to fracture, or fracture toughness, is assumed to be a quantifiable material
property that is independent of the specimen geometry, like Young’s modulus or
Poisson’s ratio. However, the fracture toughness is not independent of the specimen
geometry; for ductile materials, the fracture toughness in geometries approximating

plane strain is much lower than the fracture toughness in geometries approximating

plane stress {14].

Quantifying a fracture toughness of a material is obviously necessary in the
design of structures, but reduction of fracture mechanics to a single parameter may
neglect important details of the deformation at the tip of a crack. One common
toughness parameter, the stress-intensity factor, K, is derived from the analyti-
cal series solution of Williams [90], called the K field. The stress-intensity factor
K represents the strength of the singular term in the series, which is assumed to
dominate the deformation near the tip of the crack. However, Williams’s series is
derived for two—dimensional deformations, plane strain or plane stress, which are
often thought of as the limiting cases of infinitely thick and infinitely thin, planar
bodies. For a body of finite thickness, there will be some added contribution to the
deformation that is due to the three-dimensionality of the geometry. In addition,
Williams’s series is restricted to linearly elastic materials, whereas the stress singu-
larity predicted by the series solution will certainly induce some plastic deformation

in ductile materials. One approach to treating the effects of plasticity was offered
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by Hutchinson [31] and by Rice and Rosengren [69], using a constitutive model in
which the stress and strain are related through a power law. However, their solu-
tion (called the HRR field) is also restricted to two—dimensional geometries, and the
stresses and strains are still predicted to be singular at the crack tip. The strength
of of the HRR singularity is found using a second common fracture toughness pa-
rameter, the J-integral. This path-independent integral has an advantage over the
stress intensity factor as a fracture toughness measure in that it was derived for any

material in which the stress may be calculated from a potential, so that J is not

restricted to linearly elastic materials.

The details of the deformation near the tip of a crack or notch are important,
especially in the cases of materials that exhibit high resistance to fracture. If a
better understanding can be reached regarding the mechanisms that lead to high
fracture toughness, it may be possible to adapt those mechanisms to materials that
lack natural resistance to fracture. For example, high fracture toughness in metals
is usually due to large plastic deformations, whereas composites that exhibit high
fracture toughness usually employ some kind of crack-stopping mechanism such as
the Cook-Gordon mechanism, in which relatively weak interfacial bonds between
matrix and fiber serve to redirect a crack along the interface parallel to the fibers

instead of crossing the fibers.

In particular, it is important to be able to characterize the deformation near
the crack or notch tip out to a scale where the nonlinear effects are not a factor. The
state of the deformation may be much more confidently modeled in regions where
the deformation is well described using linear elasticity. It is necessary, therefore,
to gain a better understanding of the continuum behavior in the nonlinear region
that lies within the region of linear elasticity. When this nonlinear continuum
behavior is well understood, the next step in understanding the fracture process is
to investigate material behavior at the size scale at which the breaking of molecular
or atomic bonds occurs. A further goal of this work is the detection of effects that
indicate behavior that cannot be described using continuum mechanics; detection
of such effects may help in the estimation of the size of the region in which the

discrete nature of the material must be included in any analysis.
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This characterization of the deformation near the notch tip is attacked in two
ways. The first line of attack is through an experimental investigation of the de-
formation surrounding the notch tip. The experimental technique should have high
sensitivity and be capable of capturing the displacement over a wide area as well
as over the large range of displacement caused by nonlinear deformation. The
technique chosen was moire interferometry, a full-field technique, which generates
contour maps of in-plane displacement. This experimental investigation is the major

part of this study.

The second complementary line of attack is through a finite-element model
of the experiment. This finite—element model employs a small-strain incremental
plasticity theory, and the constitutive relation follows a power law in order to permit
comparison of the results with the HRR field. An effort was made to match as closely
as possible the material properties of the finite—element model with the measured
properties of the material used in the experiment. As such, the measurements of
the material properties that were made for use in the finite-element code represent

a significant part of this study.

The experiment should serve to either validate or invalidate the results from the
finite—element model, which is why so much effort has been put into matching the
material properties of the numerical model to the physical material. As computers
become faster and the size of the problems which they can solve becomes larger, it
becomes easier to make predictions on the basis of numerical models rather than on
experimental observations, even in cases in which there is substantial nonlinearity.
If the numerical model agrees well with experiments over a wide range of specimen
geometries and materials, there is more confidence in using the numerical model
to predict the behavior of specimens that have not been, and perhaps cannot be,
modeled in the laboratory. In that sense, this study serves as a single datum in the

comparison between code and experiment.

It is very easy to manipulate the parameters entered into the numerical model.
If it should be accepted that the numerical model is a good one, and that the

time and expense of running a numerical simulation is less than the equivalent
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experiment, the results of many calculations that include such a manipulation of
parameters might be used as the basis for a better analytical approximation to the
behavior of tough materials in the region surrounding a crack. Such an analytical
model should include the effects of material nonlinearity and three~dimensionality,

and perhaps be formulated in a manner that includes large strains.

1.2 Experimental Measurement

The main focus of this study is an experimental investigation into the deforma-
tion near the tip of a crack in a material that exhibits high resistance to fracture, in
this case a ductile heat treatment of 4340 steel. 4340 steel is a common high—quality
engineering material that may be heat-treated to give a wide range of material
properties. In this case, the high fracture toughness of this material is brought
about through considerable plastic deformation at the notch tip. The specimen is
loaded in a three-point-bend geométry. The experimental method employed in this
investigation is moire interferometry, a technique developed by Post [61,25,62,63]
as an extension to geometric moire techniques. This technique measures in-plane
displacement fields through the interference pattern developed between two laser
beams diffracted from the surface of the specimen. The interference pattern con-
sists of fringes, alternating dark and light lines, which represent a contour map of
in-plane displacement; each fringe maps a locus of constant displacement. The sen-
sitivity of the technique, defined as the displacement increment between adjacent
dark fringes, is on the order of the wavelength of visible light. At the same time
the in-plane displacements were measured on one side of the specimen; the out-
of-plane displacements were measured on the opposite side using Twyman-Green
interferometry. See Pfaff [56]. This technique also yields contour maps, in this case
contours of constant out-of-plane displacement, and the sensitivity of this technique
is one-half of the wavelength of light. The out-of-plane displacement measurements

are not a topic of this thesis, so reference to the out-of-plane measurements will be

brief.

A sketch of a moire interferometer is shown in Figure 1. This technique relies
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FIGURE 1. A sketch of the configuration of a moire interferometer. The displace-
ment measured is in the plane of the paper, parallel to the specimen
surface, as indicated by the arrow wu.

on the diffraction of laser light from a grating attached to the specimen surface.
The diffraction grating is a reflective, periodic height variation with a wavelength
on the order of the wavelength of light. The angle of diffraction of each of the
two laser beams depends on the wavelength of the grating and the wavelength
of the light from the laser; if the wavelength of the grating changes because of a

deformation of the specimen, the angle of diffraction changes as well. The symmetric
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arrangement of the two incoming laser beams results in diffracted light that leaves
the specimen at equal but opposite angles, which causes an interference pattern.
This interference pattern is viewed through the camera as a pattern of light and
dark fringes overlaid on the specimen surface; this fringe pattern forms a contour
map of the deformation of the specimen surface. The laser beams must originate
at the same source, travel paths of similar lengths and have nearly equal intensities
in order to produce fringe patterns of high quality. Also, since the diffracted laser
light consists of nearly plane waves, the camera aperture must be as large as the
field of view over which the displacements are to be measured. In Figure 1, the
measured displacement component lies in the plane of the paper and parallel to the
surface of the specimen, as shown by the arrow labelled u. A second interferometer
is needed, arranged in a plane perpendicular to the paper, in order to measure the
displacement component perpendicular to the plane of the paper and parallel to the

surface of the specimen.

A more thorough review of the technique of moire interferometry may be found
in the Handbook on Experimental Mechanics [25]. Advantages of this technique in-
clude the fact that it is a full-field technique, so that it yields displacement informa-
tion over an entire field of view; the technique is not limited to small displacements;
the fringe pattern is coincident with the surface of the specimen; the fringe patterns
are insensitive to rigid translations; and the fringes are formed in real time, making
the technique suitable for dynamic measurements. Already mentioned is the fact
that the sensitivity is on the order of the wavelength of light; in addition, the sen-
sitivity may be adjusted somewhat if the magnitude of the expected deformation
can be estimated in advance. In this study, the displacement increment between
adjacent black fringes is 0.833 microns; Post [25] suggests that resolution of one-fifth
of a fringe may be obtained by manual interpolation. Also, the technique does not
require any assumption about the form of the deformation, unlike the method of
caustics, nor is a knowledge of the effect of stress on the optical behavior of the
material needed as in photoelasticity. In the Handbook [25], Post also suggests

a method for determining the out-of-plane displacements at the same time as the

in-plane displacements.
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Some of the disadvantages of moire interferometry include the high fringe den-
sities generated by large deformations; somewhat noisy fringe patterns, at least
compared to fringe patterns generated using a Twyman-Green interferometer; and
a light efficiency of only about 10% because of the crossed gratings necessary to
measure orthogonal in-plane displacement components. Perhaps the most impor-
tant problem for this study is a sensitivity to out-of-plane displacement gradients,
as the high in-plane stresses will cause large out-of-plane displacement gradients
near the notch tip. The out-of-plane displacement gradients have two effects on the
moire interferometer. The first effect is that sufficiently large out-of-plane displace-
ment gradients will introduce an error in the fringe patterns. This error might be
corrected if the out-of-plane displacement field were known from some independent
source, such as on out-of-plane displacement measurement or estimate from a nu-
merical model. The second effect is that the out-of-plane displacement gradients
will direct some of the laser light so that it falls outside the aperture of the camera
used to record the fringes, causing a shadow region in which no fringe data may
be recorded. This problem did occur near the tip of the notch in the experiment
described in this work, and the performance of the optical system may be improved
by moving the aperture closer to the specimen, with the constraint that the laser
beams that are directed at the specimen may not be blocked. As it happens, in
the experimental configuration used for this investigation, the shadow region cor-
responded quite well to the region where the fringe patterns were expected to be
affected by the out-of-plane displacement gradients, so that the effect of the out-of-
plane gradients could be neglected. Even if the data had been available from the
shadow region, a correction to the fringe patterns should probably be ignored as
a first approximation, as the effect of the out-of-plane gradients is lessened when
the in-plane deformation is large, as it is in the near-tip region. The effects of

out-of-plane displacement gradients are discussed in Chapter 2.

In the chapter on moire interferometry in the Handbook on Experimental Me-
chanics [25], Post discusses briefly the effects of out-of-plane displacement gradients
on the technique. He concludes that moire interferometry is affected only by out-

of-plane gradients that are equivalent to rotations about an axis parallel to the
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lines of the grating, and suggests that the effect of such a rotation is to introduce
fringes corresponding to a compressive displacement; these fringes have a frequency
F given by

F = f6%/2, (1.2.1)

where f is the frequency of the reference grating, and 6 is the angle of rotation.
In Chapter 2, however, it will be shown that rotations about an axis perpendicular
to the grating will also have an effect when coupled to the rotation about the axis
parallel to the lines of the grating. Post’s analysis of the effects of the tilting of
the grating is based on his analogy between moire interferometry and geometric
moire. The analogy between geometric moire and moire interferometry is exact if
there is no tilting of the grating plane. The result shown in equation (1.2.1) follows
from the ideas discussed in Section 2.3.14, as in equation (2.3.69). However, the
analysis in section 2.3 indicates that there are some additional effects peculiar to
moire interferometry that must be included for completeness. Post’s analysis does
indicate the sensitivity of the moire interferometer; he suggests that rigid rotations

as small as 0.001 radian can be observed in an experiment, and removed.

1.3 Finite-Element Analysis

The finite-element model is adapted from the model used by Narasimhan,
Rosakis and Moran [52], and their assistance with the model is gratefully acknowl-
edged. This is a three-dimensional model employing a small-strain incremental
plasticity theory following a Huber—Von Mises yield condition. The model consists
of 3200 eight-noded block elements in ten layers through the half-thickness of the
specimen, resulting in 11913 degrees of freedom. The constitutive relation used
in the finite-element model relates the stress and strain through a power law for
comparison with the analytical HRR field solution. The dimensions of the finite—
element model were matched to the experimental specimen, which is 30 cm long by
7.6 cm high by 1 cm thick, with a single notch 3 cm long cut into the center of one
of the longest sides. The notch is cut with an electric discharge; it is 0.03 cm across.

The finite~element model approximates the notch tip as circular, with a radius of



0.015 cm.

The material properties of the numerical model, such as Young’s modulus and
the yield stress, were determined from measurements of specimens cut from the
same piece of steel as the specimen used in the experiment. Young’s modulus,
the yield stress, and the strain at yield were determined in a uniaxial test. The
power law used for comparison with the HRR field was also fit to the measured
uniaxial stress-strain behavior of the steel; the important parameter in the power
law is the hardening exponent, which was taken to be 20. This high value for
the hardening exponent implies that the material is not much different from an
elastic/perfectly plastic material. Additionally, the value of Poisson’s ratio was
measured for this steel using the moire interferometer. Assuming plane stress, the
out-of-plane displacements are linearly dependent on the value of Poisson’s ratio;
the dependence of the in-plane displacements on Poisson’s ratio may be estimated

using the K field solution; that dependence is in the same range.

In addition to matching the specimen geometry and material properties, the
tunneling behavior of the material was also included in the numerical model, through
a node-release procedure. The shape of the internal tunnel was measured in a series
of experiments as a function of load, and the appropriate nodes corresponding to
the shape of the tunnel were released. A numerical model that did not include
tunneling was also run to the same load levels for comparison. (The simulation of
Narasimhan, Rosakis and Moran [52] included the Gurson material model for void
growth; however, the Gurson model was not included in the present simulation,

because it led to convergence problems at failure initiation.)

The careful characterization of the material properties, even including the mea-
sured tunneling behavior, was an effort to remove as many discrepancies between
the experiment and the finite-element model as possible. The numerical model still
has three major areas in which its simulation of the experiment could be improved.
The first of these areas is the use of the power-law constitutive formulation. The
choice of a power law to approximate the constitutive behavior of the material allows

a direct comparison between the HRR field and the results from the finite—element
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model. The hardening exponent was chosen as 20 so as to compare directly with the
tabulated HRR functions of Shih [77], whereas the best fit for the hardening expo-
nent was 23.7. However, the power-law formulation does not follow the measured
uniaxial stress—strain relation very well, as can be seen in Section 3.3. In order to
ensure that the finite-element model matches the experiment exactly, the measured
uniaxial stress—strain behavior of the steel could be input as a table for the code
to use in calculating the constitutive response of the numerical model. The use of
the power law in the numerical model was the result of the fact that the power—law

formulation was already implemented in the numerical code.

The second major area in which the code may fall short is that it is restricted
to a linearized (small) strain formulation. At the highest load levels, the strains pre-
dicted by this numerical model fall outside the range in which the linearized-strain
theory is valid, at least in a small region surrounding the notch tip. Some effort has
been made to characterize the uniaxial stress—strain response of the steel at finite
strains, after necking has occurred, through the assumption of plastic incompress-
ibility and the ratio of the minimum area of the necked region to the initial area of
the specimen. This finite—strain response of the steel may be included in a model

that is formulated to account for strains outside the range of the linearized theory.

The third possible major source of discrepancy between the experiment and
the numerical model is due to the discretization necessary for the finite—element
method. It is assumed that if the elements are made smaller, the solution obtained
from the calculation is closer to the true solution. As the elements become smaller,
however, the required computing time increases. The choice for the discretization
must make a compromise between the need for accuracy and the cost involved.
Fracture problems require very small elements near the tip in order to model the
high stress gradients in that region adequately. The crack in this study is actually a
rounded notch, so it is expected to be somewhat more benign than a mathematically
sharp crack. The in-plane dimensions of the elements surrounding the notch tip
were chosen to be on the order of one fifth of the notch tip radius. As the plastic
zone becomes large, however, it may be that more elements are needed away from

the notch tip to characterize the elastic—plastic boundary correctly. With access
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to the new CRAY Y-MP at the San Diego Supercomputer Center, it was possible
to increase the number of layers through the half-thickness from six (as used by

Narasimhan, Rosakis and Moran [52]) to ten.

1.4 Discussion

In many ways, this specimen geometry and material should provide a difficult
test of the analytical approximations, and of the ability of the numerical model to
simulate the experiment. The finite thickness of the specimen makes it incompatible
with the two—dimensional assumptions of both the K field and the HRR field.
The finite notch tip requires the addition of a more singular term to provide the
traction—free boundary condition on the surface of the notch; such a correction
is available from another term in Williams’s K field series solution, but not for
the HRR field. Also, the effects of the bending present in this specimen geometry
cannot be captured by the singular terms employed by the K field or the HRR field.
Again, higher-order terms may be added to the K field from Williams’s series, but
the HRR field has no higher—order terms. Shih [78] believes that the HRR field
actually works better for bending across the uncracked ligament than for simple
tension across the uncracked ligament, but this depends on the criteria used to
make such a decision. The singular term of the HRR field is closer to the case
with bending very near the crack tip, but the bending solution soon drops off very
quickly. The case of simple tension does not match as well at the crack tip, but it

is closer to the singular term of the HRR field over a wider range away from the

crack tip.

The large plastic zone at the higher loads clearly lies outside the linear elas-
ticity assumption of the K field. However, the plasticity formulation may also be
incompatible with the HRR field. The HRR field and the J-integral are both de-
rived within the framework of deformation plasticity theory, equivalent to nonlinear
elasticity. The code employs an incremental plasticity theory, which is believed to
better represent the actual constitutive behavior of real materials. Incremental

theory and deformation theory coincide only in the case of proportional loading,
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although the results of the two theories should grow closer if the load history ap-
proaches proportional loading. The two theories differ the most when unloading
occurs, such as when the crack propagates. With deformation theory, unloading oc-
curs along the same nonlinear path followed during loading, while with incremental

theory, unloading occurs along a linearly elastic path.

It should be possible to use any discrepancies between the experimentally mea-
sured displacements and the numerically calculated displacements to indicate where
the numerical model needs improvement. It is expected that the finite—element
model will closely match the physical experiment at low loads, before any plasticity
develops. If this is not the case, it is likely that the discretization of the model needs
to be improved further. Discrepancies that occur at higher loads, but before the
strains pass beyond the linearized theory, are likely due to the constitutive formula-
tion. This is particularly true if these discrepancies occur at the boundary between
elastic and plastic response. The steel used in the experiment displays the effect
known as Liider’s bands in its uniaxial stress—strain response, which is caused by the
release of dislocations pinned by trapped nitrogen and carbon atoms in the inter-
stitial regions between iron atoms. The Liider’s bands are seen near the yield point
as a zone of increasing strain without appreciable increase in stress, and this effect
is poorly modeled by the power law used in the code. It may be that the Liider’s
bands are observed in the uniaxial test only because of the nearly uniform state
of stress and strain in the uniaxial specimen test section, so that the effect of the
Lider’s bands is observed as they propagated through the entire test section. Since
the stress and strain in the experiment and the numerical model are not uniform,
the release of any pinned dislocations may be localized, so that the local constitutive
behavior is more like the power—law approximation. It would be interesting to study
the Liider’s bands phenomenon in a uniaxial test using the moire interferometer.
At higher loads, when the plastic zone has become relatively large, discrepancies
between the experiment and the numerical model at the elastic/plastic boundary
would point to a need for mesh refinement away from the crack tip. Discrepancies

deep within the plastic zone would indicate a need for a finite-strain formulation of

the constitutive model.
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The consequences derived from Williams’s K field indicate that investigation
into the three—dimensional effects that are due to the finite thickness of the specimen
is probably better undertaken through measurements of the out-of-plane displace-
ment than through the in-plane displacements. Assuming that the two—dimensional
cases of plane strain and plane stress represent the limiting cases of infinitely thick
and infinitesimally thin three—dimensional bodies, the K field solution predicts that
the out-of-plane displacement at the crack tip proper is zero in plane strain and in-
finite in plane stress. On the other hand, the in-plane displacements are bounded
in both cases, with the difference between the two cases being a function of the
Poisson’s ratio of the material. For a Poisson’s ratio of 0.3, the difference in the
in-plane displacements between plane stress and plane strain varies from about 10%
to 30% around the crack. Thus, the out-of-plane displacement field should be much

more sensitive to the finite thickness effects than the in-plane displacement fields.

The onset of plasticity changes things somewhat. The HRR field also predicts
zero out-of-plane displacement for plane strain and infinite out-of-plane displace-
ment for plane stress, but the HRR in-plane displacement fields are also quite differ-
ent, depending on whether plane strain or plane stress is assumed. It is clear from
the experiments that the fringes corresponding to the in-plane displacement parallel
to the crack change their shape considerably after plastic deformation has begun,
unlike the fringes corresponding to the other two displacement components. It is
expected that the in-plane deformation of a plate such as the specimen in this study
is still nearly two—dimensional. The in-plane displacement fields at the specimen
surface in the presence of plasticity should indicate the nature of the deformation
fairly well, while the out-of-plane displacement at the surface is effectively a thick-
ness average. In addition, the fringe densities of the in-plane displacement fields are
still smaller than the fringe density of the out-of-plane displacement field, so that
collecting data from the in-plane displacements is easier than from the out-of-plane

displacements.

One initial goal of this study was to determine where continuum mechanics fails
in modeling the behavior of the material at the tip of a crack. However, for this

specimen geometry and material, the crack begins to propagate in the center of the
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specimen, away from the surface where the measurements are made. This is clear
from the tests made to characterize the tunneling behavior of the crack for input to
the finite—element model. However, it may be that the effects of crack tunneling are
visible on the specimen surface. The fringes of in-plane displacement perpendicular
to the crack show an interesting feature that indicates unloading at the surface. The
finite—element code with the tunneling included using the nodal release procedure
also predicts a region of unloading ahead of the crack at the surface of the specimen.
At the highest load achieved in the experiment, just before constant, slow creeping
failure began, this unloading zone lies about 4 or 5 mm ahead of the original notch
tip, while the extent of the tunnel is less than 1 mm ahead of the original notch

tip. Detection and measurement of such internal crack propagation might be best

attacked through x-ray methods.

There are some interesting results from comparison of the tunneling tests to
the results of the void growth simulation of Narasimhan, Rosakis and Moran [52].
The first of these is that the estimate of the critical value of the J-integral from
the void growth model [52] agrees fairly well with the critical value of J calculated
from the tunneling tests. These results are discussed in more detail in Chapter
4. Another interesting result from [52] is the difference in the location of the first
element to fail from the case of plane strain to the three—dimensional model, also
evident in the plot showing the contours of equivalent stress (the current yield
stress). In the plane—strain case, the first element to fail lies on the crack line, while
in the three-dimensional case the first element to fail lies slightly above or below
the crack line. The three-dimensional case mimics the results from the tunneling
experiments, in which small cracks initiated above or below the crack line along
the thickness direction and then grew together to meet at the crack plane to form
the tunnel. The measured tunnel profiles more closely resemble the contours of
constant hydrostatic stress rather than the contours of constant equivalent stress
from Reference [52]; this result is not surprising because the hydrostatic stress is
mostly due to the tensile stress acting to open the crack, while the equivalent stress

1s related to the deviatoric stress.

As already mentioned, the extent of the tunnel was less than 1 mm at the
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highest load achieved in the experiment. The ultimate failure of this ductile steel
occurs in a shear mode, with shear cracks initiating at the free surfaces at about
+45° above and below the crack line after the tunnel has achieved that 1 mm in
the center of the specimen. The shear cracking then occurs in tandem with the
tensile crack that proceeds along the original crack plane, until the shear cracks
from opposite sides of the specimen join up and the tensile crack is eliminated. If
the specimen is loaded continuously until it breaks into two pieces, a tensile crack
of 5 to 7 mm in length may be observed. However, most of this tensile crack
surface has been formed after the shear cracking has begun. Before the tests were
performed, it was expected that the tunnel might progress this far into the center
of the specimen, and then the shear cracking would initiate and cause failure. This
is the generally accepted notion of the progression of crack growth. For this ductile
material, however, the experiments indicate that the shear cracks begin soon after
the initiation of tunneling, proceeding with the tensile cracking and eventually the

shear failure mode overwhelms the tensile failure mode.
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CHAPTER 2

Moire Interferometry

2.1 Introduction

Moire interferometry is an experimental technique for measuring in-plane dis-
placements at the surface of a body. This technique relies on the interference
pattern formed between two diffracted laser beams to provide interference fringes,
which form a map of contours of constant in-plane displacement. The technique
of moire interferometry is comparable to two other experimental techniques that
may be more well known. The first of these techniques is what will be called ge-
ometric moire for this discussion, in which in-plane displacements are determined
by directly comparing two gratings made up of closely spaced lines, one grating
drawn on a specimen and one drawn on a transparent reference medium. Moire
interferometry grew out of earlier work involving geometric moire, and the anal-
ogy that will be drawn between moire interferometry and geometric moire is quite
useful. The second technique that shares some of the attributes of moire interfer-
ometry is Twyman-Green interferometry, in which out-of-plane displacements are
measured by comparing a laser beam reflected from the specimen with a laser beam
reflected from a flat reference mirror. Moire interferometry shares with Twyman-
Green interferometry the advantage of high sensitivity derived from the use of the
wavelength of light as the measurement scale, as well as the problems of measur-
ing large deformations. All three techniques, moire interferometry, geometric moire
and Twyman-Green interferometry, employ fringe patterns representing contours of

constant displacement to infer the deformation of the specimen.
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Moire interferometry was introduced by Post [61] as an extension of earlier
geometric moire techniques in an effort to make more sensitive measurements, and
the analysis that follows investigates the relationship between moire interferometry
and geometric moire. Although the fringes observed in moire interferometry and in
geometric moire are formed by different mechanisms, Post drew upon an analogy
to relate the two techniques. In Section 2.2, geometric moire will be discussed by
way of providing some background for moire interferometry. The correspondence
between the two techniques will be demonstrated by comparing the equations that
govern the fringe patterns observed in both geometric moire and moire interferom-
etry. From geometric considerations, it can be seen that the fringes observed using
geometric moire represent contours of constant in-plane displacement. A match be-
tween the equations governing the fringes in moire interferometry and the equations
governing the fringes in geometric moire would indicate that the fringes observed in
moire interferometry also represent contours of constant in-plane displacement. The
equations describing the fringes in moire interferometry will be shown to be identi-
cal to those for geometric moire, indicating that the fringes in moire interferometry
also represent exactly contours of displacement, as long as the specimen surface

does not tilt, either rigidly or as a result of out-of-plane displacement gradients.

The fringes formed in moire interferometry are strongly dependent on the an-
gular deflections of laser beams diffracted from the specimen surface. Tilting of
the specimen surface, either through a rigid rotation or a slope that is due to out-
of-plane deformation, will have some effect on the angular deflection of the laser
beams. This is particularly important in studying fracture, as there are strong out-
of-plane displacement gradients near the tip of the crack. In Section 2.3, the effect
of a rigid tilt of the specimen surface on the fringes will be studied; the effect of
out-of-plane displacement gradients will be similar as long as the rotation of the
grating surface can be taken to be locally homogeneous. The equations describing
the fringes for a two-beam interferometer will be derived for the general problem
of interference between two diffracted plane waves. This derivation will then be
made more specific to the case of moire interferometry, which includes a particu-

lar initial alignment of the laser beams with the undeformed specimen. A special
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case of deformation without tilting will be described. For this special case, the cor-
respondence between the equations describing the fringes in moire interferometry
and the equations describing fringes observed in geometric moire is exact, leading
to the conclusion that the fringes observed in moire interferometry can be taken
as contours of constant relative in-plane displacement for planar deformation. The
effects of nonplanar deformation will be investigated under the assumption of small
rotations of the surface away from the original plane of the grating, in order to

investigate the dominant sources of error if the fringes are assumed to be contours

of displacement.

The four-beam interferometer used in the experiments will then be described
in Section 2.4, along with the procedure for aligning the interferometer in an exper-
iment. In order to measure two independent components of the in-plane displace-
ment, two laser beams are needed to interfere for each displacement component. The
four-beam interferometer uses two separate two-beam interferometers arranged at
90° to one another to measure orthogonal, in-plane displacement components. The
requirements for coherence, polarization and matching of beam intensities will be
discussed. The optical collection apparatus will be described, and the theoretical
limits of the current measurement system will be estimated. Some improvements

for further tests will be suggested.

A discussion of the sources of uncertainty in the measurement then follows in
Section 2.5. Particular attention is paid to the sources of systematic error that may
arise in the measurement technique. These are errors that may propagate through
the entire measurement, although if the sources of systematic error may be identified

and quantified, their effects on the measurement may be corrected, in some cases

after the fact.

The moire interferometer used in this study was initially configured as a three—
beam interferometer, in which one of the laser beams is used twice in the meas-
urement of orthogonal, in-plane displacement components. The three-beam in-
terferometer has some advantages and some disadvantages when compared to the

four-beam interferometer finally adopted for use in the experiments. In Appendix
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A, the performance of the three-beam interferometer is compared with that of the
four-beam instrument. The equations describing the fringes for the three-beam
interferometer will be derived for the case of planar deformation, showing that the
fringes are governed by the same equations as are found in geometric moire. Thus,

the fringes observed using the three-beam interferometer also represent a contour

map of in-plane displacement.
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2.2 Geometric Moire and Moire Interferometry

Geometric moire is a well-established experimental method used to measure
in-plane deformations on the surface of a specimen by generating fringe patterns
that can be related to the displacement field. This method has been used as a
technique to measure displacements and strains since the late 1940’s and early
1950’s. [17,18,74,85] 1 The fringes observed in geometric moire are generated from
the superposition of two overlapping line gratings. It is clear from geometrical
considerations that each of the fringes generated in geometric moire represents a
contour of constant in-plane displacement. Moire interferometry also generates
fringe patterns; these fringes are the result of interference between two crossed laser
beams. Moire interferometry was initially proposed as an extension of geometric
moire in an effort to improve the sensitivity of the measurement. However, the two
techniques rely on very different mechanisms to generate fringe patterns, and it is
not obvious that moire interferometry can be viewed simply as a form of geometric

moire.

The first concern in using moire interferometry is whether it is exactly analo-
gous to the established techniques of geometric moire, in the sense that the fringes
represent a contour map of the displacement field. A brief discussion of each tech-
nique follows, and by comparing the equations relating the fringe spacing and orien-
tation to the displacement fields, it will be shown that moire interferometric fringes
do indeed represent contours of in-plane displacement when it is assumed that the

specimen surface remains flat and parallel to its undeformed position.

A second concern in using moire interferometry relates to the situation when the
specimen surface does not remain flat or parallel to its initial position. This concern
1s particularly important in the case of fracture mechanics, as the deformation
field that is due to a crack in a body is strongly three-dimensional, with large

out-of-plane deformation gradients near the tip of the crack. The effect of these

T A recent review of moire techniques can be found in a paper by Sciammarella [74], including
projection and reflection moire techniques used to measure out-of-plane displacements. Much
more complete treatment of geometric moire can be found in the books by Durelli and Parks

[17] and Theocaris [85)].
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out-of-plane deformation gradients must be examined before assuming that they
have no effect on the fringe patterns and that the fringes accurately map the in-
plane displacements. The equations governing the formation of the fringes while
allowing for the out-of-plane rotations will be derived in Section 2.3 to determine
the influence of such rotations on the fringe patterns. The resulting equations will
be written explicitly for the special case of small rotations in order to determine

the strongest influences on the fringe patterns.

2.2.1 Geometric Moire

Geometric moire is a technique that measures displacements by tracing the
movement of features on the specimen surface. The technique relies on features
that dare applied to the surface in a regular pattern, called a grating, 1 but the
features themselves are not actually followed. Instead, their displacement is inferred

from a pattern of interference fringes seen when two similar gratings are superposed.

A regularly spaced series of lines is inked or scribed onto the surface of the spec-
imen, these lines form the specimen grating, and it is assumed that the specimen
grating exactly follows the deformation of the specimen surface. A similar series of
lines inked onto a transparent medium is called the reference grating. The reference
grating retains the original shape of the specimen grating throughout the defor-
mation. By superposing the reference grating over the deformed specimen grating,
the change in position of the lines of the specimen grating from their initial align-
ment may be observed. In particular, if the spacing between lines of the gratings
1s small enough, the superposed pair of gratings forms a pattern of fringes called
moire fringes, after a French word for a silk fabric that demonstrates these patterns.
Durelli and Parks [18] have shown that moire fringes represent parametric curves
of constant in-plane displacement relative to the lines of the reference grating. This
can be seen to be a result of the geometric relation of the overlap between the lines

of the reference grating and the lines of the specimen grating. The sensitivity of the

1 The most commonly used gratings are equally spaced parallel lines, but gratings of concentric

circles or radial lines are also used.
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measurement, which will be defined here as the displacement increment between
adjacent dark fringes, is equal to the distance between adjacent lines on the refer-
ence grating. (In fact, a coarse, more easily replicated specimen grating can be used
with a finer reference grating to improve the sensitivity of the technique. This phe-
nomenon is called fringe multiplication [59], and it will be described in more detail
below.) The direction of the displacement measured is perpendicular to the lines of
the reference grating, indicating that two sets of linearly independent reference and
specimen gratings are needed to determine the in-plane deformations completely.
For straight-line gratings the fringe pattern is independent of translation of the
reference grating with respect to the specimen grating, which is an indication that
the measurement is relative, and cannot be made absolute unless the fringe pattern

extends to a point where the absolute displacement is known by other means.

The spacing and inclination of the fringes are determined through geometry
from the line spacing, or pitch, py, of the reference grating, the pitch p of the
deformed specimen grating, and the angle 8 between the lines of the two gratings,
as seen in Figure 2. Initially, before deformation, the pitch of the specimen grating
is also equal to pg. It is assumed that the deformation is homogeneous over the
field of view. (For inhomogeneous deformations, it is assumed that the pitches of
the gratings are small enough so that the deformation is locally homogeneous over

several lines of the gratings.) The spacing between adjacent dark fringes, 8, is found

as

= PPo x (2.2.1)
[p* + p§ — 2ppo cos 6]

The inclination of the fringes is described by the angle ¢, which is the angle between
the fringes and the lines of the reference grating. The angle ¢ is related to the pitches
of the gratings p and py and to the angle 6 between the lines of the gratings by
tan ¢ = _Posing 2.2.2
pocosf —p
The increment of displacement between adjacent fringes is po, and the direction of

the displacement measured is perpendicular to the lines of the reference grating.



-93-

Reference Grating

—

Specimen Grating

8L
B T
/\//\/\ _—

-

3

Fringes

FIGURE 2. Fringe formation in geometric moire. The reference grating is shown at
the top, and the specimen grating below it. The formation of the fringes
is shown at the bottom, when the two gratings are superposed.
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By measuring ¢ and §, one could in principle determine values of p and 6,
but the relations (2.2.1) and (2.2.2) do not provide unique values of p and 6 for a
given ¢ and 6. Additionally, if the fringe pattern is complicated because of large
displacement gradients, the calculation of the fringe spacing and inclination at a
point is difficult, whereas the location of each fringe can be made quite accurately.
The actual values of p and  are related to the strain field, so determination of p
and 6 is equivalent to differentiation of the displacement field found from the fringe
pattern. As always, the differentiation of quantities measured at discrete locations
introduces additional difficulties, since any lack of smoothness in the measurements

will be magnified by the process of differentiation.

Added Fringes

d/2

FIGURE 3. Fringe multiplication. When the reference grating spacing is halved
from po to po/2, additional fringes are seen halfway between each pair
of fringes that were observed when the reference grating spacing was po.

If the reference grating is replaced by a reference grating having a pitch of
po/2, the phenomenon of fringe multiplication [59] becomes apparent. Again, the
specimen grating has pitch p, and the angle between the lines of the two gratings

is 8. The initial pitch of the specimen grating is still po, or twice the pitch of
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the reference grating. This arrangement can be thought of as using two reference
gratings of pitch po offset with respect to one another by po/2, leading to two sets
of fringes, one corresponding to each reference grating. Thus, another dark fringe
is observed exactly halfway between any two dark fringes that were seen when the
reference grating had a pitch of pg. In this case the spacing between adjacent fringes,

8, is half of that in equation (2.2.1), so that ¢ is found as

5= PPo - (2.2.3)
2 [p? + pt — 2ppo cos 6]

The inclination of the fringes, ¢, remains unchanged, so that ¢ is determined by

po sin 8

tan ¢ = (2.2.4)

pocosf —p

The sensitivity of this measurement (the displacement increment between adjacent
fringes) is now pg/2, in the direction perpendicular to the lines of the reference
grating. By replacing the reference grating with a grating that has a pitch half
that of the original, but using the same specimen grating, the sensitivity of the

measurement has also been halved.

In using the reference grating with a pitch of pg/2, another set of fringes will
be formed at a spacing and inclination found by replacing po by po/2 in equations
(2.2.1) and (2.2.2). However, these fringes are difficult to see. The most easily
resolved fringes are fringes formed between gratings of nearly equal pitch at small
angular differences. Thus, the dominant fringe pattern is that pattern described
above, corresponding to two reference gratings of pitch pg offset from one another

by po/2. The dominant fringe pattern is described by equations (2.2.3) and (2.2.4).

The sensitivity of the measurement is important, because it is desirable to have
a fringe pattern that contains enough fringes so that the confidence of the meas-
urement is high over the entire field. The sensitivity of geometric moire techniques
is limited by the minimum spacing between lines on the reference grating. Many
efforts were made to improve the sensitivity of geometric moire, including the fringe
multiplication technique introduced by Post in 1967 [59] and the idea of fringe inter-
polation introduced by Sciammarella, also in 1967 [76]. In 1971, Post [60] suggested
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replacing the reference grating with a diffraction grating, making use of the work of
Guild [23,24]. Walker and Mckelvie [87] introduced the use of crossed laser beams
to form a virtual reference grating in 1978; however, their fringes were formed from
gratings that were copied from the deformed specimen. In 1980, Post [61] suggested
the technique of moire interferometry, in which a diffraction grating is produced on
the specimen surface and then interrogated by two crossed laser beams to produce
interference fringes. All of these techniques were introduced as simple extensions to
geometric moire, but the result is a technique far removed from the simple crossed
line grafings. In the next section, moire interferometry and its relation to geometric

moire will be discussed.

Some sample moire fringes are shown in Figure 4. In Figure 4 (A), are shown
fringes formed by line gratings having a similar spacing at a slight relative rotation.
Figure 4 (B) shows the phenomenon of fringe multiplication, as the reference grating
of (A) is replaced by a reference grating of one-half the pitch, showing the resulting
fringe between each pair of fringes visible in (A). Figure 4 (C) shows fringes formed
with a specimen grating of circular arcs and a reference grating of straight lines.
Note that in passing from one fringe to the next, the circular arcs travel one reference

grating spacing in the direction normal to lines of the reference grating.



C. Fringes from a Specimen Grating
of Circular Arcs
FIGURE 4. A. An example of fringes formed using geometric moire.
B. Fringe doubling. The specimen grating is the same as in (A), but
the reference grating has twice as many lines.
C. An example of fringes formed when the specimen grating is curved

lines. The fringes still represent contours of displacement.
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2.2.2 Moire Interferometry

Moire interferometry substitutes a diffraction grating for the specimen grating.
In principle, a diffraction grating is identical to the gratings used in geometric moire.
However, the spacing between the lines of a diffraction grating is on the order of
the wavelength of light, which means that the wave interactions of the light with
the grating become important. Optical effects on the scale of the wavelength of
light are called diffraction effects, and diffraction gratings are useful because they
have a regular structure. The most common application of diffraction gratings is in
spectrum analysis; since the angle of diffraction varies with the wavelength of light,
a grating can be used to separate the spectral components of a light source. The
diffraction by gratings can be caused by two different mechanisms. The grating can
cause local changes in the amplitude of the light waves, or it can cause local changes
in the phase of the light waves. An amplitude grating varies the transmissivity or
reflectivity of the diffraction grating periodically, such as by printing lines on a
glass plate or on a mirror. A phase grating keeps the transmissivity or reflectivity
constant, but varies the phase of the light waves periodically. In transmission this
can be accomplished by varying the thickness of the transparent medium, while
in reflection it can be done by varying the height of the reflective surface. The
diffraction grating used in moire interferometry is a reflective phase grating, so the
lines of the grating are in fact periodically alternating ridges and valleys, and the

spacing of the lines is more naturally described in terms of the wavelength of the

grating profile.

The fringes observed in moire interferometry are the result of interference be-
tween two laser beams diffracted from the specimen grating. Initially, before any
deformation, the two laser beams are directed at the specimen so that they inter-
sect at the specimen surface. The laser beams are arranged symmetrically so that
each first-order diffracted beam exits along the normal to the specimen surface. In
this initial position, and assuming perfect plane light waves and a perfect grating.
the two diffracted beams overlap exactly so that the resulting interference pattern
has a uniform intensity over the field of view. As the specimen and the attached

diffraction grating deform, the laser beams are diffracted away at slightly different
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angles, causing an interference pattern of light and dark fringes. The interference
pattern obviously depends on how the diffraction grating has changed, but it is
not obvious that the dependence of the fringe pattern on the deformation of the
diffraction grating in moire interferometry is the same as the dependence of the

fringe pattern on the deformation of the specimen grating in geometric moire.

Camera

]

Diffracted
Plane Waves

Incoming Incoming
Plane Waves Plane Waves
Phase

Grating
"Iw(!"

FIGURE 5. The initial arrangement of the laser beams for moire interferometry. The
initial grating wavelength is wy, and the diffracted plane waves travel
to the camera in the same direction. In this initial arrangement, the
diffracted waves have a constant phase difference over the field of view,
leading to a null field, a field of constant intensity.

Two books by Guild [23,24] describe the use of interference patterns of light
passing through consecutive diffraction gratings as measuring scales, and spell out

the nature of the diffraction of plane light waves in three dimensions. That work
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was carried out before the widespread availability of lasers; Guild’s analysis involved
the diffraction of light through two consecutive diffraction gratings, and the mutual
interference between the different diffraction orders. These equations can also be
employed to calculate the effect of the deformed grating geometry on the diffraction
of the laser beams in moire interferometry, and to determine the relation between

the deformation and the resulting interference fringe pattern.

Again, the first question in using moire interferometry is whether or not the
resulting fringes are indeed exactly equivalent to the fringes observed in geometric
moire techniques. The fringe patterns in geometric moire result from the overlap
of the lines of the specimen and reference gratings, and the fact that the fringes
represent contours of displacement is obvious from the geometry of the overlap.
The fringe patterns in moire interferometry are the result of interference between
two diffracted laser beams. Since the mechanism for the formation of the fringes
in moire interferometry is very different from the mechanism in geometric moire,
it is not obvious that the resulting fringe patterns correspond to parametric curves
in moire interferometry. By using Guild’s equations for the diffraction grating for
each of the two intersecting laser beams, it can be shown that the equations relating
the fringes to the displacement field are exactly the same in moire interferometry
and geometric moire, as long as the plane of the grating remains parallel to the
plane it occupied initially. This result was shown by the author in a GALCIT Solid
Mechanics report in 1984 [72], and by Livnat and Post in 1985 in a slightly different
way [41]. Pirodda [57] also showed the dependence of the fringes on the state of the

grating using Fourier optics.

In the case of the moire interferometer, the equations describing the fringes
are written in terms of the initial, undeformed orientation and wavelength of the
grating (knowledge of which is retained by the fixed arrangement of the incident
laser beams) and in terms of the the current or deformed orientation and wavelength
of the grating. The grating is assumed to be a perfectly periodic surface height
variation that has an initial wavelength of wy and a current (deformed) wavelength
of w. The angle between the lines described by the current grating ridges relative

to the lines along the initial grating ridges is 7. As with the geometric moire
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FIGURE 6. The grating has stretched to a new wavelength w, causing the diffracted
planes waves to leave the surface at equal but opposite angles. The
interference between the diffracted plane waves will vary across the field
of view, forming light and dark fringes.

measurement, the deformation is assumed to be homogeneous. The fringe spacing

6 1s found to be

WWo
5= 225
2 [w? + w? — 2wwg cos ]2 ( )

Note that there is a fringe multiplication factor of two in the denominator of equa-
tion (2.2.5), making equation (2.2.5) identical in form to equation (2.2.3), implying
that the sensitivity of the measurement is equal to one-half the initial grating wave-
length, wo/2. The angle ¢ between the fringes and the ridges of the grating in its

initial position is described by an equation identical in form to equations (2.2.2)
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and (2.2.4), so that ¢ is is related to the initial and current grating parameters by

wp sin 7y
t = —— 2.2.6
an ¢ W COS Y — W ( )

The identity between equations (2.2.3) and (2.2.5) and between equations (2.2.4)
and (2.2.6) indicates that the fringes generated in moire interferometry do represent
contours of in-plane displacement. The displacement increment between adjacent
fringes is wg /2, and the direction of the displacement measured is perpendicular to

the ridges of the diffraction grating in its initial position.

As mentioned before, the initial wavelength and orientation of the grating are
retained in the alignment of the laser beams that are diffracted to produce the in-
terference fringes observed in moire interferometry. These laser beams are aligned
to the initial grating position and held fixed while the grating deforms. In an effort
to make a strong, direct comparison between moire interferometry and geomet-
ric moire, Post suggests that the crossed laser beams in moire interferometry are
equivalent to replacing the reference grating of geometric moire by a virtual refer-
ence grating formed by the interference pattern between the incoming laser beams
[61,62,63]. This interference pattern (which should not be confused with the fringes
seen that are due to the interference between the outgoing diffracted laser beams)
consists of parallel light and dark bands. These bands have a spacing that depends
on the wavelength of the laser light used and on the angle of intersection of the laser
beams. { In aligning the laser beams so that the diffracted laser beams exit from
the surface along the surface normal, a virtual grating is formed with a wavelength
of wy/2. Thus the analogy between moire interferometry and geometric moire is
complete, and the fringe patterns of moire interferometry do represent contour maps

of the in-plane displacement.

It is desirable to be able to view the fringes observed using the moire interfer-

ometer as contours of displacement, because then similar data reduction methods

T The absolute limit of the space between lines in the virtual reference grating is A/2, where J is
the wavelength of the laser light used to form the virtual grating. This limit suggests that moire
interferometry can have a theoretical maximum sensitivity of A\/2; that is, the displacement
increment between adjacent dark fringes has a lower bound of A/2. Note that techniques for
measuring the out-of-plane displacement of a surface, such as holographic interferometry and
Twyman-Green interferometry, also have a sensitivity of A/2.
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can be used on data generated from either the Twyman-Green interferometer or
the moire interferometer. The fringes observed in a Twyman-Green interferometer
represent contours of constant relative out-of-plane displacement, if the slope of the
surface is sufficiently small. In the Twyman-Green interferometer, a path-length
difference caused by out-of-plane deformation causes interference between two laser
beams, one reflected from the specimen and one reflected from a flat reference mir-
ror. Along a given fringe, the phase difference of the interfering light waves is the
same, indicating that the path-length difference is also the same, indicating that

the out-of-plane displacement is constant along that fringe.

2.2.3 Out—of-Plane Rotations

An implicit assumption that underlies the previously mentioned derivations
[41,57,72] of the equations describing the fringes in moire interferometry is that the
plane of the grating does not change during the deformation. While translation
in any direction does not affect the measurement (unless it is so large that the
grating is no longer in the path of the intersecting laser beams), rotations of the
plane of the grating so that the grating is no longer parallel to its initial position
will have an effect. The fringes observed in moire interferometry are generated by
interfering light waves that intersect at a small angle. This angle varies with the
in-plane displacement through the deformation of the diffraction grating on the
surface of the specimen. However, the angle may also vary because of rotations
of the surface out of the plane, as is the case in fracture problems, which may
have sizable out-of-plane displacement gradients near the tip of the crack. These
rotations will introduce additional terms in the equations describing the fringes,
which, if significant, will mean that the fringes can no longer be interpreted as
displacement contours. A similar effect is also seen in geometric moire if the two

gratings are not parallel, creating fringes that are due to the wedge angle between

them.

In the next section, the equations describing the fringes will be derived for

cases that allow rotations that change the plane of the grating in an attempt to
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FIGURE 7. The grating has stretched to a new wavelength w, and has also tilted.
The tilting may cause some additional deviation of the diffracted plane
waves, which is not related to the in-plane deformation.

estimate the magnitude of the error introduced if the fringes are taken as contours
of displacement. Alternatively, this investigation will help to determine how correc-
tions could be made if the out-of-plane displacement gradients are known through

some other method, as, for example, from measurements using the Twyman-Green

mterferometer.
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2.3 The Governing Equations of Moire Interferometry
Allowing for Arbitrary Changes in the Orientation

of the Grating

In order to determine the effect of the out-of-plane deformation on the fringe
pattern, the equations that describe the fringe spacing and orientation will be de-
rived while allowing for an arbitrary tilting of the grating surface away from its
original position. Since the rotation of the grating about a normal to the surface is
a part of the in-plane deformation and has already been accounted for in previous
investigations [41,57,72]; only rotations that cause the specimen surface to tilt in

relation to its initial position need to be added to the equations.

This investigation is motivated by the desire to use moire interferometry to
make sensitive measurements of the deformations at the tip of a crack. Moire
interferometry relies on the rotation of two laser beams to cause interference fringes.
The rotation of the laser beams can be caused by a tilting of the specimen surface
as well as by deformation of the diffraction grating. Rotations of the specimen
surface may occur either through a global rigid motion or through local out-of-
plane displacement gradients. Rigid body rotations can be eliminated, but the
deformation at the tip of a crack has a strong out-of-plane displacement gradient
caused by the Poisson contraction resulting from the stress concentration at the
crack tip. In some cases the angular shift in the diffracted laser beams may be
dominated by the out-of-plane deformation, in which case it would be incorrect to

assume that the fringes observed represent in-plane displacement contours.
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2.3.1 Assumptions Underlying the Governing Equations

It is first assumed that the fringes in moire interferometry result from the
interference between plane, coherent, monochromatic light waves, where a fringe is
defined as a locus where the phase difference between the interfering light waves
is constant. Since the light waves are assumed to be planes, each fringe is itself
a plane, and all the fringe planes are parallel. The fringe spacing is the distance
between planes where the phase difference between the light waves has changed
by 2x. The fringe planes are arbitrarily oriented in space, but they are uniquely
located in any coordinate frame if the normal vector to the fringe planes and the

fringe spacing are determined.

The light waves that interfere are assumed to be monochromatic and to be
coherent. It is assumed that the wave trains have a constant wavelength A, although
the physical situation is slightly more complicated. For a physical light source such
as a laser, the wavelength changes slightly in time. If two sets of waves are coherent,
any change in the wavelength of one set of waves is matched by a similar change in
the wavelength of the second set of waves. In an experiment, coherence is assured by
causing the two incoming laser beams to originate at the same source and to travel
paths of equal length to the specimen. This is an example of the temporal coherence
of two interfering waves. Another form of coherence is spatial coherence, a measure
of the similarity of the light waves across the wave fronts. A laser source exhibits
good coherence in both space and time. It will be assumed for this derivation that
the light waves are exactly monochromatic and that they are identical across the
wave fronts. The notion of coherence is ordinarily discussed in the framework of
an experiment. In that context, the coherence between two wave trains of light
is measured by the contrast of the interference between the two wave trains. All
electromagnetic waves interfere, but wave trains having little coherence interfere on
such a small time scale that the result is not usually observable. Coherence will be

discussed further in Section 2.4.1, which deals with experimental apparatus.

The assumption that the diffracted light waves are plane waves is actually the

result of assuming that the incoming light waves are perfect plane waves, that the
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mean grating surface remains a plane, and that the grating surface profile remains
perfectly periodic. Stroke [81] has shown that these conditions result in diffracted
waves that are also plane waves. The actual grating profile is unrestricted, since
the effect of different profiles is seen only in the distribution of the intensity among
the various diffraction orders, as investigated by Petit et al.[55].The grating surface

and the light waves are assumed to be infinite in extent so that there are no edge

effects.

In addition to assuming that the light consists of plane waves, it is also as-
sumed that the light is linearly polarized. This means that the electric-field vector
corresponding to the plane wave can be written as a constant amplitude vector
multiplied by a harmonic oscillation in space and time. Most lasers are linearly
polarized. The most general case of elliptical polarization may reduce the contrast

of the fringes, but the spatial distribution of the interference pattern is unchanged.

The grating plane is defined as the mean grating surface. The assumption
that the grating plane remains plane and the grating profile remains periodic is
equivalent to assuming that the deformation at the surface is homogeneous, since
a homogeneous deformation maps parallel lines to parallel lines. The restriction of
the deformation to homogeneous deformations will have to be relaxed through a

localization argument for general deformations.

The equations that relate the directions of the diffracted beams to the direction
of the incoming beam have been given by Guild [23,24]. These equations are used to
determine the direction of the diffracted plane waves of any diffraction order from
an incident plane wave that is directed at the grating from an arbitrary angle. The
use of these equations requires the resolution of the directions of the beams into
an orthogonal coordinate frame defined by the ridges of the grating profile and the

plane of the grating.

The parameters of interest in the derivation are the wavelength of the deformed
grating profile, the orientation of the grating plane after deformation, and the di-
rection of the ridges of the grating after deformation. The grating will be assumed

to be stretched from its initial wavelength of wy to a new wavelength of w, after
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which it is rigidly rotated to a new orientation. The orientation of the grating plane
after deformation will be related to the grating plane before deformation, through
Euler angles. These angles represent a series of rigid rotations about the axes of a

coordinate frame that rotates with the deformed grating.

The observer views the specimen along the normal to the undeformed speci-
men surface. This is a fixed observation position, which is part of the experimental
arrangement. The fringe patterns are recorded by a camera focused on the initial
position of the grating, and the camera maps the initial grating plane to the film
plane. Since the fringe planes are arbitrarily oriented in space, they may not in-
tersect the initial grating plane at a right angle. If this is true, the observed fringe
spacing will not coincide with the actual fringe spacing. To appreciate this state-
ment, think of placing a screen in the volume occupied by the fringes. The intensity
distribution on the screen will depend on the orientation of the screen with respect
to the fringe planes. If the screen is parallel to the fringe planes, the observed
intensity will be constant, so that the observed fringe spacing is infinite, while the

true fringe spacing is finite. This effect must also be taken into consideration.

The absolute phase information of the light waves may be left arbitrary, since
the parameters of interest are the fringe spacing and orientation, which are unaf-
fected by a change in the phase offset between the two interfering light waves. (Such
a change in the phase offset might be accomplished by changing the length of the
path taken by one of the incoming laser beams from the source to the specimen.)
In other words, whether the fringe is light or dark is not important as long as the
fringe spacing and inclination remain the same. This statement emphasizes one
of the important facts about interferometry in general, namely, that the displace-
ments measured at a point are known only in relation to the displacements at other
points in the field of view. In order to make absolute measurements, the absolute

displacement of one point in the field must be known from some other method.

The incoming laser beams are arranged to intersect the grating in its initial
position in such a way that the diffracted beam of order one (or minus one) leaves

the specimen surface along the normal to the grating plane. Since the phase dif-
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ference between the diffracted plane waves is constant over the field of view, this
initial configuration produces a null field, a field of uniform intensity. This initial
condition determines the angle at which the incoming laser beams must intersect
the specimen surface; the angle is a function of the initial grating wavelength wy

and the wavelength of light .

