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ABSTRACT

The mobility, charging, coagulation and mass-transfer properties of aerosol
agglomerates were related to the particle and the background gas mean free path A. The
mobility-equivalent diameter dp, of a self-similar cluster of spheres in the continuum
regime (A<<dp) was calculated to be proportional to the radius of gyration Rg of the cluster
for fractal dimension Df>1.3. Slender-body behavior is approached for D¢ <1.3. In the
free-molecule regime (dm<<\), dn is nearly equal to the projected-area diameter da. In
the transition regime (dm~A), dm depends on both da and Rg. In general, there is a
divergence of da and Ry as the agglomerate size increases, but it is véry gradual for typical
aerosol agglomerates, for which dpy ~da “in the transition regime.

The mass transfer of nanometer-sized 211Pb clusters to TiO; agglomerates was
investigated with an Epiphaniometer. The measured mass-transfer-equivalent diameters of
the agglomerates were within 10% of dp. The lead cluster mean free path was nearly the
same as A. For an analogous phenomenon, the bipolar diffusion charging of agglomerates,
it was found that the charging-equivalent diameter of the agglomerates was ~ 10% larger
than dp,.

These measurements were incorporated into a model describing the coagulation of
agglomerates in the transition regime. Particles smaller than the primary particle diameter
dy were assumed to coalesce rapidly, while large particles were assumed to be solid with a
fractal structure. In the transition regime, the agglomerate mean free paths are much
smaller than di, even when dpy<A. This leads to distinctly different dynamic behavior than
predicted by previous models developed for the continuum or free-molecule regimes. The
enhancement of coagulation over that of dense spheres is large for aerosols with median
diameters slightly greater than dj but smaller for aerosols consisting of much larger

particles.
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CHAPTER 1
INTRODUCTION

Suspensions of fine particles in a gas, or aerosols, are produced by natural and
artificial phenomena. Many of the particles are formed from liquids, and therefore are
spherical. Common examples include cloud droplets, sea spray, cigarette tar particles and
other aerosols formed from organic liquids. An equally important class of aerosols is
formed from solid materials such as soot, metal oxides and metals. Such particles are often
irregular agglomerates of uniformly sized primary spheres. The irregular structure
considerably complicates the prediction of the dynamic behavior of the aerosol because no
rigorous treatment of non-spherical particles has been developed. The problem is twofold.
Given a precise description of the particle shape, one must solve the relevant governing
equations with complicated boundary conditions. Even if this can be done, there is the
additional problem of characterizing the shape of real aerosol particles correctly and
adequately. These problems are closely related since aerosol measurements and shape
characterizations are often based on the measurement of dynamic properties; the nature of
the aerosol is inferred from the data, using the appropriate theory.

A realistic model of the particle geometry is essential to the study of non-spherical
particles. A balance between simplicity and accuracy is necessary. For example, a particle
might be characterized by the diameter of a sphere having the same volume. Such a
geometric model does not allow the prediction of the projected area of the particle, which is
more relevant to transport properties such as the aerodynamic drag. Another approach,
well developed in the literature, is to characterize the aerosol by a "dynamic shape factor",
which is the ratio of the drag forces acting on the particle and a sphere of the same volume.
Neither of these characterizations is based on any insight into the particle formation
process. Recent computer simulations of particle aggregation have indicated that fractal
models may be useful in characterizing agglomerate structure, but it can be difficult to relate

these simulations to real aerosol systems.



The objective of this study is to develop a more complete structural model that can
not only be used to predict ‘the relevant aerosol properties, but can also be related to aerosol
formation mechanisms. Chapter 2 discusses the agglomerate aerosol formation process.
The use of fractal models to characterize these agglomerates, the justification of such
models and their relation to measurements of real aerosols are discussed in Chapter 3.

Having developed reasonable models of the particle structure, it is possible to make
verifiable predictions of the aerosol properties. The aerodynamic drag, charging behavior,
mass transfer and coagulation kinetics (i.e., particle growth by agglomeration) are among
the most important phenomena related to aerosols, as they directly affect the measurement
of aerosols and the evolution of aerosols in ambient and industrial environments.

An understanding of the relation between particle structure and aerodynamic drag is
necessary before making measurements of particle coagulation kinetics, since the
interpretation of coagulation data inevitably requires a knowledge of the drag-structure
relation. The drag on a particle generally depends on its velocity, shape and the properties
of the background gas. The particles of interest here are sufficiently small and move
slowly enough that fluid inertia and compressibility may be neglected. In this case, the
fluid dynamics are governed by creeping flow, so the drag force is proportional to the
particle speed. The particles of interest may be much larger than the gas mean free path so
the Stokes flow or continuum creeping flow equations may be used to predict the
aerodynamic drag. The Stokes flow problem is discussed in Chapter 4. In most practical
situations, the agglomerate particles are comparable in size to the gas mean free path, so the
gas cannot be treated as a continuum. This transition regime flow is considerably more
complicated than Stokes flow and rigorous solutions are unavailable even for spheres.
Chapter 5 describes experiments conducted to measure the effect of particle structure on
the drag in the transition regime .

