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Abstract

This thesis presents the investigation of semiconductor heterostructures for op-
toelectronic applications, with particular emphasis on band alignment considera-
tions, strain effects, band structure calculations and characterization by optical spec-
troscopy. The purpose of the work described here is two-fold. The first part of this
thesis is concemed with the study of novel optoelectronic properties exhibited by
Si/Ge superlattices both in the near infrared (interband transitions) and far infrared
(intersubband transitions) energy ranges. The second part of this thesis is éoncerned
with establishing the merits of II-VI semiconductor heterostructures for producing
visible light emitters, and investigating techniques to improve the dopability of II-VI
semiconductors.

In the first part of this thesis we investigate the merits of Si/Ge superlattices
for optical applications. Although Si and Ge are indirect band gap materials, Si/Ge
superlattices can exhibit a direct band gap for certain layer thickness combinations.
In Chapter 2, we show that the optical absorption/emission strengths for interband
transitions in Si/Ge superlattices can be enhanced by six orders of magnitude over
pure Si or Ge. However, these numbers are still three to four orders of magnitude
lower than the optical absorption/emission strengths of direct band gap materials
such as GaAs. These results are based on a full zone & - p formalism that we de-
veloped specifically to study the band structure of Si/Ge superlattices. In Chapter 3,
we investigate the intersubband absorption coefficients in doped Si/Ge superlattices.
Intersubband transitions in these superlattices make them interesting candidates for
long-wavelength infrared detectors. Such infrared detectors are analogous to extrin-
sic Si detectors, with the additional advantage of tunability of the peak absorption
wavelength. The intersubband absorption strengths of Si/Ge superlattices reported

in this thesis are comparable to those for Al,Ga,_.As/GaAs supetlattices, with the
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additional benefits of the ability to detect normally incident light, and compatibility
with the fabrication and processing technology of Si electronics.

In the second part of this thesis, we describe investigations of II-VI semiconductor
heterostructures for visible light emitter applications. The wide band gap II-VI semi-
conductors are ideally suited for visible optoelectronics by virtue of their direct band
gaps in the blue/green region of the spectrum. However, difficulties associated with
doping these materials have severely limited their applications. Low-temperature,
epitaxial-growth techniques such as molecular beam epitaxy have opened up new
approaches for II-VI materials that show potential for overcoming some of these
problems. In Chapter 4, we investigate minority carrier injection in II-VI semi-
conductors using heterojunctions. We also perform band structure calculations on
II-VI strained layer superlattices to investigate the role of strain on the heterojunc-
tion band alignments. We experimentally determine the band offsets for CdTe/ZnTe
and ZnSe/ZnTe heterojunctions using optical techniques, and remark on the merits of
these heterojunctions for carrier injection. We theoretically extended our conclusions
to II-VI quaternary alloys and show that there is great promise for visible light-emitter
applications within quaternary heterostructures. In Chapter 5, we analyze the role
of external electric fields applied during growth in suppressing self-compensation
in II-VI semiconductors. This is a novel approach to achieve and control metasta-
bility in semiconductors. Our results indicate that II-VI doping efficiencies can be

dramatically improved if substantial electric fields are applied during growth.
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Chapter 1

Introduction

This thesis presents investigations of semiconductor heterostructures and superlat-
tices for novel optoelectronic applications. Recent advances in semiconductor growth
capabilities!!] have provided the ability to fabricate semiconductor heterostructures
with small length scales (< 1004). To the semiconductor device physicist, the abil-
ity to fabricate structures at small length scales provides a means to manipulate the
quantum mechanical phenomena that exist at these length scales and utilize them in
designs of future electronic and optoelectronic applications. Superlattices are classic
examples of such manmade semiconductor structures that exhibit quantum effects,
and have been widely used in device applications since they were first proposed in
1970.2!

Superlattices based on nearly lattice-matched pairs of semiconductors such as
GaAs/AlAs,P] GaSb/InAs, and HgTe/CdTeP! have received the most attention
during the early development in the 1970s. However, recent progress in crystal
growth techniques such as molecular beam epitaxy (MBE), and metal-organic chem-
ical vapor deposition (MOCVD) have opened up interesting possibilities for lattice-
mismatched heteroepitaxy. The object of this thesis is the study of two interesting

cases of lattice-mismatched semiconductor superlattices; the first case is Si/Ge su-
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perlattices, and the second case is wide band gap II-VI superlattices. Since the
successful growth of these structures has been a quite recent development, much
theoretical and experimental work needs to be done to further our understanding of

these novel semiconductor materials.

1.1 Overview of Thesis

The work presented in this thesis falls under two major parts. The first part is the
investigation of approaches to improve the optical properties of Si/Ge structures for
infrared applications. The second part is the investigation of approaches to improve
the electrical and optical properties of wide band gap II-VI semiconductor structures

for blue/green light-emitter applications.

1.1.1 Si/Ge Structures

The first part of this thesis is devoted to reassessing the possibilities for op-
toelectronic applications based on silicon, given the possibility of fabricating Si/Ge
superlattices. We investigate the merits of interband transitions in Si/Ge superlattices
for near infrared applications, and intersubband transitions in Si/Ge superlattices for
far infrared applications.

Optoelectronics in the near infrared 1.3-1.6 pm wavelength region is impor-
tant because of the compatibility with the minimum loss band of fiber optic com-
munication lines. It is possible to fabricate Si/Ge superlattices with band gaps in
this wavelength region, making them very attractive for optoelectronic applications,
provided that substantial optical matrix elements can be obtained. We show the
intriguing possibility that Si/Ge superlattices can exhibit direct band gap behavior
for certain layer thickness combinations, although Si and Ge are indirect band gap

materials. We survey the optical absorption and emission strengths of Si/Ge super-



lattices, and evaluate their potential for optoelectronic applications. On the other
hand, infrared detectors at 10um and longer wavelengths are important for atmo-
spheric and space-monitoring applications. We show that conduction bands of Si/Ge
superlattices, grown along certain orientations, show interesting intersubband absorp-
tion properties that can be potentially useful for long-wavelength infrared detection.
We investigate the intersubband transitions in Si/Ge superlattices and evaluate their

merits for long-wavelength infrared detector applications.

1.1.2 Wide-Gap II-VI Structures

The second part of this thesis is devoted to reassessing the possibilities for
blue/green semiconductor light-emitters employing wide band gap II-VI heterostruc-
tures and superlattices. The wide-gap II-VI materials are ideal candidates for produc-
ing blue/green light-emitters by virtue of their direct band gaps. However, difficulties
associated with obtaining selective doping in both n- and p-type have limited the use-
fulness of these materials in semiconductor devices. In this thesis we have attempted
to attack this difficult problem by two approaches.

The first is the heterojunction approach, where we have investigated the prospects
for minority carrier injection in wide band gap II-VI p-n heterojunctions. We have
investigated the band alignments between various II-VI wide band gap semicon-
ductors by optical spectroscopy, in an attempt to determine the usefulness of these
heterojunctions for minority carrier injection. We have used our analysis of ZnSe,
ZnTe and CdTe band alignments to investigate the possibilities of carrier injec-
tion throughout the whole alloy composition range of ZnTe,_,Se, and Zn,_,Cd,Te
ternaries. We also extend our analysis to several wide-gap II-VI quaternaries where
opportunities may exist for wide band gaps in the blue/green region of the spectrum,
and possibilities for efficient minority carrier injection, with the additional benefits

of improved lattice-match. The second approach we consider for controlling the
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electrical properties of II-VI materials is the application of external electric fields to
modify the thermodynamic equilibrium of self-compensation, and kinetically block
the process of compensation. As a particular example, we theoretically analyze the
influence of electric fields in suppressing self-compensation processes during crystal
growth. We expect that such techniques for accessing and controlling thermodynam-
ically metastable material regimes could enhance the opportunities for semiconductor

applications in the future.

1.1.3 Outline of Chapter

The purpose of this chapter is to provide é broad introduction to the thesis,
and an overview of the work presented in the following chapters. Section 1.2 is a
summary of the major results obtained in this thesis. In Section 1.3, we provide the
background and motivation for studying the optical properties of. Si/Ge and II-VI
structures. Sections 1.4, and 1.5 provide the general background on superlattices
and strain effects, and develop important issues addressed throughout this thesis. In
Section 1.6 important theoretical issues encountered in band structure calculations

are reviewed. Section 1.7 concludes the chapter with an outline of the thesis.

1.2 Summary of Results

This section provides a chapter-by-chapter summary of the main results obtained
in our investigations of the optical properties of Si/Ge superlattices and wide band

gap II-VI semiconductors.
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1.2.1 Interband Transitions in Si/Ge Superlattices

In Chapter 2 we investigate the band alignment, strain effects and optical ma-
trix elements of Si;_.Ge_/Si superlattices. We demonstrate that quasi-direct band
gap Si;_.Ge_/Si superlattices can be obtained by suitable choices of layer thick-
nesses. We calculate strain dependent conduction band offsets of coherently strained
Si;_.Ge, epilayers, as functions of the substrate alloy concentration, and of the epi-
layer alloy concentration. Optical matrix elements are computed as a function of
the barrier and well layer thicknesses, for Si;_,Ge_/Si superlattices with favorable
strain distributions. We find that optical absorption and emission strengths can vary
by 3-4 orders of magnitude for layer thickness variations as small as 1-2 monolay-
ers, suggesting that layer thicknesses must be controlled to within one monolayer
accuracy to obtain enhanced optical absorption/emission properties. Typical optical
matrix elements calculated for these Si;_,Ge,/Si superlattices are 3-4 orders of mag-
nitude larger than for bulk Si or Ge, but are still 3 orders of magnitude smaller than
for direct band gap materials such as GaAs limiting the usefulness of Si,_,Ge_/Si

superlattices for optoelectronic applicatio'ns.[6]

1.2.2 Intersubband Transitions in Si/Ge Superlattices

In Chapter 3 we calculate the absorption strengths for intersubband transitions
in n-type Si;..Ge,/Si superlattices. These structures can be used for the detection
of long-wavelength infrared radiation in a manner analogous to extrinsic silicon de-
tectors. Peak absorption strengths that we calculate for Si,_,Ge,/Si superlattices
are 2000-6000 cm~! for typical sheet-doping concentrations (~ 102 cm~2). To
achieve intersubband absorption in Al,Ga,;_,As/GaAs superlattice detectors, the in-
cident light must have a polarization component perpendicular to the plane of the

superlattice layers. This limitation can be overcome by having Si,_,Ge,/Si super-
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lattice infrared detectors grown on [111], and [110] oriented substrates.[”> 31 We
present detailed results of the absorption coefficient, and the peak absorption wave-
length of [100], [111] and [110] Si,_.Ge./Si superlattices. Absorption comparable to
Al Ga;_,As/GaAs superlattice detectors,[9] and compatibility with existing Si tech-
nology, with the additional benefits of the ability to detect normally incident light

make these devices promising for future applications.[m]

1.2.3 Band Alignment of Wide Band Gap II-VI Heterostructures

Chapter 4 of this thesis is concerned with the determination of the band align-
ment between ZnTe, ZnSe and CdTe. We present photoluminescence spectra from
Zn,_,Cd,Te-ZnTe and ZnTe,_,Se,-ZnTe superlattices grown by MBE, and analyze
the band alignments and strain effects. Our results are based on fitting the dominant
photoluminescence peaks to the superlattice band structure obtained by & - p theory.
We have applied an 8-band k - p model to systematically treat the changes in the
band structure that are due to strain effects, in strained-layer II-VI superlattices. We
find that the valence band offset of the CdTe/ZnTe system is quite small (-50 +
160 meV). In these superlattices, the elecﬁons and heavy-holes are confined to the
Zn,_.Cd,Te layers (type I band alignment), while the light-holes are confined to the
ZnTe layers (type II band alignment). On the other hand, the photoluminescence
data from the ZnTe,_.Se./ZnTe superlattices suggest that the band alignment be-
tween ZnSe/ZnTe is type II, with a‘ large valence band offset (-907 + 120 meV).
We also investigate the band gap bowing in the ZnTe, _,Se, alloys, and determine
the components of the bowing in valence and conduction bands. Given our results
for band alignments, we evaluate the prospects for minority carrier injection in wide

band gap quaternary heterostructures.!} 11
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1.2.4 Role of Electric Fields in Suppressing Self-Compensation

In Chapter 5, we describe a technique to suppress self-compensation processes in
semiconductors, by the application of external electric fields during crystal growth.
We show that it is possible to adopt this technique to enhance the doping efficiency,
and kinetically bury uncompensated material in non-equilibrium growth techniques
such as molecular beam epitaxy (MBE). An obvious application of this technique
is to improve the doping of wide band gap II-VI semiconductors, where selective
doping in both n- and p-type is usually not possible to achieve because of extensive
self-compensation. In our calculations, the self-compensating species are modeled
as charged, mobile species that are free to drift and diffuse under electric fields.
In the case of MBE growth, we solve for the equilibrium of these species in a
moving coordinate frame, and show that two important dimensionless parameters
determine the effectiveness of suppressing self-compensation. The first parameter
that determines the doping profile is D/Av, where D is the diffusion coefficient, A
is the Debye screening length, and v is the growth rate. The second parameter is
gEM/kT, where q is the electron charge, E is the electric field, k is the Boltzman
constant, and T is the growth temperature. We have specifically applied our analysis
to the n-type doping problem of ZnTe, where we have assumed the self-compensating
species to be A-centers!12: 13. 14 Oyr results indicate that it should be possible
to achieve n-type doped ZnTe under the usual MBE growth conditions, with the
application of substantial electric fields. Theoretical results are presented for doping
concentrations as functions of the growth rate and the applied electric field. We
expect that our analysis and the proposed electric field-assisted doping technique
will play an important role in the effort to overcome self-compensation, and will

achieve selective doping in wide band gap II-VI semiconductors.!1)
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1.3 Background and Motivation

1.3.1 Background of Si/Ge Structures

The purpose of this section is to provide a general background of Si/Ge-based
structures, and to motivate the work we present on the Si/Ge system, in the first part
of this thesis.

Silicon has been the material of choice for semiconductor electronics since the
1950s. Although Si possesses only modest electron mobilities and an indirect band
gap, there are many factors that have contributed to its success. Two of these
factors are the excellent insulating qualities of its oxide SiO, which has made the
planar processing technology viable, and the superior mechanical strength of silicon.
Although throughout the 1960’s and the 1970’s the development of the Si-based
devices was adequate for electronic applications, recently, altematives have attracted
a fair amount of attention.

The demand for high-speed electronics and optoelectronics has made III-V semi-
conductors such as GaAs, and InAs attractive alternatives/to Si in the past decade.
It is possible to achieve much higher carrier mobilities in the narrower band gap
HI-V materials than in Si, making them superior for high-speed applications; The
longitudinal effective masses of InAs, GaAs, and Si are 0.023, 0.067 and 0.98, re-
spectively. The direct band gap of GaAs is ideal for optoelectronic applications such
as semiconductor lasers, while the indirect band gap Si remains a poor candidate
for optoelectronics. However, much of the recent success of the III-Vs can be at-
tributed not only to their intrinsic electronic and optical properties, but also to the
heterojunction approach, and to the growth techniques such as MBE, and MOCVD.

In the early 1980s, it was argued that the application of the heterojunction ap-
proach and the growth techniques such as MBE to conventional Si-based devices

could improve their characteristics. This was the major motivation for developing
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Si/Ge heteroepitaxy and Si MBE in the mid 1980s.[16] The choice of Ge as the sec-
ondary material in Si heteroepitaxy was motivated by its chemical compatibility with
Si, and the possibility of avoiding cross doping problems at the interfaces that occur
in the case of ITI-V/Si heteroepitaxy. However, there is a large structural mismatch
between these two materials (= 4.2%), and this has led to interesting strain effects

in Si/Ge heterostructures, while posing challenging growth issues.

Electrical Properties

Si/Ge heteroepitaxy has improved the electronic properties of Si-based devices
as expected. Today, structures consisting of Si;__Ge, layers have shown consider-
able improvements in speed.ll7: 18] Heterojunction bipolar transistors (HBTSs) fab-
ricated from coherently strained Si,_.Ge, epilayers have displayed superior current
gains.17. 181 Modulation-doped, field-effect transistors (MODFETs) have also dis-
played improved carrier mobility with Si,_.Ge, channels. These improvements in
the speed and gain are related to the strain-induced splitting of the conduction band
degeneracy; it is possible to split the six A conduction valleys of Si into two longi-
tudinal and four transverse valleys separated in energy by the application of uniaxial
stress. Thus, the effective masses can be lowered, leading to higher carrier mobil-
ity. Another important factor that can contribute to the speed of Si,_,Ge, electronic
devices is that strain-induced energy splitting of the conduction valleys can reduce
intervalley scattering. If the strain-induced energy splitting is larger than a longitudi-
nal optical phonon énergy, then it becomes kinematically unfavorable for intervalley

scattering events to occur, and this leads to superior mobility.

Optical Properties

While Si/Ge heteroepitaxy has significantly improved the electrical properties of

several Si-based devices, Si/Ge superlattices have also stimulated research interest
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as potentially useful optical materials, as it is well-known that Si is a poor candidate
for optical applications because of the indirect band gap. However, the interest-
ing possibility of obtaining a direct band gap Si/Ge superlattice arises out of simple
band-folding considerations as illustrated in Fig. 1.1. Although few researchers have
claimed that intense photoluminescence could be observed from Si;_.Ge,, alloys, and
superlattices,[19] the credibility of these claims are still under thorough investigation.
It is also interesting to note that if the optical absorption of Si,__.Ge_. layers can
be significantly improved, then it is possible to lower the band gap of Si;__.Ge,
alloys and superlattices into the 1.3-1.6 pm region (for compatibility with fiber optic
communication lines) by strain-induced effects. It is certainly worthwhile investi-
gating the prospects for improving the optical properties of Si by the heterojunction
approach, and for surveying possibilities for optical devices based on Si/Ge.

In this thesis we have attempted the task of evaluating, theoretically the prospects
of Si/Ge superlattices for optical applications. In Chapter 2 we calculate the optical
matrix elements of Si/Ge superlattices. Our results indicate that it is possible to
enhance the optical absorption/emission strengths by six-orders of magnitude due to
zone folding effects. However, these numbers are still three-orders of magnitude less
than in direct band gap materials such as GaAs. In Chapter 3, we have shown that
it is possible to achieve a long-wavelength infrared detector from Si/Ge superlattices
analogous to the extrinsic Si detectors, with the additional advantage of tunable
wavelength response. The basic concept behind these types of infrared detectors is
illustrated in Fig. 1.2. Although the aim of the work reported in the first part of this
thesis was to illustrate two optical applications based on Si/Ge, we feel that Si/Ge
heteroepitaxy is still in its infancy, and that there are many opportunities for future

applications based on this system.
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Band Folding
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Figure 1.1: Schematic illustration of band-folding. We show the band structure
of three superlattices where the unit cell sizes are 1L, 3L, and SL, respectively.
Correspondingly, the Brillouin zone edges are at I 35> and Z. It is possible to
fold the indirect minimum shown in Fig. 1.1(a) into the zone-center of the reduced

Brillouin zone by a proper choice of layer thicknesses. This is the main idea behind

obtaining direct band gap Si/Ge superlattices.
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Intersubband Transitions
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Figure 1.2: Schematic illustration of intersubband transitions in superlattices. An
infrared photon can raise an electron from the ground state to an excited state that lies
close in energy to the top of the barrier. The electron mobility in the higher subband
is larger than in the ground state, and under a small applied bias this structure will
produce an extra photo-generated current. This is the main idea behind superlattice

infrared detectors.
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1.3.2 Background of II-VI Structures

The purpose of this section is to provide a general background into wide band gap
II-VI semiconductor structures, and motivate the work we present on these materials,
in the second part of this thesis.

The II-VI semiconductors form a set of materials with band gaps in the wave-
length region from far infrared (zero-band-gap HgTe), through the visible and well
into the ultraviolet (ZnS with a 3.66 eV band gap). The applications of narrow
band gap II-VI materials in infrared devices is well established. However, very little
progress has been achieved in the wide band gap II-VI materials in terms of device
applications, because of the inability to easily control their electrical properties. The
purpose of this investigation is to make progress toward a blue/green semiconductor
light-emitter based on the wide band gap II-VI materials. Although formally the
II-VI’s contain quite a large number of candidates suitable for this purpose, in this
work we focus our attention on the compound semiconductors limited to Zn, Cd
cations, and Te, Se anions. In Fig. 1.3, we show the band gaps of several wide-gap
II-VI materials, and a plot of the human eye response, versus photon energy.

