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Abstract

In this thesis, we discuss the application of multirate signal processing concepts
to adaptive filtering to achieve low computational complexity and speed. To be able
to analyze systems involving multirate building blocks, we have studied effects of
multirate filters on the statistics of random inputs. As an example of the multirate
adaptive filtering concepts, we study the problem of adaptive identification of an
unknown bandlimited channel. We show that the bandlimited property can be very
efficiently exploited to reduce both the speed and number of computations. The
new method embeds an adaptive filter into multirate filters to reduce complexity

and speed of computation.

We have applied the theoretical results obtained for the effects of multirate
building blocks on stationary inputs to the adaptive identification scheme above and
shown that the optimal filter is a matrix filter. We have shown through simulations
that for a practical setup, a scalar adaptive filter performs almost as well if the

fixed filters in the scheme are designed to have good stopband attenuation.

In a practical implementation of adaptive algorithms, computational noise
is of concern. Most of the current analysis focuses on deriving the worst case
upper bound on the roundoff errors. We analyze some basic signal processing
steps by introducing a statistical flavor to it. This analysis answers questions such
as “what is a typical value of the roundoff error?” In particular, for the case of
dot product computation, we obtain expressions for the roundoff noise variance
for the floating point case, and compare the results with the fixed point noise

roundoff noise analysis. We also perform error variance analysis of Givens rotation



v
and Householder transformation. These two algorithms are used in the upper
triangularization of matrices. We have compared the results obtained for these
cases and shown that error variance for the Householder case is lower, meaning
that the Householder transformation adds lower roundoff error “on an average”.

We also address the problem of bandlimited extrapolation of discrete-time sig-
nals. We have explained why the term “best solution” does not have a unique
answer. Several new techniques for bandlimited extrapolation of discrete-time seg-
ments are explored. These methods apply to a wide range of situations (including
multiple-burst interpolation of multiband signals). A closed form expression for the
optimal solution (for a given value of the energy of extrapolated sequence) has been
obtained and evaluated for various values of the final energy. The various methods
are compared on the basis of out-of-band energy of the extrapolated signal, total
energy of the extrapolated signal (in relation to that of the given segment), and

numerical robustness.
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Chapter 1
Introduction

Adaptive filtering is a branch of signal processing which deals with the design and
implementation of filters and algorithms which “learn” about the problem at hand
as new data comes in. It is suitable for applications where very little is known
about properties of the input or where the systems involved vary with time. In a
typical adaptive filtering implementation, an error signal is computed to judge the
performance of the adaptation scheme. The filter parameters are adjusted so as to
minimize some appropriate measure of the error. In a real time signal processing
application, the adaptive computations have to be performed in the time spacing
between two consecutive input samples. For the emerging high-speed applications
such as ghost image cancellation for High Definition Television (HDTV) where the
sampling rate is about 128 MHz (Jur91), this means that the complexity of the
adaptive algorithm should be as low as possible. The research effort to meet the
high-speed requirements can be broadly classifed in two main areas:

1. Developing adaptive algorithms which are low in complexity, can be imple-
mented efficiently and are numerically robust. This involves issues such as
the number of computations that need to be performed, the speed at which
these computations are performed in relation to the speed of the input signal,
whether the algorithm can be implemented in parallel and so on.

2. Developing faster hardware and better ways of implementing the algorithms.

This includes development of signal processing integreted circuits (ICs) and



special purpose signal processing hardware.

It is however true that both of these aspects of real-time implementation go
hand in hand. In this thesis, we will deal with the first apsect: Developing algo-
rithms that are computationally efficient. We will also address the issue of roundoff
errors associated with the implementation of these algorithms. We present an adap-
tive filtering scheme which makes use of multirate filtering concepts to reduce the
computational complexity. The issues involved in the analysis of such systems for

optimal filtering solution etc. are also discussed.

Multirate signal processing has emerged as an answer to the high-speed signal
processing requirements. In this technique, signals are split into M sub-bands and
computations are performed in each sub-band at a reduced speed. Apart from the
speed reduction advantage, this technique offers benefits such as data compression,
data encryption etc. An excellent overview of multirate signal processing and re-
lated issues is presented in [Vai90]. The existing multirate signal processing theory
deals with design and implementation of filtering schemes for splitting the input in
sub-bands, processing the signals in sub-bands, reconstructing the processed sig-
nals and various issues involved with this. These multirate filters are not designed
to sense the changing input properties. Hence it is important to investigate if the
advantages of multirate filtering can be used in adaptive filtering to improve the

performance of these algorithms.

Recently, there have been efforts to incorporate adaptive filtering techniques
with multirate signal processing [Gil88], [Sat90b], [Sat91a]. While application of
such techniques to real life problems has been shown to improve performance, there
is still the need for a theoretical framework to analyze these multirate adaptive
filtering methods. In this thesis, we will address this issue. We will study the
effects of multirate building blocks on wide sense stationary (WSS) processes as

they are passed through various multirate filtering configurations. These results



3

can in turn be used to derive optimal filtering solutions for filtering setups involving
multirate building blocks.

Any algorithm implemented in practice is associated with quantization errors.
Signal processing hardware can represent all signals only with a finite bit precision.
It is therefore important to study the effect of roundoff errors on the performance
of an algorithm. Such analysis is even more crucial for adaptive filtering algorithms
because of the iterative nature of the computations. One would like to perform
such an analysis beforehand to be able to determine if the algorithm will converge
or not. In real-time applications it is important to make sure that the algorithm
does not diverge. The instability problems can gravely limit the usefulness of the
algorithms in practice. Another important aspect of the analysis is determining
the correctness of the solution. One would like to get a quantitative expression
for the effects of roundoff errors on the final solution. Researchers have performed
roundoff error analysis of various algorithms on the lines mentioned above [Gol89],
[Wil65]. Methods have been suggested to remove numerical unstabilities present
in certain algorithms like the RLS or the fast RLS algorithm [Slo88|.

Such an analysis is inadequate to answer questions about “typical” behavior
of algorithms, i.e., typical values of errors incurred. To put it in other words, one
would like to know the expected value and variance of roundoff error at a particular
stage. This gives us an idea about the energy of roundoff error generated at a
certain stage in the computations. In this thesis and in [Sat90a|, we have presented

some basic results for such an analysis of signal processing algorithms.
1.1 Introduction To Adaptive Filtering

Some signal processing applications arise in situations where very little information
about frequency characteristics or stationarity of signals is available. In such cases,

it is difficult to design filters a priori to achieve desired results. Instead, one would
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want to design filters in such a way that they adapt themselves to the changing
properties of the input signals. Systems that vary with time, or systems where very
little is known about input-output properties are a few such examples where these
adaptive filters are suitable. Consider a typical adaptive filtering setup as shown

in Fig. 1.1.

d(n) oy e

Adaptive

X(M) —= “hiier

y(n)

x(n) : input to the adaptive filter
y(n) : output of the adaptive filter
d(n) : desired signal

e(n) : error signal

Fig. 1.1 Adaptive filtering setup.

The adaptive filter is adapted so that the output y(n) to input z(n) matches the
desired signal d(n) as closely as possible. This is done by minimizing energy of the
error e(n). The adaptive filter can have one of the many possible structures, for
example an FIR transversal filter or a lattice structure etc. However one should
keep in mind that an adaptive filter is not a time-invariant system hence “the
adaptive filter is an FIR filter” means that the adaptive filter is implemented in a

non-recursive manner.

Depending upon the relation between z(n) and d(n), the adaptive filter can
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be employed to perform a variety of applications. The two most common configu-

rations used in this context are shown in Fig. 1.2 (a) and (b). In the cancellation

Unknown d(n)
system [
e(n)
x(n) Adaptive | °
Filter y(n)
(a)
x(n) y(m)
d(n) Unknown - Adaptive |
system Filter vy €
+
(b)

Fig. 1.2 Schemes for (a) adaptive cancellation
(b) adaptive equalization.

configuration, the adaptive filter is employed in parallel to an unknown channel
to match its output. This is useful in the identification of unknown systems, or

echo cancellation etc. [Hay86]. In the equalizer configuration, the adaptive filter is
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used in cascade with the unknown channel so that the output of the adaptive filter
matches the input to the unknown system. This configuration is to compensate
the unwanted distortion of a channel.

Adaptive algorithms are the exact computational steps used to update coeffi-
cients of the adaptive filter from time n to time (n + 1). These algorithms are of
two types:

(1) Stochastic algorithms: those which assume some statistical model for the input
z(n). These algorithms try to minimize the error variance E[e?(n)]. The LMS
algorithm is an example of this type of algorithm.

(2) Those algorithms where no assumptions about the input statistics are made.
These algorithms are called deterministic or least-squares-type algorithms.
The objective function E used here is a windowed (weighted) average of error
squares, given by E = Y. A"“%e?(i) where n is the current time, and ) is
the forgetting factor. The RLS algorithm belongs to this category.

Examples Of Adaptive Algorithms

We present the LMS and RLS algorithms here as they are mentioned throughout

the thesis. The exact derivation and properties of these algorithms are available

in standard adaptive filtering textbooks such as [Hay86], [Wid85], [Hon84]. The
adaptive filter is assumed to have an FIR-type structure. The filter coefficients are
represented by an N x 1 vector a(n). The vector x(n) = (z(n) z(n —1) ...z(n—

N + 1))T is the N x 1 data vector.

LMS algorithm
This algorithm uses a one-term approximation of the gradient of the objective

function with respect to a(n). The updating is performed as follows

y(n) = al(n)x (1.1a)

¢(n) = d(n) —y(n) (1.18)
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a(n + 1) = a(n) + pe(n)x(n) (1.1c)

The constant u is called the step size, and is crucial in determining the speed and
stability of the algorithm.

RLS Algorithm
We use the following steps to update a(n).

A7IP(n) x(n+1)

kn+ ) = + 1)P(n) x(n + 1) (1.2a)
e(n+1)=d(n+1)—al(n)x(n+1) (1.2b)
a(n+1)=a(n)+k(n+1)e(n+1) (1.2¢)
P(n+1) = A"'P(n) — A\"'k(n 4+ 1)x7(n + 1)P(n) (1.2d)

The vector k(n) is called Kalman vector. It can be shown that the matrix P(n)

approximates the inverse of the input data autocorrelation matrix.

Outline of Thesis

In Chapter 2, we study the problem of bandlimited extrapolation of finite
length sequences. We discuss similarities and differences between discrete-time
and continuous-time extrapolation problems. Since any extrapolation result that
we compute is finite in time, it can not be exactly bandlimited. We have dis-
cussed some methods to make the extrapolation result as bandlimited as possible.
The natural error criteria to use is the out-of-band energy of the extrapolated se-
quence. An expression for the theoretically optimal solution is derived. Results of
other extrapolation schemes are compared with the optimal solution. Extrapola-
tion methods based on FIR and IIR filtering techniques or the RLS and fast RLS
algorithms are proposed. Simulations are included for each method. All of these

methods implicitly involve the inversion of a matrix. Depending on the method,
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the size of this matrix is equal to either the length of the known signal or the length
of the unknown part. A combined interpolation/extrapolation problem where the
missing samples are interlaced with the known samples is also discussed. A method
based on the multichannel RLS algorithm is proposed for this problem. All of the
proposed methods are compared on the basis of their noise performance. The noise
performance is judged by the difference in the extrapolation result when the given

segment is perturbed with some noise.

Analysis of the effects of multirate filters on statistical inputs is performed in
Chapter 3. We review some useful basic definitions. Using these, we derive condi-
tions to maintain the WSS nature at the output of some multirate building blocks
such as an interpolator, a decimator and a time-domain modulator. Similar results
are derived subsequently for more complicated filters. As an application, we men-
tion a new multirate adaptive filtering scheme for the identification of bandlimited
channels. This scheme involves use of multirate building blocks in an adaptive fil-
tering setup. An analysis of this scheme for the Wiener filtering solution gives the
result that the optimal filter is a linear periodically time varying (LPTV) system.
This forms the topic of Chapter 4.

In Chapter 4, first we justify the importance of studying the bandlimited
channel identification problem. Some practical applications involving bandlimited
channels are explained. The new method is then derived using the fact that since
a signal bandlimited in the discrete-time domain is an oversampled signal, we can
discard some of its samples without losing any information. The Wiener filter
solution for the new method is shown to be a matrix filter in general. However,
we have shown through simulations that a scalar adaptive filter still matches the
performance of a matrix adaptive filter if the lowpass filters in the scheme have

good stopband attenutation.

The topic of floating point error variance analysis is discussed in Chapter 5.
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We present a discussion stressing the importance of such an analysis. The three
algorithms considered in this chapter are dot product computation, Givens Rota-
tion (GR), and Householder Transformation (HT). These basic algorithms are used
repetitively in a variety of more complex signal processing algorithms. Expressions
for error variance and signal-to-noise ratio (SNR) for dot product computation are
derived. After a brief discussion about ) R-factorization of matrices, error variance
analysis results for GR and HT are derived. These results are compared to show
that HT offers an 8 DB improvement in SNR. All the results derived in this chapter

are supported by simulations performed on a floating point computer.

Notations used in the Thesis

The letter € represents the frequency variable for the continuous-time case.
The units are radians/sec. The variable w is used to denote discrete-time frequency
(radians). The frequency response of a discrete-time transfer function H(z) is
expressed as H(e/*) = |H(e/*)|e?%(“), where |[H(e/*)| is the magnitude response
and ¢(w) is the phase response. In all the plots, we use the “normalized frequency”
which is f = w/2n. Unless mentioned otherwise, the impulse response coefficients
of H(z) are assumed to be real. If H(z) has real coefficients, then |H(e/¥)| is
always plotted for 0 < f < 0.5 (because the magnitude response is symmetric with

respect to w = 0).

Bold-faced letters indicate vectors and matrices (except for the letter u which
is a scalar and represents unit roundoff of a machine). Superscript T and { denote
transposition and transposed conjugation respectively. The operator E[ ] represents
the expected value operator and fI( ) represents floating point quantizer. Finally,

we list all the abbreviations used in the thesis.
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MNLS: Minimum Norm Least Squares
LMS: Least Mean Squares

RLS: Recursive Least Squares

LS: Least Squares

FIR: Finite Impulse Response

IIR: Infinite Impulse Response

o-BL: Bandlimited to the frequency o
GR: Givens Roations

HT: Householder Transformation

FRLS: Fast Recursive Least Squares
SNR: Signal-to-Noise Ratio

WSS: Wide Sense Stationary

CWSS: Cyclo Wide Sense Stationary
LTI: Linear Time Invariant

LPTYV: Linear Periodically Time Varying
ged: greatest common divisor

MPU: Multiplication Per Unit input time
APU: Additions Per Unit input time

IFIR: Interpolatd Finite Impulse Response

10
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Chapter 2

Fast Methods for Bandlimited Extrapolation of
Finite Length Sequences

An important problem in signal processing is bandlimited extrapolation, i.e.,
finding a bandlimited signal by extrapolation of a finite-length segment of the sig-
nal. This problem has been considered in the continuous-time domain [Pap75],
[Sab78], [Cad79], and in the discrete-time domain [Jai81], [Hay83], [Sul84] sepa-
rately, and has also been studied in a unified framework [San83] which deals with
four types of signals (continuous and discrete; periodic and aperiodic).

First consider the continuous-time case. Let z,(¢) be the finite duration seg-
ment to be extrapolated with support in the region 0 <t < T. We wish to obtain
a signal y,(¢) bandlimited to —o < Q < o (i.e., a 0-BL signal [Pap77]) such that
Ya(t) = z4(t) for 0 < ¢t < T. Given the segment z4(t), such an extrapolation may
or may not exist, i.e., an arbitrary z,(¢) may not be a segment of a o-BL wave-
form. For example, if z,(t) is a nonzero constant in 0 < ¢ < T, then y,(t) does
not exist. For a given z.(t), if y.(t) does exist, it is unique. Indeed if there were
two o-BL extrapolations y,,1(t) and y4,2(t) for the same z,(t), then their difference
would be a o-BL waveform which is identically zero in 0 < ¢t < T which implies
ya,l(t) = ya,Z(t)'

Several algorithms have been proposed for the construction of the extrapola-

tion y,(¢) from z4(t) when it exists. A unified derivation of many of these algo-
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rithms based on the theory of alternating projections has been given in [You78].
Moreover it is well-known [Pap75], [You78] that the extrapolation problem is ill-
conditioned in the sense that if we add a small amount of noise to the given segment
then it may not remain a bandlimited segment and the result of executing an ex-
trapolation algorithm either does not converge or gives rise to waveforms that
differ considerably from the noise-free case. Noise can also be introduced into an
algorithm due to computational roundoff, which makes the continuous-time extrap-
olation problem fairly challenging.

For the case of discrete-time signals (which is the topic of this paper) there
are some fundamental differences as compared to the continuous case. These are
particularly evident from the results reported in [Jai81], [Hay83] (and do not con-
flict the unified treatment given in [San83]). First, given any finite-length segment

z(n), 0 < n < N — 1, there always exists a 0-BL extrapolation y(n) with
y(n)=z(n), 0<n<N-1 (2.1)

Second, this extrapolation is not unique. In fact there exist an infinite number of
o-BL extrapolations for the same segment. These statements are briefly reviewed
in Sec. 2.3. One commonly used technique to obtain a unique answer would be to
impose the constraint that the extrapolation y(n) should have the smallest possible
energy. Such a unique extrapolation has been obtained in [Jai81] by formulating the
problem as a least-squares approximation problem and computing the mininum-
norm least squares (MNLS) solution by use of the Moore-Penrose Pseudo Inverse
technique [And79].

Even though the matrix involved in the above MNLS problem is nonsingular,
it is ill-conditioned particularly for large segment size N. As a result, if the given
segment is noisy, the extrapolated sequence tends to differ substantially from the

ideal MNLS solution. One obvious technique to reduce this effect is to add a
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constant to the diagonal elements of the ill-conditioned matrix. A second technique
based on singular value decomposition is proposed in [Sul84]. In this technique an
appropriate subset of singular values which are smaller than a threshold are set to
zero, and the pseudo inverse (rather than the inverse) is computed.

In order to judge the performance of a particular extrapolation algorithm, one
has to find meaningful performance measures. These measures should be weighed
against the computational complexity and other cost factors in the implementation
of the algorithm. In the continuous-time case, the difference between the original
signal y,(t) and the extrapolated version y(t) can be used to define a performance
measure (such as the mean-square error). In the discrete-time case this is not
meaningful because, for a given segment, an infinite number of “equally correct”
solutions y(n) exist. With the solution constrained to be of minimum-norm, it
is still not meaningful to compare it with the “ideal” solution because no such
solution exists. Accordingly, computational complexity and robustness appear to
be the only remaining considerations. { The tradeoff between these two is evident
by comparing the method in [Jai81] with the more robust method in [Sul84] which
involves the overhead of singular value decomposition.

It 1s a well-known fact that if a ¢-BL signal y(n) is passed through an ideal
lowpass filter with impulse response sin(on)/mn then the output is equal to y(n)
(i-e., y(n) is an eigenfunction of the system with unit eigenvalue). This is the key
observation which leads to equation (39) in [Jai81]. In Sec. II of this report we shall
take a different approach to discrete-time o-BL extrapolation. This is based on two

modifications of [Jai81]. First, we replace the ideal lowpass filter with a practical

I It is possible to find an extrapolation y(n) such that its distance from another
possible extrapolation y;(n) normalized by the norm of y;(n) (and maximized over
all possible extrapolations yi(n)) is minimized, as elaborated in [Kol78]. We shall

not pursue this here.
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filter. This filter can be FIR or IIR as the application demands. We obtain the
extrapolation y(n) as the output of such a filter in response to a finite length input.
Both the input and the filter are causal so that the extrapolation y(n) is causal. The
input u(n) is designed so that the segment y(M), y(M +1),...,y(M+N — 1) of the
output agrees with the given segment z(0),z(1),...z(N — 1) to be extrapolated.
Here M is a non-negative integer whose choice will be discussed later. So the
extrapolation is two-sided as usual (with respect to the given segment) but is
causal for convenience. If the filter is FIR, we obtain a finite-length extrapolation
y(n) (which is perhaps more practical than an infinitely long extrapolation). This
is different from merely truncating the extrapolation obtained in [J ai81] because
truncation would lead to effects associated with Gibbs phenomenon. Secondly, if
we consider the extrapolated signal to be the output of an FIR filter, then several
of the well-known techniques for efficient implementation of FIR filters (such as
the multirate/multistage methods [Cro83], prefilter-equalizer method [Ada83], and
the IFIR method [Neu84]) can be applied to improve the computational efficiency
of the method as we shall see in Sec. 2.2. In particular if we consider the lowpass
filter to be IIR, then the inherent computational advantage of IIR filters over FIR
are available in the extrapolation problem.

With finite-cost filters we can obtain only approximately bandlimited extrap-
olations. In this paper, the term “o-BL extrapolation” stands for an extrapolation
which exactly agrees with the given segement of N samples even though it may be

only approximately bandlimited for practical reasons.

2.1 The o-BL Extrapolation Problem As A Filtering

Problem

Consider a transfer function H(z) = Y oo h(n)z~™ which represents a causal

stable lowpass transfer function with stopband edge equal to o radians. Without
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loss of generality, assume h(0) # 0; H(z) could be FIR or IIR. Assume that the
coefficients h(n) are known. Our aim is to find a finite-length causal input u(n)

such that the causal output sequence y(n) satisfies the property
y(M+n)=2z(n), 0<n<N-1, (2.2)

where z(n),0 < n < N —1 is the given length N segment to be extrapolated. Here
M is some non-negative integer to be determined.