Measurements of the attachment rate of ultrafine lead clusters to agglomerate

particles provides additional information relevant to the coagulation process. Such mass-



transfer properties of agglomerates are also relevant to the attachment of radionucleides to
ambient aerosol or the transport of gaseous species to particles. Chapter 6 discusses the
procedures and results of this study.

The attachment Qf ions to particles is closely related to the mass-transfer process.
However, the analogy between mass transfer and charging is not exact, because of
electrostatic interactions. Since the charging phenomenon is particularly relevant to the
interpretation of many aerosol measurements, the study discussed in Chapter 7 was
undertaken to characterize the charging of non-spherical particles.

The work of the above chapters investigates particle motion and the interaction of
small particles or ions with agglomerate aerosols. Many of the results of the drag and
mass-transfer studies can be extrapolated to predict the frequency of collisions between
agglomerates, i.e., the coagulation kinetics. Chapter 8 integrates the results of the earlier
chapters to obtain a model capable of predicting the evolution of an aerosol size
distribution, for particles of variable size and shape.

The present work on the effect of particle structure on aerosol dynamics may be
useful in future investigations of complex agglomerate aerosol systems where chemical

reactions, interparticle forces and particle restructuring are important.



CHAPTER 2
FORMATION OF AEROSOL AGGLOMERATES

Acrosol particles produced in many high-temperature environments are
agglomerates of 10-100 nm spherules. This structure is often attributed to particle growth
by Brownian coagulation without coalescence. Although the arrangement of the primary
particles is remarkably similar for particles generated under a wide range of conditions, the
structure of the primary particles comprising the agglomerate varies from one system to
another.

The formation of aerosol agglomerates generally starts with the creation of a
supersaturated vapor, either by chemical reaction or by rapid cooling (Figure 1). In many
systems, the particles are metal oxides or other materials with extremely low vapor
pressures. As a result, the supersaturation ratios of the condensing vapors may be so high
that the usual thermodynamic barrier to nucleation is negligible and nucleation rates may be
limited by the gas collision frequency. Nuclation on ions may be significant some high
temperature systems (Calcote and Olson, 1987; Rabeony and Mirabel, 1987).

Particles form by nucleation and grow by coagulation (collisions of particles) and
condensation (deposition of molecules on particles). Eventually, the condensing vapor is
depleted and the aerosol evolves by coagulation. In addition to these growth processes,
restructuring by sintering occurs. While coagulation produces irregular agglomerates,
condensation and sintering produce rounded particles. The ultimate structure of the particle
depends on the characteristic time scales for these three processes (Figure 2).

For aerosols evolving by coagulation, the particle concentration n(t) decays from

the initial concentration n(0) according to

% = LK@y (1)



where K(d) is the size-dependent coagulation rate coefficient (Seinfeld, 1986). For n(z)
<< n(0), neglecting the size dependence of K, (1) implies that the diameter grows as d ~
(K n(0) t ) 13 The characteristic time for a doubling of the particle diameter would
therefore scale as Teoag ~ d5.

For condensation, the particle diameter grows according to

dd
@3 = Kecond (d) no (2)

where ng is the concentration of the condensing vapor and K¢ong is a kinetic parameter
analogous to the coagulation coefficient . Using the form of Kconq appropriate for d
smaller than the gas mean free path and assuming that ng is constant, it follows from (2)
that the time for diameter-doubling scales as T¢ond ~ @ (Seinfeld, 1986). Thus, coagulation
is expected to decelerate more quickly than condensation, suggesting that condensation
would dominate particle growth after a sufficiently long time, resulting in spherical
particles. In practice, the reactions that produce condensible vapor may last for such a

short duration 7react that condensation rarely dominates the particle growth. Numerical
models of simultaneous nucleation, condensation, and coagulation show that as Treact
decreases, nucleation and coagulation become increasingly important, resulting in smaller
and more numerous particles (Girshick and Chiu, 1989; Nguyen, 1989; Wu et al., 1987).
The relative importance of condensation and coagulation also affects the particle size
-distribution. Condensation produces aerosols with a narrow size distribution while
coagulation tends to produce particle distributions with a characteristic width (Friedlander
and Wang, 1966). Distributions from coagulation are approximately log-normal with 67%
of the particle diameters between d/og and ogd, where d is the median diameter and
Oy is the geometric standard deviation which ranges from 1.4 to 1.6 (Seinfeld, 1986;
Okuyama et al., 1989; Chapter 8). Simultaneous nucleation, condensation and coagulation

can result in broad, bimodal size distributions.



Sintering can be defined as the restructuring of particles to minimize surface energy
(Herring, 1950). Material may be transferred by volume diffusion, surface migration,
viscous flow or vapor transport. The characteristic time 7Tgjper required to form a "neck"
of diameter d between two spheres (Figure 2) scales as d4 for surface diffusion, d3 for
volume diffusion, d2 for vapor transport and d for viscous flow (Herring, 1950). These
scaling laws assume that material properties are independent of particle size, which is
probably not true for the extremely small particles involved in the early stages of
agglomerate formation. For d < 10 nm, crystal defect densities may increase, resulting in
accelerated sintering (Hayashi, 1987; Horvath et al., 1987). Further complications are
introduced by trace species adsorbed onto the particle surface.