The reasons often quoted for explaining the inability to control the electrical
properties of wide gap II-VI materials is two-fold. First it was suggested through
the extensive work in the 1960s that self-compensation processes occur in these
materials, through defect complexes 20) that have opposite charges to the incorporated
dopants. It was postulated that under thermodynamic equilibrium conditions at high-
temperature, these defect complexes and the original dopants were found roughly
equal in number, such that the resulting material had very poor electrical properties.
However, the actual degree of compensation depended on the choice of material as
well as on the choice of dopant species. For instance, ZnTe could be easily doped
p-type but not n-type, while ZnSe could be easily doped n-type but not p-type. Even

when these materials can be successfully doped, it is hard to achieve high doping
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wide-gap II-VI semiconductors. This diagram illustrates that ZnSe and ZnTe are

ideal candidates for visible light-emitters.
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concentrations (e.g. p-type ZnTe). Studies suggest that metastable regimes might
exist at low-temperature, where the compensation processes associated with defect
generation are frozen out and blocked by large kinetic barriers. Secondly, extensive
work done in the 1970s suggested that extrinsic impurities in the wide-gap II-VI
materials were responsible for the inability to dope them selectively. The impurities
such as Cu were thought to be troublesome species that induce deep impurity states
in the band gaps of these materials, severely limiting their useful electrical properties.
There may be elements of truth to both these arguments as suggested by the extensive
amount of experimental evidence available to support them, and it is reasonable to
assume that both the extrinsic ixhpurity problem and the intrinsic defect-associated
compensation problem may have to be solved in some fashion before it is possible
to achieve successful doping of these material in both n- and p-types.

Progress in heteroepitaxy in the 1980s has opened up several interesting possi-
bilities that have positive bearings on the II-VI’s. The II-VI MBE growth can be
achieved at 200-300°C , which is at a much lower temperature than the traditional
bulk growth temperatures, which are usually in the range 1000-1200°C . At these
low growth temperatures, it may be possible to attain metastable material that would
be unattainable by bulk growth techniques, which might show uncompensated elec-
trical properties. It is well-known that metastability can be controlled under certain
circumstances. For instance, under MBE growth conditions at low-temperature it is
possible to achieve MnTe in the cubic zincblende structure, although the bulk grown
crystals of MnTe exhibit the hexagonal NiAs crystal structure. Recent attempts to
dope ZnSe with Li suggest that p-type ZnSe can be obtained, although it may be
metastable. We hope that low-temperature growth techniques may prove the key to
suppressing compénsaﬁon phenomena in many of the wide band gap II-VI’s. The
process of formation of vacancies could be suppressed by techniques such as atomic

layer epitaxy (ALE), where precise control of cation and anion compositions of each
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layer is achieved. Many other techniques such as photo-assisted molecular beam
epitaxy (PAMBE) have been tried, in an attempt to control these metastable growth
regimes with external perturbations. Furthermore, it is quite reasonable to assume.
that the growth under ultra high vacuum, from high purity source materials would
also help to reduce the incorporation of extrinsic impurities into the wide band gap
I1I-VI materials, thereby suppressing the extrinsic compensation mechanisms as well.

Another approach that goes hand in hand with the new low-temperature growth
techniques is the heterojunction approach. The ability to achieve abrupt composition
and doping profiles has contributed much to the success of the GaAs-based IlI-V
electronics. The implementation of similar ideas in the II-VI’s should be possible,
with the growth techniques such as MBE and MOCVD. The heterojunction approach
has opened up a variety of possibilities for engineering structures, with specific band-
edge profiles and doping profiles. For instance, the basic II-VI doping problem of
achieving both n-type, and p-type conductivity within a given bulk material can be
easily circumvented by considering p-n heterojunctions. This opens up possibilities
such as n-ZnSe/p-ZnTe and n-CdTe/p-ZnTe heterojunctions for light-emitters. The
approach taken in this thesis has been to consider the important issues in the II-VI
heterojunction approach, such as band alignments, dopability, availability of wide
band gaps, and lattice-mismatch criteria, and evaluate the prospects for blue/green
light-emission from heterojunctions based on the binaries, ternaries, and quaternar-
ies of several II-VI compounds. The role of the band offset in determining the
possibilities for minority carrier injection in heterojunctions is illustrated in Fig. 1.4.

We have also theoretically investigated the possibility of kinetically suppressing
the self-compensation processes in semiconductors, by the application of an external
electric field during the crystal growth process. The results we obtain show definite
promise for controlling the compensation process. We feel that further development

of II-VI heteroepitaxy, and techniques to control metastability by variation of external
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Favorable Band Alignment

- Unfavorable Band Alignment

Figure 1.4: Figure shows two possible band alignments for a p-n heterjunction
consisting of the same two semiconductors. In the top diagram, the n-type material
is able to inject into the p-type material, and vice versa. However, in the second

case, electron and hole injection is blocked by the band offsets.
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perturbations such as electric fields could lead to success with the long-standing

problems in II-VI’s.

1.4 Semiconductor Superlattices

Superlattices play a central role in this thesis. This section is intended to serve as
a general introduction to superlattices, and to show how they can be used in designs
of semiconductor devices. For the most part of this thesis, we have manipulated the
extra degree of flexibility offered by band offsets and strain effects to achieve the
particular superlattice structures with desired optical properties.

Novel crystal growth techniques such as MBE have enabled the fabrication
of semiconductor superlattices with novel electronic and optoelectronic properties.
Since first proposed by Tsu and Esaki®! in 1970, they have attracted a considér-
able amount of attention due to their ability to directly modify the electronic band
structure by simple schemes such as variation of the layer thicknesses. The band
gaps, effective masses, and densities of states of the superlattice can be significantly
different from bulk values.?}l A schematic diagram of a superlattice is shown in
Fig. 1.5 The superlattice itself is a set of alternating layers of two semiconductors.
The layer thicknesses and the compositions of unit cells are controlled to achieve
a periodic structure. Since the unit cell of the superlattice is large in the growth
direction, consequently, the first Brillouin zone of the superlattice in the growth di-
rection is restricted to a smaller volume in k-space ﬁ1an in the bulk. Thus, several
minibands arise in the band structure as a result of the new periodicity of the super-
lattice potential. In this section we describe the role of buffer layers, advantages of
superlattices, and optical properties of superlattices that concern the work reported

in this thesis.
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Figure 1.5: Schematic illustration of a semiconductor superlattice. The superlat-
tice is a layered semiconductor structure that has a periodic layer sequence of two
constituent semiconductors A and B. Usually, the superlattice is grown on a thick

semiconductor substrate, with an intervening buffer layer.
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1.4.1 Role of Buffer Layers

Typically, a superlattice is grown on a semiconductor substrate, with an inter-
vening buffer layer. This buffer layer is indicated in Fig. 1.5. The correct choice
of the buffer layer is important to achieve certain desired structural and electronic
properties of the superlattice. For example, in the case of a coherently strained su-
perlattice, the in-plane lattice constant of the buffer layer may determine the strain
distribution in the subsequent superlattice overlayers.[22] Buffer layers could also
play the important role of bending dislocations that thread through the substrate and
prevent the propagation of dislocations into the superlattice overlayers. Experimental
studies have shown that buffer layers with short-period superlattices could improve
the structural quality of the subsequent overlayers in the manner described above. 23]

In this thesis, on several occasions we have employed the additional flexibility
offered by the choice of buffer layers to customize the superlattice strain distributions.
In the theoretical investigations of Si,_,Ge,/Si superlattices, we have optimized the
buffer layer compositions to provide an in-plane lattice constant that is favorable for
obtaining increased intersubband absorption strengths.[m] We have also investigated

the role of several III-V buffer layers on the optical properties of II-VI epilayers.[24]

1.4.2 Advantages of Superlattices

There are several advantages to superlattices over bulk semiconductor alloys.
Because of the additional flexibility offered by superlattices, it is possible to vary
several electronic properties independently of each other. For instance, it is possible
to vary the energy gap and the effective masses perpendicular to the epilayers almost
independently of each other, by variation of the layer thicknesses.”) The energy
gap will depend strongly on the well thicknesses since quantum-well energy levels

are not sensitive to barrier thickness, and the effective mass will depend largely on
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the barrier thickness, since dispersion of the minibands are insensitive to the well
thickness.??] In situations where the composition is difficult to control accurately,
as in Hg, _.Cd,Te alloys with small Cd concentrations, it is easier to achieve better
uniformity by controlling the layer thicknesses of a superlattice. These considerations
have motivated the use of HgTe/CdTe superlattices over Hg,_,Cd,Te a]loys.ls]
Radiative efficiencies of superlattices have been observed to be much greater than
for bulk alloys. Although the reason for this is not entirely understood, plausibility
arguments have been proposed, attributed to improved carrier confinement, defect
and impurity gettering at the interfaces, and reduction of surface recombination ve-
locities. We have experimentally observed this remarkable increase of luminescence
in superlattices over bulk alloys, and this fact has motivated our investigation of

II-VI light-emitters based on superlattice radiators.[11]

1.4.3 Novel Properties of Superlattices

Often, certain superlattices exhibit properties that have no direct analogs with bulk
alloys. In this the'/Sis, we give two examples of such effects in Si/Ge superlattices.
First, the superlattice could exhibit a direct band gap, although the bulk alloy is an
indirect band gap material for all alloy compositions. This has led to the possibility
of enhancing the optical matrix elements of superlattices by 3-4 orders of magnitude
over bulk Si;_,Ge, alloys. Second, it is possible to engineer a tensor electron
effective mass in the ground state of Si;_,Ge,/Si superlattices grown on certain
orientations. Thus, it is possible to apply a force on the electrons in a given direction,
and to obtain an electron motion orthogonal to that direction. We have engineered
this effect to couple normally incident infrared radiation (electric field variation in
the plane of the superlattice) to obtain intersubband transitions (electron motion

perpendicular to the plane of the superlattice).
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1.5 Strain Effects

An important degree of freedom that allows additional possibilities in semicon-
ductor heterostructures is the control of strain effects.29] In this section, we discuss
important changes that occur in the electrical and optical properties of semiconductor
epilayers and superlattices as a result of strain. Particular emphasis will be given to
strain-induced effects on the band structure of heterostructures relevant for the work
presented in this thesis.

In Fig. 1.6 we have shown a diagram of the band gaps of several semiconduc-
tors against their lattice constants. The restriction of lattice-match severely limits the
number of interesting semiconductor pairs that can be employed in heterostructures.
However, relaxation of the lattice-match condition for heterostructures and permit-
ting a lattice-mismatch <6-7% will allow interesting combinations of materials.27]
The recent success of lattice-mismatched heteroepitaxy such as Si/Ge heterojunc-
tion bipolar transistors,[”' 18] has shown that strained-layer heterostructures have

potential for future applications.

1.5.1 Strain-Induced Effects on the Band Structure

Strain effects change the band structure of semiconductors because of the low-
ering of symmetry from cubic to tetragonal ([100] strain), or trigonal ([111] strain).
In most cases, the most significant effect of strain is the splitting of the degeneracy
of the band structure at the critical points. For zincblende semiconductors, the va-
lence band degeneracy at the zone-center I' will be split. For instance, this splitting
between the heavy-hole and the light-hole bands could change the transport proper-
ties of p-type semiconductors quite significantly. In this section we summarize the
effect of strain on the band structure of direct band gap materials (ZnTe, ZnSe), and

indirect band gap materials (Si, Ge). These considerations are important for much
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Figure 1.6: Semiconductor band alignment versus lattice constant. The positions
of the band-edges have been determined, consistent with the band offset results of
McCaldin et al.26] The valence band-edges are denoted by squares, while conduc-
tion band-edges are denoted by triangles. The filled squares and triangles denote
p- and n-type dopability, respectively. The shaded gray areas show the nearly lat-
tice-matched semiconductor groups. The II-VIs are indicated by solid lines, while
the III-Vs are indicated by dashed lines. Diagrams of this type are further discussed
by McCaldin.27]
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of the work presented in the following chapters.

The interesting wide band gap II-VI heterostructures such as CdTe/ZnTe and
ZnSe/ZnTe have lattice-mismatches of 6.2% and —7.1%, respectively. The minus
sign on the lattice-mismatch indicates that ZnSe has a smaller lattice constant than
ZnTe, while the opposite is true for CdTe. The formalism for the calculation of
strain effects in these direct band gap semiconductors will be developed in Chapter
4. However, typical changes in the band structure that are due to strain effects
corresponding to a x6-7 % lattice-mismatch can be 100-200 meV shifts in the direct
band-edge positions. In the case of narrow band gap structures, or structures with
small band offsets, these can be a very large percentage effects. Thus, it is necessary
to treat the strain effects on the same footing as quantum confinement effects. For
the purpose of executing this task, in this thesis we have used an eight-band k-7
model that includes strain effects of direct band gap semiconductors systematically.

In Fig. 1.7 we show the band structure of strained ZnSe and ZnTe layers, each
strained oppositely to lattice-match to a ZnTe;Se ; buffer layer. The purpose of
this figure is to illustrate the relative movement of the bands that occurs as a result
of strain. The original, unstrained band edge positions are shown as dotted lines.
Howéver, as a result of strain, the band-edge positions can shift, and split in energy.

For the purpose of this thesis, we calculate strain effects on the band structure
by phenomenological deformation potentials. We use a four parameter deformation
potential model that incorporates hydrostatic shifts in the valence bands, uniaxial
splittings of the valence bands in [100] and [111] directions, and hydrostatic shifts
in the conduction bands. In the presence of strain effects, the band offsets between
the materials could change as shown in Fig. 1.7. However, if the unstrained offset
is known, and the strain distribution in the structure is known, then it is always
possible to calculate the band offset after the introduction of strain effects by the

phenomenological deformation potential theory. So, for the purpose of this thesis,
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we will always refer to the unstrained offset (before strain effects are introduced) by
the term ‘‘band offset”’. This approach eliminates the necessity for describing the
band offset as a function of. layer thicknesses.

In indirect band gap materials such as Si and Ge, strain effects will lift the
conduction band degeneracy. These dégenerate conduction valleys can split and
shift in energy, altering the band alignments significantly. In the case of Si, uniaxial
stress in the [100] direction will lift the six-fold degeneracy into two-fold longitudinal
valleys and four-fold transverse valleys. It is possible to account for the strain effects
in these materials with the phenomenological deformation potential model developed
by Herring and Vogt.asl Detailed description of this model is given in Chapter 2.
The conduction band splitting of the indirect valleys is much bigger than in the direct
gap case. It is possible to move the conduction band-edges by as much as 700 meV
for a lattice-mismatch of only ~ 4.2% (as in Si/Ge case). Thus, strain effects offer

an excellent range for manipulating the band-edge positions in these materials.

1.5.2 Strain Relaxation

Although strain effects that are due to elastically accommodated coherent strain
are desirable and could be easily controlled, in real situations strain relaxation can
occur via the formation of dislocations.?91-33] These dislocations can severely inter-
fere with optical and electronic properties of strained-layer devices. However, there
is usually a critical-thickness for pseudomorphic growth of dislocation-free, strained
epitaxial layers on lattice-mismatched templates. Beyond this critical-thickness, it
is thermodynamically favorable to form misfit dislocations and to accommodate the
lattice-mismatch. Experimental evidence suggests that under low growth tempera-
tures (as used in MBE), it may be possible to achieve dislocation-free epitaxial layers
thicker than predicted by equilibrium critical-thickness models. The investigation

of the degree of strain relaxation via dislocation formation, and the development
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Figure 1.7: The band structure of strained ZnSe and ZnTe. The strain distributions
are appropriate for a freestanding ZnSe-ZnTe superlattice with equal ZnSe and ZnTe

layer thicknesses. This band structure was calculated with an eight-band I;_- p model.
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of critical-thickness criteria that are applicable for MBE growth temperatures have
been areas of intense investigation over the past few years.34 However, these topics
are not explicitly addressed in this thesis. In our analysis, we have made simplify-
ing assumptions about strain relaxation consistent with recent experimental work of
others.

There are two critical-thicknesses that are of interest in strained-layer superlat-
tices. The first is the critical-thickness for individual layers of the superlattice. In this
work, we have assumed that the individual layers are thin enough, or alternatively,
the lattice-mismatch is not large enough to exceed this critical-thickness in the struc-
tures considered. Thus, we always consider that the superlattice layers are coherently
strained within the superlattice unit cell. Secondly, there is another critical-thickness
for the overall superlattice structure for growth on a lattice-mismatched buffer layer.
Experimentally, it is found that if the superlattice thickness exceeds the critical-
thickness for pseudomorphic growth on the buffer layer, then the superlattice layers
break away from the buffer layer, into the freestanding configuration. The freestand-
ing configuration is defined as the superlattice structure that minimizes the strain
energy by accommodation of purely elastic strain. However, if the total thickness
of the superlattice is not large enough to exceed this critical-thickness, we assume
that the superlattice is coherently strained to the buffer layer. In this thesis, we have
considered cases where it is appropriate to consider freestanding superlattices as well
as superlattices lattice-matched to buffer layers. HoWever, we have explicitly stated

which type of superlattice is considered in the context.

1.5.3 Advantages of Coherent Strain

Certain effects that are due to strain can be used to our advantage in device design.
For instance, some of our designs on the superlattice radiator layers were optimized to

have the largest strain-induced, valence-band splitting to obtain significant barriers



28

for holes in the Zn,_,Cd,Te-ZnTe system. In the Si/Ge system, heterojunction
bipolar transistors have been proposed to take advantage of the fact that the electron
mobility can be significantly altered as a result of strain.l17- 18] Another situation is
the In,Ga,_,Sb/InAs system, where strain-induced changes in the band structure
have made the possibility of a novel IR detector.3% 301 In our analysis of the
intersubband absorption in Si/Ge superlattices, we have used strain effects to our
advantage, to achieve favorable carrier confinement, and obtain large, intersubband
optical matrix elements.llo] The [111] oriented, strained III-V superlattices have
attracted attention as a system that exhibits strain-induced, internal electric fields
that could be potentially useful in optoelectronic applications.[37]

The purpose of this brief discussion of strain effects in superlattices and het-
erostructures was to motivate our study of strained-layer structures. Throughout this
thesis, we have utilized strain-induced band structure effects to enhance the optical
properties under study. We feel that utilization of strain effects in future semicon-
ductor applications show promise, aiﬂlough considerations such as the stability and

reliability of these structures have yet to be addressed.

1.6 Theory of Superlattice Band Structure

A major portion of this thesis is concerned with the theoretical calculations of
the band structure of semiconductor superlattices. The method of choice for our
calculations is the complex band structure k- p method. We have used this technique
to obtain electronic and optical properties of wide-gap II-VI materials and Si/Ge
structures. In the case of the III-V materials and narrow-gap II-VI materials, the
theoretical % - 7' formalism was already worked out in the previous theses by Wul38]
and Mailhiot39). However, we have applied these techniques to wide-gap II-VI

semiconductors to guide our designs of novel heterostructures and estimate the band
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alignments based on experimental data. The details of the band structure calculations
on the II-VI materials are given in Chapter 4. In the case of the Si/Ge superlattices,
we developed a new formalism for calculating the band structure of indirect gap
Si/Ge superlattices within a full-zone % - p scheme. The details of these calculations
are given in Chapter 2.

We use the k- p method because it is quite easy to implement for superlattices with
only a modest computational effort, and it provides excellent results in agreement
with experiments. It is easy to use empirical parameters such as effectifie masses in
the calculations, and thus provideg an accurate description of the band structure near
the regions of interest. It is straightforward to include perturbations such as spin-orbit
interaction, strain effects, electric and magnetic fields into the Hamiltonian. It is well
suited for the calculation of optical properties, because the optical matrix elements
are readily available through the k- p parameters. Furthermore, it is quite easy to
extend to thick layer superlattices, since the problem size is independent of the layer
thicknesses. Despite these advantages, this technique has several drawbacks, and for
the rest of this section we will outline several theories of superlattice band structure,
and critically compare them with our method of choice, the complex band structure

k- P method.

1.6.1 Envelope Function Approximation

Unless the layers are ultrathin, (few monolayers thick), it is very difficult to cal-
culate the band structure of superlattices by microscopic, first-principles calculations.
This is because it is necessary to include a large a number of atoms in the basis,
which makes the calculations prohibitively time-consuming. The usual approach is
first to solve for the band structure of the constituent layers by some microscopic
technique such as empirical pseudopotentials, tight binding or a detailed % - P model,

and then to impose the envelope function approximation. If proper boundary condi-
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tions at the interfaces could be specified, the envelope function approximation proves
quite adequate for solving the band structure of superlattices between fairly similar
semiconductors. Another criterion for the validity of the envelope function approach
is that constituent layer thicknesses should be substantially larger than the bulk unit
cell size. Luttinger and Kohn#0!, who pioneered the envelope function formalism
have shown that the error introduced in making the envelope function approximation
scales like (a/L)?, where a is the unit cell size, and L is the length scale of the en-
velope function potential (in the case of superlattices, this length scale would be the
well thickness). However, studies on Al,Ga;_.As/GaAs superlattices have shown
that, even in the case of ultrathin layers L ~ a, the predictions based on the envelope
function approximation still prove to be in reasonable agreement with experimental
results.