The qualitative argument (which we shall treat more carefully) for using this
scheme is as follows: y(n) is the output of a lowpass filter so that its energy in the
frequency range o < w < 7 is expected to be small. At the same time u(n) is such
that a set of designated samples of y(n) agree with the given segment z(n) so that
y(n) is a 0-BL extrapolation of 2(n) except for a shift by M.

The reasons why the above argument is “qualitative” are several. First, the
input u(n) which leads to satisfaction of the condition (2.2) may be such that the
output y(n) might be a poor extrapolation, i.e., its stopband energy normalized by
the total energy may not be “small enough.” Second, the resulting extrapolation
might be such that the energy of the samples of y(n) outside the range M <
n < N+ M —1 may substantially dominate the energy of the segment, so that the
extrapolation is not useful any more. Later on we shall use these two considerations
(among others) as factors that judge the extrapolation quality.

Continuing the above trend of thinking, suppose M = 0 so that we are inter-
ested in matching the first N samples y(n), 0 < n < N — 1 with the N samples

z(n), 0 <n < N — 1. We are thus required to find u(n) such that
z(0) h(0) 0 ... 0 u(0)
z(1) h(1) h(0) . 0 u(1)
. . . R . (2.3)
z(N - 1) R(N—-1) A(N-2) ... R(0)] Lu(N -1)
With A(0) # 0 it is obvious that such an input can be found trivially. Note that

the extrapolation is “one-sided” in the sense that the segment z(n) of length N
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has been extrapolated only to the right. This is unlike any of the other schemes
reported in the literature. Moreover as we shall substantiate in Example 1, the
quality of the extrapolation is not very good. Part of the reason for this is that
for a good lowpass filter h(0) is usually very small so that u(n) has much higher
energy than required. The integer M introduced in (2.2) helps us to overcome the
problem as explained next. For arbitrary M, we can rewrite condition (2.2) in

terms of h(n) and u(n) in the following form:

z(0)
z(1)

x(N:~ 1)

h(M) WM-1) ... 0 ... 0 u(0)
(M + 1) RM) . R(O) ... 0 u(1)
MM AN 1) hMAN—2) . w0y ) Lu(rr v - 1)

(2.4)
There are N equations here. The last N columns of the matrix are linearly inde-
pendent so that for any M > 0 there exists an input u(n) satisfying (2.4) (simply
delay the solution u(n) for (2.3) by M units). However, this is not the only pos-
sible solution. Let the N x (N + M) matrix in (2.4) be denoted by A s and let
the column vectors on the left and right sides of (2.4) be denoted respectively by

x and ups so that (2.4) can be abbreviated as
X = Apuy. (2.5)

Let A¥ denote the Moore-Penrose pseudo-inverse f of a matrix A. We can then

obtain a solution to (2.5) of the form

iy = A% x. (2.6)

T The Moore-Penrose pseudo-inverse is discussed in [And79], [Hay86], [Jai81].

We shall refer to this as just the pseudo inverse for the rest of this paper.
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This solution will have the smallest norm (i.e., the energy i, tips will be the small-
est) among all possible solutions because of minimum-norm least-squares (MNLS)

property of this pseudoinverse [And79].

Next suppose we replace M with M + 1 in (4) and seek a solution to upsy;.
It is clear that Apr41 = [c  Apr] (where ¢ is a new column) so that [ﬁ(z)v[} is a
valid solution. The minimum-norm solution Gp41 = Af,[ 41X therefore has norm
less than (or equal to) that of ips. Starting with M = 0 we can recursively solve
for Gipr41 from Gips by using recursive least squares (RLS) techniques as elaborated
in standard texts such as [Hay86]. As M increases from M = 0, the energy of
the input that produces the extrapolated output decreases (even though the length
of the input increases), until we can perceive no further substantial decrease. We
then stop the iteration and the value of M is then determined. The motivation for
obtaining a minimum-energy input @(n) is explained as follows: since the energy
of 4(n) is minimum, the solution @(n) will tend not to have any components in
the range 0 < w < 7 (because the filter would attentuate them and make them
relatively unperceivable at the output). As a result, y(n) which is a convolution of

lowpass @(n) with lowpass h(n) tends to be a good lowpass extrapolation.

Thus, there are two key steps in this method. The first is to identify an
appropriate input u(n) to the filter H(z) such that the given segment z(n) is
matched by a portion of the output. The second step is to compute the output of the
filter H(z) in response to this input. We can use efficient implementation methods
to reduce the cost of step 2. For example if H(z) is IIR, the cost of step 2 can be
negligible compared to that of step 1. This method should be contrasted with earlier
methods [Jai81], where the energy of the eztrapolated signal y(n) was minimized

by seeking a minimum-norm least squares solution to a different formulation.

Example 1 : In the rest of the chapter, unless otherwise mentioned, the extrapo-
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lation problem to be considered is that of extrapolating a 15-point sequence to 55
points, with the original segment at the center of the extrapolated output. Hence
N = 15 for this segment. We have included a time domain plot of the segment and
the magnitude of its Fourier transform in Fig. 2.1(a) and Fig. 2.1(b) respectively.
The problem is to extrapolate the given segment such that the extrapolated signal
has small energy in the region ¢ < w < 7 with ¢ = 7/3. To compare relative
performance of different algorithms, we consider the following two quantities as

performance criteria :

Energy of the original segment

i in E tio(TDE) =
Time Domain Energy Ratio( ) Total energy of the extrapolated signal

(2.7)
Stopband energy of the extrapolated signal

- o(SE) —
Stopband Fnergy Ratio(SE) Total energy of the extrapolated signal

(2.8)
Roughly speaking, a good method should have large TDE and small SE. We will
first mention the results of running the extrapolation algorithm with an IIR filter
H(z). Then we describe the results obtained with FIR filter and compare it with
the pseudoinverse technique as suggested in [Jai81].
Eztrapolation through IIR filter
IIR filters are known for their increased computational efficiency as compared
to FIR filters. In particular there exists a class of transfer functions [Vai86] which
can be implemented as a sum of two allpass filters. For example, it is well-known

that a fifth order elliptic filter H(z) can be written in this form i.e.,

Ao(2) + Ai(2)

H(z)= 5

(2.9)

where Ag(z) and A;(z) are allpass filters of orders three and two respectively. These
allpass filters can be implemented with three and two multipliers respectively so

that we have a total of only five multipliers.
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It is also known that elliptic filters have all their zeros on the unit circle.
The presence of these zeros makes the impulse response matrices in (2.3), (2.4)
ill-conditioned. The condition number of these matrices can be improved by using
a modified form of elliptic response in which the zeros are positioned slightly away
from the unit-circle.

In order to do this, recall the mechanism by which (2.9) works. We have
Ap(e??) = e7%9(@) and A (e/¥) = e91(«) In the passband the phases ¢o(w) and
¢1(w) are aligned so that the magnitude of (2.9) is close to unity. In the stop-band
these phases are offest by about 7 so that the magnitude of (2.9) is very small.
In particular, at the unit-circle zeros of H(z), the phases ¢o(w) and ¢;(w) differ
exactly by (an odd integral multiple of) 7.

If we wish to “lift” the stop-band response away from zero, this can be accom-
plished [Ans86], [Koi89] by modifying (2.9) into

cos 8 Ag(z) +sinbA, (z)
cos8 + sin 8

H(z) = (2.10a)

with 0 < 8 < «n/2. Now the maximum passband response is still unity, but the
minimum value of [H(e’*)| in the stopband would be |(cos § —sin 6)/(cos 8 +sin 6)|.
We shall refer to this as a raised filter.

The TIR filter used for our example is a raised elliptic filter with

—0.7136 + 2.044271 —2.23272 4 23

1.0 —2.23271 +2.0442~2 — 0.713623
0.7274 — 1.5139271 4 22

1.0 — 1.5139271 + 0.727422

with # = 45.1 degrees. The frequency response of the filter is shown in Fig. 2.2.

Ao(z) =

Ai(z) = (2.100)

Since we want to extrapolate given 15 points to 55 points, we have to add 20 points
before and 20 points after the given segment, so that M = 20. So the final input
u(n) to H (z) will be of length M + N = 35. Total number of pseudoinverse

update steps is M = 20.
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Since theoretically the IIR filter will produce an extrapolation output which is
infinite in length, to get a length 55 extrapolation, we have to use some window
function. The window used in this example is an exponentially decaying window
which has magnitude unity at the time indices of the given segment, and decays
out exponentially on both sides of the given segment. Fig. 2.3(a) shows the ex-
trapolated signal after completion of the update procedure. Fig. 2.3(b) shows the
magnitude of its Fourier transform.

Fig. 2.4(a) and Fig. 2.4(b) show the corresponding graphs for the extrap-
olation obtained just by the inversion of the triangular matrix obtained at the
beginning. Note that this extrapolation is of very poor quality because the extrap-
olated points greatly dominate the original segment. In fact, the original segment
(the first 15 points in Fig. 2.4(a)), can not even be seen in the plot!

Since the input to filter at each update has a minimum norm which is non-
increasing, it is of interest to see how the norm of the input decreases with itera-
tions. This is plotted in Fig. 2.5. A plot of how the SE parameter of the input
signal changes as iterations progress is shown in Fig. 2.6. This supports the con-
jecture that the input starts to look more and more lowpass as iterations progress.
The Fourier transform magnitude of the final input @(n) is shown in Fig. 2.7. In
Fig. 2.8, we have plotted energy of the output signal versus the iteration number
to see how the decrease in input-norm affects the output-norm. Fig. 2.9 shows plot
of output SE as iterations progress.

In Table 2.6 the condition numbers are compared for the traditional and raised
elliptic filters. For a given attenuation (50 dB) it is clear that the raised filter has
a smaller condition number (by a factor of about 3). The magnitude responses of
the relevant filters are shown in Figs 2.44, 2.45.

Eztrapolation through FIR filter

We can use the method described above to carry out extrapolation with the
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impulse response h(n) corresponding to an FIR filter. There are two ways one can
set up this extrapolation algorithm. We can either start with a causal FIR filter
and corresponding lower triangular matrix as in Eq. (2.3) and add columns or start
with a non-causal FIR filter and a symmetric Toeplitz matrix with 0** element of
the impulse response h(0) as the diagonal element . In the second method, the
square matrix will have entries different from the matrix in eq. (2.3) . The square
matrix will not be lower triangular but will be a full matrix, the elements in the
upper triangle being h(—1), h(—2) etc. The first method is anologous to the IIR
method. The second method is similar to the Pseudoinverse Extrapolation Method
[Jai81] because the square matrix inverted at the beginning has a similar structure

and interpretation.

FIR Method 1

The FIR filter used for this example has passband edge 0.287 and stopband
edge 0.3327 and is designed using the McClellan-Parks program [McC73]. It is easy
to see that since we need to extrapolate 15 points to 55 points, the length of the
filter is 21. The frequency response of the filter is shown in Fig. 2.10. The total
number of multipliers needed for implementation is 10. Fig. 2.11(a) shows the
extrapolation obtained by using the first FIR method and Fig. 2.11(b) shows the
magnitude of its Fourier transform. Fig. 2.12(a) shows the result of extrapolation
for the first iteration (i.e. by inverting the lower triangular matrix only). Fig.
2.12(b) shows the magnitude of its Fourier transform. Once again Fig. 2.12(a)
represents a poor extrapolation because the extrapolated samples substantially
dominate the original signal. Fig. 2.13 shows how the norm of the input changes
with iterations and Fig. 2.14 shows plot of the input SE v/s iterations. It can be
seen that the stopband energy of the input decreases as iterations progress. Fig.
2.15 shows the Fourier transform of the final input. Fig. 2.16 shows the effect of

iterations on the output energy. Fig. 2.17 shows how the stopband energy of the
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output changes with iterations.
FIR Method 2

For the second method, after inverting the Toeplitz matrix and getting an
input, the only motivation to carry out the iterations is that the input norm de-
creases and we hope that the input starts looking more and more like a lowpass
signal. However, performing iterations like this produces longer and longer input.
This in turn means that we start getting more output points than desired. We
have chosen not to perform the iteration in this example. Hence this method will
be similar to the pseudoinverse method [Jai81]. The only difference is that instead
of using the ideal lowpass filter as suggested in [Jai81], we can use any lowpass
filter here. In this particular example, we have used the impulse response of an
IFIR filter [Neu84]. The reason to choose an IFIR is that it can be implemented
with a lesser number of multipliers. This does not change the computational cost
of the algorithm, but makes the implementation of the filter more efficient. The

IFIR has a length of 41. It is implemented as
H(z) = G(z*)F(2) (2.11)

where G(z) and F(z) are lowpass filters with cutoff 27/3 and lengths 15 and 13
respectively. Hence the number of multipliers needed for the implementation is
7+6 = 13 instead of 20. Fig. 2.18 shows the frequency response of H(z). Figs.
2.19(a) and (b) show the time and the frequency domain plots of extrapolated
output obtained by inverting the square matrix.

Extrapolation Through Pseudoinverse Extrapolation Filter [Jai81]

In their paper on extrapolation algorithms, Jain and Ranganath mention an
extrapolation method, which is very similar to the FIR method we have described.
We have included the results of applying this method to the extrapolation example
above. The ideal lowpass filter matrix that is suggested in the method was replaced

by a Kaiser windowed lowpass matrix to reduce errors due to rectangular
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windowing. Fig. 2.20(a) shows the resulting extrapolation signal, and (b) shows
the corresponding frequency domain plot.
Nowse performance of the extrapolation schemes

To study robustness of these extrapolation schemes, the following simulation

was performed. We took the original 15-length segment and added a certain amount

‘of random noise to it. The energy of the difference between the original extrapo-
lation result and the new result was used as a measure of error. Fig. 2.21 shows
the extrapolation of the noisy original segment using the IIR method. Fig. 2.22
shows the noisy extrapolation using the FIR Method 1. Fig. 2.23 shows the noisy
extrapolation obtained using the FIR Method 2. Fig. 2.24 shows the extrapola-
tion for the pseudoinverse method. To get a relative feel of the noise performance,
we have listed the energy of difference of each of the extrapolation schemes and
schemes we will see later on, in Table 2.1.

All the above methods involve inversion of a convolution matrix. Hence numer-
ical stability and noise performance of these schemes depends upon the condition-
number of the convolution matrix. In the IIR method and the FIR Method 1,
we have to update the inverse at each iteration. Hence, we should not only be
interested in the condition number at the final iteration, but also in how the con-
dition number changes with the iterations, because this affects the roundoff noise

propagation. This is shown in Table 2.2. We compare the final condition numbers

for these methods in Table 2.3.
2.2 A First Principles Approach To +-BL Extrapolation

In this section we shall discuss a procedure for generating a o-BL extrapolation
based on a very simple set of linear equations. The approach consists of two steps.
The first step is independent of the given segment z(n) (except for its length N)

and has to be performed only once for a given N. The second step depends on the
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Table 2.1

Extrapolation Scheme

The energy of the difference
(normalized to the energy of
the original extrapolation)%

IIR 53.8
FIR Method 1 5.59
FIR Method 2 11.83
Pseudoinverse 11.77
LPC 22.85
Optinral 111.1
RLS 12.95
Fast RLS 10.55

Relative noise performance of different extrapolation
schemes with 1% noise added to the original segment.



[ Tteration | IIR Filter | FIR Filter
0 8.825 x 10® | 3.79 x 10*
1 8.388 x 10% | 6.175 x 10°
2 3.648 x 10° | 7.132 x 10°®
3 2.850 x 10° | 5.971 x 10°
4 2.851 x 10° | 3.829 x 10°
5 2.854 x 10° | 2.916 x 10°
6 2.855 x 10° | 2.752 x 10°
7 2.854 x 10° | 2.893 x 10°
8 2.853 x 10° | 3.070 x 10°
9 2.851 x 10° | 3.185 x 10°
10 2.851 x 10° | 3.233 x 10°
11 2.851 x 10° | 3.236 x 10°
12 2.852 x 10° | 3.427 x 10°
13 2.853 x 10° | 3.275 x 10°
14 2.854 x 10° | 3.294 x 10°
15 2.854 x 10° | 3.298 x 10°
16 2.855 x 10° | 3.287 x 10°
17 2.855 x 10° | 3.252 x 10°
18 2.855 x 10° | 2.986 x 10°
19 2.854 x 10° | 1.803 x 10°
20 2.854 x 10° | 1.653 x 10°

43

Table 2.2 Change in the condition number as iterations progress

for the IIR extrapolation method and the FIR extrap-
olation method 1.

Extrapolation Scheme | Condition Number
IIR 285448.26
FIR Method 1 1652.94
FIR Method 2 742624.31
Pseudoinverse 250993.17

schemes.

Table 2.3 Final condition number for different extrapolation
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segment z(n). These steps are:

1. Generate a set of N o-BL sequences yg(n), 0 < k < N — 1 such that

=0 0<n<k-1

yk(n){yé 0 n—k (2.12)

Note in particular that yo(n) is not required to be zero for any n in 0 < n <
N —1.

2. Now define y(n) to be a linear combination of yi(n), i.e.,

N-—1
y(n) =Y aryk(n) (2.13)
k=0

and choose the N constants ay such that y(n) matches the given segment, i.e.,

such that (2.1) holds.

Before elaborating on Step 1, note that Step 2 is particularly easy to perform
because of the zero-valued samples introduced in (2.12). This is evident if we write

(2.13) in matrix-vector form

z(0) Y0(0) 0 e 0 ap

w(l) yo.(l) y1€1) " 0 01:1 (2.14)

z(N —1) yo(N—-1) yu(N-=1) ... ynoi(N—=1)] Lany—
which reveals the triangular nature of the equations to be solved. Given the wave-
forms yi(n) for 0 < n < N —1 and the segment to be extrapolated, we can compute
the a’s one at a time in the order a1, as, ... which requires a total of N(N —1)/2
addition and multiplication operations and N division operations. Since the diag-
onal elements of the matrix in (2.14) are chosen to be nonzero, the a's can always
be found in this manner.

It remains to generate the N o-BL sequences yx(n) satisfying (2.12). This is
indeed always possible as first shown in [Hay83]. For this, let s(n) denote some

o-BL waveform (for example s(n) = sin(on)/7n) and assume that s(n) is passed
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through an FIR filter G(z) = 211:1:—()1 g(n)z~". The output sequence #(n) which
is the convolution of s(n) with g(n) is clearly o-BL. The samples of ¢(n) in the

duration 0 <n < N — 1 are given by

t(0) 5(0) s(=1) ... s(=N+1) 9(0)
t(1) s(1) s(0) ... s(=N+2) g(1)
: - : : : : (2.15)
HN — 1) SN—-1) s(N=2) ...  s0) g(N = 1)

We can always specify ¢(n) to be such that the first N —1 components ¢(0),...#(N —
2) on the left-hand side of (2.15) are zero, and specify t(N —1) # 0 (say t{((N —1) =
1). We can then solve for the N coefficients g(n) from (2.15). The resulting
sequence t(n) is o-BL with a prescibed number of consecutive zeros. In this manner
all the waveforms yi(n) in (2.12) can be generated. In fact, once ¢(n) is generated

as above, one procedure to obtain yi(n) would be to define
ye(n) =t(n+ N —1—k). (2.16)

The above method will succeed as long as the N x N matrix in (2.15) is nonsingular.
This is easy to ensure. For example, with s(n) = sin(on)/7n it is well-known
[Jai81] that this matrix is nonsingular. The extrapolated sequence y(n) can now
be generated for as many values of n as desired by use of (2.13).

Summarizing, we can always obtain an ideal o-BL extrapolation y(n) for any
given segment z(n) simply by executing steps 1 and 2 above. The result is non-
unique because the prototype ideal o-BL waveform is arbitrary. Moreover, given
a 0-BL extrapolation y(n), we can always generate another valid extrapolation
simply by adding an arbitrary ¢-BL sequence yn(n) whose samples are equal to
zero for 0 <n < N — 1, as pointed out in [Hay83].

From a mathematical viewpoint the above approach for extrapolation can be
interpreted as a special case of backward linear predictive coding (LPC) [Hay86],

[And79] of a wide-sense stationary random process. As a result, it is possible to use
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Levinson’s recursion [And79] in order to speed up the computation of g(n)in (2.15).
In order to see this notice that the N x N matrix in (2.15) is a Toeplitz matrix,
i.e., all the elements along any line parallel to the main diagonal are identical.
Furthermore, by choice of s(n) it is easy to make this matrix symmetric as well as
positive definite (just by ensuring that S(e/*) is real and non-negative for all w).
For example, if s(n) = sin(on)/7n, then this matrix is indeed a real symmetric
positive definite Toeplitz matrix, i.e., it is a valid autocorrelation matrix of a WSS
random process.