After some time Treact, nucleation and condensation cease and the particle structure
is determined by a competition between coagulation and sintering. The scaling arguments
suggest that the coagulation time increases faster than the characteristic times for sintering
by viscous flow or vapor transport. However, for many systems these two sintering
mechanisms may be neglected, SO Tginrer increases faster than @3, i.e., faster than Tcoag:
In this case, irregular agglomerates would result. Even in this case one expects sintering to
remove structural features smaller than some characteristic size determined by the material
properties, temperature and time.

The effect of temperature variations on sintering and nucleation during agglomerate
formation is important. For example, flame-generated particles are formed at high
temperatures and grow in the cooler exhaust gases. Koch and Friedlander (1990) have
developed a model to predict the primary particle size of coagulating systems with constant
cooling rates, but a simple two-step particle formation model may be nearly as accurate for
systems in which the sintering rate decreases rapidly. In the high-temperature stage,
sintering is rapid and spherical primary particles are formed. In the low-temperature stage,

the primary particles agglomerate without sintering.



It will be shown that depending on the agglomerate formation conditions, sintering
and aerosol dynamics influence the particle structure. Conversely, consideration of the

structure may yield important information on the origins of the aerosol.

MINERAL AGGLOMERATES

Flame-Generated Particles

Ultrafine particles from a wide range of materials can be generated in flames (Juillet
et al., 1973; Nielson et al., 1961). Kasper et al., (1980) produced magnetic iron oxide (a-
Fe2O3 hematite) aerosols by decomf)osing iron penta carbonyl Fe(CO)s in an O - CO
flame. The resulting agglomerates are nearly straight chains (Figure 3), indicating that
coagulation of the primary particles occurred at temperatures below 680°C, where hematite
is strongly magnetic (Fuchs, 1964). There are no visible necks joining the primary
particles, further evidence that there was very little sintering or condensation occurring
during the chain formation. The primary particle size distribution was affected by changing
the concentration of the atomized solution and the flame characteristics (Table I).
Increasing the oxygen concentration (i.e., increasing the temperature and decreasing the
flam¢ residence time) resulted in smaller, more polydisperse primary particles. Increasing
the mass concentration by a factor of 3 increased the primary particle volume by a similar
factor. Similar variations in primary particle size were obtained in the synthesis of Al2O3
by flame pyrolysis (Sokolowski et al., 1977). These results suggest that aerosol dynamics
control the primary particle size. If sintering rates controlled the primary particle size, one

would expect to see larger particles at higher temperatures.



Table I. Hematite Agglomerate Generation from [Fe(CO)s ] flame decomposition (Kasper
et al., 1980).

[Fe(CO)s ] Temperature di Og Comments

%0 range °C nm

2 450-1050 75 1.3 laminar CO air

2 ~ 1300 20- 30 1.7 turbulent O2:CO ratio ~3
2 ~ 1200 45-60 ~1.5 02:CO ratio ~1

1 ~ 1200 40-50 ~1.5 09:CO ratio ~1

0.7 ~ 1200 3545 ~1.5 0:CO ratio ~1

A persistent environmental problem associated with coal combustion is the
generation of submicron coal ash (Saxena et al., 1985; Markowski et al, 1980) by the
vaporization and nucleation of coal-borne mineral matter (Sarofim et al., 1977; Flagan,
1979). The process is extremely complex, probably involving reduction and oxidation
reactions in addition to physical vaporization. Heating and cooling may occur extremely
rapidly in the vicinity of a burning coal particle (Senior and Flagan, 1982). The sintering
behavior is complicated by the fluxing effect of certain minerals on the largely silicate
ashes.

In order to understand the factors affecting primary particle size, Helble and
Sarofim (1989) measured the primary particle sizes in agglomerates produced by the
combustion of real and synthetic coal chars. The background gas temperature during
combustion was varied from 1500 K to 1750 K, while the char combustion temperature
was controlled by varying the oxygen concentration. Larger primary particles were
produced at higher temperatures, partly because of increased vaporization of mineral
matter. After correcting for the variations in the amount of material vaporized, there
remained a correlation between the primary particle size and predicted sintering rates. For
this reason, Helble and Sarofim concluded that sintering rates control the primary particle
size. Examination of published micrographs of FepO3 agglomerates lead to other

interpretations. The micrographs show agglomerates with distinct primary particles



(similar to those in Figure 3, although lessvstraight) with almost no visible "necking"
between the particles in the agglomerates. The two-stage agglomerate formation mechanism
discussed above may apply to this system since the char combustion occurs for a very short
time compared to the time available for coagulation. The geometric standard deviation of

the primary particles was approximately og =2.0, suggesting that nucleation occurred for a

substantial fraction of the primary particle formation period.

Laser and Electrical-Arc Particle Generation

Agglomerates may be produced by the rapid vaporization of materials by high
electrical currents. While arc welding fumes are a health concern (Kalliomaki et al., 1987),
ultrafine particles produced in electric-arc furnaces may be useful as engineering materials
(Kuhn et al., 1961). In such systems, m<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>