Among the more important calculational techniques for the superlattice band
structure are the envelope function method, complex & - 5 method,37! complex &
tight binding method,[‘u] and the mini-zone pseudopotential method. 42 We will
briefly review the main concepts of each of these techniques, and will discuss the
potential advantages and disadvantages in each case. In the following discussion we
have expressed all equations in atomic units in which the unit of length is the Bohr
radius (0.529 A), A is the unit of action, and the Rydberg (1 Ryd. = 13.6 eV) is the
unit of energy. In these fundamental units, the unit of mass becomes 2 times the
electron rest mass and the charge of an electron /2.

The first step in the envelope function technique is to approximate the bulk band
structure with the % - 7 method (usually at the center of the zone). For the case of
III-V or II-VI materials with direct band gaps, it is usually adequate to consider the
eight-band % - 5 model (usually known as the Kane model).43] This method includes
two I's (conduction) bands, four I's (heavy-hole and light-hole) bands, and two I';

(spin-orbit) bands explicitly in the basis set. However, further simplifications in
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appropriate cases could reduce the size of the matrices. A particularly simple. form
that is appropriate for the conduction bands and light-hole bands of narrow band gap
semiconductors is the two-band model.44!

The k - P procedure, which includes terms up to second-order in k yields an

expression of the following form, for the Hamiltonian
Hij(E) = Ei§ + Pika + Q3 kaks, (1.1)

where 7, j denote the bands in the Hamiltonian, and «, 8 denote the directions z, y and
z. Repeated indices are summed in the usual fashion. All the symmetry requirements
of the host crystals are hidden in the quantities P} and fo . The energy bands can

be obtained by the solution of the following determinant,
| H:s(k) - E| = 0. (1.2)

We approximate the potential of the superlattice by a multicomponent Schrédinger
equation where the appropriate band discontinuities at the interfaces are added to the
constant term in Equation 1.1. In the case of superlattices, k), is conserved across the
structure since there is no transverse variation of the potential. The kinetic energy
would be given by substituting k, = —iV, in Equation 1.1, where we have assumed
the growth direction to be the z-axis. Then, we obtain the following set of coupled

differential equations,

> Hij(ky, —iV.)Fj(2) = EFi(2). (1.3)

The multicomponent envelope functions F;(z) are different in each bulk region.
To obtain the superlattice band structure, it is necessary to match these envelope
functions across the interfaces, and to impose periodic boundary conditions, over the
whole superlattice unit cell. The specific boundary conditions such as the microscopic

Bloch functions being equal in the two materials, can be adopted, and then appropriate
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current conservation conditions could be derived by considering the first integral of
the set of Equations 1.3 given above. For the case of Al Ga,_,As/GaAs , the
boundary condition about the similarity of the Bloch functions in the two materials
has proven to be quite good. In the case of II-VI’s this approximation should also
be quite good considering the similarity of the band structure of all wide band gap
II-VI materials. In the case of Si, and Ge, we find that the band structure in the
[100] direction is very similar to each other, and this boundary condition should be
valid. The major shortcoming of this technique is the fact that it is not possible
to derive the interface matching conditions for microscopic Bloch functions within
the scope of the theory, but rather they have to be inferred from more detailed
microscopic calculations or simplifying approximations. Despite its limitations with
the boundary conditions, the envelope function method has contributed to the progress
and understanding of a large number of superlattices. A convenient feature of this
method is the possibi]ity of including external perturbations such as strain effects,

magnetic fields, and electric fields quite systematically.

1.6.2 The Complex k - 5 Method

This method is formally very similar to the envelope function strategy explained
in the previous section. However, the implementation can be quite different. In this
method, instead of replacing the k, = —iV, and solving the second-order differential
equations as in the previous method, one determines the multicomponent plane wave
solutions. Then the envelope functions are constructed by a linear combination
of multicomponent plane waves. Usually, propagating (real k,) and evanescent
(imaginary k,) solutions are included for the description of the envelope functions.
The microscopic boundary conditions have to be imposed at the interfaces, and
finally the Bloch condition has to be imposed to obtain the band structure of the

superlattice. This is a very straightforward scheme for finding the superlattice band
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structure in the flat band case. In the cases where band-bending is present, transfer
matrix techniques can be employed to obtain the superlattice band structure.
However, the formal simplicity of this method is counterbalanced by the problem
of spurious solutions. These are solutions that occur beyond the first Brillouin zone.
The occurrence of spurious solutions is related to the fact that the k- P Hamilto-
nian is not periodic in k-space, and does not contain information about the Brillouin
zone edges, thus leading to solutions outside the zone boundary. In general, these
spurious solutions could alter the superlattice band structure considerably, leading to
erroneous results. The other problem with the complex band structure technique is
that it is susceptible to numerical instabilities when the layer thickness of the sﬁper—
lattice is increased. This is because in the case of bands with large imaginary parts,
it is necessary to evaluate quantities such as e~*¢ and e*"?, and take numerical dif-
ferences. If the numerical difference is less than the finite precision of the computer,
numerically unstable results are obtained. |
However, in practice there are cases when one can consider only the bands of
interest, and neglect the troublesome imaginary bands that give rise to numerical
problems and the spurious bands outside the zone. In the eight-band k- P model
employed to solve the band structure of wide band gap II-VI materials, spurious
solutions beyond the first Brillouin zone do not arise, and the pure imaginary bands
can be neglected without altering the numerical results. We have checked the answers
with and without the contributions from these bands, and have found that their effects
are very small (smaller than ~ .01 meV) on the final superlattice band structure.
In the case of Si/Ge, the full-zone formalism developed in this thesis gives rise
to several spurious bands outside the first Brillouin zone. However, for the lowest
conduction band in the [100] direction, it is possible to neglect the spurious solutions
as illustrated in the work of Sterke and Hall.4>) This simple-minded approach of

neglecting the troublesome bands is not satisfactory in a formal sense, and cannot be
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applied in a general situation. Recently, Smith and Mailhiot*®] have worked out
a formalism for full-zone k - 7 that is periodic in the repeated zone scheme, which

shows promise for systematic description of interfaces between dissimilar materials.

1.6.3 Comparison with Other Methods
Superlattice Tight Binding Method

The basic idea behind this technique is to replace the linear and quadratic expres-
sions of k in the & - 7 Hamiltonian by band structure that is periodic in k, and valid
over the repeated zone scheme. One possible way to achieve such a Hamiltonian is
the tight binding method. In principle it is then possible to obtain the band structure
of superlattices using the envelope function approximation based on the complex-k
tight binding Hamiltonian. The other approach is to consider a basis set that spans
the whole superlattice unit cell, and then diagonalize the resulting tight binding
Hamiltonian. Both these tight binding techniques can be applied successfully[47]
with the advantage of systematic boundary conditions, since these techniques use
microscopic localized orbitals. The actual implementation of these techniques is
quite involved, and will not be discussed here.41] Despite its advantages, the tight
binding method suffers from the drawback that it is not as well suited for studying

optical and strain-induced effects in comparison with the k- p technique.

Superlattice Pseudo Potential Method

The empirical pseudopotential method has been very successful at deséribing
the overall band structure of zincblende semiconductors.48] In the superlattice band
structure calculations, the band structure of an ‘‘auxiliary medium’’ is found first,
and then this band structure is folded into the reduced zone of the superlattice. This

auxiliary medium could be either one of the constituent materials, or an average bulk
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between them. Next, the difference between the real superlattice potential and the
auxiliary medium is expanded in the basis set of the mini bands of the auxiliary
crystal, and added to the Hamiltonian. The resulting Hamiltonian is diagonalized to
give the band structure of the superlattice. However, the disadvantage of this method
is the fact that the size of the matrix necessary to diagonalize increases linearly in
size with superlattice layer thickness. Despite its advantages, the superlattice pseu-
dopotential method suffers from the drawback that it is difficult to include external
perturbations in comparison with the k- P technique.

This brief discussion of the status of current superlattice band structure techniques
was presented to sumarize the advantages and disadvantages of various approaches.
Although we have used exclusively the complex band structure % - P technique in
this thesis because it provides an adequate description of the band structure of the
first few subbands and the optical properties of superlattices, it is necessary to keep

in mind its limitations.

1.7 Outline of Thesis

In this chapter, we introduced the genei'al subject matter covered in this thesis.
The main concepts introduced are: superlattices, strain effects, and band structure
calculations. The key issues addressed in this thesis are, optical properties of Si/Ge
superlattices, band alignments and doping of II-VI semiconductors. In Chapter 2
we analyze the interband transitions in Si/Ge superlattices, and evaluate their merits
for optoelectronic applications. In Chapter 3 we analyze the intersubband absorp-
tion in Si/Ge superlattices for long-wavelength infrared detectors. In Chapter 4 we
investigate the band alignment of II-VI heterostructures for visible light-emitter ap-
plications. In Chapter 5 we investigate the role of electric fields in suppressing

self-compensation.
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Part I

Si/Ge Structures
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Chapter 2

Interband Transitions in Si/Ge

Superlattices

2.1 Introduction

This chapter presents calculations of band structure, strain effects, and optical
matrix elements in Si,_,Ge,/Si superlattices. The purpose of this study was to
investigate the possibility of utilizing interband optical transitions in Si;__.Ge,/Si
superlattices for near infrared applications. The results presented here provide a
prime example of how bulk semiconductor properties can be modified and customized
in superlattices to achieve novel physical properties absent in the bulk constituent
materials; for example, Si,_.Ge./Si superlattices can be engineered to be direct band

gap materials, although Si and Ge are each indirect band gap materials.

2.1.1 Background and Motivation

Silicon and germanium have been extremely important materials in the field of
semiconductor electronics for the past few decades.!! However, because of their

indirect band gaps, Si and Ge have been considered unsuitable for optoelectronic
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applications; the optical absorption strengths of pure Si and Ge are several orders
of magnitude lower than a typical optoelectronic material such as GaAs.2! How-
ever, recent advances in crystal-growth techniques such as MBE (molecular beam
epitaxy) have made possible the fabrication of layered epitaxial structures known as
superlattices.3! Si,_,Ge,/Si superlattices seem to offer the intriguing possibility of
greatly enhanced optical properties compared to pure Si or Ge.[1-[14] If substantial
optical emission/absorption strengths can be obtained in Si;_,Ge./Si superlattices,
the resulting optoelectronic applications could, in principle, advance the optical com-
munications industry. In particular, compatibility with Si electronics would be a great
advantage. Furthermore, the strain-induced lowering of the band gap of Si,_.Ge_/Si
superlattices could be utilized to yield band gaps in the 1.3 - 1.5 ym range (the
region of minimum loss in glass optical fibers), making them compatible with fiber
optic communication lines.®®! The purpose of this study was to determine thé merits
of Sil_,Ge,/Si superlattices for such optoelectronic applications.

The following argument illustrates how direct band gap Si;_.Ge,/Si superlat-
tices can be obtained, despite the indirect band gaps of bulk Si and Ge. A typical
Si,_.Ge_/Si superlattice grown in the [100] direction can be considered as a crystal
with an extended unit cell along the growth axis. Thus, superlattices have reduced
Brillouin zones in the growth direction, and qualitatively the bulk energy bands are
folded into the reduced zone as shown in Fig. 1.1. For materials such as Si and
Ge, it is possible to tailor the folding of the indirect conduction band. If the folded
indirect minimum can be brought to the zone-center I, the resulting band structure
will be direct.’) In such a case, there will be optical transitions allowed between
the top of the folded valence band and the bottom of the folded direct conduction
band. A major issue of interest then is whether such Si;_.Ge,/Si superlattices are
useful for optoelectronic devices. To determine the answer to this question, we have

calculated the optical matrix elements of Si,__Ge_/Si superlattices.
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2.1.2 Summary of Results

The aim of this chapter is the calculation of interband optical matrix elements
of Si;_,Ge./Si superlattices, for evaluating the merits of Si; _.Ge,/Si superlattices
for near infrared optoelectronic applications. However, we have also concentrated

heavily on the band structure effects and strain-induced effects in Si/Ge supetlattices.

Results on Band Structure

We employ the full-zone k - p method (a 15 band Hamiltonian) for calculating
the band structure of Si,_,Ge_ alloys, and extend this technique for the calculation
of the complex band structure of thin epilayers. We show that in the [100] direction,
the lowest conduction band and the heavy-hole band are described by 3 x 3 Hamil-
tonian matrices. From the results of our band structure calculations, we show that -
the one-band model is more appropriate for calculating the complex wavevector of
indirect conduction valley electrons. This is in contrast to the situation in direct band
gap materials, where a two-band model is more appropriate for calculating the com-
plex wavevector.[15] We have also developed a complex band structure technique
to calculate the band structure of Si;_,Ge,/Si superlattices employing the envelope
function approximation.

We have demonstrated that direct band gap Si;_,Ge,/Si superlattices can be
achieved for particular layer thickness combinations, and we derive a simple criterion
based on the layer thicknesses for obtaining a direct band structure. Furthermore, we
find that since the effective masses of the longitudinal X -point electrons in Si and
Ge are quite large (0.98m), the dispersion in the superlattice band structure is quite
small. Thus it is possible for optical transitions to occur from every point in the zone
folded valence band to the zone-folded conduction band at near band gap energies;

it is not necessary to obtain precisely direct band gap superlattices to achieve optical



absorption/emission.

In this chapter, we also describe a novel band structure effect called the intervalley
interference effect that exists in superlattices composed of materials with indirect
conduction valleys. We find that as a consequence of the intervalley interference
effect, the lowest conduction band splits into a doublet. The interference effect is

intimately related to the direct/indirect character of Si;_,Ge_/Si superlattices.

Results on Strain Effects

We calculate the position of the strain-dependent conduction band positions of
Si;_.Ge, epilayers as a function of the buffer-layer alloy compositions. We ﬁndl that
for [100] oriented superlattices, the lowest conduction states are the two-fold states
if the superlattice consists of Si-rich well layers and Ge-rich barrier layers, grown
coherently strained to a buffer-layer with a larger lattice constant than the well layer.
This is the required configuration for obtaining strong optical properties that are due
to zone-folding. Using a novel theoretical technique to consider the strain effects
explicitly in the zone-center basis set, we find that the positions of the conduction
minima in k-space do not shift very much as a function of strain, although they
move significantly higher or lower in energy as a result of strain. We also show
that it is possible to achieve a strain-induced type 1/ type II transition in Si,_,Ge_/Si

superlattices.

Results on Optical Properties

Our calculations indicate that in Si,_,Ge,/Si superlattices the optical absorption
strengths can vary by 3-4 orders of magnitude even for layer-thickness variations as
small as 1-2 monolayers. Thus, it is important to control the layer thicknesses to a
monolayer accuracy to obtain the enhanced optical absorption strengths predicted in

this work. This occurs because the relative phases of the conduction band electron
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wavefunction at the interfaces play an important role in determining the optical
properties. In principle, this situation can be thought of as an example where the
phase of the wavefunction can be controlled by changing the layer thicknesses.
Recently, this type of flexibility to change the phase of the wavefunctions has been
referred to as *“wavefunction engineering”’, 1% in the same spirit as the familiar term
‘‘band gap engineering’’ that denotes the ability to change the band-edge positions
of semiconductors in artificial structures such as superlattices. Although the optical
absorption strengths calculated are 3-4 orders of magnitude larger than in bulk Si or
Ge, they are still 3 orders of magnitude smaller than the absorption strengths because
of direct transitions in materials such as GaAs, limiting the usefulness of Si;._,Ge,./Si

superlattices in optical applications.

2.1.3 Outline of Chapter

Section 2.2 presents a detailed derivation of the full-zone k - p Hamiltonian, and
a discussion of the method for calculating the superlattice band structure within the
envelope fu{lction approximation. Section 2.3 describes the effects of strain on the
conduction and valence band-edges of Si and Ge epilayers; explicit equations for the
calculation of strain shifts based on phenomenological deformation potential models
are also derived. In Section 2.4 we discuss the band offsets in the Si;__,Ge,/Si
system. In Section 2.5, we present the results of the band structure calculations of
Si;_.Ge,/Si superlattices, and illustrate the novel interference effect. In Section 2.6,
we calculate the optical matrix elements of Si;_,Ge,/Si superlattices. Finally, the

conclusions of this chapter are summarized in Section 2.7.
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2.2 Theory

2.2.1 Full Zone % - 7 Theory

The & -pmethod is particularly suitable for the calculation of the optical properties
because of the ability to directly calculate various optical matrix elements. We have
used the full-zone k - 7 theory introduced by Cardona and Pollack1 7] to calculate the
bulk band structure of Si and Ge. In the following discussion we have expressed all
equations in atomic units in which the unit of length is the Bohr radius (0.529 A),
% is the unit of action, and the Rydberg (1 Ryd. = 13.6 eV) is the unit of energy.
In these fundamental units, the unit of mass becomes % times the electron rest mass
and the charge of an electron v/2. One must be careful in evaluating expressions
based on atomic units, because there is another type of atomic units where the unit
of length is the Bohr radius (0.529 A), A is the unit of action, but the third quantity
is the unit of mass equal to the electron rest mass. In these fundamental units, the
unit of energy is the Hartree (1 Hartree = 2 Ryd. = 27.6 eV), and the electron charge
is unity.

Consider the one-electron Schrodinger equation for a crystal, written in the first

set of atomic units (these units will be used throughout this chapter)
[-V2+ V(M) ¥ = EY, (2.1)

where V(7) is the potential having the periodicity of the lattice. The solution to

Equation 2.1 are Bloch functions of the form
¥ =y, (7, (22)

where n is the band index and k denotes the wavevector within the first Brillouin

zone; the wavefunctions u, z(7) have the periodicity of the crystal lattice. By sub-
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Zone center state Si Ge
T 0000 | .0000
T, 2650 | .0728
Tis 2520 | 2320
e 5200 | .5710
Tt | -9500 | -.9660

| 1o 7100 | .7700
Ts, 9400 | 1.2500
g 9900 | 1.3500

Table 2.1: Zone center energies (in Rydbergs) used in the full-zone k- p calculations.
The alloy properties are calculated by averaging Si and Ge values. These values were

obtained from Reference[17] .

stituting the Bloch functions of Eq. 2.2 in Eq. 2.1, we obtain
[Ho + 2k - 5+ B] w, () = En(E)u, z(7)- (2.3)

Here, H, is the Hamiltonian at k = 0. The terms k? and H, have only diagonal
terms, and the & - P term has only off-diagonal terms (this is true only in a crystal
with inversion symmetry, such as Si or Ge).

It is well-known that the wavefunctions at an arbitrary point in the Brillouin
zone can be expanded as a linear combination of the zone-center basis set.18] We
have kept the lowest 15 zone-center basis states corresponding to the [000], the
eight 27 /a[111] and the six 27 /a[200] plane waves of an empty F.C.C. reciprocal
lattice. In the context of group theory, the irreducible representations of these fifteen

states correspond to the three three-fold degenerate representations I'y5, I'%,, [Ly,
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- p-Matrix Elements Si Ge
p (26T | 7| T5)) | 120 | 1.36
P (2(T% | 7 T%)) | -090 | .1715
P’  (2i{Ti | 7| T%)) | 100 | .100
P"  (24(T% | P | Ty)) | 1.32 | 1.6231

)
)
)

Q  (2(T | 7] Ty)) | 105 | 1.07
Q  (2(T% | 7| Ty)) | -807 | -752
R (2i(T% | 7| Ty)) | 830 | .8049
R (2% | 7| Typ)) | 1.210 | 1.4357
T  (2i(T¥|7|Ty)) | 1.08 |1.2003
T (2i(T% | 7| Ty)) | 206 | 5323

e ——

Table 2.2: Matrix elements of the momentum operator § (in atomic units) used in
the full-zone % - p calculations. The alloy properties are calculated by averaging the

Si and Ge values. These values were obtained from Reference[17] .

u

one two-fold representation I';; and four one-fold representations I'#, T}, T'%, I'%.
In Table 2.1 we have given the values used for the zone-center energies in our
calculations. The momentum operator p = —4V is a vector operator and thus belongs
to the T'y; irreducible representation of the O] space group (diamond structure).
Group theoretical arguments may be used to show that there are only 10 independent
momentum matrix elements between the 15 zone-center basis states. In Table 2.2,
we have enumerated the values of the momentum matrix elements appropriate for
bulk Si and Ge. To represent the strained band structures of Si and Ge accurately, we
have slightly modified the zone-center energies given by Cardona and Pollack.!l17]

The properties of Si;_,Ge, alloys were determined by a linear interpolation of the
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p- matrix elements and the zone-center energies of Si and Ge. In the [001] direction,
the 15 x 15 & - p Hamiltonian can be block-diagonalized into one 5 x 5, three 3
x3andonel x 1 submatrices. The bottom of the conduction band in the [001]

direction (Al) is then given by the second largest eigenvalue of the following 3 x

3 matrix
Eq5 + k2 k.T kT’
kT  E}+k? 0 : (2.4)
kT 0 E! + k2

The top of the valence band in the {001] direction (A}) is given by the second largest

eigenvalue of the following 3 x 3 matrix

Ew+k  kQ 0
k.Q Eis + k2 kE.Q' . (2.5)
0 k.Q o + k2

Including the spin-orbit interaction complicates the situation by doubling the size
of the Hamiltonian matrix from 15 x 15 to 30 x 30. The spin-orbit interaction in
atomic units is given by

LGV x7)-a (2.6)

where, a is the fine structure constant. When added to the Hamiltonian of Eq. 2.3,
this generates two new terms given by

2OV x8) o+ (FV xF)-d]. (27)

The second term is much smaller than the first term, and will be neglected for the
purpose of the present discussion. However, the main effect of the k-independent
part of the spin-orbit interaction is to couple one A} heavy particle and the A}, light
particle from the 3 fold degenerate I',;, valence band-edge to give the conventional
light-hole and spin-orbit bands. The form of tﬁe other A} heavy particle band
remains the same even in the presence of the spin-orbit interaction, and gives rise

to the conventional heavy-hole band. This identification of the heavy-hole band
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with the A} band can be made even in the presence of tetragonal strain effects.
For most of this work, we have focused our attention on only the heavy-hole band
and the longitudinal A¥ ellipsoids of the lowermost conduction bands, since they
are the relevant bands for near band gap optical transitions. We have denoted the
longitudinal conduction band A by | ¥¢) and the heavy-hole bands AY by | ¥y).
In the zone-center representation, both these states are column vectors of 15 elements
with only three nonzero components. It is fairly easy to work out the optical matrix
elements in this basis set, because the matrix elements of the 15 x 15 momentum
operator are known (given in Table 2.2). Our calculations indicate that for [001]
superlattices, (¥¢ | p. | ¥y) =0, but (¥¢ | p. | Ty) = (¥e | p, | Ty) # 0.
Thus, only light polarized in a plane perpendlcular to the superlattice growth axis is

allowed to induce optical transitions in Si,_.Ge,/Si superlattices.