This derivation of the equations describing the fringes in moire interferome-
try is similar to that by Livnat and Post [41] in the use of the vector normal to
describe the fringe planes, although they restrict their derivation to planar defor-
mation. The present approach was derived independently by the author, preceding
the publication of Reference [41]. The work by Livnat and Post offers some in-
teresting comparisons between moire interferometry and geometric moire methods.
The equations for the case of planar deformation and the correspondence between
moire interferometry and geometric moire were also derived earlier in a slightly
different way by the author [72] and independently in a very different manner by
Pirodda [57]. The paper by Pirodda contains interesting descriptions of several

interferometric measurement techniques.

2.3.2 Plane Harmonic Monochromatic Light Waves

The diffracted laser beams are assumed to consist of plane harmonic waves
having a single wavelength A. For plane harmonic electromagnetic waves, the elec-
tric and magnetic fields are closely related to each other, so that the plane waves
can be described by either the electric-field vector € or the magnetic—field vector

H. In this case, we will use the electric-field vector £.
In free space, the electric—field vector € satisfies the wave equation

_19%

where ¢ is the speed of light. The general solution for plane waves having unit

normal u 1s
E=1fi(r-u—ct)+fH(r - u+ct), (2.3.2)
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where f; and f; are any twice continuously differentiable vector functions, and r
represents the position vector of any point. The first term in 2.3.2 represents waves
traveling in the direction of u, while the second term represents waves traveling in

the direction of —u.

For waves that are harmonic in space and time, with a wavelength A, and that

are propagating in the direction of u, the solution can be written explicitly as
2
& — Re{A(“) exp[%\z(r -u—ct)+ i¢(“)] }, (2.3.3)

where A is a constant vector, possibly complex, and ¢ is a real, constant phase
offset. The superscript (u) is used to indicate that the electric—field vector and the

amplitude and phase offset are associated with plane waves traveling in the direction

of u.

The intensity, I, of the light is a measure of the time average of the energy
carried by the electromagnetic waves. Following Born and Wolf [11] (or Fowles [19]),
it is found that for plane waves the intensity is proportional to the square of the
magnitude of the electric—field vector. Since we are interested only in the spatial
distribution of the intensity, the proportionality constant can be taken as unity, so

that the intensity is found as
1 /T
I=o% . [E- €] dt (2.3.4)
where T is very long compared with the time period of the oscillation of the waves.
We can incorporate all of the complex exponentials except for the time dependence

into the amplitude vector so that E is given by

€= Re {50 exp[_l/\zwct} } = Re{go exp(—i2m/t)}

(2.3.5)
= ‘}5 [€o exp(—i2mvt) + Z’Eexp(i?wvt)}

Here & indicates the complex conjugate of &. The quantity v is defined by ¢ = Av.
The integral of equation (2.3.4) can then be evaluated as
1 T

I=—
8T J_r

[(gg-go)exp(—4i7rut)+2(€g &)+ (& &) exp(4i/71/t)J dt (2.3.6)
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The second term in equation (2.3.6), after integration and division by 8T, yields a
constant of (& - &)/2. The complex vector quantities & and & are independent
of time, so they may be taken out of the integrals, and the only remaining terms to

integrate are the exp(—4invt) and exp(4invt) terms. Now

- T
é}fl—’ _i exp(—4imvt)dt = 322;11/T -exp(—4i7r1/t)} » = T6msT sindrmvT (2.3.7)
Similarly,
1 7 , N 1
ST . exp(4imvt)dt = S5m0 T -exp(4z7r1/t)] . = TomaT o0 4mvT  (2.3.8)

The period of oscillation of the waves, T, is just 1/v, so (1/167vT) = (1/16%)(T/T).
Since T is assumed to be very long compared to f/l’\, the first and third terms of

equation (2.3.6) do not contribute to the average, and

- %[go 5| (2.3.9)

Returning to the electric-field vector of equation (2.3.3), which describes har-
monic plane waves traveling in the direction of unit vector u, the electric field is
given by .
& = Re{A(“) exp [-ZQTW(r cu-—ct)+ i¢(“)} } (2.3.3)
The intensity of these plane waves is found from equation (2.3.9), which implies
that all of the exponential terms drop out, so that the intensity of the plane waves
in the direction of u is found as

™= [A® . K™ (2.3.10)

1
2

If the light described by equation (2.3.3) is linearly polarized, the vector am-
plitude AM™ is a constant, real-valued vector. The light from the laser used in
the experiments is strongly linearly polarized, and we will assume now that both
diffracted laser beams are linearly polarized for simplicity. The general case of el-
liptically polarized beams will be discussed briefly in Appendix B for completeness.
For the electric-field vector of equation (2.3.3), assuming that A(™ is a constant,

real-valued vector, the intensity is given by

1
10 = Law . @) (2.3.11)
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2.3.3 Interference of Plane Harmonic Monochromatic Light Waves

We are interested in the interference pattern between two sets of plane waves
which cross each other at an angle. These two sets of waves are diffracted from the
specimen surface. The direction of the diffracted waves, which are represented by
the unit normals to the waves, can be determined from the direction of the incoming
light waves and the diffraction—grating wavelength and orientation, as will be shown

in the next section. In this section we will determine the dependence of interference

pattern on the diffracted beams.

The electric-field vector corresponding to the first set of waves, which have unit
normal u, is given by equation (2.3.3). The electric—field vector corresponding to
the second set of waves, which have unit normal v, is given by a similar expression.

The electric-field vectors for both sets of waves are thus

gm ZRG{A(U) exp{—z—i—w(r -u—ct)+ i¢(“)] }

9 (2.3.12)
127

£ :Re{A(") exp [—)\—(r ‘v —ct) + i¢(v)} }
The superscript (u) corresponds to the waves having unit normal u, and the super-

script (v) corresponds to the waves having unit normal v.

The plane waves described in equation (2.3.12) are assumed to be linearly
polarized, so that the amplitude vectors A™ and A®) are real-valued constant
vectors. The constant phase offsets ¢) and ¢(*) are a function of the path length

taken by the laser beam from the source. The amplitude vectors and the phase

offsets will be left as arbitrary constants.

The total electric—field vector for both sets of waves is given by the summation

of the two terms E(u) and 5(").

g(total) _ Re{A(u) exp [%(r ‘u - Ct) + Z¢(U):l + A(V) exp [E-—/{I(r -V — Ct) + Zqﬁ(v)} }
(2.3.13)

The total intensity that is due to both sets of waves is then found using equation
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(2.3.9) as
2I(total) — |A(u)l2 + 'A(v) |2

—2m

A

+(AM™ . AMYexp [%T-(r -u—ct)+ i¢(“)] exp[ (r-v—ct)— igb(")]

+ (A . AM)Y exp[ Z/\QW (r-u—ct)— i¢(u)] exp F—Q)\—ﬂ(r -v —ct) + z'gb(")}
(2.3.14)

The time—dependent contribution cancels, and the exponentials can be rewritten as

a real-valued cosine function. The total intensity is thus given by

21totah) = A2 4 |AM2 +2(A™ - AM)) cos [2—/\7 (r-(u—v))+ (g™ - ¢(V))}
(2.3.15)
The first term in equation (2.3.15) represents the intensity that is due only to
the waves traveling in the direction defined by u, the second term represents the
intensity that is due only to the waves in the direction defined by v, and the third

term represents the interference between the two waves.

The intensity distribution of equation (2.3.15) represents a standing wave pat-
tern. This standing wave has planes of constant phase perpendicular to the vector

u — v. The vector z will be defined so that
Z=u—V (2.3.16)

The fringe spacing is §, which is equal to the wavelength of the standing wave

pattern, so that é is found to be

A by
== (2.3.17)

vl " Il

6 =

The interference is shown schematically in Figure 8. Since u and v are unit vectors,
the fringe spacing can vary from infinity, when u = v, to A/2, when u = —v. The
fringe spacing can also be related to the angle between the two unit normals, u and

v. Let 28 be the angle between the unit normals; then the fringe spacing is given
by
A

= Sen g (2.3.18)
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FIGURE 8. The standing interference pattern formed between two sets of plane
waves crossing at an angle. The first set of waves has unit normal u,
and the second set has unit normal v. The light has a wavelength of ).
The interference pattern has a wavelength § = \/ju — v|.

This arrangement is shown in Figure 9.
The contrast of the fringes is defined by

Im r Imin
contrast = m (2.3.19)

The contrast depends on the interference term in equation (2.3.15), and is found to

be
Qi(A(u) . A(V))f

2.3.20
AW AT (2320

contrast =

Equation (2.3.20) shows the importance of matching the polarization and in-
tensity of the two diffracted laser beams. If the two sets of waves are polarized at
90° to each other, the inner product of the third term in equation (2.3.15) is zero,
and no interference is seen. Similarly, if the intensity of one beam is very much

greater than that of the other, the interference term will be much less than the
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FIGURE 9. Standing interference pattern formed between collimated laser beams
crossing at angle 23. The light has a wavelength of A\. The interference
pattern has a wavelength 6.

intensity of the brighter beam, and the interference will be washed out. In either

case, the contrast of the fringes is reduced.

If the light is elliptically polarized, which is the most general state of polar-
ization, the fringe contrast may be reduced, depending on the relative direction of
the rotating electric—field vector. However, the spatial distribution of the fringes
is unchanged, so that the fringes will still lie in planes perpendicular to the vector
difference z = u — v, and the fringe spacing will still be § = A/|z| See Appendix B

for more detail regarding interference when the light is elliptically polarized.



2.3.4 Equations of Diffraction

The effect of a diffraction grating is to break up an incoming plane wave into a
series of periodic sources, where the period is determined by the grating wavelength,
w. Although the sources emit spherical waves, their sum consists of plane waves.
This can be seen in Figure 10, which shows the construction of two plane waves from
five point sources in two dimensions. The direction of the plane waves depends on
the distance w between sources, the wavelength A of light, and the phase difference
between the sources. The phase difference is determined from the angle of the

incoming plane wave, which has a constant phase across its surface.

Plane Wave Construction

Periodic Point Sources

FIGURE 10. The formation of plane waves from periodic point sources radiating
spherical waves. The phase of the point sources varies linearly. A
diffraction grating can be thought of as a device to break up incoming
plane waves into a series of point sources, leading to diffracted plane
waves at angles determined by the period of the emitters, the phase
variation of the emitters, and the wavelength of light.

A sketch of the effect of the diffraction grating is shown in Figure 11. In the
figure, a is positive as shown, and /3 is negative. The requirement that the outgoing

waves be in phase is equivalent to specifying that the length along path A differs
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FIGURE 11. Plane waves incident on a grating result in diffracted plane waves at
various angles. These angles correspond to directions where the length
along path A differs from the length along path B by an integral number
of wavelengths, say nA. The angle « as shown is positive; the angle §
is negative. Angles o and f are related by sina + sin § = nA/w.

from the length along path B by an integral number of wavelengths, say nA, where
n is an integer. The number n is also called the diffraction order, so that in the
first—order diffracted beam, the paths differ by one wavelength. The angle between
the grating normal and the direction of the incoming light waves is «, and the angle
between the grating normal and the direction of the diffracted light waves is #. The
angle (3 is related to the angle a by the equation

wsina + wsin f = nA (2.3.21)

which is more commonly written as

. nA
sina +sin ff = — (2.3.22)
w

The case of reflection is recovered when n = 0, or when w tends to infinity.
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The diffraction grating used in moire interferometry is a reflective diffraction
grating, called a phase grating. A phase grating is simply a periodic height variation,
arranged in peaks and valleys. Ordinarily, the height variation is much smaller
than the distance between peaks, while the spacing between peaks, the grating
wavelength, is on the order of the wavelength of light. The details of the diffraction
are more complicated for the phase grating than for the series of point sources. The
phase grating creates a continuous surface of point sources, with a phase variation
that depends in detail on the grating profile, but the overall periodicity of the
grating is sufficient to ensure plane wave solutions at the angle predicted by the
simple point source model. The diffraction—grating surface introduces a periodic
boundary condition to the wave equation describing the electric or magnetic field
[81]. The way the energy of the incoming light is distributed into the various
diffraction orders depends on the details of the shape of the diffraction-grating

profile.

FIGURE 12. The Grating Coordinate Frame. The z; coordinate axis remains paral-
lel to the ridges of the grating during deformation. The z3 axis remains
normal to the mean grating surface. The current grating wavelength

15 w.

The diffraction of plane light waves will be determined using the equations
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of Guild [23,24]. These equations generalize the relation between the direction of
the incoming light waves and the direction of the diffracted light waves to three
dimensions. The directions of the various diffraction orders are determined in an
orthogonal coordinate system that is defined by the ridges and valleys of the grating,
as shown in Figure 12. This coordinate frame is arranged so that the z, axis is
always parallel to the ridges of the grating, the z; axis is always perpendicular to
the ridges of the grating, and the z3 axis always remains normal to the mean grating
surface, which has been assumed to remain a plane throughout any deformation.

The current or deformed grating has a wavelength of w. The initial wavelength will

be denoted wy.

To calculate the direction of propagation of diffracted plane waves of any diffrac-
tion order from incident plane light waves which are directed at the grating from an
arbitrary angle, the unit normal to the incoming light waves must be resolved into
components with respect to the coordinate frame described above. The components
of the unit normal to the diffracted plane wave can then be calculated in the grating

coordinate frame.

For instance, if unit vector j represents the normal of the incident plane waves
and unit vector ul® represents the normal to the diffracted light waves of order n,

the equations relating the components of j to the components of u{® are:

n nx .
ug ) = — + 1 (2.3.23)
ul™ = j, (2.3.24)

where j, and u(an), (o = 1,2) are the components of j and u{™ in the grating

coordinate frame, and A is the wavelength of light used.

The component of the unit vector ul™ that is normal to the grating plane,
namely, ugn), is nonnegative, and since u™ is a unit vector, equations (2.3.23) and
(2.3.24) uniquely determine u(™ from any given j. Since the waves defined by j are

directed toward the grating, the component j3 is negative.
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2.3.5 Geometry Relating the Deformed and Undeformed Gratings

For moire interferometry, it is necessary to calculate the directions of diffracted
beams originating from two different incident beams. This is necessary so that
we may determine the fringe pattern resulting from interference between the two
diffracted beams. The incident beams are fixed in space, while the grating is allowed

to undergo an arbitrary change in orientation and ridge spacing.

The deformed grating itself defines a coordinate frame, as shown in Figure
12. The grating z; axis is in the grating plane, perpendicular to the ridges of the
grating. The z, axis is also in the grating plane, but parallel to the ridges of the

grating. The z3 axis is normal to the grating plane.

As has been mentioned, moire interferometry essentially compares the current
deformed grating to its initial, undeformed configuration. The configuration of the
undeformed grating is retained in the alignment of the laser beams, which remain
fixed throughout the deformation. A second coordinate frame, which is fixed in
space, will be defined by the initial position of the grating. The position of the
coordinate frame of the deformed grating will be described with respect to the fixed

coordinate frame through a series of rotations using Euler angles.

The fixed frame will be denoted by capital letters, so that the axes are given
by Xi,Xs,X3. The grating coordinate system will be given using small letters,
Z1,%o,%3 as shown in Figure 12, and the grating system is aligned with the fixed

system before deformation.

As the grating deforms, the ridges of the grating shift, so that the grating
coordinate frame no longer coincides with the fixed frame. Additionally, the plane
of the grating is allowed to rotate with respect to the fixed axes. The deformation
of the grating is homogeneous, and it can be described by first letting the grating
stretch or contract from its initial wavelength of wq to the deformed wavelength w.
The change in the orientation of the grating can then be described through the use
of Euler angles. First, let the grating rotate by an angle 3 about the z3 (or X3)

axis. Next, let the grating rotate an angle v, about the new position of the grating
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x9 axis. Finally, let the grating rotate an angle v; about the new position of the z;

axis to the final position of the grating.

T'he relation between the components of any vector a resolved in the X; X5 X5
coordinate frame and the components of a resolved in the final position of the

r172x 3 (grating) coordinate system are determined through the successive matrix

operation:
ai 1 0 0 cosyz 0 —siny,
a } =10 cosvyy sinyy 0 1 0
as 0 —sinvy; cosyg siny, 0 cosvye
cosvys sinyz O Ay
—sinys cosys O As (2.3.25)
0 0 1 As

where a;,ay,a3 are the components of a in the z,z,z3 frame and A;, A, A3 are

the components of a in the X; X, X3 frame.

This transformation is necessary, because the diffraction equations are written
in terms of components in the deformed grating frame, while the incoming laser

beams are specified in components in the fixed frame.

2.3.6 Moire Interferometry

So far, the discussion of the interference patterns has been quite general. The
key point in moire interferometry is the alignment of the incident laser beams to
the initial position of the grating. We now need to describe the arrangement of the
fixed paths of the incident, plane light waves in moire interferometry, and resolve the
components of their unit normals into the deformed grating frame using equation
(2.3.25). The directions of the diffracted plane waves can be determined using
equations (2.3.23) and (2.3.24). The resulting interference pattern can then be

found from equation (2.3.17).

The plane light waves traveling in the directions specified by unit vectors u
and v are diffracted from two fixed, incident light beams. The two fixed, incident

beams of plane waves have unit normals denoted by j and k. These vectors are
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directed toward the initial grating surface, and are arranged symmetrically with
respect to the normal to the undeformed grating plane. These two unit vectors
have components J; and Kj, : = 1,2, 3, respectively, in the globally fixed X; XX
frame, and components j; and k;, respectively, in the z;z223 frame defined by the

deformed grating.

Let the unit vector u represent the diffracted ray of order 1 from the incident
ray represented by j, and let unit vector v represent the diffracted ray of order
-1 from the incident ray represented by k. These vectors have components u;
and v;, ¢ = 1,2,3, respectively, in the grating fixed z,z,z3 frame. Then from
equations (2.3.23) and (2.3.24), and using the fact that u and v are unit vectors,

the components of u and v in the grating coordinate frame are found as

uy = —+ 71
w

Uy = J2 (2.3.26)
us = (1= (u1)® — (u2)%)*

A
v =——+k

w
Vg = kg (2327)

vy = [1— (v1)? — (v2)?]?

In the experimental arrangement used in this study, the two fixed, incident
rays represented by j and k lie in the X;-X3 plane and are symmetric with respect

to the X,—X3 plane. In the global X; X3 X3 coordinate frame, these vectors have a

simple representation:

J1 —sino I sin a
{Jz} = { 0 }, {Kg} = { 0 } (2.3.28)
J3 —cos I3 —cosa

This representation indicates that the unit normals to the incident plane waves form

angles of +a to the X3 axis.
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The components of j and k in the z;z2x3 frame are then found, using equation

(2.3.25), as

71 — sin @ COS 73 €COS ¥z -+ COS & Sin ¥2
J2 ¢ = SIN (¢ SIN 73 COS <Y1 — SIN & COS 73 SIN Yo SIN Y3 — COS & COS Y2 SIN 7Yg
73 — sin o Sin <3 sin -y; — SIN & COS 73 SiNl Y2 COS Y1 — COS & COS Y2 COS 7Yy

(2.3.29)

ky SIn ( COS Y3 COS Y2 + COS ' sIn s

{ ko } = { — Sin @ sin Y3 COS Y1 + SIN @ COS Y3 SIN Y2 SIN 7] — COS & COS Y2 SIN Y3 }
ks Sin a sin 43 sin 7y + SIN & COS -3 SIN 7y COS Y] — COS & COS Y3 COS Y1

(2.3.30)

By using equations (2.3.26) and (2.3.27), the components of the unit vectors

u (which represents the diffracted ray of order 1 from the incident ray represented

by j) and v (which represents the diffracted ray of order -1 from the incident ray

represented by k) in the grating coordinate frame are found as

A
U3 = — — Sin @ COS Y3 COs y2 + COS & sin Y7
w
U = Sin & Siny3 COSy; — SIN & COS Y3 SIN Yg SIN 7Yy — COS & COS Y2 SIn 7Yy (2.3.31)
2 214
us = [1—(u1)” — (u2)’]?
v] = —— + SIn & COS 3 COS Y2 + cOs & sin 7y,
w
Vg = — SIN (¢ SIN Y3 COS7y; + SIN (¢ COS Y3 SIN Yo SIN Y7 — COS & COS Y SIN Y3 (2.3.32)

vy = [1— (v1)? — (v2)?]7

The components of the difference vector z = u — v, which characterizes the

fringe pattern in the grating coordinate frame are then found as

A .
71 = 2(; — SII1 ' COS V3 cos'yg>

(2.3.33)

2y = 2(sin a'sin y3 cosy; — sin a cos ¥z sin-yz sin~y; )

zg = [1= (1) = (w2)’]? = [1 = (v1)” = (v2)°]?
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As was shown earlier, the fringe planes are perpendicular to the vector z with
a spacing  given by
§=— (2.3.34)

2.3.7 Initial Alignment of the Laser Beams

The initial configuration of the grating is retained by the fixed, incident laser
beams, which must be aligned to that configuration. Before any deformation occurs,
while the grating axes and the global axes coincide, the angle between the normal
to the grating and the incoming laser beams, +a, is adjusted so that the fringe
spacing ¢ is infinite. This angle « remains constant throughout the deformation.
The angle o depends only on the initial wavelength of the grating, and in effect,
fixing o acts to retain the initial grating wavelength to compare it with the current,
deformed grating wavelength, in the form of a virtual reference grating as described
in Section 2.2.2.

Recall that the initial grating wavelength is wq; this length is known in advance.
Also, vy, 72 and 73 are initially zero. The two incident laser beams are arranged so
that the diffracted beams lie along the z3 axis, meaning u; = u; = v; = v = 0 and
ug = vg = 1.

It follows from equations (2.3.31) through (2.3.32), making the indicated sub-

stitutions, that

A .
u; =0 = -— —sina
wo (2.3.35)
vy=0 = —— +sina
Wo
which requires that
A
sina = — (2.3.36)
Wo

This relation does not change during the deformation.
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There is no similar simple representation for cos «, so the terms sin o and cos «
will be retained unless the substitution helps to simplify an equation. It should be
understood, however, that « is a known quantity that is related to the undeformed

grating wavelength wg and to the wavelength of light used A.

2.3.8 Observed Fringe Spacing and Inclination

In general, the fringe surfaces determined by the vector z are not directly
observed, because the fringe planes are not aligned with the optical axis of the
recording camera. The optical system used to record the fringes is aligned along
the fixed X3 axis and focuses on a plane parallel to the X1-X; plane; it will thus
record the fringe planes where they intersect a plane parallel to the X;-X; plane.
Thus, the optical system will not in general record the true fringe wavelength 6,
but instead an apparent fringe wavelength 6*. This apparent fringe wavelength
corresponds to the spacing between the intersections of the fringe planes with planes

parallel to the X;—-X5 plane.

Let E1,E, and E3 be unit vectors aligned with the globally fixed X, X, and
X3 axes, respectively. The observed fringes are determined by the vector that is
the projection of z on the X;—-X, plane. Thus the observed fringe spacing, 6*, is

given by
A

6t =
|z — (z - E3)Es|

(2.3.37)

which can also be written as

§* = A (2.3.38)

z-z —(z- E3)2}%

We also need to determine the angular orientation of the fringes in the fixed
frame. As discussed earlier, we want to determine the angle between the fringes and
the lines of the virtual reference grating formed by the incoming laser beams. This
is the analog to the angle between the fringes and the lines of the reference grating
in geometric moire techniques. The incoming laser beams are aligned so that the

lines of the virtual reference grating are parallel to the fixed X, axis. Let ¢* be
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= 5" =!

FIGURE 13. The relation between the apparent fringe spacing 6* and the true fringe
spacing d. The apparent fringe spacing 6* is the distance between the
intersections of the fringe planes with the X; — X3 plane. The camera
maps the X; — X, plane to the film plane, so the apparent fringe spacing
6* is measured instead of the true fringe spacing é.

the angle between the observed fringes and the X, axis. Since the projection of the
vector z on the X;—-X, plane, namely, z—(z-E3)E;, is normal to the intersection of
the fringe planes with the the X1-X, plane, ¢* is also the angle between the vector
z — (z - E3)E; and the X axis, as shown in Figure 14, so that

z—(z -E3)Es3]-E; z-E

z—(z -E3)Es]-B;  z-E (2.3.39)

tan¢* =

Again, z is the difference vector between the unit normals of the the diffracted plane
waves, z = u — v, and E;, E; and E3 are unit vectors aligned with the globally

fixed coordinate frame.

The components of z are known in the grating coordinate frame. In order
to use equations (2.3.38) and (2.3.39), one must find the components of z in the
globally fixed frame, or find the components of the vectors Ei,E2 and E3 in the
grating system. The latter course will be followed here. Let e;, ez and e be umt

vectors aligned with the grating =1, z, and x3 axes, respectively. E,,E, and E; are
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Pk
Fringe Fringe

FIGURE 14. The angle between the observed fringes and the X axis is ¢*. The X,
axis is aligned with the lines of the virtual reference grating formed by
the interference between the incoming laser beams. The angle ¢* is
also the angle between the X; axis and the vector z — (z - E3)E3, the
projection of the difference vector z (= u — v) on the X;-X; plane.

the unit vectors aligned with the globally fixed X, X, and X3 axes. Then, again

using equation (2.3.25),

E; = (cos vy, cosvz)e; + (sinv; sinyz cosyz — cosy; sinys)e,
+ (cos vy sinyp cos vz + sin~y; siny;z)es

E, = (cos 7y, sinysz)e; + (sinvy; siny, sinys + cos~y; cosyz)es (2.3.40)
+ (cosy, sinyp sin-ys — siny; cos s )es

E; = (—siny;)e; + (siny; cos vz )ez + (cosyy cosyz)es

These vectors are used in the evaluation of the equations (2.3.38) and (2.3.39).
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2.3.9 Special Case: Planar Deformation (No Tilting)

We will first examine the case of deformation in which the mean grating surface
remains parallel to the globally fixed X;-X, plane. This is the ideal case in which
the moire interferometric fringes correspond exactly to the fringes of geometric moire
as contours of constant in-plane displacement, as shown in previous investigations
[41,57,72]. The rotations about the axes in the plane of the grating, v; and v,, are
identically zero. The components of the unit normals to the diffracted plane waves,

u and v, in the deformed grating frame are given by:

A
Uy = — — SINaCOS 73
w
Uy = sin v sin-ys (2.3.41)
1
Uz = [1 b (u1)2 — ('u,2)2]2
A
U1 = —— + SIn ¥ COS Y3
w
v9 = —sinasiny; (2.3.42)

vy = [1 = (v1)” - (v2)*]*

Since u; = —v; and uy = ~vs, it follows that ug = v3. The vector z (= u—v),
which describes the fringe spacing and orientation, then has components in the

grating coordinate frame given by

A .
z1 =2 — —slnacosys
w

23 = 2(sin a'sinys) (2.3.43)
zZ3 = 0
The true fringe spacing ¢ is found from equation (2.3.17), as
A A
§=ri= (2.3.44)

1
2

i N, A
2{l —} +sin“a—2—sinacosys
w

w
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The equations describing the unit vectors aligned with the axes of the globally
fixed coordinate frame, equation (2.3.40), reduce to
E; = cosvyze; —sinvyzes
E, = sinyze; + cosvysze; (2.3.45)

E;=e;

Therefore, z - E3 = 0, and so the observed fringe spacing 6* is the same as the
true fringe spacing § in equation (2.3.44),

5% = A . - (2.3.46)

A\’ A i
2[(—-—) + sin® & ~ 2 sin a cos ’)’3]
w

w

The inclination of the fringe planes with respect to the X, axis (and the lines of

the virtual reference grating) is found using equation (2.3.39), as

(&)
— |} SII1 73
tang* = —= el (2.3.47)
(—) cosy3 — Sin &
w

Substituting the condition required by the initial alignment of the incident laser

beams, that sina = A/wy, from equation (2.3.36), one finds for the observed fringe
spacing and inclination
wWWy

§* = 2.3.48
2w? + w2 — 2wwg cosys]? ( )

wy SIN Y3

tan ¢* = (2.3.49)

Wy COS Y3 — W

Equations (2.3.48) and (2.3.49) thus imply that in the case of purely planar
deformation, the fringes can be interpreted as contours of constant displacement,
exactly as in geometric moire, as shown in Section 2.2.1. Note that the fringe
spacing and inclination depend only on the initial and current states of the grating
and are independent of the wavelength of light used. The constant displacement

increment between adjacent fringes is wp/2, in the direction of the fixed X; axis.



-60-

OBSERVED FRINGE SPACING WITH NO OUT-OF~PLANE ROTATION

5.0 | | I l
_ Y= 0.000
r = 0.000 1125000
4.0 |- r={w=g) /o Y4= 0.000-
) —===r =0.010 J1_ o000
wn=1.667um 2= 9.
0
______ _ Y4= 0.000
r=0.100 J12 000
~ 3.0 |- 2 -
> 3.
£
™~
%
c
&
~ 2.0
1.0 -
.0 ’

13 (radians)

FIGURE 15. The variation of the observed fringe spacing é* when the out-of-plane
rotations are identically zero. The angle 3 is the angle between the
ridges of the deformed grating and the fixed X, axis, which is aligned
with the ridges of the undeformed grating (v; is the rotation of the
ridges about the normal to the grating plane). The fringe spacing is
always maximum at y3 = 0. Negative values for the stretch ratio r
have a similar effect on the fringe spacing. wg = 1.667um corresponds
to the grating wavelength used in the experiments.

Figures 15 and 16 show the variation of the fringe spacing and inclination in
the case of zero tilting of the grating plane. The choice of wy = 1.667 um matches

the grating wavelength used in the experiments.
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OBSERVED FRINGE INCLINATION WITH NO OUT-OF-PLANE ROTATION

4.0 ! ! | |
= 0.000 g: ooy
r=(w—wg)/wg N ——r =0.010 117 5000
3.0 [ Wo=1.667um N o0
-\\\ ______ r = 0.100 g: 0 000

¢* (radians)

v3 (radians)

FIGURE 16. The variation of the observed fringe inclination ¢* when the out-of-
plane rotations are identically zero. The angle 3 is the angle between
the ridges of the deformed grating and the fixed X, axis, which is
aligned with the ridges of the undeformed grating. (Alternatively, 3
is the rotation of the ridges about the normal to the grating plane.)
Note that the fringe inclination is periodic in 7; the discontinuities
at v3 = 0 are transitions across branches of the arctangent function.
Negative values for the stretch ratio r change the sign of the deviation
from the line at r = 0. wy = 1.667um corresponds to the grating
wavelength used in the experiments.

2.3.10 Approximations for General Deformations

The case of planar deformation provides a starting point for approximating the
equations describing the fringes in cases where the deformation does not remain
strictly in a plane parallel to the original mean grating surface. These approxima-

tions will help to show the dominant sources of error caused by the out-of-plane
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rotations y; and ;. In effect, it is desirable to be able to interpret the fringes
directly as contour lines of displacement, rather than to try to calculate the under-
lying parameters w and 73. The identity of equations (2.3.48) and (2.3.49) with
the equations for the case of geometric moire means that the fringes do represent
contours of displacement when v; = 72 = 0. If the effect of out-of-plane rotations
on equations (2.3.38) and (2.3.39) can be neglected, then the fringes can still be
interpreted as contours of displacement. In the initial, undeformed configuration,
both of the diffracted rays are parallel to the global X3 axis, which corresponds to
the grating x; axis, so uz = vz = 1. We assume that as the grating deforms, these
components do not differ greatly from unity. 1 Using this assumption, uz and vs

can be approximated by two—term Taylor expansions about unity:

1
u3 :1—§(uf+ug)

(2.3.50)
1
v3 =1-— E(vf —{—v%)
With this assumption, the component of z along the z3 axis is
1
23 =uz — vz = 5('0? +vi —uf —uj) (2.3.51)

Using equations (2.3.31) through (2.3.32), which spell out the components u;, u,,

v; and v,, one finds

A ) .
23 =2 - sin a cos 73 cos 72 | (—siny, cosa)

+ (sin a sin ys cos y; — sin a cos 73 sin -y, siny; )(cos a cos y2 siny; )| (2.3.52)
From the expressions for z; and z; in equations (2.3.33) it is seen that

z3 = z1(— sinyz cosa) + z3(sin y1 cos ¥ cos a) (2.3.53)

1 This assumption can be justified on the basis of the physical limitations of the optics used
to record the fringes. Large changes in these components that would violate this assumption
cause the light from the specimen to fall outside the aperture of the recording camera.
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Thus, for this approximation to the components u3 and vz, we can write the com-

ponents of z as

o
zZ1 = 2(; ~— SIN & COS Y3 COs 72>
(2.3.54)

29 = 2(sin asin 3 cosy; — sin a cos 3 sin -y, sin ;)

z3 = z1(—sin vy, cos &) + z2(sin 7y; cos vz cos )

We can now evaluate the expressions for the observed fringe spacing, §*, and
the fringe inclination, ¢*, in equations (2.3.38) and (2.3.39). The denominator in

equation (2.3.38) is [z - z — (z - E3)?]%. After some algebra, this is found as

[z-z2—(z-E;3)?] H

= [z +2
1
2

+ (21 siny, — 22 siny; cos 72)2(c032 o — (1 4 cosyy cos ¥z cos a)z)]

(2.3.55)

In order to determine the fringe inclination ¢*, we must find z - E; and z - E,.
g

Again, after some algebra, we find

z - Eg = z1(cos v, sinys) + z2(sin~y; sinyz siny; + cos vy cos v3)
+ z1(—siny, cos &)(cos 1 siny, sinyz — siny; cos 73 )
+ z2(sin y1 cos 2 cos a)(cos 7y sin g sin y3 — siny; cos vz )

(2.3.56)

z - Eq = z1(cos 7y, cosvs3) + z2(siny sinyz cosy3 — cosy; sin~ys)
+ z1(—sin~y; cos a)(cos 1 sin vz cos y3 + siny; sin ;)
+ z5(sin y1 cos 2 cos a)(cos v siny, cosyz + sin vy sin ;)

(2.3.57)
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2.3.11 Small-Angle Approximations

As the plane of the grating rotates away from its initial orientation, fringes are
generated that are not due to the in-plane deformation alone, but have a contri-
bution that is due to the tilt of the grating surface. The effect of this tilt can be
estimated by approximating the rotations that change the orientation of the grat-
ing plane with small angles. This approximation will provide information about the
leading sources of discrepancy in the equations describing the fringe spacing and

orientation.

If the angles v; and 7, (which are measures of how far the plane of the grating
has varied from its initial orientation) are restricted to be small, one has siny, = 74,
cosvq = 1, where @ = 1,2. The angle 73 1s not restricted, as it is part of the in-plane

deformation, although this angle is also usually small.

With these additional approximations, the components of the vector z are found

to be

w

(5 o)
z1 =2 — —silnacosys
zp = 2(sinasin-ys — y;y2 sin a cosv3) (2.3.58)
z3 = z1(—72 cos a) + z2(y1 cos &)
Again, to determine the observed fringe spacing and inclination, we must eval-
uate equations (2.3.38) and (2.3.39). The denominator in equation (2.3.38) is found

as

1 1
[z-z—(z-E3)%]? = [2] + 25 — (2172 — 22m1)*(1 + 2 cos )] 2 (2.3.59)
The terms needed to evaluate equation (2.3.39) are

z-E; = 2(sinvys) + z2(7172 sinys + cosvs)
+ z1(—72 cosa)(ya sinyz — 1 cos 73)

+ z2(y1 cos @) (v sinys — 1 cosys) (2.3.60)
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z - By = z1(cosvs3) + 22(7172 cosys — sin~s)
+ 21(—2 cos a)(-y2 cosys + 1 sinys3)

+ 22(m cos @) (72 cos 73 + 71 sin7s) (2.3.61)

Making further use of the small-angle approximations, the third term in equa-
tion (2.3.59) can be neglected with respect to the first two terms, since it is of the
order vovs times the first two terms, and is itself identically zero when the sum of
the first two terms is zero. (z%? 4+ y% = 0 => 2 = y = 0). So for this approximation

1
2 __

(22— (2 B3)?]? = [22 + 2]

AN, AL
=2{|— ] +sin°a—2—sinacosy;
w w
3
+ ’yf’yg sin? a cos? Y3 — Y172 sin® a sin 273J

(2.3.62)

Expanding the expressions in equations (2.3.60) and (2.3.61) and making use

of the small-angle approximations, we find that

z-E A . A
5 2 = Zsin 73 — Y1772 sina cos 2y3(1 + cosa) + y3y2— cosyz cosa  (2.3.63)
w w
Z - E1 /\ . . . /\ .
5 =, €S —sina + 1172 sinasin 293(1 + cosa) — ;72— sin 3 cos a
w w

- 7373 sin « cos? v3(1 + cosa) + (7;‘) — 'yg) sin a sin® 73 cos &

(2.3.64)
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As stated earlier, it is assumed that the initial grating wavelength is wo and that
the incoming laser beams are aligned so that the initial fringe spacing is infinite,
which leads to the relation sina = A/wg. Making this substitution in equation

(2.3.38) for the apparent fringe spacing 6* yields the result that

WWy

§* = —  (2.3.65)

2 [{wg + w2 — 2wwg cos vz} + Y2yEw? cos? y3 — Y y2w? sin 23

Upon substitution of sina = A\/wp in equations (2.3.63) and (2.3.64) in order

to determine the apparent fringe inclination ¢*,

'UJU)O(Z . Eg)

o = {wo sinyz} — 1172w cos 2y3(1 + cos a) + y172wo cOS Y3 cOS €

(2.3.66)
-E
wwogz,\ 8 ={wo cos 13 — w} + 7172w sin273(1 + cos &) — y172wo sin 73 Cos &

— 242w cos? v3(1 + cosa) + (77 — 72 )wsin® y3 cos
(2.3.67)

From these two equations the apparent fringe inclination ¢* can be determined as

’U)U)Q(Z . Ez)/z/\ _ (Z . EQ)
wwe(z - E1)/2A (2 -E;)

tan ¢* = (2.3.68)

2.3.12 Discussion

Equations (2.3.65) and (2.3.68) describe the observed fringe spacing 6*, and
the angle between the X, axis and the fringes, ¢*, when the angles that represent
tilting of the grating plane, angles v, and 73, are restricted to be small. The terms
in braces {} in equations (2.3.65) through (2.3.67) are exactly those terms found
in the special case of planar deformation, so if the angles ; and v, are identically
zero, we recover the equations for planar deformation, as expected. The terms
in braces represent the in-plane deformation, and the remaining terms are due to
the out-of-plane rotation. Note that the remaining terms in equations (2.3.65)
through (2.3.67) are all of second or higher order in the small angles v1 and 7.

Unfortunately, even though these terms are small, it is possible for the terms that
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are due to the in-plane deformation to be identically zero, so that the terms that
are due to the out-of-plane rotations dominate the equations. It is interesting to
see that in all the terms of equations (2.3.65) through (2.3.67), except for the last
term in equation (2.3.67), the angles v; and +, are coupled. It is also interesting to
see that cos a does not appear in equation (2.3.65), which means that the observed
fringe spacing is independent of the wavelength of light, A, as it was in the case
of strictly planar deformation. The angle « is related to the wavelength of light
through the equation sin a = A/wy, so that cosa = \/1—:—(/\—2/?(2)5. Thus, the cos «

terms are the only terms that are wavelength—dependent.

EFFECT OF OUT-OF-PLANE ROTATIONS ON OBSERVED FRINGE SPACING

5.0 | T | T
_ Y1= 0.000
—— r = 0.000 Yo= 0000
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4.0 07770 —--r = 0.000 Y17 0-107
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FIGURE 17. The variation for §* with out-of-plane rotations for the case where the
stretch ratio is zero. In this case the effect of the out-of-plane rotations
is most severe. The offset of the curve for larger 7; and -, would be in
the opposite direction if v; or v, were negative.
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Recall that Figures 15 and 16 show the variation of the spacing and inclination
of the observed fringes when there is no tilting of the specimen surface, so that
71 = 72 = 0. These plots are generated from equations (2.3.48) and (2.3.49), the
equations describing the fringe spacing and inclination for the special case of planar
deformation. These figures provide a baseline by which to judge the effects of the
tilt introduced through angles v; and 7, as will be seen in Figures 17 through 20.

EFFECT OF OUT-OF-PLANE ROTATIONS ON OBSERVED FRINGE INCLINATION

4.0 : , ' |
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FIGURE 18. The variation for ¢* with out-of-plane rotations for the case where the
stretch ratio is zero. Again, this is the case where the effect of the
out-of-plane rotations is most severe.

Figure 15 shows the variation of fringe spacing with the stretch ratio of the
grating (r = (w — wo)/wy), and the rotation of the ridges of the grating about the
normal to the grating plane (73). For the case of zero stretch, the fringe spacing is

infinite at 43 = 0; however, the fringe spacing drops off quickly as 3 differs from
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zero. For stretch ratios different from zero, the fringe spacing is still a maximum at
~3 = 0. Only positive stretch ratios are shown in the figure; negative stretch ratios
would have a similar effect on the fringe spacing. Note that at a stretch ratio of
r = 0.100, the fringe spacing is less than 10 X wg even at y3 = 0, indicating that
for the grating in the experiments, the fringe spacing would be less than 20um for

a stretch ratio of 0.100.

EFFECT OF OUT-OF-PLANE ROTATIONS ON OBSERVED FRINGE SPACING
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FIGURE 19. The variation for §* with out-of-plane rotations for the case where the
stretch ratio is an intermediate value. (About 1% strain.) In this case
the error that 1s due to the out-of-plane rotations is less severe than
for the case where the stretch ratio is zero.

Figure 16 shows the variation of the observed fringe inclination with respect to
the fixed Xy axis. The apparent discontinuities at y3 = 0 are smooth transitions

from one branch of the arctangent function to another branch. Again, only positive
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stretch ratios are shown; negative stretch ratios would cause the curves to deviate

from the » = 0.000 case in the opposite sense.

EFFECT OF OUT-OF-PLANE ROTATIONS ON OBSERVED FRINGE INCLINATION

4.0 T T | I
_ Y4= 0.000
r=0.010 Yo= 0.000
r={W=wg) /Mo _ _ ¥4= 0.010
= 0.010 ‘1 010
3.0 Wo=1.667um 2= 0.010-
_ Y4= 0.100
~ 0.010 2= 0.100
n
C
=
® 2.0 - —
e
%
hss
1. |
i ]
1 3 5

13 (radians)

FIGURE 20. The variation for ¢* with out-of-plane rotations for the case where the
stretch ratio is an intermediate value. (About 1% strain.) In this case
the error that is due to the out-of-plane rotations is less severe than for
the case where the stretch ratio is zero, except near the region where

"/3:0.

Figures 17 and 18 show the effect of different values for the out-of-plane ro-
tations v, and 7, when the stretch ratio is zero. These plots are obtained from
equations (2.3.65) and (2.3.68), which determine the fringe spacing and inclination,
assuming that 4; and v, are small angles. Such is the case when the grating does
not change its wavelength, but is rigidly rotated by varying amounts about the

three axes defined by the ridges of the grating. The effects of the tilting of the
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grating plane are most severe near 73 = 0; at v3 = 0, there is no in-plane deforma-
tion at all. It can be seen in Figure 17 that near 43 = 0, the fringe spacing is off
by several orders of magnitude. Similarly, in Figure 18, the angle ¢* near v3 = 0
can be off by 90°. However, away from ~3 = 0, the curves approach the baseline
curves of Figures 15 and 16. It can also be seen that the curves of y; = v, = 0.010
are obscured by the baseline curves of v = 72 = 0.000. In the figures, only the
case of v3 = 72 = 0.100 shows a deviation from the case where the tilt is zero.
The condition that 73 = v = 0.100 is about the limit at which the small-angle

approximation can be applied.

Figures 19 and 20 show the effect of varying amounts of tilting for a second
case displayed in Figures 15 and 16, the case where the stretch ratio is r = 0.010.
This value corresponds to about 1% strain. Again, the effects of the out-of-plane
rotations are localized about 3 = 0, and the deviation from the case when there
is no tilting is apparent only for 7; = 9, = 0.100, which represents a reasonable
limit for applying the small-strain approximation used in generating these curves.
The deviation in Figure 19 is much less severe than in Figure 17; the maximum
deviation appears to be about one-half of an order of magnitude. On the other

hand, in Figure 20, the deviation near ;3 = 0 may still be 90°.

It is apparent that as the in-plane deformation increases, the errors introduced
by the out-of-plane rotations are reduced. This fact indicates that for a measure-
ment near the tip of a crack, where both the in-plane deformation and the out-of-
plane rotations may be large, large—enough in-plane deformations will overwhelm
the effect of the out-of-plane rotations in the fringe patterns obtained using the

moire interferometer.
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2.3.13 Effect on Current Study

It was hoped that the effect of the out-of-plane rotations on the technique
of moire interferometry could be neglected for all cases. As shown in Figures 17
through 20, however, neglecting that effect is not possible. It is still necessary to
estimate the effect of the out-of-plane deformation gradient at the tip of the crack on
the measurements made for the current study. The out-of-plane deformation field
from the finite—element model (described in Section 4.3) will be employed along

with some details of the experimental apparatus (described in Sections 2.4.5 and

4.4).
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FIGURE 21. The variation for 6* with out-of-plane rotations for the case where the
stretch ratio is zero. In this case the effect of the out-of-plane rotations
is most severe. The choice of v3 = 0.040 and o = 0.040 is motivated
by the maximum rotation allowed in the experiment.
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FIGURE 22. The variation for ¢* with out-of-plane rotations for the case where
the stretch ratio is zero. Again, this is the case where the effect of
the out-of-plane rotations is most severe. The choice of v; = 0.040
and 7, = 0.040 is motivated by the maximum rotation allowed in the
experiment.

The angular aperture of the camera used for the experiment is about 0.08
radian. This is a measure of the maximum allowable angular deflection from the
optical axis of the camera, which may occur for a light ray originating from the
center of the field of view. In effect, the angular aperture limitation results in
shadows on the photograph where the light rays deviate from the camera axis by
more than 0.08 radian. In reflection, a rotation of the surface of 0.04 radian leads
to an angular deflection of the reflected light of 0.08 radian. The effect is somewhat

less in diffraction, where a rotation of the surface of 0.04 radian leads to an angular

deflection of 0.077 radian of the diffracted light. Thus, the experimental apparatus
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places an upper bound on the surface slope of about 0.04, since larger slopes deflect

the light beyond the aperture of the camera.

Figures 21 and 22 show the effects of a surface slope of 0.04 on the observed
fringe spacing and inclination, in comparison with a surface slope of 0.1. Actually,
with both v; = 0.040 and 7, = 0.040, this is slightly more severe than a slope of
0.040. These figures represent the case where the in-plane stretch is zero, which is

the case where the out-of-plane deformation has the most effect.
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F1GURE 23. The variation for 6* with out-of-plane rotations for the case where the
stretch ratio is 0.010. This corresponds to about 1% strain. The choice
of 1 = 0.040 and ~, = 0.040 is motivated by the maximum rotation
allowed in the experiment.

Figures 23 and 24 show the effects of a surface slope of 0.04 on the observed

fringe spacing and inclination for an intermediate level of in-plane stretch, about
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FIGURE 24. The variation for ¢* with out-of-plane rotations for the case where the

stretch ratio is 0.010. This corresponds to about 1% strain. The choice
of 41 = 0.040 and v, = 0.040 is motivated by the maximum rotation
allowed in the experiment.

1% strain. Also shown is the effect of a surface slope of 0.1. Again, with both

71 = 0.040 and -, = 0.040, this is slightly more severe than a slope of 0.040.

It appears that the effects of the out-of-plane rotations can be neglected for

slopes as large as 0.04, meaning that no correction will be necessary for the data

gathered in the current study. In the future, the angular aperture of the camera will

be increased, and it is clear that some correction may have to be made, using out-

of-plane displacement data from the numerical model or experimental out-of-plane

displacement data from the Twyman-Green interferometer.

The size scale at which such surface slopes occur can be estimated from the
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output of the finite—element calculation. Figures 25 through 28 show contours of
surface slope for the three highest loads at which comparisons will be made between
the experiment and the finite—element model (Section 4.3), 35000 Newtons, 52300
Newtons and 73500 Newtons. The ultimate failure load of the three—point-bend

specimen was about 78000 Newtons.
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FIGURE 25. Contours of surface slope around the notch tip from the finite-element
calculation. The load is 35000 Newtons; the ultimate failure load in
the experiment was about 78000 Newtons. The plastic zone is about
twice as large as contour 1, which corresponds to a slope of 0.010.

Contours representing surface slopes of 0.01, 0.04 and 0.10 are shown in the
figures. In each figure, the plastic zone is about twice as large as the contour
corresponding to a slope of 0.01. The contour for a slope of 0.04 represents the
angular aperture limitation of the experiment, and matches well with the shadow

spots observed in the experiment. From Figure 25, it can be seen that the surface
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slope does not attain a magnitude of 0.10 anywhere on the specimen at a load of

35000 Newtons. From Figures 26 and 27 it can be seen that the slope ahead of the

notch is not as severe as the slopes on either side of the notch tip. This is a result

of the high shear deformation, which is present at the “corners” of the notch tip.
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FIGURE 26. Contours of surface slope around the notch tip from the finite—element
calculation. The load is 52300 Newtons; the ultimate failure load in
the experiment was about 78000 Newtons. The plastic zone is about
twice as large as contour 1, which corresponds to a slope of 0.010.

Figures 27 and 28 both show contours of surface slope at 73500 Newtons. The

difference in the figures is that Figure 27 was calculated from a model that includes

tunneling at loads above 63500 Newtons, and Figure 28 was calculated from a model

that did not include tunneling. The tunneling of the crack is discussed in more detail

in Section 4.5. The tunnel at 73500 Newtons is about 0.8 millimeter deep in the

center of the specimen and only 0.03 millimeter long at the free surface. The profile
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FIGURE 27. Contours of surface slope around the notch tip from the finite-element
calculation. The load is 73500 Newtons; the ultimate failure load in
the experiment was about 78000 Newtons. The plastic zone is about
twice as large as contour 1, which corresponds to a slope of 0.010. This
diagram i1s calculated from a model that includes the tunneling of the
crack along the original plane of the crack. The tunnel at this load is
about 0.8 millimeter deep in the center of the specimen, but only 0.03
millimeter long on the free surface.

of the tunnel is bell-shaped, somewhat like a Gaussian distribution. The two figures
are included here to demonstrate that the effect of the tunnel is felt at distances

much larger than the tunnel itself.

The contours representing surface slopes of 0.04 in Figures 25 through 27 match
fairly well with the shadow spots observed in the photographs from the experiment.
Actually, the shadow spots should be slightly larger than predicted by the contours,
as the angular aperture limitation of 0.08 is determined at the center of the field of

view. Away from the center of the field of view, the allowable angular deviation of
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F1GURE 28. Contours of surface slope around the notch tip from the finite—element
calculation. The load is 73500 Newtons; the ultimate failure load in
the experiment was about 78000 Newtons. The plastic zone is about
twice as large as contour 1, which corresponds to a slope of 0.010. This
diagram is calculated from a model that does not include tunneling of
the crack. This diagram is included to indicate that the tunnel has an
effect on the deformation field at distances much larger than the tunnel
itself.

light rays from the camera axis changes, becoming smaller on one side of the lens
and larger on the other side of the lens. In most cases, at least one of the intersecting
laser beams is deflected away from the lens when the surface slope is below 0.04,
particularly at 73500 Newtons, where the out-of-plane displacement gradients are

fairly large over a wide field.
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2.3.14 A Final Word on the Effects of Tilting

It is clear that tilting of the plane of even an undeformed diffraction grating
will introduce fringes. It would be useful if the fringes introduced corresponded to
the displacement of the grating surface caused by the rotation. A simple counter—
example shows that this is not the case. Refer to Figure 29, where the grating
having wavelength wg (as indicated by the circles) has undergone a rigid rotation
of v, about the X, (or z2) axis. The crossed laser beams form an interference
pattern consisting of planes of constant intensity parallel to the X7 X3 plane, so as
to measure the displacement parallel to the X; axis. The displacement parallel to
the X7 axis of a point on the grating surface initially at position a measured along
the X; axis is given by a(cosvy2 — 1), assuming that the point at the origin of the
coordinate frame remains fixed. The spacing of the rotated grating projected onto

the fixed X; X, plane is given by wg cos~,.

]

W, C0SY,

FIGURE 29. A rigid rotation of the grating by +2 about the X, axis. The spacing
of the rotated grating with respect to the fixed X; X, plane is given by
wWg COS Yq.

If the fringes observed using the moire interferometer do correspond to the
displacement parallel to the X7 axis caused by the rotation, then the fringe spacing

and inclination can be found by assuming that this situation is equivalent to the



_81-

situation of two moire grids, a reference grating with spacing wg /2 formed by the
interfering laser beams, and a specimen grating with spacing wp cosy2. Referring
to Section 2.2.1, it is seen that the fringe spacing, ¢, should be found as

Wq COS 72

§= 2082
2(1 — cos )

(2.3.69)

The fringe inclination, ¢, should be identically zero for any nonzero ;. For v, = 0,
the fringe spacing is infinite, and the fringe inclination is undefined as tan ¢ = 0/0,

since the gratings match exactly.

Equation (2.3.69) is the source of Post’s estimation of the sensitivity of the
moire interferometer shown in equation (1.2.1), using a Taylor expansion for cos vy,
and neglecting terms of order 75 with respect to unity. Note that he writes the
equation in terms of the frequency of the fringes and the frequency of the virtual
reference grating formed by the crossed laser beams; the frequency is just the inverse
of the wavelength. The rotation of the grating will always cause a displacement that
corresponds to a compression, and Post suggests that the frequency of these fringes
will be

F=f~3/2 (2.3.70)

where f is the frequency of the virtual reference grating, and =, is the angle of

rotation about the X5 axis.

It will be shown that fringes observed using the moire interferometer do not
correspond to the displacement that is due to rotation, even in this simple case.
To show this is true, the fringe spacing of equation (2.3.69), and the accompa-
nying fringe inclination (¢ = 0), will be compared to the observed fringe spacing

determined from the equations calculated using the method of Section 2.2.1.

The actual fringe spacing and inclination that are due to the rigid rotation
cannot be found using the small-angle approximation. In this case, the angles v;
and 73 are identically zero, and there is no stretching, so w = wg. When these values
for w, ; and 73 are used in equations (2.3.65) and (2.3.68), they yield an infinite
fringe spacing and an undefined fringe inclination, as would be the case if cosy,

were replaced by 1 in equation (2.3.69) above. The small-angle approximation fails
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because of the coupling of the various terms in equations (2.3.65) and (2.3.68).
Interestingly, this means that if there is a small rotation about the X, axis only,
there are no fringes introduced by that rotation. A similar result occurs if there is a
small rotation about the X; axis only. Actually, even a large rotation about the X,
axis does not introduce any fringes, as the diffracted laser beams will still overlap
exactly. However, a large enough rotation will cause all or part of the diffracted

beams to fall outside the camera aperture.