Recall that the desired left-hand side in (2.15) has all elements equal to zero
except the last element which is required to be non-zero even though its exact value

is not critical. In other words we can obtain a valid set of g(n)’s simply by solving

the following equations

0 r o s(0) s(1) oo 8(N—=2) s(N—-1)7 rbn_:

0 s(1) 5(0) oo 8(N—=3) s(N—=2)| | bn_q

D= : : : : : (2.17)
0 s(N—-2) s(N-3) ... 5(0) s(1) b

& Ls(N—=1) s(N-2) ... s(1) s(0) 1

for the unknown coefficients b,,1 < n < N — 1, and where £ is some non-zero
quantity. But the set of equations is precisely the augmented set of normal equa-

tions which arise in the backward LPC problem [And79]. We can solve for b,, from

the standard set of normal equations

s(0) s(1) oo 8(N —=2)7 rbn-1 s(N —-1)
s(1) 5(0) oo (N —=3)| | bn—2 s(N —2)
. : = : (2.18)
s(N—-2) s(N-1) ... 5(0) by s(1)

The quantity £ which should be interpreted as the minimized mean-square predic-
tion error, is guaranteed to be nonzero unless the matrix in (2.12) is singular which

1s not the case here.
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Lattice-structure representation for the extrapolator.

In order to find the coefficients of the (N — 1)th order backward predictor,
Levinson’s recursion computes predictors of lower orders in succession, starting
from a first order predictor. Let the predictor coefficients for the mth order pre-
dictor be denoted b,,;, 1 < i < m so that by_;1; = b; where b; are the coef-
ficients in (2.18). Let v(n) represent the WSS random process being predicted
(so that s(n) in (2.17) is its autocorrelation). Then the mth order backward pre-
dictor produces the estimate 9(n —m — 1) = —>"7* | b,,, xv(n — k) of the sample
v(n—m—1). The prediction error is defined as e (n) = v(n—m—1)—6(n—m—1)
so that e,,(n) can be considered to be the output sequence of the FIR filter
271 B,.(2) 2 St bm k2% + 27™ 71 in response to the input sequence v(n). Re-
call that (2.15) represents a convolution of the sequence s(n) with the sequence
g(n). By comparing this with (2.17) we see that a set of N sequences y,,(n),
0 < m < N — 1 which satisfy (2.12) can be generated as outputs of the system
B,,.(z) in response to the input s(n). Now it is well-known that the transfer func-
tions By, (z), 1 < m < N —1 can be realized in the form of a cascaded lattice (called
the LPC lattice; see [Mar76]. The extrapolated sequence y(n) given by (2.13) can
therefore be represented as the output of a tapped cascaded lattice (Fig. 2.25).
The input to this lattice is the o-BL sequence s(n). The tap coefficients «, are
computed according to (2.14). The signals y,,(n) which are being tapped are the
outputs of the intermediate transfer functions B,,(z).

In practice if the segment length N is large, the inputs to the taps a,, (which
are mean square prediction errors £,,) become very small as m increases. In order
to obtain a numerically more robust scheme, the well-known normalized lattice

[Mar76] can be used with the taps appropriately modified.

Example 2.2 : Again, we use the same 15-point sequence as used in Example 1

and run the LPC extrapolation method to get the extrapolation output.
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Fig. 2.26(a) shows the quantity S(e’*) which was used in the algorithm. Note
that S(e’*) > 0. Fig. 2.26(b) shows the extrapolated signal y(n) and Fig. 2.26(c)
the corresponding Fourier transform magnitude plot. We have shown the values of
the coefficients a’s for the lattice structure in Table 2.4. It has been observed that
magnitudes of ais depend on how positive the spectrum S(e*) is. To highlight
this, we have also included the values of the a coefficients when S(e’“) has double
zeros for some w. It can be seen that although individual coefficients «; do not

increase, the coefficients increase overall. This is shown by increase in the sum of

squares of alphas.

To study the noise performance, we follow the same procedure as in the Ex-
ample 2.1, and the resulting extrapolation is shown in Fig. 2.27. We have included

the result of this example in Table 2.1.
2.3 Optimal Finite-Length -BL Extrapolation

Given a segment z(n) of finite length IV, it is often more appropriate to find a longer
sequence y(n) of finite length L > N such that a subset of samples of y(n) match
the segment (as in (2.2)) and the remaining L — N samples of y(n) are such that
y(n) is “as bandlimited as possible.” Such an approach has a practical advantage
because in practice one prefers to do only a finite amount of computation. If we
obtain such y(n) by truncating (or windowing) one of the known methods (such
as the one in [Jai81], or the one in Sec. 2.3 of this paper) then the result is not
necessarily optimal in any sense. In this section we formulate a direct optimization
for this. Some of these results have been reported first in a conferecne paper [Liu89].

The following is a review of the method reported in [Liu89].

Without loss of generality we assume that y(n) is causal with possibly nonzero

values in 0 < n < L —1 and that the N samples y(M) ... y(M + N — 1) match
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the given segment. Define the following vectors:
x = [2(0) z(1) ... z(N —1)]%, (2.19)

and

Yy =0 y1) ... y(M-1)y(M+N) ... y(L-1)7. (2:20)

The Fourier transform Y (e/*) = Z,Ll;é y(n)e %" of the finite-length extrapolation

can be written as

Y (') = £l (w)y + ef (w)x (2.21)
where
et(w) = e IWM[] 7w | emIwN-D] (2.22)
and
fjf(w) =[1edv .. e Iw(M-1) gmjw(MAN) eI (I (2.23)

We can then express the out-of-band energy as
/ ¥ ()= = viIQy + y'Px + xtPty 4 xTTx (2.24)

where

Q= /W f(w)fjf(w)%, P = /: f(w)ef(w)%‘r"—, T = /"e(w)eT(w)i:—. (2.25)

The fourth term in (2.24) is fixed since it depends only on x. The appropriate

objective function representing the stopband energy is
. =y1Qy +y'Px+xiPly. (2.26)

If we minimize this quantity then we obtain a finite-length extrapolation (which
satisfies (2.2) exactly) and which has the smallest out-of-band energy. However, it

is often desirable to add a second term to the objective function so that the energy
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of y(n) does not unduly dominate that of the given segment. The energy of y(n) is
clearly given in the time domain by yTy -+ xTx of which the portion xTx is fixed.
The first term yTy represents the increase in energy due to extrapolation. We shall

define the composite objective function
¢=ads +(1 - a)yTy, (2.27)

where 0 < o < 11is a weighting factor for the relative importance of the out-of-band
energy and the total energy of the extrapolation y(n). The value of this factor is

entirely at the discretion of the designer. Eqn. (2.27) can be rewritten in the form
¢ =y Ry +ylsx+xIsty (2.28)

where R = aQ + (1 — a)I, and S = aP. By completion of squares, (2.28) can be

written as

é=(y +R1Sx)TR(y + R-18x) — (Sx)TR1sx. (2.29)

The second term in (2.29) is independent of y. Since R is positive definite, the
first term (and hence the objective function ¢) is minimized by the unique choice
y = -R71Sx.
Interpretation as an FIR filter design problem with time-domain constraint

This method for extrapolation can be interpreted as a FIR filter-design prob-
lem as follows: we are interested in designing a “lowpass” impulse response y(n) of
length L with stopband edge 0. The specification does not include the passband,

but contains a #ime-domain constraint on the impulse response given by (2.2).

Comments on complezity of the method.

In this method the solution vector y of length K = L — N is obtained by solving

the set of K equations
Ry = —-Sx. (2.30)
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The matrix R is Hermitian and positive definite. However, it is K x K rather
than N x N where N is the length of the given segment and N + K is the total
length of the extrapolation. For large K, therefore, this method is computationally
more expensive than the methods in the previous sections. For the case of real
signals (i.e., real z(n) and y(n), we can replace (2.30) with a set of equations
involving real matrices, i.e., as R1y = ¢ where R; and ¢ are real. The matrix
R;, however, is not Toeplitz. It is in fact obtained from a L x L Toeplitz matrix
by dropping a set of N rows and the corresponding set of N columns. Standard
fast-techniques for solving Toeplitz equations cannot therefore be directly applied.
For these reasons, this method for o-BL extrapolation is more expensive than most
of the techniques described earlier, even though it gives a theoretically optimum
finite-length extrapolation. The results of this technique can therefore be used as

a standard for judging the performance of other methods.

Example 2.3: Although computationally expensive because of matrix inversion,
the method described above gives us the best extrapolation result (in the sense
of minimizing the stopband energy) for a given a. So, for the given segment, we
can obtain the extrapolation for any « in the range 0 < a < 1 and then plot
TDE versus SE for the extrapolated result. In this plot « is the parameter that
varies along the curve. This plot gives the upper limit on performance for any
extrapolation algorithm. We can interpret this curve as follows. For a given TDE,
the point on the curve gives a lower bound on SE that can ever be accomplished
by any extrapolation method which produces a length L extrapolation from the
given length N sequence by any means whatsoever.

Fig. 2.28(a) shows extrapolated segment for & = 0. 0003 and Fig. 2.28(b)
shows magnitude of its Fourier transform. The plot in Fig. 2.29 shows how the
parameter SE varies with a. Fig. 2.30 shows the effect of changing o on the
parameter TDE. The plot in Fig. 2.31 exhibits the trade off between the TDE and
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SE parameters as a varies in the range 0 < a < 1.
2.4 Bandlimited Extrapolation Of Periodic Signals

If we impose the constraint that the extrapolation y(n) be periodic (hence infinitely
long) with period L then the problem takes a particularly simple form. Even though
this is handled in [Jai81], we shall present a solution which we believe to be more
direct and simpler.

Given the segment z(n), 0 < n < N—1of length N our aim is to find a periodic
signal y(n) with period L > N such that y(n) = z(n) for 0 <n < N—1 and y(n) is
appropriately bandlimited. Because of periodicity, the Fourier transform of y(n) is
zero for all w except w = 2wk /L where 0 < k < L—1. Equivalently if we define Y (k)
to be the L-point DFT of y(n), i.e., Y(k) = En—O y(n)W™ where W = ¢ 727/L
then y(n) is completely determined by Y'(k) as y(n) = T k s Y(EYW—*. We
shall say that y(n) is K-BL if Y(k) = 0 for K < k < L — K. For such a sequence

the samples y(n) can be expressed as

K-1 L-1
Ly(n) =Y(0)+ > Y)W+ > y(EW™, 0<n<L-1. (231)
k=1 k=L—-K+1

We are given the segment x(n) of length IV to be extrapolated. The first N samples
of y(n) are set equal to z(n) so that y(n) = z(n), 0 <n < N — 1. Defining

x = [2(0) z(1) ... z(N —1)|T (2.32)
and
=Y Y1) ... Y(K-1D)Y(L-K+1)...Y(L-1D] (2.33)

we have from (31)

x = AY (2.34)



60

where A is a N x (2K — 1) submatrix of the Inverse DFT matrix. Given the N
samples in X, if we can find the 2K — 1 components of Y by solving (2.34) then all
the remaining samples y(n), N <n < L —1 can be computed using (2.31). Clearly
y(n) is a periodic extrapolation of z(n) and is in addition K-BL.

The N x (2K — 1) matrix A in (34) can be expressed (see Appendix 2.A) as
A = DVP where D is a N X N nonsingular diagonal matrix, Visa N x (2K — 1)
Vandermonde matrix and P is a (2K — 1) x (2K — 1) permutation matrix (hence

nonsingular). The nth row of V is given by
1w w2 . w-eK-2r g<p<N-1. (2.35)

Moreover the rows are distinct so that for N < 2K — 1, the rank of A is equal
to N. We can then find an exact solution for (34) which in addition is unique if
N =2K —1. If N < 2K — 1 we can exploit it by finding the minimum-norm
solution

Y = A*x (2.36)

where A# is the Moore-Penrose psuedoinverse of A. This continues to be an exact
solution since the rank of A is still N. So for N < 2K — 1 we can always find
an exact (and unique) solution Y(£),0 < k£ < L — 1 which has minimum norm so
that the extrapolation y(n), 0 < n < L — 1 has minimum energy. Moreover the
extrapolation satisfies (2.2) exactly with M = 0, and is K-BL.

On the other hand if N > 2K —1, we can find only an approximate solution for
(2.34). We can take this to be the MNLS solution again. Such a solution gives rise
to an extrapolation which is bandlimited as desired, but the time-domain segment
is matched only approximately and in the least squares sense.

Unlike the MNLS problems formulated in Sec. II, the matrix A is not Toeplitz.

RLS techniques for solving the system (2.34) are therefore not as efficient as in the
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Toeplitz case. However, for the case where N = 2K — 1 there exists a efficient
procedure to find the extrapolated samples as discussed next.
Consider a sequence #(n) which is equal to one period of y(n), i.e., t(n) = y(n)

for 0 < n < L —1 and zero outside this range. From (2.31) the z-transform of ¢(n)

is given by
1-L\ [ v & vk pSg TO A
T(z) = < L ) (1 — 2z + ;; 1—2z-1W-*k + kzzl 1—2"1Wk (2.37)

The first L samples of the inverse transform of the following quantity

K-1 K-1
clearly coincide with the L samples of y(n) in 0 < n < L —1. We can consider s(n)
to be the impulse response of a causal IIR filter S(z) with numerator of degree
2K — 2 and denominator B(z) =1+ Y25 bz~ of degree 2K — 1 so that s(n)
satisfies the difference equation s(n) = — zil— ! bys(n—k) for n > 2K —1. Clearly

the sequence y(n) satisfies this same difference equation, i.e.,
2K -1
y(n) = — bey(n—k), 2K -1<n<L—1. (2.39)
k=1
Summarizing, any periodic K-BL sequence y(n) with period L satisfies (39) so that

the first 2K — 1 samples y(n),0 < n < 2K — 2 determine the remaining samples in
the period. As a result, if the given number N of samples is such that N > 2K —1
then there may not exist a K-BL extrapolation. If N < 2K — 1 we can always find
such an extrapolation merely by setting y(V) =y(N +1)=... =y(2K —-2) =0
and then using the difference equation (2.39). The coefficients by of B(z) are
obtained by noting from (2.38) that

B(z) =
K-1 K-1
(1-271 H QA-WrH1-WH ) =(1-271) H (1 -2z cos b + 272)
k=1 k=1

(2.40)
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where 6 = 27k/L.

2.5 The o-BL Extrapolation Problem As A Recursive Least

Squares Problem

In this section, we formulate the bandlimited extrapolation problem as a least
squares problem which can be solved by standard recursive techniques like the
RLS method (see Haykin’s text [Hay86] and papers cited therein). In the standard
least squares filtering problem, we have to adapt the coefficients of a filter such that
for a given input z(n), its output approximates a signal d(n) in the least squares
sense. The problem is schematically shown in Fig. 2.32. We can make use of this
setup as follows. We want the extrapolated signal to be as good a lowpass signal
as possible. This means that the extrapolated signal passed through a highpass
filter with a complementary frequency response should give an output with small
energy. Thus, with the extrapolated signal as the input and the highpass filter as
the transfer function, we should have zero output as the desired response. This
is shown in Fig. 2.33. This problem is not exactly in the conventional adaptive
filtering framework. We don’t know all the input data, yet we know all the filter
coefficients. In fact the problem is to determine the missing samples from the input.
To make the unknown quantities resemble the coefficients of an adaptive filter, we
reverse the role of the highpass filter and the extrapolated signal and restate our
problem by saying that with the impulse response of the highpass filter as input to
a system whose impulse response is the extrapolated signal, we should have zero

output as the desired signal.

Let k(n) be the impulse response of the highpass filter. We split the ex-

trapolated signal as y = [yip ,yg , yg ]T, where y; and y3; are the unknown parts
respectively, of the extrapolated signal before and after the known part y;. The

problem now is to identify an FIR filter with impulse response coefficients denoted
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x(n) ; h(n) w (n) \/gz > 8(n)

Input Signal Adaptive Filter Error

d(n)

Desired Signal

Fig. 2.32 A general adaptive filtering setup.

h(n) ; y(n) W(”)—\Q\ e(n)

Adaptive Filter
Highpass Signal P _+_ Error

N

d(n})=0

Desired Signal

Adaptation  Algorithm

Fig. 2.33 An adaptive filtering scheme equivalent to the RLS
bandlimited extrapolation problem.
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by y, such that the input sequence h(n) to this filter produces an output as close
to the desired signal as possible, where the desired signal is identically zero. Let
N be the length of the given signal y2 to be extrapolated and L be the length
of the total extrapolated signal. For simplicity we assume that the length of the
extrpolated signal before and after the given signal samples is the same. Hence,

lengths of y; and y3 are M = (L — N)/2 each. Hence

vy=I[yo ... ymM-1 YM ... YN+M—-1 YN+M ... yL_l]T (2.41)

where the values [yar,...... ,YN+M~1] are known. We thus have an FIR system

identification problem as shown in Fig. 2.33. If we define
h(n) = [A(n),h(n—1),...... Jhn—L+1)]7 (2.42)

then we can write

w'(n) = h(n) y

Y:
— () BI(n) BT(n) ]| ¥ (2:43)
Ys
where
hi(n) = [Rh(n)...... h(in—M+1)]F (2.44)
hy(n) = [M(n—M)...... hin—M-N+1 ] (2.45)
hy(n) = [R(n—M —N)...... h(n—L+1)]%. (2.46)

This gives us
w'(n) = hi(n)y: + h](n)y2 + hi(n)ys
e(n) =d'(n) — w'(n) . (2.47)

= —w'(n), since d'(n)= 0



65

Observe that we know y; already. So we don’t have to keep it as a part of the

unknown coefficient vector. Hence we modify the setup by defining
d(n) = —h3 (n)y, (2.48)

w(n) = b (n)y1 + hY(n)ys (2.49)

which gives us e(n) as before, but now output w(n) depends only on the unknown
vectors yi1 and ys. This least squares filtering problem is shown in Fig. 2.34. The

problem is solved using standard recursive least squares techniques as in [Hay86].

Example 4: We consider the same problem of extrapolating the length 15 sequence
to a length 55 sequence, as in the previous examples. Fig. 2.35 shows the frequency
response of the highpass filter (of length 41) used as input to the RLS algorithm.
Figs. 2.36(a) and (b) show the time domain plot and the magnitude of the Fourier

transform of the extrapolated signal respectively.

2.6 Fast Algorithm For Least Squares Bandlimited

Extrapolation

In section 2.5, we saw how we could formulate the bandlimited extrapolation prob-
lem as a least squares problem, and solve it recursively. Naturally, the next thing
to do is to get a fast algorithm for the RLS method described. The problem, the
way 1t is written in section 2.5, is not directly implementable as a fast algorithm
because the data matrix involved is not Toeplitz [Hay86]. To be able to get a fast
algorithm, we rewrite the problem as a multichannel least squares problem. We

can rewrite (2.49) as
TORNHORHONEY (250

This equation shows that w(n) can be looked upon as the output of a two-input

system. Thus, for the bandlimited extrapolation problem described in section V,
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(hy (n), hs (n)) (Yy:Y3) w(n) = e(n)\
. . />< 7
Input Signal Adaptive Filter + 1 Eeror

T
d(n) = —h5 (N)y,
Desired Signal

Fig. 2.34 A modification of Fig. 2.33 such that the adaptive
filter consists of only the unknown samples.
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we have the following two-input one-output system to be identified by the least

squares technique —

w(n) = hT(n) y2. (2.51)
d(n) = —h3(n)y2 (2.52)
where
haa(n) = [T (n) BT (o))" (2.53)
y2u = [yi ¥31" (2.54)

We can rearrange the columns of h{ 1 and the rows of y2 1 so that the set of

equations represented by (2.51) for the specified range of n can be written as
w = Hy

where H is a block Toeplitz matrix (with 1 x 2 block size). The vector w contains
the samples w(n) for the appropriate range of n. Similarly we can define the vec-
tor d of the samples d(n). The problem now is to solve for ¥ such that Hy best
approximates d in the least squares sense. This problem can now be solved using
a fast multichannel algorithm as in [Kal84]. In the next section, we will see how
this idea of converting the extrapolation problem into a multichannel least squares
FIR system identification problem can be used to solve multiple burst interpola-

tion/extrapolation problems.

Example 2.5: We take the same extrapolation problem as in Example 2.4 and
use the multichannel algorithm [Kal84] to get the extrapolation. For simplicity, it
was decided not to perform an exact initialization of the fast RLS algorithm (see
[Hay86] for meaning of exact initialization).

Fig. 2.37(a) and Fig. 2.37(b) show the time domain plot and the magnitude

of the Fourier transform of the resulting extrapolation respectively.
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Fig. 2.36 RLS extrapolation method. The extrapolation result
(a) time domain (b) magnitude of the Fourier trans-

form.
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2.7 Multichannel LS-FIR Algorithm For Multiple Burst In-

terpolation/Extrapolation Problem

The bandlimited extrapolation problem we dealt with so far was to extrapolate a
given segment equally on both sides such that the resulting extrapolation was as
bandlimited as possible. Another problem of interest is completing a given signal
when some of the intermediate samples are erased. Depending on the number of
known and unknown samples, we can call this problem either an interpolation
or an extrapolation problem. This problem can also be solved as a least squares
problem on the same lines as in section 2.6. The basic idea again is to use the
impulse response of a filter with the complementary frequency response as the
input. The combined output of the system which has the total signal as its impulse
response and the impulse response of the complementary response filter as the
input is divided into two parts; one due to known signal samples and the other
due to unknown signal samples. (In fact, the aim is to calculate the values of these
samples.) The part of output due to the known samples is now treated as negative
of the desired response. Each unknown segment is treated as an unknown filter
response of a channel and a properly delayed input is used for adaptation in each
channel.