2.2.2 Complex Band Structure

To study the band structure of Si,_,Ge_/Si superlattices, it is necessary to work
out the complex band structure of the constituent bulk materials. The bulk Hamil-
tonian of Equation 2.3 can be viewed as a quadratic function of a scalar parameter
k., involving 15 x 15 matrices. It can be shown that one can recast the problem
of finding k, as an eigenvalue problem with the size of the original Hamiltonian
doubled when E and &) are specified.!1?: 201

Equation 2.3 can be rewritten as follows,
[Do(Ry, E) + Dk + k2] use = 0, (2.8)

where

Do = [Ho + 25} - ky + ki — E] , (2.9)

and

D; = [2p.]. (2.10)
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We can recast 2.8 into a matrix form

z 3 (2.11)

where [I] is the 15x 15 unit matrix. If we treat the quantities u,,; and k,u,, indepen-
dently (equivalent to treating ¥, and V ¥ independently in the Schrodinger equation),
then we can solve for the plane wave solutions by diagonalizing the matrix in Equa-
tion 2.11.

Our solutions for Equation 2.11 generate 30 bands. Because of the inherent
limitations of the & - P approximation, the bulk band structure is not limited to
the first Brillouin zone. In the forbidden energy regions (e.g., band gaps) complex
wavevectors are generated. In Figs. 2.1 and 2.2 we show the complex band structure
(without spin-orbit interaction) of Si and Ge, in the [100] direction. In the figures,
the zero of energy is taken to be the valence band maximum of each material and are
denoted by I', while the indirect conduction band minima in the [100] direction are
denoted A. These two ﬁgurés illustrate that the complex wavevectors of the indirect
electrons are described fairly accurately by the one-band model, and that in the
forbidden energy regions the complex wavevector has both real and imaginary parts.
For complex wavevectors with a nonzero real component, the envelope functions
are multiplied by a rapidly varying carrier wavefunction. This rapid oscillation is a
characteristic feature of indirect envelope functions, as opposed to smoothly varying

envelope functions of I' electrons in materials such as GaAs.

2.2.3 Superlattice Band Structure

The superlattice band structure is calculated in the multicomponent envelope
function approximation. The eigenstates derived from k- P theory can be propagated
from one interface to the other within a given bulk layer. However, to match the

wavefunctions across the interface, we need to impose boundary conditions on the



52

Complex Band Structure
Si [100]
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Figure 2.1: Complex band structure of Si in the [100] direction. The zero of energy
is at the valence band maximum of Si denoted by I". The band structure is obtained
using the full-zone k- p method. The left half of the graph shows the imaginary part
of the complex wavevector, while the right half shows the real part. The edge of the

first Brillouin zone is at 27/a. The conduction band minimum in the [100] direction

is denoted by A.
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Complex Band Structure
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Figure 2.2: Complex band structure of Ge in the [100] direction. The zero of energy.

is at the valence band maximum of Ge denoted by I'. The band structure is obtained
using the full-zone k- p method. The left half of the graph shows the imaginary part
of the complex wavevector, while the right half shows the real part. The edge of the
first Brillouin zone is at 27/a. The conduction band minimum in the [100] direction

is denoted by A.
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wavefunctions and their normal derivatives. The first matching condition we used
was that for each wavefunction, the zone-center components are required to be the
same across the interface. This assumption can be justified by the observation that
a perfect interface cannot change the symmetry of a zone-center wavefunction; each
symmetry component has an equal niagnitude on both sides of the interface./l]
However, it is not possible to derive microscopic boundary conditions within the
scope of P p theory, as described in Section 1.6. The second condition is to
require the current carried by each wavefunction to be the same on both sides of
the interface. This condition must be satisfied to ensure charge conservation at the
interfaces. Finally, we impose the Bloch condition that relates the amplitude of
the wave function at a given point in a superiattice unit cell to the amplitude in an
adjacent cell at the same corresponding point by a phase factor of the form ei@(d1+d2),
where d; and d, are layer thicknesses within a single period of the superlattice, and
@ denotes the superlattice wavevector within the reduced Brillouin zone. The Bloch
condition can be cast into an eigenvalue problem whose solution gives the values of

the allowed superlattice wavevectors (), where
Qhtd)y = [T'l] [ei”’d’} [Tl] [e"“dl] ... (2.12)

The operator T is the transfer matrix that describes the change in the wavefunction
from one semiconductor to the other, and &,,;, is the envelope function composed of
linear combinations of plane waves.

It is important to note that in typical calculations of the complex band structure by
the k- p method, the physical solutions are usually accompanied by several unphysical
solutions that must be discarded.1%: 20. 211 We identify these unphysical solutions
as the energy bands that are purely imaginary or complex in the energy range of
interest (-5 eV to +5 eV centered around the top of the valence band-edge). Smith

and Mailhiot'!? have shown that the correction terms from these bands are quite
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small and on the order of 10~® of the leading order terms; we have consistently
neglected the contributions to the band structure from these purely imaginary bands.
There are other bands that have to be discarded because their real parts do not lie
within the first Brillouin zone. These spurious bands result from the inability of
the & - p method to mimic correctly the periodic band structure in the repeated zone
scheme with only a finite order polynomial in k, (30th order polynomial in this
case). In our calculations, we neglect these bands based on the analysis by Sterke
and Hall?2, However, in a general situation it is not possible to neglect these bands
as discussed in 1.6. Comparisons of calculations done with the tight-binding method
and the envelope function method based on GaAs system has shown that the latter
is fairly accurate even for ultrathin 'superlattices.r23] This justifies our application of
the envelope function approximation for the study of Si;_,Ge,/Si superlattices with

thin layers.

2.3 Strain Effects

Although Si and Ge surfaces are chemically compatible, there is a lattice mis-
match between them of ~ 4.2%. Strain therefore plays an important role in deter-
mining the relevant band alignments between these two materials. In this section we
show how strain effects on the bulk band structure can be calculated by the introduc-
tion of phenomenological deformation potentials. If we assume that the epilayers are
coherex;ﬂy strained to the buffer-layer, the in-plane lattice constant of the epilayer is
constrained to the value set by the buffer, and we can calculate the strain components

using macroscopic elasticity theory.
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2.3.1 Valence Bands

Kane has shown that the band structure at a three-fold degenerate I' point can be

described by a Hamiltonian

LkZ + M(k2 + k2) Nk.k, Nk,k,
H(kik;) = Nk.k, Lk2 + M(k2 + k?) Nkyk, ,
Nkk, Nkyk, Lk? + M(k2 + k2)

(2.13)
where L, M and N are reciprocal effective mass parameters. Bir and Pikus?4
have shown that strain effects on the band structure of crystals can be described
within the & - p basis, if a strain-dependent perturbation Hamiltonian that has the
same symmetry properties as the quadratic terms in k is added to the unstrained
Hamiltonian. If we define the strain tensor ¢;;, then substituting ¢;; for k;k;, and
replacing the reciprocal effective mass parameters by suitable deformation potentials
in Equation 2.13 provides an adequate description (to second-order in perturbation
theory) of the strain effects in the band structure near degenerate critical points. This

procedure yields the strain Hamiltonian

leze + m(eyy + €.2) ne,,y’ . M€y,
H(ej) = Nezy leyy + m(€ea + €22) N€y: )
ne,, ney, le,; + m(ezz + €,y)

(2.14)
where [, m and n are phenomenological deformation potentials. They are related to
the familiar deformation potentals2> o (hydrostatic), b (uniaxial in [100]), and d
(uniaxial in [111]) by

a=—, (2.15)
l—m
b= — .
n
d=—. 2.17
. (2.17)
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2.3.2 Conduction Bands

Herring and Vogt[29] have shown that the energy shift and splittings of indirect
valleys that are due to strain can be described by a uniaxial splitting =,, and a
hydrostatic shift =, with respect to the unstrained position of the conduction band-

edge.30: 311 The shift in the average energy of the conduction and valence band-

extrema is given by

=, 1z
AEg = (:-d + E;u) (ezz + 6yy + 622)) (2'18)

AEYy = aep+ €yy + €22)- 2.19)
From the above equations, the mean energy gap is obtained to be

1
AEgap = (Ed + EEu - a) (Ezz + €y + Ezz)- (220)

For the six-fold degenerate A conduction bands of Si, uniaxial strain leaves the
degeneracy unchanged. However, under uniaxial strain along [001] and [110] direc-
tions, the six-fold degeneracy splits. The splitting with respect to the mean energy

of the conduction band is given by

{[o01],[001]} — +333 (ezz — €zz), (2.21)

{[100],[100], 010}, [0T0]} — —3Z8 (eus — €0a) 2.22)

For the conduction band minima at the L-point, uniaxial strain along the [001]
direction leaves the four-fold degeneracy unchanged. However, under uniaxial strain
along the [111] and [110] directions, the four-fold degeneracy will be lifted. The
splitting with respect to the mean energy of the conduction band for [111] strain is

given by

{[111]} — +22Le,,, (2.23)

(1], (101, (1T} — —38ken, (2.24)
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Deformation potentials Si Ge
(Ba+1Z.-a)" | L72| 131

L
(Ba+18.—a) 3.12 | 2.78

b 2.35 | 2.55
d 532 | -5.50
=4 9.16 | 9.42
=L 16.14 | 15.13

Table 2.3: The table of deformation potentials (in €V) for Si and Ge. The conduction
band parameters were obtained from Reference[26] . The valence band parameters
were obtained from Reference[28] . Alloy properties were calculated by averaging

the Si and Ge values.

and for [110] strain is given by

{[111],[117]} — gEﬁ‘ezy, (2.25)
{011} — —32ke, @26

The values of the deformation potentials used in this work are given in Table2.3.
We have also performed calculations to characterize the strain effects of the
(A¥) conduction bands by introducing deformation potentials for the shifts and the
splittings of the zone-center states, I';5, I'y,, and T'}, that constitute the Al states as
shown in Equation 2.4. We find that it is sufficient to introduce only a uniaxial
and a hydrostatic deformation potential for the I';; triplet, to describe adequately the
motion of the six-fold Al° valleys as a function of strain. Since we have transferred
all strain effects into deformation potentials associated with the three-fold degenerate

I'1s zone-center states (for the conduction band), with this techniquéwe are able to
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predict the variation of k. (the minimum of the A% band in k-space) as a function
of strain. Our calculations indicate that strain does not change k,;, of the indirect
valleys by more than 2-3% of its unstrained value. However, the energies of the Al

minima are altered substantially by strain effects, as we have discussed.

2.3.3 Structural Effects

Whenever strained epilayers are grown beyond the critical thickness for pseu-
domorphic growth, it becomes energetically favorable for strain relaxation to occur
via formation of misfit dislocations. When this occurs, the in-plane lattice constant
of the superlattice will not be constrained to the in-plane lattice constant set by the
buffer-layer. It is quite difficult to predict accurately the critical thicknesses, or the
degree of strain relaxation in the epilayer. However, experimental studies>2! show
that coherently strained epilayers can be grown well beyond the critical thicknesses
predicted by equilibrium theories.331-37]

An important case of strain relaxation occurs when the superlattice layers are free
to adjust their in-plane lattice constant to the value that minimizes the elastic strain
in the superlattice layers. Such a superlattice is called a freestanding superlattice.
This situation is quite common and is known to occur when the total thickness of the
superlattice exceeds the critical thickness for pseudomorphic growth on the buffer-
layer. Experimental studies®2] have shown that in a freestanding superlattice, the
lattice-mismatch between the buffer-layer and the in-plane lattice constant of the
freestanding superlattice are accommodated by é region rich with misfit dislocations.
Beyond a certain distance from the buffer-layer, however, the superlattice has a much
lower density of misfit dislocations and exhibits properties related to coherent elastic

strain.
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The freestanding superlattice in-plane lattice constant is given by

a;G;h; + a,-G,-h,-
a;G; + a,,-G,-

ay = ) (2.27)

where a;, and a; are the cubic lattice constants of the constituents, h;, and h; are the
layer thicknesses within a single period of the superlattice, and G;, and G; are the

shear moduli given by
G,‘ = 2(011 + 2012)(1 - D,/2), (228)

where D; are given for the [100],[111], and [110] orientation by

20,

Dige = , 2.29
100 = "o (2.29)
2(Cu + 2C12 — 2C4)
= 2.
D C11+2C13 +4Cyy ’ (2:30)
-2
Dio = Ci1 +3C13 — 20y, (2.31)

Ci1+Ci2 +2Cs
The above equations were taken from Van de Walle and Martin(261.

2.4 Band Offsets

The heterojunction band offset for Si/Ge interfaces has been investigated by
several groups. Keuch et al. B8] estimated a band offset from reverse bias capacitance
measurements of, A Ey = 0.39 +.04eV. Margaritondo et al.?9] report a valence band
offset of 0.2 eV based on photo-emission studies. Mahowald et al. 40l obtain 0.4 +
dev based on the same technique. The theoretical prediction of Harrison/*1] places
the valence band offset for Si/Ge at 0.38 V. Tersoff’s theory*2! predicts a value
of 0.18 eV. The more recent predictions of Harrison and Tersoffi*3] sets the valence
band offset at 0.29 eV. The above predictions can be in substantial error because

there has been no provision for the effects of strain.
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However, recent ab initio density functional calculations by Van de Walle and
Martin% 27 have considered the effects of strain on the valehce band offsets ex-
plicitly. They find that the average positions of the valence band-edges of Si and
Ge have an offset independent of strain, AE$’ ~ 0.54 £+ 0.04 eV. These values
are in agreement with the recent in situ measurements by Yu et al.l44] using x-ray
photoelectron spectroscopy, explicitly taking into account the effects of strain. Their
measurements yielded valence band offset values of 0.83 +0.11 eV and 0.22 3 0.13
eV for Ge on Si (100) and Si on Ge (100), respectively. The value for the aver-
age valence band offset between Si and Ge according to the results of Yu et al. is

0.49 £ 0.13 eV.

2.4.1 Conduction Band Offsets

To calculate whether Si;_.Ge./Si superlattices are direct or indirect, it is neces-
sary to know the conduction band alignments. These can be determined by applying
the deformation potential theory developed in the earlier section. In general, the strain
distribution in the superlattice will depend on whether the layers are thin enough to
be strained coherently to the in-plane lattice constant of the buffer-layer, or whether
they will relax to the freestanding superlattice configuration. In this work we have as-
sumed that the epitaxial layers are coherently strained to the in-plane lattice constant
set by the buffer-layer.

For epilayers coherently strained to the buffer-layers, the conduction band align-
ment will depend on both the alloy concentration of the buffer-layer and that of
the epilayer. In Figs. 2.3 and 2.4, we show the calculated conduction band offsets
for pseudomorphic growth of strained Si,_,Ge, epitaxial layers on cubic Si,_,Ge,
buffer-layers. The contour plots of 2.3 and 2.4 show the conduction band offset for
the 2-fold and 4-fold conduction minima relative to the conduction band minimum

of the unstrained buffer-layer. The 4-fold band offsets are relatively small (typically
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less than 100 meV) for most compositions, while the 2-fold band offsets can be con-
siderably larger (up to approx. 500 meV). The values shown for the conduction band
offsets are applicable only for the X-valleys of Si,_.Ge, alloys. The L-point minima
also have a characteristic splitting and a dependence on the alloy composition; these
minima are the lowest conduction valleys in alloys with Ge concentrations in excess

of ~ 85%.

2.4.2 Type I/ Type II Band Alignment

It is possible to achieve both type I and type II band alignments in Si,_,Ge,/Si
superlattices, depending on the strain distribution in the epilayers and the layer thick-
nesses. By a type I band alignment, we mean a situation in which electrons and holes
are both confined in the same layer, while in a type II band alignment, electrons and
holes are confined in different layers. In a Si;__Ge,./Si superlattice, the valence bands
of the Ge-rich alloy layer will always lie higher in energy than those of the Si alloy
layer, and the holes will therefore be confined to the Ge-rich layer. It is not possible
to transfer the holes from the Ge-rich layer to the Si-rich layer by strain effects,
because the valence band offsets are usually larger than the strain splittings. On the
other hand, it is possible to confine electrons in either layer. There is a steady rise
of the average conduction band position as the alloy composition is changed from Si
to Ge. Thus, electrons can be easily confined in the Si-rich layer, and the usual band.
alignment of Si;_,Ge./Si superlattices would be type II. However, it is possible to
compressively strain the Ge-rich layer substantially, thereby lowering the strain split
conduction band, and transferring the electrons from the Si-rich layer to the Ge-rich

layer. This type of band alignment would be type L.
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Figure 2.3: The 2-fold conduction band position of a strained Si; _.Ge, epitaxial layer
grown pseudomorphically on an unstrained Si,_,Ge, buffer-layer. The two-fold
bands are the longitudinal ellipsoids of the six A-conduction valleys of Si;_,Ge,
alloys. The conduction band offset is measured with respect to the conduction band
position of the buffer-layer. The dashed lines mean negative offsets, while the solid

lines mean positive offsets.
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Figure 2.4: The 4-fold conduction band position of a strained Si, _,Ge,, epitaxial layer
grown pseudomorphically on an unstrained Si;_,Ge, buffer-layer. The four-fold
bands are the transverse ellipsoids of the six A-conduction valleys of Si;_.Ge.
alloys. The conduction band offset is measured with respect to the conduction band
position of the buffer-layer. The dashed lines mean negative offsets, while the solid

lines mean positive offsets.
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2.5 Band Structure of Si;_,Ge,/Si Superlattices

The band structure of the lowest conduction band of Si-Si ;Ge ; superlattices was
calculated using the four bulk states corresponding t0 +kpin+Ak; kmin is the position
of the indirect minimum of the longitudinal conduction band. In our calculations
of the superlattice conduction bands, we have neglected the two unphysical bands
that arise from the diagonalization of the 6 x 6 companion matrix constructed as in
Equation 2.11, corresponding to the 3 x 3 Hamiltonian matrix given in Equation 2.4.
Similarly, only two bands have been retained for the calculation of the superlattice
. valence bands, since four of the six complex bands that are generated from the 6
x 6 companion matrix related to the 3 x 3 Hamiltonian given in Equation 2.5 are

unphysical solutions.

2.5.1 Band Diagram

In Fig. 2.5, we show the conduction and valence band alignments of a Si-Si ;Ge 5
superlattice grown coherently strained to a Si 75Ge 5 buffer-layer. This superlattice is
the representative case for our band structure and optical matrix element calculations.
The positions of the strain-split, conduction band-edges are labeled as two-fold and
four-fold conduction bands. The two-fold bands are the longitudinal valleys with
large effective masses along the growth direction and I;” = 0. The four-fold bands are
the transverse ellipsoids in the x-y plane with EII # 0. The electrons are confined in
the Si-rich layer, and the holes are confined in the Ge-rich layer of the superlattice. It
is necessary to have tensile strain in the Si-rich layer for the conduction band ground
state to be the two-fold states. This can be achieved by growing the superlattice layer
coherently strained to a buffer-layer with a larger in-plane lattice constant than the
Si-rich well layer. For the case shown in Fig. 2.5, the barrier layers have four-fold

electrons as the lowest state, and the two-fold electrons lie higher in energy than the
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four-fold electrons, because the strain distribution in the barrier layer is opposite to
that of the well layer.