It is necessary to return to equations (2.3.31) and (2.3.32) to investigate the
effect of a finite rotation about the X3 axis only. Making the substitutions 4; = v3 =
0 in equations (2.3.31) and (2.3.32), the equations for the unit vectors describing
the diffracted plane waves are given by

A

U3 = — — SIN & COS y2 + COS & SiN ¥z
w

up =0 (2.3.71)
us = (1= ()’]?
v = —— +slna cosyz + cosasiny,
w
vy =0 (2.3.72)

1
vs = [1 = (v1)"]?
The components of the difference vector z = u — v, which characterizes the
fringe pattern in the rotated grating coordinate frame, zyz,z3, are then found as

A ;
z1 =2 — —sinacosy;

w

2y = 0 (2.3.73)

2= 1= ()’ — 1= ()]
For a rigid rotation of the grating, the deformed grating wavelength w is re-

placed by the undeformed grating wavelength wy in equations (2.3.71), (2.3.72) and
(2.3.73). It should be recalled that sina = A/ws.

As was shown earlier, the fringe planes are perpendicular to the vector z with

a spacing ¢ given by § = \/|z|.
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The unit vectors parallel to the fixed X;, X> and X3 axes, E;, E; and E3 are

found as
E, = cosyze; + sinyze3

E; = e9 (2.3.74)
E3 = —sin~y;e; + cos y2e3
where e, e; and e3 are the unit vectors aligned with the rotated z;z2x3 grating

coordinate frame.

As in Section 2.3.8, the observed fringes are determined by the vector that 1s
the projection of z on the X;—-X, plane. Thus, the observed fringe spacing, 6*, is

given by
A
* = 2.3.
6 |z — (z - E3)Es| (2.3.75)

which can also be written as

. A
5 = P AT (2.3.76)

The observed fringe inclination, ¢* is determined as

[Z—(Z'Eg)Eg]'EQ _Z'E2

t * = =
aﬂ¢ [Z—(Z'E3)E3}'E1 Z'E]

(2.3.77)

From equations (2.3.73), (2.3.74) and (2.3.77), it can be seen that ¢* is identi-

cally zero for nonzero 7,, and for 72 = 0, ¢* is undefined as tan ¢* = 0/0.

It remains only to show that 6* is not equal to the fringe spacing of equation
(2.3.69). Again making use of a two—term Taylor expansion for u3 and v3, so that

uz =1 — (u?/2) and vy = 1 — (v}/2), the observed fringe spacing ¢* is found as

wWo
§* = 2.3.78
2(1 — cos ;) | cos v, — cos asin? ;]| ( )

The use of the Taylor expansion for uz and v3 is quite good for very small values
of ~q; the deviation between the 6* of equation (2.3.78) and the true 6™ calculated
without any approximation for uz or vs is less than 5% for v, less than 0.5 radian

(30 degrees), and less than 0.2% for v, less than 0.25 radian (15 degrees).
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On the other hand, the deviation between ¢ as calculated in equation (2.3.69)
and é6* as calculated in equation (2.3.78) is on the order of 50% for v, = 0.5 radian
(30 degrees), and about 12% for v, = 0.25 radian (15 degrees). For v = 0.1 radian
(6 degrees), the deviation is about 2 %.

It may thus be seen that the fringes caused by tilting of the grating plane are
not equivalent to fringes that correspond to the displacement parallel to the X; axis
caused by such tilting, even in this simple case. However, the deviation between

the two fringe patterns would not be too large for angles up to about 0.1 radian.

A similar result holds if the grating is allowed to stretch or shrink from the
initial wavelength wy to a new wavelength w before the rotation about the X, axis
occurs. The fringe spacing predicted from a comparison of a moire grid having
spacing wo to a grid whose spacing is the projection of the final wavelength on the
X7 X5 plane, w cos g, is

Wo W COS Y2

§ (2.3.79)

) |woe — w cos |
This is analogous to the fringe spacing calculated in equation (2.3.69) from the sit-
uation shown in Figure 29. The fringe inclination ¢ is identically zero for w cos v, #

wy; otherwise, it is undefined.

Using the procedure outlined above in equations (2.3.71) through (2.3.78), the
observed fringe spacing in the case where the grating is allowed to stretch or shrink

from wavelength wy to wavelength w is given by

§* = el (2.3.80)

" 2|wg — w cos Yy | cos vy — cos asin® v,

The observed fringe inclination, ¢*, is identically zero for w cos vy, # wg; otherwise,

1t 1s undefined.

It can be seen from comparing equations (2.3.79) and (2.3.80) that although
the fringe spacing predicted using the two approaches do not match, the trend in
the fringe spacing is similar in that the fringes in both cases depend on the relative
magnitude of wy as compared to wcosvy,. The term |wy — wcosv2| in equations

(2.3.79) and (2.3.80) acts to include the effect of the displacement that is due to the
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rotation on the fringe spacing. As seen in Figure 29, the effect of rotation should
be to make the rotated grating seem to have a smaller wavelength compared to the
unrotated grating. If the grating has been compressed so that w is less than wy, the
rotation about the X» axis should make the grating wavelength seem even smaller,
which it does as w cosy2 < w. This produces fringes that are closer together. If the
grating has been stretched so that w is greater than wy, the effect of the rotation
causes the grating to appear to have stretched less than it actually has, so that the
fringes move farther apart until w cosy; = wg. At that point, the fringe spacing is
infinite. If v, continues to increase, the projected wavelength w cosvy; will be less
than wy, corresponding to a contraction of the grating, and the fringes will again
move closer together. If wy is identical to w cos s, the fringe spacing is infinite in

both equation (2.3.79) and equation (2.3.80).

The other term in the denominator of equation (2.3.80), | cosy, — cos a sin vy,
is always less than or equal to unity, if v, is still small enough so that the Taylor
expansion approximation for u3 and v3 is appropriate. On the other hand, equation
(2.3.79) contains the term cos~ys in the numerator, and cosy; < 1 for the range of
allowable v5. Thus, the fringe spacing predicted by equation (2.3.80) will always
be greater than the fringe spacing predicted by equation (2.3.79), for nonzero ;.
The deviation between the fringe spacing calculated from equation (2.3.79) and the
fringe spacing calculated from equation (2.3.80) is also on the order of 50% for
v2 = 0.5 radian (30 degrees), and about 12% for v, = 0.25 radian (15 degrees). For
v2 = 0.1 radian (6 degrees), the deviation is about 2 %. This is the same as for the

case where there is no change in the grating wavelength.

If 5 is small, both cos v, and | cos v —cos « sin? 5| are close to unity, so that the
B 7 7 Y

fringe spacing is primarily controlled by the magnitude of the term |wo — w cos y2|.

For these simple examples of tilting the grating plane, the fringe spacing ob-
served using the moire interferometer does not exactly correspond to the fringe
spacing that would be seen if the displz;;ement that was due to the rotation were
included in the analogy of comparing"'c'\;&;o moire grids. However, the fringe spacing

does follow the trend of the displacement by comparing the undeformed grating
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wavelength, wq, with the projection of the deformed grating wavelength on the
fixed X; X, plane, wcos~y,. Thus, for small out-of-plane displacement gradients, a
reasonable first approximation to including the effects of the rotation of the grating
plane may be to assume that the fringe patterns also capture the displacement that

is due to the rotation of the grating plane.

If there is no change in the plane of the diffraction grating, the equations
describing the fringes observed using the moire interferometer are valid even in the
presence of large deformations. It also appears that the displacement that is due to
rotation of the grating plane is also nearly accounted for in the fringe patterns, if the
rotation of the grating is small enough. Thus, it seems that moire interferometry
can be used in the presence of large in-plane deformations as long as the out-of-
plane deformation gradients are small enough, if it is recognized that the fringes
are observed on the surface of the deformed configuration. The greatest difficulty
with the technique is then introduced by the necessity of relating the displacements

mapped on the deformed configuration back to the initial undeformed configuration.

2.3.15 Inhomogeneous Deformations

The equations describing the fringe spacing and inclination for an arbitrary
(nonplanar) deformation have been derived under the assumption that the defor-
mation is homogeneous; this assumption implies that the deformed grating remains
periodic. For continuum deformation there will be a size scale at which any defor-
mation can be considered locally homogeneous, but that size scale may be actually
smaller than the size scale of the grating wavelength. If such is the case, the forma-
tion of the fringe patterns cannot be investigated using the plane wave assumption
of Sections 2.3.1 through 2.3.3, which relies on the diffraction of plane waves from a
deformed, but still periodic, grating. Presumably, if the inhomogeneous deformation
is smooth enough on some scale relative to the scale of the grating, the directions of
the diffracted waves will also vary smoothly, and the interference pattern will still
provide a map of the deformation field. It is this assumption of sufficient smoothness

in the deformation and interference patterns that is used to extend the application
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of moire interferometry in the presence of inhomogeneous deformations.

Lack of periodicity of the grating will certainly occur at edges of the grating as
well as at discontinuities in the deformation field, if any. However, even smoothly
varying displacement fields would result in nonperiodic gratings on some scale.
It would be necessary to examine the formation of fringes by diffraction from a
grating that is not periodic in order to determine the validity of the assumption
that smoothness in the deformation field results in smoothly varying interference
fringe patterns. In effect, the question is whether the diffraction angle predicted by
equation (2.3.23) remains valid at any point where the deformed grating wavelength,

w, is not constant but a smoothly varying function of position.

Unfortunately, analytical solutions of general diffraction problems are difficult
to obtain, as the closed—form solutions for diffraction problems invariably rely on a
convenient coordinate frame in which a separation of variables may be employed.
This method of solution cannot be used in case of diffraction from a grating, so

some sort of approximate technique must be employed.

Most of the work analyzing diffraction gratings is aimed at predicting the
diffraction efficiency of a given grating profile. A periodic grating profile implies
periodicity in the diffracted light waves, and if the incident light waves are plane
waves, then the diffracted light waves are also plane waves aligned with the direc-
tions of the various, discrete diffraction orders [81]. The periodicity of the grating
ensures that the diffracted light will be distributed through the diffraction orders
in plane waves, and the plane waves provide a basis for a series approximation to
the diffraction problem. Petit et al.[55] use this result to predict the diffraction effi-
ciency of various grating profiles by assuming a series solution in plane waves along
each of the discrete diffraction orders and matching the amplitudes of those plane
waves to the boundary conditions imposed by the grating profile. (There is some
question as to whether this approach is valid near the grating surface, as the plane
wave solutions resulting from the periodicity of the grating profile may not apply

“in the vicinity of the grating surface, particularly in deep grooves, as discussed in

Reference [55].)
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One possible way to estimate the effect of inhomogeneous deformation is sug-
gested by Figure 10, in which the diffraction grating is compared to a series of
equally spaced line sources. Perhaps the inhomogeneous problem could be attacked
by using a series of line sources that are not equally spaced, at least in some finite
region, and summing over the cylindrical monochromatic waves that emanate from
the sources. The phases of the sources would be matched to the phases of the plane
waves of the laser beams that impinge on the grating from opposite sides. These
line sources could be distributed even over a curved surface, and the line sources
themselves curved (or made up of smaller line segments) to include all displacement

components.

Another approximate technique for attacking such a problem might be through
a finite—element approach, or perhaps a boundary—element approach, in which the
deformed grating profile would be modeled as a boundary condition for the solution
of the harmonic wave equation in free space. The boundary-element approach

might be preferred, as only the grating surface itself would need to be discretized.

2.3.16 Concluding Remarks

One important feature of the moire interferometer should be stressed, which
is that the equations describing the fringe spacing and inclination do not depend
on any assumption that the deformation is small, providing that there is negligible
tilting of the specimen surface. The fringes can be thought of as contours of rel-
ative displacement with respect to the reference grating at any deformation level.
However, at large displacement levels, one must be concerned about locating the
fringes on the deformed specimen surface, and about how to relate locations on the
deformed body with respect to the reference configuration of the undeformed body,

if that should be necessary.

In undertaking the derivation of the equations describing the fringes for a gen-
eral (not necessarily planar) deformation, the goal was to determine the effect of
deformations that rotate the plane of the grating surface. This investigation was

motivated by the fact that the surface near the tip of a crack dimples inward.
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The dimple is confined to a small region, and even within this region, the surface
slopes appear to be well approximated by small angles over most of the dimple, as
shown by the finite—element model, and from data taken using the Twyman-Green

interferometer.

Two approximations were made to obtain the fringe spacing and inclination
in equations (2.3.65) and (2.3.68). The first approximation was a two-term Taylor
expansion for the normal component of the unit vectors representing the diffracted
beams. The second approximation was a small-angle approximation for the angles

representing the tilt of the plane of the grating, letting siny = v and cosy = 1.

The two-term approximation for the out-of-plane component of the unit vectors
representing the diffracted beams, u3 and vs, is quite good for the experimental
moire interferometer. Initially, u3 and vz are arranged so that ug = vz = 1, which
means that the diffracted beams travel along the surface normal, and the expansion
for us and vs is made about this initial condition. The error in this approximation
is less than 1 percent for deviations of the diffracted beams away from the surface
normal up to 30 degrees, while the theoretical limit that can be captured using the

current configuration of the interferometer is about 20 degrees.

The small-angle approximation to the general equations simplifies the equa-
tions somewhat and helps to determine the leading sources of discrepancy in the
fringe—formation equations, but the equations retaining the sine and cosine terms
could be used as well. It appears from the finite—element analysis that to a large
extent the surface rotation will be in the range where small-angle theory is valid.
In the experiment, any large surface rotation also means large deviations from the
original paths taken by the diffracted laser beams to the camera, which means that
some light will be lost. Additionally, when the surface rotations are beyond small
angles, the out-of-plane displacement measurement made using the Twyman-Green

interferometer may need to have a correction because of the large angles.

This investigation has treated the tilting of the grating plane as a source of error
in the fringe patterns that would be expected for the same in-plane deformation of

the grating (s.e., the same values of the deformed grating wavelength w and rotation
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v3). The tilting is considered as a rigid rotation applied to a deformed grating, with
the goal being the determination of the deformation before any rigid rotation takes
place. This seems to be a reasonable way to look at things if the tilting is very
small (nearly zero). If the tilting is not so small, it would be better to follow up
the investigation of Section 2.3.14, in which the displacement that is due to the
rotation is included in the comparison between fringe patterns for the special case
of rotation about only one axis. The fringes formed by an arbitrary (homogeneous)
deformation and rotation of the grating would then be compared to the fringes
predicted through the comparison of two moire grids, a reference grating formed by
the intersecting laser beams and a specimen grating with spacing and orientation
determined as the projection of the deformed grating on the original grating plane.
Differences between these two fringe patterns would be the discrepancy between a
pattern corresponding to the deformation that includes the rotation component and
a pattern that would be observed using the moire interferometer. The equations
derived in this section may be used to make this comparison, but the comparison
should be carried out with those equations that do not include the small-angle

approximations.
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2.4 Description of the Apparatus and the Experimental
Technique

In order to measure surface displacements using moire interferometry, a diffrac-
tion grating must first be attached or etched onto the surface of the object to be
measured. This diffraction grating is a periodic, reflective, surface height variation;
its period is on the order of the wavelength of the light used in the measurements.
Additionally, two laser beams must be brought to the specimen at a precise angle
and held fixed in space. These laser beams must originate from the same source

and must follow paths of nearly equal length to the specimen surface.

The displacement information is contained in interference fringes that have
been shown to represent contours of constant in-plane displacement. The increment
of displacement between adjacent contours is proportional to the period of the
diffraction grating and so is itself on the order of the wavelength of light used;
the smallest theoretically possible displacement increment between contours is one-
half of that wavelength. This means that moire interferometry is very sensitive to
small displacement gradients, and that the fringe density becomes very high when
the strains become large. This measurement technique displays the displacement
contours over a field that is limited by the size of the diffraction grating and the
diameter of the laser beams used to create the interference pattern. However, since
the light that travels to the observer is nearly collimated, the collection device must
have an aperture as large as the measurement area in order to collect all of the
information from the object. As the specimen deforms, the light diverges from its
initial path, and at some point the aperture will not be large enough to capture all
of the information from the specimen. Ordinarily, this situation would occur first
at the edge of the field of view, but in the case of fracture, the deformation may
be so large at the center of the field of view near the crack tip that this region also

diverts the light outside the range of the collection apparatus.

The out-of-plane deformation gradients may also cause the light to be diverted
beyond the range of the optical apparatus. Again, this phenomenon is most appar-

ent at the tip of a crack in fracture mechanics, leading to a shadow spot around the
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crack tip.

Such a shadow spot should not be confused with a caustic. The shadow spot
observed with the moire interferometer is due to a loss of information caused by a
failure of the camera optics to transmit all of the light from the specimen to the
recording film. A caustic is the result of a folding of the mapping of the light from
the specimen to the film, so that light from different points on the specimen falls
on the same point of the film, and some of the film is left unexposed. Caustics can
appear in moire interferometry if the camera is not well focussed on the surface
of the specimen, but the size of the caustic can be kept smaller than the shadow
spot caused by the inability of the camera to capture some of the light from the

specimen.

2.4.1 Fringe Quality

The measurement relies on the interference pattern between two laser beams
diffracted from the surface of the specimen. In order to produce interference pat-
terns of high contrast, the two laser beams must be mutually coherent. Actually,
this is somewhat of a circular definition, since coherence between two sets of light
waves is determined by measuring the contrast of the interference pattern between
them. In effect, coherence is a measure of how much the two sets of waves resemble
each other. If the two waves are similar, and if they are out of phase with one an-
other, they will cancel completely. In order to assure coherence, the two laser beams
must originate from the same laser and travel paths of similar length to the object.
Although lasers are nearly monochromatic, the wavelength of the laser beam does
vary slightly with time (and therefore with distance from the laser). This variation
is often approximated by considering the laser light to be the sum of two waves with
wavelengths slightly above and below the nominal laser wavelength, causing a beat
phenomenon. These two waves interfere with each other and cause the wave pattern
to vary slightly in time (and in space as the waves travel), while still retaining the
nominal laser wavelength. If the difference in wavelength between these two waves

is AX and the nominal wavelength of the laser is Ag, the path-length difference
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between the two beams AL should be such that
1

AL<§AA

for high contrast fringes. Although the laser output is more complex than the sum

(2.4.1)

of two waves, this relation is still a good estimate of the allowable path-length
difference, as described by Vest [86], if AX represents the bandwidth of the light
waves from the laser. This allowable path-length difference is called the coherence
length of the laser, and for a Helium-Neon laser, it is on the order of 20 cm, so
that for interferometric purposes the difference in path lengths between the two
beams of the interferometer should be less than 20 c¢cm and as nearly equal to
zero as possible. This notion of the coherence length is actually a description of
the temporal coherence of the laser because it describes the variation of the laser
output with time. It is related to a length because of the propagation of the light
waves and because that length is of a scale more easily comprehended (light travels

over the coherence length in 6.67 x 10719 seconds).

A second important coherence measurement is the spatial coherence of the light
waves, which describes the similarity of the waves across the width of the beam.
A laser source has excellent spatial coherence, in contrast to a diffuse monochro-
matic source, for instance, such as a sodium—vapor lamp, where the light emitted
from two separate points on the source may have different phases, amplitudes and

polarizations, even though they have the same wavelength.

The coherence of the interfering light waves is the reason that the two interfer-
ing laser beams must come from a single source, since matching the fluctuation in

the output from two different lasers is effectively impossible.

Besides matching the path lengths to maintain the temporal coherence of the
laser beams, the amplitude and polarization of the two laser beams should be sim-
ilar to provide high—contrast fringes, as seen in Section 2.3.3, where the spatial
distribution of the fringe planes was determined. The contrast of the interference

fringes between two monochromatic plane waves was shown to be

Imaz — Imi :
contrast = ———— % (2.4.2)

Ima T =+ Imin
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where I,pqz is the maximum intensity observed in the interference pattern, and Iin
is the minimum intensity observed in the interference pattern. In Section 2.3.3, the
electric—field vectors of the two interfering plane waves were used to determine
the intensity distribution of the interference. For harmonic, monochromatic plane
waves, the electric-field vector can be decomposed into a constant amplitude vector
multiplying a harmonic function of time and position. Since the intensity is a time
average of the energy carried by the light, the harmonic function averages out, and
only the amplitude vector is needed to determine the intensity. Let A be the
amplitude vector for the electric field of the first set of plane waves, and A, be the
amplitude vector for the electric field of the second vector. Assuming that the light

is linearly polarized, the vectors A; and A, are real-valued. The contrast is then

found to be
2|(A1 - Ag)|

—_— 2.4.3
AP + 1A (24:3)

contrast =

From equation (2.4.3), it may be seen that if the light waves are polarized so that
the electric fields are at 90° to each other, the contrast of the fringes is zero. Also,
if the magnitude of the vectors is very different, the contrast also tends to zero.
The maximum contrast occurs if the vectors are aligned exactly and the amplitudes

match exactly, in which case the contrast is unity.

2.4.2 The Moire Interferometer

The moire interferometer used in these experiments employs two Spectra—
Physics Model 120 S 15 mW Helium—Neon lasers, one for each of the two in-plane
displacement components to be measured. It also depends strongly on adjustable
mirrors and beam splitters for precise initial alignment with the diffraction grat-
ing. The mirrors, beam splitters and alignment hardware were all obtained from
the Newport Corporation, Fountain Valley, California. For each displacement com-
ponent, the laser beam passes through a beam expander and lens to produce a
collimated laser beam of 50 mm diameter. This beam is then reflected from a mir-
ror and passed through a beam splitter, where half of the beam is reflected and

the other half transmitted. Each of the two resulting beams from the beam split-



FIGURE 30. The moire interferometer. In the center are the two six-inch beam
splitters. The beams used to determine the horizontal displacement
are directed by the mirrors at left and right; the beams for the verti-
cal displacement are at top and bottom. All optics are mounted on a
Newport Corporation breadboard that measures three feet by four feet.
The breadboard is held in a vertical plane on top of a Newport Corpo-
ration vibration isolated optical table. All four laser beams intersect
approximately one meter from the breadboard surface.

ter travels to a mirror that directs the beam to the specimen surface. See Figures
30 through 35. This arrangement, consisting of a laser, a beam splitter and three
mirrors is used twice, once to provide laser beams that cross in a vertical plane to
measure the vertical component of displacement, and once to provide laser beams
that cross in a horizontal plane, measuring the horizontal component of displace-
ment. All of the mirrors and beam splitters are angularly adjustable by means
of micrometers, which rotate the optical components about fixed pivots in their
mounts. This feature of the interferometer makes it quite flexible and provides ease

of alignment of the laser beams so that they intersect at the specimen surface at
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FIGURE 31. The moire interferometer. A second view shown from above. At the
lower right can be seen the prism used to direct the diffracted beams
to the camera, and the camera lens itself. The breadboard and optical
table are covered by tapped holes on one inch centers.

the proper angle and at a specific location.

Photographs of the moire interferometer used in the experiments are shown
in Figures 30 and 31. The arrangement of optical components is spelled out more
clearly in Figures 32 and 33, where the two interferometers, one each for the hori-

zontal and vertical components of displacement, are displayed separately.

All of the components are mounted on a Newport Corporation breadboard
measuring three feet by four feet, and the breadboard is held upright in a vertical
plane on a vibration-isolated optical table. also from the Newport Corporation; the

table is ten feet by four feet by eighteen inches thick.

As mentioned, for high fringe contrast. the paths of each pair of laser beams

must be nearly equal, the amplitudes of the laser beams must be nearly equal, and
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FIGURE 32. Diagram of the interferometer configuration to measure the horizontal

component of displacement.
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FIGURE 33. Diagram of the interferometer configuration to measure the vertical

component of displacement.
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FIGURE 34. Diagram of the interferometer configuration to measure both the hor-
izontal and vertical components of displacement.

the polarization of the laser beams should be in the same direction. As can be seen
in Figures 32 and 33, the lengths traveled from the laser to the two mirrors at the
end of each traced path are equal. The additional distance to the specimen and then
to the camera is also equal for all four beams. The balancing of the amplitudes of
the beams depends on the beam splitters, which have a ratio of reflected intensity
to total intensity that varies between about 0.4 to 0.5, depending on the angle
between the laser beam and the beam splitter and on the polarization of the laser
beam. For the interferometer shown in the photographs, the ratio of the reflected
intensity to total intensity is about 0.4. The difference in polarization between the
two laser beams can be seen in Figures 33 and 32; the angle between the directions
of polarization is approximately the angle between the paths on either side of the
beam splitter. For the interferometer in the figures, this angle is 38.5°, the cosine
of which is 0.782, which is required by the inner product of equation (2.4.3). The

angle between the polarization directions of the incoming laser beams is retained in

the diffracted laser beams.
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FIGURE 35. Diagram of the interferometer configuration to measure both of the
displacement components with optics for beam expansion and collima-

tion.

2.4.3 Interferometer Alignment

The interferometer alignment is begun by directing the unexpanded laser beams
to the specimen. The beam that passes through the beam splitter is aligned first
by adjusting the angles of the mirror that lies between the laser and the beam
splitter (Mirror A in Figure 36) and the the mirror which the laser beam reaches
after passing through the beam splitter (Mirror B in Figure 36). By adjusting these
mirrors alternately, the laser beam can be brought to the specimen surface at the
desired location and at the proper angle. The angle can be checked by tracing
the path of the second—order beam diffracted from the specimen. Since the first-
order diffracted beam should exit along the normal to the specimen surface, the
second—order diffracted beam should return along the path of the incoming beam.
Although this order carries considerably less of the energy than the zero or first—
order beams, it is visible when using the unexpanded laser beam. After the beam
that passes through the beam splitter is aligned, the beam reflected from the beam

splitter is similarly aligned by alternately adjusting the angles of the beam splitter
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and the mirror the beam reaches after reflecting from the beam splitter (Mirror C
in Figure 36). Slight angular changes in the orientation of the beam splitter do not

significantly alter the path of the laser beam passing through it.

MIRROR A

|
| LASER

BEAM
MIRROR C SPLITTER MIRROR B

FIGURE 36. Diagram of interferometer configuration to measure the horizontal dis-
placement components. Mirrors A, B and C and the beam splitter
can be angularly adjusted about two axes with micrometers. Mirrors
A and B are adjusted to bring the the beam that passes through the
beam splitter to the specimen at a precise location and at the proper
angle so that the first—order diffracted beam exits along the normal to
the specimen surface. Then the beam splitter and mirror C are ad-
justed to bring the beam that reflects from the beam splitter to the
correct location at the proper angle. (Changing the angle of the beam
splitter slightly does not cause the beam that passes through the beam
splitter to deviate significantly from its path.) The beam expander is
then inserted into the beam, and mirror B or C adjusted to minimize
the number of fringes. The interferometer configuration for measuring
the vertical displacement component is adjusted in same way.

Once the unexpanded laser beam has been aligned, the collimating lens is
inserted into the path and adjusted so that the beam passing through it is not
deflected from its original route and so that the reflection from the lens travels back
to the laser. This adjustment ensures that the lens is centered about the laser beam

and that it is placed perpendicularly with respect to the path of the beam. The



-101-

beam expander, a microscope objective and pinhole arrangement, is then aligned.
The microscope objective lens focuses the laser beam to a small diameter, and the
pinhole filters out noise. In essence, the microscope objective acts as a Fourier
transform on the laser light in spatial coordinates, and the pinhole filters all but the
central peak of the beam in the spatial frequency domain, leaving a smooth beam
that consists only of components of low spatial frequency. The distance from the
collimating lens to the pinhole is adjusted so that the pinhole lies at a focal point of
the lens; the light that leaves the lens then consists of plane waves. At this stage the
overlapping beams diffracted from the specimen can be adjusted to produce a null
field; that is, the number of fringes visible is minimized, and made zero if possible.
If there is an initial pattern, it is hoped that it is negligible compared to the pattern
obtained when the specimen is deformed. For steel, this initial pattern consists only

of one or two random fringes. For polymers, however, the initial pattern can be

several fringes.

2.4.4 The Grating

The specimen gratings are applied after the method of Post [62]; see also Post
and Baracat, [63]. Figure 37 was taken from Post [62], and describes the process. A
holographic plate is exposed to two crossed laser beams. The crossing of the beams
produces an interference pattern of standing waves, which creates a periodic light—
intensity variation across the surface of the holographic plate as shown in Figures 8
and 9. This period can be changed by changing the angle at which the laser beams
cross. Again, the laser beams must originate from the same source and travel paths
of similar length to create an interference pattern of high contrast. During the
exposure, the structure of the emulsion on the holographic plate changes. Where
the emulsion is exposed to light, the silver halide crystals suspended in the emulsion
absorb energy and form metallic silver; this happens with more frequency in regions
where the light is bright than where it is dark [37]. During the development process,
the conversion to metallic silver is completed in those silver halide crystals that have
begun to transform. When the plate is fixed, the unchanged silver halide crystals are

removed, causing the emulsion to shrink in the regions where there is less metallic



-102-

silver. This shrinkage therefore follows the irradiance pattern of the interfering
laser beams, creating a periodic surface-height variation that acts as a reflective
diffraction grating. By coating this rippled surface with optical quality aluminum
in a thin film, the reflectivity is enhanced and so is the diffraction efﬁciency. This
rippled surface variation and the aluminum coating can be transferred to a specimen

if the adherence between the aluminum film and the holographic emulsion is weak.

PREPARATION OF MOLD

Expose
photographic Develop Dry Mirrorize
plate

PEEY

RS

Glass  Emulsion Shrinkage Aluminum

of gelatin coating

(a) (b) (c) (d)

REPLICATION ON SPECIMEN

Cast thin film Separate from mold

Aluminum

\Mold

Phase
grating

Plastic
(liquid)

Specimen Specimen

(e) (f)

FIGURE 37. The process for preparing the specimen grating and transferring it to
the specimen. (After Post [62].)

The details of the preparation of the specimen grating follow. Kodak Type 649
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F spectroscopic holographic plates are exposed twice to two crossed laser beams
emanating from a 15 mW Spectra-physics Helium-Neon laser, with the plates being
rotated by 90 degrees between exposures to produce orthogonal sets of lines, making
two orthogonal specimen gratings. The exposure time in each case is two seconds.
The Kodak 649 F plates are sensitive to the 632.8 nm Helium-Neon laser wavelength
and have an emulsion of 17 gms thick with a nominal sensitivity of 70 uJ/cm? and a
resolution of 2000 lines/mm. The plates are antihalation—backed to reduce reflection
from the rear surface of the plates. The plates are developed as recommended by
Kodak, 6 minutes in Kodak D-19 developer, 30 seconds in Kodak indicator stop
bath, 3 minutes in Kodak rapid fixer, rinsed in water for 25 minutes and dip for
30 seconds in Kodak Photo-flo solution. After the plates have dried, they are
dipped a second time in the Photo-flo solution for 30 seconds. When the plates
are completely dry, they are coated with a thin coating of reflective aluminum in
a vacuum coating chamber. This aluminum coating is on the order of 200 nm
in thickness. The grating is transferred to the specimen using Photolastic PC-1
epoxy adhesive. (Photolastic Division, Measurements Group, Inc., P.O. Box 27777,
Raleigh, North Carolina 27611, (919) 365-3800.) The double dip in the Photo-flo
solution provides a very weak interface between the aluminum film and the emulsion

on the holographic plate, thus facilitating the release of the aluminum from the

photographic emulsion.

The gratings produced for this study have a wavelength of 1.667 pm or 600
lines/mm. The gratings are produced to a known wavelength by aligning the angle
of the crossed laser beams to a commercially produced grating of wavelength 3.333
pm or 300 lines/mm in exactly the same way that the moire interferometer is aligned
to the specimen grating. If there are no fringes visible over a 25.4 cm field of view,
the wavelength of the laser interference is equal to twice that of the alignment
grating to within 0.01 %. (The grating was obtained from Diffraction Products,
Inc., P.O. Box 645, Woodstock, Illinois 60098. (815)338-6768.)

The efficiency of the diffraction gratings used for this study is about 10%.
Loewen in [55] and Maystre, Neviere and Petit (also in [55]) discuss the diffraction

efficiencies of sinusoidal and blazed diffraction gratings. For sinusoidal aluminum
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coated gratings, Loewen predicts a maximum efficiency of nearly 90%. However,
these efficiencies are obtained for gratings used in a specific orientation determined
by the wavelength of the grating and the wavelength of light. Additionally, the
efficiencies are given by Loewen for a single grating, whereas the moire interfer-
ometer requires a crossed grating, which introduces additional diffraction orders in
which the light may be distributed. McPhedran, Derrick and Botten in Reference
[55] discuss the theory of crossed gratings, but they are mainly concerned with
predictions of certain anomalies, such as Wood’s anomalies, observed in diffraction
by gratings. Wood’s anomalies are angles at which the diffracted light in a given
order drops sharply, owing to a redistribution of energy into electromagnetic surface

waves traveling through the grating itself.

2.4.5 Requirements and Limitations for the Collection Optics

The maximum strain that can be measured corresponds to the minimum fringe
spacing that can be captﬁred by the optical system and recorded on the film. Since
the diffracted laser beams are still approximately collimated, the collection optics
must have an aperture at least as large as the field to be viewed in order to record in-
formation from the entire field. The fringes observed in the experiment are the result
of angular deviations of the diffracted beams from the original paths. Higher fringe
densities, corresponding to higher displacement gradients (strains), are the result
of relatively large angular deviations from the original specimen normal. Hence, in

order to capture large—strain behavior, the angular aperture of the collection optics

must be large.

The angular aperture is a measure of the largest angle a ray may attain without
being lost by the optical system; it is inversely related to the f number of the optical
system, so that a large angular aperture corresponds to a small f number. For a
camera focussed infinitely far away, the f number of the camera lens is the ratio of

the focal length of the lens divided by its aperture diameter.

The ability to capture fringes representing large strains is also limited by the

resolution of the film used to record the image. For the Kodak Technical Pan film
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used in the experiments, the minimum fringe wavelength that can be recorded on
the film is about 5 microns [38]. However, the modulation transfer function of the
film does drop off quickly as the fringe spacing decreases, so that the contrast of

closely spaced fringes will be less than the contrast of widely spaced fringes.

The modulation transfer function is a measure of how well the contrast of the
fringes is transferred through the optical apparatus to the recording film. Each op-
tical component has a modulation transfer function, and when an optical device is
cnstructed, the individual modulation transfer functions assemble in a complicated
fashion to produce a modulation transfer function for the entire system. All modu-
lation transfer functions tend toward zero as the fringe wavelength becomes smaller.
Even a simple aperture without a lens shows this feature because diffraction from
the edges of the aperture will cause the fringes to blur when the fringe wavelength
becomes sufficiently small. The modulation transfer function for an optical system
is determined using a known sinusoidal intensity distribution. The optical system
produces an image of the known intensity distribution, and the contrast of the im-
age is determined. The ratio of the contrast of the image to the contrast of the
known distribution is the modulation transfer function for the spatial frequency of
the known sinusoid. The contrast is defined by equation (2.4.2). Since film is a
discrete recording medium where the discretization depends on the size of the silver
halide grains in the photographic emulsion, the drop—off in the modulation transfer

function at high frequencies is due to the limited sampling capability of the film.

The optical system can also be limited by aberrations in the lens, as well as by
diffraction from the edges of any aperture through which the light must pass. These
aberrations cause a blurring of the image, which will smear out the light-intensity
distribution, destroying fringes of short wavelength. The Nikon camera lenses used
in the experiment are optimized to be diffraction—limited; in other words, the most
significant aberration in the lens is diffraction that is due to the aperture, not to
defects in the lens. As a first estimate of the resolution limits of the optical recording
system, only the effects of the angular aperture limit on the maximum observable

diffraction angle will be considered. Diffraction from the edges of the aperture and
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the effect of aberrations will be neglected {. The angular aperture will be assumed
to be dominated by the lens aperture closest to the specimen, so that any ray
passing through the lens aperture closest to the specimen will be assumed to pass
through the rest of the lenses in the system and to fall on the film plane. In this
case, the angular aperture is only a function of the distance between the specimen
surface and the initial lens aperture and is assumed not to depend on the internal

workings of the lens system.

If the camera aperture has a diameter A and the distance from the specimen

to the aperture is L, as in Figure 38, the angular aperture, ¢, is found from

A
tan ¢ = 5T (2.4.4)

Object

Aperture
Diameter

A

L ]

A

FIGURE 38. The angular aperture, ¢, is a measure of the largest angle that a ray
from the center of the field may achieve and still pass through the
aperture of the lens closest to the specimen. L is the distance from
the specimen to the aperture, A is the aperture diameter, and tan ¢ =

A/(2L).

+ These effects are all included in the modulation transfer function for the system.
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If two diffracted light rays (representing the normals of locally plane light
waves) leave the specimen surface from the center of the field of view and just pass
through the aperture of the lens, they will give rise to fringes with a wavelength 4,
which depends on the angular aperture ¢ according to

A
"~ 2sing

5 (2.4.5)

where )\ is the wavelength of light used. In planar deformation, the light waves are
diffracted symmetrically about the normal to the specimen surface, so the two rays
intersect the aperture at either end of a diameter of the aperture, which leads to the
relation in equation (2.4.5) above. For a small angular aperture ¢, tan¢ =~ sin ¢.
This is a good approximation for the camera arrangement used in this study, which
had an angular aperture of about 0.08 radian (about 5°). For small angular aperture

¢, then, § can be approximated by

5= 2L (2.4.6)

A

For an optical system that has a magnification M, the fringes that arrive at the film
plane have a wavelength M§. The film is able to record fringes having wavelengths
as small as 5 um. Using 5pum as the limit of the film, the fringes must then be

magnified so that
5pm < Mé (2.4.7)

in order to record fringes of spacing é at the specimen surface. From these equations,
the required magnification can be related to the angular aperture, and thus to the

camera aperture and specimen-to-aperture distance) as

Spm AL

M < —ZX— (2.4.8)
For a Helium-Neon laser with A = 0.6328 pm this gives
790 L
_— — 2
M <X (2.4.9)

The required magnification M for a specimen-to-aperture distance L is shown in

Figure 39 with an aperture A equal to 50 mm.
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FIGURE 39. Required magnification to match film resolution to the aperture limi-
tation. Performance of Nikon 200 mm f/4 with close-up attachments.

The Nikon Micro-Nikkor 200 mm f{/4 Internal Focus lens used in the exper-
iments has an aperture of 50 mm, and at its closest focus it has a magnification
of 1/2 with a specimen-to-aperture distance of 500 mm. With the addition of the
Nikon TC-200 Teleconverter, the magnification 1s doubled to 1 without changing
the specimen-to-aperture distance. The lens alone does not provide enough magnifi-
cation for the film to record the densest fringes that the lens can capture. However,
with the addition of the teleconverter, the magnification is sufficient for the film to
resolve the smallest fringes, but at the expense of imaging only one quarter of the
area seen without the teleconverter. The minimum resolvable fringe wavelength can
be improved by the use of one or more close-up attachment lenses, which decrease
the specimen-to-aperture distance and improve the magnification by creating a vir-
tual object farther away than the actual object, but proportionately larger than the
actual object. These attachment lenses can be approximated by thin lens theory,
creating a virtual object 500 mm away as seen by the primary 200 mm f/4 lens.

Addition of such a lens relates the magnification M, the true specimen-to-camera
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distance L, and the 500 mm distance observed by the primary lens through

500 mm

2.4.10
5L (2.4.10)

M

The magnification is doubled with the addition of the teleconverter. The required

focal length f of the added close-up lens is given by

_ 500mm _ (L)500 mm

f= OM~-1 500mm—L

(2.4.11)

The necessary magnification to match the film resolution with a 50 mm aperture is
shown in Figure 39, along with the performance of the Nikon 200 mm f/4 lens with
close-up attachments and teleconverter. It is necessary to be above the curve where
the film resolution matches the aperture limitation to record all of the fringes that

travel through the optical system.

The magnification can also be increased by use of an extension tube, which
moves the film plane farther back from the lens. Use of such an extension also
reduces the specimen-to-aperture distance. While this option is not normally rec-
ommended since the lens is optimized to focus on the film plane at a certain distance,
the Nikon 200 mm f/4 lens is designed to give better performance at this off-design
usage than other lenses. For this means of improving the magnification and angu-

lar aperture, the relation between the magnification and the specimen-to-aperture

distance can be approximated by

167mm
M=—— 4.
L—-167mm (24.12)

Equation (2.4.12) is a rough fit from the closest focus and magnification with no
extension and the closest focus and magnification with a 52.5 mm extension. In fact,
it follows the thin lens equation, assuming that when the 200 mm lens is adjusted
to its closest focus, it can be approximated by a thin lens having a focal length of
167 mm. The 200 mm focal length applies when the lens is focussed to infinity.
The approximate performance of the Nikon 200 mm /4 with extensions is shown

in Figure 40. The addition of the teleconverter would double the magnification

without changing the specimen-to-aperture distance.



-110-
MAGNIFICATION vs. APERTURE DISTANCE
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FIGURE 40. Required magnification to match film resolution to the aperture limi-
tation. Performance of Nikon 200 mm f/4 with extensions.

2.4.6 Physical Limitation

The maximum angular aperture of the recording device is limited by the fact
that it must not block the incoming laser beams, as illustrated in Figure 41. Addi-
tionally, if the aperture were to get in the way of the incoming beams, it would also
be in a position to capture light from the reflected beams (the diffracted beams of
order zero), and the diffracted beams of order two. As a reminder, the laser beams
of interest are the diffracted beams of order one. For a given specimen-grating
diameter of D, an aperture diameter of A, separation L between the grating and
the aperture, and angle a between the normal to the grating surface and incoming

laser beams, it can be seen from Figures 38 and 41 that

A+D
tana = T (2.4.13)
A Atana
ng=-—=————— 2.4.14
tan ¢ o1 A1D (2.4.14)

where ¢ is the maximum allowable angular aperture without blocking the incoming

laser beams.The largest possible ¢ occurs when A becomes very large compared to
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D, which gives ¢ = a. Of course, as A becomes large, L must also increase, for fixed

.

Incoming Laser Beams

Aperture A

o L -

FIGURE 41. The aperture of the optical recording device may not be so large that
it blocks the incoming laser beams. This constraint limits the angular
aperture to be less than the angle « of the incoming laser beams. If the
aperture lies just inside the incoming beams, tana = (D + A)/(2L),
while the angular aperture ¢ is determined from the relation tan ¢ =

A/(2L).
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2.4.7 Sensitivity

One measure of the interferometer performance is the sensitivity of the meas-
urement. For this study, the sensitivity is defined as the displacement increment
between adjacent black fringes. The sensitivity is a measure of the smallest displace-
ment that can be detected by the interferometer. A Twyman-Green interferometer,
which is used to measure out-of-plane displacements, has a fixed sensitivity of A/2,
where X is the wavelength of light used. The sensitivity of geometric moire tech-
niques depends on the spacing of the reference grating. The moire interferometer is
similar to geometric moire in that its sensitivity can vary; the absolute lower limit

on the sensitivity of the moire interferometer is A/2.

The sensitivity of the moire interferometer depends on the wavelength of the
undeformed diffraction grating, wg. The displacement increment from one black
fringe to an adjacent black fringe is wg/2. The incoming laser beams are arranged
in such a way that sina = A\/wy. From this relation it is seen that the minimum
possible grating wavelength is wy = A, and the absolute limit on the sensitivity is
A/2, identical to the sensitivity of the Twyman-Green interferometer. To obtain
this sensitivity requires that a = n/2, which means that the incoming laser beams
are parallel to the surface. However, because the sensitivity is inversely proportional
to the sine of the angle «, it is possible to make a reasonable approach to the limit
with a significantly smaller value for a. At a = 37 /8, the corresponding grating
wavelength is wg = A/(0.924) and the sensitivity, wo/2 is A/(1.848), which is only
8% greater than the limit of the sensitivity at an angle that is only 75% of the angle

necessary to reach the limit.

2.4.8 Strain Measurement

A second measure of the interferometer performance is the maximum strain
that can be determined. This measure corresponds to the largest displacement that
can be recorded by the interferometer, and it is determined by the highest fringe

density that can be captured and recorded on film.
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The minimum fringe spacing can be converted to a measure of the maximum
strain if the deformation is assumed to have a simple form. If it is assumed that
the fringes are due entirely to stretching (no shear or rotation), the fringe spacing

é is found to be
§= 0 (2.4.15)

- 2w — wo]

where wp is the initial grating wavelength, and w is the current grating wavelength.

The engineering strain, e, is defined by the stretch ratio (w — wq)/wq, which leads

to the equation

wo(l +e)
= — 4.
é el (2.4.16)
lel _ Wo
l+e 26 (2.4.17)

The largest stretch ratio that can be measured corresponds to the minimum 6,
which depends on ¢, the angular aperture of the camera. The parameter wq/(26)
is the ratio of the sensitivity of the measurement to the minimum fringe spacing,

and it is also proportional to the angular aperture of the system, since

wo _ sing¢ (2.4.18)

26 sin o

Note that sin ¢/ sin « varies between zero and unity. The variation of e with wg/(26)

is shown in Figure 42. Figure 43 shows a plot of the same data with the engineering

»

strain, e, replaced by the “true strain,” e. The engineering strain, e, and the “true

strain,” e, are related by

e=1In(1+e) (2.4.19)

which is the same equation used in the reduction of the uniaxial stress-strain data
(See Section 3.3). Of course, for large stretch ratios the nonlinearity of the strain—
displacement relation must be accounted for, but the observable stretch ratio is a
parameter that will quickly show how well the interferometer can perform, and how

close it is to its limits.
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STRETCH RATIO
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FIGURE 42. The stretch ratio (w — wg)/wp as a function of fringe spacing 6. The
parameter wq /(26) is proportional to the angular aperture of the optical
system. The fringe spacing é and the undeformed grating wavelength
wg are always positive quantities.

It is interesting that the observable stretch ratios do not behave symmetrically
in extension and contraction, because the absolute value of the change in the grating
wavelength, w — wy, is used in equation (2.4.15). If the grating is stretched, so that
the grating wavelength increases, in the limit the grating will eventually appear
like a flat surface, and the diffracted beam will approach the zero—order, reflected
beam. In this case, the strain can approach infinity while the angle of the diffracted
ray is bounded. If the grating is compressed so that the wavelength decreases, the
diffracted ray has a different kind of constraint. As the wavelength of the grating
decreases, the diffracted ray may keep rotating until it is parallel to the grating
surface. At that point, no solution to the diffraction equation exists (it implies that

sin ¢ > 1), but the grating wavelength may continue to decrease.
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LN(1+STRETCH RATIO)

FIGURE 43. The function In(w/wg) as a function of fringe spacing ¢. In a uniaxial
test, the log of the 1 plus the stretch ratio is called the “true strain.”
The fringe spacing § and the undeformed grating wavelength wy are
always positive quantities.

2.4.9 Compromises

A compromise must be struck between the desire for high sensitivity in the
measurement technique and the desire to measure large displacement gradients.
There are a number of parameters that affect these quantities that must be deter-
mined. The wavelength of light is fixed at 0.6328 pm by the use of a Helium-Neon
laser source. It is assumed that the aperture diameter A and the grating diameter
D are equal; for this experiment it was chosen to be 50 mm. If the camera is capable
of a magnification of 2, and the film can record fringes of 5 um, the smallest fringe
spacing on the specimen is 2.5 um. This combination of parameters requires an
angular aperture of ¢ = 0.127 radian = 7.3°. Since A and D are equal, equations
(2.4.13) and (2.4.14) indicate that tana = 2tan¢, so « must be greater than or
equal to 0.250 radian = 14.3°. This value for alpha yields a grating wavelength

wo = 2.56 um. The parameter wq/(26}) is then equal to 0.51, and the corresponding
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observable stretch ratios range from -0.34 to 1.04, or “true strains” between -0.36

and 0.72.

On the other hand, if the sensitivity is chosen to be about equal to the wave-
length of light, so that the moire interferometer has half of the sensitivity of the
Twyman-Green interferometer, wy = 1.266 um. Using this value for wy and 2.5 um
for § yields measurable stretch ratios between -0.20 and 0.34, or *true strains”

between -0.22 and 0.29.

The specimen gratings are made with a precise wavelength by aligning the
intersection angle of the laser beams at the holographic plate with a commercially
produced grating. A compromise was made by choosing a grating with a wavelength
of 3.333 pm for alignment. The specimen grating produced has a wavelength half
that of the alignment grating, so we = 1.667 um. With § = 2.5 um, the measurable
stretch ratios lie between -0.25 and 0.50, and the “true strains” lie between -0.29

and 0.41.

The camera magnification of 2 is chosen somewhat arbitrarily, although with
a 50 mm field, a magnification of 2 would fill a 4 inch by 5 inch plate for a framing
camera. If larger magnifications can be made, the lower limit on the fringe spacing
grows smaller. Still assuming that A=D=50 mm and A = 0.6328 um, and with
wo = 1.667 um, the smallest é that can be captured without blocking the incoming
laser beams is 1.57 um, assuming that the magnification is high enough to allow the
film to record the fringes. This is the smallest fringe spacing that can be observed
with the limitations imposed on A, D, A and wg. The stretch ratios are then between

-0.35 and 1.11, and the “true strains” between -0.43 and 0.75.

In the experiment for this study, the highest magnification used was about 1.4,
A=D=50 mm , L=320 mm. This gives tan ¢ = 0.08 so § = 3.8 um. The measurable
stretch ratios are then predicted to lie between -0.18 and 0.28, and the “true strains”

between -0.20 and 0.25.



-117-

2.4.10 Performance

With the case of wy = 1.667 pm, the minimum possible fringe spacing is § =
wp/2 = 0.8333 pm for an infinitely large aperture. With the limitation to a finite
aperture of 50 mm, the minimum fringe spacing increases to 1.57 um. Thus, the
introduction of an aperture has increased the lower bound on the fringe spacing by a
factor of only 1.9, assuming that the aperture is just inside the limit for blocking the
beams. In the experiment for this study, with a predicted minimum fringe spacing of
3.8 um, the minimum § is 4.5, which equals the lower bound for an infinite aperture,
and 2.4 times the lower bound for a 50 mm aperture. Should another experiment

be performed, as hoped, the next experiment will be done as close to the 50 mm

aperture limit as possible.

2.4.11 Future Improvements

The simplest and most effective improvement that can be made is to move
the camera up to the closest point to the specimen allowed without blocking the
incoming laser beams. This arrangement enables the camera to capture light from
the specimen that is otherwise lost because of the angular deflections caused by
both the in-plane and the out-of-plane displacements. The next improvement to
make is to use a larger format camera, such as a 4 inch by 5 inch or 8 inch by 10
inch frame, rather than the 35 mm frame currently used, so that the photographs
can be taken at a higher magnification and still include the entire field covered by
the grating. Assuming that the test described in Chapter 4 will be repeated, these
two improvements will be made. A third improvement in the camera system would
be the addition of a lens with a larger aperture. A lens with a larger aperture will
allow for the capture of more light than a lens with a smaller aperture, even if both

are placed at the limit of blocking the incoming laser beams.

It is also possible to rotate the lasers so that the polarization of the incoming
and diffracted laser beams is more nearly parallel, leading to higher fringe contrast.
However, this action will change the polarization of the laser beams passing through

the beam splitters, which will change the ratio of the transmitted light to the
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reflected light. It should be possible to optimize this trade off for the highest fringe

contrast.

Instead of transferring the grating from a holographic plate to the specimen,
the grating could be produced on the specimen surface by means of a photoresist.
A photoresist is basically a form of photographic emulsion that can be applied to
the specimen and cured in place. Exposing the photoresist to crossed laser beams
and developing the photoresist would produce a grating in the manner described
in Section 2.4.4. The grating would then be coated with aluminum to improve the
reflectivity. There are two advantages to this procedure. The first is that the quality
of the grating is known immediately. Transferring a grating from a holographic
plate is not routine, and the transfer may go awry. The success of the transfer is
unknown while the epoxy is curing, and much time is wasted if the transfer does not
succeed. A holographic plate is wasted as well, since the plates cannot be reused, and
the plates are rather expensive. The second advantage to the photoresist is that
since it is comparatively inexpensive, the exposure and development procedures
may be changed to optimize the diffraction efficiency in the desired order. The
disadvantages to the photoresist are that it requires shorter wavelengths and longer
exposure times. Photoresists are produced mainly for printed circuit masks that are
exposed using ultraviolet light. The photoresists are insensitive to the light from a
Helium-Neon laser (A = 632.8nm). In order to expose the photoresist, we would
have to use the Ion—Argon laser tuned to its smallest wavelength. Additionally,
more energy is required to expose the photoresist so that the exposure times must
be longer, which makes vibrations more of a problem. Additionally, the specimen
material is restricted in that it cannot be a material that is affected by the procedure

used to develop the photoresist after exposure.

Initially, the moire interferometer was constructed under the assumption that
we would study large areas, so the mirrors are all four inches in diameter, and the
beam splitters are six inches in diameter. However, the experiments have all been
conducted on areas of about two inches in diameter. If the area of interest is this
small or smaller, it would be possible to reduce the size of the optical components,

making the interferometer more compact. Further, the use of fiber optics, includ-
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ing fiber optic beam splitters, would eliminate the need for all of the mirrors and
beam splitters. Instead, four matching beam expander — collimator arrangements
would be connected to a laser that could be optically switched between vertical
or horizontal interferometers. In this arrangement, the key would be holding the
optical components rigidly fixed with respect to one another. The mounting of
the breadboard on the vibration-isolated optical table has very good vibration—
damping properties, so that vibrations have not been much of a problem with the
interferometer in its current incarnation. A moire interferometer using the fiber op-

tic beam splitter and separate beam expanders and collimators is now commercially

available.
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2.5 Sources of Uncertainty or Error

Experimental uncertainty or error may be divided into two categories, sys-
tematic error and random error. Taylor [84] offers a good illustration of the two
types of error, the example being the measurement of a repeatable event with a
stopwatch. An example of random error is the uncertainty in the measurement
introduced through the reaction time necessary for starting and stopping the watch
at the beginning and end of the event. An example of systematic error is the un-

certainty that would be introduced if the watch ran consistently 5% faster than it

should.

The difference between the two types of uncertainty is that random error can
be revealed through repetition of the measurement, while systematic error cannot.
The error caused by starting and stopping the watch should vary between successive
tests, and that variation in the measurement may be treated as a random quantity.
If the measurement is repeated, the magnitude of the random error introduced into
the measurement can be estimated through a statistical analysis of the repeated
measurements. Thus, if a measurement can be repeated, a number of trials should
produce a reliable estimate of the exact length of event (the mean value of the
repeated measurements) as well as a good idea of the random uncertainty in the
measurement. The systematic error in the example above cannot be discovered
through a repetition of the measurement. Instead, the fast-running watch will

produce a mean value and an estimate of the random error that are both 5% too

large.

Systematic errors propagate through the measurement. They will not be re-
vealed through repetition, but they may be removed from the measurement if they
are discovered. For instance, if the stopwatch is checked against a reliable clock
and found to be 5% fast, all of the measurements made with the stopwatch may be
corrected. Systematic errors must be minimized at every turn because they can-
not be removed or even estimated through a statistical procedure. Any sources of

systematic error should be identified and removed, if possible.



-121-

2.5.1 Systematic Error

There are several sources of systematic error that may propagate through a
measurement made using the moire interferometer. These sources of error arise in
the process for making the diffraction grating and transferring the grating to the
specimen, aligning the laser beams during the experiment, and reducing the data

from the photographs taken during the experiment.