Thus, lety = [ yo,....-. ,yr—1 ]¥ be the total signal of interest of which
we don’t know some samples. We can write the signal vector in a more convenient

form as

y = [yT...... yk_1 1" (2.55)

where each vector y;,( ¢ =0,...,K —1 ) now corresponds to consecutive known
or unknown data samples. We can define an integer function f such that if there
are K; unknown data vectors in x, then f(z) gives the position of the :** unknown

data vector (i.e., the i** erasure) for 1 < i < Kj. Correspondingly, we can define a
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complementary integer function f’ which gives positions of Ky = K — K; known
data vectors. For example, for the extrapolation problem described before, we have
K=3,K =2 Ky=1and f(1)=0, f(2)=2, f/(1) =1.

We split the impulse response vector h(n) defined in eq. (2.42) as

h = [hl...... W;_ 17 (2.56)

such that the dimensions of the vectors h;s match those of y:-s above. We now have

a Ki-input, one-output unknown system as follows—

w(n) = hi, 1(n) Yr 1 (2.57)
K,
i=1
where
hKl,l = [h?(l) ...... h?(]&'l) ]T (259)
yK1,1 = [y}ll) ...... Y?(Kl) ]T (260)

We can rearrange the matrix-vector product in (2.57) by renumbering the columns
of h}l:,hl and the rows of yg, 1 so that the set of equations represented by (2.57)

(for all values of n in the range of interest) can be expressed in the form
w = Hy (2.61)

where H is again block Toeplitz with block size 1 x K;. Once again we can use
the fast multichannel LS FIR identification algorithm [al84] to identify the best
vector ¥ which matches d in the least-squares sense. Once we have found out

YK, , we can go back and complete the missing samples from the signal y.

Example 2.6: This example considers the problem of extrapolating given 15 points

to 54 points. We have a segment , whose first 13 points are unknown, next 5 points
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are known, next 13 points are unknown, followed by 10 known points followed by
13 unknown points. Hence we have K = 5, K; = 3 and K, = 2. The resulting /3
bandlimited extrapolation sequence is shown in Fig. 2.38(a), and the corresponding

magnitude of the Fourier transform in Fig. 2.38(Db).

Example 2.7 : To demonstrate the usefulness of formulating the extrapolation
problem as an RLS problem, we give an example where the RLS method is used
for the bandpass bandlimited extrapolation. The given segment has 15 samples.
Its Fourier transform magnitude is shown in Fig. 2.39. We want to extrapolate
this segment equally on both sides so that the result has 55 samples, and we want
the result to be bandlimited to a band of width 7/3 symmetrically placed around
the frequency 7/2. The bandstop filter used as the input to the RLS method is
shown in Fig. 2.40. The filter was designed using the the McClellan-Parks pro-
gram [McC73] with the passband and the stopband edges at 0.137,0.387, 0.21x
and 0.297 respectively. The resulting extrapolation and its Fourier transform mag-
nitude plot are shown in Fig. 2.41(a) and Fig. 2.41(b) respectively. The example
clearly demonstrates the usefulness of this method. We can get the extrapolation
to fit any frequency specifications, as long as we choose the input filter with the

complementary specifications.

Noise Performance of RLS and Fast RLS Schemes.

We perform the same simulation as mentioned in Example 2.1. The extrapola-
tion obtained after contaminating the original segment for the RLS scheme is shown
in Fig. 2.42. The corresponding extrapolation result for the Fast RLS method is
shown in Fig. 2.43. The energy of difference is tabulated in Table 2.1. From these

results, we see that both these methods have good noise performance.
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Fig. 2.39 Magnitude of the Fourler transform of the input se-
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Strictly Positive Spectrum
Positive Spectrum | (Double Zeroes
i On Unit Circle)
(054 oy

1 ~0.1493 -0.1494

2 0.3489 0.3508

3 2.557 2.700

4 -3.685 -5.122

5 -8.165 -9.141

6 -3.758 -3.188

7 5.479 7.404

3 10.08 11.519

9 5.409 4.868

10 -4.489 -6.695

11 -9.583 -11.232

12 -4.670 -3.769

13 5.464 8.198

14 10.292 12.083

15 4.704 3.470

Taf = 553.61 Yol = 749.03

Table 2.4 LPC extrapolation method. « coefficients for power
spectrums with different positiveness.



Extrapolation | Stopband | Optimal SE | Time Domain | Optimal TDE
Method Energy | for same TDE Energy for same SE
(SE)% (TDE)%

IIR 0.30 0.0069 33.0 87.3
FIR Method 1 0.0445 0.0092 39.16 65.0
FIR Method 2 0.453 0.0456 69.36 90.4
Pseudoinverse 1.6 1.27 95.3 96.15
LPC 0.025 0.0052 28.0 61.0
Optimal 0.0053 0.0053 28.42 28.42
RLS 0.0297 0.01 47.11 64.0
Fast RLS 0.0349 0.01 46.3 66.2
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Table 2.5 Comparison of performance of different extrapolation

methods.



Filter Attenuation | Condition- Number
5% order elliptic 60 dB - 1.043 x 107
raised 5'* order elliptic 50 dB 2.854 x 10°
5" order elliptic 50 dB 1.04 x 10°
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Table 2.6 Condition numbers for 15 x 15 autocorrelation matrix
for elliptic and raised elliptic filters.



82

2.8 Discussion

In this chapter, we have considered the problem of bandlimited extrapolation
of discrete-time sequences. Through our discussions, we have pointed out that the
term “best solution” does not have a unique answer here. The reason being that
in the digital domain, there exist infinitely many possible extrapolations of a given
segment which are bandlimited. However, if we put the additional constraint that
the norm of the result be minimum, then the extrapolation is unique. Various
methods have been described to obtain a finite-length extrapolation. Since any
finite-length extrapolated signal can not be exactly bandlimited, it is obtained by
minimizing the out-of-band energy. A technique based on linear predictive lattice
is proposed. Similarly, a new technique is proposed for the combined interpola-
tion/extrapolation problem. Two quantities SE and TDE have been proposed to
evaluate performance of these schemes. Since it is possible to obtain an “optimal
solution” (as described in Section 2.3), the solutions obtained by other methods
are compared with the optimal solution by comparing SE and TDE. The meth-
ods based on RLS and FRLS algorithms offer good performance and are relatively
robust to noise. Another advantage of these methods is that the out-of-band at-
tenuation can be controlled by changing the attenuation of the highpass filter used.
The method based on IIR filtering gives extrapolation result that extends to infinite

time.

In a noise-free situation, if computational complexity is not the issue, then
the optimal solution is the best option. However, in practice, one may want to
choose some other algorithm. The choice of a suitable extrapolation scheme will
depend on the computational burden that can be handled, the noise performance
that is needed or the need for a particular structure that is more convenient for

implementation. For example, the LPC extrapolation scheme is convenient to im-
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plement if lattice implementation hardware/software is available. In some specific
applications like the multiple burst interpolation/extrapolation scheme, only the

multichannel RLS extrapolation scheme can be used.



Appendix 2.A Factorization of A = DVP.

The N x (2K — 1) matrix A in (2.34) has nth row equal to

-113[1 an ... af-! ap*V ~1]

where a, = W™". This can be rewritten as

where P is the permutation matrix given by

0 Ig
p=[n 5]

As a result, the matrix A can be written as

A =DVP

84

(2.41)

(2.42)

(2.43)

(2.44)

where D is N x N diagonal with ith diagonal entry a:(K—l)/L, and V is N x

(2K — 1) with elements V;, =a™, 0<i< N —-1,0<m < 2K — 2.
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Chapter 3

Analysis Of Effects Of Multirate Systems On
The Statistical Properties Of Random Inputs

3.1 Introduction

Multirate digital filtering is used in a variety of applications such as sub-band cod-
ing, voice privacy systems [Cro83], [Vai90], and adaptive filtering [Gil88], [Sat91a],
[Kel88] to name a few. In multirate digital signal processing, we encounter time
varying linear systems such as decimators, interpolators, and modulators [Vai90].
In many applications, these building blocks are interconnected together with linear
filters to form more complicated systems. Consider for example some of the simple
interconnections shown in Fig. 3.1. The M-fold decimator is shown in Fig. 3.1(a).
Fig. 3.1(b) shows the L-fold interpolator. Typically, a lowpass filter is used after
an interpolator to suppress the images created by passing a signal through the
interpolator. This is shown in Fig. 3.1(c). The operation of fractional decimation
(or sampling rate conversion) is shown in Fig. 3.1(d).

It is often necessary to understand the way in which the statistical behavior
of a signal changes as it passes through such systems. While some issues in this
context have an obvious answer, the analysis becomes more involved with compli-
cated interconnections. For example, it is easy to see that the decimated version
z(nM) of a wide-sense-stationary (WSS) signal z(n) remains WSS. But the follow-

ing question is more complicated: if we pass a cyclo-wide-sense-stationary (CWSS)
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Fig. 3.1 Some typical interconnections analyzed in the chapter.
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signal [Dav58] with period K through a fractional sampling rate changing device
(Fig. 3.1(d)), then what can we say about the stationarity (or otherwise) of the
output? Is the answer to this question dependent on whether the lowpass filter is

ideal or not, and if so, how?

In this chapter, we answer questions of this nature, starting from a small set
of elementary observations. When we make transition from single rate to multirate
systems, the assumption that signals are WSS is not valid even in theoretical study.
We shall find it more natural to assume that the signals are CWSS. For example,
the output of an L-fold interpolation filter to a WSS input is CWSS with period
L unless the filter is ideally bandlimited, in which case the output is WSS also.
Occurrence of CWSS signals in signal processing and communications applications
has been recently discussed in [Gar91]. In Section 3.4 we shall therefore study the

effects of multirate filters with reference to CWSS signals.

As an application we consider a novel adaptive filtering structure for identifi-
cation of bandlimited channels. This scheme is shown in Fig. 4.12. We include a
derivation of this scheme in Chapter 4. As we shall see in the next chapter, this
structure exploits the bandlimited nature of the channel and embeds the adaptive
filter into a multirate system. The advantages are that the adaptive filter has a
smaller length and the adaptation as well as the filtering take place at a lower
speed resulting in improved computational efficiency. In the theoretical analysis of
this system, due to its multirate nature we can not assume that the input to the

adaptive filter is WSS (even if the primary input z(n) to the channel is WSS).

Using the theory developed in this chapter, we show that the input to the
adaptive filter is CWSS and a matrix adaptive filter gives better performance than
a traditional scalar filter. The fact that a matrix adaptive filter is computationally
more expensive clearly places in evidence the tradeoff involved when we switch

from single rate to multirate systems. The matrix adaptive filter offers a theoretical



88

performance bound which can not be exceeded by any scalar filter of comparable
complexity. Finally, it is shown that if the non-adaptive filters in this system are
close to ideal, then the matrix adaptive filter can be replaced by a scalar adaptive
filter without a significant loss of performance.
Qutline of the Chapter

The chapter is organized as follows. In Section 3.2, we include definitions
of various statistical and multirate concepts we use in the paper. The effects of
the basic multirate building blocks (decimator, interpolator, modulation) are in-
vestigated in Section 3.3. In Section 3.4, we derive similar results for some useful
interconnections of the basic building blocks. We conclude the discussion by in-
dicating application of this theory to the adaptation scheme discussed in Chapter
4. Throughout the chapter, all WSS and CWSS processes are assumed to be zero

mearn.

3.2 Preliminaries

Some basic concepts and definitions from multirate signal processing and system
theory are presented in this section.
8.1. M-fold decimator: A decimator is a device which takes an input sequence z(n)

and produces the output sequence
yp(n) = z(nM). (3.1)

This means that only those samples of z(n) that occur at time equal to multiple
of M are retained. In the transform domain, the transfer functions are related as

M-1
. 1 .
Yp(e™) = 5= Y X(em MWk (3.2)
k=0

where Wy = e 29™/M_ Thus, in general passing a signal through a decimator

causes aliasing.



89

3.2. L-fold interpolator: The interpolator takes an input sequence z(n) and pro-

duces an output sequence

yr(n) = {g(n/L), if n is an integer multiple of L; (3.3)

otherwise.

In the frequency domain, we can write
YI(ej“’) = X(ej“’L). (3.4)

8.3. Blocking a signal: We call an M x 1 vector signal x(n) the “M-fold blocked

version” of a signal z(n) if they are related by
x(n) = [z(nM) z(nM —1)...z(nM — M + 1)]7. (3.5)

Using decimators, the blocking mechanism can be shown as in Fig. 3.2(a). The
signal z(n) is called the unblocked version of the vector process x(n). The unblock-
ing operation can be represented in terms of multirate building blocks as in Fig.
3.2(b).

8.4. Wide Sense Stationary (WSS) process: A vector stochastic process x(n) is said
to be a wide-sense-stationary process if (1) E[x(n)] = E[x(n + k)] for all integers
n and k and (2) the autocorrelation function depends only on the time difference

between the two samples, i.e.,
E[x(n)xT(n — k)] = Rux(k),  Vn V&. (3.6)

8.5. Jointly WSS processes: Two processes v(n) and w(n) are said to be jointly
WSS if the process u(n) = [vI(n) wT(n)]? is WSS.
3.6. Power Spectral Density: The power spectral density Sxx(z) of a WSS process

x(n) is defined as the z-transform of its autocorrelation matrix defined in (3.6),

le.,

Swx(2) = Y Rux(k)z7". (3.7)

k=—o00



x(nM) —_— *M .
z Xx(n)
x(mM-1) *M j

x(nM-M+1) _,*M JZ

N

x (n)

(b)

Fig. 3.2 (a) M- fold blocking of a signal
(b) Unblocking of an M x 1 vector signal.
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Thus, each entry of this matrix is the z-transform of the corresponding entry of
Rz (k).
3.7. Cyclo-WSS process:
Definition 1: A stochastic process z(n) is said to be a cyclo-WSS process
with period L (abbreviated (CWSS)y,), if the L-fold blocked version x(n) is WSS.
Definition 2: Let R,.(n,k) = E[z(n)2z*(n — k)] denote the autocorrelation
function of a process z(n). The process is said to be (CWSS)y, if E[z(n)] = E[z(n+
kL)] for all integers n and k and

R;i(n, k) = Ryp(n+ L, k), Vn, Vk. (3.8)

A proof of the equivalence of these definitions is given in Appendix 3.A.
3.8. Linear periodically time varying (LPTV) system: A system is said to be LPTV
with period L (denoted as (LPTV), ) if the output y(n) in response to input z(n)

can be written as

y(n) =Y h(n,k)z(n — k) (3.9)

where

h(n, k) = h(n + L, k), Vn, Vk. (3.10)

An implementation of an (LPTV); system is shown in Fig. 3.3. The output at
time n is the output of one of L filters depending on the value of (n modulo L).
3.9. Pesudocirculant: An M x M matrix A(ej“’) is said to be pseudocirculant

if the entries a;(e%) (i =0,.., M —1, 1 =0,.., M — 1) satisfy the following relation

. Jw — aoa{_i(ejw) 0 —<— z S ! 11
az’l(e ) {e“’]“’ao,l_HM(z) <1< M-—1. (3.11)
In words, a pseudocirculant matrix is a circulant matrix with elements under the

diagonal multiplied by e™7%. Here is an example of a 3 x 3 pseudocirculant matrix,
‘ ao(e’”) ar(e’)  az(e’¥)

A(e) = [ e7¥az(e?)  ao(e?¥)  ar(e?) |. (3.12)
e 7¥a(e??) eTIYaz(e??) ap(e’?)
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— = H \\n=O,L, 2L, ..
x(n)

Hl(z) —

l__ y(n)
Hp {2) n=1-1,2L-1, ..

Fig. 3.3 Implementation of an (LPTV); system.

We will be using the following two properties of pseudocirculants [Vai88]:

1. If A(e’¥) is pseudocirculant, then so is K(ej“’).

2. If Ai(e’*) and Az(e¥) are pseudocirculants, then A(e/*) = Aq(e7¥)Aq ()
1s also pseudocirculant.
The above definitions and properties hold true in the z-domain using the

substitution z = e/* if all the z-transforms exist.

8.10. Polyphase Decomposition: Let X(z) be the z-transform of a signal z(n). The

polyphase decomposition with respect to M is
X(z)= z_(M_l)RO(zM) + z_(M_2)R1(zM) + .o+ Ry (2M). (3.13)

Each function R;(2),0 < i < M — 1 is called a polyphase component of X(z). In
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the time domain, the kth polyphase component is obtained as
re(n) =z(nM + M —-1-k). (3.14)

From Fig. 3.2(a), which shows an implementation of blocking the signal z(n)
by factor M, it is easy to see that output of each decimator is a polyphase compo-

nent of the signal with an appropriate shift.

We now tie together seemingly unrelated concepts such as pseudocirculant
matrices and wide sense stationarity by proving some interesting relations. These
result also bring out the importance of pseudocirculants in the analysis involving

WSS signals.

X (n) y ()

:?H(Z)

Nxl1 Mx1
MxN

Fig. 3.4 A multi-input, multi-output system.

Fact 3.1 Let x(n) be an NV x 1 vector WSS input to an M x N transfer matrix
H(z) as shown in Fig. 3.4. Then the power spectral density of the M x 1 vector

WSS process y(n) is given by

Syy(2) = H(2)Ssx(z)H(2). (3.15)

Proof: This follows using the convolution expression and the definition of

Syy(2).
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Now we prove an important result which relates the pseudocirculant property
with wide sense stationarity. The result is complete in the sense that it gives both
necessary and sufficient condition.

Fact 3.2: Let x(n) be the M-fold blocked version of a zero mean stochastic
process z(n). Then the following statements are true:

(a) If z(n) is WSS, then the power spectral density Sxx(z) of x(n) is pseudo-
circulant.

(b) If, for some M, x(n) is WSS and Sx«(z) pseudocirculant, then z(n) is a
WSS process.

Proof: (a) Let 2(n) be WSS. Then, the (z, l)th element of Syx(z) can be written
as

Sux(2)ig = Y E[a(nM —i)z*(nM — kM —1)]z7*. (3.16)

k=—oc0

For 0 <¢ <[, we can write (3.16) as

= Z E[a:(nM):c*(nM — kM — (11— z'))]z"k.
k=00

= [Sxx(z)]o,l—i- (317)

Forl<i< M —1,1—11is positive, but : — | — M is negative, hence we can write

(3.16) as

= i E[:v(nM)a:*(nM—kM-l—M—(l—i—{—M))]z_k

k=—o0

= Z E[m(nM):z:*(nM —(k—1)M—-(l—2+ M))]z_k
k=—oc0

= [z7' Ssx(2)]0,1—it M- (3.18)

From the definition of a pseudocirculant, we conclude that Syx(z) is pseudo-

circulant. We prove in Appendix 3.B that the (0,m)th entry of Syx(z) is the
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(M — 1 — m)th polyphase component of S,,(z). This implies that we can write
down Sz.(z) from the 0th row of Syx(2).
(b) If x(n) is a WSS process, then we can indeed write a valid autocorrelation

matrix as in (3.6). The entries of this matrix are

[Rux (k)i = E[w(nM — Da*(nM — kM — l)}
= E[a:(—z):z:*(-—kM — l)] (3.19)

The pseudocirculant property of Syx(z) implies

[Rux(k)]o, 1~ 1>i>0

[Rxx(k)]i,l = { [Rxx(k _ 1)]0,l—i+M l<i S M_1. (320)

Hence we can write,
Elz(—i)a* (kM —1)] = E[z(0)a*(=kM +i—1)] 0<il<M—1. (3.21)

Now consider E[w(n)w*(m)] We can write the time indices as n = ngM — ¢ and

m =myM — [ where 0 <¢,{ < M — 1. So,

E[w(n)w*(m)] z(noM — i)z*(moM — l)]

[
[:1: (=2)z*((mo — no)M — l)]

E
E
E[z(0)2*((mo — no)M +i — 1)
|

z(0)z*(m — n)] (3.22)

Hence z(n) is indeed a WSS process.

Remarks: The above proof holds in particular replacing z = e/* for signals
for which the z-transform does not exist, but the Fourier transform exists. It is
known that if the input to an LTI system is WSS, then the output is also WSS. The
right hand side of (3.15) is a product of three matrices. From Fact 3.2, we know
that if z(n) is WSS, then both Sy«(z) and Sy, (2) are pseudocirculants. If H(z)is
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pseudocirculant, then it is consistent with (3.15), because ﬁ(z) 1s pseudocirculant,
and so is the product. The natural question to ask is what does it mean for H(z)

to be pseudocirculant? The next result answers this question.

Fact 3.3: Consider the linear filtering system of Fig. 3.5(a). The signal y(n)
is output of the system, to which z(n) is applied as input. Let x(n) and y(n) be
the corresponding blocked versions. Let us rewrite the input-output relation of the

system with x(n) as input and y(n) as output (Fig. 3.5(b)) as,
y(n) = h(k)x(n — k). (3.23)
k=0

Let matrix H(z) be defined as the z-transform of the sequence h(k). Then H(z)

is pseudocirculant if and only if the original scalar system is LTI.

Proof: See [Vai88].

x(n) ym)  x(n) y (n)

— | SYSTEM |—> | H(z)
Mx1 Mx1
MxM

(a) (b)

Fig. 3.5 (a) A scalar system
(b) Corresponding blocked version.