We expect no coupling between the two-fold and the four-fold conduction valleys
since I-c.” is conserved across the interface. Thus, the barrier seen by the two-fold states
in going from Si to Si;Ge; layers is ~ 300 meV, although the lowest conduction
state in the barrier is the four-fold minimum that is only a 150 meV above the Si
two-fold states.27] The heavy longitudinal mass of the two-fold bands result in a
confinement energy for the superlattice states of typically less than 100 meV above
the bulk band-edge. The four-fold states have smaller effective masses, and the
superlattice states that are due to the four-fold states lie higher in energy than the
two-fold superlattice states. Thus, we can neglect the presence of the folded four-
fold minima for near band gap optical properties, because they correspond to higher
conduction band states. Furthermore, one does not expect optical tranéitions from
the four-fold electron states since their iéll component is not zone-folded to the I’
point.

The heavy-hole, valence band states are confined in the Ge-rich layers. This is
because the Ge valence bands on the average lie higher than the Si valence bands.
We have shown only the heavy-hole bands, because the light hole bands lie lower
in energy than the heavy-hole bands, and do not play a significant role in the near

band gap optical absorption.

2.5.2 Intervalley Interference Ef;fect

An interesting feature of the conduction bands of indirect superlattices is that be-
cause of the presence of the two longitudinal indirect valleys, the number of allowed
solutions is doubled, compared to the conduction band of a direct superlattice such as
Al Ga,_,As/GaAs (x < .4). Because of the interference between the electrons from

the two longitudinal valleys, this additional degeneracy can be split and the lowest
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Sl-SlO.SGeO_5 Band Diagram
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Figure 2.5: Schematic band diagram of a Si-Si;Ge 5 heterostructure indicating the
relative positions of the two-fold and four-fold conduction bands and the heavy-hole
valence bands. Strain distribution is calculated appropriate for pseudomorphic growth
on a Si 5Ge 55 buffer-layer. These band alignments are based on the valence band
offset results of Van de Walle and Martin.26!
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Figure 2.6: Band structure of Si-Si;Ge; superlattices for three illustrative layer
thicknesses. The upper bands correspond to the longitudinal two-fold conduction
electrons, and the lower bands correspond to the heavy-holes. Here, SL @, denotes
the superlattice wavevector in the growth direction, and /L denotes the edge of the
reduced Brillouin zone. Notice that a small variation in the layer thicknesses can
result in a large variation of the conduction band structure. The conduction band is

split into a doublet because of the intervalley interference effect.
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lowest conduction band can then become a doublet with a small energy splitting.
The actual splitting that is due to the interference effect is quite small (typically less
than 10 meV). However, the magnitude of this splitting is a sensitive function of the
layer thicknesses and the details of the matching conditions used; the envelope func-
tion calculations give smaller interference effects than tight binding calculations.3]
The interference effect in multivalley quantum well structures has been studied by
many investigatorsi431-#8], Qur predictions of the interference effect in Si;_,Ge,/Si
superlattices are in qualitative agreement with the work of Chang and Ting.14>]
The character of the lowest conduction band in Si,__Ge,_/Si superlattices can
undergo significant changes for a layer thickness variation of 1-2 monolayers. To
illustrate this, in Figs. 2.6(a) 2.6(b), and 2.6(c) we show the superlattice band
structure change from a direct gap in Fig. 2.6(a), to an indirect position where the
lowest point of the conduction band is pinned at the reduced Brillouin zone edge in
Fig. 2.6(b). The superlattices shown in Fig. 2.6 are assumed to be grbwn along the
[001] direction. Our notation of the n x m superlattice defines a structure with n
monolayers of Si, and m monolayers of Si ;Ge 5 within a single period. In Fig. 2.6(a)
we have shown how a direct superlattice can be achieved with a 7.2 monolayer x
7.2 monolayer superlattice; since a 7 x 7 superlattice is only approximately direct,
it was necessary to use fractional monolayers to achieve an illustrative case of a
direct superlattice. However, if the interference effect can be neglected as in a
direct material with the same effective mass, then the corresponding superlattice
band structure would be a single conduction band at the average position of the
lowest two conduction bands shown. In all three sections of Fig. 2.6, we have also
shown the band structure of the corresponding heavy-hole state. The dispersion is
less for the conduction bands (~ 100 meV) because of their higher effective masses.
However, it should be noted that even when varying the layer thicknesses by a small

amount as from 5 to 7 monolayers, the band structure of the superlattice conduction
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band changes quite significantly, in contrast to the valence band that stays almost the
same. This shows that to achieve a given band structure, it is important to control

the layer thicknesses to roughly within a monolayer.

2.5.3 Quantum Confinement Effects

The band gap of Si,_.Ge,/Si superlattices depend on the positions of the heavy-
hole state and the lowest conduction state. In Fig. 2.7 we present the the heavy-
hole valence band position as a function of the Si and Si ;Ge 5 layer thicknesses to
illustrate the quantum confinement effects in the valence band. We have assumed
that the in-plane lattice constant is that of the Si 75Ge 5 buffer-layers. The valence
band offset for Fig. 2.7 is E;**%°* - E5f = 300 meV. Since the Si layers act as
the barrier material for the heavy-hole band, the effect that the Si layer thickness
has on the position of the heavy hole band is quite small. Thus the motion of the
valence band-edge position is due mainly to the variation of the layer thicknesses
of the Si;Ge; layers. The zero of energy for the contour lines of Fig. 2.7 is the
position of the heavy-hole band of unstrained silicon.

Fig. 2.8 shows the energy of the lowest superlattice conduction band state as a
function of the layer thicknesses. The conduction band offset for Fig. 2.8 is E5-5%*
- B3 =300 meV. This corresponds to the band offset between the two-fold minima.
The zero of energy for the contours of Fig. 2.8 is still the position of the heavy-hole
band of unstrained silicon. The bottom of the well (conduction band of Si) lies at
1.2 eV, and the top of the barrier (conduction band of Si;Gej; ) lies at 1.5 eV;
Since Si;Ge 5 layers act as the barrier material for the conduction band, the effect of
the Si;_.Ge, layer thickness on the position of the conduction band is quite small;
the motion of the conduction band-edge position is due predominantly to the layer-
thickness variations of the Si layer. However, notice that the variation in energy for

the conduction band states is considerably less than in the case of the valence band
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Figure 2.7: Contour plot of the Si-Siz;Ge; superlattice valence band-edge
(heavy-hole) position as a flJncﬁon of the layer thicknesses of Si and Si ;Ge 5 within
a single superlattice period. The valence bahd offset seen by the heavy-holes is
assumed to be 300 meV. The strain distribution corresponds to a Si-Si sGe 5 super-
lattice grown pseudomorphically on a Si ,;Ge ;5 buffer-layer. The zero of energy

corresponds to the unstrained position of the heavy-hole band-edge of pure Si. (see

Fig. 2.5).
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Figure 2.8: Contour plot of the Si-Si ;Ge 5 superlattice conduction band (two-fold)
edge as a function of the layer thicknesses of Si and Si;Ge ; within a single super-
lattice period. The valence band offset seen by the two-fold states is assumed to
be 300 meV. The strain distribution corresponds to a Si-Si ;Ge 5 superlattice grown
pseudomorphically on a Si ;5Ge 5 buffer-layer. The zero of energy corresponds to

the unstrained position of the heavy-hole band-edge of pure Si. (see Fig. 2.5).
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states of Fig. 2.7. This is because of the larger effective mass associated with the
conduction band.

Because of the interference effect, the actual minimum of the lowest conduction
band gets shifted up or down in energy depending on the layer thicknesses. This
can be seen from Fig. 2.8 as the small oscillations in the contour curves roughly
parallel to the lines of constant k5%, dSi 4 k5ii-=F=dSi1-<Ge= (at -45 °C to the axes).
It should be noted that as the well (Si layer) width increases, the effects that are
due to the interference effect also become smaller. The actual shift in energy that is
due to the interference effect typically does not exceed 10 meV, and decreases with

the increase in well width as 1/ L%V[ZZ], where Ly, is the well width within a single

repeat of the superlattice.

2.5.4 Direct Gap Superlattices

In a typical situation, the band structure of the Si;_,Ge./Si superlattice is ex-
pected to be indirect. For superlattices to be quasi-direct, a special condition on the
layer thicknesses must be satisfied. To a crude approximation, we can derive the
condition for quasi-directness by considering the conduction band of the Si,_,Ge,/Si
superlattice to be composed of a slowly varying envelope function of the Kronig-
Penney form, superimposed on top of a rapidly varying carrier wavefunction that
oscillates with wavevector k5% or ki';-‘,,"&’ in the appropriate layer. To achieve
a quasi-direct superlattice, the phase shift of the carrier wave across one SL period
should be roughly a multiple of 27; more precisely, the phase of the carrier wave
should cancel with the phase of the envelope function at the end of a superlattice

period. Thus we arrive at the approximate relation

k55 d5 4 ko= CesdSih-Cer x o, (2.32)

'min min
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as the criterion for direct superlattices. The quantities d5* and d%%-=G°= denote
the layer thicknesses, and = is an integer. This simple relation agrees remarkably
well with the results of a more complicated analysis based on imposing the Bloch
condition on the multicomponent envelope functions.

Although the interference effect leads to only small shifts in energy, it dominates
the determination of the position in k-space where the minimum of the folded con-
duction band occurs. On a contour plot of d5¢ and d% 55, the domain for obtaining
quasi-direct superlattices can be expected to be a family of lines obeying Equation
2.32. However, in our model the interference effect gives rise to a width in these
lines, thus expanding the domain for obtaining quasi-direct superlattices to a two
dimensional subspace of layer thickness space rather than a set of lines. Theoret-
ically, it is possible to achieve an exé.ctly direct superlattice by tailoring the layer
thicknesses to lie within one of these two dimensional domains. Precise width of the
strips that give rise to direct band structure on a contour plot of d5¢ and d%1-=Ces
is a sensitive function of the matching condition. The problem of achieving exactly
direct band structure is only of academic interest. However, in reality, it is adequate
to achieve approximately direct superlattices, since transitions are allowed from each
point along the folded valence band to the corresponding point in the conduction
band. The contour plot of Fig. 2.9 shows the wavevector for the minimum position
of the conduction band, based on the matching of the zone-center components across
the interface. The lighter regions correspond to approximately direct superlattices.
The darker regions correspond to situations when the minimum of the conduction
band occurs closer to the reduced zone edge. Fig. 2.9 clearly shows that one obtains
quasi-direct superlattices in strips of the layer thickness space as predicted by Equa-
tion 2.32. It should also be noted that the superlattice wavevector shown in Fig. 2.9
is in atomic units (1/Bohr). The wavevectors get smaller as the layer thicknesses are

increased, since the size of the Brillouin zone is proportional to = /(d% + d%isGes),
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Figure 2.9: Gray-scale plot of Qnin (wavevéctor of the lowest conduction state) as
a function of the layer thicknesses of Si and Si;Ge 5 within a single period of the
superlattice. Here, Q,,;, is in atomic units. For comparison, the Brillouin zone edges
of Si and Si ;Ge 5 in the [001] direction have wavevectors 0.612 and 0.587 in atomic
units (1/Bohr). The series of light strips correspond to roughly direct band structure,
while the darker regions correspond to indirect band structure. This figure shows

excellent agreement with the qualitative prediction of Equation 2.32.
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2.6 Optical Properties

While a direct band gap is necessary for good optical absorption, it is not suffi-
cient. We also need a finite value for the optical matrix element. In this section, we
review the thedry of optical absorption for bulk semiconductors and superlattices to
illustrate the role of the optical matrix element in optical absorption and emission
processes.

The effect of an electromagnetic radiation field on the electronic states of a crystal

can be described by a change in the momentum g’ of the electrons according to

-
b

7 (ﬁ+ EA) (2.33)

where e is the absolute value of the electron charge, c is the speed of light, and A
is the vector potential. The scalar potential can be chosen to be zero without loss of
generality, because of the arbitrariness of the gauge. Substituting this result in the
kinetic energy term of the Schrodinger equation, and retaining terms to first-order in

perturbation theory, we can describe optical interactions by the Hamiltonian

€

Hp=—A-7. (2.34)

mc

Here, m is the free-electron mass. In deriving the above expression, we have assumed
the Coulomb gauge ¥ - A = 0, and have neglected A? terms.#9! Then, we can use
Fermi’s golden rule to calculate the optical transition rates. If we further ignore the
photon momentum (I;,,hotm ~ 0 compared to the electron momentum), and assume

a band structure for the semiconductor, then we can write the transition rate as

Tyc = ?hl (;—‘i) (Tolé - 1) 6(Bolke) — By(ky) — hw).  (2.35)

To obtain the number of transitions per unit time, per unit volume, induced by the
radiation field, we must integrate 2.35 over the entire Brillouin zone, sum over the

spin degeneracy, sum over all filled bands (1), and sum over all empty bands (C') that
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can contribute to transitions at energy fiw. The usual expression for the absorption
coefficient is the energy absorbed per unit time, per unit volume, divided by the
incident energy flux. Using the results of Equation 2.35, we obtain the following

form for the absorption coefficient:

4rle? E (Tclé - I;]\IIVHz §(Ec(kc) — Ev(kv) — hw),  (2.36)

o) = neMPW ¢4k,

where, n is the dielectric constant, and w is the angular frequency of incident light.

2.6.1 Optical Matrix Element: Bulk

The optical absorption is proportional to the square of the momentum matrix
element between the conduction and the valence bands as shown in Equation 2.36.
The optical matrix element M,, between a valence state of ky and a conduction state

of k¢ can be written as
M, = /L(uc | -7 | uy) x elbvrald,, (2.37)

In Equation 2.35, uc and uy are the periodic parts of the Bloch functions corre-
sponding to the conduction and valence states. They are cell periodic functions that
vary rapidly on a scale smaller than a monolayer, and can be expanded in terms of
the zone-center k - p basis set. Since the representation for the momentum operator
in the zone-center basis set is known, the matrix element (uc | -7 | uy) over a unit
cell can be easily evaluated. Here uy and ug are wavefunctions normalized over a

unit cell of the bulk. The resulting expression can then be written as
M, = Mop/ei(kv'kC)’dz, (2.38)

where we have taken the rapidly varying (uc | é- p | uv) part outside the integral,

and replaced it with its average over a unit cell

Mop = (uc | é ﬁl uv). (239)
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The integral in Equation 2.38 becomes a delta function of (ky — k¢) when integrated
over the length of the crystal. This is the familiar # conservation condition for optical
transitions between different bands (assuming that photons have negligible k). In
bulk Si and Ge, the matrix element between the periodic parts of the Bloch functions
(uwe | é-p | uy) is nonzero for z and y polarizations for transitions from the top
of the valence bands to the [001] conduction valleys. However, the k conservation
condition (k¢ = ky) of Equation 2.38 is not satisfied; thus, optical transitions are not
allowed in bulk Si and Ge. The motivation for using Si;_,Ge,/Si superlattices is to

obtain a direct band structure where this &k conservation condition can be modified.

2.6.2 Optical Matrix Element: Superlattice

In a superlattice, Equation 2.37 can be rewritten as
M = [(Uy(a) | 8) | Uoa)) x 440z, (240)

where U¢(z) and Uy(z) are the envelope functions that are periodic on the scale
of a superlattice unit cell. We can first perform the integral over a unit cell of the

superlattice to obtain

—, H SL_LSLy,
MJE = prL/Le(kV k)2 dy, (2.41)
where
MJF = (Uc(z2) | é- p(z) | Uv(z2)). (2.42)

The envelope functions are normalized to a single unit cell of the superlattice. It is

possible to satisfy the k3~ = k3’ condition at energies fairly close to the band-edges.

2.6.3 Superlattice Wavefunctions

In Fig. 2.10(a) we have shown the charge density of the wavefunction at the

conduction band-edge from the indirect band-edge of a 6 x 6 superlattice. The
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Figure 2.10: The charge density of the superlattice envelope functions corresponding
toa 6 x 6 SisGe g structure. ¥ ¥* in the conduction band can have rapid oscillations
compared to the valence band. The charge densities were normalized over a super-
lattice unit cell. The p matrix elements between the conduction and valence band
wavefunctions can be expected to be quite small, since they have different Fourier

components.
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conduction band wavefunction is composed of a rapidly varying carrier wave that is
superimposed on top of a slowly varying envelope function. The rapid oscillation
in the charge density is due to the interference effect between the two longitudinal
valleys. On the other hand, the valence band wavefunction is a slowly varying
envelope function, as shown in Fig. 2.10(b). Thus, the coupling betweén these states
through the momentum matrix element is quite small. These two wavefunctions have
different Fourier components and are still almost orthogonal. Thus, in spite of the
band-folding, it is not possible to obtain a large overlap between the conduction and
valence wave functions in k-space. In a typical situation, M2" is less than 10~?
(atomic units). In comparison to the square of the optical matrix element of bulk
GaAs, | M,, |*~ 1.8 (atomic units)PY), the direct absorption strengths of Si;_.Ge,/Si

superlattices would be expected to be 3-4 orders of magnitude smaller.

2.6.4 Results for Si;_,Ge,/Si Superlattices

In Fig. 2.11 we have shown the square of the optical matrix element versus
the layer thicknesses for the transition from ‘the lowest conduction band state to the
corresponding valence band state. The expected matrix elements are quite small, as
explained in the previous section. However, the major contribution to the optical
matrix element integral comes from the interfaces. Thus, the phase of the conduction
band wavefunction at each interface plays an important role in determining this
quantity. As seen in Fig. 2.11, we see that changing the layer thickness of either
layer by approximately 2-3 monolayers (phase change of 7 in the wavefunction) can
change the absorption strength from the minimum to the maximum value, or vice
versa. Thus, the optical absorption strength of Si;_,Ge,/Si superlattices is a very
sensitive function of the layer thicknesses. The maximum optical matrix elements
occur for small layer thicknesses, where a large interface-to-volume ratio exists. As

the layer thicknesses are increased, the optical matrix elements decrease because the
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Figure 2.11: Grey-scale plot of | M,, | (square of the optical matrix element) as
a function of the layer thicknesses of Si and Si;Ge s within a single period of the
superlattice. Here, | M., |? is in atomic units. For comparison, bulk GaAs has a
| M, |? of 1.86. The darker regions have the enhanced optical matrix elements. In
this figure it is clearly seen that layer thickness variations of 1-2 monolayers can

change the optical matrix elements by 3-4 orders of magnitude.
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interface-to-volume ratio in the superlattice decreases. In the parameter space of
4-24 monolayers, the maximum optical absorption strengths occur near the 7 x 7

Si; . »Ge./Si superlattice.

2.7 Conclusions

We have presented a theory for calculating the band structure and optical proper-
ties of the Si;_.Ge,/Si superlattices based on the envelope function approximation.
We have shown how the band structure of indirect superlattices such as Si;__Ge,/Si
can be tailored to obtain roughly direct band gaps by following a simple prescrip-
tion such as Equation 2.32. The optical absorption strengths associated with these
interband transitions can be 3-4 orders of magnitude larger than the phonon-assisted
absorption strengths of pure Si or Ge. However, the band-folded states have much
weaker optical absorption properties compared to the absorption from direct materials
(= 3 orders of magnitude lower). It is important to control the layer thicknesses fairly
accurately (up to a single monolayer accuracy) to achieve the enhanced optical ab-
sorption. Thus, according to our calculations, the usefulness of interband transitions

in Si,_.Ge,/Si superlattices for near infrared applications is rather limited.



83

References

[1] K. E. Peterson, Proc. IEEE 70, 420 (1982).

'[2] S. M. Sze, in Physics of Semiconductor Devices, Wiley, New York (1981).
[3] L. Esaki and R. Tsu, IBM. J. Res. Develop. 40, 61 (1970).

[4] R. Hull, J. M. Gibsoﬁ, and J. C. Bean, Appl. Phys. Lett. 46, 179 (1985).

[S] R. People, J. C. Bean, D. V. Lang, A. M. Sergent, H. L. Stormer, K. W. Wecht,
R. T. Lynch and K. Baldwin, Appl. Phys. Lett 45, 1231 (1984).

[6] J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and 1. K. Robinson,, J.
Vac. Sci. Technol. A2, 434 (1984).

[7]1 H. M. Manasevit, I. S. Gergis and A. B. Jones, Appl. Phys. Lett. 41, 464
(1982).

[8] E. Kasper and J. C. Bean, in, Silicon Molecular Beam Epitaxy , Chemical
Rubber, Boca Raton FL. (1987).

[9] S. A. Jackson and R. People, Mat. Res. Soc. Symp. Proc 56, 365 (1986).
[10] J. C. Bean, Mat. Res. Soc. Symp. Proc 37, 245 (1985).

[11] M. S. Hybertsen and M. Schiuter, Phys. Rev. B 36, 9683 (1987).



84

[12] S. Satpathy, R. M. Martin, and C. G. Van de Walle, Phys. Rev. B 38, 13237
(1988).