In making measurements using the Twyman-Green interferometer, one has the
benefit of an effectively absolute length reference, the wavelength of the laser. (The
mirrors and beam splitters are specified to be flat to much less than the wavelength,
A, of the light used, usually to A/10 or better.) The measurements made using the
moire interferometer have a less absolute reference, the initial wavelength of the
diffraction grating. Uncertainty in the grating wavelength is due to the procedure
for reproducing the diffraction gratings and aligning the interferometer. The diffrac-
tion gratings used in the experiment, with a nominal wavelength of 1.667 ym, are
created on a holographic plate by exposure to the interference pattern between two
crossed, collimated laser beams. These laser beams are aligned with a commercially
produced master grating having a wavelength of 3.333 um (300 grooves per millime-
ter). The grating was purchased from Diffraction Products, Inc. (P.O. Box 645,
Woodstock, Illinois 60098, (815)338-6768). These reflective diffraction gratings, also
called phase gratings, are periodic height variations with a period or wavelength on
the order of the wavelength of light. The height variation is usually much smaller
than the grating wavelength. The laser interference pattern has a wavelength of
one half of the grating wavelength when it is aligned so that the first-order beam
is diffracted along the normal to the grating plane. The exposed holographic plate
also records a grating with one-half the wavelength of the master grating. This com-
mercially produced master grating was scribed on an interferometrically controlled
ruling engine. The interferometric control keeps the random error in the spacing
of the grating profile below 0.0025 times the wavelength of a Helium-Neon laser
source, or about 1.6 nanometers. This random error is non-cumulative, so the posi-
tion of any groove will be within the random variation of its intended position. The

error in the master grating will be assumed to be negligible compared to the errors
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introduced in aligning the interferometer and reproducing the diffraction gratings.

Aligning the crossed laser beams to a grating with wavelength wy is intended
to produce an interference pattern of wavelength wg /2, which is then transferred to
the holographic plate and used as the specimen grating in the experiment. Let the
interference pattern have a wavelength of w,, which is intended to be equal to wq/2.
The fringe spacing, &, is related to the grating wavelength, wg, and the wavelength
of the interference pattern between the two laser beams, w;, by

Wowy

6= 2.5.1
[4w? + w2 — 4wy wy cos y]? ( )

where 7 is the angle between the lines of the grating and the lines of the interfer-
ence pattern. The maximum error in the wavelength occurs when the lines of the
interference pattern are exactly parallel to the lines of the grating, so that v = 0.

The wavelength of the laser interference pattern is then given by
Wo

wi

(2.5.2)
Wy

If the fringe spacing ¢ were infinite, the wavelength of the interference pattern,

w; for w; < wp/2

and of the resulting specimen grating produced on the holographic plate, would be
exactly wo/2. The commercially produced master grating is 25 mm square. The
laser beams are adjusted until there are no fringes visible, so that the minimum
fringe spacing is 25 mm. The wavelength of the master grating is wo = 3.333um,
s0 wp /6 < 1.333 x 10™*. Thus, the specimen grating produced has a wavelength of
wo /2 £ 0.007%, or wy = 1.667um + 0.00001xm.

A similar systematic error may be introduced when the experiment is per-
formed. In the experiment, crossed laser beams are aligned to the grating that
has been produced on a holographic plate and transferred to the specimen. This
specimen grating has the wavelength w; described above. The laser interference
pattern aligned to the specimen grating has a wavelength w,. It is intended that
the interference pattern have a wavelength of w; /2 (actually wq/4). This interfer-

ence pattern is the basis for the measurements made using the moire interferometer.
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as the deformation of the grating is revealed by comparing the deformed grating
with the fixed positions of the laser beams. The fringes observed during the ex-
periment represent displacement contours with the displacement between adjacent
fringes differing by one interference pattern wavelength, wy, which is intended to
be exactly wo/4. The specimen grating produced on the holographic plate is about
50 mm in diameter, but the initial alignment to this grating is not quite as good as
the alignment to the commercial grating, because the quality of this holographically
produced grating is not as high as that of the commercial grating. However, the
minimum fringe spacing (6;) observed in this alignment is about 20 mm, and usu-
ally somewhat larger. Additionally, since the grating is more sensitive (w; & wg/2),
the error in this alignment is actually less than the error in the alignment to the
commercial grating. The error in this alignment is estimated in the same way as

shown in equation (2.5.2), so that w, is found as

w
Wo = 5 wll/(Sl for Wo > w1/2
(2.5.3)
wy
Wy = ————— for wy < wy/2
2 2+w1/61 2 1/

Making the substitutions w; = 1.667um and é§; = 20mm, the interference fringe
pattern (displacement contour increment) is found to be wy = w;/2 £ 0.004%.
This error would approximately add to the error involved in the alignment to the
master grating, so the laser interference pattern should have a wavelength of w, =

wo /4 £ 0.011% or w, = 0.8333um + 0.00009um.

Actually, the error in aligning the specimen grating is not expected to be corre-
lated with the error in aligning the master grating, so that one alignment error may
yield a wavelength that is smaller than intended, and the other alignment yield a
wavelength that is longer than intended. For uncorrelated errors of this sort, Tay-
lor [84] indicates that the uncertainties should be added in quadrature, so that the
uncertainty in ws is given by 1/(0.007%)2 + (0.004%)2 = 0.008% in which case the

laser interference pattern should have a wavelength of wy = 0.8333m =+ 0.00007 xm.

In any case, the error in the wavelength of the laser interference pattern is found

only in the fifth significant figure.
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Another source of error that might be involved in the grating alignment proce-
dure is the lack of collimation of the laser beams. The laser beams are collimated
by passing them through a beam expander consisting of a microscope objective and
spatial filter (pinhole) to a 50 mm diameter, cemented achromat lens. The colli-
mation is checked by measuring the diameter of the beam close to the 50 mm lens,
and also at a distance of several meters away from the lens. The distance between
the lens and the beam expander is adjusted until the beam diameter remains con-
stant. The most likely deviation in the laser beams would be a slightly spherical
wave front, rather than a strictly plane wave front. However, spherical waves would
simply produce a laser interference pattern with a wavelength that varies smoothly
across the grating. The variation of the wavelength of that interference pattern
must also be within the 0.008 % estimate above; otherwise, there would be fringes
caused by the mismatch of the grating with the smoothly varying, laser-interference

pattern resulting from the spherical wave fronts.

Error in the grating wavelength might be measured using an scanning electron
microscope, or one of a class of tunneling electron microscopes. However, the grating
wavelength would have to be measured over a distance of several wavelengths to
provide a reliable measurement. The difficulty with the use of the scanning electron
microscope is that the specimen size must be fairly small (about 1 cm), as the
specimen must be placed in a vacuum chamber. Thus, the use of a scanning electron
microscope to check the wavelength of the grating is not feasible, unless as a quality
control measure, using a sample from one holographically produced grating as a
check on a group of similar gratings. The tunneling electron microscope might be
used to check the grating in place, as it can be operated in air and can be mounted

in such a way that the specimen size is not restricted.

The uncertainty introduced in the alignment procedure described above is of
low spatial frequency, either a constant discrepancy between the intended grating
wavelength and the true grating wavelength, or a smoothly varying discrepancy
across the grating surface that is due to a slightly spherical wave front rather than
a true plane wave. Further systematic errors that have a higher spatial frequency

may be introduced into the diffraction grating by effects that may be termed noise
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in the crossed laser beams used to produce the grating on a holographic plate. This
noise is generated by diffraction of the laser beams by the aperture of the lens,
diffraction by dust particles in the beam, and by the effect of ghost reflections from
the lens and holographic plate. These effects cannot be entirely eliminated, but
they can be minimized. The diffraction pattern caused by the lens aperture is on
the order of two millimeters around the edge. The effect of this diffraction pattern
can be seen in the experiment photographs as a wavy modulation to the fringes at
the edge of the field of view. The holographic plates are 400 mm by 425 mm, so
larger optics could be used if the edge effects are a problem. Diffraction by dust
particles can be reduced by keeping the room as clean as possible and avoiding air
currents that could stir up the dust. The ghost reflections are minimized by using
anti-reflection coatings on all lens surfaces, and through the antihalation backing

on the KODAK holographic plates that reduces reflection from the back surface of
the plate.

Along with stirring up the dust, air currents themselves can cause noise in
the holographic recording. Any density variations in the air through which the
laser beams travel will cause localized changes in the paths of the laser beams,
causing a relative shift in the phases of the laser beams, creating fringes. This
effect can be clearly seen if one holds one’s hand under either of the two laser
beams after they have been aligned so that no fringes are visible. The heat from
the body causes air currents that change the phase of one beam relative to the
other, causing fringes. This is similar to the effects observed using a Schlieren
optical system in a wind tunnel. Thus, the holographic plates must be exposed
in a quiet environment, after the heating or air conditioning has been turned off.
However, since the exposure times for the holographic plates are about two seconds,
any transient fluctuations in the air should be averaged out over the length of
the exposure. On the other hand, the exposure times for the film recording the
fringe patterns during the experiment are fairly short, about one one-hundredth
of a second, so transient effects might be a problem, except for the fact that the
fringe patterns caused by the deformation overwhelm any effects caused by small

density variations in the air. Commercially manufactured holographic gratings are



-126-
produced in a vacuum to eliminate the problems of air currents and dust.

Similarly, the effects of vibrations of the optical components must also be min-
imized. This is primarily accomplished by mounting all of the equipment on a
Newport Corporation optical table, which is pneumatically isolated from the floor.
The optical table itself is also highly damped. For the long exposure times necessary
for the holographic plate, any vibrations are expected to be damped out relatively
quickly. For the short exposure times used in photographing the fringe patterns,
the photographs are taken only when the fringe patterns are still. (Clicking the
shutter on the camera does cause significant vibration of the fringe patterns, which
can be seen after the picture has been taken, but the exposure of the film has been

completed before the vibrations emanating from the camera reach the specimen or

other optical components.)

Actually, the most significant source of error in the alignment of the optics
would be a drift in the position of one or more components before the process of
producing the grating on the holographic plate has been completed. This error can
be minimized only by ensuring that all of the optical components are held firmly in

place after the alignment procedure has been completed.

There are other sources of error in the chemical processes necessary for de-
veloping the holographic plate and transferring the grating to the specimen. The
development process removes silver halide crystals from the emulsion on the glass
plate; these crystals are taken from those regions where too few photons have ar-
rived to convert the silver halide into metallic silver. The local shrinkage of the
emulsion as these unconverted crystals are removed causes the height variation of
the phase grating. If the shrinkage is more widespread, it may change the wave-
length of the phase grating over a larger area, altering the wavelength of the laser
interference pattern used as a reference in the experiment. The emulsion of the KO-
DAK Type 649F holographic plates lies on a glass substrate one millimeter thick.
This substrate must be sufficiently rigid for use in holographic interferometry, in
which the reconstructed object viewed through the holographic plate is compared

interferometrically with the real deformed object. The epoxy used to transfer the
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phase-grating profile to the specimen may also be subject to shrinking or swelling
while it cures. However, the surface of the specimen is lapped flat, and the holo-
graphic plate is pressed against the specimen by another steel plate that has been
lapped flat. The epoxy used in the experiment is designed for use in photoelasticity
experiments, in which a layer of photoelastic material is bonded to the structure to
be tested. Thus, the epoxy is designed to cure in thin layers under large plates and
to hold the relatively soft, photoelastic material firmly in place on the surface of
the structure without appreciable swelling or shrinking. In addition, this epoxy is
intended to be used with structures undergoing relatively large deformations. The
epoxy is allowed to cure for about one week, and then the holographic plate is peeled
away from the surface immediately before the test. The use of epoxy to transfer the
grating also sometimes allows for air bubbles to be trapped under the grating, even
though the epoxy is placed in a vacuum before it is poured onto the surface of the
specimen. If the epoxy does shrink or swell during curing, the regions surround-
ing the air bubbles will produce a local concentration of that shrinking or swelling.
However, the air bubbles may also provide a means for eliminating another source of
systematic error, which will be discussed below. Errors that are due to the changes
in the emulsion or epoxy might be revealed through electron microscopy, along with
any deviation in the grating wavelength that is due to optical misalignment or drift,

or air currents or vibrations.

A different type of error that may be introduced during the manufacture of
the grating is nonorthogonality of the crossed gratings. In order to measure two in-
dependent in-plane displacement components, the surface must have gratings with
ridges running in two directions. It is intended that the crossed gratings be orthog-
onal, so that the in-plane displacements measured are also orthogonal. The two
gratings are produced on the holographic plate by exposing the plate to the laser
interference pattern twice, with a 90° rotation between exposures. The rotation is
controlled by mounting the plate holder on a Newport Corporation rotation stage,
which is calibrated in 5 minute increments, so one exposure is made at 0° £ 5' and
the other exposure made at 90° 5. Again, the error in each angle is uncorrelated,

so that the cumulative error in the angle between the ridges of the two gratings
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should be less than about 7 minutes of arc.

Although it is expected that the crossed gratings on the holographic plate are
orthogonal within 7 minutes, the lines of the gratings may not coincide with the
intended axes of the specimen, in this study the line defined by the crack. The
lines of the grating are aligned with the edges of the holographic plate, by placing
a piece of thread obliquely across both collimated laser beams and adjusting its
position until there is only one shadow visible at the plane of the holographic plate,
passing through the center of the spot illuminated by the intersecting laser beams.
At this point, the shadow forms a line perpendicular to lines of the laser interference
pattern. The holographic plate holder is mounted on a rotation stage attached to
a lab jack, so that the plate holder may be adjusted up and down and rotated. A
plate with a line drawn across the middle is placed in the plate holder, and the lab
and rotation stage adjusted until the line on the plate coincides with the shadow
of the thread. In this way the lines of the grating are aligned with the edge of the
holographic plate to about +15 minutes of arc. The edge of the fracture specimen
and the edge of the holographic plate are aligned during the transfer process through
the use of a jig. This alignment is good to about +30 minutes of arc. Assuming that
these two alignment uncertainties are uncorrelated, the uncertainty of the alignment

between the fracture specimen and the lines of the grating is about £35 minutes of

arc.

So far, the discussion about the sources of systematic error has focussed pri-
marily on those errors that occur before the experiment has begun. Other sources
of error arise from the adjustment of the interferometer during the experiment, from

blowing up the photographs, and from the data-reduction procedure.

The interferometer was adjusted during the experiment in an effort to remove
the effects of rigid rotations of the specimen as it was loaded. The criterion for the
adjustment was symmetry of the fringe pattern about the line of the crack. The two
micrometer screws on each of the mirror mounts used in the moire interferometer
described in Section 2.4.2 allow for approximately orthogonal adjustment of the

path of the laser beams. One micrometer adjusts the angle at which the laser beams
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intersect; this micrometer was left unchanged during the experiment. The second
micrometer adjusts the orientation of the plane in which the laser beams cross,; in
effect, it rotates the planes of the laser interference pattern. This micrometer was
adjusted in an effort to negate the rigid rotation of the specimen, by adjusting the

fringe patterns until they were symmetric about the crack line.

The adjustment to remove rigid rotations from the fringe patterns is probably
the least well-calculated source of error in the experiment. The amount of each
adjustment was not recorded during the experiment, and the adjustment was made
independently for the two interferometers measuring the vertical and horizontal
displacements. The assumption that the adjustment of the path of one of the
laser beams does not affect the angle at which the laser beams cross is valid for
small adjustments, but that assumption may not be valid if a large adjustment is
necessary. In future, it may be better to avoid adjusting the interferometer, and to
remove the effects of small rigid rotations in the data-reduction procedure. This
strategy was adopted in reducing the data from the experiment used to determine

Poisson’s ratio.

The effects of rigid rotation can be removed from the fringe patterns if some
assumptions are made regarding the symmetry of the displacement fields. The
displacement component parallel to the crack, u;, is assumed to be symmetric about
the crack line (the z; axis), so that ui(zi,z2) = ui(z1,—2z2). The displacement
component perpendicular to the crack, us, is assumed to be antisymmetric about the
crack line, so that us(z1,22) = —us(z1, —z2). Making these assumptions, the effect
of a small rigid rotation can be measured and removed during the data reduction.

For a small rigid rotation of v about the z3 axis, the displacements that are due to
the rotation are approximately
Uy = —YI2
(2.54)
Uz = YT
Thus, the u; displacements may be corrected by subtracting a linear function of
x4 corresponding to the displacements that are due to the rotation, which may be

measured from the anti-symmetric u; displacement along the positive and negative

T, axis. The u, displacements may be corrected by subtracting a linear function
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of 1 corresponding to the displacements that are due to the rotation, which are
evident in symmetric deformation above and below the crack along the negative
z; axis (the crack itself). These are the locations where the fringes are nearly

perpendicular to the axes, making the comparison easier.

Any rotational misalignment of the moire interferometer during the experiment
may also be corrected in this way, although it was intended that the adjustment
of the interferometer produce a symmetric fringe pattern about the z; axis. Small
deviations from exactly symmetric fringe patterns are due to slight rigid rotations
away from the optimum alignment, which may be removed using the symmetry

assumptions above.

A further source of systematic error lies in blowing up the photographs of the
fringe patterns so that the displacement data may be extracted. While it is intended
that each picture be some exact magnification of the actual physical specimen, a
slight drift in the positioning of the enlarger may change the magnification slightly
between frames. Errors in the magnification will cause errors in the measured
positions of the fringes that are linear in the in-plane dimensions. A 1% error in

the magnification will lead to a 1% error in the measured distance between adjacent

fringes.

This error may be eliminated through the use of the spots on the specimen
surface caused by air bubbles in the epoxy, or other sources of noise that are fixed on
the specimen surface, such as scratches. Points on the specimen ahead of the crack
do not move appreciably under loading, so measurement of the relative positions
of two or more points should provide a good control of the magnification of the
photograph. Points behind the crack tip may move by relatively large amounts,

because of large rotations behind the crack.

Further systematic errors may arise in the use of the digitizing tablet to measure
the positions of the fringes. The center of curvature of the notch tip is used as
the origin of the coordinate frame in which the locations of the fringe centers are
measured. An overlay is used to orient axes with the line of the crack and the origin

at the notch tip. The error in locating the position of the notch tip will be constant



-131-

for each photograph, but will vary between photographs. Error in this location
will provide a constant offset to the locations of the fringes that depends on the
magnification. A conservative estimate is that the error in positioning the origin of
the axes on the overlay is within one half of one millimeter on the digitizing tablet.
For a photograph with a magnification of five, which is the lowest magnification
photograph used in the data reduction, this corresponds to an error of less than one
tenth of one millimeter, or one hundredth of the plate thickness, on the specimen
itself. The notch has a tip radius of 0.15 millimeters. The error in positioning the
origin of the overlay axes should decrease as the magnification increases, as the tip
is easier to see, and a small error in the position on the tablet is made even smaller

on the object by the effect of the magnification.

A misalignment of the axes of the overlay grid with the line of the crack will
cause an error in the position of the fringes which is approximately linear with
the radius from the origin, much like the displacements that are due to rotation
discussed above. This misalignment is also constant for each photograph, but may
vary between photographs. This misalignment error should be less than about one
degree of arc for a photograph with a magnification of five, but this could increase
as the magnification is increased, as less of the crack is visible for aligning the axes

of the overlay.

The errors in aligning the overlay might also be reduced or at least made
identical between photographs by using the locations of air bubbles or other marks
as alignment guides. In fact, three noncollinear marks on the specimen surface
ahead of the crack could be measured once with respect to axes having their origin
at the notch tip, and those three points used as benchmarks for each successive
photograph. This would eliminate difficulties with repeating the magnification and
alignment of the overlay. This strategy was also followed in reducing the data from

the Poisson’s ratio experiment.
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2.5.2 Random Error

In contrast to sources of systematic error, there are fewer sources of random
error that need to be addressed. As mentioned, random errors are revealed through
multiple measurements of the same repeated event. There are few repeated or
repeatable events in the alignment, manufacture or transfer of the grating to the
specimen, or in aligning the interferometer before or during the experiment. Such
random sources of error would be revealed only by repeating the entire experimen-
tal procedure, and would yield an estimate of the distribution of the systematic
errors described above. For example, an estimate of the expected magnitude of the
rigid rotation could be determined from several repetitions of the experiment, but
having that estimate would neither eliminate the rotation nor provide a means for
subtracting the effects from the data. To really address the sources of random error,

the entire experiment would have to be repeated, perhaps many times.

One source of random uncertainty is the error in locating the centers of the
fringes from the photographs using the digitizing tablet. This error could be esti-
mated by repeated measurement of the location of the fringes, or perhaps by fitting
a smooth curve through data taken along a line and estimating the magnitude of
the average offset of the data points from the curve. The digitizing tablet has a
resolution of 0.0254 mm (0.001 inch) between points on the pad. Estimation of the
location of the center of one black fringe should certainly be less than the space
between adjacent black fringes. Should this not be possible, a further magnification
of the photograph should be made. A reasonable estimate of the minimum fringe
spacing that can be seen and digitized without magnification is about 0.5 mm be-
tween black fringes. With the aid of a magnifying lens above the digitizing tablet,
this could be improved to about 0.05 mm, perhaps. For relatively widely spaced
fringes, estimate of the location of the center of fringe should be within about one
tenth of the distance between adjacent fringes. For closely spaced fringes, there will
be an absolute distance, determined by the digitizing hardware and by the visibility,
which determines the minimum resolvable fringe spacing. The magnification of the
photographs should be such that the hardware-determined minimum is less than

the estimate for easily visible fringes of one tenth of the fringe spacing.



-133-

In the fit of the data from the Poisson’s ratio experiment, the minimization of
the fit function provided an estimate of random error in the position of the fringes
of about three tenths of the distance between adjacent fringes. This is much larger
than the estimate above. This discrepancy is much more likely caused by a poor
choice of the fitting function as compared to the actual displacement -ﬁelds than a

true measure of the scatter in digitizing the positions of the fringes.

There may be a type of random error introduced into the fringe patterns by
vibrations. Vibrations resulting in rigid translations of the body do not affect the
shape of the fringe patterns, although they may change the phase of the diffracted
laser beams enough to change a light fringe into a dark one, and vice versa. This
change does not affect the data reduction, however, as the moire interferometric
measurement is made only relative to other points in the field of view, unless the

displacement of one or more points in the field is known from some other method.

Vibrations that manifest themselves as rotations of the body produce changes in
the fringe pattern that will introduce error in the fringe patterns. If the photograph
of the fringe pattern is taken in a sufficiently short time so that the fringes are
effectively frozen, this effect may be taken care of in the data-reduction procedure

outlined above.
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CHAPTER 3

Material Properties

3.1 Introduction

A key element in making a close comparison between a finite—element model
and an experiment is a proper representation of the constitutive behavior of the
material for use in the numerical model. As a result, some care was taken to
measure the material properties of the steel used in the experiment, in both a
uniaxial test and a test to measure Poisson’s ratio. One possible method of using
the data from the measurement would be to provide a table of measured stress and
strain to the finite—element code, so that the numerical model would exactly follow
the measured constitutive behavior. At the same time, however, it was intended
that a comparison would be made between the experimental measurements of the
crack tip deformation and the analytical crack tip deformation field derived by
Hutchinson [31] and by Rice and Rosengren [69] for plastic deformation, called the
HRR field. The HRR field is intended to be applicable for materials that follow
a power law relating the stress and strain when plasticity is present. With this
comparison in mind, the measured elastic—plastic constitutive behavior of the steel
used in the experiments is fit to a power-law representation in the nonlinear regime.
Comparison will also be made with the linearly elastic deformation field derived by
Williams [90], governed by the stress—intensity factor, I, called the K field. Both
the HRR field and the K field are singular near the crack tip.

Careful measurement of the constitutive behavior of the material employed in
this study was also intended to provide a basis for a comparison of the results of
the current study with previous experimental and finite-element investigations per-

formed at GALCIT, such as the work by Zehnder [91], Zehnder and Rosakis [92],
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Narasimhan and Rosakis [50,51], and Narasimhan, Rosakis and Moran [52]. As this
work became available for comparison, the choice of material and the three-point—
bend fracture specimen geometry for the present study was redirected. Initially,
it was intended that the present experiments performed using aluminum would be
compared to finite—element results through a suitable scaling of the material proper-
ties such as Young’s modulus, Poisson’s ratio, yield stress and hardening exponent.
The alternative was to proceed with a finite—element model which employed a con-
stitutive relation based on measured quantities. The latter path was eventually
chosen. Dr. Narasimhan and Dr. Rosakis kindly provided the numerical code used
in the present study, a good description of their use of the model may be found in
[52]. With Dr. Narasimhan’s assistance, the model was altered somewhat in order

to match the present experiment geometry and constitutive behavior as closely as

possible.

In the first section to follow, a brief description of the incremental plasticity re-
lation used in the finite—element code will be given. This description is provided as
background for the discussion of the finite—element model in Section 4.3. It should
be emphasized that the constitutive model is restricted to linearized small strains;
this is one restriction that will need to be overcome in order to study the large defor-
mations at the tip of the crack more thoroughly. It is also important to emphasize
that the code employs an incremental plasticity law, which is generally thought to
be a better representation of the behavior of real materials than deformation plas-
ticity. In contrast, a deformation plasticity theory is used to derive both the HRR
field and the J—integral, which is used to determine the strength of the singularity of
the HRR field. A comparison will be made between the incremental-theory power—
law formulation of the finite-element model and the deformation—theory power law
used to calculate the HRR field quantities. Finally, specialization of the constitutive
law used in the code to a uniaxial test indicates which material properties must be

measured for input to the numerical code.

The measurement of these material properties through the uniaxial test are
described in Section 3.3. The specimen geometry and testing procedure are de-

scribed, as well as the procedure for fitting the plastic stress and strain behavior
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to the power law used in the numerical code. Some comparison will be made be-
tween the measured constitutive behavior of the present study with other materials
some from previous investigations, such as the work of Zehnder [91]. The results of
these comparisons indicate that the yield stress is a good parameter to normalize
the stress and strain behavior, at least for the small sample of 4340 steel used in
the comparison, all of which was subject to similar heat treatment. An important
deviation between the fit power law and the experimental data may be seen in the
region near the yield stress, the effect of Liider’s bands passing through the test
section. Liider’s bands result from the sudden release of pinned dislocations when
the shear stress reaches some critical value, and this feature is not captured by the
power law. The final topic of this section is an attempt to extend the uniaxial test
data to large deformations, which could be used with a finite-strain finite-element
code; measurements of the stress and strain were made through photographs. These
data are taken in the region beyond the onset of necking, where the assumption of
a uniform stress and strain state is no longer valid, and a correction for stress triax-
iality was needed. An empirical correction taken from Bridgman [12] was used. His
correction was derived specifically for specimens of circular geometry, rather than
for the rectangular geometry used in these tests; the empirical correction he gives

has been used as a first approximation to correcting the effects of triaxiality in the

rectangular specimen.

Section 3.4 presents a description of tests of the surface hardness of various
specimens. The surface-hardness comparison is based on the results shown in Sec-
tion 3.3, which indicate that normalization of the measured uniaxial properties of
different specimens by the yield stress would provide the best basis for comparison.
The surface-hardness measurement is intended to provide a simple, quick estimate
of the yield stress of a material; the measurement relies on a relation between
the yield stress of a material and the hardness of the specimen measured with an
indenter. In particular, these measurements were intended to ensure compatabil-
ity between the three-point-bend specimen of the current study and several other

three-point-bend specimens used to determine the extent of crack tunneling in the

interior of the body.
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In making use of the finite—element model to simulate the three—point—bend
specimen, one phenomenon that needed to be addressed was tunneling of the crack
in the interior of the body, before crack growth was visible at the surface. Such
tunneling could change the specimen geometry radically, if the tunnel were deep,
making the numerical model a poor simulation of the experiment. In order to
estimate the extent of the tunneling, a multispecimen approach was used. The tun-
neling specimens were made from 4340 steel left over from previous investigations.
In order to attempt to validate the comparison between the steel used in the three—
point—bend experiment and the steel used in the tunneling tests, the hardness of
several different specimens was measured for comparison with the three—point-bend
specimen used in the moire interferometric study. The tunneling tests themselves
will be described in Chapter 4. It must be recognized, however, that the tunnel
tests are an investigation of the material response at the far end of the stress—strain
diagram, where material failure is occurring, so that the comparison based on yield

stress does not produce a clear answer as to the comparability of the materials.

In the final section of this chapter, a test to measure the Poisson’s ratio of the
material using the moire interferometer is described. The specimen was a section
of a second three-point—bend specimen of the same material as the specimen used
in the interferometric test. The second three-point—bend specimen had been used
in a preliminary test. The Poisson’s ratio test was performed in compression and
the axial and transverse displacements measured with the moire interferometer.
The measured displacements were fit to an assumed function of the applied load to
determine Poisson’s ratio. The compression loading caused considerable bending
stresses through the thickness of the specimen. Poisson’s ratio was estimated to be
about 0.28, as compared to the value of 0.3 used by previous investigators. This
is a difference of about 7%, and would introduce an error of about 7% in an out-
of-plane displacement comparison, assuming plane stress. The error in the in-plane
displacement comparison may be estimated from the I field of Williams [90], which
indicates that the error in a comparison of calculated in-plane displacments should

vary between 10 and 30%.

Much of the data in this chapter was generated to make comparisons between
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various tests. Part of the need for such comparisons is a lack of foresight as to
how much steel would be needed to make these tests. No allowance was made for
the specimens needed for the tunneling tests, nor for the tests to measure Poisson’s

ratio.
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3.2 Elastic and Plastic Constitutive Relations

In this section, a brief discussion of the elastic and plastic constitutive model is
presented. The plastic constitutive relation requires a yield condition to determine
when plastic flow occurs, and a rule relating the size and direction of the plastic
strain increment to an applied increment of stress. Much of the discussion is per-
tinent to the HRR field and to the finite—element model discussed in Chapter 4,
but the specialization of the plasticity model to a uniaxial test is required for the

discussion of the results of the uniaxial test data which follow in Section 3.3.

This constitutive formulation is adapted from class notes of A.J. Rosakis, with
further reference to the books by Hill [28] and Kachanov [34], and to the paper by

Narasimhan and Rosakis [50].

3.2.1 Preliminaries

The deformation is restricted to admit only linearized (small) strains, so that
no distinction is made between the position of a material particle in the undeformed
(reference) configuration as compared to the position of that particle in a deformed
configuration. In this case the components of the strain tensor at the position x,
€;j(x,t), with respect to a fixed Cartesian orthonormal coordinate frame (¢, =

1,2,3), are related to the components of the displacement vector, u;(x,t), as

1/ Oui(x,t Ou;(x,t
€ij(x,1) = ;( Do ) + ]a(x )> (3.2.1)
2 x; ;

for any time ¢.

The stresses are required to satisfy the quasi-static equations of equilibrium

in the absence of body forces. In components, using the same fixed Cartesian

orthonormal coordinate frame,

80,-,]-()(, t) .

2.9
o 0 (3.2.2)

again for any time t.
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The constitutive law must then relate the stress state of the body, o(x,t), to
the strain state, €(x,t), at the current time by including some way to quantify effect

of the accumulated plasticity incurred over the history of the deformation.

3.2.2 Strain Decomposition

For a given current strain state €(x,t), it is assumed that the strain can be

decomposed into an elastic part €°(x,t) and a plastic part €”(x, ).

e(x,t) = €(x,t) + €f(x,t) (3.2.3)

The elastic strain €°(x,?) is related to the stress state o(x,t) by the usual
linearly elastic constitutive law for homogeneous, isotropic materials. This relation
is valid in both the elastic regime and the plastic regime, and includes the possibility
of elastic unloading from a plastically strained state. In terms of components, the

elastic constitutive law is written as

(E2)

efj Xat)

oij(x,t) — Educ(x t)bi; (3.2.4)

where 6;; is the Kroneker delta, and repeated indices kk imply summation over
k =1,2,3. E is Young’s modulus, and v is Poisson’s ratio. This constitutive law

may also be written as

vE . N
O'ij(x,t) (1+ ) 1]( ) (1+U)(1_2y)6kk(x7t)61]

(3.2.5)

In more compact notation, equation (3.2.5) may be written in general form as
0ij(X,1) = Cijreg(x, 1) (3.2.6)

where Cji1 1s a constant, positive—definite, elastic, compliance four-tensor for ho-
mogeneous, isotropic materials. From equation (3.2.5), C;jx; may be found as

E vE
(1+v) (1+v)(1—2v)
= 2061651 + Ao6;;

Cijri = Sirdjr + Ok16i;

(3.2.7)

where g and A are the Lamé constants of the material.
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3.2.3 Assumptions Regarding the Plastic Strain

The plastic strain is assumed to be independent of the hydrostatic pressure, so
that the material is plastically incompressible. This means that the plastic strain
€?(x,1) is only a function of the deviatoric stress S(x,t), where S(x, ) is the current

stress state minus the hydrostatic pressure. In components,

Sij(x,t) = 0ij(x,1) — orr(X, )6i; (3.2.8)

The incremental form of the plastic constitutive relation will be written in
rate form, with time as a parameter. The numerical code uses a specified load
history and time steps to produce load steps. Thus, the elastic and plastic strain
increments at any point will be converted to strain rates, €°(x,t) and €”(x,t), and
the stress increment to a stress rate, o(x,t). However, neither the elastic nor the
plastic constitutive laws are explicitly physically dependent on time or loading rate,
so that time does not appear in the formulation of the constitutive law used in the
numerical model. The load history input to the model could be any continuous,
increasing function of time to simulate the loading of the experiment. The use of
time as a parameter in the numerical code allows in principle for the inclusion of
explicit time or rate dependence, although this feature of the code was not used in

this model.

The history of the deformation will be contained in the scalar quantity €’(x,t),
the accumulated equivalent plastic strain. The rate of change of the accumulated

equivalent plastic strain, ?p(x, t), will be defined by
) 1/2
& (x,1) = (%éfj(x,t)éfj(x, t)) (3.2.9)

from which it follows that the current accumulated equivalent plastic strain, €°(x, 1),

is described by an integral over the loading history:

?(x,t) = /t (-g—éfj(x,T)é?j(x,T))l/sz (3.2.10)

—
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3.2.4 Yield Surface — Condition for Plastic Deformation

The yield surface is a function of the current stress and strain states, f(o,€),
defined in such a way that the condition for plastic deformation to occur is that
f(o, €) = 0. If the stress and strain states are such that f(o, €) < 0, the deformation
is purely elastic. The yield surface expands during plastic deformation so that it is

impossible for the stress and strain to reach a state for which f(o,€) > 0.

It is assumed that the dependence of the yield surface on the current strain
state is through the accumulated plastic strain, €?. Using the assumption of plastic
incompressibility and the history parameter €”, the yield function f(o, €) is equiv-

alent to a function f(S,Ep ).

Further assuming continuous material isotropy and symmetry, the yield condi-
tion can depend only on the invariants of the deviatoric stress, J; and J3 (J; = 0).
In particular, in the small-strain, incremental form of the plastic constitutive rela-
tion used in the numerical model, yielding is assumed to depend only on the second
invariant (J2) of the deviatoric stress tensor, S, and on the history of loading, which

is contained in the variable €?. The invariant J2 is found to be

Jg(X,t) = —;—Sij(x,t)Sij(x,t) = %S’ij(x,t)a,-j(x,t) (3.2.11)

The yield surface chosen for this study follows the Huber—Von Mises criterion,

making it a sphere in deviatoric stress space, specifically,
flo(x,t),e(x,1)) = 3T2(x,t) — 7 (e°(x, 1)) (3.2.12)

where 7(€P) is a function chosen to model the constitutive behavior of the material

in the experiment, in this case a power law.
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3.2.5 Constitutive Assumption — Power Law Formulation

The function (), which is a function of the loading history through the
accumulated equivalent plastic strain €?, is assumed for the following computations
to follow a power law of the form:

- —_\n =

g - (%) - 010 (3.2.13)
In equation (3.2.13), oo is the initial yield stress in uniaxial tension, and € is the
corresponding strain at yield in uniaxial tension. The function 7 acts as the current
yield stress during plastic deformation. The initial yield stress, ¢, strain at yield,
€0, and hardening exponent, n, will be fit to a uniaxial measurement of the steel
used in the experiment. Note that Young’s modulus, E, is related to the initial yield

stress, 0g, and the strain at yield, €, by E = 0¢/¢p.

3.2.6 Normality

Applying Drucker’s postulate [28,34], which requires that any plastic work done

through a cycle of stress be greater than zero; i.e.,

f(cr,-j - oé)defj >0 (3.2.14)

where af} represents the same initial and final stress state, with af} on or inside
the initial yield surface. If the stress cycle lies entirely inside the yield surface, no

plastic work is done.

There are two consequences of requiring that Drucker’s postulate hold during
plastic deformation. The first consequence is that the yield surface is required to
be convex, which is satisfied by the choice of f(o,€) as a sphere in deviatoric stress
space in the previous section. The second consequence of Drucker’s postulate is
that the plastic strain increment must follow an associated flow rule, which means
that the plastic strain increment (in strain space) must be parallel to the normal
to the yield surface (in stress space), at the current applied stress. Since the yield

surface defined by equation (3.2.12) describes a sphere in deviatoric stress space,
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the plastic strain increment in strain space will be parallel to the deviatoric stress
in stress space. The unit normal to the yield surface is given by S,-J-/(SkISkl)l/z,
which is equal to S;;/(2J2)*/? from equation (3.2.11). Thus, the plastic strain rate

can be written as

e(x,t) = A(x,1)Sij(x, 1) (3.2.15)

where A(x, 1) is a function of Jo(x,t) and € (x,t); A(x,t) contains the magnitude of
the plastic strain rate. Note that A(x,t) is greater than zero when plastic deforma-

tion is occurring, and equal to zero when the deformation is elastic, such as during

unloading,.

3.2.7 Hardening

The magnitude of the plastic strain increment is a function of the hardening
behavior of the material, which in this case is assumed to follow the power law of
equation (3.2.13). From equations (3.2.9) and (3.2.15), it is seen that A(x,t), the

magnitude of the plastic strain increment, is

/.\(X,t) = 1’1:]—-2—?)—(?5 éP(X,t) = ”Zj;(%c—,t—) %—??(X,t) (3216)

The condition for plastic deformation to occur is given by equation (3.2.12), which
implies that 52(x,t) = 3J2(x, ). Thus, 5(x,t) can be expanded to yield
. 3 der.
Ax,t) = ————J 2 2.17
(x,t) Tx.0) &5 2(x, 1) (3.2.17)
It is possible to define a general tangent modulus function, H, which relates

the rate of change of the function & to the rate of change of the accumulated plastic

strain, €P, for any constitutive law, so that

do

== (3.2.18)

Using the general tangent modulus, H, the plastic strain rate can be written as

3

mjﬂx»ﬂsﬁ(x’ﬂ (3.2.19)
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For the power-law form of the constitutive law used in equation (3.2.13), the

tangent modulus function may be calculated explicitly, in which case the plastic

strain rate is

. 3eo 7(x, 1)\ .
P — _ g
éhi(x,t) = TooTa(x.0) [n( . ) 1{J2(x,1)S:(x,t) (3.2.20)
also recalling that 7%(x,t) = 3J2(x,1), and J2(x,1t) = [Sij(x,t)Si;(x,1)]/2, so that
Ja(x,t) = Sij(x,1)S:5(x,1).

3.2.8 Constitutive Relation for the Total Strain Rate

The total strain rate €(x,t) can be related to the stress rate o(x,t) by combin-
ing the plastic and elastic parts. This formulation may be done through use of the
constant, elastic—compliance four—tensor, Cjji;, and the plastic tangent modulus

function, H, as well as the current stress state o;;(x,t) and the current yield stress,

a(x,t).

CijpgSpe(X, )Smn(X,1)Cranki

eri(x, t
Sr1(%, 1) CrtunSus(X, ) + 352 (x, ) H éri(x,1)

oij(x,t) = | Cijr1 —
(3.2.21)

= Ci;kl(x, t)ékl(x, t)

The quantity C;f,(x,t) defined in equation (3.2.21) is the history-dependent com-
pliance tensor, which may be used to relate the stress and strain rates during plastic
deformation. During elastic deformation, the compliance C; ]’-“kl(x,t) reduces to the

constant elastic compliance Cs;; -
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3.2.9 Deformation Plasticity

The crack tip deformation field of Hutchinson [31] and Rice and Rosengren
[69], called the HRR field, is derived within the framework of deformation-theory
plasticity. Deformation-theory plasticity employs the simplifying assumption that
the plastic strain is directly related to the stress. This assumption contrasts with
the incremental theory discussed above, in which the plastic strain rate is related to
the stress rate. The advantage of deformation plasticity is that it is identical to a
nonlinear elasticity law, in that the plastic strains depend only on the current state,
independent of the loading history. In general, incremental theory is considered to
be more correct than deformation theory, although for certain types of problems
involving nonproportional loading, deformation plasticity appears to correspond
more closely to experiments than does incremental plasticity. Also, the simpler
formulation of deformation theory makes it more easily applied [28,34]. The finite-
element code used in this study employs an incremental theory to model as closely
as possible the physical body. However, two important tools in fracture analysis
are derived within the framework of deformation theory, namely, the J—-integral of
Rice [65,66] and the HRR field approximation to crack tip deformation fields in
power—law hardening materials. The J-integral is a measure of the energy input
to the crack tip, and a critical value of the J-integral is a commonly used fracture

criterion. Both the J-integral and the HRR field will be discussed in more detail

in the next chapter.

Shih [77] has tabulated HRR field quantities for plane strain and plane stress
and for a variety of hardening exponents (n). Shih’s deformation-theory, constitu-
tive law is expressed as

el (x,t Fx. NS (x.t
o) _ §a(”(x’ )> (% 1) (3.2.22)
€0 2 0o (of1}

where it will be recalled that o¢ is the initial yield stress in uniaxial tension, and

€0 is the strain at yield in uniaxial tension, also that 7%(x,t) = 3J2(x,t), with
Jo(x,t) = [Sij(x,1)S:j(x,t)]/2. The parameter a is a material constant that may
be used to fit the power law to a measured stress—strain relation; a will be taken

as unity for this study. The HRR field approximation neglects any elastic strain in
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compaurison to the plastic strain.

For a given loading history, the resulting strains and displacements calculated
using deformation theory will, in general, differ from the strains and displacements
calculated using incremental theory. The exception to this rule is the case of pro-
portional loading, in which the stress tensor can be written as a tensor that is only a
function of position multiplied by a monotonically increasing scalar function of time.
When the loading is strictly proportional, deformation theory and incremental the-
ory coincide. However, Kachanov [34] also cites the case in which the loading path
“develops in a definite direction” as being similar to proportional loading, meaning
that the loading approaches proportional loading as time increases. In this case,
the deformation theory and the incremental theory, while initially different, will
become closer as time progresses. Additionally, for some specific yield surfaces hav-
ing corners, there is a certain class of loading paths for which the deformation and

incremental theories coincide [16].

Deformation theory and incremental theory diverge when there is unloading.
For an incremental theory, the unloading path will follow a linearly elastic consti-
tutive law, at least until the stress state reaches another point on the yield surface.
The unloading path in deformation theory retraces its steps along the loading path.
In the context of the present work, this feature may cause difficulties when there
is tunneling of the crack within the fracture specimen. The unloading that is due
to tunneling means that the assumption of deformation theory plasticity (or incre-
mental plasticity, assuming proportional loading) used for J-integral or HRR field

calculations is no longer valid.
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3.2.10 Incremental Plasticity Under Proportional Loading

As mentioned, deformation and incremental plasticity theories coincide only in
the case of proportional loading. Since the HRR field is derived using a deformation—
theory plasticity, and since the finite—element model employs an incremental-theory
plasticity, one issue that may be raised in making a comparison between the HRR
field and the finite—element model is whether or not the loading history is propor-
tional or at least “develops in a definite direction.” A second issue that arises is
whether the incremental constitutive model, assuming conditions of proportional
loading, matches the deformation plasticity model employed by Shih [77] in tabu-
lating the HRR field quantities, whose tabulated values will be used for comparison

with the finite—element model.

As observed by Kachanov [34], proportional loading is strictly valid only for
small-strain theory, in which no distinction is made between the position of a par-
ticle in the undeformed configuration compared with the position of that particle

in a deformed configuration. Both the HRR field and the finite—element model are

restricted to small-strain plasticity.

By assuming proportional loading, the deformation-theory analog to the incre-
mental plasticity constitutive law of equation (3.2.20) may be derived. That analog
will be used to compare the constitutive law used in the finite—element model with

the deformation-theory constitutive law used by Shih [77].

Under conditions of proportional loading, the stress is assumed to be sepa-
rable in space and time, taking the form o;(x,t) = of;(x)g(t), where o;(x) is

independent of time, and with ¢g(t) > 0 and ¢(t) > 0.

The constitutive law may now be written as a relation between the stress and
strain states directly, as opposed to a relation between the stress rate and the strain
rate. From equation (3.2.13), which relates the accumulated, equivalent plastic
strain €”(x,t) and the current yield stress 7(x,t) through a power law, the plastic
strain may be found as

b g[(f&ﬁ)n_l - 1]L’”) (3.2.23)

€0 go g9
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where it will be recalled that o is the initial yield stress in uniaxial tension, and
€0 is the strain at yield in uniaxial tension, and also that 7°(x,t) = 3Ja2(x,t),
with Ja(x,t) = [Sij(x,%)S:(x,1)]/2. The elastic strains of equation (3.2.4) may be

written in a similar form as

Si(at) | (1=2¢) oualx,1)

bij 2.
- 5 pa (3.2.24)

€. ,t
€0

Note that if Poisson’s ratio v is equal to one half, the first term of equation (3.2.24)

cancels the second term of equation (3.2.23).

Equations (3.2.23) and (3.2.24) may be compared with Shih’s constitutive law
of equation (3.2.22). If the elastic strains may be neglected in comparison to the
plastic strains, the second term in equation (3.2.23) may be neglected in compari-
son to the first term, and equation (3.2.23) becomes identical to equation (3.2.22)
(with « taken as unity). Hutchinson [verbal communication] believes that any diffi-
culty with the HRR field comes from neglecting the elastic strains, particularly the

dilatational strains.

3.2.11 Uniaxial Test to Determine Hardening Behavior

The yield stress, the strain at yield, and the hardening exponent, n, are deter-
mined using data obtained from a uniaxial measurement. As long as the specimen
has not begun to neck, the uniaxial test is a case of proportional loading, so that the
stress and strain may be related directly. In the uniaxial test, the stress and strain
are measured along one axis, here chosen arbitrarily to be the z; axis. It is assumed
that all stress components are zero except the tensile stress in the z; direction, and
that the stress and strain in the test section are independent of position, so that

the stress tensor may be written as
oij(x,t) = 61:615 011(2) (3.2.25)

where o11(¢) > 0 and 611(t) > 0. The deviatoric stress has the same time depend-

ence, with S;;(x,t) given by

Sii(x,t) = (81:61; — 36ij) o11(t) (3.2.26)



-150-
The second invariant of the deviatoric stress, Jz, is thus 30%;(t). The condition
for plastic yielding, f(o,€) = 0 implies that
Tl(eP) = a2, (t) (3.2.27)
Since both 0y;(t) and 7 are positive, equation (3.2.27) is equivalent to
() = o11(%) (3.2.28)
Thus, the current yield stress & at time t is equal to the applied stress, o11(t), if

011(t) is greater than the initial yield stress, 0.

As mentioned, only the strain €;;(t) is measured. Equations (3.2.23) and
(3.2.24) may be used to determine the elastic and plastic parts of €;;(t). The
elastic strain is found as

€5, (t) _ 2(14v) o11(2) + (1 =2v) on(t) _ o1i(t) (3.2.29)

€0 3 o 3 o oo

for all o11(¢). The plastic strain is found as

() _ K"L(t)y_l _ 1] ou®) (3.2.30)

€0 Oy ao

for 11(t) > o¢. Thus, the total strain, €;1(t), is given by

e11(t) :<ou(t))" (3.2.31)

€0 g

when ¢11(t) > 0y.

Equation (3.2.31) is fit to the measured data from a uniaxial test to provide
the hardening parameter n for the numerical simulation. The initial yield stress,
09, and strain at yield, €, are determined as the end of the linear region from
the measured data, and Young’s modulus, E, is determined as E = og/eg. The
hardening exponent is determined by fitting a straight line through a plot of log ¢

against log e. The experimental measurement of Poisson’s ratio will be discussed in

Section 3.5.
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3.3 Experimental Material Characterization

The material used in the three-point—-bend study is 4340 steel, described in the
ASM Metals Handbook [46] as an ultrahigh-strength steel: “AISI/SAE 4340 steel
is considered the standard to which other ultrahigh—strength steels are compared.
It combines deep hardenability with high ductility, toughness and strength.” 4340
is a low alloy, medium carbon steel. The “43” in the designation indicates that it
is a Nickel-Chromium-Molybdenum steel. The “40” in the designation indicates a
nominal carbon content of 0.40% by weight, or about 2% carbon atoms compared to
98% iron atoms. The composition of the steel used in the experiments is listed below,
as provided by the mill. The term “deep hardenability” refers to the material’s
ability to harden even in relatively thick sections, and is a result primarily of the
nickel content of the steel. Hardening is accomplished through a rapid cooling of the
steel from a high temperature, causing a phase transformation from Austenite to
Martensite. This rapid cooling is accomplished by quenching the steel in an oil bath.
For unalloyed carbon steels, the cooling rate must be very high to cause the proper
phase transformation. The addition of the alloying elements reduces the cooling
rate necessary to achieve the desired phase transformation, allowing hardening to
take place in a deeper material section. The quenched steel has a high yield stress,

but it is very brittle, having little ductility.

Tempering the steel, which means reheating the quenched steel, can increase
the ductility without sacrificing all of the increase in the yield stress gained by
quenching. The yield stress of 4340 steel can have a range from about 700 to
1900 MPa, depending on the choice of the tempering temperature. The higher the
tempering temperature, the lower the yield stress and the higher the ductility. The
yield stress of 700 MPa corresponds to a tempering temperature of about 700°C,
and the yield stress of 1900 MPa corresponds to a tempering temperature of about

200°C, according to the Metals Handbook.

The 4340 steel was specified to be aircraft quality and vacuum-degassed. Air-
craft quality is a standard descriptor indicating that certain specifications have been

met in the production of the steel and that the steel is suitable for use in aircraft



-152-

Chemical Composition, % weight
C Mn P S Si Ni Ct Mo Cu Sn Al Fe

0.420 0.740 0.010 0.012 0.250 1.710 0.800 0.240 0.060 0.000 0.036 balance

Table 1. Composition of the 4340 Steel used in the experiments. Aircraft quality

steel, vacuum—degassed, cold drawn.

structures. Vacuum degassing is a method used to remove oxygen and hydrogen

from the molten steel. Hydrogen can collect in the grain boundaries and can cause

brittle failure of the steel.

3.3.1 Uniaxial Tests

As has been mentioned, the uniaxial tests were initially planned to ensure that
a meaningful comparison could be made between the measurements made for this
study; the measurements by Zehnder [91] and Zehnder and Rosakis [92]; and the
numerical simulation of that experiment by Narasimhan and Rosakis [51]. The
material properties were measured in a manner identical to that used by Zehnder

[91] to ensure that the measurements would be directly comparable.

Four fracture test specimens and two uniaxial test specimens were cut from the
same piece of steel, a plate four inches wide by one-half inch thick by eight feet long.
Two additional uniaxial test specimens were made from 4340 steel remaining from
previous investigations. These specimens were included in order to estimate the
variation of the uniaxial measurement between different sources of steel, particularly
in comparison with the two specimens of steel purchased for this investigation. The
uniaxial specimens were numbered in such a way that specimens 1 and 3 were made

from the steel purchased for the current study, and specimens 2 and 4 were made

from the leftover steel.

Each uniaxial test specimen was heat—treated at the same time as a fracture

specimen, to ensure uniformity of the heat treatment. The steel was heat-treated
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FIGURE 44. Uniaxial test specimen geometry. The material is a ductile heat treat-
ment of 4340 steel. The test section is ground flat and parallel with a

thickness of 1.245 cm.

to give a ductile response, first being “normalized” at 870 °C for one hour and
air—cooled to remove any effects of rolling or machining, and leaving the steel in its
stable equilibrium state. The steel was then heated to 815 °C for one and one-half
hours and oil-quenched to produce a Martensitic transformation. Finally, the steel
was tempered at a temperature of 540 °C for one hour and air-cooled. The uniaxial
test geometry is shown in Figure 44. The specimen dimensions are adapted from
ASTM Standard E 64678 [6], with some modification to account for the relatively

large specimen thickness. The calculation of the hardening exponent for use in the
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power law is as indicated in ASTM Standard E 646-78 [6].

3.3.2 Testing Procedure

The uniaxial tests were done in the Baldwin hydraulic loading machine (ca-
pacity 1,000,000 N), which does not allow precise control of either the force or
displacement history. The tests were done with the loading valve slightly open to
give a slowly increasing load to failure of the specimen. The overall strain rate was
less than 0.5%/sec in each case. The load was read from a SENSOTEC 400,000 N
capacity load cell, and the strain was read from two Instron strain-gage extensome-
ters, a 10% extensometer with a 2-inch gauge length and a 100% extensometer with
a 1-inch gauge length. All three signals were recorded on a Masscomp computer

data acquisition and control system using Laboratory Workbench software under a

Unix operating system.

3.3.3 Data Reduction

The Laboratory Workbench software allows for the inclusion of multiplying
factors and offset voltages during the recording of the data, so the calibrations
of the load cell and extensometers could be used to convert the voltages to load
and displacement units during the experiment. Also, the gauge length of each
extensometer could be divided out to give the engineering strain e = AL/Lqy. The
engineering stress s was then calculated from the recorded load P and the initial
cross-sectional area Ag as s = P/Ag. When the specimen is deforming plastically,
but before the onset of necking, the assumption of plastic incompressibility relates
the current area, A, to the initial area, Ag, through the engineering strain as 4 =
Ao/(1+e). Thus, the true stress o (= P/A) is calculated by ¢ = s(1+e). The true
strain e is calculated by noting that de = dL/L. Integrating this quantity from the
initial length Ly to the current length L gives e = In(L/L¢) = In(1 +e). (For small

strains, this relation can be linearized as e = AL/Ly.)
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FIGURE 45. The stress—strain data for specimens 1 and 3, the steel used in the
interferometric investigation. These data were taken using the 10%
extensometer with a two-inch gauge length.

The resulting stress—strain curves for specimens 1 and 3 are shown in Figures
45 and 46. These data were taken using the 10% extensometer, which was released
from the specimen as it reached the limit of its travel. The onset of necking can
be seen at about 8% strain. From these data, the yield stress for the steel was
determined to be 960.0 MPa, and the strain at yield was found to be 0.500%.

Young’s modulus is therefore found as 192.0 GPa.

A small “lip” can be seen in the curves in Figure 45, just at the yield point,
where the stress level decreases sharply. The size of this drop in stress is sensitive
to the rate of loading, and to the initial imperfections of the specimen. Since the

size of this “lip” is specimen—dependent, the yield stress of the steel is usually given
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FIGURE 46. The stress—strain data for specimens 1 and 3, the steel used in the
interferometric investigation. These data were taken using the 100%
extensometer with a one-inch gauge length.

as the bottom of the stress drop, rather than the maximum stress.