This result together with (3.15) is consistent with the fact that the output of
an LTI system is WSS if the input is WSS. Finally, we mention a result that gives

the solution of an optimal filtering problem involving WSS signals.
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v (n)

Mx1
w (n) e (n)

—I>{A @

Mx1

\

error
MxM

Fig. 3.6 Optimal filtering setup.

Fact 3.4 : Consider the system shown in Fig. 3.6. If the signals w(n) and v(n)
are jointly-WSS, then the best filter A(2) in terms of minimizing error variance
E[eT(n)e(n)] is given by

A(2) = Sun(2)S3L(2). (3.24)

The matrix Sy (#) is the Z-transform of crosscorrelation Rwv (k) = E[w(n)v*(n—
k)]. This solution is called the Wiener solution to the problem mentioned above.
Proof: See [Mar86].

We know that if a matrix filter A(z) is pseudocirculant, then in fact there
exists a scalar transfer function corresponding to the unblocked input-output signal
description. On the other hand, if the blocked (matrix) transfer function is not
pseudocirculant then the corresponding unblocked transfer function is an LPTV
system. So for an optimal matrix-filtering problem if the solution given by (3.24) is
pseudocirculant, then it is in fact a scalar LTI system. The optimal solution is an

LPTYV system otherwise. We will use this fact later when we discuss the adaptive

filtering application.
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3.3 Basic Results

Using the concepts defined in the previous section, we derive some useful results in
this section. These pertain to the basic multirate building blocks; an interpolator,
a decimator, modulation, and a linear system. First, we prove two results about

modulation of a stationary signal by a deterministic signal.

x(n) y(n)
-
Lx1 Lxl1

f(n)

Lxl1

Fig. 3.7 Modulation of signal x(n).

Fact 3.5: Let x(n) be an M x 1 vector WSS process, modulated by a vector
function f(n) as shown in Fig. 3.7. Then the modulated output y(n) is WSS if

and only if f(n) is of the type
f(n) = de®™ d (possibly a complex) constant, 6 real. (3.25)

Proof: The “if” part can be easily verified by direct substitution. We prove the

“only if” part. Let us represent all the vector quantities in term of their individual

components as

zo(n) fo(n) Yo(n)
x(n) = ,f(n) = ,Y(n) = : (3.26)
a:M_l(n) fM—l(n) yM"l(n)

We can write the input output relation as

¥(n) = A(n)x(n) (3.27)
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where A(n) is an M x M diagonal matrix with entries (fo(n)... far—1(n)) on the

diagonal. The autocorrelation function for y(n) can thus be written as
Ely(my'(n— b)] = AmExmx(n— H]AT(n k). (3.28)
This gives the autocorrelation matrix as
Ry, (n, k) = A(n)Rux(k)AT(n — k), (3.29)
whose (4, 1)** entry is therefore
[Ryy(n, B)lip = filn)[Rox(R)]i,fi'(n — k). (3.30)

For y(n) to be WSS, we want all the above entries to be free from the time index
n. Consider the diagonal elements first. The :** diagonal element will not be a
function of n, if and only if f;(n)f¥(n—k) is independent of n, V k. Consider k£ = 0.

This implies that |f;(n)|? is independent of n. Hence f;(n) must have the form
fi(n) = ;™ ay(n) real. (3.31)
The (7,7)'* element of (3.30) thus becomes
[Roc(k)]ii fi(n)f} (n = k) = [Rexx (k)]s e [Pe? (e (M mei(n=h), (3.32)

Using the fact that this has to be independent of n, and using a particular value

of k (k =1), we get a recursion of the type
ai(n) = a;i(0) + np;, B; constant. (3.33)
Hence we can rewrite (3.31) as

fi(n)zdieje"", 0; real, d; constant. (3.34)



100

Now, if we use the expression in (3.24) for the (4,1)** element, we get
fi(n) ff(n — k) = dyd} dOin—0im+bik) (3.35)

For this to be independent of n, we should have 6; = 6; modulo 27r. Summarizing,

filn) = d;e?%™ so that (3.25) follows.

Remarks: This result implies that translating the power spectrum of a WSS
process by different amounts generates processes which are WSS themselves, but

are not jointly WSS.

Fact 3.6: Let z(n) be a (CWSS),, signal. Then the signal y(n) = f(r)z(n)
is (CWSS),, if and only if each polyphase component of the modulating function
f(n) with respect to M has the form a;e’®" («; possibly complex).

Proof: If x(n) is (CWSS)as, then its blocked version of length M will be a
vector WSS process. Similarly, if we block the modulating function f(rn), this
problem reduces to the setup mentioned in Fact 3.5. Since for the output y(n) to
be (CWSS),, it is necessary and sufficient that the blocked version be vector WSS,

the result follows.

Remarks: These results about modulation imply that if we modulate a WSS
signal by a cosine wave (y(n) = z(n)coswon), then the output y(n) is not WSS
even if z(n) is WSS (unless wy = 0, ).

We now turn attention to the remaining multirate building blocks.

Fact 3.7: Let y(n) = £(nM), where z(n) is (CWSS), . Then y(n) is CWSS
with period K, where K = L/gcd(L, M). Note the following special cases:

(1) L=M. Then K =1 so y(n) is WSS.
(2) L=1(ie., z(n)is WSS). Then K =1, and y(n) is WSS.
(3) L and M relatively prime. Then gcd(L,M) =1 and K = L regardless of M.

Proof of Fact 3.7: Using the input-output relation of a decimator, we can write
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the autocorrelation for y(n) as
E[y(n)y*(n —no)] = E[z(nM)z*(nM —noM)]. (3.36)
If K is the period of cyclo-wide-sense-stationarity, then
E[y(n + K)y*(n+ K — ng)] = E[y(n)y*(n — no)]. (3.37)
Thus, from (3.36) we get
E[x(nM)a:*(nM - nOM)] = E[:L'(nM + KM)z*(nM + KM — noM)] . (3.38)

Since z(n) is (CWSS);, (3.38) is satisfied if KM = [L for some integer I. The
smallest K is such that all prime factors of L are accounted for by the left hand
side. Since M has gcd(M, L) as the largest factor common with L, we get K =
L/ged(M,L).

Fact 3.8: Passing a (CWSS); signal z(n) through an (LPTV)y, system gives
a signal y(n) which is (CWSS), .

Proof: To prove the result, consider a corresponding blocked system obtained
by applying the L-fold blocked input x(n) to the L-fold blocked version of the
(LPTV);, system above. We know that blocked version of the (LPTV)y, system
is an LTI system and x(n) is WSS by definition of cyclo-wide-sense-stationarity.
Hence the output of the blocked system will be a WSS signal, and the corresponding
unblocked version y(n) will be (CWSS)1,. The result thus follows.

Fact 3.9: If we pass a WSS signal z(n) through an L—fold interpolator, the
output y(n) is (CWSS),. This setup is shown in Fig. 3.1(b).

Proof: Let us block the output y(n) into the vector process y(n) = [y(nL) e
] T

y(nL — L 4+ 1) Since y(n) is interpolated version of z(n), we get y(n) =
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(ac(n) 0...0)T. Hence

R..(k) 0O 0
0 0o ... 0

E[y(n)yf(n — k)] = SN K (3.39)
0 0 ... 0

The right hand side is independent of n. This means that y(n) is a vector WSS
process. From the definition of a CWSS process, it follows that y(n) is a (CWSS),

process.

So far we have seen the effects of basic multirate building blocks on stationary
random inputs. Since in the multirate filtering applications, these building blocks
are interconnected to form more complex systems, it is of interest to study similar

properties for some standard interconnections of these building blocks.

3.4 Results For Interconnections Of The Basic Multirate
Building Blocks.

We first consider the operation of L-fold interpolation. We prove that in
general the output of this multirate interconnection is not WSS even if the input
is.

Fact 3.10: Consider the L-fold interpolation filter shown in Fig. 3.1(c). If
z(n) is WSS, then y(n) is (CWSS), .

Proof: From Fact 3.9, we know that v(n) is (CWSS),. Hence from Fact 3.8,
we can conclude that y(n) is (CWSS); .

Another important multirate operation is fractional decimation or sampling
rate conversion. This is used in a variety of multirate applications. We prove that
this operation in general does not produce a WSS output for a WSS input.

Fact 3.11: For the multirate filter shown in Fig. 3.1(d), if input z(n) is WSS,
then the output y(n) is (CWSS)x where K = L/gcd(L, M).
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Proof: From Fact 3.10, we know that v(n) is (CWSS);. Hence the result

follows from Fact 3.6.

Necessary and sufficient condition for wide-sense-stationarity of y(n)

We now prove an important result. From Fact 3.10, we know that the output
of an interpolation filter in response to a WSS input is CWSS in general. We now
find out the necessary and sufficient conditions on the interpolation filter for the
output to be WSS.

Let us split H(e/“) into its polyphase components as follows
H(e?) = e DRy (L) 4 ...+ eI Rp_o (™) + Rp_y (7). (3.40)

We have explained how to obtain the above representation in Definition 3.10.

x(n) ol y(n)
. f L W_’ R () -
Z

1L
eJ

)

= R Y

Fig. 3.8 Redrawing Fig. 3.1(c) using polyphase
components.

Hence, we can redraw Fig. 3.1(c) as Fig. 3.8. Then using the multirate identity
of Fig. 3.9, we can simplify the implementation as shown in Fig. 3.10. Con-

sider the signal t(n) = y(n+ L —1). Fig. 3.11 shows the generation of t(n) from
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z(n). It is trivially true that y(n) is WSS if and only if ¢(n) is WSS. From Fig. 3.11

I
Y

G(ejm) '—> #L —>

Fig. 3.9 A well-known multirate identity.

RL-1(ejw) —}L

RL_Z(ejO)) —4L
1. -1
RO(ejO)) . 1L —.._J ‘

Fig. 3.10 Simplification of the implementation
in Fig. 3.8 using the multirate identity.

—

and Fact 3.2, we know that t(n) is WSS if and only if the blocked version t(n) =
[to(n)... tr—1(n)]T is WSS and S(z) is pseudocirculant. Let us define the matrix
transfer function G(ej“’) 2 [Ro(ej“’) ... RL_1(ej“’)] T We now derive the necessary

and sufficient conditions for the wide sense stationarity of ¢(n) in the following steps.

(1) The signal t(n) is WSS if and only if G(ej“’)GT(ej‘”) is pseudocirculant.



(2)

(3)
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G(e’ “’)Gf(ej “) is pseudocirculant if and only if the polyphase components can

be represented as

_27xP(w)
L

Rk(ej“’) = RL_I(ejW)ej(L—l—k)(-‘L”- ) Vo,

with the function P(w) satisfying the property that P(w + 27) = P(w) +
1 modulo L, V w.

The above representation is possible if and only if the frequency response
H(e’*) has the property that no aliasing occurs if we perform L-fold decima-
tion of the impulse response h(n). This is equivalent to the following condition
(Appendix 3.C): The frequency regions where H(e/*) is nonzero do not overlap
if drawn modulo frequency 27 /L.

Remark: For the interpolation scheme of Fig. 3.1(c), the condition for wide-

sense-stationarity of the output for the statistical case is the same as the condition

for image-free interpolation for the deterministic case (Appendix 3.C).

to(m

x(n) t(n)

R, = 4L

R @) L

r...
-

jO
R, (¢ O~ }L

(n)

b

Fig. 3.11 The generation of t(n) from x(n).
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Proof of Step 1:

Since t(n) is the output of a linear system to which z(n) is the input, it is

WSS. Using (3.15) we can write
See(e) = G(e7%) S, (e7)GT ()
= 8,.(e7)G(e2*)GT (&%) (3.41)

Thus, t(n) (and y(n)) is WSS if and only if G(ej“’)GJf(ej“’) is pseudocirculant.
Proof of Step 2:

The “necessary” part: We first assume that G(ej“’)GJ[(ej“’) is pseudocirculant and
prove that the polyphase components are related as above. Using the decimation

relation (3.2) we can write

L-1
. 1 Y W—2TM f W 2T I
Ry(e™) =7 3 TN I-D g(d (™)) k=0, L—1.  (3.42)

m=0

Let us represent the polyphase components in their magnitude-phase form as
Ri(e7°) = |Rp(e?*)|e?** )| Vw, k=0,...,L —1. (3.43)
The (3,1)t" entry of G(ei*)GT(e/*) is given by
(GG (e)]i1 = Sua(e)|Ri(e)] |[Ri(eF)[ed @21 (3.44)

If G(ej“’)GT( /@) is pseudocirculant all the elements on the main diagonal have to

be equal. This gives,
|Ri(e?)| = |Rp—1(¢’¥)|, VYw, k=0,...L—1. (3.45)

Using the fact that a pseudocirculant is Toeplitz in nature, we can say that the
(k,k+ 1)st elements have to be equal for k =0, ..., L — 2. This gives the following

condition on the phases,

dr(w) — dr41(w) = ¢(w) modulo 27w, Vw, k=0,...,L—2. (3.46)



107

Using; the property of pseudocirculants that the (1,0)th entry is obtained by mul-
tiplying the (0, L — 1)st entry by e™7, we get

do(w) — dr—1(w) =w + ¢1(w) — do(w) modulo 2 Vw. (3.47)
Using; the recursion (4.7) we get,
$r(w) =¢r_1(w)+(L—1—-k)p(w) modulo 2x VYw, k=0,...,L —2. (3.48)
Setting k = 0 in (3.48) and subtracting form (3.47), we get
Lo(w) =w modulo 27, Vw. (3.49)
This can be written as an exact functional equality as:
Lé(w) =w — 2rP(w) Vw, (3.50)

for an appropriate function P(w). Substituting (3.50) in (3.48) we get the following
relation among the polyphase components

_27P(w)
L

Ri(e?%) = Rp_y(e9%)ed(E71-R)(E ) Yw, k=0,...,L~1. (3.51)

Since (% — 2—’—’#) is a phase function, it has to be periodic modulo 27 with period

27. This gives the following condition on P(w)
P(w+27) = P(w)+1 modulo L, V w. (3.52)

This proves the “necessary” part.

An example of P(w) is shown in Fig. 3.12 for L = 4. It can be seen that for
this example, P(w) takes three different integer values in the interval 0 < w < 27.
This pattern repeats as per (3.52).
The “sufficient” part: We now prove that (3.51) implies that G(ej“")G]L(ej“’) is
pseudocirculant. If we assume that (3.51) holds for the polyphase components,
then the (z,[)th entry is given by

—27nP(w)
w ;w)‘

[G(e™)G (7))t = Sza(&)| Rp—a(e7) P71 (3:53)
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Fig. 3.12 An example of the function P(w).

It is easy to see that this satisfies the pseudocirculant conditions (3.11).

Proof of Step 3:

The “necessary” part: We first prove that (3.51) implies the spectral properties
mentioned in step 3. Substituting the relation (3.51) in (3.40), we get

L-1
H(ejw) — Z Rk(eij)e——jw(L——l-k)
k=0
= Rp—_1(e’“")e” it Z WZkP(wL). (3.54)
k=0
Consider the sum L
3w tren (3.55)
k=0

in (3.54). This sum will be nonzero for a frequency w if and only if P(wL) =
0 mod L. Let us study the behavior of P(wL) in the interval 0 < w < 27. Consider
a set of L distinct frequencies &;, [ = 0,...,L — 1 in this interval, seperated from
each other by integer multiples of 27/L. Due to the property (3.52), the function

P will take on the value (0 modulo L) once and only once among the frequencies
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&y, 1=0,...,L — 1. The transfer function H(e/*) can therefore be nonzero only
at one such frequency. This means that if for two distinct frequencies w; and
ws (w1 # wg modulo 27), H(e/*1) and H(ej“’2) are nonzero, then w; — wy # 2%&
unless k = 0 modulo L. This proves the necessary condition.

A possible H(e/*) corresponding to the function P(w) of Fig. 12 is shown in
Fig. 3.13. The filter has nonzero frequency response only in the interval where

P(wL) has the value (0 modulo L).

j®
A HE )
T T 1 L] ] : } 1 | | i 1 : »
0 T 2r

Fig. 3.13 A corresponding possible H(eJO)S.

The “sufficient” part: We assume that H(e/*) has the above-mentioned frequency
characteristics and prove that the relation (3.42) holds.

Consider equation (3.42) which shows how each polyphase component Ry (e’*)
is obtained from H (ej“’). Each polyphase component is obtained by adding L
images of H(e’*) stretched in the frequency domain by the factor L and shifted
by amount 27m, m = 0,...,L — 1. For the particular frequency characteristics of
H(e’%), the stretched and shifted versions of H(e’*) will not overlap. Hence for
each frequency w, there will only be one nonzero term in the summation (3.42).

We can represent the index of that term as a function m(w) of the frequency w.
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Furthermore, m(w) is independent of k. Hence (3.42) can be rewritten as
Ri(e?*) = %eﬂ—*ﬁ-l‘”'”"‘ DEI-H Y p—0  L-1.  (3.56)

This shows that the polyphase components satisfy the relation (3.51) with P(w) =
m(w). This completes the proof.

We can summarize the results proved above in the following theorem.
Theorem 3.1: The output of Fig. 3.1(c) is WSS for a WSS input z(n) if and
only if H(e’*) is such that the L-fold decimation of its impulse response does not

create aliasing.

Remarks: We have shown that for the interpolation filter shown in Fig. 3.1(c),
it is possible for y(n) to be WSS. We show in Appendix 3.D that the power spectrum

for the process y(n) is given by
o1 - o
Sy (e7%) = 7 Sea(F) [H()2 (3.57)

Thus, the power spectrum is in general an L-fold compressed version of S, ,(e/*)
possibly piecewise shifted in the frequency domain by frequency 2rm/L (m integer
and possibly different for each piece). This gives rise to an apparent contradiction as
follows: Suppose y;(n) and y,(n) are two WSS signals generated due the interpola-
tion operation using filters H(e’*) and G(e/*). Suppose the filter H(el)+ G(e/¥)
does not satisfy the frequency occupancy conditions of Theorem 3.1. Then could
it be true that the signal y(n) = yz(n) + y,(n), which is a sum of two WSS signals
is WSS (in spite of the fact that H(e/“) + G(e’*) does not satisfy the conditions
of Theorem 3.1) ? The answer is NO! It can be proved that y,(n) and y,(n) are
not jointly WSS if the filter H(e’*) 4+ G(e’) violates the conditions of Theorem
3.1. A proof is included in Appendix 3.E.

Summarizing, we have shown that for a scalar WSS process z(n) and corre-

sponding power spectrum S;;(e’*), we can perform the following operations on

Szz(€?%) without changing the WSS property at the output:
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1. filtering (or “distortion” of the power spectrum),

2. translation by any amount (time domain modulation)

3. stretching (decimation in time domain)

4. compression, and piecewise translation as explained in Theorem 3.1.

Since ideally bandlimited filters can not be implemented in practice, Theorem

3.1 implies that if we use interpolators in a multirate filtering scheme, the subse-
quent signals will not be WSS (their appropriately blocked versions will be WSS).
This fact has some interesting implications. One of these is illustrated in the next

chapter.

3.5 Discussion

In this chapter, we have addressed the question of the effects of multirate
systems on some statistical properties of random inputs. Starting from the basic
multirate building blocks, viz., decimator, interpolator, and modulation, we have
derived results for more complex interconnections. We have seen that when we start
analyzing multirate systems, the assumption that signals are wide sense stationary
is not valid even in theoretical study. It is more natural to assume that signals
are CWSS. We proved that output of an interpolator to a WSS input is WSS if
and only if it is filtered by an image-free interpolation filter. The output is CWSS
otherwise. Similarly, for time-domain modulation of a WSS signal, we have proved

that the output is WSS if and only if the signal is modulated by a harmonic signal.

These results are useful when one analyzes systems involving multirate filters.
For example, for the case of multirate adaptive fitlers, one needs these results to be
able to write down the optimal filter solution. In the next chapter, we illustrate an
application of the theoretical analysis to a novel multirate adaptive filtering scheme

for identification of bandlimited channels. This scheme exploits the fact that the
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channel is bandlimited and embeds the adaptive filter in a multirate configuration.
Using the results derived in this chapter, we prove that the optimal filter for this
scheme is a matrix filter. Using a matrix adaptive filter is computationally more
expensive. However, performance of a scalar adaptive filter (which is computation-
ally less expensive) tends to be close if the fixed lowpass filters in the multirate

scheme are designed to have good stopband attenuation.

Appendix 3.A
A proof of the equivalence of the definitions:
1) Definition 1 = Definition 2: From Definition 1, the (7,7)'* entry of the

autocorrelation matrix is indepedent of n. Hence

E[z(noL —1)x*(noL — koL — j)] (3.A1)

is independent of ng, for all kg, for 0 < 2,7 < L —1. Now let n = noL — 7 and
k = koL + 3. Then
E[z(n)z*(n — k)]
= E[:z:(ngL —1)z*(noL — koL — 1 — ])]
= E[e((no + 1)L — §)z*((no + 1)L — keL — i — j)]. (3.42)
(since the expression is independent of ng)

= E[z(n+ L)z*(n+ L — k)] (3.43)

so that R,;(n,k) = Ryz(n + L, k).
1) Definition 2 = Definition 1: The (3,7)** entry of the autocorrelation matrix

in Definition 1.