[13] S. Ciraci and T. P. Batra, Phys. Rev. B 38, 1835 (1988).
[14] S. Froyen, D. M. Wood and A. Zunger, Phys. Rev. B 37, 6893 (1988).
[15] G. Bastard, Phys. Rev. B 24, 5693 (1981).

[16] T. P. Pearsall, J. Bevk, L. C. Feldman, J. M. Bonar, J. P. Manaerts, and A.
Ourmazd, Phys. Rev. Lett. 58, 729 (1987).

[17] M. Cardona and F. H. Pollack, Phys. Rev. 142, 530 (1966).

[18] J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).

[19] D. L. Smith and C. Mailhiot, Phys. Rev. B 33, 8345 (1986).

[20] Y. C. Chang and J. N. Schulman, Phys. Rev B 25, 3975 (1982).

[21] M. F. H. Schuuraman, G. W. ’t Hooft, Phys. Rev. B 31, 8041 (1985).
[22] C. M. Sterke and D. G. Hall, Phys. Rev. B 35, 1380 (1987).

[23] J. N. Schulman and Y. C. Chang, Phys. Rev B 24, 4445 (1981).

[24] G. L. Bir and G. E. Pikus, in Symmetry and Strain-Induced Effects in Semi-

conductors, Keter, Jerusalem (1974).
[25] E. O. Kane, Phys. Rev. 178, 1368 (1969).
[26] C. G. Van de Walle and R. M. Martin, Phys. Rev. B 34, 5621 (1986).
[27] C. G. Van de Walle and R. M. Martin, J. Vac. Sci. Technol. B 3, 1256 (1985).

[28] I. Balslev, Phys. Rev. 143, 636 (1966).



85
[29] C. Herring, and E. Vogt, Phys. Rev. 101, 944 (1956)7
[30] H. Hesagawa, Phys. Rev. 129, 1029 (1963).
[31] J. C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963).

[32] R. H. Miles, T. C. McGill, S. Sivananthan, X. Chu, and J. P. Faurie, J. Vac.
Sci. Technol. B 5, 1263 (1987).

[33] J. H. Van der Merwe, J. Appl. Phys. 34, 123 (1963).

[34] C. A. B. Ball and J. H. Van der Merwe, in Dislocations in Solids, edited by F.
R. N. Nabarro, North Holland, Amsterdam (1983).

[35] J. W. Matthews, in Epitaxial Growth, edited by J. W. Matthews, Academic
Press, New York (1968).

[36] J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).
[37] R. People and J. C. Bean, Appl. Phys. Lett. 47, 332 (1985).
[38] T. F. Keuch, M. Mdenpad and S. S. Lau, Appl. Phys. Lett. 39, 245 (1981).

[39] G. Margaritondo, A. D. Katnani, N. G. Stoffel, R. R. Daniels and Te-Xiu Zhao,
Solid State Commun. 43, 163 (1982).

[40] P. H. Mahowald, R. S. List, W. E. Spicer and P. Pianetta, J. Vac. Sci. Technol.
B 3, 1252 (1985).

[41] W. A. Harrison, in Electronic Structure and Properties of Solids, Freeman,

San Francisco CA (1980).
[42] J. Tersoff, Phys. Rev. B 30, 4874 (1984).

[43] W. A. Harrison and J. Tersoff, J. Vac. Sci. Technol. 4, 1068 (1986).



86

[44] E. T. Yu, E. T. Croke, T. C. McGill, and R. H. Miles, Appl. Phys. Lett. 56,
569 (1990).

[45] Y. C. Chang and D. Z. Ting, J. Vac. Sci. Technol. B 1, 435 (1983).
[46] M. Nakayama and L. J. Sham, Solid State Commun. 26, 6 (1978).
[47] L. J. Sham and M. Nakayama, Surf. Sci. 73, 272 (1978).

[48] L. J. Sham and M. Nakayama, Phys. Rev. B 20, 734 (1979).

[49] L. L. Schiff, in Quantum Mechanics, McGraw Hill, New York (1955).

[50] C. W. Higginbotham, in Band Structure and Optical Properties of Semicon-
ductors: The k - § Method, Thesis, Brown University, R (1970).



87

Chapter 3

Intersubband Transitions in

Si/Ge Superlattices

3.1 Introduction

In this chapter, we present the theory of intersubband transitions in Si,_.Ge,/Si
superlattices. The intent of this study was to investigate the possibility of utilizing
intersubband transitions in Si;.,Ge,/Si superlattices for long-wavelength, infrared
detection. We make use of the effective mass tensor of Si;_.Ge,/Si superlattices
grown along certain orientations to obtain attractive intersubband absorption proper-

ties.

3.1.1 Background and Motivation

Infrared detector arrays in the (8-14 um) region of the spectrum are in great
demand for thermal imaging applications. The importance of this wavelength region
can be attributed to two reasons. First, this wavelength region is an atmospheric
transmission window. Second, the peak of the black-body radiation spectrum from

room temperature objects occurs in this wavelength region. The conventional ma-
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terials of choice for long-wavelength infrared detection have been narrow band gap
semiconductors (typically Hg; .Cd_Te alloys) and doped semiconductors (extrinsic
Si and Ge detectors). Although devices based on Hg;..Cd,Te alloys have performed
quite well as individual detectors, it has proved difficult to achieve cheap detector
arrays with good uniformity and reliability suitable for large array applications. To
overcome certain limitations of Hg,_,Cd,Te alloys, recently, novel structures such as
HgTe/CdTelll superlattices, InAs, _,Sb,/InSb! and InAs/Ga, __In_Sb3 4! strained-
layer superlattices have been proposed as alternatives.

The infrared detection in the longer wavelength region (\ > 14um region) is
also of importance for space-monitoring applications, and the; conventional detectors
of choice at these larger wavelengths have been extrinsic silicon and germanium
detectors. However, the extrinsic detectors suffer from the limitation that detection
wavelengths are fixed by the positions of the impurity levels in semiconductors. The
intersubband approach to infrared detection opens up possibilities for overcomming
these limitations and provides an alternative method of detection at these larger
wavelengths.P1~[12] The aim of this chapter is to study the intersubband absorption
in Si;_,Ge./Si superlattices, and to investigate the merits of n-~type Si;_,Ge,/Si

superlattice infrared detectors.

Superlattice Quantum Well Infrared Detectors

| The method of infrared detection with intersubband transitions in doped super-
lattices as an alternative to the method of interband transitions (across band gap) in
narrow band gap semiconductors was proposed by Esaki and Sakaki in 1977.(12] The
detection scheme is based on the excitation of an electron from the conduction band
ground state to a higher subband, where it can be swept away by a small, applied
electric field. It easy to achieve a subband separation energy in the range of 80-160

meV (corresponding to 8-14 um wavelength region) in the conduction subbands
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of many semiconductor superlattices. Although this principle of operation is quite
similar to that of extrinsic detectors, however, there is the additional advantage of
being able to customize the wavelength response by changing the well thicknesses.

To date, the growth technology of choice for such superlattice detectors has
been the Al,Ga;_,As/GaAs system. These detectors have demonstrated promising
quantum efﬁciencies,[1 1} and are suitable for large area detector array applications
in the 8-14 pym range[7 ], since planar growth processes such as Al,Ga,_,As/GaAs
molecular beam epitaxy (MBE) can insure good uniformity over a large area.l13]
Because detection is based on intersubband transitions, these structures are efficient at
absorbing radiation in a narrow energy band centered around the subband separation
energy. Thus, even with moderate doping concentrations (~ 102 ¢cm~2), large
absorption coefficients of 5-10 x10° cm~! can be achieved.[11]

Despite the advantages mentioned above, there are some fundamental limitations
to these intersubband infrared detectors, such as poor detectivity. These aspects are
analyzed by Kinch and Yarivil4l A serious shortcoming of the Al,Ga,_,As/GaAs
superlattice infrared detector is that the matrix element for absorption of waves inci-
dent normal to the interface (polarization parallel to the plane of the quantum wells)
is zero.! Although several researchers on Al,Ga;_,As/GaAs superlattice detectors
have made use of various schemes such as the use of diffraction gratings, fabricat-
ing 45° facets, etc. to improve the coupling efficiency of normal i]lumination,[lsl
however, the usefulness of these detectors could be enhanced by the ability to detect
nomnally incident light. In Fig. 3.1 we illustrate the difference between the two

configurations, normal incidence and parallel incidence.

Si based Superlattice Infrared Detectors

The Si,_,Ge,/Si system was proposed by Yang and Pan!!0: 171 to overcome the

difficulties in Al,Ga,_,As/GaAs superlattices associated with the inability to detect
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Parallel Normal
Incidence Incidence

Figure 3.1: This diagram illustrates the configurations of normal incidence and par-
allel incidence for intersubband absorption in superlattices. One of the advantages

of Si;_.Ge,/Si superlattices is their ability to absorb normally incident light.
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normally incident light. This idea is based on the fact that in superlattices composed
of indirect materials where the lowest conduction band minima are not oriented along
the growth direction, nonzero optical matrix elements can be found for intersubband
transitions at normal incidence.l17 18] To utilize these effects in the Si,_,Ge,/Si
system, however, one must investigate growth in the [111], and [110] directions. In
this work, we have investigated the band alignments, optical matrix elements, and
absorption strengths of Si;_,Ge,/Si superlattices, and have quantitatively evaluated
their merits for long-wavelength infrared detection.

A Si;_,Ge,/Si based detector technology would have the additional advantage,
compared to the Al,Ga, ,As/GaAs system, of compatibility with existing Si-based
read-out devices. In recent years, advances in strained-layer Si,_,Ge./Si heteroepi-
taxy by MBE have shown that high-quality Si;_.Ge./Si superlattices can be grown
with good uniformity.19 In principle, it is easy to extend the Al,Ga;_,As/GaAs

superlattice infrared detector concept to apply to the Si;_,Ge_/Si system.

3.1.2 Summary of Results

The main result of this chapter is the calculation of the absorption coefficients
for intersubband transitions in Si;_,Ge./Si superlattices grown in the [100], [111],
and [110] directions to evaluate quantitatively the merits of this system for detec-
tion of infrared radiation. We calculate the intersubband absorption in Si,_,Ge,/Si
superlattices, adequately accounting for the strain effects,[zo' 21) ang using realis-
tic conduction band offsets.22! We find that finite-barrier heights and strain effects
can significantly alter the character of the intersubband absorption. The motiva-
tion for studying [100] oriented Si, _,Ge./Si superlattices was to compare absorption
strengths directly with those of [100] Al,Ga,_,As/GaAs superlattices. Si;_.Ge./Si
superlattices grown on [111] and [110] orientations were studied because they offer

the possibility of obtaining large optical absorption strengths for normal, as well as
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parallel incidence, making their intersubband absorption properties superior to those

of Al,Ga,_,.As/GaAs superlattices.

3.1.3 Outline of Chapter

In Section 3.2 of this chapter, we discuss the theory of intersubband absorption
in superlattices. We analyze the specific dependence of the optical absorption coef-
ficient on the reciprocal effective mass tensor, and the polarization of the incident
radiation. In Section 3.3, we analyze the conduction band alignment of Si,_,Ge_/Si
superlattices for favorable intersubband absorption. We have used the extra degree
of freedom offered by strain effects to vary the strain-dependent, conduction band
positions, thereby obtaining attractive band lineups for intersubband transitions. We
have also selected four cases for detailed study. In Section 3.4, we present absorption
coefficients and peak-absorption wavelengths for the four selected cases, as functions

of well and barrier thicknesses. Section 3.5 concludes the chapter.

3.2 Theory of Intersubband Transitions

In this section, we outline the basic elements of the theory of intersubband tran-
sitions in semiconductor superlattices. We have focussed on the intersubband ab-
sorption properties that allow absorption at normal incidence, because of the tensor-
effective mass in Si;_.Ge,/Si superlattices. Several other issues intimately related
with the calculations of absorption coefficients, such as band offsets and strain effects,
have been treated in depth in Section 2.3; these topics will receive little attention in

this chapter.
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3.2.1 Absorption

In this section we analyze the optical absorption in a superlattice that is due
to electron transitions between the first and the second conduction subbands. The

absorption coefficient is given by/2>]

a(w) = 37 (a6 - Plnr)|P8(Er — Bz + hw). (3.1)

nom2cw ikl

Here, m is the free-electron mass, e is the electron charge, w is the angular frequency
of the incident light, n, is the refractive index at the wavelength of incident light, and
Ynk and 1, are the initial-state and final-state electron wavefunctions, respectively.
We have denoted the bulk band indices by the labels n and n’, and the electron
wavevectors by k and k’. Thus, intersubband transitions occur when n=n’. This
expression must be summed over all the bands that contribute to the transition. The
vector é denotes the polarization direction of the incident radiation, and p’ denotes
the momentum operator. If the above matrix element is evaluated by writing each
of the wavefunctions as a product of a peﬁodic Bloch function and a slowly varying
enéelope function, one then, by taking into account the change in the Bloch function
away from the cehter of the critical point (the A-minimum in the case of Si) and
restricting the analysis to intersubband transitions, recovers a simple expression for
the matrix element based on the effective mass. The derivation of this result is quite
similar to the proof of the effective mass theorem given by Luttinger and Kohn.24

For the rest of this chapter, we assume without loss of generality that the growth
axis is always denoted by the z axis. We can then rewrite the matrix element for

intersubband transitions as

m*

(bnsle - oms) = (Belolles () polFa(a)). (5.2

In Equation 3.2, (1/m*);; are the components of the dimensionless, reciprocal, effec-

tive mass tensor. Summation over repeated indices is assumed in the usual fashion.
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F(z) and Fj.(z) denote the envelope functions of the first and second conduction

subbands, respectively. Using Equation 3.2, we can rewrite Equation 3.1 as

Ar2e?h? 8, 5 3k
aw) = o [1(Be(z) V. Bu()) P + 2 g

2
nom?cw ol

5(E1 - Ez + hw)
(3.3)

g T
From Equation 3.3, it is easy to see that nonzero absorption strengths for normal
incidence (&,, €, # 0;é. = 0) can be achieved only when (1/m*)., or (1/m*),,
are nonzero. This occurs when the growth direction is misaligned with respect to
the principal axes of the ellipsoidal valleys.

If we denote the sheet-doping concentration per superlattice layer by N, then,
assuming a zero temperature, two-dimensional Fermi distribution and assuming that
the envelope function matrix element is independent of iéll and k 1, we can evaluate
the integral over dk.dk, (parallel to the superlattice planes). We can also write the
delta function in the above Equation 3.3 as a normalized Lorentzian with a broadening
parameter T, to account for the excited state lifetime r (givenby I' = £/7). The

expression for a(w) then becomes

4re?h? 5, €z €y é: 1z
o) = LRGP + 2 Ny
L (T/2m)dk,
X L o~ Eath)) 394" (3.4

Here, L is the length of a period of the superlattice, and E;,(k,) is the subband
separation energy. Equation 3.4 shows that absorption is proportional to the sheet-
doping concentration Ng. Furthermore, if there is only a very small amount of
dispersion in Ej,(k,), then a(w) is inversely proportional to the bandwidth T and
superlattice period L. In the aétual calculations reported in this chapter, we have
retained the dependence of the matrix element on kj and k,, as in Equation 3.3.
However, we have assumed a zero-temperature Fermi distribution, and a broadening
parameter I' of 8 meV. We have also assumed a sheet-doping concentration of

102 cm~? in our calculations. In Fig. 3.2 we show the intersubband absorption
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coefficient for normally incident light in a [110] oriented superlattice as a function
of wavelength. The purpose of this figure is to illustrate that intersubband absorption
occurs in a narrow energy band.

An interesting fact of the intersubband absorption in superlattices is that absorp-
tion coefficients can increase as a function of peak wavelength for certain layer
thickness regions. The intersubband matrix element can increase as the well thick-
ness is increased because of the possible improvement in the confinement of the
second excited state. However, as the well thickness is increased, the separation
between the ground state and the excited state decreases, resulting in a peak absorp-
tion at longer wavelengths. Thus, the net effect is to produce an increase in the
absorption coefficient at larger peak wavelengths.

This behavior is qualitatively different from the interband absorption situation
in narrow band gap semiconductors, and can be quoted as a potential advantage
of the intersubband absorption for longer-wavelength infrared detection. This fact
is illustrated in Fig. 3.3. For the purpose of the figure, we have selected the
parallel absorption of Siy;Geos /Sig.2Geo s superlattices grown coherently strained
to a Sig;Geqs buffer-layer. This particular case will be discussed in detail later
in Section 3.4.2. The curve in Fig. 3.3 was generated by keeping the barrier
thickness constant at 50 monolayers, and varying the well thickness. In Fig. 3.3 we
assumed a doping concentration equivalent to 10'® cm~3 in the bulk. This figure
clearly indicates that the absorption coefficient increases as the peak wavelength is

increased in the range 20-27 pm.

3.2.2 Band Structure Calculations

In our calculations, we first study the band structure of the Si;_,Ge, host layers
using full-zone k-7 ’theory.[25 » 26] We obtain alloy parameters by averaging the input

k - P parameters for Si and Ge. A more detailed description of the band structure
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Figure 3.2: This figure shows the intersubband absorption coefficient at normal
incidence in a [110] oriented Si;_,Ge_./Si superlattice as a function of wavelength.
The layer thicknesses were picked to give a peak in the absorption near 11 microns.
The width of the peak is determined by the broadening parameter I'" defined in the

text.
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Figure 3.3: This figure shows the peak intersubband absorption coefficient at parallel
incidence in [100] oriented Si, ;Geg 3 /Sio.2Geo s superlattices as a function of peak
wavelength. The purpose of the figure is to illustrate that under certain situations,
it is possible to obtain an increase in the intersubband absorption coefficient versus
the of peak wavelength. We have assumed that the barrier thickness is fixed at 50
monolayers, while the well thickness is varied. The results are based on a doping

concentration equivalent to 10'® cm~2 in the bulk.
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Figure 3.4: The variation of the conduction band positions of the strain split A con-
duction valleys of coherently strained Si,_,Ge, epilayers grown on Si buffer-layers.

The results are presented for [100], [111], and [110] growth orientations.
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Figure 3.5: The variation of the conduction band positions of the strain split A con-
duction valleys of coherently strained Si, _,Ge, epilayers grown on Ge buffer-layers.

The results are presented for [100], [111], and [110] growth orientations.
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as a function of strain; our calculations of the strain dependence of the band-edge
positions are in close agreement with those of Van de Walle and Martin.22: 271 A
more detailed discussion of strain effects in Si;_.Ge,/Si superlattices is given in
Section 2.3.0321

The position of the conduction band-edge depends on the distribution of strain in
the epilayer. We assume that the entire superlattice structure is coherently strained
to the buffer-layer; this assumption is valid if the epitaxial layers do not exceed the
critical thickness for pseudomorphic growth.[33' 341 In order to satisfy this condition,
we have limited our structures to contain only layers thinner than 60 monolayers,
and the maximum difference in alloy concentration that we allow across an interface
is 60%, corresponding to a lattice-mismatch of less than 2.4%.

Figs. 3.4 and 3.5 show the strain split A conduction band minima for Si;_.Ge,
epilayers grown on Si and Gg buffer-layers, respectively. The zero of energy is
the position of the unstrained valence band maximum of Si. For growth on [100]
buffer-layers, the conduction bands are split into two-fold longitudinal and four-fold
transverse valleys. For [111] growth, the six-fold degeneracy of the A conduction
band minima is not broken. For [110] growth, the conduction bands are again split

into two-fold transverse valleys, and four-fold valleys tilted 45 ° to the growth axis.

3.3 Favorable Band Alignments

In this chapter, we consider four detailed examples of intersubband abso;'ption in
Si;_.Ge_/Si superlattices. The first and second examples are intersubband absorp-
tion coefficients at parallel incidence in [100] oriented Si;_,Ge,./Si superlattices.
The third and fourth examples are intersubband absorption coefficients at normal
incidence in [111] and [110] oriented Si,_,Ge,/Si superlattices. In this section we

describe the reasons for selecting these configurations, and explain how the most
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favorable band alignments can be obtained by consideration of the strain effects.

3.3.1 Parallel Incidence

We have selected two examples to illustrate the difference in the nature of the
intersubband absorption properties of the two-fold and four-fold electrons for super-
lattices grown in the [100] direction. The two-fold electrons are confined by large
conduction band offsets favoring large, intersubband matrix elements. However,
they also have a large effective mass, favoring smaller absorption coefficients. On
the other hand, the four-fold electrons have a small effective mass favoring large ab-
sorption coefficients, while they are not confined by large conduction band offsets,
thus, giving rise to small matrix elements. In a given situation, whether the two-fold
electrons or the four-fold electrons are more favorable for intersubband absorption
cannot be determined without further calculation. In our analysis, we have selected
representative situations corresponding to each of these cases.