The flat part of the stress—strain curve between yield and 2% strain is associ-
ated with the localized plastic flow seen as Liider’s bands [26,58]. Liider’s bands are
seen at approximately 45° to the loading axis, along the lines of maximum shear.
As discussed by Hertzberg [26], and by Polakowski and Ripling [58], the localized
vielding is a result of the carbon and nitrogen residing in the interstitial regions be-
tween iron atoms. The carbon and nitrogen atoms tend to collect in the large gaps
between planes of iron atoms at edge dislocations, pinning the edge dislocations un-
der small shearing stresses. When the stress on such a pinned dislocation reaches a

critical value, the dislocation is released. The released dislocations require a smaller
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FIGURE 47. The stress—strain data for specimens 1 and 3, shown on logarithmic
scales. After the Liider’s bands have passed through the test section,
the plastic deformation is well described by a power law, in this case
fit with a hardening exponent of 10.57.

stress to move through the steel. Strain hardening, which is due mainly to interac-
tions between dislocations, will eventually halt these released dislocations, causing
an increase in stress until all of the carbon— and nitrogen—pinned dislocations have

been released, and the Liider’s bands have passed through the test section.

After the Liider’s bands have passed through the test section, the material con-
tinues to undergo homogeneous plastic deformation governed by strain hardening,
" until necking begins. This part of the stress-strain behavior is well described by a
power law, as can be secen in Figure 47, where the stress and strain are shown on

logarithmic scales. Figure 47 includes a line fit through the power-law part of the
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FIGURE 48. The stress-strain data for specimens 1 through 4,measured using the
10% extensometer with two-inch gauge length. Specimens 1 and 3
are made from the steel used in the interferometric experiment, while
specimens 2 and 4 are made from steel left over from previous investi-

gations.

stress—strain response.

The stress—strain behavior determined using the 10% extensometer for all four
uniaxial specimens is shown in Figure 48. Specimens 1 and 3, corresponding to the
steel used in the interferometric measurements, are shown in solid lines. Specimens
2 and 4, steel remaining from previous studies, are shown as the dashed and dotted
lines, respectively. This figure is intended to display the scatter that is due to

the different sources of steel, and to indicate the repeatability of the measurement

between specimens 1 and 3.
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FIGURE 49. The stress—strain data for specimens 1 through 4 as measured by the
100% extensometer with one—inch gauge length.Specimens 1 and 3 are
made from the steel used in the interferometric experiment, while spec-
imens 2 and 4 are made from steel left over from previous investiga-

tions.

The stress—strain response measured using the 100% extensometer is shown in
Figure 49. This is also intended to indicate the variation among the four specimens.
These data are somewhat more suspect than those from the 10% extensometer as
the 100% extensometer had a smaller gauge length (1 inch). This smaller gauge
length made it possible for one arm of the extensometer to be within the necked
region at higher strains. This is true for specimen 2 in particular, as one arm of the

100% extensometer was in the necked region.

The highest point on the curves indicates the onset of necking in the specimen.

Until necking occurs, it is assumed that the stress and strain are homogeneous
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throughout the length of the test section of the specimen. This assumption of
homogeneity is used in the data reduction to estimate the cross—sectional area of
the specimen from the measured extension (strain). Necking is a localization of the
deformation, making the assumption of homogeneity invalid. Although the stress
seems to decrease after necking, in fact, the area of the neck is reducing faster than
the load is decreasing, causing an increase in the strain at the neck. The behavior

of the material after necking will be discussed further in Section 3.3.7 below.

3.3.4 Power—Law Formulation

The formulation of the constitutive relation used in the finite—element code
made it possible to input a power law to model the plastic hardening of the material.

The uniaxial constitutive relation for input to the numerical model is expressed in

the following way:
i o < oy

(3.3.1)

where o is the yield stress, € is the corresponding strain at yield and n is the

hardening exponent.

The power—law constitutive model is used in order to compare the experi-
mental three-point-bend results with the analytic HRR field, an asymptotic, two—
dimensional approximation to the deformation at a crack tip for a material having a
power—law constitutive relation. However, this form of the power law for the finite-
element model is constrained in that it has to pass through the stress and strain
at yleld. As seen in Figure 47, a power law does model the region of homogeneous

plastic deformation quite well, but it does not pass through the yield stress and

strain.

A power law of the form in equation (3.3.1) was least—squares fit, minimizing the
error in stress as a function of strain for the stress-strain data from yield to a strain
of 8 %, where necking can be seen to initiate. This least—squares fit incorporated

the constraint of passing through the yield stress and strain. The resulting stress—
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FIGURE 50. The stress-strain data for specimens 1 and 3 on logarithmic scales,
including the power law that has been least—squares fit through the
data after yielding. This power law is constrained to pass through the
yield stress and strain.

strain law is compared with the experimental data in Figure 50 on a logarithmic
scale, and in Figure 51 on a linear scale. The hardening exponent n is calculated

to be n = 23.7.
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FIGURE 51. The stress—strain data for specimens 1 and 3, and the power law fit
through the data after yielding.

3.3.5 Comparison with Previous Work

This investigation was in some part motivated by the previous work of Zehn-
der [91], Zehnder and Rosakis [92], and Narasimhan and Rosakis [51], as they had
provided a basis with which to compare the results of the current study. In com-
paring the measured uniaxial response of specimens 1 and 3 to that of Zehnder, it
was found that the yield stresses differed by about 10%, and the Young’s modulus
by about 5%. Zehnder’s data and the current constitutive relation are shown in
Figure 52. It can be seen that the shape of the two curves is similar, and that
fact suggests that the stress—strain relations of the two studies can be compared by
normalizing the data by the yield stress. The normalized data are shown in Figure

53. This normalization is a subset of normalizing the stress by the yield stress and
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the strain by the strain at yield. Since the strain at yield is very nearly the same

for the various stress—strain curves being compared, that normalization has been

neglected.

In fact, since the finite~element model was rerun, and since the previous inves-
tigations [51,91,92] did not look at the in—plane displacements at the crack tip, little
use has been made of the data available from their work for this thesis. However,
comparisons can be made using the out-of-plane displacements, and it is interesting

to see the range of material properties that can be attained with 4340 steel.
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FIGURE 52. The stress-strain data for specimen 1 and 3, shown with data from
Zehnder [91]. The temperature in the legend corresponds to the tem-
pering temperature of the steel. Specimens 1 and 3 were also tempered

at 540 °C.

In the numerical simulation of Narasimhan and Rosakis [51], the Young’s Mod-
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FIGURE 53. The stress—strain data for specimens 1 and 3, with the data from Zehn-
der [91], normalized by the yield stress.

ulus was 199.2 GPa, while the yield stress oy and strain at yield ¢y were determined

to be o¢ = 1067MPa and €; = 0.536%. The hardening exponent n was found to be

n = 22.0.

3.3.6 Comparison Between Specimens

The notion that a comparison of the constitutive behavior of different studies
on 4340 steel could be made by normalizing the constitutive models by the yield
stress is probably too simplistic, however. The data being compared here are from
a small part of the range of material behavior possible with 4340 steel, which is
controlled through the heat treatment. Figure 54 shows the result of normalizing

the data from uniaxial specimens 1 through 4 by the yield stresses. It can be
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seen that the normalization does not reduce the scatter much in the measurements
away from the yield point. This is partly due to varying lengths of that part of
the curve associated with Liider’s bands, perhaps caused by varying amounts of
nitrogen dissolved in the steel (the carbon content should match closely). Also,
it must be recognized that the final catastrophic fracture of the three—point—bend
specimen is more closely related to that part of the stress—strain response farthest
from the yield stress, at the largest strains. Figure 55 shows the data from the
100% extensometer for specimens 1 through 4 when normalized by the yield stress.
Comparing Figure 55 to Figure 49, it can be seen that the normalization has little

effect on reducing the variations at high strains.
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FIGURE 54. The stress—strain data for specimens 1 through 4 normalized by the
yield stress. Data from the 10% extensometer.
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FIGURE 55. The stress—strain data for specimens 1 through 4 normalized by the
yield stress. Data from the 100%extensometer.

3.3.7 Large Strain Behavior

As mentioned above, the onset of necking and the resulting inhomogeneous,
localized plastic deformation means that the stress and strain plotted in Figure
49 are not valid after the curve begins to decrease. The strain in Figure 49 is
derived from the extensometer reading under the assumption that the extension is
homogeneous, and the current area is also derived from the extensometer reading,
using plastic incompressibility. That current area is used to calculate the stress

shown in Figure 49.

The data could be extended, however, if the cross—sectional area of the specimen
could be measured independently of the extensometer and load records. To that end,

photographs were taken of specimens 1, 2 and 3 to record visually the reduction in
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area after necking began. A mirror was placed at the side of the specimen, angled
at 45°, to reflect a view of the side of the specimen toward the camera. In this
way, both a front view and a side view of the specimen could be photographed
simultaneously. A photograph was taken at zero load to record the initial area.

Additional photographs were taken after about 10% extension at intervals of about

4% extension up to failure.
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FIGURE 56. The stress—strain data for specimen 1, including the data calculated
from the photographs.

The data reduction is somewhat similar to that described above, although
in this case the area is the independent variable, and the strain is the dependent
variable. The initial area, A, is measured from the first of the series of photographs,
and the current area, 4, is determined from each following photograph. The proper

scaling of the area to correctly determine the stress is found by relating the actual
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initial area of each specimen to the initial area determined from the photographs.
(Some correction is needed because of the slightly different distances between the
two specimen surfaces and the camera due to the angled mirror.) Again, assuming
plastic incompressibility, the ratio of the initial area to the current area of the neck,
Ao /A, is equal to the ratio of a current length to the corresponding initial length,
L/Ly. The strain, ¢, is given by € = In(L/Lg), or equivalently, ¢ = In(A4¢/A). The
extension as recorded by the extensometer can be determined by measuring the
distance between the arms of the extensometer, and the corresponding load can
be determined from the computer file in which the load and extension have been

stored. That load, P, is then used along with the current area, A, to find the stress,

o= P/A.
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FIGURE 57. The stress-strain data for specimen 2, including the data calculated
from the photographs.
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The resulting stress—strain data as determined from the photographs are shown
in Figures 56 through 59. It can be seen that the stress and strain do actually in-

crease after necking, and that the stress—strain law after necking is nearly a straight

].ine.
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FIGURE 58. The stress—strain data for specimen 3, including the data calculated

from the photographs.
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FIGURE 59. The stress-strain data for specimens 1, 2 and 3, including the data
calculated from the photographs.

3.3.8 Further Correction for Stress Triaxiality

As suggested by Hertzberg [26], and by Polakowski and Ripling [58], there
must be a further correction to the stress across the neck that is due to three-
dimensionality of the stress distribution. In the un-necked specimen, the stress and
strain states are homogeneous along the length of the test section. Since the sides of
the specimen are unloaded, there are no stresses transverse to the loading axis. After
necking, transverse stresses do arise, owing to the change in the geometry of the
specimen. The transverse stresses must be zero at the free surfaces of the specimen,
and they reach a maximum at the center of the specimen. These transverse stresses
act to restrain the axial deformation, so that the axial stresses must also be higher in

the center of the specimen than at the free surfaces. (Note that this is the opposite
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of the expected elastic stress distribution for a notch, where the axial stresses are
higher at the free surfaces than in the interior. The stress distribution in the neck
is due to that the fact that all of the material is undergoing plastic flow.) The
correction to the average stress, P/A, is based on the assumption that in the neck,
the deformation is caused by plastic slip, which occurs near the free surfaces of the

specimen. Thus, the stress required to induce further deformation is less than the

average stress across the neck given by P/A.

A correction has been worked out by Bridgman [12,13] for specimens having a
circular cross section by assuming that the shape of the neck can also be modeled
as a circular arc. This correction is then found as a function of the ratio between
the radius of the specimen at the neck, a, to the radius of curvature of the circular

arc describing the shape of the neck, R.

Bridgman [13] also gives a similar correction for a two-dimensional specimen
geometry (plane strain), which also depends on the ratio of the neck width to the
radius of curvature of the neck profile. Unfortunately, the specimen geometry of the
current study had a nearly square cross section, so it does not match exactly the
conditions for either correction (axisymmetric or plane strain). Perhaps the best
way to apply a correction would be a weighted average of the corrections for circular
specimens and two—dimensional specimens. Since the cross section of the specimens
used was nearly square, the correction for circular geometries should be somewhat
better than that for the two—dimensional geometry, as the two—dimensional correc-
tion assumes that one of the thickness dimensions is infinite. The two—dimensional
correction factor is slightly lower than the correction factor for circular geometries,

about 1% smaller for shallow necks (a/R = 0.1) to about 8% smaller for deep necks
(a/R = 2.0).

Bridgman also gives an empirical curve relating the correction factor to the
strain found as € = In(4y/A4). This empirical relation was determined for a number
of materials, including steel, and since the geometry of the uniaxial specimens in this
case is not circular, this empirical correction factor was used to make a preliminary

estimate of the correction to the data gathered from the photographs. The results
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FIGURE 60. The stress—strain data for specimen 1, including the data calculated
from the photographs and the empirical correction from Bridgman [12].

of using this empirical correction are shown in Figures 60 through 63.

From Figures 59 and 63, it can be seen that the stress-strain curves for all

three specimens match fairly closely at high strains, on the basis of the results from

the photographs.

The corrected data are shown again in Figure 64, again normalized by the yield
stress. It can be seen from Figures 63 and 64 that the normalization increases the
scatter among the data at high strain levels. It appears that the large deformation
of the steel has little connection with the mechanisms that induce yielding. In that
case, the large strain behavior would be better compared using another criterion.

Such a criterion is suggested by Figure 47, where the data are shown on logarithmic
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FIGURE 61. The stress—strain data for specimen 2, including the data calculated
from the photographs and the empirical correction from Bridgman [12].

scales, and a fit is shown through the data after the Liider’s bands have passed

through the test section. It may be better to compare the stress—strain data at

large strains on the basis of such a power-law fit.
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FIGURE 62. The stress—strain data for specimen 3, including the data calculated
from the photographs and the empirical correction from Bridgman [12].

3.3.9 Power-Law Approximation to the Corrected Stress

In Figure 65 are shown the true and corrected stress strain data on logarithmic
scales. It can be seen that neither the “true” stress—strain curves nor the empirically
corrected stress-strain curves follow exactly the power—law hardening part of the
curves. It can also be seen that the power—law hardening part of the curve for
specimen 2 is very nearly parallel to the power-law hardening part of the curves for
specimens 1 and 3. Again, it may make more sense to compare different specimens
on the basis of the hardening exponent of the plastically deforming region than on

the yield stress and strain at yield.

It still remains to pick an appropriate hardening exponent for input to the



-175-

Specimens 1, 2 and 3 with Correction

1500
1000
©
[a N
z
9]
(g}
[O)
[
+
N
co0 1 — Specimen 1 |7
—3- Specimen 1
--—— Specimen 2
-/— Specimen 2
............ Specimen 3
—¥- Specimen 3
0 : I l
—10 10 30 =0 0

Strain (%)

FIGURE 63. The stress-strain data for specimens 1, 2 and 3, including the data cal-
culated from the photographs and the empirical correction from Bridg-

man [12].

finite—element code for comparison with the three—point—bend test. Figure 66 shows
the true and corrected stress data for specimens 1 and 3, the uniaxial specimens

made from the steel used in the three—point—bend test.

Figure 67 shows the true and corrected stress on a logarithmic scale with the
power law determined through the least—squares fit of the data below 8%. This is
the fit shown in Figures 51 and 50, with the hardening exponent of n = 23.7. Figure
69 shows the same data on a linear scale. It can be seen that this power law slightly

underestimates the corrected stress at the higher strain levels, indicating that the

hardening exponent is slightly too large.

Figure 68 shows the experimental data on a logarithmic scale with a curve rep-
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FIGURE 64. Normalized stress—strain data for specimens 1, 2 and 3, including the
data calculated from the photographs and the empirical correction from
Bridgman [12].

resenting a power law using a hardening exponent of n = 20.0, to show the variation
of the power-law formulation with a small change in the hardening exponent. This

power law is also shown in Figure 70 on a linear scale.

One additional factor influences the choice of the hardening exponent. The
application of the power-law formulation for the stress-strain relation was intended
to make a comparison between the three-dimensional, finite-element code with the
two-dimensional, asymptotic HRR field. Data for the HRR field are available from
Shih [77] for hardening exponents of 20 and 30, but not for exponents in between.
The data in Figures 68 and 70 indicate that a choice of a hardening exponent of 20

might be best in order to make an exact comparison with the HRR field.
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FIGURE 65. The stress—strain data for specimens 1, 2 and 3, including the data cal-
culated from the photographs and the empirical correction from Bridg-
man [12], shown on logarithmic scales.

After consultation with Dr. Knauss, and with Dr. Hutchinson when he visited,
a hardening exponent of 20 was chosen so as to make the closest possible comparison

with the HRR field data from Shih [77].
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FIGURE 66. The stress—strain data for specimens 1 and 3, including the data calcu-
lated from the photographs and the empirical correction from Bridg-
man [12], shown on logarithimic scales.

3.3.10 Discussion

The power-law formulation used for the code does not model the uniaxial test
data well in the region near the yield point, no matter what hardening exponent
is used. It appears that at the high strains determined from the photographs, the
power law does follow the corrected stress curve rather well. However, the use of
such a power law would overestimate the work needed to induce plastic deformation,

as it overestimates the stress required for plastic flow near the yield point.

It would be possible to use the data from the uniaxial test directly as input to
the finite—element calculation through a tabulation of the appropriate stress for a

given strain. The use of a power—law representation simplifies the calculations and
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FIGURE 67. The stress—strain data for specimens 1 and 3, including the data calcu-
lated from the photographs and the empirical correction from Bridg-
man [12], shown on logarithmic scales. Also shown is the power law
that has been least—squares fit through the yield stress and strain with

a hardening exponent of n = 23.7.

provides a material constitutive law that should match closely with the HRR field,

assuming that the HRR field has some region of dominance in this three-dimensional

model.

In trying to examine the constitutive behavior at large extensions, one must be
cautious about the formulation of the stress and strain tensor, and about relating
the deformed configuration to the undeformed reference configuration. The finite—
element model used in this study uses a linearized strain formulation, so that the
deformed configuration and the reference configuration are assumed to be identical.

The strains in the vicinity of the crack tip as calculated by the finite—element model
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FIGURE 69. The stress—strain data for specimens 1 and 3, including the data calcu-
lated from the photographs and the empirical correction from Bridg-
man [12], shown on linear scales. Also shown is the power law that
has been least—squares fit through the yield stress and strain with a

hardening exponent of n = 23.7.

lie outside the region of validity of the linearized-strain theory. The measurement
of the uniaxial stress and strain through the photographic record can be used in the
formulation of a finite-strain, finite—element model, if desired. Any discrepancies
found between the experiment and the finite—element model close to the crack tip

are likely influenced by the inability of the finite—element constitutive law to model

the large strains near the crack tip correctly.

The discrepancy between the numerical stress—strain model and the measured
stress—strain behavior is largest at the onset of plastic deformation. As a result,

the numerical model and the experiment should show the most difference at the
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FIGURE 68. The stress—strain data for specimens 1 and 3, including the data calcu-

lated from the photographs and the empirical correction from Bridg-
man [12], shown on logarithmic scales. Also shown is a power law
passing through the yield stress and strain with a hardening exponent

of n = 20.0.

boundary of the plastic zone, if the discrepancy in the uniaxial law is significant in

the three—dimensional field surrounding the crack tip.
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FIGURE 70. The stress—strain data for specimens 1 and 3, including the data calcu-
lated from the photographs and the empirical correction from Bridg-
man [12], shown on linear scales. Also shown is a power law pass-
ing through the yield stress and strain with a hardening exponent of

n = 20.0.
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3.4 Hardness Testing

The tunneling tests described in Section 4.5 were carried out on 4340 steel
specimens that were left over from an earlier investigation. Since it was necessary
to conserve steel for the tunneling specimens, there was not enough steel remaining
to make uniaxial test specimens. Therefore, the material properties (Young’s mod-
ulus, yield stress and strain) of the tunneling specimens could not be determined
as accurately as the properties of the steel specimens used in the interferometric
investigation. The steel was heat—treated in a manner identical to that described in
Section 3.3, so as to match the properties as closely as possible. However, only six
specimens were available, and it was desired to use all six to determine as closely
as possible the tunneling behavior at different loads. Thus, it proved impractical
to measure the material properties in a uniaxial test similar to those described in
Section 3.3. As mentioned in Section 3.3.5, it was found that the uniaxial data of
the current investigation could be compared to the uniaxial data of the investigation
by Zehnder [91], if the constitutive behavior of the two measurements were scaled
by the yield stress. This observation suggested that perhaps all of the important
material properties of the tunneling specimens could be extrapolated from the prop-

erties measured in the uniaxial tests for a different batch of steel, if only the yield

stress of each specimen were known.

An estimate of the yield stress of a material can be made by testing its surface
hardness. The hardness is measured by pushing an indenter into the surface of a
specimen with a known force and measuring the cross—sectional area of the resulting
depression. As described by Ashby and Jones, [2], the ratio of the known force to
the projected cross—sectional area of the indent is proportional to the yield stress
of the material. The hardness of the specimens to be used for the tunneling tests
were measured and compared with the hardness of the uniaxial specimens used to
determine the properties of the fracture specimens in the interferometric investiga-

tion. The hardness was also compared to the behavior of 4340 steel found in the

Metals Handbook [46].

The hardness was tested using a Wilson Mechanical Instrument Company, Inc.
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Rockwell C Hardness and Yield Stress for 4340 Steel

Tempering Temperature Hardness Yield Stress

°C Rockwell C MPa

205 53 1860

315 49.5 1620

425 46 1365

540 39 1160

650 31 860

705 24 740

Table 2. Variation of Rockwell C Hardness and Yield Stress with Tempering Tem-
perature for 4340 Steel. Data from the Metals Handbook [46].

Rockwell Hardness Tester. “Rockwell” is a brand name that describes an indenta-
tion hardness test following the guidelines described in ASTM Standard 18-79 [4].
The Rockwell test proceeds as follows. The indenter is brought into contact with
the specimen and loaded with a small load (98 N). The position of the indenter is
recorded. An additional large load is then applied to the indenter. In this case, us-
ing the Rockwell C scale, the large load is 1373 N.* The large load is then removed,
and the position of the indenter is again recorded. The increment of displacement
of the indenter, e, is measured in units of 0.002 mm. The Rockwell C hardness
number is then determined as 100 — e. Actually, the Rockwell C number is read
directly from a dial on the testing machine, but knowing the relation of the hardness
number to the indenter depth makes it possible to translate the hardness number

into a relative yield stress, if we assume that the indenter shape is self-similar.

Assuming that the indenter shape is self-similar, the cross—sectional area of the
indent is proportional to the square of the indenter depth. Making this assumption,

a plot of yield stress versus the quantity (100 — Rockwell C)~2 should result in a

* Different Rockwell scales use a different large load so as to be able to measure the hardness of
a variety of materials. The measurable travel of the indenter is limited, so by using a smaller
load, a softer material can be tested and the indenter travel kept within its instrumented range.
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Rockwell C Hardness and Yield Stress for 4340 Steel

Tempering Temperature Mean Hardness Yield Stress
°C Rockwell C MPa
540 33.7 965
540 33.2 930
540 34.0 960
540 33.1 945

Table 3. Mean Rockwell C Hardness and Yield Stress for four Uniaxial Test Speci-
mens of 4340 Steel.

straight line.

Rockwell C values and yield stresses for 4340 steel as tabulated in the Metals
Handbook [46] are shown in Table 2, and Table 3 shows the mean Rockwell C
hardness values and the yield stresses measured for four uniaxial specimens of 4340
steel measured in the course of the interferometric investigation. Four hardness
readings were taken for each uniaxial specimen. The uncertainty in the hardness
measurement is about 1 Rockwell C hardness number. The values from Tables
2 and 3 are plotted in Figure 71. A plot of the yield stress versus the quantity
(100 — Rockwell C)~? is shown in Figure 72. A least-squares fit of the data from
the Metals Handbook is also shown in Figure 72.

The mean Rockwell C values for three of the tunnel test specimens are shown
in Table 4 with the yield stresses as determined from the least—squares fit of the
Metals Handbook data. Five hardness readings were taken for each tunnel-test
specimen. The uncertainty in the hardness measurement is about 1 Rockwell C
hardness number. Only three of the tunnel-test specimens were flat enough after
heat treating to be ground into suitable specimens for the hardness test. It is
assumed that they are representative. From these data, it seems a good estimate of
the yield stresses of the tunneling specimens would be the mean value of the yield

stresses found using the line fit through the Handbook data, which is 900 MPa.
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FIGURE 71. Correlation of yield stress with Rockwell C hardness value for 4340
steel.

This estimate of the yield stress is within 10% of the 960 MPa measured for the
steel used in the study with the moire interferometer. It will be assumed that the
steel of the tunnel-test specimens and the steel used in the interferometric meas-
urement are similar enough that the measured tunnels are exactly what occurred in
the interferometric study. Of course, the yield—stress comparison may not provide
much information about the tunneling in the steel. Tunneling is the result of failure
of the material in the interior of the body, which is that part of the stress—strain
curve farthest from the yield point. There is no reason to suspect that the yield—
stress comparison would be a good predictor of the failure behavior of a material.
However, the comparison indicates that the two materials are similar, at least at

yielding. It was expected that the comparison would be close. A comparison that



-187-

1900 | l ]
+ 4340 Handbook
—— 4340  FIT
1700 =| @ 4340 Specimen 1 -1
O 4340 Specimen 2
A 4340 Specimen 3

©® 1500 [-| © 4340 Specimen 4 R

= % Tunnel Estimate

o

@

> 1300 ]

-+

o)

S

[

o 1100 - |
300 ]
700 L i |

.0001 .0002 .0003 .0004 .0005

(100 - Rockwell C)~2

FIGURE 72. Correlation of yield stress with the quantity (100 — Rockwell C)~2 for
4340 steel. The solid line indicates a least-squares fit through the
Handbook data.

was not close would have served to eliminate that specimen from the test.

On the other hand, the data from the hardness tests seem to indicate that
the tunneling specimens fall outside the scatter expected from the data taken from
the uniaxial specimens. However, there may be other circumstances that have an
effect. The hardness test is a surface measurement, so the surface preparation has
some effect on the measured value. Also, the hardness data for the uniaxial test
specimens were taken after they had been pulled in two, so there may have been
some strain hardening of the material (the hardness tests were taken in the corners

of the specimens, where loading during the test should have been at a minimum).
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Rockwell C Hardness and Yield Stress for 4340 Steel

Tempering Temperature Mean Hardness Yield Stress
°C Rockwell C MPa
540 32.2 910 (fit)
540 31.1 885 (fit)
540 31.6 895 (fit)

Table 4. Mean Rockwell C Hardness and estimated yield stress for three tunnel-
test specimens of 4340 Steel. The yield stress is estimated using the fit

through the data in Figure 72.
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3.5 Poisson’s Ratio Experiments

One important possible source of error in comparing the experiment and the
numerical model is the choice of Poisson’s ratio. Poisson’s ratio was chosen as
0.3 in the numerical simulation described in Narasimhan and Rosakis [51] and in
Narasimhan, Rosakis and Moran [52]. Published values for 4340 steel are as low
as 0.28, a discrepancy of about 7%. The out-of-plane deformation should vary
linearly with Poisson’s ratio, assuming that the body is well approximated using
plane stress, so an error in Poisson’s ratio of 7% in the numerical calculation would
correspond to an error in the out-of-plane deformation of about 7%. The dependence
of the in-plane deformation on Poisson’s ratio is more complicated. From the two—
dimensional, asymptotic, linearly elastic solution (discussed in Section 4.2.3), a
deviation in Poisson’s ratio of 7% can lead to an change in the calculated u; or u,
displacements of from about 1% to 10%, depending on the angle from the line of

the crack, and on whether plane stress or plane strain is assumed.

Comparison of the out-of-plane deformations measured using the Twyman—
Green interferometer [56] with the numerical calculations using a Poisson’s ratio of
0.3 indicated that this choice of Poisson’s ratio is too large. From these measure-
ments, it was estimated that Poisson’s ratio should be about 0.28 to make the best

fit between the experiment and the numerical model.

It was thought that the moire interferometer could be used to determine Pois-

son’s ratio with a very simple uniaxial test in the same load frame used for the

three—point—bend tests.

3.5.1 Specimen Material and Dimensions

The specimen used to measure Poisson’s ratio were cut from part of a three—
point—bend specimen that had been used in a preliminary test. The specimen
geometry is rectangular, 149.5 mm long by 36.48 mm wide by 9.52 mm thick, as
shown in Figure 73(a.). The specimen was loaded in compression along the axis

parallel to its longest dimension.
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FIGURE 73. The specimen to measure Poisson’s ratio. The dimensions of the speci-
men are shown in diagram (a.). The shaded region indicates the size of
the diffraction grating applied to the specimen. Diagram (b.) indicates
the assumed loading distribution and the axes used in the analysis.

A diffraction grating was attached to the center of one of the larger sides of
the specimen with epoxy, as described in detail in Section 2.4.4, where the moire

interferometer to measure the two in-plane displacement components is described.
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3.5.2 Experiment

The experiments were carried out on a vibration-isolated optical table in order
to reduce the effects of vibrations from the surroundings. The optical table is a
Newport Corporation product; it measures ten feet by four feet by eighteen inches

thick. The loading frame and load controller are described in more detail in Section

4.4.

From a uniaxial tension test, the yield stress has been estimated to be 960 MPa,
and the strain at yield 0.5% (Section 3.3). The conditions for yield correspond to
a load of about 340 kN. To ensure that the response was entirely elastic, it was
intended to keep the strain below about 0.3%, corresponding to a load of 200 kN.
An additional constraint was that the specimen should not buckle. The buckling
load for a perfect bar of these dimensions having pinned ends is about 225 kN.
(Actually, the specimen would be better described by one clamped end and one
pinned end. The pinned end conditions provide a more conservative estimate of the
buckling load, however.) Allowing for imperfections, the load was to have been held
to about 75% of the buckling load, or 160 kN, and data taken at 8 steps separated
at 20 kN increments. In fact, the oil pressure supplying the hydraulic cylinder
was insufficient to achieve that load, so data were taken only up to 120 kN. This
is about 0.18% strain in the axial direction, which corresponds to about 2 fringes
per millimeter on the specimen for the axial displacement and about 0.6 fringe per

millimeter for the transverse displacement.

In the experiment, the in-plane displacements were photographed using a Nikon
FA camera body with a Nikon Micro-Nikkor 200mm f/4 lens and a Nikon 3T close-
up lens (focal length 665 mm) attached to the front of the 200mm lens. This
camera setup produced a magnification of about 0.6 (that is, 1 mm on the specimen
corresponded to 0.6 mm on the negative). The film used was Kodak Technical Pan
set at an exposure index of 120 and developed in Kodak HC-110 (dilution D) for 6
minutes. This film has an extremely fine grain size, and it can record fringes with
wavelengths as small as 5 microns at the film plane; this corresponds to 5 microns

divided by the camera magnification on the specimen.
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The loading frame was designed and constructed at Caltech and has a test—
section length that is adjustable by means of threaded rods. The threaded rod
supports are fairly long and slender, so that they are rather susceptible to buckling.
Therefore, the test had to be performed in compression, meaning that the threaded
rods were loaded only in tension. The restriction that the load had to be applied
in compression introduced some bending into the specimen, which had to be taken
into account in reducing the data. The compression loading also introduces some

rigid rotation into the specimen.

3.5.3 Data Reduction

In order to obtain an estimate of Poisson’s ratio, an assumed function was fit
through the displacement field data calculated from the fringes observed using the
moire interferometer. The fringe data were reduced into an array of position and
displacement data at discrete points using a digitizing tablet, by finding the centers
of fringes on a photograph. There are two different arrays, one corresponding to the
u; displacement, and the other corresponding to the u, displacement. The positions
of the data points taken in the u; field will not in general coincide with the positions

of the data points taken in the uy field.

The z; and z, axes will be aligned with the specimen as shown in Figure 73(b.);
the x, axis corresponds to the direction of the applied load. It is assumed that the

only nonzero stress component is 022, and that o2 is a linear function of z; only.

In particular,

099 = ]»11 +c (351)

From this assumption, the in-plane strains can be determined as

€11 = :El—j(kl’l +C)
(3.5.2)

Il

ST

(ki + ¢)
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Integrating the first and third of equations (3.5.2), the displacements are found as

—v [(kz?
Uy = _E—(-Q_l +C£L‘1> +f1(332)

) (3.5.3)
Uy = E(kxl + C)xz + fa(z1)

where f1(z2) and f;(z;) are undetermined functions of integration. From the second

of equations (3.5.2), it follows that

Ouy Ouq

Er —5';1- (3.5.4)

which implies that
kx
fi(z2) =~ — fi(=1) (3.5.5)

Grouping the terms involving zs on one side of the equation, and terms involving

z1 on the other, it is found that
' kil,‘z '
fi(z2) + T —fa(z1) = e2 (3.5.6)

where ¢, is a constant. From this equation, f; and f; are found as

files) = —E2 4 a4
= ——= z
12 op 2T e (3.5.7)

fo(z1) = —coz1 + ¢4
Therefore, the displacements are given by
.2

—v (Lx‘lo‘ N > ka3 4 N
U = — cry | — — CoZ2 C3
1E 2 2B (3.5.8)

up = E(kxl + c):rg —coxy + ¢4

Absorbing E into the constants k and ¢, equations (3.5.8) can be rewritten as

(kll’i‘z + ) ]:3117:22 n n
Uy = —V 1 - CoT C
1 9 141 9 242 3 (359)

upy = (klﬂ«’l +61)5L‘2 — C2Tp + C4

L

where &y = k/E and ¢; = ¢/E.
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Equation (3.5.9) contains six parameters to be fit to the displacement data.
Constants c3 and c4 represent a rigid translation of the body, and constant ¢, rep-
resents a rigid rotation. Fitting the displacements is not a straightforward process,

because the functions to be fit have a nonlinear dependence on the parameters v,

ky and ¢;.

A good description of the procedure for fitting such a nonlinear model function
is found in Numerical Recipes [64], along with a procedure for performing such a
fit. The gist of the procedure is that it minimizes the mean-square error between
the experimental data to be fit and the approximating function. The procedure
had to be adapted to fit data over two dimensions, and to fit the data from the two

different displacement components simultaneously.

In fact, seven parameters are fit in the model. An arbitrary rigid rotation is
allowed between the two fields, so that the constant ¢ in the second of equations
(3.5.9) is replaced by a constant (cz + ¢5). This additional constant, cs, is intro-
duced to account for two possible discrepancies that exist in the model. The first
possible discrepancy is a lack of orthogonality between the gratings, which is esti-
mated to be within +7 minutes of arc. The second possible discrepancy is that the
alignment of the interferometers might change slightly. Each interferometer is an

independent unit, so the constant c¢s also allows for any independent drift of the

two interferometers.

Let the vector a consist of the parameters to be fit, a = {v, k1, c1, 2, 3, ¢4, 5}
The fitting procedure consists of choosing the values in a in such a way that the x?

merit function is minimized. This function is defined as

Pl g (x®, )]t A [ul) — Gy (x),a)]?
Xz(a)zz[ 1 — U )} +Z[ y — Us( )
1

=1

(3.5.10)

, - O
z j= J

where ugi) is the measured value of u; at the i** point in the u; displacement field
photograph, taken at position x(¥ = (a;gi),:vgi)). The function @;(x¥,a) is the
calculated value of the displacement u; at position x(¥) from equation (3.5.9), using

the parameters in a. o; is the estimated mean-square random error in the measured

value of ugi), in this case all of the o; were taken to be the same, about one tenth
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of the displacement increment between adjacent black fringes. Similarly, ugj ) is the
measured value of u, at the j** point in the u, displacement field photograph, taken
at position x(9) = (:Egj), ng)). The function Uy(x(),a) is the calculated value of
the displacement u, at position x) from equation (3.5.9), using the parameters
in a. The estimated mean—square error in each measurement of ugj ), oj, was also

taken as one tenth of the displacement increment between fringes.

Since the dependence on the parameters in a is nonlinear, the minimizing
procedure was carried out iteratively. However, fewer than five iterations were
needed to achieve convergence for each of the five cases studied (indicating that the

minimizing procedure is good, but not necessarily that the assumed function is a

good model of the experimental data).

One estimate of the goodness of fit of the assumed function to the data is to
compare the vale of the minimized x? merit function to the number of data points.
If the estimate of the mean—square random error, o;, is a good choice, each of the
terms in the summations for y? should be near unity, so that the value of x? should
be approximately equal to the number of data points, n, if that number is fairly
large. Alternatively, if the random error is unknown, it can be estimated by taking

each o; = 1 in the minimization of x?, and then the mean—square random error can

be estimated as 0% = x?/n.

3.5.4 Results

The data were fit to the assumed function at the three highest load levels, 80
kN, 100 kN and 120 kN on loading the specimen, and again at 100 kN and 80 kN on
unloading. There were 301 points digitized in the u; field and 209 points digitized
in the u, field at 80 kN (loading); 302 u; points and 262 u, points digitized at 100
kN (loading); 308 w; points and 315 uy points digitized at 120 kN; 311 u; points
and 260 uy points digitized at 100 kN (unloading); and 313 u; points and 230 u,
points digitized at 80 kN (unloading).

The results of the measurement of Poisson’s ratio for the five load steps are



-196-

.285 T T T I T
.280 ’/’/E}.-_____-____________/:Ej —
o - - | ///’/
© i | e 1
L ///
" el
\S L E A7 —
0 ) S
v 1
g I
270 - 1 .
[0 Loading
A Unloading
265 | | | | |
70 80 0 100 110 120 130

Load (kN)

FIGURE 74. Measured values for Poisson’s ratio for the three highest loads achieved
in the experiment. Higher values are found during loading than during
unloading. It is estimated that there is a 90% confidence that the
values lie within the error bars, which are approximately +1% of the
measured values.

shown in Figure 74. The values for Poisson’s ratio vary from 0.274 to 0.280, with
an error estimation of about +1% on each measurement. The variation from 0.274
to 0.280 is about 2%. The higher values for Poisson’s ratio are found on loading,
and the lower values on unloading. The curve indicates that there may be some

hysteresis in the value for Poisson’s ratio.

Without further testing, it is impossible to determine whether the variation in
the values of Poisson’s ratio are statistically significant, or merely random fluctu-
ations. The information from the least—squares fit indicates either that the model

fitting function is not an exceptionally good representation of the data, or that the
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Least—Squares Fit Parameters

Load v ky c1 co Cs

10% Newtons 107 4m ™! 103 10~ radian 1079 radian
79.9 0.277 -1.029 -1.004 -8.677 5.261
99.9 0.280 -1.060 -1.277 -8.792 3.537
120.1 0.280 -1.113 -1.559 -8.997 6.292
99.3 0.275 -1.045 -1.284 -9.001 3.851
80.1 0.274 -1.069 -1.019 -9.035 2.588

Uncertainty +1% +0.5% +0.05% +0.1% +20%

Table 5. Variation of parameters from least—squares fit of digitized fringe data. v
is Poisson’ ratio. The assumed stress variation is o92/E = kyjz; + ¢;.
Constant ¢, represents the rigid rotation of the specimen, and constant

cs represents the deviation from 7 /2 of the angle between the crossed

gratings.

fringes contain more noise than anticipated. It is estimated that the random error
in picking points to fit using the digitizing tablet should have a random error in
position of about one tenth of the distance between black fringes. Comparison of
the value of the y? merit function with the number of data points in each fit indi-
cates that the random error in the fringe position is somewhere between about 0.23
and 0.25 of the distance between black fringes. If the assumption that the error
should be about one tenth of the distance between fringes is correct, the larger error
estimate provided by the least—squares fit may indicate that the assumed functional
representation of the displacements may not be appropriate to the data, indicating
that the strain field is more complicated than assumed. However, a sizable pro-
portion of the fringe points were digitized near the edges of the diffraction grating.
The edges of the diffraction grating are subject to noise introduced in the creation
process introduced by diffraction from the edges of the collimating lens. This noise

may be on the order of three tenths of a fringe for the small deformation in this

test.
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FIGURE 75. Measured values for k; for the three highest loads achieved in the ex-
periment. The assumed stress distribution is 022 /E = kiz1 +¢;. It is
estimated that there is a 90% confidence that the values lie within the
error bars, which are approximately £0.5% of the measured values.

The estimation of a 1% error in each measurement of v comes from a random
perturbation on five of the fit parameters, v, ki, ¢1, ¢2 and ¢5, using an increase of 15
in the summed, squared error as a cutoff. From Numerical Recipes [64], this should
result in a 99 % confidence that the actual value of Poisson’s ratio falls between
the upper and lower values. The other parameters, c3 and cy4, are rigid translations
introduced through the choice of the fringe number. The number zero was assigned
to a fringe near the origin of the coordinate frame so that the rigid offsets would be
near zero as well. From the perturbation analysis, the error in each of the values of
k; as estimated from the least-squares fit is about +0.5%. The error in each of the

fit values for ¢; is about £0.05%, the error in each of the fit values for ¢, is about
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FIGURE 76. Measured values for ¢, ¢; and c5 for the three highest loads achieved in
the experiment. The assumed stress distribution is 022 /E = kyz1 +¢;.
Constant ¢z represents the rigid rotation of the specimen, and constant
cs represents the deviation from 7/2 of the angle between the crossed
gratings. The error bars are not visible on the scale of the plot.

+0.1%, and the error in each of the fit values for c¢5 is estimated to be as much as
+20%. However, the values for ¢s5 are very small compared to any other of the fit

parameters. The results from each data set are summarized in Table 5.

The variation of the constants k1, ¢1, ¢z and ¢5; with the load are shown in
Figures 75 and 76. Constants ¢; and cs are approximately constant with load,
while ¢; varies linearly with the load. k; appears to be approximately linear during

loading, but this is not true on unloading.

As input to the numerical model, a value of Poisson’s ratio of 0.279 was chosen
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FIGURE 77. The u; displacement field at 100 kN, during loading. A comparison
between contours of the least—squares fit function and a sample of the
data taken using the digitizing tablet. The symbols represent the dig-
itized data; the lines the fit function. The fringe numbers correspond
to the number of black fringes, with fringe number zero assigned arbi-
trarily to lie near the origin of the coordinate frame.

as the mean of the three measurements made during loading. This is also about
the value estimated from the preliminary analysis of the out-of-plane displacement

data, and within 0.5% of published values of 0.28.

Figures 77 through 80 show a comparison between contours of constant dis-
placement calculated using the functions fit at loads of 100 kN (loading) and 120
kN. The symbols are a subset of the data taken using the digitizing tablet, and
the lines represent the corresponding displacement contours calculated using the

least—squares fit functions. It is clear that the uy displacement field is much better
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FIGURE 78. The u, displacement field at 100 kN, during loading. A comparison
between contours of the least—squares fit function and a sample of the
data taken using the digitizing tablet. The symbols represent the dig-
itized data; the lines the fit function. The fringe numbers correspond
to the number of black fringes, with fringe number zero assigned arbi-
trarily to lie near the origin of the coordinate frame.

represented with the assumed function of equation (3.5.9). Also, the fit is better in

the center of the field of view as compared to the edges of the field.
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u; Displacement Field 120 kN
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FIGURE 79. The u; displacement field at 120 kN. A comparison between contours
of the least—squares fit function and a sample of the data taken using
the digitizing tablet. The symbols represent the digitized data; the
lines the fit function. The fringe numbers correspond to the number of
black fringes, with fringe number zero assigned arbitrarily to lie near
the origin of the coordinate frame.

3.5.5 Load Correlation

The constants determined in the fit can be used to check the calculated stress
field against the applied load. The stress distribution is given by ¢92/E = kyz1 +
c1. The constants used to define the stress distribution depend on the location of
the origin of the coordinate axes with respect to the edges of the specimen. The
origin of the coordinate frame was chosen arbitrarily when the data were taken
with the digitizing tablet. The origin was taken at 16.81 mm from the left side

of the specimen, so x; varies from -16.81 mm to 19.67 mm. The calculated stress
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FIGURE 80. The u, displacement field at 120 kN. A comparison between contours
of the least—squares fit function and a sample of the data taken using
the digitizing tablet. The symbols represent the digitized data; the
lines the fit function. The fringe numbers correspond to the number of
black fringes, with fringe number zero assigned arbitrarily to lie near
the origin of the coordinate frame.

distributions are shown in Figure 81. The stress at either edge of the specimen
differs from the average stress by about 18% or 19% at 80 kN, about 15% at 100
kN and about 13% at 120 kN. It is clear that the bending stresses are significant in

this compression loading.

The load can be calculated by assuming that the stress is constant in 3, and
by integrating the assumed stress distribution over the cross—sectional area. Using
the value for Young’s modulus determined from the uniaxial tension test of Section

3.3, E = 192 GPa, the calculated load is compared to the applied load (from the
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FIGURE 81. Calculated stress distributions for the three highest loads achieved in
the experiment. The assumed stress distribution is 022 /E = k121 +¢1.
x, varies between -16.81 mm and 19.67 mm.

load cell output) in Figure 82.

The consistently low values calculated from the fit parameters may be an indi-
cation of bending stresses that are linear in z3, similar to the linear stress variation
in 1. Assuming that the applied load represents the average stress on the cross
section multiplied by the cross—sectional area, the stress at this surface of the spec-
imen is about 14% to 15% low at 80 kN, about 13% to 14% low at 100 kN and
about 13% low at 120 kN. These numbers are comparable to the magnitude of the
bending stress variation in ;. Alternatively, there may be a more complicated

stress distribution (in both x; and z3) than that assumed for the measurement.

Fortunately, the load calculation is immaterial to the calculation of Poisson’s
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FIGURE 82. The load as calculated from the fit parameters compared to the applied
load as indicated by the load cell for the three highest loads achieved
in the experiment. The calculated load is approximately 85% of the
applied load in each case.

ratio, as the u; and usy displacements are measured on the same surface in the same
region and at the same deformation level. It would be interesting to pursue the
analysis a little farther, perhaps by making moire interferometric measurements on
the front and back surface at the same time to determine if there is a significant

stress variation through the thickness.

However, the analysis of the data would be greatly simplified if there were no
bending at all. This test should be performed in tension, if possible. However, as
mentioned above, the threaded rods that make the test section of the loading frame

adjustable are not capable of sustaining compressive loads, and tension loading of
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the threaded rods means compressive loading of the specimen.
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CHAPTER 4

Elastic and Plastic Fracture

4.1 Introduction

The thrust of this investigation is the study of fracture in a tough material.
In this case, the material is a steel with wide applicability. The steel has been
heat treated so as to exhibit a ductile constitutive behavior; this ductility is the
mechanism by which the steel is made resistant to fracture. The wide region of
large plastic deformations that develops around the tip of a crack distributes the
concentrated stresses induced by the crack over a large volume of material; the
plasticity serves in effect to blunt the crack and limit the stresses to levels that do

not cause failure of the material.

The fracture toughness of a ductile material increases as the thickness of the
specimen decreases. Plane strain, which is often considered as the limiting case of a
thick specimen, constrains the shear deformation of the material, reducing the duc-
tile distribution of stress throughout the volume. There appears to be a maximum
in the dependence of the fracture toughness on the thickness of the specimen, how-
ever. As the specimen becomes thinner and thinner, eventually there is not enough

material to distribute the stress effectively, and the fracture toughness begins to

decrease.

The specimen geometry used in this investigation is relatively thin, and the
steel has been heat treated so that it will exhibit a fairly low yield stress and high
ductility. Thus, the magnitude of the plastic deformation surrounding the crack is

expected to be large, and the plastic zone itself is also expected to include a sizable

volume of material.
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The lower fracture toughness experienced in thick specimens has led to the use
of a plane-strain measure of fracture toughness as a material property for design
purposes. Since the fracture toughness of a body of finite thickness will be greater
than the plane-strain toughness, design of a structure using a material that satisfies
a plane-strain fracture criterion should provide a factor of safety. A considerable
amount of literature has been devoted to determining repeatable and reliable ex-
perimental methods of measuring fracture toughness, such as those included in the

American Society for Testing and Materials (ASTM) standards.

Two of these measures of fracture toughness will be discussed in the following
section, the stress-intensity factor, K, and the J-integral. The J-integral is the
more recent of the two, but it will be discussed first, as it is applied in fracture
of both elastic and plastic materials. The stress—intensity factor is restricted to
linearly elastic materials. In each case, a critical value of the fracture toughness
measure is used as a material property that may be used in designing structures.
Standards such as those of the ASTM are intended to provide requirements on
the specimen size and testing geometry necessary for producing reliable, repeatable

tests to determine critical values of K or J.

The stress—intensity factor, K, is the multiplying factor of the dominant sin-
gular term of the two—dimensional, lineé,rly elastic crack—tip deformation field of
Williams [90]; K is the strength of the stress singularity at the tip of a sharp crack.
The use of the stress-intensity factor as a fracture-toughness measure originates in
that role as the strength of the singularity. The linearly elastic solution of Williams
is one of the analytical crack—tip deformation fields which will be discussed in the
following section, and it will be used for comparison with the experiment and the
finite—element model in the next chapter. Williams’s solution is in the form of an in-
finite series, but only the dominant singular term is retained near the tip of a sharp
crack: the deformation defined by the first term in Williams’s series will be referred
to as the K field. An additional correction term for use in a body with a rounded
notch will also be included, as the crack in the steel specimen does have a finite
size with a rounded tip. The stress-intensity factor may be calculated as a function

of the dimensions of the three-point—bend geometry used in the experiment; such
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estimates are available from a variety of references.

The J-integral is effectively a measure of the energy stored in the region sur-
rounding the crack tip that is available to create new surface as the crack advances.
Its use is strictly valid for materials that obey a deformation plasticity constitutive
law, which is equivalent to a nonlinear elasticity law, but it may be applied to ma-
terials that obey an incremental plasticity law if the loading is nearly proportional
and there is no unloading. For some geometries, including the three-point-bend
geometry in this experiment, the J—-integral may be calculated from the work done
by the applied loading. This estimate of J from the experiment will be compared
with a second method of calculating J through the finite—element simulation. The
value of J is also equal to the energy-release rate of a crack in the absence of dis-

sipative material behavior, and for linearly elastic materials, the value of J may be

related to the value of K.

The second analytical crack—tip deformation solution that will be compared
with the experiment and the numerical model is due to Hutchinson [31] and to Rice
and Rosengren [69]; it is called the HRR field. Like Williams’s K field, the HRR
field is a two—dimensional series solution in which all but the dominant singular
term are neglected. The HRR field is applied to materials for which the stress
and strain are related by a power law. The constitutive model used in the finite-
element model is a power—law approximation to the constitutive law measured for
the steel used in the experiment. The HRR field uses a function of the J-integral
to determine the strength of the dominant singular term, much as K is the strength
of the singularity for the elastic solution. The HRR field is derived within the
framework of linearized—strain theory, and like the J—integral, it is strictly valid
only for materials following a deformation plasticity constitutive law. As with the
J—integral, its use may be extended to materials following an incremental plasticity

law if the loading is nearly proportional and there is no unloading.

The finite—element model will be described in Section 4.3. This model is
adapted from the model used by Narasimhan, Rosakis and Moran [52]; their as-

sistance with this project is gratefully acknowledged. Their study included a void
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growth model of ductile failure, but this feature was removed for the present study
as it caused convergence difficulties at the onset of failure. The values of Young’s
modulus, Poisson’s ratio, the yield stress, strain at yield and the hardening ex-
ponent were all calculated from the experimental measurements described in the
previous chapter. The notch tip radius was changed slightly to match the specimen
better, and the number of layers through the thickness was increased from seven
to eleven to improve the calculation of the out-of-plane deformation in the vicinity

of the notch tip. Details of the model used for the simulation are shown in Section

4.3.1.

This numerical model employs a small-strain, incremental, J; plasticity theory
with a von Mises yield surface following an isotropic hardening law. A power-law
approximation to the constitutive behavior of the experimental material is used
so as to allow for comparison between the numerical model and the analytical
HRR solutions tabulated by Shih [77]. The numerical solution method is described,
including the BFGS iteration procedure for solutions in the nonlinear regime and
a predictor—corrector method for updating the stress when plasticity is present.
The constitutive law employed in the numerical code is based on the incremental

plasticity constitutive law described in Section 3.2.

Internal tunneling of the crack was included artificially in the model through
the release of nodes along the crack plane. The nodes released corresponded to
the measured crack-tunnel profiles from the experiments described in Section 4.5.
For the loads achieved in the experiment, the extent of the tunneling was not very
great, although it appears that the tunnel may have some effect at distances well
away from the crack tip. The results from the load steps that included the tunnel

were complemented by running the simulation to the same loads without tunneling

for comparison.

The local value of the J-integral at each nodal layer was calculated using a
numerical method for evaluating the contour integral defining J. These local values
were then averaged through the the thickness to provide an average value of J

at each load step. The local value of J shows considerable variation through the
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thickness of the specimen, particularly at higher loads. This evaluation of J is
performed for the case including tunneling as well as for the case without tunneling
for comparison, although the J-integral is not strictly applicable when the unloading
caused by the tunnel occurs. The variation through the thickness of the local value
of J differs greatly between the case with tunneling and the case without, but the

thickness average of J is not much different between the two cases.

Section 4.4 describes the three-point—bend experiment, with figures showing
the specimen geometry and the field of view seen through the camera used to
record the fringe patterns of the moire interferometer. The experimental procedure
is detailed. One influence on the choice of the three-point-bend geometry is that
there is a method of estimating the value of J from the work done by the applied load
for this geometry. The measured values of the load and load-point displacement are
displayed and compared with the results of the finite—element code. The J-integral
is calculated from the work done by the applied load acting through the load-point
displacement. This value of J is then compared with the value of J calculated from
the load and load-point displacement of the finite-element model and the J—integral

calculated by the code using the contour integration scheme described above.

Finally, the experiments performed to measure the extent of crack tunneling
within the body are described in Section 4.5. Six specimens were loaded to different
loads and the extent of the tunnel marked through heat tinting of the steel. No
tunneling was observed for two of the six specimens, and the measured profiles used
as input to the finite—element code are shown for three of the remaining specimens.
Again, the measured load and load-point displacement of each specimen is compared

with the finite—element code, and the value of J is calculated from the work of the

indenter.

A critical value of J for this material and geometry may be estimated using
the initiation load of between 63500 and 68500 Newtons experimentally determined
from the tunnel tests and the value of J calculated from the load and load-point
displacement of the tunnel specimens. The values of J calculated from these data

are J = 195kN/m at a load of 63500 Newtons and J = 252kN/m at a load of
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68500 Newtons. These two values place approximate upper and lower bounds on
the actual critical value of J. A second method of determining J from the tunnel
tests follows the ASTM standard E 813-81 [7], in which the average crack advance,
Aa, is plotted against the value of J calculated from the work done by the indenter.
The intersection of a straight line fit through these data points with the line defined
by J = 20¢Aa, calculated from the estimated virtual advance of a sharp crack
due to blunting. This intersection occurs at J = 265kN/m. However, since this
specimen begins with a notch having a finite tip radius, a better estimate might
be obtained from the intersection of the line through the data points with the line
given by Aa = 0. That intersection occurs at J = 218 kN/m. Again, these two
values should probably be considered as upper and lower bounds. These estimates
of a critical value of J should not be mistaken for the plane—strain critical value
of J, which should be lower. This specimen does not satisfy the size requirements
of the ASTM standard to produce an approved measurement of the plane—strain

critical value of J.