E[m(nL —2)z*(nL — kL — ])]
= E[m(nL +L—)z*(nL+L—kL —])] (by Definition 2) (3.44)

= E[z((n+ 1)L —i)z*((n + 1)L — kL - j)]. (3.45)
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Clearly, the (,7)!* entry is independent of n.
Equivalence of Definition 2 and Definition 3 can be established by a similar

proof by replacing the variables ¢ and j in the above proof by —i and —7 respectively.

Appendix 3.B
Reproducing (3.17) for the (0,m)th entry of Sxx(2) we get

[Sxxlom = Y E[z(nM)z*(nM — kM —m)]z~*. (3.B1)

k=—o00

If R;;(k) is the autocorrelation function of z(n), then (3.B1) can be written as

[SxxJo,m = i Roo(kM +m)z"F. (3.B2)

k=—o0
From (3.14) we can clearly see that this is the z-transform of the (M — 1 — m)th
polyphase component. Thus, the (0,m)th entry of Sxx(z) is the (M — 1 — m)th

polyphase component of S;;(z).

Appendix 3.C

We first prove that if the signal h(n) has the spectral characteristics mentioned
in Theorem 3.1, then L-fold decimation of the signal does not result in aliasing.
In the frequency domain, the decimation process creates L images of the original
function stretched by the factor L, shifted by 2am, m = 0,...,L — 1 and added.
Clearly, no aliasing results for the spectral conditions of Theorem 3.1.

Converesely, if no aliasing results after L-fold decimation, then the L-fold
stretched and 27m shifted versions do not overlap. This in turn implies that the
frequency response has maximum 27 /L spectral occupancy and its 2xm/L, m =

0,...,L-1frequency shifted versions do not overlap. This is precisely the condition

in Theorem 3.1.
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Remarks: A filter H(e/*) with the frequency characteristics as above has some
special properties in the deterministic multirate filtering case. The filter can be
used before the L-fold decimator as shown in Fig. 3.14(a) to ensure that no aliasing
takes place after decimation. Similarly, filtering output of the L-fold interpolator
by H(e?¥) as shown in Fig. 3.14(b) suppresses unwanted images. In a traditional
image suppressing filter, this is achieved by filtering out L — 1 images and retaining
one of the L images. However, for the filter H(e’“), the output power spectrum
will in general consist of different pieces from different images such that these pieces
can be put together by frequency translation and an L-fold compressed version of
the input power spectrum can be obtained. Thus, H(e’*) is a generalized image

suppressing filter.

- H(ejm)

—{ue’) L

(a) (b)

Fig. 3.14 Deterministic case.
(a) Alias-free decimation.
(b) Image-free interpolation.

Appendix 3.D
Derwation of the output power spectral density expression:

We assume that y(n) (and hence ¢(n)) is WSS. We derive the expression for
Si(e79) (= Syy(e?*)). In Appendix 3.B, we have proved a result which implies that

the entries of the 0tk row of the matrix Stt(ej“") are the polyphase components of
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Si(e?¥). Using this and the expression (3.44) we can write,

L-1
Su(e™) = 3 Ro(e™F)R} (7°7) Spa(e7h )e !
=0
L-1

= Ro(eij)Szx(eij)( Z Rl(ej“"[’)ej“")*
=0
. . ) L-1 ' ‘
= RO(erL)Szz(erL)e—Jw(L—l)( Z Rl(eij)e-—_;w(L_l_l))*
=0
= RO(6jWL)Sm(eij)e—jw(L—l)H*(ejw). (3.D1)

Since

Ro(e/) = Rp—q(e/®)edE—Dw yy =1 (3.D2)

we can rewrite (3.D1) as
Set(e7) = Spa(e?LYH* (7 Rp—y (/YWD (3.D3)
Using (3.53) we can write

L-—1
Suu(e7) = Suu(e?F) |Rp—a ()2 Y WD), (3.D4)
=0

Using the fact that the sum (3.55) that appears in the above equation can only

take two values ( 0 and L), we can write this down as

Su(e’) = Syy(e) = % ez (e70) H (7). (3-D3)

Appendix 3.E
We have to prove that if the filters H(e’*) and G(e’*) are such that the filter

H(e?*) + G(e?*) does not satisfy the frequency characteristics necessary for wide-

sense-stationarity in Theorem 4.1, then the outputs y,(n) and y,4(n) are not jointly
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WSS. If H(e?“)+G(e?*) does not satisfy the frequency conditions, then at least one
of the frequency components of G(e’“) is obtained by translating an appropriate
frequency component of H(e’*) in the frequency domain by an integer multiple
of 2m /L frequency (and passing it through a bandpass filter for a possible change
in shape). Hence it is enough to prove that for Fig. 3.1(c), a 27 /L frequency
translated version of H(e/“) gives an output which is not jointly WSS with the
output of H(e/¥).

To prove this, let us assume that G(e’“) is obtained by frequency shifting
H(e’%) by 2n€/L (M integer). Then the polyphase components Fy(e/*) of G(e/%)

obtained as in Definition 3.10 satisfy
Fy(e?) = W ME=1=0) Ry (e, (3.E1)

We prove by contradiction that y;(n) and y,(n) are not jointly WSS. If the signals

are jointly WSS, then in particular
Elyn(nL)y;(nL —mL + k)] = E[yp(nL + 1)y;(nL —mL +k +1)], Vm. (3.E2)

Taking the Fourier transform of both the sides (with respect to the index m)
and using the appropriate polyphase components for the power spectral density

expressions,we get
Ro(e’™)Fy(e’) = Ra(e’) Fiy (7). (3.E3)
If we substitute (3.E1) in this we get
Ro(e™)RE(M)W 770 = Ri(e) R ()W TP Wl 3.8y

Using (3.51) we can show that (3.FE4) is not true, hence (3.E2) does not hold. This
implies that the signals yx(n) and y,(n) can not be jointly WSS. This proves the

result.
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Chapter 4

Adaptive Identification of Bandlimited Channels
Using Multirate /Multistage FIR Filters

System identification is an important problem in digital signal processing [Hya86].
In adaptive system identification, we assume that the system is an FIR or an IIR
filter and try to identify the system parameters. In our discussion, we are going to
assume that the unknown system can be represented as an FIR filter. A typical
system identification setup is shown in Fig. 4.1. From the known input z(n) and
output y(n) up to a certain time n, we try to estimate the system parameters. In
applications like echo cancellation, rather than identifying the system, one is inter-
ested in cancelling the effect of the output of the unknown system by setting up an
adaptive filter in parallel [Lee85]. There are well-known adaptive algorithms such as
the LMS algorithm [Wid85] and the fast RLS (FRLS) algorithm [Cio84] which min-
imize the sum of error squares at the output. The computational count per input
data sample is about 2L, for the LMS and 7L, for the FRLS algorithm where L, is
the length of the adaptive FIR filter used in the identification/cancellation scheme.
In real-time applications, the adaptive computations have to be performed in the
time between two input samples. Some applications such as High Definition Tele-
vision (HDTV) [Jur91] or the teleconferencing application discussed later need the
adaptive filter to have long lengths. This requires the signal processing hardware
to be fast to handle high speed input data. A natural question to ask is if we can

somehow reduce the speed and amount of computations if we have some additional
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Fig. 4.1 Adaptive Channel Identification Scheme

information about the system we are trying to identify. A scheme to reduce speed of
computations by blocking the input has been reported in [Cla81]. In this method,
the input signal is split in M sub-bands by passing it through a filter bank or by
taking the FFT of the blocked input signal. Adaptation is performed at a reduced
speed on separate adaptive filters in each sub-band. For long lengths of adaptive
filters, some improvement in the computational count has also been reported in
[Cla81]. This method however does not use any information about the unknown
system. Can we achieve any further savings if we know some more information
about the unknown system? In this chapter, we show that we can indeed achieve
computational savings if we know that the unknown system is bandlimited. We can
make use of a prior: knowledge about bandlimitedness of the channel to achieve
this reduction which can be very high if the system is bandlimited to a small
frequency.

If a signal is bandlimited in the digital domain, it means that the signal is over-
sampled. So we can discard some of the samples and still retain all the information
about the signal. We can use this fact to reduce the computational complexity for

the identification/cancellation of an unknown bandlimited channel. The implemen-
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tation naturally leads to splitting up the adapative filter as an adaptive part and
a nonadaptive part. The adaptive part is embeded in multirate filters. This not
only reduces the number of computations but also the speed at which the adaptive
algorithm is performed.

In Section 4.1, we take a look at some applications where the unknown sys-
tem is bandlimited. We briefly discuss the current techniques which reduce the
computational complexity of the adaptive identification using the bandlimitedness
information. In Section 4.2, we develop the new method assuming that the un-
known channel is bandlimited to 7L/M (L and M integers). We will see how
fractional decimation is used to reduce the speed of computation. A brief discus-
sion on the implementation aspects is also included. The Wiener filter solution for
the scheme presented is derived in section 4.3. We show that the optimal filter is
an LPTV system. However, simulations presented in section 4.4 indicate that a
transversal adaptive filtering structure results in no perceptible degradation in the
performance over a more general matrix adaptive filter, if the lowpass filters are

designed to have good stopband attenuation.
4.1 Examples Of Bandlimited Systems

Bandlimited systems have been mentioned in the literature in a variety of applica-
tions. It is instructive to study some the adaptive filtering applications involving
bandlimited systems. In this section, we describe two such applications. Some
other applications are mentioned in [Wid85, Chapter 13].
4.1.1 Acoustic Echo Cancellation in Teleconferencing

In the teleconferencing application, a local room and a distant room are con-
nected through audio and video transmission. We are interested in the audio trans-
mission part of the application. This is schematically shown in Fig. 4.2. We have

not included such implementation details as the analog-to-digital converters in this
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not included such implementation details as the analog-to-digital converters in this

Local Room
x(n)
' o
adaptive /5‘
filter an) _ -~
—t Q*}: & s(n)

e(m)  y(n)=an) + s(n)

Fig. 4.2 A schematic diagram showing the
teleconferencing application.
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{ ” h,gftku Atﬁ
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Fig. 4.3 Frequency characteristics of the echo a(n). Scales: X 1KHz
/Div, Y 10DB/Div (from [Gil88]).
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figure, because these are not pertinent to the discussion below. An exact scheme
can be found in [Gil88]. The audio signal z(n) from the distant room is amplified
through a loudspeaker into the local room. The speech signal s(n) from the local
room is collected through a microphone and transmitted to the distant room. The
signal picked up by the microphone consists of local speech as well as the speech
from the distant room amplified through the loudspeakers (the signal a(n) in Fig.
4.2). The problem is to eliminate this unwanted feedback of speech signal to the
distant room because it creates unnecessary degradation in the quality. An adaptive
filter is used to eliminate the part of signal being transmitted that is generated by
passing the distant speech signal through the room. Thus, in signal processing
language, the adaptive filter is set up to match the acoustic response of the local
room. It has been mentioned in literature [Gil88] that for the sampling frequency
of 16 KHz, the room acoustic response can have several thousand coefficients. It
has also been mentioned that this response is typically bandlimited. Fig. 4.3 shows
the frequency characteristics of the room-acoustic response for the practical setup
used in [Gil88]. It can be seen that the response is bandlimited to 77 /8 frequency.
Since the adaptive filter has to have a large number of coefficients, for a real time
application of this echo cancellation scheme, it becomes important to achieve a

reduction in the computational complexity.

4.1.2 Adaptive Equalization of Telephone Channels

Researchers have shown that telephone channels are typically bandlimited
[Ung76]. Fig. 4.4 shows the frequency response of a typical telephone channel.
It can be seen that for an 8 KHz sampling frequency, the channel is bandlimited
to 37 /4 frequency. Adaptive filtering is used to enhance performance of signal
processing applications. Speech signal transmitted over the telephone channels is

known to be bandlimited. The signal is oversampled for a variety of reasons, the
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Fig. 4.4 Frequency response of a telephone channel (from [Lee85]).

most important one being to reduce noise sensitivity of the receiver [Ung76]. The
various applications include clock-phase recovery for data modems [Ung76], inter-
ference cancellation or echo supression [Wid85, Chapter 12].

Researchers have realized the fact that computational savings can be achieved
by using the information about bandlimitedness of the unknown system. Use of
the multirate building blocks like decimators and interpolators has been proposed
[Lee86] to reduce the speed and amount of computations performed. In a re-
cently proposed method, the authors split the input signal in frequency bands of
equal widths and perform adaptation only in the sub-bands with substantial energy
[Gil88] in them. This method is shown in Fig. 4.5. In this example, the input z(n)
1s split into four sub-bands. The output d(n) of the unknown channel is also split
into four sub-bands and adaptation is performed in each sub-band separately using

the error in that sub-band. If the unknown system is bandlimited to 37 /4, then
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Fig. 4.5 The sub-band adaptation scheme.
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the energy in the highest energy sub-band is not going to be significant. If we do
not adapt in this sub-band, there will not be a significant change in the total error
of the adaptive procedure, but this clearly results in savings in computations. In
general, for a 7L /M signal, adaptation is performed in L of M sub-bands. Later
in the chapter, we will compare the computational complexity of this method with

the new method.

4.2 The New Method

Consider again the channel identification scheme of Fig. 4.1. Let us assume
that the channel can be represented as a linear time invariant system with trans-
fer function C(z). The adaptive filter is represented by coefficients a; »,( i =
0,...,Ls — 1) where L, is the length of the adaptive filter. The second subscript
indicates the time instant of adaptation. In the adaptive identification procedure,
the coefficients are updated to minimize an appropriate measure (mean square er-
ror) of the error e(n). Qualitatively speaking, if the adaptation procedure converges
to some steady state values a;, then the frequency response of the corresponding
filter A'(e’*) resembles the channel frequency response. Suppose that the chan-
nel is bandlimited to frequency o (i.e., 0-BL). A typical plot of magnitude of the
channel frequency response for this case is shown in Fig. 4.6. For this case, the
response A'(e?*) will also be close to being o-BL. We can use this information to
modify the adaptive filter as follows: split the adaptive filter as a cascade of a fixed
o-BL filter H(z) and an adaptive part (Fig. 4.7). One advantage of this is that
the adaptive part would now typically have fewer coefficients as it is required to
match the passband shape of |C(e/*)| only.

We can further note that the input u(n) to the adaptive filter is a ¢-BL signal.
This suggests that there is some redundancy in u(n) due to oversampling. We can

thus decimate the signal using a fractional decimator [Vai90] before feeding it to
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the adaptive filter. If L and M are two integers such that ¢ < #L/M (L and M
are assumed relatively prime without loss of generality), then we can decimate the
signal by the ratio M /L. The modified adaptive filtering structure incorporating

the fractional decimator is shown in Fig. 4.8.

dck)
Unknown
| bandlimited _4 M/L

channel

T 1 ek

H -
@) Adaptive
X(Il) | o] (lowpass) _>¢ M/L | Filter

cutoff © y(k)

represents a fractional
—» i M .
* /L decimator

Fig. 4.8 Fractional decimation of bandlimited
signals in the adaptation scheme.

Let us study the effect of fractionally decimating the signals. The fractional
decimator is drawn in Fig. 4.9. The input u(n) is a 7L /M bandlimited signal. The
signal ¢(n) has a frequency response which is an L-fold shrunk version of U(e/*)
repeating every 2r/L. The lowpass filter H'(z) is used to clean out the images
created due to interpolation (Fig. 4.9(c)). Finally, the decimator stretches out the

output frequency response to occupy the entire bandwidth.
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Fig. 4.9 Fractional decimation by the factor M/L
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An immediate advantage of using the fractional decimation circuit is that the
signal w(n) input to the adaptive filter has a slower rate compared to the input
z(n). We can further reduce the complexity by noticing that the filters H(z) and
H'(z) are performing the same filtering operation on the input signal z(n). This
is explained in Fig. 4.10. Using the multirate identity shown in Fig. 3.9, we
can redraw Fig. 4.10(a) as Fig. 4.10(b). As we can see from Fig. 4.10(c), the
frequency responses of H(z") and H'(z) are identical where the input frequency
response is nonzero. Thus, it is enough to have only one filter H'(z). We will
denote this combined filter as H,(z). Qualitatively, we can say that the adaptive
filter is now required to match the M/L-fold stretched response C(e/“Z/M) in the
region 0 < w < 7. This in turn results in computational savings. This idea is
explained as follows. Consider the “stretched passband” of the channel (shown in
Fig. 4.11). From Fig. 4.11, we can see that this stretched version is smoother. This
in turn means that, roughly speaking, the adaptive filter now can have a smaller
length.

The final scheme is shown in Fig. 4.12. This method offers the following
advantages:

(1) the adaptation takes place at a lower rate, and
(2) the adaptive filter has a smaller length because it needs only match passband

of the channel frequency response.
Implementation Aspects

Two types of computations need to be performed for implementation of the new
method:

1. implementation of the fixed lowpass filters H.(z) and H,(z),

2. implementation of the adaptive algorithm.

For given values of L and M we have to design filters H,(z) and H.(z). Both
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Fig. 4.12 Multirate adaptive filtering scheme for
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these filters are lowpass with #/M cutoff frequency. However, since the input to
H.(z)is a 7L /M bandlimited signal, we can design H.(z) to have a wider transition
band ((w/L —~ n/M) wide). This reduces the filter length required. Similarly, the
passband of H,(z) need not be very carefully designed. The adaptive filter that
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follows H,(z) performs the function of matching the passband shape of the lower
branch and upper branch in Fig. 4.12. This helps reduce the length of H,(z).
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Fig. 4.13 shows the ideal frequency responses for the filters H,(z) and H.(z). We
assume that these filters are FIR linear phase filters designed by the McClellan-
Parks program [McC73]. We can implement these filters at a rate lower than the
input data rate by using both Type I and Type II polyphase decompositions. Using
this method proposed in [Hsi87], we can implement these filters at the slowest rate
in the system. This method eliminates redundancies in filter implementation by
using the fact that the input has nonzero elements every L** sample only, and the
output has to be calculated every M?* sample.

The adaptive filter can be implemented using an appropriate adaptive algo-
rithm. In the subsequent discussion, we assume that we are using the LMS algo-
rithm. The method offers both reduction in the length of the adaptive filter and

reduced speed of computation.
Computational Complexity of the New Method

Suppose the unknown channel impulse response is estimated to have length L..
For running the LMS algorithm on the adaptation scheme shown in Fig. 4.1, we
have to perform 2L, + 1 multiplications and 2L, + 1 additions per input sample
(abbreviated MPU and APU).

For the new multirate method, we have to calculate computational complexity
for (i) the adaptation procedure, and (ii) implementation of the nonadaptive filters.
Let Ly be the length of the interpolation filter H.(z). Using the efficient way of
implementing multirate filters by decomposing in polyphase components mentioned
in [Hsi87], we require Ly/M MPU and (Lf — 1)/M APU. Similarly if Ly, is the
length of H,(z), we need Ly/M MPU and (Ls — 1)/M APU for implementating
H,(z). One way of choosing the length of the adaptive filter is by writing

Lh—1+MX(La—l)ZLf—1+LX(LC—1). (4.1)

Satisfying this equation ensures that the highest order of 2! in the transfer func-
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tions in the upper and lower branches of Fig. 4.12 are equal. However, in our
experience, the adaptive filter can have a smaller length without degrading per-
formance significantly. Using (4.1), and using the fact that the adaptive filter is
implemented at (L/M )th the rate of the input data rate, we get the computational

complexity for the algorithm as

L, 2L °L L
MPU = 2(M) LC+M5(Lf“Lh)+.M(2_ M) (4.2a)
L., 2L °L L. 2

Compared to the LMS method using transversal adaptive filter, this method thus
offers savings in computations by a factor (M/L)? for sufficiently long length L.
of the channel impulse response. For long channel lengths, the dominant term in

the complexity expression is
2L2
'j\'/_ﬁLC' (4.3)
For the case of transversal adaptive filter where no assumption about the bandlim-

itedness of the unknown system is made, the corresponding term is
2L.. (4.4)

The corresponding expression for the sub-band method is [Gil88§]

10L

—=5 L. (4.5)

Strictly speaking, the complexity expressions (4.3) and (4.5) can not be compared
because both expressions are derived assuming ad hoc ways of deciding the length
of the adaptive filter. We would like to emphasize here that our experience is
that for a comparable computational complexity, the new method offers superior

performance in terms of minimizing the mean square error at convergence.
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4.3 Wiener Filter Solution

Even though the above scheme has its own advantages, it also brings with it
some disadvantages. To explain this, let us analyze the scheme of Fig. 4.12 to get
the optimal set of coefficients a} under the assumption that the input z(n) is WSS.
From Fact 3.11 we know that the signal w(k) input to the adaptive filter is CWSS
with period K = L/ged(L, M) = L (the signal would be WSS if and only if H,(2)
is ideally bandlimited). Due to this, we can not use traditional Wiener filter theory
to derive the optimal set of coeflicients a{. The L-folded blocked version w(k) is a

vector WSS process.

v(k)

+

N »

] * . e(k)
+ .
P

y(k)

w(k)

Fig. 4.14 Optimal filtering problem for
the scheme in Fig. 4.12.

We can thus pose a matrix-Wiener filtering problem (Fig. 4.14) to solve for
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the L x L optimal coefficient matrix al,. The L x 1 output y(k) of the block filter
is compared with the blocked signal v(k) to obtain error e(k). The error e(k) will
be WSS and we can obtain the Wiener solution A(z) which minimizes error energy

EleT(k)e(k)). We summarize the discussion above by proving the following result.