The first case we examine is the absorption from two-fold longitudinal electrons
in [100] Si,_,Ge,/Si superlattices. Fig. 3.5, shows that the ground state will be
the two-fold valleys for superlattices consisting of Si-rich well layers, and Ge-rich
barrier layers, coherently strained to a Ge-rich [100] buffer-layer. The variation of
the two-fold band-edge position as a function of the alloy composition is quite large
for the [100] growth direction, making it easy to achieve large conduction band
offsets. |

The second case of interest is the absorption from four-fold transverse electrons
in [100] Si;_.Ge./Si superlattices. From Fig. 3.4, we see that the four-fold states
would be lowest when the superlattice consists of Si-rich well layers and Ge-rich
barrier layers, coherently strained to a Si-rich [100] buffer-layer. However, it is
difficult to achieve a significant conduction band offset for these four-fold states.

In order to obtain the maximum barrier heights, the composition of the well layer
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should be at the minimum of the band-bowing region (= 30% Ge concentration) of

the four-fold conduction band of Fig. 34.

3.3.2 Normal Incidence

The next two cases were selected to illustrate the difference in the nature of the
intersubband absorption properties of the [111] and [110] orientations. These two
orientations have slightly different effective masses (smaller mass in the [111] ori-
entation), and slightly different conduction band offsets (larger offset in the [110]
orientation). Thus, in a given situation, whether the [111] orientation or the [110]
orientation is more favorable for intersubband absorption cannot be determined with-
out further calculation. In our analysis, we have selected representative situations
from each of these orientations.

The third case we study is that of [111] Si,_,Ge_/Si superlattices. The six-fold
degeneracy of the A conduction band minima is not broken for growth in the [111]
direction. In order to achieve the maximum barrier heights, we pick a well layer
close to the minimum of the slight band bowing region of Fig. 3.5 (=~ 20% Ge
concentration), and a Ge-rich barrier layer (= 80% Ge concentration). The choice of
the buffer-layer is not critical since strain effects shift all the valley positions equally.

The fourth case we consider is that of {110] oriented Si,__.Ge_/Si superlattices.
For [110] growth, strain effects split the conduction bands into two-fold and four-
fold components. In this case, however, the four-fold states are ellipsoids oriented
at 45° to the growth axis, and the two-fold states are transverse el]ipsoids.. The
four-fold states are the more interesting ones, showing the possibility of absorption
at normal incidence. A four-fold ground state can be achieved in a structure in
which Si-rich well layers and Ge-rich barrier layers are grown coherently strained to

a Ge-rich buffer-layer as indicated in Fig. 3.5.
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Figure 3.6: Absorption coefficients for light at parallel incidence for a [100]
Si/Sig 4Geg ¢ superlattice. In this case, the two-fold longitudinal conduction val-
leys are in the ground state. The superlattice is assumed to be coherently strained
to a Sig4Geg ¢ buffer-layer. The contour lines show the variation of the absorption
coefficient as a function of the Si well thickness and the Si, ,Ge, ¢ barrier thickness.

The layer thicknesses are measured in monolayers, denoted by ML in the figure.
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Figure 3.7: Peak absorption wavelengths for light at parallel incidence for a [100]
Si/Siy 4Geg ¢ superlattice. In this caSe, the two-fold longitudinal conduction valleys
~are in the ground state. The superlattice is assumed to be coherently strained to a
Sig 4Geo ¢ buffer-layer. The contour lines show the variation of the peak-absorption
wavelength as a function of the Si well thickness and the Si, 4Geg ¢ barrier thickness.

The layer thicknesses are measured in monolayers, denoted by ML in the figure.
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3.4 Peak Absorption Coefficient and Wavelength

In this section, we present the intersubband absorption coefficients, and the peak-
absorption wavelengths of Si, _,Ge./Si superlattices, for the four representative cases

selected in the above section.

3.4.1 [100] Direction; Two-Fold Valleys

In Fig. 3.6 and 3.7, we show the intersubband absorption coefficient for [100]
Si,_.Ge_/Si superlattices calculated using Equation 3.3. The structure we consider is
a superlattice with Si well layers and Siy 4Geo ¢ barrier layers coherently strained to a
Sig.4Geg ¢ buffer-layer. This band alignment has the two-fold longitudinal electrons
in the ground state. The results are presented for the absorption of light at parallel
incidence to the superlattice, since normally incident light cannot be absorbed in this
configuration. The Si, 4Ge, ¢ buffer-layer was chosen to push the four-fold valleys
higher in energy compared to the two-fold valleys. This choice for the buffer-layer
limits the maximum overall thickness for a coherently strained superlattice, since
a Sip4Gegg /Si superlattice in its freestanding configuration will have a different
in-plane lattice constant than a Sip 4Ge, ¢ buffer-layer. If we pick a buffer-layer
that was lattice-matched to the freestanding lattice constant of the superlattice, then
much thicker superlattices can be considered. However, the separation between the
two-fold and four-fold levels would then be smaller, and the four-fold states may
interfere with the absorption of the two-fold states. Fig. 3.6 shqws that fairly good
absorption can be achieved for barrier and well widths of about 20 monolayers. "I'he
apparent decrease in absorption at large layer thicknesses is an artifact of the method
we present in the results. Because we have assumed a constant doping concentration
per superlattice unit cell (constant sheet-doping concentration), as the unit cell size of

the superlattice increases, the effective bulk-doping concentration decreases, reducing
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the absorption. In Fig. 3.7 we show the peak-absorption wavelength in pm for
transitions from the first to the second conduction subbands. The wavelength range
of interest for atmospheric communications (8-14 pm) occurs for Si well thicknesses
of 12-20 monolayers. As seen in Fig. 3.7, the quantum well level separations are
determined mainly by the well thicknesses, not by the barrier thicknesses, since the
barrier heights are fairly large and the masses of the longitudinal electrons are large

(= .98m).

3.4.2 [100] Direction; Four-Fold Valleys

In Figs. 3.8-and 3.9, we show the intersubband absorption coefficients, and peak-
absorption wavelengths, respectively, for [100] Si;_.Ge,/Si superlattices, when the
four-fold transverse valley electrons are in the ground state. Results are presented
for parallel incidence, since absorption at normal incidence does not occur. We
have considered a Sig;Gegs well layer and a Sip,Geg g barrier layer cohe;ently
strained to a Siy 7Geq s buffer-layer. A higher concentration of Ge in the ‘barrier
layer would not be desirable, since above ~ 85% Ge concentration the conduction
band minimum of Si;_,Ge, alloys changes from a Si-like A-minimum to a Ge-like
L-minimum.fzz] The Siy 7Geg 3 buffer-layer was chosen to push the two-fold valleys
as high in energy as possible compared to the four-fold valleys. Although a buffer-
layer lattice-matched to the freestanding Si, 7Gey 3 /Sig2Geg s superlattice could be
more appropriate for thick superlattices, however, the smaller two-fold / four-fold
splitting might significantly influence the absorption from thé four-fold valleys. The
peak-absorption coefficients for four-fold electrons occur at wavelengths of 20-30
pm for the layer thickness range shown in Fig. 3.9. This makes the absorption from
four-fold electrons less attractive than the absorption from the two-fold electrons
for detection in the atmospheric window. However, this configuration is ideal for

detection of larger wavelengths (A > 20um) with absorption coefficients in excess of
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Figure 3.8: Absorption coefficients for light at parallel incidence for a [100]
Sig.7Geg s /Si 2Geg g superlattice. In this case, the four-fold transverse conduction
valleys are in the ground state. The superlattice is assumed to be coherently strained
to a Sip7Gep 3 buffer-layer. The contour lines show the variation of the absorption
coefficient as a function of the Sig;Gey s well thickness and the Sig ,Ge, s ‘barrier

thickness. The layer thicknesses are measured in monolayers, denoted by ML in the

figure.
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Figure 3.9: Peak absorption wavelengths for light at parallel incidence for a [100]
Sig.7Geg 3 /Sip3Gegs superlattice. In this case, the four-fold transverse conduc-
tion valleys are in the ground state. The superlattice is assumed to be coherently
strained to a Siy7Geos buffer-layer. The contour lines show the variation of the
peak-absorption wavelength as a function of the Sig;Ge,; well thickness and the
Sig;Geg g barrier thickness. The layer thicknesses are measured in monolayers, de-

noted by ML in the figure.
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10* cm~!. The qualitative features of the contour lines in Fig. 3.8 are quite different
from those in Fig. 3.6 because the small barrier heights and the small effective masses
influence the absorption coefficients significantly. The optical matrix elements are
still increasing as a function of the well-layer thickness at 60 monolayers for four-fold
electrons, and the decrease in absorption occurs at much larger layer thicknesses than
for the two-fold case. The smaller effective masses of the four-fold states (=2 .19m)
result in slightly larger absorption coefficients for four-fold electrons than for two-
fold electrons. As illustrated in Fig. 3.3, it is also possible to obtain an increase in
the absorption coefficient as the peak wavelength is increased.

Our analysis of the absorption properties of the two-fold and four-fold electrons
for [100] oriented Si,_,Ge_./Si sﬁperlatﬁces shows that two-fold electrons are more
suitable for applications in the 8-14 pm range. The potential increase in the ab-
sorption that could have been achieved with four-fold electrons because of smaller
effective masses is outweighed by the decrease in the optical matrix elements that
was due to smaller conduction band offsets and poor confinement of the envelope
functions. We also find that because of poor carrier confinement, it is quite difficult
to push the peak-absorption wavelength of the four-fold valleys up to the 8-14 ym

range.

3.4.3 [111] Direction; Six-Fold Valleys

The absorption coefficient and peak-absorption wavelength of [111] Si;_,Ge,/Si
superlattices are shown in Figs. 3.10 and 3.11, respectively. In Fig. 3.10, we show
the absorption coefficient for normally incident light. These results are for normal
illumination. The structures are [111] Si;_.Ge./Si superlattices with Sig sGeg , well
layers and Siy ,Geg g barrier layers grown coherently strained to a [111] Si;Ge
buffer-layer. There is no preferred azimuthal polarization direction for the absorption

of normally incident light in this case. This growth direction preserves the six-fold
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Figure 3.10: Absorption coefficients for light at normal incidence for a [111]
Sip.sGeg 2 /Sig 2Geo g superlattice. In this case, the six-fold degenerate A conduction
valleys are in the ground state. The superlattice is assumed to be coherently strained
to a Si;Ge s buffer-layer. The contour lines show the variation of the absorption
.coefﬁcient as a function of the SiysGe,, well thickness and the Sig 2Geg g barrier
thickness. The layer thicknesses are measured in monolayers, denoted by ML in the

figure.
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Figure 3.11: Peak absorption wavelengths for light at normal incidence for a [111]
Sig.sGeo.2 /Sip 2Geg s superlattice. In this case, the six-fold degenerate A conduction
valleys are in the ground state. The superlattice is assumed to be coherently strained
to a Si ;Ge 5 buffer-layer. The contour lines show the variation of the peak-absorption
wavelength as a function of the Si; 3Ge, , well thickness and the Sig ,Geq s barrier
thickness. The layer thicknesses are measured in monolayers, denoted by ML in the

figure.
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degeneracy of the A conduction valleys, and electrons from all six valleys contribute
to the absorption. The choice of the buffer-layer is not critical in this case, and we
have therefore considered a Si ;Ge 5 buffer-layer, quite closely lattice-matched to the
freestanding Sig ,Geg s /Sig sGey 2 superlattice. The obvious advantage of considering
such a buffer-layer is the ability to grow thicker coherently strained structures. 3!
The contour plot of the absorption coefficient shown in Fig. 3.10 is qualitatively
similar to an intermediate case between Fig. 3.6, and Fig. 3.8; the peak in Fig. 3.10
occurs at a larger layer thickness than in Fig. 3.6, but at a smaller layer thickness
than where the peak in Fig. 3.8 would be (not shown in figure). This is because
the barrier heights and the effective masses in the growth direction for Fig. 3.10, lie
in between the values for Fig. 3.6 and Fig. 3.8. The peak-absorption wavelengths
of Fig. 3.11 occur more closely to the 8-14 pm range than in Fig. 3.9, making
the [111] Si;_,Ge,/Si suplsrlattices more useful than [100] Si,_.Ge,/Si superlattice
with four-fold electrons for 8-14 um infrared applications. Fig. 3.10 shows that
a peak-absorption coefficient of 4000 cm™! can be easily achieved for moderate

sheet-doping concentrations of 102 cm~2.

3.4.4 [110] Direction; Four-Fold Valleys

Results of the absorption coefficient and peak-absorption wavelength for normally
incident light for [110] Si;_.Ge,/Si superlattices are shown in Fig. 3.12 and 3.13,
respectively. These results correspond to [110] superlattices with SipsGeo o well
layers and Si;,Geog barrier layers grown coherently strained to a [110] Sig.Gegs
buffer-layer. In these superlattices, the ground state consists of the four-fold con-
duction valleys that are oriented at 45° to the growth axis. There is a preferred
azimuthal direction to the absorption, with peak-absorption occurring for light po-
larized along the [110] azimuthal direction, and zero absorption occurring for light

polarized along the [001] azimuthal direction. The matrix elements are slightly larger
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Absorption Coefficient (cm™"')

lattice matched to Si,Ge, [110] buffer

Si gGe, layer thickness (ML)

Si ,Ge ; layer thickness (ML)

Figure 3.12: Absorption coefficients for light at normal incidence for a [110]
SigsGegs /Sig2Gegs superlattice. In this case, the four-fold valleys that are ori-
ented at 45 °to the growth axis are in the ground state. The superlattice is assumed
to be coherently strained to a Sig ;Gey s buffer-layer. The contour lines show the vari-
ation of the absorption coefficient as a function of the Si, 3Ge, , well thickness and
the Siy ,Geg g barrier thickness. The layer thicknesses are measured in monolayers,

denoted by ML in the figure.
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Figure 3.13: Peak absorption wavelengths for light at normal incidence for a [110]
Sip.sGeg 5 /Sig 2Geg g superlattice. In this case, the four-fold valleys that are oriented
at 45 °to the growth axis are in the ground state. The superlattice is assumed to be
coherently strained to a Sig ,Geg g buffer-layer. The contour lines show the variation
of the peak-absorption wavelength as a function of the Sig sGe,, well thickness and
the Sig 3Geg g barrier thickness. The layer thicknesses are measured in monolayers,

denoted by ML in the figure.
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than for the [111] Si,_.Ge_/Si superlattices because of the larger [110] four-fold con-
duction band offsets, which give rise to larger intersubband matrix elements. The
Sig 2Geg s buffer-layer was chosen to push the two-fold valleys higher in energy
compared to the four-fold valleys. For this choice of the buffer-layer, the maximum
overall thickness for a coherently strained superlattice will be limited by the critical
thickness for strain relaxation.[33 » 34, 35) If, on the other hand, we pick a buffer-
layer that was lattice-matched to the freestanding lattice constant of the superlattice,
then much thicker superlattice layers can be considered. However, the separation
between the four-fold and two-fold levels would be smaller; the two-fold states could
then interfere with the absorption of the four-fold states and reduce the efficiency
of detection at normal incidence. Fig. 3.12 shows that an absorption coefficient of
5000 cm~! can be easily achieved for moderate sheet-doping concentrations of 102
cm~2. The absorption shown in Fig. 3.12 is qualitatively similar to that in Fig. 3.6.
The peak wavelength of absorption also occurs in the 8-14 um region, making [110]

oriented superlattices good candidates for detection in the atmospheric window.

3.5 Conclusions

We have calculated intersubband absorption strengths for [100], [111], and [110]
oriented Si,_.Ge_/Si superlattices. We have shown that the absorption strengths
obtained in all three of these directions are comparable to those found in [100]
Al;Ga,_.As/GaAs superlattices. Absorption in [111] and [110] Si;._.Ge,/Si super-
lattices is superior to that in [100] Al.Ga,_,As/GaAs superlattices because normally
incident light can be absorbed. We find that it is possible to achieve absorption coef-
ficients of about 5000 cm~! for normally incident radiation in the 8-14 um region by
using [110] oriented Si;_.Ge./Si superlattices with sheet-doping concentrations of

102 cm~2. Si;_,Ge,/Si superlattices are particularly suitable for longer-wavelength
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detection (A > 14um), and thus offers an attractive alternative to extrinsic Si detec-

tors, with the additional advantage of wavelength tunability.
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Part 11

II-VI Structures
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Chapter 4

Band Alignment of Wide-Gap
II-V1I Superlattices

4.1 Introduction

In this chapter, we investigate the band alignment of wide band gap Zn,_.Cd,Te-
ZnTe and ZnTe, _,Se.-ZnTe superlattices by optical spectroscopy, and determine the
valence band offsets in ZnSe-ZnTe and CdTe-ZnTe heterojunctions. We make use
of the band alignments of these heterojunctions to engineer heterostructures that are

attractive for visible light-emitters.

4.1.1 Background and Motivation

The major motivation behind current research in wide band gap II-VI semicon-
ductors is to develop optoelectronic devices such as light-emitting diodes (LEDs) and
semiconductor lasers,[l' 2] that can perform in the blue/green region of the spectrum.
The II-VI semiconductors such as ZnSe and ZnTe are ideal candidates for this task
by virtue of their wide band gaps. In Fig. 1.3 we have illustrated the wavelength

response of the human eye versus the band gaps of several II-VI semiconductors to
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provide a background on which semiconductors are suitable for visible light-emitter
applications. Two particularly important wide-gap II-VIs are ZnSe and ZnTe, which
have low-temperature band gaps of 2.82 eV and 2.39 eV, respectively. However,
difficulties associated with obtaining selective doping in both n- and p-type mate-
rial have limited the usefulness of these semiconductors in device applications.[3]
To date, possibilities for p-n homojunctions from these materials seem quite slim,
although there are a few recent reports that indicate limited success. 5 Further
details on the homojunction approach to obtaining minority carrier injection from

II-VI semiconductors will be discussed in Chapter 5.

Heterojunction Approach

In this chapter we will emphasize the heterojunction approach as an alternative
to homojunctions.[zl Recent advances in wide band gap II-VI semiconductor growth
by molecular beam epitaxy (MBE)[G] and metal-organic chemical vapor deposition
(MOCVD)7! have enabled the fabrication of a wide variety of interesting heterostruc-
tﬁres, with the additional flexibility of engineering the band-edge positions. The
heterojunction approach has opened up new avenues for obtaining minority carrier
injection, 8! since it is usually possible to control at least one conductivity type in
many wide band gap II-VI semiconductors; for example, ZnSe can be easily doped
n-type but not p-type, while ZnTe can be easily doped p-type, but not n-type, raising
the possibility of n-ZnSe/p-ZnTe[9] heterojunctions. The heterojunction approach
has also enabled the possibility of combining wide-gap semiconductors with smaller
band gap materials such as CdTe, which are dopable in both n- and p-types; CdTe
has a low-temperature band gap of 1.6 eV, and serves as a quantum well material
for structures made from wider band gap materials such as ZnTe.

Although it is possible to combine several n-type semiconductors with other

p-type semiconductors to obtain p-n junctions, this is not a sufficient condition for
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minority carrier injection.[m] This is because the value of the valence and conduction
band offsets play a crucial role in determining the effectiveness of minority carrier
injection. Basic considerations of the minority carrier injection efficiency across a p-
n heterojunction have been illustrated earlier by McCaldin.10 111 The band offsets
obtained in this work would be useful in evaluating the merits of wide-gap I-VI

heterojunctions based on ZnSe, ZnTe and CdTe.

4.1.2 Summary of Results

The results of this chapter can be divided into three main parts. The first part is
the study of the band structure of II-VI superlattices. The second part is the optical
investigation of the band offsets of CdTe-ZnTe and ZnSe-ZnTe heterojunctions. The
third part is the theoretical analysis of the band alignment of II-VI quaternaries for

heterojunction light-emitters.

Band Structure of II-VI Superlattices

We have investigated the band structure of II-VI strained-layer superlattices
within the framework of an 8-band £ - p theory. With this procedure, we are able to
account adequately for the strain-induced effects and quantum confinement effects in
these superlattices. We study the band gap variation of several superlattices as func-
tions of the layer thicknesses and band offsets. We also investigate the prospects
for customizing the band gaps of ZnSe-ZnTe superlattices throughout the visible

spectrum by variation of the layer thicknesses.

Optical Investigation of the Band Offsets

We have performed low-temperature photoluminescence measurements on MBE-

grown Zn,_,Cd,Te-ZnTe and ZnTe, _,Se,-ZnTe superlattices, and have investigated
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their band offsets by fitting the optical band gaps by k- p theory. We find that the
average valence band offset of the CdTe-ZnTe system is quite small (-50 + 160
meV) with the valence band-edge of CdTe lying lower than that of ZnTe. Thus, in
Zn,_,Cd, Te-ZnTe superlattices, the holes are confined mostly by strain effects; the
heavy-holes and the electrons are confined in the smaller band gap Cd-rich layers
(type I band alignment), while the light holes are confined in the wider band gap
Zn-rich layers (type II band alignment). On the other hand, we find that the valence
band offset of the ZnSe-ZnTe system is quite large (-907 + 120 meV), with the
valence band edge of ZnSe lying lower than that of ZnTe. In this situation, the
band alignment is type II for both light and heavy holes. Given these values, we
investigate the possibilities for minority carrier injection in II-VI heterostructures
made from ZnSe, ZnTe and CdTe. We also ihvestigate the band bowing in the
ZnTe,_,Se, alloys, and determine the components of bowing in the conduction and

valence bands separately.