Another estimate of the critical value for J may be determined from the finite—
element model. The numerical simulation of Narasimhan, Rosakis and Moran [52]
uses the void growth model to calculate a critical value of the local value of J through
the thickness. The local J is always highest in the center of the specimen. In [52], the
estimate of the critical local value of J from the void growth model is J = 250 kN/m.
For the simulation run for this study without tunneling, the maximum local J at
63500 Newtons (the highest load with no tunnel) was J = 219kN/m, and the
maximum local J at 68500 Newtons (the lowest load with measured tunneling) was
J = 279kN/m. Also, it might be expected that the local value of J would remain
near the critical value of J in the load step nearest to crack initiation. If that
expectation is correct, the local value of J calculated from the simulation including
tunneling should be close to the critical value of J at 68500 Newtons. That value

of J was approximately J = 260 kN /m.
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4.2 Analytical Approximations for Elastic and Plastic

Crack—Tip Deformation Fields

Two analytical solutions for the deformation at the tip of a sharp crack will
be compared with the data from the finite-element code and the data from the
experiment. These analytical solutions are two-dimensional, asymptotic represen-
tations for the dominant stress singularity in the region close to the crack tip. The
first solution is the eigenfunction solution for linearly elastic materials that is due
to Williams [90], which is governed by the stress—intensity factor K this solution
will be referred to here as the K field. The second solution is a solution derived for
power—law hardening materials obeying a deformation plasticity relation, which is

due to Hutchinson [31] and Rice and Rosengren [69], called the HRR field.

4.2.1 The J-Integral

Q
r(;:_‘
= /

FIGURE 83. A sample contour I' used to evaluate the J-integral. Any contour
that contains only the singularity at the crack tip will yield the same
value for J as long as the material is elastic and the crack surfaces are

traction—free.

Both of the singular solutions (which are asymptotic to the crack tip) may
be related to the applied boundary conditions of the problem through the use of

the J-integral of Rice [65,66], which is a measure of the energy absorbed in the
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deformation in the region surrounding the crack tip. The J—integral is derived for
a two—dimensional planar body, with the integral taken along any contour I"' which

encloses only the singularity at the crack tip, as shown in Figure 83. J is a path

Ju
J = /F(Wdsz —~T- 5;;ds) (4.2.1)

In equation (4.2.1), ds is the element of arc length along I', T is the traction vector

integral defined by

defined by the outward normal to I', and u is the displacement vector. W is the

strain-energy density defined by the integral over the loading history given by
€
W = / aijdeij (422)
0

Note that the J-integral is derived for materials following a deformation plasticity
relation (equivalent to nonlinear elasticity), as is the HRR field. Under the assump-
tion of linearly or nonlinearly elastic behavior, the J-integral is path—independent,
so that the contour I' may be any contour that contains no other singularities but
that at the crack tip. In particular, the contour may be taken arbitrarily close
to the crack tip and evaluated using the asymptotic solutions for linear elasticity
or power-law hardening materials. Equally, the contour may be taken arbitrarily
large, and for certain boundary conditions evaluated directly [65]. The path inde-
pendence of J then determines the strength of the singular, asymptotic terms based

on the applied boundary conditions.

4.2.2 The J-Integral as a Fracture Criterion

Under the restriction of nondissipative material behavior, the J-integral has
been shown to be equivalent to the energy-release rate, G, of a propagating crack
[65,66]. For this class of materials, the value of J is equal to the change in the
potential energy for a unit crack advance. The correspondence between J and G
for elastic solids (linear or nonlinear) has led to the use of a critical value of J, J.,
as a fracture criterion, which is considered to be a material property. When the
value of J reaches J., there is enough strain energy stored in the material around

the crack tip to initiate crack propagation. A large amount of literature is devoted
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FIGURE 84. Three—point-bend specimen geometry. S is the span, w is the width.
For S/w = 4, the J—integral can be directly calculated from the load

and load—point displacement relation.
to establishing repeatable test methods for measuring J for various geometries, and

in particular, to determining J.. [1,7,10,15,20,29,39]

One influence on the choice of the specimen geometry used for the three—
point-bend experiment is that a simple method of calculating the J-integral has
been proposed for this geometry [15,26,68]. See Figure 84. For a three—point—bend
geometry in which the width of the specimen, w, is one quarter of the span between
the supports, S, the J-integral is given by

9 é

J = m /0 Pdé (4.2.3)
where a is the crack length, t is the specimen thickness, P is the applied load and §
is the displacement of the loading point. This simple relation between the value of
the J-integral and the work done by the applied loading will be compared with the
J-integral value estimated from a path integral employed by the numerical code.
This value of the J-integral may also be compared with the magnitude of the stress—
intensity factor calculated from boundary collocation methods. Additionally, the
J-integral provides the scaling parameter for the magnitude of the HRR singularity,

which will be used to compare with the deformation at the crack tip when there is

a large plastic zone.
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The J-integral calculated using equation (4.2.3) may also be used to estimate
a critical value of J for this geometry and material, through the tunneling tests
described in Section 4.5. However, it should be noted that the specimen geometry
used in this study does not strictly follow the ASTM guidelines for the specimen size.
The ASTM provides a standard [7] for determining the critical plane-strain value
of the J-integral, J., to be used as a material property in the design of structures.
Following the ASTM standard [7], an approved three—point-bend specimen should
have a crack length, a, which is at least one half of the specimen width, w. The
crack length of the specimen in this study is only four tenths of the specimen width.
Additionally, the crack should be a sharp fatigue crack, rather than a notch with
a circular tip. Perhaps most importantly, the critical value of J is intended to be
measured in plane strain, as the plane—strain fracture toughness of a material is
lower than the plane-stress fracture toughness, owing to the stresses through the
thickness that constrain the size of plastic deformation. The plain—strain fracture
toughness is thus a conservative estimate of the fracture toughness for the material
in a specimen of finite thickness. In order to maintain plane-strain conditions, it
is suggested by Hertzberg [26] that any of the planar dimensions of the specimen
should be much larger than the zone of intense plastic flow; this zone is on the order
of 2J/cy, where og is the uniaxial yield stress of the material, as estimated by Rice
[66]. Hertzberg [26] indicates that the specimen thickness and uncracked ligament
should be at least twenty-five to fifty times as large as J/og. The J values for this
specimen range up to about 360 kN/m, and the critical value for fracture initiation
is estimated to be approximately 250 kN/m (see Sections 4.3 and 4.5). The yield
stress oy is 960 MPa, so the planar length dimensions at 250 kN/m should be on
the order of 0.65 cm to 1.3 cm, at minimum. At 360 kN/m, the planar length
dimensions should be at least 0.94 cm to 1.88 cm. The specimen thickness is 1
cm, and the uncracked ligament is 4.6 cm, so this specimen seems to lie just within
the suggested size scales. However, the plastic zone at the largest loads is on the
order of the specimen thickness, and the ultimate failure mode is in shear, which
is usually thought to correspond to a plane-stress deformation. Additionally, the

plastic zones shown in Section 5.2 do not seem to indicate there are any regions that
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could be considered plane strain, even in the center of the specimen, beyond a load
of 35000 Newtons, which corresponds to a J value of about 50 kN/m. It appears
that the high ductility (low hardening) in this material means that the specimen

dimensions would have to be significantly larger to produce plane-strain conditions

within the body.

One of the goals of this research is to extend the experimental investigation
to deformations that include sizable plastic deformation, which is accomplished
through use of a very ductile material and a relatively thin specimen geometry.
The plane-strain fracture toughness is intended as a lower limit on the fracture
toughness of a specimen of any thickness. A better understanding of the higher
fracture toughness obtained through mechanisms such as ductility in metals or
Cook-Gordon crack stopping in composites may allow for the design of structures

that take advantage of the higher fracture toughness.

4.2.3 Linear Elasticity Solution

The asymptotic, two-dimensional eigenfunction solution for the stress function
for a sharp crack in a linearly elastic body given by Williams [90] assumes a sepa-
rable series solution of the biharmonic equation of the form r°f(8, s), where r and
6 are as defined in Figure 85. The traction—free boundary condition along 8§ = £«
determines the allowable values of s to be s = £n/2, where n is an integer. The
traction—free boundary conditions and an assumption of symmetry with respect to
the crack plane also determine the function f(6,s), except for a multiplying factor.
The symmetry assumption yields the Mode I distribution; an assumption of anti-
symmetry would yield the Mode II distribution. Mode III results from assuming
antiplane shear deformation. For the present discussion, only the Mode I deforma-

tion will be considered.

Requiring that the strain energy be bounded in any region surrounding the
crack tip as r tends to zero limits the allowable values of s, so that the stresses and
strains may have singular behavior as r~!/2 plus higher-order terms in the series.

The higher-order terms will be neglected here.
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Crack e

F1GURE 85. The origin is taken at the crack tip. The asymptotic fields are deter-
mined from a potential function that is assumed to be separable in r

and 6.
For the Mode I crack geometry [66], the stresses are found in the right-handed
z1z9x3 Cartesian coordinate system of Figure 85 as
K 6 1 — s 6 . 30
011 = cos—| 1—sin—sin —
U e 2 2 2

- cos —g (sin —g cos %ﬁ) (4.2.4)

K 0 1+si 6 . 30
= — n — ———
099 oy cos 5 s1 5 sin 5

and the corresponding in-plane displacements as

K [r 0/
ur =571/ €055 (K(V) — cos 9)

K [ . 8
uz = 54/ 5o sing (h.(l/) — COS 9>

(4.2.5)

where v is Poisson’s ratio and G is the elastic shear compliance. G is related to the

Young’s modulus, E, by
E

- 2(1+v)

The function of Poisson’s ratio, #(v), depends on whether the solution is for plane

G (4.2.6)

strain or plane stress.

3—4v for plane strain

k() =14 3y (4.2.7)

for plane stress
1+v
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The corresponding out-of-plane displacements are identically zero for the plane—
strain case, and for plane stress they are proportional to the trace of the stress

tensor, and are therefore found to be singular, with

—Kuvt é
— 4.2.8
E\/ 2nr COS ( )

where t is the specimen thickness.

The multiplying factor, K, called the stress-intensity factor, represents the
strength of the singularity. The stress—intensity factor depends on the specific ge-
ometry of the specimen and applied boundary conditions. The stress-intensity
factor is a linear function of the applied load. Stress—intensity factors for various

geometries have been collected, as by Tada, Paris and Irwin [83], or Rooke and

Cartwright [70].

4.2.4 Added Correction for Finite Notch Tip

The K field solution is derived for a mathematically sharp crack, having a tip
of zero radius. Tada, Paris and Irwin [83] also provide a correction for the stress
field when the sharp crack is replaced with a notch having a finite tip radius. The
geometry is as shown in Figure 86. The notch is shown as having a circular tip with
a radius of curvature p. In this case, the origin of the coordinate frame is taken
at p/2 ahead of the center of curvature of the notch tip. The correction consists
of a stress term of the order r—3/2 which is intended to make the surface of the

notch traction—free. These stresses are added to those in equation (4.2.4), so that

the total stress is given by

-K p 36 n K 0 1 6 . 36
= @ —_—— — cos —| 1 —sin — sin —
o1 V2rr 2r o8 27 2 2 2
—-K 36 K g 6 36
019 = \/2_;756;— sin 5 + \/5\7;7— cos 5 (sin 5 cos ?) (4.2.9)
B K p 36 K 0 . g 36
0920 = \/%2—]: COS? + —“:\/ﬁCO '5 +51n251n—é—
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where p is the radius of curvature of the notch as shown in Figure 86. Note that
these additional terms have no effect on the out-of-plane deformation field, as the
trace of the additional stress terms, (011 +022), is zero. The in-plane displacements
associated with this stress field are given by
K 6 p ]
Uy = ———=cos = |—= + /r(k(v) —cosb)| +C
= Sy S g V)~ os0)

ug = ﬁ sing [% +/r(s(v) — cosH)}

where C is an arbitrary constant of integration. The u; displacements are con-

(4.2.10)

strained to be zero along the crack line because of symmetry, so there is no corre-
sponding rigid translation for u,. Since the trace of the additional stress terms is
zero, the in-plane displacement field associated with the added correction is inde-
pendent of whether the deformation is assumed to be plane stress or plane strain.
One convenient choice for C is C = 0, which would be most useful if the boundary
conditions applied were displacements corresponding to the terms of the K field for
a sharp crack, although the applied boundary conditions would have to be centered
at the appropriate position of the origin, which would be different for different notch
tip radii. A second choice for C, convenient for this study, is to select C' so that u; is

zero at the notch edge, at the location of the first nodal coordinate (r = p/2,8 = 0).
In this case, C is given by

C= ?2—%2_; (w(v) +1) £ (4.2.11)

This additional correction for a finite notch tip radius has two appealing proper-
ties, the first of which is that the magnitude of the r—3/2 stress term is also governed
by the same stress—intensity factor as the r~1/2 stress term from the solution for the
sharp crack. Thus, a stress—intensity factor calculated from the boundary condi-
tions applied to a body containing a sharp crack is also applicable to the same body
in which the crack has been replaced by a rounded notch. The second appealing
property is that the stresses and displacements of the added correction possess a
stronger singularity than the sharp crack stresses and displacements, so that the

correction may be ignored if r is much larger than p.
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FIGURE 86. The local geometry at a circular notch tip from Tada, Paris and Irwin
[83]. The radius of curvature of the notch is p, and the origin of the
r,8 coordinate system should be p/2 ahead of the center of curvature
to use the K field solution with correction.

4.2.5 The Stress—Intensity Factor as a Fracture Criterion

A critical value of the stress—intensity factor, I, has also been used as a mate-
rial dependent fracture criterion, with an equivalent ASTM standard for measuring
K. [5]. Since the stress-intensity factor is derived within the framework of linear
elasticity, however, its applicability as a fracture criterion must be limited to elastic
materials, or to materials in which the size of the plastic zone around the crack
tip is contained in a small region (compared with some specimen dimension). The
latter condition is described as small-scale yielding. By contrast, the J-integral

criterion is intended to be used with specimens that experience plastic deformation

on a larger scale.

As mentioned earlier, the specimen geometry of this study is not an ASTM-
approved geometry for determining J,, the critical value of the J-integral necessary
to initiate fracture propagation, because the dimensions of the specimen are not
large enough to ensure that plane—strain conditions prevail, or to keep the plastic-
ity from having a significant effect on the stress distribution along the uncracked
ligament when the ultimate failure loads are approached. In fact, the dimensions
of an ASTM-approved geometry to measure I, must be on the order of twenty

times as large as the dimensions of an ASTM-approved geometry to measure J,
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as incicated by Hertzberg [26]. The larger dimensions of the specimen to determine
K, are necessary to ensure that any plastic deformation is well contained and may
be considered to be small-scale yielding. The ductility of the material used in this

study results in a plastic zone that has a size on the same order as any other length

dimension of the specimen geometry.

The stress—intensity factor K and the J-integral are directly related when the
material response is linearly elastic, or when the deformation may be described as
small-scale yielding and the contour I is taken outside the plastic region. For plane

stress, it is found that

~2
J = II; (4.2.12)
while for plane strain
2N 2
J= (—1—%—)—{‘—— (4.2.13)

where E is again Young’s modulus and v is Poisson’s ratio. From the relation that
J = G, it follows that the energy-release rate of a propagating crack, G, is also

related to the stress—intensity factor, K.

The stress—intensity factor predates the J-integral, and there exists even more
literature on repeatable methods of determining K and K. than exists for J and
J.. One traditional method for calculating stress-intensity factors has been through
boundary—collocation techniques [22]. In boundary collocation, Williams’s series
solution for the stress function is matched with the stress function corresponding to
the applied boundary conditions at m selected points. This procedure yields values
for the first 2m coefficients of the series, with the remaining terms neglected. In the
paper by Gross and Srawley [22], m is taken as 19, 18, 21 and 24 points successively,

to ensure that the procedure converged to the correct value for the stress—intensity

factor, K.

Stress—intensity factors for the three-point-bend geometry used in this study
are available from a variety of sources [5,14,22,26,70,83]. An average of the values

found in the literature has been chosen as

p
K = (27.95 m™/?) (7> (4.2.14)
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where P is the applied load, and ¢ is the thickness of the specimen. The variation

in the value of K as calculated from the various sources in the literature is about

+1%.

4.2.6 Remarks

There are some obvious difficulties in approximating the deformation of the
three—point-bend specimen of the current study with the K field solution. The
biggest discrepancy is the finite thickness of the specimen. The K field is a two—
dimensional solution, either for plane stress or plane strain. The finite thickness
of the specimen introduces three-dimensional effects not accounted for in the K
field solution. Corrections could be made to the K field plane-stress solution, but
Swedlow [82] suggests that such corrections will not be successful, owing to the
singularity of the K field. Part of this study is intended to examine the importance
of the three—dimensional nature of the deformation near the notch tip as it affects

the in-plane displacement fields on the surface of the body.

A second difficulty with the classical K field is that the stress concentration at
the notch tip results in plastic deformation. However, in small-scale yielding, the
inclusion of a plastic zone surrounding the notch tip can be treated in a way that is
similar to the correction for a finite tip radius. In this case the plastic zone is felt as
a small increase in the notch tip radius, and the K field is expected to remain valid
in a region outside the plastic zone, in the same way that the more singular term
that is due to the finite notch tip radius dies out away from the notch tip. Plastic
deformation is important in that it provides the mechanism for the high toughness
of ductile metals. The HRR field is one attempt to model the plastic deformation at
the notch tip; however, the HRR field is expected to be valid only in a small region
inside the plastic zone. Investigation of the evolution of the plastic deformation

around the notch is also part of this study, as is the extent of the range over which

the HRR field is valid, if any.

A third difficulty associated with the I field is the question of the size scale

at which the singular term of the I fleld no longer dominates the nature of the
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deformation surrounding the notch tip. One way to investigate this question is
to include higher—order terms from the Williams’s series solution. However, if the
three—dimensional effects are large, or the plastic zone is large, there may be no

region in which the deformation is well described by Williams’s series.

The finite notch tip correction is derived from the solution for the deformation
at the tip of a long, thin ellipse. Since no mathematically sharp crack exists in
a physical body, owing to the atomic nature of real solids, perhaps the best way
to approach a three—dimensional problem would be to add a three-dimensional
correction to the solutions for an elliptical or hyperbolic notch worked out by Neuber
[63]. These functions possess no singularities, although the elliptic or hyperbolic

geometry is somewhat difficult to tackle. See Pfaff [56].

If nothing else, the K field solution provides a starting point for studying the
deformation fields. However, the K field is derived for two-dimensional deformation,
either plane strain or plane stress. One point of interest is the effect of the three-
dimensionality of the specimen on the deformations predicted using the K field. If
it is assumed that the two cases of plane strain and plane stress represent limiting
cases of infinitely thick (plane strain) and infinitesimally thin (plane stress) three—
dimensional bodies, the two—dimensional solutions may be thought of as bounds
on the deformations expected in a finite three~dimensional body. The out-of-plane
deformation is zero in plane strain, but singular in plane stress, so there is an
infinite change between the limit cases for the out-of-plane deformation. In either
plane strain or plane stress, though, the in-plane deformation is bounded. One
might therefore expect the in-plane deformation to be better characterized by the

K field than the out-of-plane deformation.

The variation of the in-plane deformation fields between plane strain and plane
stress then depends on the change in the value of x(v) between plane strain and
plane stress. For a Poisson’s ratio of v = 0.3, the plane—strain value of x(v) is 1.80,
while the plane-stress value of x(v) is 2.08, a difference of about 15%. However, the
effect of the change in x(v) is also a function of the value of 8, as may be seen in

equation (4.2.10). Along 6 = 0, the plane-strain value of the quantity [£(v)—cosf]
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is 0.80, while for plane stress the value of [n( v)—cos 9] is 1.08, a difference of about
30%. Along 6 = =, the plane-strain value of the quantity [x(v) — cosf] is 2.80,
while for plane stress the value of [s(v) — cos 6] is 3.08, a difference of just 10%.
Thus, while the variation in «(v) between plane strain and plane stress may be
15%, the variation in the limit cases of the displacement fields as predicted by the
K field solution may be as little as 10% or as much as 30%.

4.2.7 Power-Law Hardening Materials — HRR Field

An asymptotic solution for the case of a crack in a two-dimensional body com-
posed of a material that follows a power-law constitutive relation during plastic
deformation was derived by Hutchinson [31] and by Rice and Rosengren [69], and
has become known as the HRR field. This solution was derived within the frame-
work of deformation plasticity, in which the stresses and strains can be directly
related, unlike incremental plasticity, in which the stress and strain rates are re-
lated. Since deformation plasticity is equivalent to nonlinear elasticity, the stresses
and strains may be derived from a potential function. The HRR field solution is
also found by assuming that the potential follows a spatial distribution of the form
r®f(s,0), and by restricting the solution to include only the dominant singular term,
which is again determined by assuming that the strain energy is bounded in any
region surrounding the crack tip. Solution of the equilibrium equation using the
potential function results in a fourth-order differential equation for f(s,§). Impos-
ing traction—free boundary conditions along § = +7 yields a unique solution if s
is chosen. This method of solution is analogous to the Williams I field solution
in linearly elastic materials, which is also a separable solution in r and 6, and the
HRR solution reduces to the K field for a material with a hardening exponent of

unity, corresponding to linearly elastic behavior.

The material is assumed to follow a power law governed by the hardening
exponent n, so that the strains are a function of the stresses to the power n. By
bounding the strain—energy density in any region about the crack tip, the stresses

are found to have a singularity of »~%/("*1) and the strains are found to have
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a singularity of r=n/(a+1) a5 r approaches zero. As in the K field, the in-plane
displacements are bounded, behaving as r1/(n+1) a5 ¢ approaches zero. The out-
of-plane displacement is singular as r approaches zero, however. The differential
equation for the # variation has been solved numerically and tabulated for plane
stress and plane strain for various values of n by Shih [77]. For elastic materials,
with n = 1, the K field singularity of r~1/2 is recovered. For power-law materials,
the stresses have a milder singularity than the stresses found using linear elasticity,

but the strains have a stronger singularity than the strains in the linearly elastic

case.

Again, this solution is asymptotic to the crack tip, and is related to the applied
boundary conditions through the J-integral. In this case, the linearly elastic field

quantities are assumed to be small compared with the plastic deformation, and the

elastic deformation is neglected.

Shih [77] assumes a uniaxial constitutive law in which the plastic strain is
related to the applied stress by
I a<ﬁl> " (4.2.15)
go
where oy is the yield stress, ¢¢ = 0o/ FE is the strain at yield, and « is a material
constant. n is the hardening exponent, and all elastic strains are neglected. This

relation is generalized to multiaxial stress using J, deformation plasticity as

eP. 3 T n—1 S..
Mo el = z1
L =Sa (UO > - (4.2.16)

where S;; is the deviatoric stress defined as S;; = 0;5 — (1/3)0oridi;, and 7 is the

current yield stress given by

3
5= 55,‘]‘51']' (4.2.17)

Z

The incremental plasticity law used in the finite—element code is described in
Section 3.2. Deformation plasticity and incremental plasticity coincide when the
loading path is restricted to be proportional. In proportional loading, the stress
tensor is a time-independent tensor multiplied by a positive, monotonically in-

creasing scalar function of time. When proportional loading holds, the incremental
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plasticity law takes the form

p — \ n—1

€; 3 - Sij

— = — —1|— 4.2.18

€g 2 [(0’0) ] go ( )
Since the elastic strains are neglected in the HRR formulation, the second term
in equation (4.2.18) is assumed to be negligible compared to the first, so that the
plastic strain may be approximated as

p

0

— \ n—1 )
(f—) Si (4.2.19)

Op J0

ol

Compare equation (4.2.19) to equation (4.2.16). Note that for this study, the ma-

terial parameter « is taken as unity.

The elastic strain may be written in a similar form as

efj S,‘j (1 — 21/) Trk
Ao (1) BT TRk 2.2
e (4.2.20)

The stress, strain and displacement variations are given by Shih [77] in the

following form:

J n+1
R - 5. . 9.
05 = 0g {aaoeofnr} G;;(8,n) (4.2.21)
J R
€;5 = Q€g [m] eij(é’, 'IZ) (4222)
wH
U; = agr 7 u;(0,n) (4.2.23)
aogeol,r

where ;;(6,n), €;(6,n) and 4;(6,n) are tabulated for 8 in two—degree increments.
The tabulated variations are available for either plane strain or plane stress, and
for n ranging from 2 to 100. The parameter I, is a normalizing factor that depends

on whether the deformation is plane strain or plane stress.

For the present study, the hardening exponent n was chosen to match the
experimentally measured uniaxial stress—strain curve with n = 20, and a = 1. For
n = 20, assuming plane strain, [,, = 4.21. For n = 20, assuming plane stress,

I, =2.74.
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4.2.8 Remarks on the HRR Field

Approximating the plastic deformation surrounding the crack with the HRR
field presents difficulties similar to approximating the elastic deformation with the
K field. As with the K field, the HRR field is derived for a two-dimensional body,
while the deformation near the crack tip is strongly three—dimensional in character.
Making a three—dimensional correction will be difficult for the HRR field, again

because of the the singular nature of the stress and strain functions.

Plasticity at the crack tip is the basis for the HRR approximation; however,
there is no guarantee that the plastic zone will ever become large enough so that
the HRR approximation has any region of dominance. Additionally, the HRR field
is derived using a deformation plasticity law, which does not in general match
the incremental plasticity law used in the finite—element code. The incremental
theory is usually considered to be more correct, as it models the physical body
more realistically. Deformation and incremental theories coincide only when the
loading path is proportional, although the two theories approach the same result
when the loading develops in a definite direction [34]. The HRR field itself is a case
of proportional loading, as is the I field. However, the HRR field and the K field
have a different spatial dependence, so if the HRR field develops from the K field,
the loading must pass through some transition from one to the other that is not

proportional. This transition will take place at the edge of the plastic zone.

One interesting remark in Shih’s work [77] is that the region in which the HRR
field dominates for large-scale yielding conditions is strongly dependent on whether
the uncracked ligament is subjected primarily to tension or bending. This is impor-
tant, because the three—point—bend specimen geometry has a strong component of
bending across the uncracked ligament. Actually, Shih [78] indicates that the HRR
field will have a larger domain of validity if the uncracked ligament is subject to
bending than if it is subjected to tension alone. (Their study considered a ligament
that was completely plastic.) In part, this conclusion depends on the criterion for
comparing the finite—element model to the HRR field. The HRR field was closer to

the finite—element model with significant bending in a small region near the crack
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tip, but it began to deviate from the numerical solution very quickly outside that
small region. The deviation between the HRR field and the numerical model for ten-
sion only was larger in the same small region, but it seemed to reach a constant level
outside that small region. It is likely that the K field (and associated higher—order
terms) are also strongly dependent on the stress distribution across the uncracked
ligament. The addition of higher—order terms in the HRR field to characterize the
plastic deformation in a larger region would run into further difficulty because the

assumption that the elastic strains are negligible would lose validity.

Hutchinson [verbal communication] suggests that the HRR field may be im-
proved by adding the elastic strains that correspond to the HRR stresses. This
addition may be particularly important in the case of the hydrostatic stress, since

the plastic strains are independent of the hydrostatic stress.

In a recent paper, Zhang and Ravi-Chandar [93] have investigated the HRR
field numerically, using several different constitutive laws and numerical models.
The boundary conditions used apply a K field displacement around a circular ge-
ometry. The uy displacements calculated from this study match fairly well with
the HRR field, but the u; displacements seem not to agree well at all. Hutchinson
[verbal communication] suggests that the plots of log u; against log r are incorrect
because the HRR field within the applied K field may have a constant offset of the

location of the origin in the z; direction, similar to the effect of the finite notch tip

in the K field.

Presumably, a correction could be made to the HRR field to account for the
effects of a finmite notch tip radius, as was made for the K field. It might be best
to assume a form for the notch that is a long thin ellipse, and to add a stress term
having a stronger singularity in » than the HRR field, which leaves the notch surface
traction—free. This correction would be governed by the same multiplying function
of J that governs the strength of the HRR field singularity. This added variation

would also be a valid solution for the numerically determined stress potential.
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4.3 Finite—Element Analysis

The finite—element model employed in the present work is adapted from the
model used by Narasimhan, Rosakis and Moran [52] in a study of void growth as
a fracture initiation and propagation mechanism. The void growth model has been
removed from the code for the present work, as it caused convergence difficulties
when the void volume fraction became large. The constitutive relation and mesh
have been changed to match more closely the experimentally measured values of the
experimental specimen used in the current study. Tunneling of the crack in the inte-
rior of the body has been included through the release of the boundary constraints
on the crack plane. The choice of nodes to be released was determined through

a measurement of the profile of the crack tunnel at several loads, as described in

Section 4.5.

The finite—element code is a modified version of FEAP (Finite Element Analysis
Program), which originated with R. L. Taylor at University of California, Berkeley,
and M. Ortiz of Brown University.

4.3.1 Model Description

The three-point-bend experiment of Figure 87 was modeled using a three di-
mensional finite—element code with a power—hardening, elastic—plastic constitutive
relation. Because of the symmetry of geometry and loading about the plane of the
crack and about the midplane of the specimen, only one quarter of the specimen

must be modeled.

The mesh geometry of the simulation is shown in Figures 88 through 90. The
entire model consisted of 3200 eight-noded block elements arranged in 10 layers and
having 3971 nodes and 11913 degrees of freedom. The physical specimen is a plate
30 cm long by 7.6 cm high by 1 cm thick. A notch of 3 cm in length is cut into one
of the long sides of the plate. In order to match the physical specimen as closely
as possible, the notch is modeled in the numerical simulation as having a circular

tip of radius 0.015 cm. The notch in the steel specimen is cut with an electric
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FIGURE 87. Diagram of the geometry of the three-point-bend experiment. Because
of symmetry, only the shaded side of the specimen needs to be modeled.
Also, symmetry about the midplane of the specimen means only one
quarter of the entire specimen must be modeled.

discharge using a wire of 0.02 cm diameter, resulting in a notch of 0.03 cm width,
and a rounded tip of approximately 0.015 cm radius. Detail of the mesh near the
notch tip is shown in Figure 89. Ten layers of elements are used through the half
thickness of the specimen. The elements vary through the thickness in a parabolic
distribution, with the elements being smaller near the free surface to capture the
corner singularity. The variation of the element size through the thickness is shown
in Figure 90. In the region surrounding the notch tip, the elements are arranged in
wedges of 15° each. The elastic modulus, yield stress and power-hardening exponent

were calculated from the uniaxial tension test.

The physical parameters of the present model are intended to match as closely

as possible the parameters of the steel specimen used in the interferometric investi-

gation.
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15.00

FIGURE 88. Diagram of the mesh in the finite—element model of the three-point—
bend specimen. The notch is at the lower right, and is modeled as
having a circular tip of radius 0.015 cm. The elements are concentrated
near the notch tip. All dimensions are in centimeters.

4.3.2 Model Constitutive Relations

A brief discussion of the elastic and plastic constitutive relation used for this
study is found in Section 3.2. The numerical model assumes material homogeneity
and isotropy in both the elastic and plastic constitutive relations, and the numerical
simulations are carried out using a small-strain, incremental plasticity theory. The
stresses are computed and the yield surface updated using a tangential predictor —
radial return method with subincrementation. The stress update procedure is de-
scribed in Narasimhan and Rosakis [50,51]. The B method of Hughes [30] modified
by Nakamura, Shih and Freund [48] was used to relieve artificial mesh locking caused
by plastic incompressibility. As recommended by Nakamura, Shih and Freund [48§],

a stabilization parameter of 0.05 was used in the calculations.

Both models used a power-law hardening relation between the stress and strain
in the plastic regime. The initial yield stress of the first model was about 10% higher
than that of the second model. The plastic behavior of the two models was quite
similar, as the hardening exponent of the first model was 22 as compared to 23.7

in the second model. An exponent of 1 corresponds to linear elasticity, while an



-233-

2.1

0.0913 }

(c.)

FIGURE 89. Detail of the mesh near the notch tip for the finite—element model of the
three-point-bend specimen. The notch crack is modeled as having a
circular tip of radius 0.015 cm, as shown in diagram (c.). All dimensions
are in centimeters.

exponent of infinity corresponds to an elastic—perfectly plastic material.

Although the constitutive relations used in the numerical models contain no

explicit time dependence (no rate-dependent effects, no dynamic effects and no
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F1GURE 90. Detail of the element variation through the thickness of the finite-
element model of the three-point—bend specimen. The notch tip is in
the center of the diagram, running horizontally. The scale corresponds
to diagram (b.) in Figure 89. Because of symmetry of the geometry
and loading, only half of the specimen must be modeled. The free
surface 1s at the left, the midplane at the right. All dimensions are in

centimeters.
time—dependent effects such as creep), the solution of the finite—element equations
is performed in a time domain to allow for the inclusion of such explicit time de-
pendence. In this model the load history alone is explicitly a function of time, and
time steps are used to implement load steps. The load history is monotonically

increasing and is specified to be linear with time in this study.

4.3.3 Solution Approach

An iterative solution method is used to solve for the increments of the displace-

ments, strains and stresses corresponding to the increment of the applied load at

each time step.

It is assumed that an equilibrium solution for time t has been achieved. At
time t, the displacements are held in the displacement matrix U(¢). The strains at

time ¢ are calculated from the displacements through the B matrix as

e(t) = BU(t) (4.3.1)
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The B matrix is used in place of the normal B matrix to eliminate numerical
error caused by mesh locking caused by plastic incompressibility. The normal B
matrix is calculated from the derivatives of the shape functions for the element. The
B matrix is derived from the B matrix by dividing the B matrix into a deviatoric
part and a volumetric part, B = Bgey + Byoi. The volumetric part of the B matrix
is replaced by a volumetric matrix calculated at a reduced number of quadrature
points using reduced—order shape functions, B = Bico+Byor. In elastic analysis, the
B method yields an identical stiffness matrix when compared to selective reduced
integration in which the compliance matrix, C, is separated into deviatoric and
volumetric parts, and the volumetric part is numerically integrated at the reduced
quadrature points. A stabilization parameter of 0.05 was used to create a B matrix
which lies between the usual B matrix and the full B matrix, B = By., + Byor +
0.05(Byor — _ﬁvol). This stabilization parameter is intended to eliminate spurious
zero—energy modes that may occur because of the reduced integration, while still
providing a strain—displacement matrix that does not significantly overestimate the

stiffness of the element in the event of the nearly incompressible behavior in fully

plastic deformations.

Since small strains are assumed in the model, the B matrix remains constant
throughout the loading history. The equilibrium stresses at time ¢ are held in the
matrix o(t), and the nodal force vector P(%) is calculated from the stresses through

the B matrix in a numerically calculated integral over the volume of the model

P(t) = Bo(t) dV (4.3.2)
Vol‘z[ne

The applied nodal force vector F(t) is specified by the load history. Gross equilib-

rium of the model requires that
F(t)=P(t) (4.3.3)

for all time t. The tangent stiffness matrix K(¢) at time ¢ is calculated by numerical

integration over the volume

K(t) = / B'Cc*t)B dv (4.3.4)

Volume
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where C*(t) is the history—dependent compliance matrix, derived from the history-
dependent compliance four—tensor. The superscript T indicates the transpose of
the matrix. As described in the section on elastic and plastic constitutive relations,
C*(t) depends on the accumulated plastic strain as well as on the current stress

and strain states. For purely elastic behavior, C* reduces to the elastic compliance

C.

The time is incremented to 4+ At, where At is a suitably chosen time increment.
At time t 4+ At, the externally applied forces F(t + At) must still balance with the
forces that are due to the element stresses P(¢ + At),

F(t + At) = P(t + At) (4.3.5)

The forces that are due to the element stresses at time t + At are decomposed
into the known forces at time ¢, P(¢), and the increment at time t + At, AP.
The increment of the nodal forces that are due to the element stresses is approxi-
mated through use of the tangent—stiffness matrix of time ¢, K(¢), multiplying the
displacement increment at time ¢ + At, AU.

AP ~ K(t)AU (4.3.6)

Thus, the equation that must be solved for the displacement increment AU at time

t+ At is
K(t)AU = F(t + At) — P(t)

= AF

(4.3.7)

The stiffness matrix is inverted and the matrix equation is solved using Gaussian

elimination, leading to an approximation for the displacement increment AU.

Equation (4.3.7) is a first approximation to the equilibrium solution at time
t+ At. In general, the actual increment of the nodal forces corresponding to the dis-
placement increments will not satisfy the equilibrium condition of equation (4.3.5).

In order to refine the solution, an iteration procedure is used.
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4.3.4 BFGS Iteration

The solution for the displacement increment at time t + At in equation (4.3.7)
is used as a first approximation in an iterative scheme to improve the solution. This
iteration method is called the BFGS method (after Broyden, Fletcher, Goldfarb and
Shanno), as described in Bathe [9], and it was suggested for use in finite elements
by Matthies and Strang [43]. This method is labelled a quasi-Newton approach
because it updates the stiffness matrix (or actually its inverse) in a limited way at
each iteration to improve speed of convergence. A full Newton method updates the
stiffness matrix completely at each iteration, while a modified Newton method does

not update the stiffness matrix at all during iteration.

The matrix equation to be solved is still as shown in equation (4.3.7); however,

it is now done in an iterative procedure. At the i** iteration,

(K(t + At)) (i—I)AU(“ = F(t + At) — (p(t + At)) G-1)

= AF(-1

(4.3.8)

where (K(t + At))© = K(t) and (P(t + At))(® = P(t) are from the equilibrium
solution at time t. AF(~1 is the out-of-balance force vector, which becomes zero

(or very small) when equilibrium is satisfied.

As mentioned, the BFGS method effectively acts to update the inverse of the
stiffness matrix at each iteration. Actually, the stiffness matrix is not inverted, but
is factored. The BFGS method uses vector multiplications and the factors of the
original stiffness matrix to solve for the displacement increment at each iteration.
The effect of the vector multiplications is identical to updating the inverse of the
stiffness matrix. Rewriting equation (4.3.8) to use the inverse form of the stiffness
matrix,

AU — (K~1(t + At))(i_l) [F(t +At) - (P(t + At))(H)] (43.9)
3.9

- (K—l(t + At))(i_l)AF(i‘l)

The total displacement is then approximated by

UD(t + At) = U (¢t + At) + BAUD (4.3.10)
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with U (¢t 4 At) = U(t). The scalar parameter J is varied until the component of
the new out-of-balance load vector parallel to the vector AU® is small compared
to some tolerance. This is accomplished by varying # until the calculated nodal

force vector, (P(t + At))(i), which corresponds to g, is such that the inner product

(AU("))T[F(t +At) — (P(t + At))m] - (AU(i))TAF(i) (4.3.11)

is less than some tolerance. The superscript T' denotes the transpose of the vector.

The new out-of-balance force vector depends on the parameter 8 through the
constitutive law. Increasing  increases the displacement increment and therefore
the strain increment. The stress increment is a nonlinear function of the strain
increment, and the new nodal forces are calculated from the stresses as in equation

(4.3.2), which is also put in iterative form

(P(t—{—At))(i): / B (a(t—{—At))(i) av (4.3.12)
Volume

The procedure for calculating the stresses corresponding to the displacement incre-

ment SAU are described in the next section.

As described in Matthies and Strang [43], the BFGS method is an attempt
to make an efficient iterative search for the solution AF = 0. The variation of 3
produces a search direction which is nearly orthogonal to the out-of-balance force

AF®) . In particular, the updating of the inverse of the stiffness matrix is made

inexpensive to compute.

Two difference vectors, 69 and ) are formed to represent the change in the
displacements and out-of-balance forces between increments. These vectors are

60 = (U(t + At)) - (U(t + At)) (4.3.13)

,),(i) = AFE-D _ AF® (4.3.14)

The updated inverse of the stiffness matrix, (K™ (t+At))®, will be made to satisfy

the quasi-Newton equation

8D = (K1(t+ Ar)) Py (4.3.15)
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In the BFGS method, the update of the inverse of the stiffness matrix is accom-

plished through a matrix multiplication of the form
-1 () T\G) (pe—1 SERING
(K1t + AD))D = (AT) (K (t + At)) A (4.3.16)
where A() is a square matrix calculated from 6@ and ¥, A is defined by
AG) = T4 vO(w)T (4.3.17)

where I is the identity matrix. The vectors v{#) and w(?) are found as
1/2
(60) T4
N T G0 o
)T (k@ +an) 8

v = _

(i-1) . .
(K(t—{—At)) 59 — 4 (4.3.18)

. 50
w® —

-0 4.3.19
(69) 4 (39

The term in brackets in equation (4.3.18) is the condition number of the update,

¢ which is checked before the update of the stiffness matrix inverse is made. The

condition number at the i** iteration is
1/2
(5(2))7”7(1')

. G-D)
(6(1))T(K(t + At)) Vg

=

(4.3.20)

If the condition number becomes very large, the update in equation (4.3.16) would
be numerically dangerous, so a preset tolerance is used to prevent updating if the

condition number exceeds the tolerance.

With the newly calculated matrices (K~1(t + At))® and (P(t + At))®, the

process can begin again at equation (4.3.9) to evaluate the displacement increment

at iteration z + 1.

The iteration for the displacement and force increments continues until the
Euclidean norm of the out-of-balance force vector AF() is smaller than the out-of-

balance force at the start of the iteration by a preset tolerance.

IAF®| < TOL ||[AFY)] (4.3.21)
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The displacement at time t + At, U(t + At), is then given by

U(t+ At) = U(t) + zn: AU (4.3.22)

=1

where n is the number of iterations to convergence.

4.3.5 Stress Update

The stresses in the elements are computed from the calculated strain increment
using a tangential predictor — radial return method. In order to prevent artificial
unloading during the iteration procedure, the stresses and strains at each iteration
are calculated from the known equilibrium solution from the previous time step
and the total displacement increment for the current time step. At the i* iteration
for time step t + At, the total displacement increment, AU*!*! is the sum of the
displacement increments for iterations 1 through : for time step ¢ + At. The strain

increment that is due to that displacement increment is given by
Ae =B AU (4.3.23)

In calculating the stress increment for the current iteration, this total strain incre-
ment is used along with the previous equilibrium solution to prevent the possibility
that the stress increment at one iteration will lie outside the current yield surface,
while the next stress increment will be a correction in the opposite direction, causing

artificial elastic unloading that is due to finite step sizes.

The procedure for updating the stress and yield surface requires only the con-
stant elastic compliance matrix, C, and the current parameter defining the yield

surface, 7. First, an elastic stress increment is determined from the strain increment

through the elastic compliance tensor C.
Ac® = C Ae (4.3.24)

A trial stress state o/ is calculated from the stress increment and the stress state

from the known equilibrium solution at time ¢, o°.

ot = 0% + Ac® (4.3.25)
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The stress state o° is assumed to lie inside the yield surface at time ¢t. The yield
surface at time t is defined by the function f(o,e) = 3J2(0) — 72, where 7 is
a function of the accumulated equivalent plastic strain, and is a measure of the

current yield stress. At time ¢, T = °. If the trial stress state o is such that
3J2(c?) < (3°)* (4.3.26)

the stress path has stayed in the elastic regime, and no further calculation of the
stress state is necessary. Otherwise, the yield surface has been crossed by the trial
stress solution, and the yield surface and stress state must be updated together. A
stress state between the equilibrium stress of time ¢, 6% and the trial stress state

o4 is found, which lies on the yield stress of time t. This contact stress state, o€,

is defined by
¢ =6 + g0 (4.3.27)

and

3J,(6€) = (5°)? (4.3.28)

For the isotropic hardening material satisfying the Huber—Von Mises yield condition,
this results in a quadratic equation for the scalar parameter ¢q. Note that the path

C

from 6° to 0% is completely elastic.

C using the

A corrected trial stress 6P is determined from the contact stress o
assumption that the plastic strain rate is always normal to the yield surface. If the
plastic strain rate is directed along a normal to the Huber-Von Mises yield surface,
it will be given by

& =S (4.3.29)

where S is the deviatoric stress and the invariant J, = %S’ijSij. An approximate
plastic strain increment is given by AMS, where S and AAX are calculated at the
contact stress ©. This plastic strain increment is subtracted from the calculated

A

strain increment from the stress state o€ to the stress state o', approximated by

(1 — ¢)Age, to estimate the elastic strain increment during plastic deformation.

A€ =~ (1 —q)Ae— AXS (4.3.30)



249~

The stress increment corresponding to that elastic strain increment is
Ao = C((l — g)Ae — A)S) (4.3.31)

The corrected trial stress B is the contact stress 0 plus the calculated stress

increment.
0B = 0% + C((1 - ¢)Ae — A)S)
=0% + ((6* —0%)— AXC S) (4.3.32)
=g4—-AXCS

The yield surface is updated using the hardening law H, in this case a power
law. The accumulated equivalent plastic strain increment A€P is given by
1
AP = (%AefjAefj 2
1
= AX($5:;555)°
1
= AX(22],)7
2 A =0
= §'A)\0‘

H is defined as the rate of change of the function & with respect to the equivalent

(4.3.33)

accumulated plastic strain €”, which is determined from the power law described in
the section on constitutive behavior. In order to update the yield surface, H will

be determined at 7°.

5

—0y __
H(c") = |, (4.3.34)

The final value of the yield stress, 77, is then calculated as
7 =5" + H@) AR (4.3.35)

In general, the corrected trial stress 62 will not lie on the updated surface. A final

update of the stress state is scaled from o?, forcing it to lie on the updated yield

of = (%ZJB)-)GB (4.3.36)

surface

The stress path from 6¢ to of is an elastic-plastic path. To minimize the
effect of finite increments, the excess stress increment o — 0© is divided into m

subincrements and the corrected trial stress o, the yield surface update, and the

F

final correction to of are calculated m times.



-243-
4.3.6 Inclusion of Crack Tunneling

There are several possible sources of discrepancy between the experiment and
the finite—element code. One of these discrepancies that could be addressed was the
tunneling of the crack within the specimen used in the experiment. The tunneling
of the crack within the experimental body was measured using a multispecimen
approach, as outlined in Section 4.5. The measured shape of the crack tunnels at
several loads are also shown in Section 4.5.1. Before these tests were made, it was
thought that the crack might have tunneled very deeply into the interior of the body
before ultimate failure (as much as four or five millimeters), or that crack tunneling
might actually have begun at a low load, meaning that the finite-element model was
not modeling the physical body used in the experiment over a wide range of load.
Fortunately, that seems not to be the case. Tunneling was estimated to initiate at
about 63500 Newtons, and the highest load achieved in the experiment was 73500
Newtons, with one load step in between at 68500 Newtons. The depth of the tunnel
was about 0.8 millimeter in the center of the specimen at a load of 73500 Newtons,
as compared to the notch tip radius of 0.15 mm and a plate thickness of 10 mm.

The plastic zone is also about 10 mm in size at the highest loads.

The advance of the crack was incorporated in the finite—element model through
the release of the displacement constraint on the nodes corresponding to the shape
of the tunneled crack. No tunneling was found up to a load of 63500 Newtons,
and tunnel profiles were measured for loads of 68500 Newtons and 73500 Newtons,
with 73500 Newtons being the highest load at which data were taken from the
experiment. The experimentally determined tunnel profiles are shown in Section
4.5.1. It was necessary to remove constraints on twenty-two nodes to approximate
the shape of the tunnel at 68500 Newtons, and to remove constraints on a further
thirteen nodes to approximate the tunnel shape at 73500 Newtons. The nodes were
released in four groups. Ten nodes were released on loading from 63500 Newtons to
66000 Newtons; twelve more nodes were released between 66000 and 68500 Newtons;
six more nodes were released between 68500 and 71000 Newtons; and the final seven
nodes were released between 71000 and 73500 Newtons. The loading in each case

took place in five increments of 500 Newtons each, each group of nodes was released
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before the first 500 Newton increment was applied.

The sudden removal of the constraint on the nodes caused a significant increase
in the number of iterations required for convergence for the first load increment.
For example, in the first step after releasing nodes, from 63500 Newtons to 64000
Newtons, twenty-nine iterations were required for convergence, while the average

number of iterations needed for steps up to 63500 Newtons was about five.

Data are available from the numerical model with tunneling at 66000, 68500,
71000 and 73500 Newtons. Additionally, the code was run up to 73500 Newtons
without the tunnel in an effort to be able to differentiate the effects of the tunnel
from other effects, such as plasticity. Data from the model without tunneling are

also available at 68500 and 73500 Newtons.

4.3.7 J-Integral Calculation

For a crack or notch in a three-dimensional body, the J-integral of equation
(4.2.1) is defined as a surface integral over a cylindrical contour that surrounds the
entire notch tip. The scheme used for evaluating the three-dimensional J-integral
implemented in the numerical code was to calculate a local, two—dimensional value
of the J—integral, J (z3), at each nodal layer, and then a thickness average of the
two—dimensional values was used as the value of J for the three-dimensional body.
This procedure made it possible to examine the variation in the local value of J,
J (z3), at different locations through the thickness of the specimen, as discussed in

the papers by Narasimhan and Rosakis [51] and Narasimhan, Rosakis and Moran
[52].

The method for calculating the local two—dimensional value of J follows the
domain integral approach of Li, Shih and Needleman [40]. See also the papers
by Nakamura, Shih and Freund [47,48] and by Shih, Moran and Nakamura [80],
for more detail. With this approach, the contour integral of equation (4.2.1) is
transformed into an area integral through the use of a suitable, smooth weighting

function. Referring to Figure 91, the contour integral of equation (4.2.1) may be
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Crack /

FIGURE 91. A sample contour I' used to evaluate the J-integral. n is the unit
outward normal. Any contour that contains only the singularity at
the crack tip will yield the same value for J as long as the material is
elastic and the crack surfaces are traction—free.

rewritten slightly as

J = /;\(W&j - a,-j-(,?—zf>njds (4.3.37)
where the contour T' is traversed as shown in the figure, and n is the unit normal
as shown. W is the strain-energy density, ds is the element of arc length and §;;
is the Kroneker delta. A second contour I'y is introduced, as shown in Figure 92,
along with a sufficiently smooth weighting function ¢;. The weighting function is
such that ¢ =1 on I and ¢; = 0 on I';. Let C be the closed contour consisting of
the curves I'y, C+, I’ and C'—. C is traversed as shown in Figure 92. It should be
noted that the direction travelled along the original contour I' has been reversed in
evaluating the path integral. Let A be the area enclosed by the closed contour C;
m is the unit outward normal for area A. Note that along I', the direction of unit

normal m is also opposite to the original normal n.

The J-integral of equation (4.3.37) may then be written as

ou; du; Ju;
— St W 1 ds — ——g1ds — —q1ds (4.3.38
J f;(ajawl WéU)m]ql s ./c+ agjamlql s /C_ 02; &leh s ( )

Since the crack faces are traction—free, the second and third terms of equation

(4.3.38) are zero. Applying the divergence theorem to the first term of equation
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Crack C+ /' ?\ A

I

FIGURE 92. A second contour, I';, is introduced to change the contour integral into
an area integral. Let C be the closed contour composed of the four
curves 'y, C+, I' and C—, traversed in the sense of the arrows. Let
A be the area enclosed by C. Note that I' is traversed in the opposite
sense from Figure 91, and that the outward unit normal to 4, m, is
also in the opposite direction to n along T'.

(4.3.38), the two—dimensional J is found to be

J = / ( Ou, wvvalj)%dA (4.3.39)
A

O e
”63)1 Bwj

As J is path-independent, the area integral of equation (4.3.39) is area—independent,
provided the function ¢; satisfies the requirements stated above, namely, that ¢ is
equal to unity on I' and is zero on I';. Equation (4.3.39) is a domain integral that
may be evaluated using the same integration procedures as are employed to evaluate
the stiffness matrix in the finite~element code, using the same shape functions over

the elements that lie within the area A.

In the implementation of this scheme in the finite—element model, the contour
I' was taken to the tip of the crack. At each of the eleven nodal layers through the
thickness, the local value was calculated for five different choices of the contour I'y,

and an average of the resulting five J-integral values was used as the local J(x3) at
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each layer. The five contours were four circular contours centered at the origin of
the semicircle of the notch tip, having radii of length 0.3 cm, 0.5 cm, 1.0 cm and 2.0
cm, and a square contour with sides of length 6.0 cm, also centered at the origin of
the semicircle of the notch tip. (The plate thickness is 1.0 cm, and the notch has a
semicircular tip of radius 0.015 cm.) The origin of the coordinate system is at the
center of curvature of the notch. For the circular contour, the weighting function
q1 was taken as a linear function in r, a cone shape, within the contour, and zero
outside the contour. In this case, ¢1(r) = 1—r/Rforr < R and ¢;:(r) = 0 for r > R,
which has the required property that ¢; =1 at r =0, and ¢; = 0 at r = R, with
R being the external radius of each of the various circular contours. For the square
contour, the weighting function was taken as a bilinear function of z; and z; with
q1(z1,22) = (1 — 21 /L (1 — 22/ Ls) for z; < Ly and x5 < Ly, and ¢1(z1,72) =0

for 1y > L; or £9 > Ly. The rectangular contour thus has dimensions 2L; by 2L,.

The values of J(z3) vary through the thickness, as discussed in detail in the
paper by Narasimhan and Rosakis [51] and in the paper by Narasimhan, Rosakis
and Moran [52]. The largest value of J(z3) is found at the specimen midplane, and
the lowest value at the free surface, except for the cases when the crack tunneling
is included. The variation of the value of J normalized by the average value of
J is shown in Figure 93 for loads from 4.0 kN to 73.5 kN. These are data from

calculations done with no tunneling included.

The variation of J itself through the thickness is shown in Figure 94 for loads

from 18.5 kN to 73.5 kN. Again, no tunneling was included in the model for these

calculations.

Of course, the tunneling of the crack invalidates the J-integral calculation,
because of the unloading that occurs near the crack tip. The unloading occurs
following a linearly elastic constitutive law, so that the assumption used in deriv-
ing the J-integral, namely, a deformation plasticity constitutive law equivalent to
nonlinear elasticity, is no longer applicable. Thus, after tunneling, this calculation
procedure can no longer be strictly related to the energy-release rate at the crack

tip. It is interesting, however, to compare the results of the calculation for the



-248-

1.4 I T I 1

1.

1.

J/J

X3/t

FIGURE 93. The variation of J through the thickness normalized by the average
value of J at each load. No tunneling was included for these calcula-

tions.

two cases, one including tunneling and one without tunneling. Figure 95 shows the
results of the domain integral calculation for J(z3) at three different load steps for
the case including tunneling compared to the case with no tunneling. One curve
represents the calculation at 63.5 kN, which is the highest load for which there was

no tunneling, and there are two curves each at 68.5 kN and 73.5 kN, one curve for

the case with tunneling, and one without.