Fact 4.1: Consider the channel identification problem of Fig. 4.12 with L and M
relatively prime. The Wiener (optimal) solution is in general an (LPTV), system
and is scalar LTI if and only if both the filters H, a(ej“’) and H c(ej“’) are image-free
interpolation filters.

Remark: In particular, we are going to consider lowpass filters only. Hence we
can say that the Wiener solution is scalar LTI if and only if the filters are ideally
bandlimited to 7L /M.

Proof of Fact 4.1: From Theorem 3.1, for nonideal lowpass filters H.(e’) or
H,(e’*), the input w(k) and the desired signal v(k) will be (CWSS);. Both the
signals are WSS if and only if the filters are ideal lowpass filters. Since the signals
are (CWSS); in general, the blocked versions v(k) and w(k) are vector WSS. From

(3.24) we know that the Wiener solution is given by
A(e5%) = Sh(e)SZL (79, (4.6)

The matrices Swy(e?*) and S,,1,(¢/*) in general are not pseudocirculant, so A(e/*)
in general need not be pseudocirculant. From Fact 3.3, it can be seen that the
optimal filter can not be thus written as an LTI system. If the optimal solution
has a matrix form as in (4.6), then the output at time n is the output of one of L
filters (each filter being a row of A(e’¥) ) depending on the value (k¥ modulo L).
Thus, the optimal filter is an (LPTV); system.

However, in the case when both the lowpass filters are ideal, both the signals

w(k) and v(k) are WSS. Thus, both the matrices in (4.6) are pseudocirculant. It

is known that product of two pseudocirculant matrices is a pseudocirculant matrix



136

[Vai88]. Thus, the optimal filter will be an LTI system for this case. The transfer
function of the optimal filter in this case would be A(e/*) = 25;01 eIk 4, (eIl
where Ak(ej“’) are entries of the Oth row of A(ej“’).

For a real-time setup, the above result leads us to the following conclusions.

1. To be able to converge to the optimal solution, we should use an L x L adaptive
filter a,. This would result in a better performance compared to a scalar
adaptive filter. However, a block filter is inherently more complicated than a

scalar filter and might offset the advantages offered by the multirate approach.

2. As the stopband attenuation of filters H,(2) and H.(z) increases, the perfor-
mance of the scalar filter will approach that of the block filter. As a result,

the use of a scalar adaptive filter would result in little loss in performance.

Clearly there is a tradeoff involved in designing H,(z) and H(z). We shall not
further discuss the optimal choice in this tradeoff (which appears to require careful
study) but proceed to demonstrate the above ideas with an example. However, as
mentioned before, the passband ripple specifications for H,(z) and the transition

bandwidth for H.(z) are not very stringent.
A Special Case: 0 =n/M

Now we consider the special case where the channel bandwidth is o = 7 /M. For this
case since L = 1, the filtering scheme does not have an interpolator. This scheme
is shown in Fig. 4.15. This means that we now decimate the appropriate signals
by the integer factor M. The adaptive filter has approximately M times fewer
coefficients, and operates at M times lower rate. So we achieve computational
savings by a factor M?. At convergence, the system is equivalent to Fig. 4.16.
The cascade transfer function H,(z)A(2™) now approximates the channel C(z)
(neglecting the effect of H.(z)). This scheme can therefore be considered to be

an extension, to the adaptive regime, of the Interpolated FIR (IFIR) approach for
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efficient design and implementation of narrowband FIR filters [Neu84]. Once again,

the main purpose of H,(2) is to provide satisfactory out-of-band attenuation. Its

passband ripple size is not crucial.
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Fig. 4.15 Adaptive filtering scheme fora = /M

d(k)

AzM) | JM

e(k)

y(k)

Fig. 4.16 Redrawing the adaptation scheme of Fig. 4.15
after convergence.
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4.4 Simulations

Consider a simulation example where the channel C(z) was simulated using
an FIR filter of length 77 (not linear phase). The channel was designed to be
bandlimited to frequency 37 /4. The channel frequency response is shown in Fig.
4.16. We thus chose L = 3, M = 4 for the simulation. The filters H,(z) and
H.(z) were designed to be linear phase FIR filters of length 47 and 31 respectively,
designed by the McClellan-Parks program [McC73]. The adaptive filter was chosen
to have length 30, since this length gave satisfactory performance (although this
length does not satisfy (4.1)). The filter was adapted for 2000 samples of the input
signal. The magnitude of the channel frequency response is compared with the
magnitude of the adaptive filter (after convergence) in Fig. 4.17. A plot of the
difference in the phases is also shown in Fig. 4.18. From these results, it can be
seen that the new method gives excellent performance. The learning curve for this

adaptation procedure is shown in Fig. 4.19.

Since the optimal solution is a matrix filter, it is of interest to compare the
performance of a scalar filter with a corresponding matrix adaptive filter. Two
different cases were studied: (1) scalar adaptive filter, and (2) matrix adaptive
filter. For the scalar adaptive filtering case also, the adaptive filter was chosen to
have length 30. For the matrix adaptive filter, the adaptive filter was a 3 x 3 matrix
with each entry being a length 10 filter. The reason to choose this length is that
if the lowpass filters were ideal, blocking a length 30 filter (chosen for the scalar
adaptive case) would have resulted in block matrix with entries 10 coefficients long
each. The blocked signals w(n) and v(n) were used in the adaptive updating. The
adaptation procedure was performed for various values of the step size p. The
results presented here are for p = 0.1 for the scalar and y = 0.3 for the matrix

adaptive filter, because these values gave minimum error energy at convergence
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(over a wide range of values for y). The error energy at convergence of these two
cases was compared for different attenuations of the lowpass filter H,(z). The
filter H.(2) had 51 DB stopband attenuation and it was not changed throughout
the simulations. Table 4.1 gives the results of the simulation. A typical plot of how

error energy reduces with iterations for both the methods is shown in Fig. 4.19.

Stopband Error energy at convergence (db)
attenuation of .
Ha(z) (DB) Scalar Matrix
41 -15.4 -14.1
29 -13.1 -13.4
21 -9.5 -11.4
18 -7.4 -9.0

Table 4.1 A comparison of the performance of scalar and
matrix adaptive filter.

The results show that the matrix adaptive filter performs better than the scalar
adaptive filter in terms of minimizing the error energy at convergence. This agrees
with Fact 4.1 because the scalar adaptive filter converges to an LTI system which is
suboptimal if H,(z) is not ideally bandlimited. On the other hand, the matrix filter
converges to an (LPTV), filter. As the stopband attenuation of H,(z) increases
the signal w(n) gets closer and closer to being WSS. So the relative degradation in
the performance of the scalar adaptive filter reduces, as seen from Table 4.1. This
shows that designing H,(z) to have “good” attenuation reduces the degradation in

the performance.
4.5 Summary

In this chapter, we have presented a computationally efficient method for adap-

tive identification of bandlimited channels. We have seen some applications where
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bandlimited unknown systems occur. We have shown that the bandlimitedness
of the unknown system can be used to reduce the length and the speed of oper-
ation of the adaptive filter. Using the theory developed in the previous chapter,
we have shown that the optimal solution for the filtering scheme developed here is
an LPTV system. Simulations however show that a transversal adaptive filter has
comparable performance if the lowpass filters in the optimal filtering scheme have
good stopband attenuation. Simulations are presented showing that the new adap-
tive method gives excellent performance compared to the existing methods. For a
special case of the cutoff frequency o = 7w /M, we have pointed out the similarity

between this method and IFIR filter designing technique.
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Chapter 5

Floating Point Error Variance Analysis
of Signal Processing Algorithms

5.1 Introduction

In practice, when signal processing algorithms are implemented on computers or
special purpose hardware, they are associated with roundoff errors due to the fact
that the computations are performed using a finite bit representation of multiplier
values and signals involved in the algorithm. In a finite bit representation, all
the quantities involved in the computation can take on only finitely many values
belonging to a set of real numbers. The set of these permissible values depends
on the number system used for the computations. Thus, we have to represent any
real number by an appropriate permissible number. This is called “quantizing” a

real number. If z is a given number which is represented by a permissible number

Tp, then the quantity

e=z—a, (5.1)

is called the quantization error associated with the representation. In the imple-
mentation of an algorithm, since all the quantities involved are quantized in this
way, any intermediate quantities computed will tend to be different from the exact
value (that which would be the result of an exact or an infinite bit precision com-

putation). Although the quantization error in (5.1) associated with each number is
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very small, depending on the sequence of computations, the final answer can differ
from the exact answer considerably. The study of such errors is referred to as the
roundoff error analysis. Most signal processing algorithms consist of repeated use
of some basic computational steps. It is therefore important to first perform the
roundoff error analysis of these basic steps. The results obtained can then be used
in the error analysis of more complex algorithms. As an example consider the LMS
algorithm mentioned in Section 1.1. The computations performed are:

y(n) = a’(n)x

e(n) = d(n) —y(n)

a(n+ 1) = a(n) + pe(n)x(n).

It can be seen that all these computational steps can be written as a dot product
of appropriate vectors. Hence to be able to analyze roundoff errors occuring in the
LMS algorithm, understanding of errors incurred in dot product computation is
important.

The two most important issues involved in the roundoff error analysis context
are:

(1) stability of a given algorithm, and
(2) the correctness of the final solution obtained.

Most of the signal processing algorithms are in some form an iterative tech-
nique to arrive at a certain result. In real time applications, these iterations have
to be performed as the new data comes in. During the iterative computations, it is
possible for the quantization errors to accumulate in such a fashion that the algo-
rithm fails to converge. In the worst case, the algorithm might become unstable. It
has been shown that certain algorithms such as the RLS algorithm used in adaptive
filtering can become unstable under quantization [Lin84], [Lju85]. This makes the
study of the stability of a given implementation (fixed point or floating point) and

a corresponding quantization scheme very important. In a not so disastrous effect
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of quantization, an algorithm might converge to a solution with some error in it.
To get an idea about the correctness of the final solution is also very important
from the application viewpoint.

In this chapter, we study a third important aspect of roundoff error analysis:
(3) the typical behavior of an algorithm under quantization.

For the first two types of roundoff error analyses mentioned above, the aim is to
derive an upper bound on some appropriate norm of the error incurred at a certain
stage in the computation. To do this, one assumes the worst case accumulation of
errors. The error is assumed as being the “output” of the algorithm. This idea is

shown in Fig. 5.1.

input ~
data  —™ Algorithm | €=1()-()

fl(.) = computed value
(.) = exact value

Fig. 5.1 Roundoff error as the output of an algorithm.

This bound gives an idea about the stability and correctness of the compu-
tation. This analysis however does not answer probabilistic questions of the type
“What would a typical value of the error be?” More specifically, we would like
to know the mean and variance of the error for some appropriate choice of the
statistics of the input signals. Using these quantities we can write the signal to

computational noise ratio of the algorithm defined as

Output signal energy

SNR = (5.2)

Error variance

This quantity gives us additional insight regarding the behavior of an algorithm

under finite bit precision. The SNR figure for an algorithm tells us about the energy
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level of the computational noise added to the output signal. We can thus compare

error performance of two implementations on the basis of their SNR figures.

In this chapter, we present results for the error variance analysis of some basic
signal processing algorithms. As mentioned before, computation of dot product is
a key step in signal processing algorithms. We therefore perform the error variance
analysis for dot product computation. The SNR or the error variance values of
different algorithms can be used to compare their relative performances, or “ro-
bustness” to quantization. We highlight this aspect by performing this type of
comparison for Givens Rotations (GR) and Householder Transformations (HT)
used for QR decomposition of matrices.

In the discussion that follows, we perform error variance analysis for floating
point implementation only. In the recent years, floating point hardware for real
time signal processing applications has become a reality. Floating point imple-
mentation offers some advantages such as increased dynamic range. Due to the
increasing popularity of floating point implementation, it is important to perform

error variance analysis for this case.

Computation of dot product of a vector x with another vector y or with it-
self needs to be performed in a number of signal processing algorithms. Many
researchers consider the dot product computation as a basic arithmetic operation
along with the four fundamental arithmetic operations: addition, subtraction, mul-
tiplication and division [Kul86]. Well-known adaptive filtering algorithms like the
LMS algorithm [Chu87] or the fast RLS algorithm [Cio84] repetitively use these
dot product computations. Numerical properties of these algorithms are of con-
siderable interest and have been extensively studied recently [Lju85]. Most of the
roundoff error analyses for these algorithms derive expressions for upper bounds
for the worst case accumulation of errors. In Section 5.2, we derive expressions

for variance of errors for both the cases (i) dot product of two vectors x and y,



148

and (i1) dot product of a vector x with itself. We also obtain expressions for the
ratio of signal power (mean square of the dot product value) to roundoff error
variance (SNR) for both the cases. We compare these results with the correspond-
ing results from fixed point error analysis. Finally, we present simulation results
demonstrating that the theoretical error variance expressions closely agree with
actual simulations on a floating point mainframe computer.

A similar analysis is performed for Givens Rotation (GR) and Householder
Transforms (HT). Both these techniques are used in the triangularization of ma-
trices (as explained in section 5.3). One key use of this triangularization is finding
out the QR decomposition [Boj86] of a matrix. These techniques are also used to
find out Cholesky factor of a matrix [Gol89]. The QR decomposition has a variety
of signal processing applications. For example, it is used to solve least squares
problems [Gol89]. The GR algorithm is more suited to parallel implementation.
However as we shall see later, the HT algorithm has a better SNR, which means
that on an averege it adds less computational error to the final result. In sec-
tions 5.4 and 5.5, we explain the GR and HT techniques respectively, and their
application to upper triangularization of matrices. Error variance analyses of these
algorithms are presented in the corresponding sections. For these analyses we use
the error variance results obtained for dot product computations. An analysis of
how the errors increase as we succesively use GR and HT for triangularization is
presented in the same sections respectively. A comparison of the two methods
based on their SNR values is performed in section 5.6. Some simulation results
are also presented which show a close agreement between the theory and actual
roundoff errors obtained on a floating point mainframe computer. We will begin
the discussion by first describing the floating point number system convention used

in this chapter.
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The floating point number system

In this chapter, we follow the notations used in [Gol89, Chapter 2]. Thus, any

number belonging to the floating point number system can be represented as
f=xdidy...dy xB% 0<d;<fB, di#0, L<e<U. (5.3)

We shall denote the set of floating point numbers by F. Thus there are four integers
(B,t, L,U) associated with the description of a floating point number system. The
floating point representation above is said to have a ¢-bit mantissa.

The quantization convention we use for the error analysis presented here is
called “rounding arithmetic.” In this arithmetic, a real number z is represented by
a corresponding floating point number fi(z) € F such that fI(z) is nearest to z.
In case of a tie, we round away from zero.

The floating point number system considered here is a binary system (8 = 2),

with a t-bit mantissa. The fI(.) operator can be shown to satisfy [Gol89]
fl(z) =2z(1+e), le] < u, (5.4)
where the constant u is called the machine precision and is given by
u=2" (5.5)

for the rounding arithmetic. It follows that for two numbers ¢ and b, and an

arithmetic operation “op”,
fl(a op b) = (a op b)(1 +¢). (5.6)

It is easy to see that fixed point representation is a special case of floating point
representation, where the exponent e has a fixed value (= 0). Thus we need to

perform scaling of signals to confine the values to the representation (5.3) above

[Opp75].
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5.2 Dot Product Computation

The accumulation of roundoff errors incurred depends on the order in which
computations are performed to arrive at a result. Hence, before we analyze an
algorithm to obtain an expression for its SNR, we have to study the exact steps in
which the results are computed. For analyzing dot product computations, we first
describe the algorithm used to obtain the dot product.

5.2.1 Computation of Dot Product

Let x = [z1 2. .. :vn]T andy = [y1 y2-.. yn]T be two n x 1 real vectors. The
dot product can be represented as x”y where the superscript T' denotes transpose
of a vector. We assume that the dot product is evaluated by computing the partial

sum

Sp = fl( i xkyk) (57)
k=1

and updating it as

sp+1 = fU(sp + FU(zpt1p+1)) (5.8)
forp=1,...,n = 1. Clearly s, = fl(xTy). Thus, in terms of roundoff errors, we
can write (5.8) as

Sp+1 = (Sp + Tp1Yp+1(1 + 6p41))(L + €p41) (5.9)

where 6,11 and €,4; are roundoff errors associated with multiplication and addi-

tion, satisfying |6p41], [ep+1] Sufor0<p <n-—1.
5.2.2 Derivation of Error Variance and SNR

We first consider the case of computing dot product of two vectors x and y.

We can write the floating point roundoff error as

er = fl(xTy) —xTy. (5.10)
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We wish to derive an expression for E[e?]. After some algebra, (5.9) gives
sn = FlI(xTy) =) arye(l + ). (5.11)
k=1
The variable v is defined by
T+y=(1+6&) JJ(1+¢)). (5.12)
i=k
For the derivation of E[e?], we make the following assumptions:
1. The errors 6,,¢, are mutually independent random variables, independent of
all the entries z; and y; of x and y.
2. The multiplication error §; is uniformly distributed in the interval [-u,u] for
all 7. For any ¢, the error ¢; associated with addition takes three values -u/2,
0, u/2 with equal probability (see below for the explanation).
3. All the entries of the vectors x and y are zero mean random variables, with
E[xxT] = C,, and E[yyT] = C,,.
4. All the entries z; are independent of all the entries y;, so that E[xyT] = 0.
To explain the particular probability distribution chosen for the roundoff errors
€;’s in assumption (2), we have to look at the origin of these errors. From (5.9), we
see that the error ¢; is the roundoff error that is incurred when the partial sum s;_;
is added to the product z;y;. These quantities have about the same magnitude.
This restricts the possible values of the roundoff error because we assume that the
exponents of the two numbers being added are equal.
Using these assumptions, we get E[e;] = 0. Substituting (5.11) in (5.10),
squaring and taking expectation of both the sides gives
Ele}] =) Y Elwiz;]Elyiy;) Elvivil- (5.13)
i=1 j=1
We first evaluate the term E[vy;v;] for ¢ > j. For this, we multiply the expressions
for (14 ;) and (1 + v;) as given by (5.12) and take expected value of both the
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sides. Using the facts that E[y;] = E[y;] = 0 and all the errors are zero mean,
mutually independent random variables, we obtain the following equality
E[1 + vivj] = E[1 + 6:6;] H (1+ €2)). (5.14)
From the probability distribution assumptions mentxoned above, we have
E[e?] = u®/6, E[6?] = u?/3. (5.15)
Using these expressions in (5.12) above gives
Elyivs] = (—M i> . (5.16)
Similarly we obtain

(n—*—3—-z’)u2
5 .

In the above derivations, we have used the assumption that the errors €}s and 6}s

ERi] = (5.17)

are mutually independent. We can write down (5.13) as a summation of term-

by-term multiplication of the entries of three symmetric matrices C,,, C,, and
T,

Elel] =) [Cuali[Cyyli [T s (5.18)

=1 j=1
The element in the ith row and the jth column (¢ > j) of T is given by (5.16) and

the ith diagonal element is given by (5.17). The elements above the diagonal can
be obtained using the fact that I' is a symmetric matrix.
In particular, if we assume that C,; = 021, and C,, = O'ZI, then the expres-

sion simplifies to
2
5 ol (n + 5n)
020, — 5 2

Ezxpression for SNR: For the assumptions mentioned above, we get E[(xTy)?] =

Elel] = (5.19)

2,2
nozo,. Thus

_ E[(x"y)’
SN = E]
12
= i) (5-20)
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Evaluation of the dot product xTx.

Next, we consider the case of finding the dot product x7x. The dot product
is computed by evaluating the partial sums as mentioned before. For this case, let

us write down the roundoff error as
es = fl(xTx) — xTx. (5.21)

This can be considered as a special case of the dot product xTy with x = y.
Thus, the assumption (4) mentioned before clearly no longer holds. For this case,
the errors ¢; are assumed to have uniform probability distribution in the interval
[-u,u]. This assumption differs from assumption (2) of the previous case. Unlike
the previous case, in the computation of the dot product xTx, E[s;—1] = (i — 1)o2
and E[z?] = o2, so that typically two quantities of different orders of magnitude
are being added. Since no further assumptions can be made about exponents, we
shall have to assume a uniform probability of distribution for the errors.