The values calculated at each of the five contours did differ slightly, most likely
because of the dissipation involved by using the incremental plasticity formulation
and a deviation from strictly proportional loading, although some part of the dis-

crepancy may be caused by the discretization. Use of a deformation theory plasticity
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Numerical J-Integral from Domain Integral
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FIGURE 94. The variation of J through the thickness. No tunneling was included
for these calculations.

formulation, equivalent to a nonlinear elasticity theory, should have preserved the
path independence of the local J values. As expected, the agreement among the
five contours is best at lower loads, before any plastic deformation has begun. At
higher loads, the values at the different contours agree better at the midplane of the
specimen than at the free surface. The circular contour of radius 0.3 cm always gave
the smallest value for the local J, and the square contour always gave the largest
value. At a load of 100 N, the values at the five different contours vary by less than
4% at the midplane, and by less than 6% at the free surface. At 63500 N, the the
values at the five contours differ by less than 6% at the midplane, and by about
11% at the free surface. At 73500 N, in the case without tunneling, the values at

the five different contours vary by about 5% at the midplane, but by about 19% at
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Numerical J-Integral from Domain Integral
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FIGURE 95. The variation of J through the thickness. 63.5 kN is the highest load
for which no tunneling was observed in the experiment. 73.5 kN is the
highest load reached in the interferometric experiment.

the free surface. In the case where tunneling is included, at 73500 N, the values of
the five different contours vary by about 24% at the midplane (where the tunnel is

deepest); the variation is about 16% halfway to the free surface, and about 28% at

the free surface.

The thickness average of the two-dimensional J values are not as strongly
affected by the tunneling, however. At 68500 N, the three-dimensional J value
is calculated as 259 kN/m without the tunnel and 262 kN/m with the tunnel, a
difference of about 1%. At 73500 N, the three—dimensional J value is calculated as
328 kN/m without the tunnel and 344 kN/m with the tunnel, a difference of about

5 %. The thickness—averaged J values are shown as a function of load in Figure
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96. Also shown are the plane-stress and plane—strain relations between J and the

stress—intensity factor K for elastic materials.

J-Integral Estimation
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FIGURE 96. The thickness—averaged value for J as a function of load. The effect of
the tunnel on the thickness average of the domain—integral calculation
is not very large. The relation between J and the stress—intensity factor
I for elastic materials is also shown. For elastic materials under plane—
stress conditions, J = K?/E, under plane strain, J = (1 — v?)K?/E.
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4.3.8 Discussion

The BFGS method is an attempt to increase the speed of the convergence of
the iterative solution in the regime of nonlinear deformation. In general, the most
time—consuming portion of the solution is the factoring of the tangent stiffness
matrix for solution of the equation K AU = AF. This must be performed only
once per time step using the BEGS method, with additional matrix updates effected
by simple multiplications. In contrast, the full Newton method must update and
solve the entire matrix equation at each iteration. The modified Newton method
must also update and solve the stiffness matrix equation at each time step, but
retains the same stiffness matrix throughout all iterations. The modified Newton
method might seem the best choice, but the slowness of convergence in large plastic
deformations offsets the gain in not updating the matrix. If the stiffness matrix
were kept constant for all deformations, as in the elastic case, it would have to
be factored only once, but as the deformation moved away from its original state,
the convergence would be extremely slow because the search for a solution would
take place along poorly chosen directions. However, if the number of iterations
becomes large, the task of updating the matrix itself involves a large number of
multiplications. In that case, the factors of the original stiffness matrix for that

time step may be used alone, and the BFGS sequence restarted.

This finite-element model contains nonlinearity only in the constitutive rela-
tion, not in the strain-displacement relation. The small-strain assumption will

become invalid in a region around the crack tip that grows with the applied load.

There are some interesting results in the paper by Narasimhan, Rosakis and
Moran [52]. Comparing Figures 6 and 7 of that report, which show the contours of
equivalent stress and void volume fraction for plane strain, with Figures 12 and 13
of that report, showing the contours of equivalent stress and void volume fraction
for the three—dimensional model, there is a striking difference in the distribution
of these quantities between the plane—strain and three—dimensional models. Also,
the plot of the hydrostatic stress in Figure 11 of that report seems to match closely

with the tunnel profiles measured in the current study. (Obviously, the largest
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component of the hydrostatic stress is 22, which i1s connected to the flat tunneling

within the specimen.)

The tunneling investigation used for the current study might be considered a
complement to the numerical simulation of Narasimhan, Rosakis and Moran [52],
in that it would provide a check on the assumptions used in predicting failure
caused by void formation. The experiments indicate that initiation should occur
between 63500 Newtons and 68500 Newtons. The finite—element model of [52]
predicts tunneling initiation at a critical value of the local J value, J = 250kN/m.
From Figure 95, using the bounds on the tunneling initiation load indicated by
the experiment, the value of J calculated using the finite—element model in the
current study agrees fairly well with the prediction made by Narasimhan, Rosakis
and Moran [52]. The maximum value of J at 63.5 kN is calculated to be 219 kN/m
along the centerline of the specimen at z3/t = 0. The maximum value of J at 68.5
kN (with no tunnel) is calculated to be 279 kN/m, also at z3/¢t = 0. The average
of these values at 63.5 and 68.5 kN without tunneling is 249 kN/m. Also, the value
of J at 68.5 kN (including tunneling) is calculated to be 255 kN/m at z3/t = 0,
264 kN/m at z3/t = 0.16, and 258 kN/m at z3/t = 0.22. If the effects of the local
unloading are not too great, these values may be thought of as an approximation

to the critical value of J. In either case, the values are close to the estimate of 250

kN/m from the numerical model of Reference [52].

Since the specimen geometry actually includes notch with a finite radius rather
than a sharp crack, it may not be correct to perform the J-integral calculation as
described, in which the inner contour I' is taken to the origin, which lies inside the
notch. A better approach would be to use a small but finite-sized T" outside the
notch. Provision for the use of such a contour was actually implemented in the
code, but this was discovered by the author only after the fact. Also, the position
of the crack tip was held constant for all calculations. The tip should probably be
translated forward with the tunnel, although the maximum extent of the tunnel

was only about 0.8 mm, which was within all five of the contours used.



-254-
4.4 Three—Point—Bend Experiments

This section contains a brief description of the interferometric experiment itself,
including details of the specimen geometry and the loading apparatus, and the field
of view of the optical arrangement is shown. A calculation of the value of the J-
integral is performed using the measured load and load-point displacement record,

and the calculated value of J is compared with the value of J calculated from the

numerical model.

4.4.1 Specimen Material and Dimensions

The three point bend experiments were performed on aircraft—quality, vacuum-—
degassed 4340 steel plates 1 cm thick and 30.5 cm long by 7.6 cm high with a single
edge crack 3 cm in length as shown in Figure 97. The loading configuration is shown

in Figure 98.

As mentioned in Section 3.3, all of the test specimens were cut from the same
piece of 4340 steel, a plate four inches wide by one-half inch thick by eight feet long.
The steel was heat—treated to give a ductile response, first being “normalized” at 871
C with air cooling to remove any effects of rolling or cutting, then heated to 815 C
and oil-quenched to produce a Martensitic transformation and finally tempered at
a temperature of 538 C for one hour and air-cooled. T'wo uniaxial test specimens

were also cut from the same piece of steel and heat—treated identically with the

three—point—bend specimens.

The crack was introduced by first making a saw cut of approximately 2 cm
in length into one edge of the specimen. An electrical discharge was then used to
cut an additional 1.1 cm into the specimen. The electrical discharge makes a notch
of about 0.3 mm in width. The edges of each specimen were then ground flat and
parallel so that a crack having a total length of 3 cm remained. The large sides of the
specimen were also ground as flat and as parallel as possible resulting in a thickness
of 1 cm. One side of the fracture specimen was lapped flat and polished to a mirror

finish in order to measure the out-of-plane displacements with a Twyman-Green
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interferometer. The other side was also lapped flat, and sanded with fine sandpaper
to provide a good bond with the diffraction grating. The diffraction grating was
attached with epoxy as described in detail in Section 2.4.4, in the chapter where
the moire interferometer to measure the two in-plane displacement components is
discussed. It is assumed that the specimen deformation is symmetric through the
thickness, so that the three measured displacement components can be treated as

if they had been measured on the same surface.

7.60 _
+ 3.00

- 15.88 ———

- 31.75 —
Specimen Thickness 1.00

All Dimensions in centimeters.
FIGURE 97. Three-point—bend specimen geometry. Material is a ductile heat treat-
ment of 4340 steel.

Data from the numerical simulation are available at nine load steps: 100 N,
4000 N, 8500 N, 18500 N, 35000 N, 52300 N, 63500 N, 68500 N, and 73500 N. The
code could be restarted from any one of these steps to produce additional output,

if necessary.
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30.00

FIGURE 98. Loading configuration for the three—point—bend specimen, showing the
cylindrical supports and cylindrical indenter opposite the crack. (In
the experiment, the specimen was inverted, with the crack in the top

edge.)

4.4.2 Experiment

The experiments were carried out on a vibration-isolated optical table in order
to reduce the effects of vibrations from the surroundings. The optical table is a
Newport Corporation product, measuring ten feet by four feet by eighteen inches
thick. The loading frame was designed and constructed at Caltech and has a test
section length that is adjustable by means of threaded rods. The load itself is
introduced through a hydraulic ram, which is supplied from a Miller 559-Hydraulic
Power Unit 66 that is rated for 11.6 gallons per minute at a working pressure of 2670
psi. The pressure is supplied through a Moog Series 62 Flow Control Servovalve,

which is controlled by a Shore Western Mfg., Inc. SC1100-1 DC Servo Controller.

The servo controller balances the load feedback against an input command
voltage to provide control of the desired applied load. The load was measured and
fed back to the servo controller with the same Sensotec 400,000 Newton capacity
load cell used in the uniaxial tests. As seen from the figure, the central point of

the three-point-bend arrangement is held fixed, transmitting the load to the load
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cell, while the two outer loading points are attached to an I beam that is moved by
the hydraulic ram. Although this setup makes it slightly more difficult to align the
apparatus without any load, it does have the advantage that the crack tip remains
nearly stationary under loading. This is important because it means that the optics

do not need gross adjustments during a test.

During a test, the servo controller is supplied with a command voltage corre-
sponding to a load where information is available from one of the finite—element
simulations. That load is held fixed while the optics are adjusted to try to re-
move any effects of rigid rotations that are most easily seen as loss of symmetry
in the fringe patterns. For small deviations, this adjustment is orthogonal to the
adjustment for the spacing of the virtual reference grating formed by the crossed,
incoming laser beams, so the virtual reference—grating spacing and the displacement
increment between contours remain constant. The two in-plane displacement fringe
patterns are then photographed, as is the out-of-plane displacement pattern on the

opposite side of the specimen.

\_/'—\

ot 76 mm
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\//—\

FIGURE 99. A section of the specimen showing the location of the applied diffraction
grating with respect to the crack tip. The center of the circle is 7 mm
ahead of the crack tip and 2.5 mm below the crack tip.
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The location of the applied diffraction grating with respect to the crack tip
is shown in Figure 99. The 44 mm circle represents the approximate field that
is unaffected by diffraction from the edges of the lens holder. The center of the
diffraction grating is slightly offset from the crack tip. The offset ahead of the crack
is intentional, so that the saddle points in the displacement field fringes may be
seen. These are predicted by the finite—element code to lie between 2 and 3 cm
ahead of the crack tip. The offset in the other direction is due to sliding of the
grating before the epoxy has cured. The liquid epoxy is quite a good lubricant.
The edge of the holographic plate is held parallel to the edge of the specimen using

a jig, but translation parallel to the edge of the specimen could not be completely

eliminated.

In the experiment, the in-plane displacements were photographed using a Nikon
FA camera body with a Nikon Micro-Nikkor 200 mm f/4 lens and a Nikon 3T close-
up lens (focal length 665 mm) attached to the front of the 200 mm lens. This camera
setup produced a magnification of about 0.75 (that is, 1 mm on the specimen cor-
responded to 0.75 mm on the negative). After the fringes were photographed this
way, a Nikon T'C-200 Teleconverter was placed between the camera and the 200 mm
lens. The teleconverter doubled the magnification of the image without disturbing
the focus of the lens. Six pictures of each displacement component were taken at
each load step, three using the teleconverter and three without. The three pictures
were each taken using a different length of exposure, in an attempt to bracket the
optimum exposure and also to provide some redundancy in the event of a mishap
in the development. (Since the image is made up of essentially collimated light, the
exposure cannot be controlled by the aperture without losing some of the informa-
tion around the edges.) The pictures taken without the teleconverter were intended
to capture the fringe information away from the crack, but the magnification was
not high enough to record the smallest fringe spacing which the optical system was
capable of transmitting to the film. With the teleconverter in the path, the field of
view is reduced, but the image is magnified enough so that the limitations that are
due to the film resolution are less restrictive than the limits that are due to the finite

aperture of the camera. The film used was [Kodak Technical Pan set at an exposure
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index of 120 and developed in Kodak HC-110 (dilution D) for 6 minutes. This film
has an extremely fine grain size, and it can record fringes with wavelengths as small
as 5 microns at the film plane; this size corresponds to 5 microns divided by the

camera magnification for objects on the specimen itself.

:' 32 mm
1

\/ 16 mm

A
Y

FIGURE 100. The same section of the specimen as in Figure 99 showing the location
of the field of view seen through the camera. The smaller dashed-
line rectangle is what is seen through the camera when the TC-200

teleconverter is used with the 200 mm f/4 lens.

The field of view seen through the camera is shown in Figure 100, superimposed
on the crack and the circle representing the diffraction grating as in Figure 99. The
field of view when the teleconverter is added to the 200 mm f/4 lens is shown in
the smaller dashed-line rectangle. The center of the camera field is also offset with
respect to the crack tip. The offset ahead of the crack is necessary in order to
capture the saddle points in the displacement fringe patterns. The offset below the
crack line as shown in Figure 100 is for two reasons. The first is to take advantage of
the offset of the diffraction grating and the assumed symmetry of the displacement
field with respect to the crack line to gather data from farther away from the crack

than could be achieved if the field of view was centered on the line of the crack.
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The second reason is that the diffraction grating in the top part of Figure 100 had
more air bubbles than the lower part, which would make data reduction (especially
automated data reduction) more difficult. It would be better if the crack tip itself
could be centered in the field of view, as that would minimize the shadow spots
caused by large out-of-plane displacement gradients. (See Chapter 2.) However,
this arrangement was intended to yield a large magnification and still include the
saddle points in the fringe patterns. In order to center the crack tip in the field of
view and retain the magnification and the view of the saddle points, a larger format

camera would be necessary.

4.4.3 Load-Point Deflection

The value of the J-integral (Section 4.2.1) may be determined for this speci-
men geometry from the load and the deflection of the central loading point. The
deflection of the central loading point was determined from the deflection measured
at each end of the specimen, as the central load point was held fixed while the outer
ends of the specimen were moved via the I beam attached to the hydraulic ram.
At one end, the displacement was measured using a dial gauge, and at the other
end the displacement was measured using an LVDT. It was intended to record the
output from the load cell and the LVDT throughout the experiment, but the data
acquisition failed and all of the electronically recorded data was lost. The deflection
measured by the dial gauge and the deflection measured by the LVDT were recorded
by hand at each load step. In order to estimate the compliance of the loading frame,
a large steel bar was put in place of the specimen, and the deflection of the bar was
measured with the same dial gauge and LVDT arrangement up to about 30,000 N.
This beam was 80 mm wide by 21 mm deep by 300 mm long, Young’s modulus was
assumed to be 200 GPa and Poisson’s ratio was taken as 0.3. The deflection of the
steel bar was calculated through beam theory, including the shear deflection since
the beam was rather short, and then the deflection of the steel bar was subtracted
from the overall deflection to determine the deflection of the loading frame. The
total deflection of the beam under load was least—squares fit to a linear function

of load, and the beam theory estimate is also linear with load, so that the correc-
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tion for the machine compliance is linear with the load as well. The compliance
of the loading frame was estimated to be 5.6 x 10~®mm/N, and assumed to be
constant over the loading range. The corrected measured displacements and the

displacements as calculated from the finite—element code are shown in Figure 101.
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FIGURE 101. The load-point deflection as measured in the experiment shown with
the deflection calculated from the finite—element code. The data from
the numerical model are shown for both the case with no tunnel and
the case where the tunnel has been included by releasing nodes along
the crack plane. The measured displacements are corrected by an
estimated machine compliance.

The difference between the LVDT and the dial gauge is approximately linear

with load, and is most likely an indication of a slight rigid rotation of the specimen.

This comparison between the experiment and the finite—element model should
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match closely, as it is a measurement taken far away from the local effects of the
notch and its associated plastic zone. Any small discrepancies between the exper-
iment and the numerical model near the notch should have died out or perhaps

averaged out at such distances from the notch tip.

The smallest division on the dial gauge used was one ten—-thousandth of an inch,
or 0.00254 mm. The LVDT used had a linear range of about 10 mm, and a resolution
of about 0.025 mm. Thus, the maximum error in the measurements themselves
should be within 0.025 mm. The largest source of error in the measurement is the
estimation of the compliance of the load frame. Since the compliance estimation
was made with the loading machine in the same configuration as was used in the
experiment, any error in the compliance estimate is due to the calculation of the
deflection of the beam. If it is assumed that the beam theory calculation is within
10 % of the actual value of the beam deflection, then the compliance of the load
frame is estimated to lie between 5.2 x 1078 mm/N and 6.1 x 107® mm/N, which is

an uncertainty of about +0.23 mm at 50000 Newtons and about +0.36 mm at 80000

Newtons.

The S shape of the experimental measurement at low loads is also apparent in
the compliance measurement made with the beam. It is likely due to the tightening
of the threaded rod connections used in the loading frame. This could also have been
removed from the experimental data, but it was thought that simply accounting for

a linear variation was a more conservative approach.

4.4.4 J-Integral Calculation

A simple method of calculating the J-integral has been proposed for this three—
point-bend geometry [15,26,68]. For a three—point—bend specimen such as the one
in this experiment, for which the width of the specimen is one quarter of the span

between the supports, the J-integral is given by

9 8
0

:(w—a t
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where w is the width of the specimen, a is the crack length, ¢ is the specimen
thickness, P is the applied load and ¢ is the displacement of the loading point. This
simple relation between the value of the J-integral and the work done by the applied
loading may be compared with the J-integral value estimated from a path integral
employed by the numerical code. For the specimen in the experiment, w = 76.0

mm, ¢ = 30.0 mm and ¢t = 10.0 mm.

J-Integral Estimation from lLoad and Load-Point Displacement
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FIGURE 102. The value of the J-integral calculated from equation (4.4.1) using
data from the experiment and the numerical model.

The data of Figure 101 are integrated following equation (4.4.1) using a trape-
zoidal rule to yield the variation of the J-integral with applied load shown in Figure
102. The cxperimental displacement was taken as the average of the LVDT and the
dial gauge measurement to remove the rigid rotation. Also shown is the value of the

J-integral calculated from the numerical model using equation (4.4.1). The good
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agreement is expected from the close match of the load and load—point displacement

data from the experiment and the numerical model from Figure 101.

J-Integral Estimation
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FIGURE 103. The value of the J—-integral calculated from equation (4.4.1) compared
with the domain integral calculation of the finite—element model and
the relation between J and the elastic stress—intensity factor K. For
elastic materials under plane stress, J = K?/E, while for plane strain,

J=(1-1?)K?/E.

In Figure 103, the variation of the J-integral with load as calculated from
equation (4.4.1) is compared with the variation of J with load from the domain—
integral calculation performed in the finite—element calculation in Section 4.3, and
with the variation of J for elastic materials determined from the stress—intensity
factor K" for this geometry from Section 4.2.5. The stress—intensity factor is found

to be I = (2795 m~*/?)(P) where P is the applied load.
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4.5 Experimental Measurement of Crack Tunneling

One important possible deviation between the finite-element model and the
experiment would be tunneling of the crack in the interior of the physical specimen.
Such internal crack propagation may occur even when there has been no visible crack
advance at the surface of the specimen, and the finite-element model used for this
study did not incorporate the void growth failure model of Narasimhan, Rosakis and
Moran [52], owing to the difficulty in converging to a solution after void growth has
begun. Thus, the finite-element model itself had no way to simulate any tunneling of
the crack in its solution. The tunneling of the crack was instead included artificially
in the finite-element model by releasing nodes along the crack plane corresponding

to measured crack-tunnel profiles determined from similar specimens.

In order to incorporate the crack tunneling into the finite—element code, the
size and shape of the tunnel needed to be measured as a function of the applied load.
Once the shape of the tunnel is known as a function of the load, the appropriate
boundary conditions of the finite—element model would be released to approximate
the new shape of the crack in the experiment, and the comparison between the

experiment and the model may be extended.

Additionally, one could use the measured onset of tunneling to estimate critical
parameters from the finite—element model, such as a critical stress or strain at which
fracture initiates. Narasimhan, Rosakis and Moran [52] correlated the incipient
failure caused by void growth to a critical local value of the J-integral as a failure

criterion.

In order to estimate the crack tunneling as a function of load, a multispeci-
men approach was employed. Six specimens were loaded in the three-point-bend
arrangement used for the interferometric measurements. Each specimen was loaded
to a different maximum load, and then removed from the loading frame. Two spec-
imens were unloaded to zero load to examine the path of unloading; the remaining
four specimens were unloaded slightly from the maximum load and then razor blades
were inserted to wedge open the crack in an effort to ensure that the tunnel surface

was open to the atmosphere. The specimens were heat—tinted by placing them in
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the kiln for approximately thirty-five minutes at 300 °C, as recommended in ASTM
Standard E399-81 [5]. Heat tinting marks the extent of the crack advance in the
interior of the specimen by coloring the specimen surface that is open to the at-
mosphere when the specimen is heated. Actually, the suggested time for the heat
tinting was ten minutes per inch thickness of the specimen. Perhaps because the
other dimensions of the specimens were much larger than the thickness, it was found

that a longer time was needed to produce a dark-blue color on the surface of the

specimerns.

The surface color changes through yellow to brown to purple to blue as the
specimen heats up. The color change is likely due to the formation of molybde-
num or chromium oxides on the surface. Molybdenum and chromium have a more
negative energy of oxidation than iron, so they will oxidize preferentially. This
preferential oxidation is what keeps stainless steel from rusting, although stainless
steel has a much higher chromium content, which forms a thick oxide layer on the
surface and keeps oxygen from penetrating to the iron beneath. It is important to
observe the specimen to ensure that it is removed when it reaches an acceptable
blue color, as heating for a longer period of time (in this case, one hour or longer)
can cause the color to disappear. One of the specimens was heated for too long,
and its surface does not show as marked a delineation between the surface available

before heat tinting and the surface formed when the specimen was broken open

after heat tinting.

After heat tinting, each specimen was cooled in liquid nitrogen to ensure a
brittle response to dynamic loading. The specimens were then broken in the drop-
weight tower, so that the size and shape of the crack propagation in the interior of

the body could then be measured.

The specimen geometry for the tunneling tests is shown in Figure 104. This
geometry differs slightly from the geometry of the specimen used in the interfero-
metric study because the steel was obtained from leftover cut—off pieces from an
earlier set of experiments. The height of these specimens is therefore 7.11 em in-

stead of 7.60 cm. However, the uncracked ligament length of 4.60 cm was kept the
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same so that the stress distribution ahead of the crack would be comparable. The
loading fixture was the same as was used for the interferometric test, so the applied
load and bending moment would be the same for both experiments. The nominal
specimen thickness was 1.00 cm to match the interferometric study, but the actual
specimen thicknesses varied between 0.96 cm and 1.01 cm. It is assumed that the

response to the load scales linearly with the thickness of the specimen.

31.75 -
Nominal Specimen Thickness 1.00

|

All Dimensions in centimeters.
FIGURE 104. Three-point-bend specimen geometry for the tunneling tests. The
material is a ductile heat treatment of 4340 steel.

4.5.1 Tunnel Profiles

It was found that no tunneling could be observed at all for the two loads
at 52300 Newtons and at 63500 Newtons. What is observed at these load steps
is blunting of the notch [14,26], permanent deformation at the tip of the crack
corresponding to the opening and “squaring off” of the notch tip. Notch blunting
can be seen in photographs taken through a microscope of Specimen 5, which was
loaded to 77000 Newtons. Blunting begins at loads below 50000 Newtons, before

any real crack propagation has occurred. Small amounts of tunneling were apparent
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for the specimens at the load levels of 68500 and 73500 Newtons, which are the two
highest load steps for which data were taken using the interferometers. The tunnel
at 68500 Newtons is on the order of 0.3 mm in the center of the specimen, and
at 73500 Newtons the tunnel is approximately 0.8 mm deep in the center of the
specimen. The onset of tunneling at about 65000 Newtons was also inferred by

Zehnder [91] from his strain gage data of a similar test.

The extent of the tunneling was measured via the microscope. The position
was determined using the vernier on the microscope stage, and the tunnel depth was
determined from the scale in the eyepiece of the microscope. Measurements were
taken at one-half millimeter intervals. Both sides of the fractured specimen were
measured, and the results averaged. The values from either side of the centerline
of the specimen were then averaged to produce a symmetric profile for input to the
finite—element code. These symmetric profiles are shown in Figure 105 for loads of

68500, 73500 and 77000 Newtons.

Although the interferometric experiment was carried out only to a maximum
load of 73500 Newtons, the progress of the tunneling crack was investigated at
loads higher than 73500 Newtons. The purpose of this investigation was to examine
the relation between the branch of the crack that continues in the plane of the
original crack where the tensile stresses are highest, in contrast to the cracks that
propagate from the corners of the notch along the planes of maximum shear. It
was found that after a small amount of tensile cracking in the original crack plane,
the shear cracking and the tensile cracking would proceed simultaneously, until the
two branches of the shear cracks from opposite sides of the specimen met and the
tensile crack was eliminated. This finding ran contrary to the expectation that the
tensile crack would tunnel deeply into the specimen to its final position until the

shearing stress became large enough to propagate the shear cracks.

In Figure 105, only the profile of the tunneling crack is visible. What is not
shown is the extent of the shear cracking at the corners of the notch. For the higher
loads, the shear cracks are on the same order as the tunnel depth itself, and the

eventual final failure mode of the specimen 1s through the shear cracking.



-269-

2.0 I ' ! I
—— 68500 Newtons
-——— 73500 Newtons ) .
P 77000 Newtons 7
1.2 | g
E 'a.
E
Lo
>
.8 - )
r/// \\\\\
//// \\\
4 4 A |
// \\
// \\\
e | | ' —
-5 -3 -1 1 3 °

FIGURE 105. Extent of tunneling in the interior of the specimen for three different
load levels.

4.5.2 Load—Point Deflection

The deflection of the central loading point as a function of load was measured
for each specimen for comparison with the numerical model and the specimen used
for the interferometric test. The deflection of the central loading point was deter-
mined from the deflection at each end of the specimen, as the central loading point
was held fixed while the outer ends of the specimen were moved via the I beam
attached to the hydraulic ram. At one end, the displacement was measured using
a dial gauge, and at the other end the displacement was measured using an LVDT.
The compliance of the loading frame was estimated to be 5.6 x 107 mm/N, and was
assumed to be constant over the loading range, as in Section 4.4.3. The calculated

deflection of the loading point is shown in Figure 106 for all six specimens, along
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with the deflection calculated using the finite—element code. The curves plotted
represent the average between the dial gauge reading and the LVDT measurement,

in order to remove the effect of any rigid rotation of the specimen.

Crack Tunnel Experiments
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FIGURE 106. The load—point deflection versus load/thickness for each of the six
tunnel specimens and the finite—element model. The symbols repre-
sent the highest load reached for each specimen. The last point on
the curve for Specimen 1 is an extrapolation of the assumed linear
unloading to estimate the actual maximum displacement, since that
specimen was undergoing slow continuous fracture at constant load
between the recorded data points. Those curves that do not unload
to zero load correspond to the specimens that were unloaded slightly
and the cracks then wedged open with razor blades to ensure that the
tunnel surfaces were exposed to atmosphere during the heat-tinting

procedure.

The agreement among the various specimens and with the numerical model
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seems good. This indicates that the slightly different geometry is probably not
significant, and that the choice to keep the uncracked ligament length the same as
in the interferometric experiment and the numerical model was probably correct for
making this comparison. Tunneling was found to initiate between 63500 Newtons

and 68500 Newtons, or between the maximum load of Specimen 3 and the maximum

load of Specimen 4.

The data from the numerical model shown in Figure 106 are from the sim-
ulation that included the tunnels calculated from these experiments. The tunnel
was included artificially in the finite—element model by releasing nodes along the
crack plane corresponding to measured lengths of crack tunnel determined from

Specimens 2 (68500 N) and 3 (73500 N).

4.5.3 J-Integral Estimation

Although the specimen geometry is slightly different for the three—point—bend
specimens used in these tunneling experiments from the three—point-bend geome-
try of the interferometric test and the numerical calculation, the same method of
calculating J will be used as described in Sections 4.2.2 and 4.4.4. This method
is correct for a span-to-width ratio of 4, whereas the tunneling specimens have a
span-to-width ratio of 4.25. However, the good agreement between the load and
load—point displacement records as compared with the numerical model indicates
that this should be as good a J calculation as that performed using the interfer- ‘
ometric specimen in Section 4.4. For a span-to-width ratio of 4, the J-integral is
given by

2 )

where w is the width of the specimen, a is the crack length, ¢ is the specimen

thickness, P is the applied load and § is the displacement of the loading point.

The result of applying equation (4.4.1) to the load and load—point displacement
data of Figure 106 is shown in Figure 107. The data from the numerical model are

also calculated using equation (4.4.1) on the load and load—point displacement data
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Crack Tunnel Experiments
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FIGURE 107. The J-integral calculated from the load and load-point displacement
data from Figure 106 using equation (4.4.1).

shown in Figure 106.

Tunneling initiated at a load between 63500 Newtons and 68500 Newtons,
between the maximum loads achieved using Specimens 3 and 4. The J value reached
with Specimen 4 was 195 kN/m, and the J value reached with Specimen 3 was 252

kN/m, both calculated using equation (4.4.1).

Estimation of the critical value of J is ordinarily accomplished through a com-
parison of J and the average, measured crack advance, Aa, across the thickness
of the specimen, as shown in Figure 108 [7,14,26]. The experimental data shown
come from the measured crack profiles of Figure 105 for Specimens 2, 3 and 5,

and the calculated J values of Figure 107 for the same three specimens. The solid
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FIGURE 108. The variation of the crack advance, Aa, averaged through the thick-
ness, of Specimens 2, 3 and 5, with the corresponding measured value
of J. The dashed line, J = 20¢Aa, is called the blunting line, it

represents the estimated virtual crack advance of a sharp crack as it

blunts into a semicircular shape.

line represents a least-squares fit through the three experimental data points. The

dashed line is known as the crack-blunting line; it represents the estimated effec-

tive crack advance that occurs as a sharp crack blunts, but before actual tunneling

begins. Use of the blunting line in calculating a critical value for J is intended for

specimens that have been fatigued to produce a sharp initial crack, not the finite

notch geometry of the specimens used for the test. The blunting line is calculated

by assuming that the sharp crack blunts to a semicircular notch with a radius of

half the crack opening displacement, estimated as J/og. The crack advance that is

due to blunting is thus Aa = J/20y. The intersection of the least—squares fit of the
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experimental data with the blunting line is at J = 265kN/m and Aa = 0.14 mm.
(The value of the yield stress, og, is 960 MPa, calculated from the uniaxial tests of

Section 3.3.)

Since the specimens used in the test start with a rounded notch tip, it may be
better to use the intersection of the line fit through the data with the vertical axis,
Aa = 0. At that intersection, the value of J is found to be J = 218 kN/m. This
value compares well with the upper and lower bounds estimated from the J values

calculated for Specimens 3 and 4 of between 195 kN/m and 252 kN/m.

Additionally, Atkins and Mai [8] suggest that for materials that work-harden
appreciably, a stress value between the yield stress and the ultimate stress be substi-
tuted for the yield stress o¢ in the equation for the blunting line. Also, they include
an example of 316 stainless steel for which the blunting line is best described by
J = 4oqowAa, where o,y is the average of the yield stress and the ultimate tensile
stress of the material. Since the steel used in these experiments does work-harden
appreciably, the critical value of J is likely below the 265 kN/m calculated using
the blunting line given by J = 20¢Aa.

As mentioned in Section 4.3.8, the void growth model of Narasimhan, Rosakis

and Moran [52] estimated the critical value of the local J value to be 250 kN /m.
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CHAPTER 5
Results

5.1 Fringe Photographs

Some sample fringe photographs are shown in the following two figures. Figure
109 shows fringes corresponding to the u; displacement, taken at 18.5 kN. The
photograph is five times life size. Note the pattern at the edge of the field of
view farthest from the notch tip, where the fringes are tending toward crossing one
another. This pattern indicates a saddle point in the displacement field. Figure
110 shows the equivalent us field at 18.5 kN. The photograph is five times life size.
This pattern has an even clearer view of a saddle point in the displacement field.
This saddle point remains nearly fixed in location with respect to the notch tip at

all loads; it indicates the bending axis of the beam.

There are two interesting qualitative features that develop as the load increases;
these features are illustrated in the following photographs. The first feature is the
change in the shape of the u; fringe patterns as plastic deformation begins. When
the deformation is purely elastic, the u; fringes at § = +90° are approximately
parallel to the crack line. As plasticity occurs, the u; fringes curve around, in a
seeming effort to touch the crack tip at § = +£90°. This effect is apparently due
to the high shear strains emanating from the “corners” of the notch. Behind the
crack, the specimen is nearly stress—free, so that the deformation is effectively a
rigid rotation. This is evident from the fringe patterns, as the u; fringes are nearly
parallel to the z; axis, and the us fringes are nearly parallel to the z, axis, with
the spacing of the two fringe patterns being approximately equal. Thus,

8u1 _ allg ~ 0.

_— D ~~
01‘1 (9;732
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FIGURE 109. Sample u; fringe pattern. 18.5 kN
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Above the crack, u; is increasing with increasing x2, and us is decreasing by the
same rate with increasing z;. Thus,
1 3u1 8’&2
&2 ==|=—+5—| =0.
12 2 {8332 6131

As plastic deformation begins, the u; fringes in the regions perpendicular to the

crack line begin to loop towards the notch tip, indicating that the €15 shear strain

is no longer zero.

This feature may be illustrated by comparing Figure 111 with Figure 112.
Figure 111 shows the u; fringe pattern at 4.0 kN; at this load the body should be
completely elastic. Figure 112 shows the equivalent fringe pattern at 35.0 kN. The
plastic zone in this case is on the order of 3 mm in radius. Both photos are ten
times life size. Also note the beginnings of a shadow spot near the notch tip in

Figure 112, a result of the aperture limitation of the camera.
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The second interesting qualitative feature to be seen in the photographs is the
shape of the us fringes ahead of the crack at very high loads. At lower loads, the
fringes emanating from the notch tip follow paths along which the z, position is
a monotonic function of the z; position. At the higher loads, however, in a small
region ahead of the notch tip, the x5 position of the fringes has a local maximum,
so that the fringes follow paths that arc back toward the crack line before traveling
away from crack line. Alternatively, this effect might be described as a region of
lower fringe density that is bracketed by two regions of higher fringe density, one
of which is the region of the notch tip itself. One proposed explanation for the
second region of higher fringe density farther from the notch is tunneling of the
crack [T.V. Hareesh, private communication]. The suggestion is that the tunneled
crack tip would produce a stress concentration ahead of the original notch, causing
a region of higher fringe density. This is not the case, however, as the extent of the
tunnel is on the order of only one tenth of the distance to the region of higher fringe
density. The tunnel may play some part in causing this fringe pattern, as illustrated
in Section 5.4, where the numerically calculated plastic zones are displayed. The
inclusion of the tunnel produces a region of unloading at the free surface that
matches faily well with the location of the region of lower fringe density ahead of

the notch tip.

The development of this barrel shape in the fringe pattern may be seen by
comparing Figures 113 and 114. Figure 113 shows the us fringe pattern at 52.3 kN,
and Figure 114 shows the us fringe pattern at 73.5 kN. Note the increase in size of
the shadow spot, and the high fringe density behind the notch in Figure 114 that

1s due to the rotation of the crack flanks. Both photos are ten times life size.
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5.2 Comparison of Displacements

The u; and u, displacement fields measured in the experiment may be consid-
ered to be composed of three parts: the Mode I deformation that is modeled in the
numerical code, a Mode II deformation brought about by any asymmetry in the
loading, and a rigid rotation.

73] :u§ +u¥+u§
L I R (5.2.1)
U = Uy + Uy + Us
(The superscripts I, IT and R denote the Mode I contribution, the Mode II contribu-
tion, and the rigid rotation, respectively.) In Mode I, ul is symmetric with respect
to the plane of the crack (the z; axis or, equivalently, the line § = 0), while u} is
antisymmetric with respect to the plane of the crack.

ui(z1, —22) = uj(a1, 22) uy(r, —0) = ui(r,6)
or, (5.2.2)

ulz(xl, —y) = —u%(a:l,:cg) ug(r, —8) = —ué(r, 9)

In Mode II, the opposite is true, so that ull is antisymmetric with respect to the
plane of the crack (the z; axis or, equivalently, the line = 0), while u}! is symmetric
with respect to the plane of the crack.

ul (21, —22) = —u(21,22) ui'(r, —8) = —uil(r,6)
or, (5.2.3)

ull(zy, —z9) = wll(zy,2,) ull(r,—6) = ull(r,6)
The rigid rotation may be found as

ul(zq,29) = z1(cosy — 1) — zy siny

(5.2.4)
ul(z1,29) = 21 siny + z9(cosy — 1)
where « is the angle of rotation. It will be assumed that v is very small, so that

the rigid rotation may be approximated by

uR(a1,2) = —a27

(5.2.5)

u.g‘(:cl ,To) = T17
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With this approximation, the displacements that are due to rigid rotation have the
same symmetries as the Mode II deformation. As a result, the Mode I deformation

may be extracted from the measured displacements as

2uy(zy, x2) = ui(z1, T2) + us(z1, —72)
(5.2.6)

2“%(5’31, T2) = ux(zy1,22) — ug(zy, —2)

or alternatively,

2ul(r,8) = uy(r,8) + uy(r, —6)
2ul(r,8) = uy(r,8) — uy(r,—6)

(5.2.7)

A representative sample of the data from the experiment is shown in the fig-
ures that follow, compared with the displacement from the numerical model. The

comparison is made at six load levels, 4.0 kN, 8.5 kN, 18.5 kN, 35.0 kN, 52.3 kN
and 73.5 kN.

The radial variation of the u; displacement is shown on lines at § = 0° and
8 = 90°, and the angular variation of the u; displacement is shown at r = 0.504¢
and at r = 1.066t. The data along 8 = 90° at the largest radius indicate the
maximum u; displacement measured in the experiment at that load level. Away

from the notch, the u; variation along 8 = 90° is quite linear, because of the far-field

bending.

The radial variation of the u; displacement is shown on lines at § = 60° and
8 = 180°, and the angular variation of the u; displacement is also shown at r =
0.504¢ and at r = 1.066t. The data along 6 = 180° at the largest radius indicate the
maximum u; displacement measured in the experiment at that load level. Away
from the notch, the u, variation along 6 = 180° is also quite linear; behind the
notch, the deformation corresponds to a rigid rotation. Along 6 = 60°, the effects
of the far—field bending loads can be seen as the displacement first increases and

then decreases as the location of the measurement moves across the bending axis

of the specimen.

The u; displacement data from the experiment are shown as uy(r, ) for 6 > 0

compared with uj(r,—6) for 8 < 0, while the uy displacement data are shown as
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u2(r,6) for 6 > 0 compared with —u2(r, —0) for § < 0, in order to emphasize the

Mode I deformation.

In addition, since the interferometric measurement is a relative measurement,
there is a rigid translation to fix for comparison between the experiment and the
finite—element model. In reducing the data from each fringe photograph, the fringe
nearest the notch tip along the z; axis was arbitrarily chosen as zero. The rigid u,
translation is fixed through the assumption of Mode I symmetry about § = 0, so
that ul(r,0) = 0. The numerical u; displacement has been arbitrarily translated to
match the experimentally measured u; displacement along 6 = 0 at a radius of one

half of the plate thickness. This radius was chosen because it is clearly visible in all

of the photographs.

Also note that since each interferometer is adjusted independently at each load
to minimize the fringes that are due to rigid rotation, the size of the rotation in

each photograph at each load is a random quantity.

The displacement data from the numerical model are shown for both the free
surface, z3/t = 0.5, which is where the experimental measurement is made, and for

the center of the specimen, z3/t = 0, to illustrate the three-dimensionality of the

deformation.

The most significant consistent discrepancy occurs in the u; displacement at
large r, with the numerical code consistently underpredicting the magnitude of the
displacement. This may be because the mesh at this location is too coarse (and

therefore too stiff) to characterize the deformation accurately.

Another significant feature of the numerical displacement variations is the sharp
upturn in both the u; and u, displacement just ahead of the notch tip. The change
in the u; displacement was expected, because the notch surface is traction free,
so that there is a local maximum in the oy; stress ahead of the notch that leads
to a local minimum in the w; displacement. This upturn is difficult to detect in
the fringe photographs: At lower loads the upturn is less than the displacement

increment between fringes, while at higher loads the near tip region is obscured
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because of the aperture limitation of the camera.

The agreement between the measured displacements and the numerically calcu-
lated displacements is quite good for loads up to 52.3 kN. The discrepancy between
the numerical model and the experimental measurement is largest at the highest
load, 73.5 kN. There are several possible sources for this discrepancy. The first
possible source is tunneling of the crack, and an attempt was made to remove this
problem through a nodal-release procedure. A second possible source of dicrepancy
is that the strains are so large at the higher loads that the assumption of linearized
strains employed in the numerical model is no longer valid. A third possible source
is continuous slow crack growth within the specimen. This effect is clearly visible
in Specimen 1, in one of the tests to determine the tunneling behavior of the mate-
rial; at a fixed ultimate load, the specimen deformed continuously. This slow crack
growth may also have occurred in the interferometric investigation, although on a

much smaller scale.
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FIGURE 117. Radial variations of uj, 4.0 kN.
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FIGURE 118. Angular variations of u,, 4.0 kN.
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(microns)

U,

{microns)

Uy

30

80

P =35.0 kN, 6 = 0°
T T T T T
+
7 + Experiment
H —— Numerical, x3/t = 0.50 |7
---------- Numerical, x5/t = 0.00
{ | i | |
0 5 1.0 1.5 2.0 2.5 3.0
r/t
P =35.0 kN, & = 90°

T

FiGURE 127.

Radial variations of u, 35.0 kN.

3 + Experiment, & = 90°
B % Experiment, 6 = -80° _
—— Numerical, x5/t = 0.50
------------ Numerical, x5/t = 0.00
| | I
0 .5 1.0 1.5
r/t

2.0



-301-

P =235.0 kN, r/t = 0.504

180

30 T T T
* *
20
R P %
[
(o]
[&8
g 10
E
0 + Experiment, 6 > 0
¥ Experiment, 6 < 0
—— Numerical, x5/t = 0.50
------------ Numerical, x5/t = 0.00
-10 ] i i
0 45 90 135
9 (Degrees)
P=235.0kN, r/t =1.066
50 T T T
0
c
o]
[
3
E
=1
+ Experiment, 6 > 0
o % Experiment, 6 < 0
—— Numerical, x5/t = 0.50
------------ Numerical, x5/t = 0.00
~10 ] ] |
0 45 S0 135

8 (Degrees)

F1GURE 128. Angular variations of u;, 35.0 kN.

180



-302-
P =235.0kN, 6 =60°

25 T T T T

U, (microns)

u, {(microns)

* + Experiment, 6 = 60°
51 * Experiment, 6 = -60° 7]
T* —— Numerical, x3/t = 0.50
------------ Numerical, x5/t = 0.00
0 ] ] } I
.0 .5 1.0 1.5 2.0 2.5
r/t
P =35.0 kN, 6 = 180°
140 T T T
120 -
100 7
80 —
60 - —
40 |- .
+ Experiment, 6 = 180°
3 % Experiment, 6 = -180°
20 —— Numerical, x5/t = 0.50 |~
------------ Numerical, x5/t = 0.00
0 | | |
0 5 1.0 1.5 2.0

FIGURE 129. Radial varations of uq, 35.0 kN.



U, (microns)

u, (microns)

70

60

50

40

30

20

10

100

80

60

40

20

-303-

P =35.0 kN, r/t =0.504

| I [
+ Experiment, 6 > 0 I
% Experiment, 6 < 0 -
—— Numerical, xz/t = 0.50
------------ Numerical, xs/t = 0.00
] | |
45 a0 135 180
6 (Degrees)
P =35.0 kN, r/t = 1.066
T T T A
+ Experiment, 6 > 0
% Experiment, 6 < 0
—— Numerical, xz/t = 0.50 ]
------------ Numerical, x5/t = 0.00
| | {
45 390 135 180

6 (Degrees)

FIGURE 130. Angular variations of u,, 35.0 kN.
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5.2.1 Effects of Added Tunnel

Although the inclusion of the tunnel does not make the numerical data compare
exactly with the experiment at 73.5 kN, the addition of the the tunnel does push
the numerical displacements in the proper direction. In particular, one would like
to determine whether the added tunnel introduces the effect seen in the uy fringe
pattern ahead of the notch tip at 73.5 kN, where the fringes show a region of lower
fringe density bracketed by two regions of higher fringe density, as seen in Figure
114. The added tunnel does cause some unloading at the free surface in the finite—
element model, which is located in approximately the same position as the region

of lower fringe density in the photograph (see Figure 114 in Section 5.1).

This effect will be shown graphically by plotting the angular variation of the u,
displacement fringe for two radii, one that passes through the region of lower fringe
density and one that passes through the region of higher fringe density farther from
the notch tip. Experimental and numerical data for these two radii are shown in
Figure 139 for the load of 52.3 kN, for comparison. It can be seen that the data
for the two radii are nearly identical for § < 45°, after which the two curves in
each plot deviate continuously with increasing 6. Figure 140 shows similar data for
73.5 kN. In this figure, the experimental data show a deviation between the two
radii at very small theta, and the curves then grow closer at about § = 75°. The
numerical data also show a deviation between the two radii at very small theta,
which indicates that some part of this effect may be due to the size of the plastic
zone. The added tunnel does seem to cause the proper sort of change in the data
from the two radii at § = 75°, causing a larger increase in the data at r/t = 0.504

compared to r/t = 1.066.
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5.3 Plastic Zones

An estimate of the size of the plastic zone surrounding the notch tip may be
made from the finite—element model. The stresses and strains are calculated at
the center Gauss point of each element. In the accompanying figures, the elements
that are actively yielding are shown shaded in gray; these are elements in which
the stress state is currently expanding the size of the local yield surface. When the
tunnel is introduced through the release of the boundary constraints on the crack
line, some elements that have previously been actively yielding begin to unload.
These elements that are no longer actively yielding are outlined but not shaded.

Those elements that are still deforming elastically are not drawn.

Plastic zones are shown for the layer of elements nearest the center of the
specimen (z3/t = 0.079) and the layer of elements nearest the free surface (z3/t =
0.487). It was anticipated that the plastic zones of these two different layers would
be somewhat different, as the center layer of elements is expected to approach
plane-strain conditions, while the free—surface layer is expected to approach plane—
stress conditions. Broek [14] indicates that the plane—strain plastic zone should be
smaller than the plane—stress plastic zone, and that the shapes of the two plastic

zones should be different.

For the Von Mises yield criterion used in the code, Broek [14] gives the radial

extent of the plastic zone, rp, as a function of 4 as

K?
Plane Strain: r, = 1 - 3 [% sin @ + (1 — 2v2)(1 + cos 0)}
wog |2
oy ] (5.3.1)
Plane Stress: r, = - > [1 + =sin? 8 + cos 9] .
drog 2

K 1s the Mode I stress-intensity factor, and o 1s the initial yield stress in uniaxial
tension. For this specimen geometry, K is found from the load P and the thickness
t as 27.95m™ /2 P/t (see Section 4.2). These analytical estimates for the plastic
zone size are derived using Williams’s [90] K—field series solution for a crack in a
linearly elastic body; a sharp crack is assumed and only the first singular stress
1/2

term is retained, so that the stresses are assumed to vary as r~ This simple

analytical approximation must underestimate the size of the plastic zone, as the
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8500 Newtons
X3/t =0.079 (Center Layer)
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FIGURE 141. The plastic zone of the elements at the center of the specimen de-
termined from the finite~element model. The specimen thickness is
1 cm, and the figure is thirty times actual size. The plastic zone is
shown on a deformed mesh.

stresses within the plastic zone must be smaller than the assumed elastic stresses,
so that some of the load must be carried farther away from the crack, causing
vielding at larger radii. In particular, the plastic zone should be considerably larger
than these predictions along the line 8§ = 0, where the highest stresses are expected

to occur. The analytical estimates for the plastic zones are shown in the figures that
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illustrate the actively yielding elements from the finite—element model. The origin
of the coordinate frame is taken halfway between the center of curvature of the

notch and the edge of the notch, as discussed in Section 4.2, and shown in Figure

86.

8500 Newtons
Xx3/t=0.487 (Surface Layer)

Element Actively Yielding

0.20
010
N Q;&
Rﬁ 000 )
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-0.20 -0.10 0.00 0.10 0.20
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FIGURE 142. The plastic zone of the elements at the free surface of the specimen
determined from the finite—element model. The specimen thickness
is 1 cm, and the figure is thirty times actual size. The plastic zone is
shown on a deformed mesh.
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18500 Newtons
x3/t=0.079 (Center Layer)
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FIGURE 143. The plastic zone of the elements at the center of the specimen de-

termined from the finite—element model. The specimen thickness is
1 c¢m, and the figure is thirty times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates

of equation (5.3.1).

Figures 141 through 144 indicate the initiation of plastic deformation. These

figures are shown on a very small size scale, in which the smallest elements are

visible. Figures 141 and 142 show the plastic zones at the layer of elements nearest

the center of the specimen and the layer of elements nearest the free surface taken
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18500 Newtons
X3/t =0.487 (Surface Layer)
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FIGURE 144. The plastic zone of the elements at the free surface of the specimen
determined from the finite-element model. The specimen thickness
1s 1 cm, and the figure is thirty times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates

of equation (5.3.1).

at 8500 Newtons, about 10% of the ultimate failure load. At this load, plastic

deformation occurs only in the two rings of elements nearest the notch tip.

The analytical prediction is quite good at the load of 18.5 kN, and there seems

to be good agreement with the Plane Strain estimate at the center of the specimen
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X3/t =0.487 (Surface Layer)
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FIGURE 145. The plastic zone of the elements at the free surface of the specimen
determined from the finite—element model. The specimen thickness
is 1 cm, and the figure is four times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates

of equation (5.3.1).

and the Plane Stress estimate at the free surface, as shown in Figures 143 and
144. It appears that this agreement would improve if the tip of the notch were
taken as the origin of the K field estimate. However, at higher loads, the present

study indicates that there is not a clear difference in either the size or the shape
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52300 Newtons
X3/t =0.487 (Surface Layer)
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FIGURE 146. The plastic zone of the elements at the free surface of the specimen
determined from the finite—element model. The specimen thickness
is 1 cm, and the figure is four times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates

of equation (5.3.1).

of the plastic zones from the two layers of elements, nor is there any clear trend
in the development of the size and shape of the plastic zone at the center of the
specimen as compared to the free surface. The difference in the size of the plastic

zone between the two layers seems to be on the order of the size of one element in
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any direction. At most, it seems that the plastic zone at the free surface extends
slightly farther behind the notch tip and perpendicular to the notch at the tip than
the plastic zone at the center of the specimen. The plastic zone at the center seems

to extend slightly farther directly ahead of the notch.

63500 Newtons

X3/t=0.079 (Center Layer) Element Actively Yielding

1.5
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FIGURE 147. The plastic zone of the elements at the center of the specimen de-
termined from the finite-element model. The specimen thickness is
1 cm, and the figure is four times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates

of equation (5.3.1).
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FIGURE 148. The plastic zone of the elements at the free surface of the specimen
determined from the finite~element model. The specimen thickness
is 1 cm, and the figure is four times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates

of equation (5.3.1).

Figures 145 through 156 are intended to indicate the growth of the plastic zones
at higher loads, as well as to indicate the size of the plastic zones with respect to

the measurements shown in Section 5.2.

As expected, at the higher loads, the numerically estimated plastic zones are
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68500 Newtons (No Tunnel)
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FIGURE 149. The plastic zone of the elements at the center of the specimen de-
termined from the finite-element model. The specimen thickness is
1 cm, and the figure is four times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates

of equation (5.3.1).

quite a bit larger than the analytical estimate along § = 0. However, the analytical

estimate seems quite good at predicting the lateral extent of the plastic zone.

Aside from unloading in the region of the tunnel, and along the crack flank,

the inclusion of the tunnel also results in some interesting regions of unloading in
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68500 Newtons (No Tunnel)
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FIGURE 150. The plastic zone of the elements at the free surface of the specimen
determined from the finite-element model. The specimen thickness
is 1 cm, and the figure is four times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates

of equation (5.3.1).

the layer of elements nearest the free surface. This zone of unloading occurs well

ahead of the tip of the tunnel, as can be seen in Figures 152 and 156.

Figures 143 and 144 also show the plastic zones at the center layer of elements

and the free surface layer of elements, in this case at a load of 18500 Newtons, about
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68500 Newtons (With Tunnel) Element Actively Yielding
X3/t =0.079 (Center Layer) D Element No Longer Actively Yielding
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FIGURE 151. The plastic zone of the elements at the center of the specimen de-
termined from the finite-element model. The specimen thickness is
1 cm, and the figure is four times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates

of equation (5.3.1).

one quarter of the ultimate failure load.

Tunneling was determined to initiate after a load of 63500 Newtons, as de-
scribed in Section 4.5. This tunneling was introduced into the finite-element model

by releasing the displacement constraints along the crack line for a number of nodes,
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68500 Newtons (With Tunnel) Element Actively Yielding
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FIGURE 152. The plastic zone of the elements at the free surface of the specimen
determined from the finite—element model. The specimen thickness
is 1 cm, and the figure is four times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates

of equation (5.3.1).

as discussed in Section 4.3. This nodal-release procedure was carried out in four
load steps of 2500 Newtons each from 63500 Newtons to 73500 Newtons, which
was the highest load achieved in the interferometric investigation. Plastic zones

are shown for loads of 68500 Newtons and 73500 Newtons for two cases, one that
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FIGURE 153. The plastic zone of the elements at the center of the specimen de-
termined from the finite~element model. The specimen thickness is
1 cm, and the figure is four times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates

of equation (5.3.1).

included tunneling and one that did not. The cases that included tunneling will be

magnified in Figures 161 and 162 so that the regions of unloading might be seen

more clearly.

Figures 151 and 152 show the plastic zones at 68500 Newtons for the case with
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FIGURE 154. The plastic zone of the elements at the free surface of the specimen
determined from the finite—element model. The specimen thickness
is 1 cm, and the figure is four times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates

of equation (5.3.1).

tunneling included. Some unloading is visible behind the notch tip in the center of

the specimen, and a strange region of unloading is visible ahead of the notch tip on

the free surface.
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73500 Newtons (With Tunnel) Element Actively Yielding
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FIGURE 155. The plastic zone of the elements at the center of the specimen de-
termined from the finite—element model. The specimen thickness is
1 c¢m, and the figure is four times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates
of equation (5.3.1).

Figures 155 and 156 show the plastic zones at 73500 Newtons for the case with
tunneling included. More unloading is visible behind the notch tip in the center of

the specimen, and the region of unloading ahead of the notch tip at the free surface

has grown.
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73500 Newtons (With Tunnel) Element Actively Yielding
X3/t =0.487 (Surface Layer) D Element No Longer Actively Yielding
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FIGURE 156. The plastic zone of the elements at the free surface of the specimen

determined from the finite—element model. The specimen thickness
is 1 cm, and the figure is four times actual size. The plastic zone is
shown on a deformed mesh. Also shown are the analytical estimates

of equation (5.3.1).
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FIGURE 157. The plastic zone of the elements at the center of the specimen de-
termined from the finite-element model. The specimen thickness is
1 cm, and the figure is twelve times actual size. The plastic zone is
shown on a deformed mesh.

In Figures 157 and 158 are shown magnified views of the notch tip regions at
68500 Newtons for the case where tunneling was included. As expected, there is
unloading occurring behind the notch in the center of the specimen. The tunnel
profile is a bell-shaped curve, deep in the center and dropping off towards the free

surface, so that no nodes have been released at the free surface for this load. Thus,
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there is no unloading behind the notch in the elements at the free surface. However,

there is a region of unloading ahead of the notch at the free surface, which was not

anticipated.
68500 Newtons (With Tunnel) Element Actively Yielding
X3/t =0.487 (Surface Layer) [] Element No Longer Actively Yielding
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FI1GURE 158. The plastic zone of the elements at the free surface of the specimen
determined from the finite—element model. The specimen thickness is
1 cm, and the figure is twelve times actual size. The plastic zone is
shown on a deformed mesh.
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FIGURE 159. The plastic zone of the elements at the center of the specimen de-
termined from the finite—element model. The specimen thickness is
1 cm, and the figure is twelve times actual size. The plastic zone is
shown on a deformed mesh.

In Figures 159 and 160 are shown similar magnified views of the notch tip
regions at 73500 Newtons, also for the case with tunneling. The material behind
the notch tip in the center of the specimen is completely unloaded. At this load, one
node has been released at the free surface, but there is still no evidence of unloading

behind the notch tip in the elements at the free surface. The region of unloading
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FIGURE 160. The plastic zone of the elements at the free surface of the specimen
determined from the finite—element model. The specimen thickness is
1 cm, and the figure is twelve times actual size. The plastic zone is
shown on a deformed mesh.

ahead of the crack at the free surface has grown.
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FIGURE 161. The plastic zone of the elements at the center of the specimen de-
termined from the finite—element model. The specimen thickness is
1 cm, and the figure is twelve times actual size. The plastic zone is
shown on a deformed mesh.

Figures 161 and 162 are higher magnifications of the notch tip region in the
center of the specimen at 68500 and 73500 Newtons, both including tunneling.
The progress of the tunnel is clearly visible at this magnification. It is interesting

that some of the material very close to the notch tip which was unloaded at 68500

Newtons is again actively yielding at 73500 Newtons.
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FIGURE 162. The plastic zone of the elements at the center of the specimen de-
termined from the finite—element model. The specimen thickness is
1 cm, and the figure is twelve times actual size. The plastic zone is
shown on a deformed mesh.
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5.4 Stress Distribution

As seen in Section 4.2.4, the finite notch tip requires a correction to the K field
stress distribution in order to accommodate the traction—free condition inside the
notch tip itself. Along 6 = 0, ¢1; must go to zero at the edge of the notch, so that
the correction term is of opposite sign to the K field oy, stress. This produces a local
maximum in the oy, stress distribution slightly ahead of the notch tip. However,
the notch tip correction for o4, is of the same sign as the K field o9y stress, so
that the o4, stress distribution found using the K field with correction reaches a

maximum at the notch tip itself.

A sample comparison between the K field with notch correction and the nu-
merical model is shown in Figure 163. A larger sample of the radial and angular
stress distributions from the finite-element code is shown with the corresponding
K field with correction in SM 91-2 [73]. The numerical results are shown for loads
beginning at 4.0 kN, the lowest load from the experiment; at this load the numer-
ical model indicates that there is no plastic deformation. It can be seen that the

agreement between the K field with correction and the numerical model is quite

good.

With the onset of plastic deformation, however, there is a change in the stress
distribution, particularly in the 099 stress. The combination of the finite notch tip
and the plastic flow produces a local maximum in the o2, stress ahead of the notch
tip, similar to the local maximum of the oy; stress in the elastic case. Thus, 022 is no
longer a maximum at the tip of the notch. This change is illustrated in Figures 164
and 165, which show the radial distribution of o2 along § = 7.5° on 23/t = 0.079
and z3/t = 0.487. 6 = 7.5° is the line through the centroids of the elements closest
to the crack line of the specimen; z3/t = 0.079 is the plane through the centroids
of the elements on the layer nearest the center of the specimen, and z3/t = 0.487
is the plane through the centroids of the elements nearest the free surface of the
specimen. The stress is normalized by the yield stress, og, which was measured as

960 MPa. The data are given as a function of r/t, where ¢ is the specimen thickness,

= 10mm.
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FIGURE 163. Radial variation of g9y, K normalization.
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FIGURE 164. Radial variation of o95/0y. Center Layer.
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FIGURE 165. Radial variation of 0q5/0¢. Surface Layer.



-342-

The local maximum in the o9, distribution has already been described by Rice
and Johnson [67], where large goemetry changes in plane-strain fracture were inves-
tigated using slip-line theory; and by McMeeking [45], where a finite deformation
analysis of plane—strain crack-tip opening was investigated numerically. McMeek-
ing attributes this local maximum ahead of the notch tip to the triaxiality of the
deformation, and to the fact that the hydrostatic stress cannot be maintained at
the surface of the notch tip. This effect is similar to that seen in the analysis of
Bridgman [12,13] for necked tensile specimens, with the finite notch acting as a
severely curved neck. Bridgman’s analysis also indicated that the maximum tensile
across the necked cross section occurs in the center of the specimen, away from the
curved free surfaces that would lead to stress concentrations in an elastic medium.
Rice and Johnson conclude that if the actual large geometry changes are included,
the maximum stress that may be achieved over any reasonable material size scale

is limited, contrary to the prediction of the singular HRR field.

The effect of the onset of plasticity in the oy; distribution near the free surface
is also interesting. The local maximum in the oy; field is broadened and pushed
farther ahead of the notch, and as the load increases, a second maximum is created
in the field closer to the notch tip. This second maximum is very sharp, and on
the order of one-half the magnitude of the maximum stress farther away from the
notch tip. This distribution is shown in Figure 166, and the corresponding oy;

distribution in the center of the specimen is shown in Figure 167.

Similar radial hydrostatic stress distributions are displayed in Figures 168 and
169, and the radial variation of o33 on the center layer of the specimen is shown in

Figure 170 following.
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FIGURE 166. Radial variation of oy /0¢. Surface Layer.
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FIGURE 167. Radial variation of o1;/0g. Center Layer.
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FIGURE 170. Radial variation of o33/0¢. Center Layer.
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A sample comparison between the HRR field and the numerical model is shown
in Figure 171. A more complete comparison between the numerically calculated
stresses and the stresses given by the HRR field analysis is made in SM 91-2 [73].
There seems to be almost no region in which the HRR field would provide a good
estimate of the calculated stresses. The best agreement seems to be the plane—stress

HRR o3 along § = 7.5° near the free surface at z3/t = 0.479.

In assessing the applicability of the HRR field, it might have been guessed
ahead of time that there would be at most a very small region in which the HRR
field is dominant, since the specimen does not satisfy all of the assumptions made
in the derivation of the HRR field. The specimen is three-dimensional, contains a
notch of finite radius and employs an incremental plasticity constitutive formulation,
whereas the HRR field assumes a two-dimensional body (in plane stress or plane

strain), a sharp crack and a deformation plasticity law.

An objection might be made to using a specimen with an initial blunt notch,
rather than a specimen with a sharper crack. However, the notch in this study is
highly repeatable, while a sharper crack would have to be produced through fatigue,
which is more difficult to control repeatably. Further, one could follow the rationale
used by McMeeking [45] in his investigation of the blunting of a notch using a finite—
strain numerical model. McMeeking begins his calculation with an initially blunt
notch, but he concludes that if the loaded crack or notch eventually blunts open to a
width several times its initial width, the crack or notch may be considered as having
been initially sharp. The notch used in the present study meets this criterion, as its
width under the highest load (neglecting tunneling) is on the order of two or three
times its initial width (as calculated by the finite—element model). In other words,
at some distance from the notch, the effect of the finite notch tip is equivalent to

the effect of the blunting that would have occurred with a sharper crack.

The important point is that the combination of a finite notch tip and plasticity
moves the peak in the stress field away from the edge of the notch tip, contrary to
the HRR prediction of a singularity. Further, the work by Rice and Johnson [67]
and McMeeking [45] implies that if the effects of finite deformation are included
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with the plasticity, then even an initially sharp crack will evolve into a blunted
notch, thereby moving the stress maximum away from the tip. The HRR field is
intended to describe the deformation asymptotically in the region near the sharp
tip; however, the effects of finite deformation conspire to change the geometry of

the crack tip so that the assumptions underlying the HRR field are no longer valid.
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FIGURE 171. Radial variation of oy5. J normalization.
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Shih and German [79] assess the size scale over which the J-integral may be used
as a criterion for fracture initiation. This assessment is made through a comparison
between numerical calculations for several specimen geometries and the HRR field.
The numerical calculations employ a plane strain, small strain, J, deformation—
theory plasticity law, in which the plastic stress and strain are related through a
power law. They assume that the J-integral will characterize the deformation at the
crack tip and the onset of crack propagation if the crack-tip field is governed by the
HRR field. Shih and German [79] estimate the size scale over which the J-integral
characterizes the crack-tip deformation in three specimen geometries, a cracked
bend bar, a center—cracked panel and a single-edge cracked panel. They employ
this estimate to determine the necessary physical dimensions for each specimen

geometry so that the fracture process zone is fully encompassed within the zone

characterized by J.

For each of the three geometries, Shih and German [79] estimate the length
scale over which the J-integral characterizes the deformation as a function of the
value of J (which may be calculated from the work done by the applied loading),
the initial yield stress of the material, o¢, and the hardening behavior of the ma-
terial determined by the hardening exponent, n. This length scale also depends
on whether the plasticity may be described as contained or not; the plasticity is

contained if the uncracked ligament is large compared to the parameter J/og, which

has units of length.

The case they consider that is closest to the present study is the cracked bend
bar with n = 10, 09 /E = 0.002 and a crack that is one half the width of the bar. For
contained plasticity, in which the uncracked ligament ¢ is given as ¢ = 1200J/ 0y,
they estimate that the numerical stresses match the HRR field over a length X of
X < 3J/o¢. They also estimate that for the cracked bend bar under large plasticity,
with ¢ = 120J /09, the numerical and HRR stresses match within X < 3J/0¢; the

match for the other geometries under large plasticity is considerably worse.

While it seems clear that the finite notch tip in the specimen of the present

study negates the singularity at the notch tip, making the assumptions underlying
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the HRR field invalid, it also appears that the stress and strain at the notch tip may
be characterized by the same function of J used to characterize the HRR singular
fields. This is demonstrated in Figures 171, 179and 180. The estimate of Shih and
German of J dominance over a length of 3J /09 may be compared with the notch tip
radius and the region over which the stresses and strains seem to be characterized

by J for this geometry with a finite notch.

In the current study, the uncracked ligament is 46 mm, and the yield stress
is o9 = 960 MPa, with o¢/E = 0.005. For ¢ = 1200J/0y, the case contained
plasticity, the corresponding value of J is 36.8 kN/m, which corresponds to a load of
approximately 30kN. For large scale plasticity, with ¢ = 120J/0y, the corresponding
value of J is 368 kN/m, which corresponds to a load of approximately 80 kN. (This
load is beyond the failure load of the experimental specimen.) Thus, the length scale
over which Shih and German estimate the J-integral to characterize the deformation
is on the order of 0.1 mm for the case of contained plasticity and 1 mm for the case

of large scale plasticity. Note that the initial notch—tip radius is 0.15 mm.

The length scale over which the HRR normalization collapses the data from
the current study can be estimated from Figure 171. The length chosen for this
estimate will be the distance from the tip of the notch to the location of the peak
in the o9y distribution in the center of the specimen, which is shown in the upper
plot in Figure 171. The center layer of elements should more nearly match the
plane-strain assumption of Shih and German [79]. This distance will be denoted

l.. This data is shown in Table 6.

This particular choice of a length over which the J-integral may be said to
dominate the deformation does not match well with the estimate of 3J/cq. It is
difficult to tell from this limited set of data whether there is some direct correlation

between [, and J or the applied load.

At the free surface, the J-integral seems to characterize oy, over a larger length
scale, as indicated in the lower plot in Figure 171. For this case, the best length
scale for comparison seems to be the position at which the normalized o9y curve

begins to drop away from the plateau near unity, which will be denoted {,. These
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Extent of J Characterization of o2 Stress (center layer)

Load J J/oo I 3J /o0
kN kN/m mm mm mm
18.5 13.3 0.0139 0.125 0.0417
35.0 48.5 0.0505 0.292 0.152
52.3 113.7 0.118 0.375 0.354
63.5 182.7 0.190 0.375 0.570
73.5 288.6 0.301 0.375 0.903

Table 6. The distance from the notch edge to the peak in the oy, stress in the
center layer of elements, [, for various loads and J values. Also shown is

the estimate of the length over which the J—-integral should dominate from
Reference [79], 3J/oy.

valuesare listed in Table 7.

If this length parameter is a good choice for comparison, it would seem to
indicate that the J—integral characterizes the stress field over a length that is on

the order of 30J/0¢ in the elements at the free surface.

It is very difficult to make a comparison that exactly parallels the comparison
made by Shih and German between their numerical calculation and the HRR field,
as the finite notch tip radius removes the singularity, which renders the assumptions
used in deriving the HRR field invalid. There is as yet no analytical solution or
correction for the HRR field that accounts for the effects of the finite notch. Also,
it is clear that there will be additional difficulties introduced by the finite thickness
of the specimen. Some related work done by Pfaff [56] indicates that the out-of-
plane displacement field at the surface scales reasonably well with J in a region
between 20 and 60 kN. Note that the out-of-plane displacements at the surface are
related to the thickness average of the trace of the stress tensor. Pfaff explains
the upper and lower bounds on the loads at which the J-integral will characterize

the deformation as being caused by the thickness of the specimen. At lower loads,



Extent of J Characterization of 022 Stress (surface layer)

Load J J/og I, 3J/ayg
kN kN/m mm mm mm
18.5 13.3 0.0139 0.339 0.0417
35.0 48.5 0.0505 1.19 0.152
52.3 113.7 0.118 2.88 0.354
63.5 182.7 0.190 6.53 0.570
73.5 288.6 0.301 9.15 0.903

Table 7. The distance from the notch edge to the fall-off in the o9 stress in the
surface layer of elements, [, for various loads and J values. Also shown

is the estimate of the length over which the J-integral should dominate
from Reference [79], 3J /0.

the surface deformation will resemble a semi-infinite body, and the plasticity will
be dominated by the shape of the notch itself. At higher loads, the plasticity will
smooth out the local effects of the notch shape, and the surface deformation will
still approximate a semi-infinite body. In this loading regime, the J-integral will
be a good choice for characterizing the deformation. At the highest loads, when
the plastic zone is on the order of the thickness of the plate, the effects of the finite
thickness will dominate the nature of the deformation, and the J-integral may no

longer be an effective characterizing parameter.
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5.5 Strain Levels

Although the numerical model used in this study allowed for the inclusion of
nonlinearity in the constitutive description, it did not allow for any geometrical
nonlinearity, i.e., finite strains. It is therefore important to determine whether
the calculated strain values remain within the region where the linearized strain
formulation is valid. As can be seen in Figure 172, the strain levels above 52.3 kN
are on the order of 30% to 90% in the region near the notch tip in the layer near the
center of the specimen, which is certainly outside the linearized strain theory. The
inclusion of tunneling does decrease the strain level when compared to the case that
did not include tunneling, but the addition of the tunnel seemed to create difficulty

for the code to converge to a smooth solution in the stress distribution, as discussed

in Section 4.3.

Figure 172 shows the radial distribution of €;; and €32 along § = 7.5° on
z3/t = 0.079, the midplane of the layer of elements in the center of the specimen.
Note that €;; and €33 are almost equal and opposite (and €33 is very nearly zero)

near the notch tip, following the assumption of plastic incompressibility used in the

constitutive model.

Figure 173 shows the radial distribution of €;; and €2 along 6 = 7.5° on
x3/t = 0.487, the midplane of the layer of elements nearest the free surface of the
specimen. In this case, €;; is approximately two thirds as large as €z2, while €33
is approximately one third as large as €33, again demonstrating plastic incompress-
ibility.

The magnitude of the equivalent plastic strain, €7, the scalar quantity that
serves to record the history of the plastic deformation, is shown in Figure 174.

Again, these data are shown along § = 7.5° for z3/t = 0.079 and z3/t = 0.487.
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5.6 Fracture Criterion

It was hoped that some simple criterion for crack propagation might be ex-
tracted from a comparison between the results from the numerical model that in-
cluded tunneling and the results of the equivalent numerical model without tun-
neling. An example of such a criterion would be a limit on the stresses or strains
observed in the case with tunneling that does not appear in the case without tun-
neling; this limit would correspond to a critical stress or strain for the material.

However, there seems not to be a clear trend in the data to make such a critical

stress or strain evident.

Tunneling was initiated at a load of 63.5 kN, and comparisons can be made
between the case with tunneling and the case without, at loads of 68.5 kN and
73.5 kN. The extent of the tunnel included in the numerical model was about
0.29 mm deep in the center of the specimen at 68.5 kN and about 0.67 mm deep

in the center of the specimen at 73.5 kN. (The plate thickness of the specimen was

10.0 mm.)

Figure 175 shows the effect on o3 at § = 7.5° in the center of the specimen.
One obvious feature is the noise in the data where the tunnel has been included.
Part of this is likely due to the complicated geometry of the added tunnel, and
part to the fact that the stress is measured in the interior of each element, away
from the (now traction—free) boundary. It might be possible to reduce this noise by
decreasing the tolerance on the calculation, but adding the tunnel already causes
convergence difficulties. It is also clear that the maximum calculated o4 is higher
for each case with tunneling than for the corresponding case without. A similar

result is seen for the hydrostatic stress in Figure 176.

A similar lack of a clear fracture criterion is found in comparing the strain. The
effect on €99 is shown in Figure 177. The case that includes tunneling indicates the
effect of the incremental plasticity law, whereby the specimen unloads elastically,
so that the strain at the tip remains nearly constant. There seems not to be any

appreciable increase in strain ahead of the notch tip because of the tunnel, however.
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FIGURE 175. The effect on oy, of including artificial tunneling. The loads marked
with an asterisk are those that included tunneling.

At 63.5 kN, before tunneling was initiated, the equivalent plastic strain, €”, is
approximately 60% in the center of the specimen at the tip of the notch, as shown
in Figure 178. The equivalent plastic strain is a scalar quantity that represents
the history of the loading, as it is the integration over time of the magnitude of the
plastic strain-rate tensor. In the case where no tunneling is included, the equivalent
plastic strain reaches 100% at 73.5 kN. The case that includes tunneling indicates
the effect of the incremental plasticity law, whereby the specimen unloads elastically,
so that the magnitude of the equivalent plastic strain remains unchanged. However,
it is interesting that the inclusion of the tunnel does not introduce any large strain
peaks in the vicinity of the tip of the tunnel. This means that the peaks in the

stress field are due mainly to hydrostatic stress, which does not contribute to the
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FIGURE 176. The effect on the hydrostatic stress of including artificial tunneling.
The loads marked with an asterisk are those that included tunneling.

plastic strain. At 68.5 kN, the tunnel tip is at about r/t = 0.04, and at 73.5 kN,
the tunnel tip is at about /¢ = 0.08.

At best, one might make a case for some criterion that includes the effects of
both plastic strain and hydrostatic stress, the result being a failure surface similar
to the yield surface used in continuum plasticity. Initiation of tunneling seems to
be brought about by the high plastic strains at the notch tip, but progression of
the tunnel seems to be driven by the hydrostatic stress, since the plastic strains do
not achieve the same high values that initiated the tunnel. The Gurson model used
by Narasimhan, Rosakis and Moran [52] includes the effects of plastic strain and
hydrostatic stress in a model of void nucleation and growth. However, this model

had difficulty in converging to a solution as element failure began. Perhaps the
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FIGURE 177. The effect on ez, of including artificial tunneling. The loads marked
with an asterisk are those that included tunneling.

complexity of the void growth model could be reduced to something as simple as a
failure surface and the model validated at larger deformation levels. It is important
to note that the ultimate failure of the body was through shear failure from the
corners of the notch, rather than through fracture along the initial crack plane,
which is followed by the tunnel. Thus, an appropriate failure criterion should be able

to capture the transition from flat fracture to shear fracture after some tunneling.

The radial variations of the hydrostatic stress and the equivalent plastic strain
are shown in Figures 179 and 180 along 6§ = 7.5° for the center and surface layers of
the specimen. The normalization is taken from the functional representation for the
HRR field stresses and strains used by Shih [77]. The normalization appears to work

well in the near—tip region, although the distributions are not well described by the
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HRR field. The J value used for the normalization is the thickness average of the
local J(z3) calculated by the numerical model. It appears that the normalization
might be improved if the appropriate local value of J were used at each layer,
particularly in the equivalent plastic strain, as the dependence on J is much stronger
in the strain—normalization function. Thus, it seems that the local value of J is a
good predictor of fracture initiation, even though the HRR field is not a good

representation of the state of the deformation.
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5.7 J-Integral Comparison

The load and load—point displacement records from the experiment and the
finite—element model match quite well, as shown in Figure 101. As a result, the
variation of the J—-integral with load as calculated from the work of the indenter
using equation (4.4.1) also shows good agreement between the experiment and the
finite—element model, as seen in Figure 102. However, the comparison between J
values calculated using equation (4.4.1) and J values calculated from the domain
integral implemented in the numerical code do not agree very well at higher loads,
as shown in Figure 103. The results of the domain integral shown in Figure 103
represent the thickness average of the local, two—dimensional value of the J-integral,

J(z3), which is calculated at each layer of nodes.

The domain-integral calculation employed in the numerical model may be used
to estimate a critical value of the local value of J taken at z3 = 0, where the local
J is always highest. Tunneling is estimated to initiate at a load between 63.5 kN

and 68.5 kN. The values of J(0) from the finite—element model at these loads are
219 kN/m and 279 kN /m.

A critical value of J may also be estimated from the tunneling tests, as de-
scribed in Section 4.5.3 and shown in Figures 107 and 108. This critical J value is
estimated to lie between 218 kN/m and 265 kN/m.

The estimate of the critical J value from the experiments agrees quite well
with the estimate of the critical value of J(0) from the finite—element model. This
good agreement suggests that the J value calculated from the load and load—point
displacement record of the experiment (or the numerical model) should be com-
pared with the value of J taken at the center of the specimen, at z3 = 0. This
comparison is shown in Figure 181. The agreement between J (z3) taken at 23 = 0
and J calculated from the experiment appears better than the agreement between
the thickness average of J and the experiment at the higher loads. One possible
explanation is that the local J at the center of the specimen more nearly matches

the plane-strain condition for which equation (4.4.1) is derived.
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FIGURE 181. Comparison of J values from the experiment and the finite—element
model. The first two curves show values of the J-integral calcu-
lated from equation (4.4.1), using the experimental and numerical
load and load—point displacement records. The dashed line repre-
sents the thickness average of the local value of J(z3) and the dotted
line represents the local J at the center of the specimen.

The plane-strain fracture toughness of a ductile material is always less than the
plane-stress fracture toughness, as plane—strain conditions constrain the material
so that little shear deformation can occur. Consequently, use of the plane-strain
fracture toughness provides an additional margin of safety in the design of struc-
tures. However, simulating plane-strain conditions requires a very large and thick
specimen, and the specimen geometry used in this study does not satisfy the size
requirements to approximate plane strain. It would be interesting to compare the

critical values of J calculated with this specimen geometry, particularly the critical
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J at the center of the specimen, with the plane-strain critical value of J determined
for the same material, using both experiment and a numerical model. If the center of
the thinner specimen does approach plane-strain conditions, then the results from
a thinner specimen might be used to estimate the plane-strain fracture toughness.
The use of a thinner specimen is desirable because it requires less material and is
thus less expensive, and because the loading could be accomplished using a smaller
and less expensive load frame. It would also be interesting to investigate whether
the value of J calculated from the work of the indenter correlates well with the local

value of J at the center of specimens of various thicknesses.
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CHAPTER 6

Conclusion

The experimental investigation into the static fracture of a tough material using
interferometry is intended to bridge the gap between the behavior away from the
effects of the crack tip, where the material response is linearly elastic and assumed
to be well understood, and the behavior near the crack tip, where the material is
undergoing large plastic deformation. Interferometry is a useful tool in this regard,
because it combines a high sensitivity with applicability over a large field of view,
and with the proper recording optics, large deformation gradients may be measured.
The experiments performed thus far have concentrated on the investigation of the
external part of the deformation field. Further investigations closer to the crack
tip can use these external measurements as a starting point, so that the field of
view may be decreased, the magnification increased and the lens aperture moved
closer to the object (reducing the shadows that were due to the aperture limitation).
In addition, the grating profile could be etched into the surface of the specimen,

removing the possibility that the epoxy layer does not transfer the deformation from

the specimen to grating exactly.

The experiment was also compared to a finite~element model, in order to de-
termine how well the finite—element calculation could capture the deformation. The
material properties of the material used in the experiment were measured for input

to the numerical code so that the finite—element model would match the experiment

as closely as possible.

With the experimental apparatus and numerical code available, it is desirable
to pursue this line of investigation for different materials (such as for different heat
treatment of 4340 steel), and for specimens of varying thickness, to get some idea

of the effects of varying the parameters of the problem.
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The comparison between the displacements measured in the experiment and
the displacements calculated by the numerical model is quite good for loads up to
52.3 kN, in a relatively large region surrounding the notch tip. Near the notch
tip, as r decreases, the numerically calculated displacements show an interesting
change in direction that should be the focus of further experimental measurements.
At 73.5 kN, the highest load achieved in the experiment before continuous slow
fracture began, the numerical model and the experiment compared less well. There
are several possible sources for this discrepancy that could be addressed. The first
source is tunneling of the crack; an attempt was made to eliminate this problem by
including a tunnel through releasing nodes at the higher loads. The second source
of discrepancy is the lack of a finite-strain formulation in the numerical model; at
52.3 kN the strains are already on the order of 30% in the center of the specimen.
A third source of discrepancy may be due to the growth of the plastic zone into
a region where the mesh is too coarse to model the deformation adequately. A
comparison with the u; displacement by Pfaff [56] indicates that more elements are
needed through the thickness, the ratio of the out-of-plane mesh dimension to the

in-plane mesh dimension is 6:1 at the notch tip. *

The numerical model predicts an interesting change in the slope of both the u;
and uy displacements as a function of r near the crack tip. This feature has yet to
be confirmed in the experiment; validating such behavior would be a good task for

a future experiment.

The added tunnel did move the displacement in the proper direction, and it
resulted in a region of unloading on the surface of the specimen that corresponds
fairly well with the regon of lowered fringe density seen in the uy displacement fringe

pattern.

One source of discrepancy that seemed not to play a role in the comparison is
the effect of Liider’s bands (attributed to the release of pinned dislocations) seen

in the uniaxial tests. This effect should have appeared in the experiment at the

* The San Diego Supercomputer Center has recently upgraded from a Cray X-MP to a Cray Y-
MP that is considerably faster. It might be possible to further double the number of elements
in the model without requiring an out-of-core solution procedure.



-371-

elastic-plastic boundary, as it appears in the uniaxial test at the yield point. It
was anticipated that this effect might appear in the photographs as a discontinuity
in the fringe patterns of some sort, but no discontinuities are visible in the fringe
photographs in the vicinity of the elastic-plastic boundary. It may be that this is
a small local effect that appears large only in the uniaxial test because the entire
uniaxial test specimen is in a state of homogeneous stress and strain, so that a very
large number of pinned dislocations are released at once. (It would be interesting

to study the local nature of Liider’s bands using the moire interferometer.)

The finite notch tip negates any singularity in the stress and strain fields. In
particular, the combination of the finite notch tip and plastic deformation result in
a local maximum in the 0,5 stress away from the notch tip. The paper by Rice and
Johnson [67] indicates that if finite deformation is included, even an initially sharp

crack will blunt to a notch, resulting in nonsingular stresses and strains.

The notch correction from [83] to the K field [90] appears to model adequately
the stresses in the vicinity of the notch tip in the elastic regime; it would prob-
ably be best to use a thickness average of the numerical stresses for comparison,
as in generalized plane stress. The singular HRR field stresses [77] are not very
good predictors of the stress calculated using the finite—element model. Perhaps an

equivalent notch correction could be produced for the HRR field that would improve

the comparison.

Three-dimensional effects seem to be contained within a region that is on the

order of the plastic zone size plus one-half the plate thickness.

In comparing the stresses and strains from the cases with and without tunnel-
ing, it appears that a fracture criterion must include the effects of both the plastic
strain and the hydrostatic stress, such as the Gurson model used by Narasimhan,
Rosakis and Moran [52]. { However, a simpler model might be possible, one that

would predict material failure when some function of the current stress and strain

1 The Gurson model of [52] encountered convergence difficulties as element failure initiated.
If the convergence difficulty was simply a matter of waiting for more iterations, it might be
interesting to try to run the Gurson model again on the faster Cray Y-MP machine at the San

Diego Supercomputer Center.
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reaches a limit, similar to the yield surface employed in continuum plasticity. It
is interesting to note that although the HRR field does not model the deformation
well, the J normalization used for the HRR field by Shih [77] does seem to collapse
the data reasonably well in the region close to the notch tip, and it appears that

using the local J value would further improve the match. Thus a fracture criterion

based on J would still be useful.

One of the biggest difficulties with both the interferometric experimental tech-
nique and the finite—element model is that they result in extremely large amounts of
raw data. A better theoretical framework is still needed to reduce the data sensibly.
It would be possible to fit the data to some function using some large number of

parameters, but the choice of the form of that function should have some basis in

the physics of the problem.

In order to make use of the information available from the interior of the
numerical model, and assuming that the displacements have compared well with
the experiment on the exterior, the solution must be unique. This is a nonstandard
uniqueness problem, as both the tractions (=0) and the displacements are specified
on the same region of the boundary. Such a uniquness theorem is available for linear

elasticity [35]; an extension to a case involving plasticity is necessary.

As computers become faster, it will be possible to perform detailed finite-
element calculations (inc.l{lding finite strains and automatic remeshing) of just about
any problem, effectively eliminating the need to make experimental models. How-
ever, the accuracy of such calculations will depend on the accuracy of the consti-
tutive model input to the code, which will still require experimental measurement.
Thus, it seems that the best use of the experimental methods would be in sim-
pler tests that concentrate on the constitutive behavior of materials, such as the
uniaxial test (and such effects as Luder’s bands). The fracture specimen has some
interesting attributes in this sense, as it produces high stresses in a localized area
with relatively small forces, and the initial stages of fracture are stable, but the

complicated stress and strain fields make it difficult to glean any information about

the material constitutive behavior.
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APPENDIX A

The Three—Beam Moire Interferometer

A.1 Orthogonal Displacements with the Three—Beam

Interferometer

Initially, the moire interferometer intended for use in this study was designed to
use three laser beams to measure orthogonal in-plane displacements instead of four
laser beams. This type of interferometer is described by McDonach, McKelvie and
Walker [44]. The configuration of optical components to make such measurements is
shown in Figure 182 and can be compared with the configuration of the four—-beam
interferometer in Figure 183. Ultimately, the drawbacks of the three—beam interfer-
ometer were found to outweigh its advantages over the four-beam interferometer,

and it was replaced by the four—beam interferometer.

The three-beam interferometer has several advantages over the four-beam in-
terferometer; it uses two fewer mirrors and only one laser source. However, there are
problems due to unequal beam intensity and polarization mismatch, and there is
considerably less light as the single laser beam must be divided twice, necessitating
longer exposure times and making vibrations more of a problem. Figure 184 shows
the three-beam interferometer with the addition of the beam expander to produce

collimated beams of 50 mm diameter.

The three—beam interferometer uses two crossed gratings at +45° to the glob-
ally fixed X; and X5 axes to measure components of displacement along those axes.
As in the four-beam interferometer, the three incoming laser beams are aligned so
that the first diffraction order exits along the normal to the specimen surface (the
X3 axis). Interference between any pair of diffracted laser beams will produce fringe

patterns which are related to the deformation of the grating.



-384-

FIGURE 182. Diagram of the three-beam interferometer configuration to measure
both horizontal and vertical displacement components. Beams from
mirrors B and C yield the horizontal component, and beams from
mirrors C and D yield the vertical.

Referring to Figure 182, interference between the beams from mirrors B and
C produces a fringe pattern of contours of horizontal displacement; interference
between the beams from mirrors C and D produces a fringe pattern of contours of
vertical displacement; and interference between the beams from mirrors B and D

produces a fringe pattern of contours of displacement parallel to the line between

mirrors B and D.

Analysis of the governing equations of fringe formation for the three-beam in-
terferometer will follow the lines of the derivation for the four-beam interferometer.
However, only the case of planar deformations will be analyzed. The effects of ro-
tations about axes in the plane can be determined in a manner analogous to that
in Section 2.3, which describes the fringes found using a four-beam interferometer

with arbitrary changes in the grating orientation.
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BEAM
MIRROR SPLITTERS

BEAM EXPANDER

LASER

BEAM EXPANDER

LASER

FIGURE 183. Diagram of the four-beam interferometer configuration to measure
both horizontal and vertical displacement components.

BEAM
SPLITTERS

FIGURE 184. Diagram of the three-beam interferometer configuration to measure
both horizontal and vertical displacement components, including com-

ponents to expand the beam.



-386-
A.1.1 Geometry Describing the Crossed Gratings

The interference patterns observed will come from two light beams, each dif-
fracted from one of the crossed gratings. The mean grating surface coincides with
the X; — X, plane in a globally fixed coordinate frame. Initially, the gratings have
identical wavelengths of wy and are perpendicular to each other, but at angles of

+45° to the X, axis.

Let E;, E; and E3 be unit vectors aligned with the X;, X, and X; axes,
respectively. Let the unit normal to the ridges of grating #1 be n;, and let t; be a
unit vector parallel to the ridges of grating #1 such that n;, t; and E; form a right—
handed orthogonal coordinate system. Further, let the unit normal to the ridges of
grating #2 be ny, and let t; be a unit vector parallel to the ridges of grating #2
such that ny, t; and E3 form another right-handed coordinate system. Initially, n;
is at an angle of § radian to the X; axis, and n; is at an angle of ?’-43 radian to the
X1 axis. The gratings are allowed to deform independently in the sense that the
deformed wavelength and orientation of each grating may be specified separately.
If the deformation field is known, the parameters describing the two gratings will
be related to that field. Grating #1 stretches or contracts to a new wavelength wy,
and the grating lines are rotated so that the normal n; is at an angle of (¥ + ;)
radian to the X; axis. Grating #2 stretches or contracts to a new wavelength w,,
and these grating lines rotate so that the normal n, is at an angle of (3 + Bo)
radian to the X; axis. See Figures 185 and 186. Figure 185 shows the overlap of the

crossed gratings, and Figure 186 shows the geometry of the two gratings separately.
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FIGURE 185. Diagram of the crossed lines of a grating used in the three-beam
interferometer. Vector n; is normal to ridges of grating #1, which are
spaced w; apart. Vector n; is normal to ridges of grating #2, which
are spaced wy apart. Unit vectors E; and E, lie along the globally
fixed coordinate axes.
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n,
w?.
t2

/ t,
FIGURE 186. Diagram showing the geometry of gratings #1 and #2 separately.
Grating #1 has wavelength w;. Unit vector n; is normal to the ridges
of grating #1, and unit vector t; is parallel to the ridges of grating
#1. The angle between the globally fixed unit vector E; and the unit
vector ny is § + B;. Grating #2 has wavelength w,. Unit vector nj is
normal to the ridges of grating #2, and unit vector t, is parallel to

the ridges of grating #2. The angle between the globally fixed unit
vector E; and the unit vector n, is %—’5 + Bs.
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A.1.2 Equations of Diffraction

To calculate the direction of propagation of diffracted plane waves of any diffrac-
tion order from incident, plane light waves that are directed at the grating from an
arbitrary angle, the unit normal to the incoming light waves must be resolved into
components with respect to the coordinate frame defined by the ridges of the grat-
ing. For instance, if the unit vector j represents the normal of the incident plane
waves and the unit vector u(® represents the normal to the diffracted plane waves

of order n, then the equations relating the components of j to the components of

u(™ are:

(m) _ "X L
Uy | = ——

! w 7 (A.1.1)
U§”) =J2

where j; and ugn), are the components of j and u(® that lie in the grating plane
(n)
2

and are normal to the ridges of the grating, and j, and u, ’, are the components of
j and u(™ that lie in the grating plane and are parallel to the ridges of the grating.

The diffraction order is n, and the light has wavelength A.

The component of the unit vector u(™ that is normal to the grating plane,
namely, ugn), is nonnegative, and since u(® is a unit vector, equations (A.1.1)
uniquely determine u(® from any given j. Since the waves defined by j are directed

toward the grating, the component 73 is negative.

Let the diffracted light waves of order -1 from grating #1 be represented by
the unit normal u, and let the diffracted light waves of order -1 from grating #2
be represented by unit normal v. Let u have components uy, up and Us in the
nyt; E3 coordinate system and components Uy, U and U3 in the E{E2E; coordinate
system. Let v have components vy, v and V3 in the nyt, E3 coordinate system and

components Vi, V5 and V3 in the E; E;E; coordinate system.

The fixed, unit normal vector representing the incident light ray to grating #1

is denoted j, and it has components J; (z = 1,2, 3) in the E;E;E; coordinate system
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given by
. T
Ji1 = sina cos 1

Jy = sinasin% (A.1.2)
J3 = —cosa

In the coordinate frame defined by the deformed grating #1, the n;t; E3 coordinate

system, which is at an angle of § to the fixed coordinate system, the vector j has
components j;, jo and J3 given by
J1 = sina cos f;
jo = —sinasin B (A.1.3)
J3 = —cosa

The vector u is the unit normal to the diffracted waves of order -1 from grating #1.

From equations (A.1.1), the components of u in the grating frame are

u; = — +sina cos By
w,

ug = —sinasin B

Us = [1—(u1)? = (u2)?]?

(A.1.4)

In the globally fixed coordinate frame, the components of u are found as

U, = —\}5 [:&J)\l—(cos B1 —sin f1) + sin oz]
U; = ?/1—5 [—E—D/:—(cos B1 + sin fB1) + sin a] (A.1.5)
Us = [1- (1) - ()]

Similarly, the fixed, unit normal vector representing the incident light ray to
grating #2 is denoted k, and it has components I; (: = 1,2,3) in the E;E;E;

coordinate system given by
3r

I{; = sina cos e

37 (A.1.6)

Ly =sinasin vE

K3 = —~cosa
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In the coordinate frame defined by the deformed grating #2, the n,tyE3 coordinate
system, which is at an angle of -327-5 to the fixed system, the vector k has components
k1, k2 and K3 given by

k1 = sin a cos B,

ky = —sinasin B2 (A.1.7)

K3 = —cosa

The vector v is the unit normal to the diffracted waves of order -1 from grating #2.
From equations (A.1.1), the components of v in the grating frame are
v = — + sin « cos f,

w2

(A.1.8)

vy = — sin asin fF,

Vs = [1—(v1)? = (v)?]?

In the globally fixed coordinate frame, the components of v are found as

Vi= % [%(00552 + sin fy) — sina]
V2 = % [%(COS B2 — sin ff3) + sin a} (A4.1.9)

1
2

Vs =[1—-(Vi)? — (Va)?]

A.1.3 [Initial Alignment of the Laser Beams

Initially, i.e., before any deformation occurs, the incoming laser beams must
be aligned so that the diffracted beams are parallel to the X3 axis. The initial
conditions are that f; = 82 = 0, w; = wy = wy and u; = us = v; = vz = 0. This
leads to the conclusion that

sina = — (A.1.10)

This relation does not change during the deformation.



-392-

Making the substitution from equation (A.1.10) into equations (A.1.5) and
(A.1.9) yields

1L [=A : A
0 = g |y ot i) +
Uy = -\-/1—2 [-if\l—(cos By +sinfy) + inJ (4.1.11)
Us = [1— (U1) — (U2)?]*

1 [ A . A

— A

Vo = % [?/:-(cos B2 —sinf) + w—o] (A-1.12)
Vs =[1- (V) - ()]

A.1.4 Observed Fringe Spacing and Inclination

As described in Section 2.3, the observed fringe spacing, é*, and the angle

between the fringes and the X, axis, ¢*, are determined from the vector difference

z = u — v. These relations are found to be

A
5 — 2.3.38
o2~ (a Ea)l} (2:3:33)
E
tan ¢* = zEf (2.3.39)

These equations indicate that only the components Z; and Z, in the globally fixed
E;E;E; coordinate system are needed to find the apparent fringe spacing and

inclination. In this case, §* and ¢* are found from

A
[(Z1)? +(22)?]

§* = (A.1.13)

1
2

tan ¢* = Z (A.1.14)
4
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From equations (A.1.11) and (A.1.12) the components Z; and Z, are found as

Zy =U; - W
1 [=X ) A . A
= E w—l(cos B —sinfy) — ;v—-z-(cosﬂz +sinfy) + 2-w—0
(A.1.15)
Zy=Us— Vo
1 [—

7% w—)l‘(COS,Bl +sin fB1) + %(cosﬂg — sin f3)

A.1.5 The Third Grating

It is proposed that the interference pattern produced by the light diffracted
from gratings #1 and #2, originally with lines at +45° to the X; axis as described
above, is equivalent to an interference pattern that is due to the deformation of a
third grating (grating #3), which originally had lines parallel to the X, axis. From
Figure 187, it can be seen that the peaks and valleys of a pair of crossed gratings
at +45° to the X; axis with wavelength we make peaks and valleys for a grating at

90° to the X, axis with a wavelength of wo/\/§.

As seen in Figure 188, and from Durelli and Parks [17], or Theocaris [85], it
can be shown that after deformation, grating #3 will have a wavelength w that is
related to the wavelengths of the deformed gratings #1 and #2 (originally at 445°)
by the equation:

wiwo
W= ——— . (A.1.16)
[wi + w3 — 2wyw2 cos 8]2

where w; is the wavelength of grating #1, w, is the wavelength of grating #2, and
¢ is the angle between the ridges of grating #1 and the ridges of grating #2. The
angle between the ridges of grating #1 and the ridges of grating #3 is denoted
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/1

FIGURE 187. The third grating before deformation. The ridges and valleys of grat-
ings that cross at £45° to the X; axis and that have identical wave-
lengths of wo form a third grating that has a wavelength of wq/v/2.

¥, and the trigonometric functions of sinvy and cosi are related to the variables

associated with gratings #1 and #2 by the equations:

sing = wq sin @ _ (wsmG) (A.1.17)

I
[w? + w? — 2wy w; cos 6]2 wo

cost = T =
2

Wy wy

(A.1.18)

wy cos § — wy (wcosG w)

[w? + w2 — 2wy w, cos b)]

The angle 8 can be calculated from the angles 8; and ;. The ridges of grating #1
lie at an angle of (¥ + 1) radian to the X axis, and the ridges of grating #2 lie

at an angle of (2F + f,) radian to the X, axis. The angle § is then found as

0 = (%lz +52> - (%-1-51)

= (g + B2 — 51) (A.1.19)
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FIGURE 188. The geometry of the third grating after deformation. Grating #1 has
wavelength w;, grating #2 has wavelength w,, and the angle between
the ridges of grating #1 and grating #2 is 6. The third grating has
wavelength w, and the angle between the ridges of grating #1 and

grating #3 is 1.

A.l.6 Equatioﬁs Describing the Fringes in Terms of the Third Grating

In order to show the correspondence between the equations describing the
fringes observed with the three-beam interferometer and the equations describ-
ing the fringes observed using geometric moire methods, it is necessary to write the
equations for the fringe spacing ¢* and the fringe inclination ¢*, equations (A.1.13)
and (A.1.14), in terms of variables associated with grating #3. These variables are
the initial wavelength of grating #3, W, the deformed wavelength of grating #3,
w, and the angle 3, which is the angle between the ridges of grating #3 and the X,

axis.

The initial wavelength of grating #3, the wavelength of the grating before any
deformation occurs, is denoted wy. The value of Wy can be related to the initial
conditions of gratings #1 and #2. From the geometry shown in Figure 187, or

from equation (A.1.16) using the initial conditions of gratings #1 and #2, that
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w1 = wy = wo and 8 = 7, the initial wavelength for grating #3 is found as

To = — (A.1.20)

Wo =
T V2

The angle B, which is the angle between the ridges of the third grating and the X,
axis, is found from the angle 1) between the ridges of grating #1 and the ridges of
grating #3 and the angle 8; between the ridges of grating #1 and the X, axis as

p=v-1-(3-#) —v+m-TF (4121)

From the geometry relating the three gratings, it can then be found that

cosfB = % (z—:u—l-(cos B —sinfy) + %(cos [ + sin ,82))

(A.1.22)
sinﬂz%

The equations for the fringe spacing 6* and inclination ¢*, equations (A.1.13)

(;—Z—(cos B1 +sinfy) — %(COS B2 — sin ,32))

and (A.1.14), can now be rewritten in terms of variables associated with grating

#3: w, wy and . Comparing equations (A.1.15) with equations (A.1.22), it is found

that
A A
Zi= U,—-W; =— ——cosf (A.1.23)
wWo w
Zz = U2 — ‘/2 = -TD—- smﬂ (A124)
Therefore,
A2 A2 A?
I3+ 7] =5+ — - 2~ cos 3 (A.1.25)
wy  w w1y

Finally, the equations for the observed fringe spacing 6* and the fringe inclina-

tion ¢* are found as

PR = Wi (A.1.26)
(22 + Z2)3 [w? + @2 — 2wy cos B o

Zy 17)0 sin ﬂ
t * = — = = .4..1.2’—
an ¢ 7, Tocos B —w ( 7)
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A.1.7 Discussion

Equations (A.1.26) and (A.1.27) are exactly the equations for the fringes to
represent contours of constant displacement. The measured displacement 1is parallel
to the X axis with an increment of displacement between fringes of Wy, as shown in
Durelli and Parks [17] or Theocaris [85]. The equations are identical to the equations
for the four-beam interferometer under planar deformation except for a multiplying
factor of 2 in the fringe spacing §*. This factor can be thought of as being due to
the spacing of the virtual reference grating formed by the interference between
the two incoming laser beams, as discussed in Section 2.2. With the four-beam
interferometer, the incoming laser beams intersect at an angle of 2a, creating an
interference pattern spaced at wy/2, which is half the initial wavelength of the
grating used of measurement. In the three-beam interferometer, the incoming laser
beams intersect at an angle such that the interference pattern is spaced at wg, which
is exactly the same as the initial wavelength of the grating being measured. Fringe

multiplication is described in Section 2.2, and more detail can be found in the paper

by Post [59].

Though the three-beam interferometer will measure the same quantities as the
four-beam interferometer, the disadvantages of the three—-beam interferometer as
shown in Figure 182 outweigh its advantages compared to the four-beam interfer-
ometer shown in Figure 183. In order to produce fringe patterns of high contrast, one
requirement is that the laser beams follow paths of similar length to maintain the
coherence between the two interfering light wave fronts. Both the three-beam and
four-beam interferometers meet this requirement. However, high—contrast fringe
patterns also require that the two interfering beams have similar amplitudes and
are polarized similarly. Here the three-beam interferometer falls short (at least in
the configuration shown in the figure). At the first beam splitter in the path of the
laser, the light is divided approximately in half, with half of the light going to one
of the mirrors and then to the specimen, and half of the light going to the next
beam splitter. At the second beam splitter, the remaining light is again divided ap-
proximately in half, with each beam passing to a mirror and then to the specimen.

Thus, one of the beams is approximately half of the strength of the original laser
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beam, while two of the beams are one quarter of the strength of the original laser
beam. In order to match the amplitude of the beams, an additional beam splitter
would have to be inserted into the path of the beam that encounters only one beam
splitter. (Or the mirror directing the beam to the specimen could be replaced with a
half-reflecting mirror.) The intensity of each of the beams would then be one quar-
ter the original laser beam, in contrast to the four-beam interferometer, where each
of the beams is one-half the intensity of the original laser beam. The lower light
levels in the three-beam case would lead to longer exposure times for the fringe
recording system, which makes the experiment more sensitive to vibrations. Also,
if an additional beam splitter is used, it reduces the cost and material advantage of

the three-beam interferometer over the four—-beam interferometer.

The polarization of the diffracted beams must also be similar for the interference
patterns to have high contrast. The three-beam interferometer does not match the
polarization of the interfering laser beams as well as the four-beam interferometer.
The polarization mismatch can be improved with a rotating polarizing filter on the
recording camera, which forces the diffracted beams to be similarly polarized, and
can be adjusted to find the best polarization angle at which this occurs. However, the
addition of a polarizing filter also reduces the available light, increasing exposure
time and the sensitivity to vibrations. The polarization mismatch might also be

improved by a rotation of the laser mounting about the axis along the laser beam.

Another difficulty with the three-beam interferometer when compared with
the four-beam interferometer is that it will lose information at lower displacement
gradient levels. For the same fringe spacing, the diffracted light deviates from the
normal to the specimen surface at a larger angle for the three-beam interferometer
than for the four-beam interferometer. This is because the three—beam interferome-
ter uses light diffracted from two different gratings to infer displacement information
about a third grating. Stretching of the two diffracting gratings can occur with only
part of the resulting angular deflection of the diffracted light being related to the

stretch of the third grating.
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APPENDIX B

Elliptical Polarization

B.1 The Interference of Elliptically Polarized Plane
Harmonic Monochromatic Light Waves

In Section 2.3.1, it was assumed that the interfering light waves are linearly
polarized. Linear polarization is a special case of the more general state of ellip-
tic polarization. For elliptically polarized waves, the electric—field vector may be
thought of as rotating as it passes through space, its tip tracing an ellipse when
viewed along the direction of propagation of the plane waves. In linearly polarized
light, the electricfield vector always remains in a plane, and its tip draws a line
when viewed along the direction of propagation of the plane waves. Linear polar-
ization occurs when the ellipse collapses to a straight line. (Circular polarization is,

of course, also a special case of elliptical polarization.)

If the interfering waves are assumed to be elliptically polarized, the result of
Section 2.3.3 is still found to hold, but the contrast of the fringes may be reduced
if the polarization of the two sets of waves is out of phase. The spatial coherence
of the waves is still assumed to hold, so that the polarization of one set of waves

1s the same across the wave front, and the waves are still assumed to be strictly
monochromatic.

Returning to the electric—field vector of equation (2.3.26), which describes har-
monic plane waves traveling in the direction of unit vector u, the electric field is

given by

o
£W = Re{ AW exp [%(r ‘u—ct)+ ié(“):l } (2.3.26)
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where the vector amplitude A®™ is a complex vector. The effect of elliptical polar-
ization is more easily seen if the electric-field vector is resolved into components
with respect to some basis. If we choose u to be one of the basis vectors with Séu)
to be the component along u, then Eéu) = 0 for plane waves, since the electric—
field vector is always orthogonal to the direction of propagation. The remaining two

components, Sl(u) and Sz(u), can be written as

El(u) = Re{Agu) exp [-Z%\Zr-(r -u—ct)+ i¢(“)J }

= Rgu) Re{exp [QTW(r u— Ct) + Z'¢(u) + i¢§u)] }

Y (B.1.1)
Séu) = Re{Agu) exp [%(r ‘u—ct)+ i(,‘b(“)] }
u 2 . . (u
= R§ ) Re{exp [E—)\E(r cu—ct) +i¢™ + zz/)g )} }
where the complex numbers Agu) and Agu) have been replaced using
A® = BRM™ exp(ip(™), k=1,2 (B.1.2)

with Riu) and z/),(cu) real-valued constants. It is seen from equation (B.1.1) that
elliptical polarization causes the two components of £ to have a phase differ-
ence between them given by déu) - 1,/)§u). This phase difference will have an effect
on the interference between the plane waves described in equation (2.3.15). The
electricfield vector for the plane waves traveling in the direction of unit vector v

are described as in equation (B.1.1) by

427

A

eV = pV Re{exp (r-v—ct)+i¢p™ + iyl }

(B.1.3)

[32 v ]
52(") = Rgv) Re{exp —Z—/—\z(r v —ct) +ig™) + Z¢§ : }
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Since we are interested in the inner product between vectors, and since 5§u) =0,
we can neglect €§V), although since u and v are not in general coincident, Eév) will
not necessarily be zero in this coordinate frame. It would be zero in a coordinate

frame where 53(V) is the component along v.

The intensity distribution can be determined using equation (2.3.9), so that

QI(total) — IA(u),2 + 'A(V)|2

+ 2R{" R{" cos [9T (r-(u=v)) + (6™ = ¢) + (" - 5”))}
+ 2R oo | (- (u =) + (600 = 69) + (94— )]

(B.1.4)
Again, the first two terms in equation (B.1.4) represent the intensities of each set of
plane waves individually, and the third and fourth terms represent the interference

terms.

It can be seen that the third term in equation (B.1.4) is out of phase with the
fourth term in equation (B.1.4) by the relative amount of Ay = (zﬁé“) — gv) ) —
( iu) — §V)). If A is zero, which may be possible if the waves originate from the
same source and then traverse similar routes to the place where they interfere, the
interference terms will reinforce each other, resulting in fringes of high contrast. On
the other hand, if At approaches 7, the interference terms will act to cancel each

other out, depending on the relative magnitude of the amplitude terms, and the

fringes will have lower contrast.

As mentioned, the laser beams used in the experiment are strongly linearly po-
larized, so the interference in the experiment is well described by equation (2.3.15).
However, linear polarization is a special case that may not always hold. Should
the light be elliptically polarized, or should the light be linearly polarized with the
electric—field vectors in dissimilar directions, the fringe contrast can be improved by
the addition of a polarizing filter, which forces the light to be linearly polarized so

that the electricfield vectors point in a single direction.

The most important point brought out by equation (B.1.4) is that the fringes,

the loci of constant phase difference between the plane waves, will still be planes
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perpendicular to the vector difference z = u — v, and they will still have a spacing

6 given by é = \/|z|, regardless of the state of the polarization of the laser beams.