It is easy to see that E[es] = 0. Using the modified assumptions about statis-

tics of various quantities, we can write an error variance expression similar to (5.13)

as

Ele3] =) Elz}a}]Blvivil, (5.22)

i=1 j=1
where v;, 1 <j < n are given by (5.22). Using the new assumptions for the errors

€; and é;, we get

ehod= {13205 122 o2

To further simplify (5.22), we assume that z; (¢ = 1,...,n) are Gaussian random
variables with variance o2. We use the result that for zero mean Gaussian random
variables, fourth order expectations can be written down in terms of second order

expectations as [Urk83|
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Elz1z92324) = E|2z129) + E[2223] + E[2324] + E[z124]- (5.24)

Using (5.24), we can write

2.2, _ [ 303, 1=7
Bl = { 5 appenns)t, 120 (5.25)

If we assume that the entries of x are mutually independent, then E[z;z;] = 0 if

i # 7, and using (5.25), the error variance expression (5.22) can be simplified as

otu? n®  Tn?  49n
Ell=2—(g+— +45 + —) (5.26)

Ezpression for SNR

The output signal power is

E[(xTx)} ZZE[.’E

i=1 j=1

= ai(n2 + 2n). (5.27)

Hence

E[(xTx)?]
El[e3]

3 249

= E n3 ’:zn2+ Z)n 1\ ° (528)
T+ +45+3)

SNR; =

For sufficiently large values of dimension n, the SN R expressions (5.20) and (5.28)

for the floating point errors can be approximated as

12

SNRy m~ —,  (for xTy) (5.29)
SNRy ~ -2 for xT
R2 ~ Hl?, ( or X X). (530)

5.2.3 Comparison with Fixed Point SNR
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For fixed point computation of dot product, we have to scale the entries of x
and y to avoid overflow. Let 2,4, and y;,q,; be the maximum magnitudes of the
entries of x and y respectively. The maximum magnitude of the dot product in

this case will be

(XTY)maJ: =NTmazYmazx- (531)

To avoid overflow, we have to ensure (xTy)m,w < 1. One way to achieve this is to
scale down entries of X and y by (RZmasYmaz)'/2. Let u; be the unit roundoff for
the fixed point case (uy = 27+ for a b-bit representation). Then using the error
model of [Opp76|, we can write down the fixed point error variance as a sum of
n mutually independent error sources, each with error variance u? /12. Thus, the
variance of the fixed point roundoff error is o2 F= nurfc /3. The SN R expression for

this case will be

_ E[(XT}’)Z/(nxmazymaz)Z]

N

SNRf ‘7]2_f

120202 1
= (. (5.32)

2 21,2 :
x?naa:ymax n uf
A similar analysis for the case of computing x7x gives

SNRy = 2% (1 ) 5.33
T o, nut” (5:33)

In the derivation of (5.32) and (5.33) we assume that all the entries z; and y; are
mutually independent zero mean Gaussian random variables with variance 02 and
o respectively. Comparing (5.29) with (5.32), we can conclude that the perfor-
mance of fixed point computation of xTy degrades faster with n than the corre-
sponding floating point evaluation. However (5.30) and (5.33) indicate that in the
case of computation of x7x, both the SNR expressions have the same functional

dependence on dimension n. These results are tabulated in Table 5.1.
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Floating SNR
point
Dot Product Error Floating Fixed
Variance point point
T 2
xy N e 1/ N2
T N3 1 IN 1 /N

Table 5.1. Dependence of roundoff errors on the dimension
N for dot product computations.

5.2.4 Simulations

We verify the results developed for the floating point error variance analysis by
simulations. The simulations were performed on a MIPS computer using single
precision floating point arithmetic. This representation has a 24-bit mantissa and
an 8-bit exponent. Double precision results were used as substitutes for the exact
(infinite precision) values of the dot product. The elements of the vectors x and
y were generated by a random number generator, to approximate a zero mean
Gaussian probability distribution with unit variance. The errors e; and e; were
computed for 100 different sets of vectors x and y. The variances were estimated
using these 100 values. Fig. 5.2 shows variance of e, as a function of n and Fig. 5.3
shows the corresponding SN R plot. Fig. 5.4 and Fig. 5.5 show the variance and
SN R plots for the error e; as a function of n. We see that there is a close agreement
between the results derived in the chapter, and the actual results obtained. It is
also interesting to see that the error e; is much higher than e; for a given n due

to high correlation of data but the SIVR values are about the same.
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Although the SN R values obtained here are very high, one should bear in
mind that in a signal processing application, these computations are performed
over and over again, causing a considerable degradation in the SN R value of the
entire algorithm. Thus, understanding roundoff errors involved in dot product
computations is important. Also, as we shall see in the next section, the results
derived in this section are useful for derivation of similar results for more complex

algorithms.

5.3 QR Decomposition

Consider the problem of factorizing a square matrix A € RM*M a5 A = QR,
where Q € RM*M is orthogonal and R € RM*M is an upper triangular matrix.
As we have already mentioned, this factorization is used in a variety of signal
processing algorithms. The matrix A in general has nonzero entries,

X X vee X
A= = . 1. (5.34)
X X ce. X

To calculate the desired factorization, we premultiply A by a sequence of orthogonal
matrices which reduce it to an upper triangular form. Let these orthogonal matrices
be denoted as QF, QT ... QY% _,. This process of successive premultiplications can

be written as
Qi_:---QTQfA =R. (5.35)
Since the product of orthogonal matrices is also orthogonal, we can write the above
equation as
QTA =R (5.36)
where QT = QL _, ... QT QT. Looking at (5.36), we can see that we have achieved

the desired factorization because Q7 = Q™ for an orthogonal matrix. The ques-

tions that remains to be answered is how to find the sequence of matrices Q{,_l,
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..., Qf, Qf and the number N. The orthogonal matrices are themselves calcu-
lated using on the entries of A. These matrices are used to modify the columns of
A as follows. First, we introduce zero elements in the entries under the diagonal
of the first column only by premultiplying by an appropriate number of orthogonal

matrices. The modified matrix now looks as follows

X X ... X
0 x X
. (5.37)
0 x ... X

Now we select a second set of orthogonal matrices such that the elements of the

second column under its diagonal entry are made zero. The matrix now has the

following structure

X X X X
0 x x X
0 x ... X|{. (5.38)
| 0 0 x ... x|

Successively applying this procedure results in an upper triangular matrix. The key
step in this triangularization is to modify a column vector such that all the entries
except the first one are zero. This procedure is repeated from the first column to

the last. This step

X X
X 0

i (5.39)
X 0

is achieved using either Givens Rotations (GR) or Householder Transformation
(HT). In GR, this is achieved by making one entry zero at a time (as explained
later). In HT, one finds out the appropriate orthogonal matrix such that premulti-
plying a vector directly results in the desired conversion (5.39). Thus, for the com-
plete triangularization of an M X M matrix using GR, we need N = M(M —1)/2

matrix premultiplications. This number is N = M — 1 for the HT technique. We



161

will now take a look at the Givens rotations and Householder transformation and

see how the orthogonal matrices Q; are chosen.
5.4 Givens Rotations

5.4.1 Givens Rotation for upper triangularization

Consider a 2 x 2 matrix

QT = [ cos 8 sin9] . (5.40)

—sinf cosé

Let the entries of this matrix satisfy

of )
sinf =

— _d
/.2 2 2 2
xi+xj :ci+xj

where z; and z; are two real numbers. Using the above two equations, we can

cosf =

(5.41)

establish that
cosf sinf| [z;| |r
[—sinﬁ COSQ] [x]] - [0} (5:42)

where r = , /2% + w? It can be easily verified that the matrix defined in (5.40) is
orthogonal. This matrix is called a Givens Rotation (GR) matrix (of dimension 2).
We have shown in (5.42) that choosing the elements of Q using z; and z; produces
a zero at the place of z; after premultiplication by Q. This property is used in the
triangularization procedure. For a column vector of dimension M X 1, suppose we

want to make the jth entry zero using the jth entry z; and the ith entry z;, the
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corresponding M x M orthogonal matrix will have the form:

z J

(1 0 o 0 0\

110 ... cos@ ... sinf ... 0

J10 ... —sind ... cosf ... O

\0 ... 0 ... 0 .. 1)
such that (5.42) holds. Premultiplication by this matrix produces a zero at the jth

entry as follows

% %
T T
T . .
T 0
[ x] Lx]

The element z; is called the pivot for the Givens Rotation. The element r; is
called the residue of GR. Since one GR premultiplication introduces one zero in
the resultant vector, the result in (5.39) is obtained by successively multiplying
by GR which are computed using the first entry of the vector as the pivot. The

sequence in which a column vector is reduced to the desired form is:

— - - - - - — -

X X X X
X 0 0 0
% X 0 0
= 1x!=1x =] (5.45)
: : 0
| X | | X | [ X | | 0]

This makes it clear that the residue computed in the previous step is used as the
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pivot in the next step. This observation is very important in the roundoff error

analysis of the GR algorithm.

5.4.2 Error Variance Analysis of Givens Rotation

When the steps described in (5.45) are performed in finite bit precision, the
roundoff errors occur at two stages:

1. computation of the entries of the orthogonal matrix, and
2. computation of the residue.

As explained before by equation (5.45), several GR multiplications are required
for each column. We will perform error variance analysis of the GR method by
first taking a closer look at multiplication by a single GR only and then extending
the result to the entire procedure in (5.45).

Multiplication by a Givens Rotation

Consider the matrix-vector multiplication:

cosf sinf | [z;| |b
[—SinG cosG] [a:]] - [bj] (5.46)
satisfying (5.41). We will henceforth use the abbreviations ¢ = cos 6 and s = sin 6.
If we perform exact calculations, then we get b; = /2% + z% and b; = 0. For a

finite bit implementation, there will be errors introduced in the computation of

these quantities. We want to find out the means and variances of the errors
e; = fl(b;) — b;, ej = fl(b;) —b;. (5.47)

We have seen that the residue computed by one GR is used as the pivot for the
next GR. Hence, the element z; will in general have roundoff error associated with
it. For the sake of simplicity, we are however going to assume that z; is exact. The
only errors introduced are in the computations of ¢, s, b; and b;.

Errors Introduced In the Computation of ¢ and s:

The entries of the orthogonal matrix are computed as follows:



164

a = fI(fi(e}) + fi(3))

b= fl(a'/?)
¢ = fl(zi/b)
s = fl(z;/b). (5.48)

We assume that all floating point roundoff errors are mutually independent random
variables. A uniform probability of distribution in the range [—u, u] is assumed for
each roundoff error unless otherwise mentioned. If we write down the errors in the

equations (5.48), we get

a= [z} +a7)(1+e)
b=a'%(1+e4)
¢ = (i/b)(1 +e5)

s = (z;/b)(1+ €s). (5.49)

To make the derivation easier, we assume that the error €3 is uniformly distributed
in the range [—2u,2u]. The error €3 is the combined effect of the errors introduced
due to squaring and addition. Although this assumption does not strictly fit the
error model we have been using so far, it makes the derivation easier without

changing it significantly. From (5.49), we can derive the following results

c(l+es5) s(1+ €6)

fl(C) (1+€3)1/2(1 +64), f (8) (1 +€3)1/2(1+€4) (5 50)
Thus, if fl(c) = ¢(1+€.) and fl(s) = s(1 + €,) then from (5.50) we get,
€ €
ecﬁtﬁe5—53—e4, 63%66——2§-~e4. (5.51)

We have used the following approximations in this derivation.
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1. All terms involving product of two errors are neglected because they are small.
2. (14 ¢€)? = 1+ qe for any rational number ¢. This approximation holds because
the errors e are much smaller than unity. From (5.51) we can see that errors

€. and €, are zero mean and

Ele;] = E[e5] + Ele3/4] + Elei]

=u?/3 +u?/3 +u?/3+ O(u®) = u? + O(«®). (5.52)

The O(u?) term is introduced to account for the cross product terms. Similarly,
we get E[e2] = u? + O(u®).
Multiplication by a Givens Rotation

We compute the results b; and b; as
b; = fl(fl(cz;) + fl(szj)), bj = fI(fl(—sz;s)+ fl(czj)). (5.53)
Again, writing out the errors incurred in the computations, we get

b, = [cwi(l +e)(1+er)+sz(1+ €)1+ 68)](1 + €1)

b = [cxj(l +e)(1+€)—szi(l+e)(1+ 610)](1 + €2) (5.54)

Using the above equations, we can write down the expressions for the errors e; and

e; defined in (5.47) can be approximately written down as

e; = czi(er + €7) + sz j(€s + €1 + €3)

ej ~ cxj(ex +€9) — szj(€s + €2 + €19). (5.55)

From the above expressions, we can see that both the errors have zero mean.
Squaring both sides of the equations in (5.55) and taking expected value, we arrive

at the result
10(E[z?] + E[:c?])u2

3

Elel + €3] = + O(u?), (5.56)
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The derivation makes use of the fact that all the errors, z; and z; are mutually
independent. This expression gives the energy of the error between the actual

results of GR multiplication and the computed results.
Multiplication by a Sequence of GR

Now we consider the problem of introducing M — 1 zeroes in an M x 1 vector
as shown in (5.45). The first element is used as the pivot for all the GR. There will
be M — 1 such GR performed. Each GR will in turn change the value of the pivot.
Let the starting vector be defined as x = (21 z3 ... :vM)T. Let the residue at the
end of the kth iteration be ry. Clearly r; = z;1. An efficient way of computing the
residue is not to compute the values of ¢ and s [Wil65] but to directly evaluate the

residue as
re = FICFI[Fl(re=1)]%) + fl(=E) /2, k=2,...M - 1. (5.57)

The computation of ¢ and s is however needed to evaluate the other entries in
the partially triangularized data matrix. We also assume that the entry which is
supposed to become zero is indeed zero [Wil65]. For each computation (5.57), we

can write
Fl(re) = [(r3oy (L arm1)+22(1480)) 14+0)] 2 (146k), k=2,..., M~1, (5.58)

where a1 and Bi_; are the roundoff errors due to squaring, 74, is the error due to
addition and &y is the error due to square rooting. For the first iteration, ry = z.

Applying this recursively, we get
rar = (@214 e1) + ..+ 22(1 + ean)) V2(1 + 6u1) (5.59)
where

M-1 M M-1
er = Zai+27i+2z5i+ﬂk- (5.60)
i=k i=k

i=k
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Again, we assume that all the roundoff errors are mutually independent, zero mean
random variables uniformly distributed in the range [—u,u]. Then, the cross-
correlation between two errors given by (5.60) above can be written as

2
Elerel] = 633—(M —k), k>L (5.61)

The expression (5.59) for the final residue, can be written as
2
flirm) = (o + %—e—k—)(l + 8a1). (5.62)
z

Hence if e, = fl(rpr) — ra, then

E[e?] = %E[ 2 Egix"‘;?e’“e’] + E[r3,]E[63] (5.63)

In the derivation of (5.63), we take into account the dominating terms only. In
the derivation, all the terms involving higher powers of u are grouped together
as O(u®). We assume that all the entries of x are mutually independent and are
independent of all the roundoff errors and have variance o2 each.

The first term in (5.63) involves expected value computation for division of
two random variables. This can be simplified as division of the expected values of
those random variables, if the random variable in denominator varies slower than
the numerator. Thus, the assumption we are making is that E[X/Y] = E[X]/E[Y].
This assumption has been successfully used in similar derivations before [Mat90].
We use this simplification to derive the following result:

Mo

T O(Mu?) + O(u®). (5.64)

E[e?]

g

For sufficiently large dimension M, the last two terms can be neglected.
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5.5 Householder Transformation

The task of introducing zeroes in a column vector as shown in (5.39) can be per-
formed using one matrix multiplication only. Householder matrices are used for
this computation.

5.5.1 Review of Householder Matrices

Definition: Any matrix which can be represented as

f
H,=1-2— (5.65)
vViv

where v # 0 to avoid trivial case (if v = 0, then H, = I), is called a House-
holder matrix. The properties of Householder matrices are discussed in details in
[Gol89]. Householder matrices are orthogonal due to the form (5.65). To null out
all the entries of a vector x except the first one, we can perform the matrix-vector

multiplication H,x which gives

Th
0
Hox = | . (5.66)
0
if
v =X+ sfe; (5.67)

where s is the sign of the first entry z; of x, 8 = m ande; = (10 ... 0)7. In
the triangularization of an M x M matrix, one needs to compute M —1 Householder
matrices to achieve the desired result. This method is known for its superior
numerical properties [Wil65], but is more expensive to implement in hardware
because it is not pipelineable like the GR method [Hay86].

As in the case of GR, there are two steps involved in the HT procedure. The
first is to compute the entries of the Householder matrix, and the second is to

compute the residue r, in equation (5.66). For a similar situation for the GR
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case, we made an assumption that the elements which are to become zero after
multiplication do indeed become zero. For the case of HT however, the sequence
of computations can be arranged such that entries on the right hand side of (5.66)
which are supposed to become zero after multiplication do indeed remain exactly
zero under quantization. Hence we study the error involved in the computation of
the residue rj only.
5.5.2 Error Variance Analysis of HT:
We have seen that the elements which are supposed to be zero, are indeed zero even
under quantization. Using (5.66) and (5.67), it is easy to see that rp, = 8 = \/Z:—:cf
Hence computation of the residue involves computation of dot product. We will
therefore use the results form section 5.2.
Problem Statement
For the floating point evaluation of (5.66), let the error incurred due to quantization
be

en = fl(rp) — rh, (5.68)

then we want to find out E[e,] and E[e?].
The following sequence of computation is used
a = fl(xTx) (5.69a)
B =ry = fl(a'/?). (5.69b)

Error Analysis

For computation (5.69a), using equation (5.11) for dot product computation

we can write Y
a=> z}(1+7) (5.70)
=1

with all the quantities as defined before. Hence for the second step, we can write

o= (F a2+ 3 al)
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= 2+ (1 +a)
~ S 231+ Z‘” 7’) (5.71)

where the error €; incurred in the square root evaluation is neglected because it

does not change the final result significantly. Hence we get

Ew T (5.72)

€p = ,—Z -
This gives E[es] = 0 and

Ble}) = 15[ Ezw;wm’]- (5.73)

Using assumptions similar to the ones used in the derivation of (5.64) from (5.63),

we get,
M?02u?

Bef) = 22

+ O(Mu?) + O(u®). (5.74)

The last two terms in (5.74) account for the less significant cross product terms
which we have neglected throughout the derivation. The results (5.23) are also

used in the above derivation.
5.6 Comparison of the Error Variances for GR and HT

Both these techniques are used to perform upper triangularization of matrices.
As we have already seen, the elements on the diagonal of the upper triangular
matrix R are the residues of the GR and HT computations. The errors involved
in the computations are important because they directly affect the eigenvalues of
the upper triangular matrix R.

Under infinite bit precision the residues calculated using either GR or HT will
be identical. The results will be different when we perform the computations using

finite bit representation. To get an idea about the energy of the error introduced in
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the computation of the residue as in (5.39), we have performed the error variance
analysis.

The results of the theoretical analysis presented indicate that HT has better
error performance “on an average.” If we compare the results (5.64) and (5.74), we
can see that the error variance expressions differ by a factor of 6, or 8 DB on the
logarithmic scale. This means that the SNR for HT is better than the SNR for GR
by about 8 DB.

Simulations

The above theoretical results are compared with simulations on a mainframe
computer. The GR and HT algorithms are implemented using single precision
floating point arithmetic. As mentioned before, the double precision results were
used as a substitute for the exact results. The computations shown in (5.39) were
simulated for different values of dimension M of the vector x using GR and HT. For
each value of M, the entries of the vectors were generated as zero mean, mutually
independent random variables with Gaussian probability distribution having vari-
ance 02 = 0.1. The error variances for GR and HT were computed from the error
values obtained for 100 such vectors. A plot of how the error variances E[e] and
E [eg] vary with the dimension M is shown in Fig. 5.5. Also shown in the figure are
plots for the theoretical results given by (5.64) an d (5.74). It can be seen that the
simulation results closely agree with the theoretical results. The plot also shows
that the difference in the error variance values for GR and HT is constant (about
8 DB). The simulations demonstrate the usefulness of the error variance analysis

presented in this chapter.
5.7 Discussion

In this chapter, we have introduced the concept of error variance analysis.
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This analysis is performed to answer probabilistic questions of the type, “What
is the typical value of the roundoff errors introduced in a computation ?” We de-
rive the expression for the variance of roundoff error incurred in the computation

of a result. This idea is elaborated by performing error variance analysis of dot

_ 6 O —
_ 7 O f—
7~
m
2 -go-
Q
[&]
g -90 -
=
>
8 -100- GR: - - - - Theoretical _._. . Simulated
5 HT: Theoretical ....... Simulated
=110+
120 l l | 1,
5 10 15 20%X10
Dimension

Fig. 5.6 Error variance v/s dimension curves for GR and HT.

product computation. The reason to choose dot product computation for demon-

stration of this idea is that it is the most basic computational step involved in all
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signal processing algorithms. The theoretical analysis and simulations show that
the SNR of dot product computation is relatively insensitive to the correlation of
the input data. It has been shown that the SNR degrades as 1/N where N is the
dimension of: the vectors involved in the computation.

The SNR values of algorithms can be used to compare their relative error
performances. The GR and HT algorithms are compared on the basis of their
SNR figures. These algorithms are used to perform upper triangularization of
matrices. The diagonal elements of this upper triangular matrix are shown to be
the residues of the GR and HT computations. We have derived expressions for
the error variances for the computation of the residues using GR and HT. These
results have been compared to show that the SNR for HT is 8 DB more than the
SNR for GR.

The error variance analysis described in this chapter does not have to be per-
formed in real time. If the input statistics is known, one can precompute the SNR
and error variance values for an algorithm. The computational complexity for the
SNR computation is therefore not very crucial. In choosing the appropriate al-
gorithm for an application, the performance of that algorithm under quantization
is an important consideration. Some other considerations are the computational
complexity, pipelineability etc. Choosing an algorithm with a lower SNR ensures
that smaller roundoff error is incurred on an average. It is important to remem-
ber that this analysis does not give any idea about the numerical stability of the

algorithm (it implicitly assumes that the algorithm is numerically stable).
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