Theoretical Considerations of II-VI Quaternaries

We have also theoretically surveyed the possibilities for minority carrier injection
from heterojunctions made of II-VI quaternary alloys. We consider the possibility
of engineering favorable light-emitter structures that optimize the parameters such
as wide band gaps, favorable band offsets, lattice-match and dopability. We find
that it should be possible to achieve minority carrier injection in quaternary alloys
and to obtain band gaps in the blue/green region of the spectrum by engineering
heterostructures with proper choices of alloy compositions. These results are very
promising for fabricating blue/green light-emitters from the wide band gap II-VI

materials.
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4.1.3 Outline of Chapter

In Section 4.2 of this chapter, we discuss the strain induced effects in the band
structure of lattice-mismatched superlattices, and briefly describe the theoretical k& - 7
formalism used to calculate their band structure. In Section 4.3 we fit the exper-
imental band gaps obtained by low-temperature photoluminescence measurements
with & - P theory to obtain the valence band offsets. In Section 4.4 we have the-
oretically extended the analysis of the band alignments of Section 4.3 to deter-
mine favorable possibilities for wide band gap heterostructure light-emitters based
on Zn,_,Cd,Te,_,Se, and Zn,_,Mn,Te,_,Se, quaternaries. Section 4.5 concludes

the chapter.

4.2 Band Structure of II-VI Superlattices

In this section, we discuss the theoretical formalism for calculating the band
structure of strained-layer superlattices, and present detailed results for ZnSe-ZnTe

superlattices to illustrate the effects of strain on the band structure.

4.2.1 k-7 Method

The bulk band structure of the constituent materials is calculated using Kane’s
eight-band & - 7 model. This is a well-known form for the & - P Hamiltonian of a
zincblende semiconductor (including the spin-orbit interaction), written in the Kramer
basis set (|J, M) representation).[12] Here J is the total angular momentum, and
M is the axial angular momentum. The formal details of the & - P tec;hnique were
explained in our discussion of Si/Ge superlattices in Section 2.2. We have taken an
approach identical to that of Wull3! in calculating the properties of wide band gap II-

VI superlattices; the details of the calculations and the derivations of the Hamiltonian
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matrices will not be reproduced in this thesis since a more complete account is given
in the thesis by Wull3]. Once the strained bulk band structure is known, then the
superlattice band structure can be found by the application of the complex band
structure technique explained in Section 2.2. In our calculations, we have used
the boundary conditions, that the zone-center components of the wavefunctions are
conserved across a heterojunction interface, and the probability current is conserved
across the interface. The justification for these boundary conditions is given in
Section 1.6.

Material parameters used in the calculations are enumerated in Table 4.1. In
Table 4.1, a, is the lattice constant, E, is the band gap, and A, is the spin-orbit
splitting. The Luttinger parameters of the valence bands are given by v,, 75, ¥3, &
and .14 To preserve the isotropy of the bulk energy bands, we have replaced the
values of v, and ~; listed in Table 4.1 by their average value, and set ¢g=0. The
quantities Cy;, C;; and C,, are the elastic coefficients of the materials. The strain
effects are taken into account by the deformation potentials at the zone-center, which

are denoted by a, b, c and 419

4.2.2 Band Offsets and Strain Effects

The large lattice-mismatch that exists between CdTe-ZnTe (~+6.2%) and ZnSe-
ZnTe (~-7.1%) makes strain effects play an important role in determining the band
alignments. The negative sign on the lattice-mismatch indicates that ZnSe has a
smaller lattice constant than ZnTe, while the opposite is true for CdTe. The most
prominent effect of strain on the band structure of the constituent materials is to
split the valence band degeneracy between the heavy-hole and the light-hole. In
the layer that is under uniaxial compression, the heavy-hole bands shift higher in
energy, while in the layer that is under uniaxial tension, light-hole bands shift higher

in energy. The k- p method is well suited for the calculation of strain effects, since
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Parameter ZnSe | ZnTe | CdTe
Lattice constant (A) ao | 5.669 | 6.104 | 6.481
Band gap SK (eV) E,| 282 | 239 | 1.60
Spin orbit energy (eV) Al 043 | 092 | 0.91
Squared P-Matrix Element (V) Ep | 242 | 19.1 | 20.7
Luttinger parameter v | 377 | 3.74 | 529
Luttinger parameter v | 1.24 | 1.07 | 1.89
Luttinger parameter va| 1.67 | 1.64 | 2.46
Luttinger parameter k| 064 | 042 | 1.27
Luttinger parameter g| 002 | 0.05 | 0.05
Deformation potential (eV) al 135 [ 1.35 | 1.23
Deformation potential (eV) b{-1201} -1.78 | -1.18
Deformation potential (eV) c|-2.82| 27 | 22
Deformation potential (eV) d| -3.81 | -458 | -4.83

Elastic constant (10'° Nm~?%) Cy1| 810 | 7.13 | 5.35
Elastic constant (101° Nm~—2) Ci, | 488 | 407 | 3.68
Elastic constant (10!° Nm~2?) Cu | 441 | 3.12 | 1.99

Table 4.1: Table of material parameters used in the k- p calculations for wide band
gap II-VI semiconductors ZnSe, ZnTe and CdTe. The parameters v;,7,, '3, &, ¢, A,
and E, were taken from Reference[14] . The deformation potentials were obtained

from References[15] and[16] . The elastic constants were taken from Reference[17]
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the simple transformation of replacing quadratic terms k;k; in the k- p Hamiltonian
by e;;, and replacing the reciprocal mass parameters by deformation potentials takes
care of strain effects systematically.[18, 19]

Our calculations indicate that the energy shifts produced by a large lattice-
mismatch =26-7% can influence band-edge positions by ~ + 200 meV. However,
for an accurate description of the band structure of strained-layer superlattices, it is
necessary to know the degree of strain relaxation in the overall structure as well as
in the individual layers.[ZO] In our calculations we have assumed that the overall
structures have relaxed to the freestanding superlattices, since the total thicknesses
of our samples (2000-2500 A) are usually thicker than the critical thicknesses for
pseudomorphic growth given by models such as Matthews and Blakeslee.211-125)
On the other hand, we have assumed that the individual layers are below the critical
thickness for strain relaxation. Thus, we can model the band structure of our strained-
layer superlattices as that of freestanding superlattices. A freestanding superlattice
is a structure in which the in-plane lattice constant is determined by minimizing the
elastic free energy of the layers. These assumptions are consistent with experimental
results on strain relaxation in superlattices by Miles et al.20. 261 However, in our
calculations we find that the superlattice band gaps are fairly insensitive (within +
20 meV) to the particular assumption that the overall superlattice is modeled as a

freestanding superlattice. Further details on the strain effects in lattice-mismatched

heterostructures were given in Section 1.5.

Previous Results for Band Offsets

The previous values of the valence band offset reported for the ZnSe-ZnTe sys-
tem span over a wide energy range. Harrison and Tersoff27] predict a value for
the valence band offset of -290 meV, while experimental measurements by Katnani

and Margaritondo yielded a value of -430 meV.28] In Fig. 1.7 we show the relative
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Figure 4.1: The band offset of ZnSe-ZnTe heterojunctions according to several theo-

retical predictions and experimental

valence band-edge is plotted with respect to that of ZnSe; the values shown are Harri-
son and Tersoff (1986);27] Katnani and Margaritondo (1983);28] McCaldin, McGill
and Mead (1976);29) Tersoff (1986);01 Milnes and Feucht (1972);31] Harrison

measurements. The relative position of the ZnTe

(1977);32! and Van de Walle and Martin (1988).1>!
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alignment of the energy bands, assuming a valence band offset of -1080 meV, con-
sistent with the prediction by Harrison.32! Our previous estimate on the band offset
of this system, based on the ZnSe-ZnTe superlattices grown by Kobayashi®¥ et
al. was -975 meV.[18, 351 The large range of energy spanned by these predictions is
illustrated in Fig. 4.1.

On the other hand, the previous results on the CdTe-ZnTe system seem to indicate
that the valence band offset is small. The theoretical predictions by Harrison/>2! for
this system yield a value of 180 meV while Harrison and Tersoffi2/] place the valence
band offset at -30 meV. The x-ray photoelectron measurements by Tran Minh Duc
et al.30 yielded -100 + 60 meV. The common anion rule of McCaldin et al. 29
predicts a valence band offset of zero.

Since strain effects move the band-edges around, the effective valence band offset
in a strained-layer superlattice is different from the unstrained offset, and depends
on the particular strain distribution in the structure. Thus, it is more meaningful to
describe the value of the valence band offset as the difference between the valence
bands of the two materials before strain is introduced, and to include the strain effects
with the & - 5 method. The valence band offset so defined has the advantage of being
independent of strain and layer thicknesses, and is an input parameter to the k- P
theory. This is the quantity that is illustrated as the difference between the dashed
lines of Fig. 1.7. We can determine the best fit for the valence band offset by
reading off the value that corresponds to the theoretical band gap that agrees best
with the experimental band gap. It is also possible to obtain the error bars for a
given uncertainity in the experimental gaps, by reading off the corresponding change

in the valence band offset.
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4.2.3 Theoretical Results for ZnSe-ZnTe Superlattices

To illustrate the results of band structure calculations, we have selected the ZnSe-
ZnTe superlattice as a representative example. In Fig. 1.7, we have shown the
relative alignments of the energy bands for the Harrison®2! value of the valence band
offset of 1.080 eV. This value of the band offset was chosen purely for illustrative
purposes to discuss the effects of strain on the bulk band structures of ZnSe and ZnTe.
The band structures of ZnSe and ZnTe shown in Fig. 1.7 were calculated assuming
that the magnitude of the strain in each layer was equal to that of a freestanding
15 A-15 A superlattice. As described earlier, by a freestanding superlattice we mean
a configuration in which the in-plane lattice constant is chosen to minimize the elastic
free energy of the structure.

The band structures shown in Fig. 1.7 comrespond to the strained bulks in the
[100] direction with k) = 0. We have shown the band structure only up to a quarter of
the distance to the Brillouin zone edge along the growth direction of the superlattice.
ZnSe layers in the superlattice are under tensile strain, which has the effect of
reducing the band gap of this material. Thus the valence bands of ZnSe move up
and the conduction bands move down with respect to their unstrained positions. In
addition, the degeneracy of the heavy-hole and light-hole band is removed by the
uniaxial strain. The dashed lines indicate the original positions of the band-edges.
In the superlattice of Fig. 1.7, the ZnSe light-hole bands are shifted up in energy
by 157 meV, while the heavy-hole bands shift down in energy by 37 meV. The
conduction bands of ZnSe are also lowered by 78 meV for this case. On the other
hand, the ZnTe layers of the superlattice are under compressive strain. This causes
the conduction bands to move up, and the valence bands to move down with respect
to their unstrained positions, increasing the band gap of this material. The heavy-
hole and the light-hole bands are also split about their average position because of

uniaxial terms. In Fig. 1.7, the ZnTe heavy-hole moves up by 118 meV, the light-
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hole moves down by 135 meV, and the conduction band moves up by 85 meV. We
also see that the spin-orbit, split-off bands play a more important role in ZnSe than
in ZnTe because they are closer to the light-hole band in ZnSe.

In Fig. 4.2 we have shown the dependence of the band gap on the valence band
offset for strained, freestanding superlattices. Because of the large range of valence
band offsets reported for this system, we have presented results for a wide range
of values. As the valence band offset gets larger, the band gap of the superlattice
decreases. This is due to the fact that the superlattice valence band is largely de-
termined by the ZnTe heavy-hole bands while the superlattice conduction band is
determined by ZnSe conduction bands. For a type II band alignment that exists in
this superlattice, an increase in the valence band offset brings the heavy-hole band of
ZnTe and the conduction band of ZnSe closer to each other, reducing the superlattice
band gap. We have shown three representative superlattices corresponding to layer
thicknesses of 10A-104, 15A-154, and 20 A-20A. The larger band gap is observed
for the superlattice with the smallest period. This is due to the enhancement of the
two dimensional confinement of the wavefunctions of the superlattice as the layer
thicknesses get smaller. This result shows that it is possible to obtain the band offset
of the superlattice directiy by a measurement of the superlattice band gap.

Figure 4.3 shows a contour plot of the superlattice band gap as a function of
the ZnSe and ZnTe layer thicknesses, based on a valence band offset of -0.907 eV,
where the ZnSe valence band-edge lies lower than that of ZnTe. This value of the
valence band offset is in agreement with our experimental investigations, reported in
Section 4.3. In Fig. 4.3 the trend is to obtain smaller band gaps as either the ZnSe
or the ZnTe layer thickness is increased. Since the ZnSe layer acts as the barrier
material for the heavy-hole band, the effect it has on the valence band is quite small.
Thus, changes of the band gap as layer thicknesses are varied in a direction parallel

to the ZnSe axis come mainly from the motion of the conduction band. On the other
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Figure 4.2: Band gap of a few representative ZnTe-ZnSe superlattices versus the
valence band offset EZ"T¢ — EZnS¢, Notice that the band gap decreases as the
valence band offset is increased. Structures were assumed to be coherently strained
with an in-plane lattice constant determined by minimizing the elastic free energy of

the superlattice (i.e, the freestanding limit).
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hand, ZnTe acts as the barrier material for the conduction band. Thus, changes of
the band gap as layer thicknesses are varied in a direction parallel to the ZnTe axis
are derived mainly from the motion of the heavy-hole band. This figure also shows
that for superlattices of a given period (dz,s.+dz,r.=const.), as we scan from the
ZnSe side to the ZnTe side of the contour plot, the superlattice band gap bows. This

type of bowing is characteristic of type II superlattices.

4.3 Optical Investigation of the Band Offsets

In this section, we investigate the band a]ignments‘ of ZnTe,_,Se,-ZnTe and
Zn,_,Cd,.Te-ZnTe superlattices by optical spectroscopy. The first step in our pro-
cedure is to determine optically the superlattice band gap. This has been done by
obtaining the energy positions of near band gap low-temperature photoluminescence
peaks associated with the free excitons, and then adding the exciton binding energies
obtained by theoretical calculations. For the purpose of this work, we have not con-
sidered the variation of the exciton binding energy as a function of the well widths.
However, a detailed account of the exciton binding energies of Zn;__,Cd,Te-ZnTe
and ZnTe,_,Se,-ZnTe superlattices is given by Liu and McGill.37] Another source
of uncertainity could be introduced at this step by the fact that the dominant pho-
toluminescence peaks may be associated with substantially deeper centers than free
excitons. The effects of such a systematic error in our analysis on the validity of our
conclusions is discussed in Section 4.3.3, along with the discussion of the photolumi-
nescence spectra. The second step in our procedure is to compare the experimentally
obtained superlattice band gaps to the theoretical predictions of the band gap as a
function of the valence band offset, to obtain the best fit for the valence band offset.

The final values we report for the band offsets are averages over a series of samples.
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Figure 4.3: Contour plot of the ZnSe-ZnTe superlattice band gap at 5K as a function
of the layer thicknesses of ZnSe and ZnTe within a single superlattice period. The
valence band offset is assumed to be -0.907 eV, where the ZnSe valence band-edge
lies lower than that of ZnTe. The strain distribution corresponds to that of a free-

standing superlattice. The contour interval is 50 meV.
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4.3.1 Band Alignment Considerations

To illustrate the difference in sensitivity between type I and type II band align-
ments to optical determination of the band offset, we show the band diagram of a
type II superlattice in Fig. 4.4. In this figure, the superlattice band gap is denoted
by E:L, and the band gaps of the constituent materials are denoted by a E,; and
E,,, respectively. The valence band offset and conduction band offset are A Ey and
AE¢, while the quantum confinement energies in the valence and conduction bands
that are due to the superlattice potential are denoted AE,, and AE,,, respectively.

From the band diagram of Fig. 4.4, we can obtain the following expressions:

AEy = E; — Ey, (4.1)
AE; = E, — Ey, 4.2)

where
Eym = EJ¥ — AE, — AE,,. (4.3)

By performing photoluminescence measurements on the superlattices, we can
obtain ESL. The quantum confinement energies AE,, and AE,, for superlattices
with thick layers are only weak functions of the barrier heights (band offsets), and can
be calculated by assuming a guess value for the band offsets. These confinement
energies are mostly dependent on the well widths, and the value of the effective
mass in the wells. Thus, we can obtain the value Ejs from Equation 4.3, with the
knowledge of E°T from experiment, and AE,,, AE,. from theory. It is then possible
to obtain the valence and conduction band offsets from Equations 4.1 and 4.2, if the
band gaps E,; and E,, of the constituent layers are known. One can iterate this
procedure to obtain self-consistency (agreement with the initial guess and the final
value for the offset). Notice that simple explicit expressions for the band offsets as

in Equations 4.1 and 4.2 cannot be written in terms of the superlattice band gaps
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if the band alignment is type I; for a type I superlattice, band offsets occur only

implicitly in the expression for the superlattice band gap.

Band Gap Bowing

This optical technique is also well suited for determining the individual bowing
parameters of valence band and conduction band positions separately if the ternary
alloys have a large band gap bowing as in the case of ZnTe,_,Se, alloys. The band
gap of the ZnTe,;_,Se, temary alloys at 5K, with a Se composition z is given by
the following formula:/38]

Ey(z) = 2.82z + 2.39(1 — z) — 1.232(1 — ), (4.4)

where E,(z) is measured in (eV). We report the value for the valence band offset

as a function of z for the whole alloy composition range.

4.3.2 Samples

Two series of samples were grown on thick ZnTe buffer-layers (~ 2um) for the
purpose of investigating strain effects and determining the band offsets of CdTe-
ZnTe and ZnSe-ZnTe systems. The ZnTe buffer-layers themselves were grown on
III-V substrates. The details of the growth of II-VI epitaxial layers on III-V buffer-
layers is described in the work of Phillips et al.3% 401 The growth temperature of
all superlattices was 270°C . The growth was from elemental Zn, Te, Se sources,
and a CdTe compound source. The measured source temperatures were Zn (270°C
), Te (323°C ), CdTe (480-520°C ) and Se (160-170°C ). Typical growth rates
were 0.3 um/hr, and the total thicknesses of the superlattices were 2200 A on the
average. We have considered several superlattices with alloy compositions and layer
thicknesses given in Table 4.2. The superlattice periods were determined for a few

samples by z-ray measurements, and in other samples they were estimated from
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the growth-rate data. The alloy compositions were always determined by electron
microprobe measurements, and compared with photoluminescence measurements and
z-ray measurements where available.

Table 4.2 shows a list of the samples used for the two studies. For the deter-
mination of the ZnSe-ZnTe offset over the whole alloy composition range, we have
studied four superlattice samples and two alloy buffer-layers. On the other hand,
for the determination of the CdTe-ZnTe band offset, we have considered a series of

seven superlattice samples and two alloy buffer-layers.

4.3.3 Photoluminescence

The photoluminescence of the samples was obtained for temperatures between
5-100 K. We used either 1.0 mW of 4880 A line of an Argon ion laser, or 1.0 mW
of 3250 A line of a He-Cd UV laser for above band gap pumping. The photolumi-
nescence was spectrally dispersed by a SPEX-1269 spectrometer and detected by a
photomultiplier tube with a GaAs photocathode cooled to -20°C .

Zn,_,Cd,Te-ZnTe Superlattices

In Fig. 4.5(a) and 4.5(b), we compare the photoluminescence for a Cd ;,Zn ;g Te-
ZnTe 62 A x 1004 superlattice and a ZnTe epilayer grown on GaSb substrates. The
full width at half maximum (FWHM) of the superlattice peak is about 5-6 meV,
indicating high crystal quality. The band-edge of the superlattice is red shifted from
the ZnTe band gap, because of the Cd-rich well layers. The ZnTe buffer-layer
shows a strong, bound exciton line, indicating very good material quality. We find
that the photoluminescence intensity of Zn;_.Cd,Te-ZnTe superlattices is stronger
than ZnTe buffer-layers by a2 orders of magnitude, consistent with observations by

others.201 we have assigned the superlattice peaks to the heavy-hole free exciton.
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ZnTe,__Se,-ZnTe Samples

ZnTe;__,Se, Se Buffer Layer PL

Alloys and superlattices conc. layer thickness peak
Sample # | Sample description ) (R) (meV)
II-49 ZnTe-ZnTe,_.Se, SL | 0.39 ZnTe 20(75 x 75) | 1950
1I-56 ZnTe,_.Se, epilayer 0.14 ZnTe 1 pm 2210
I-59 ZnTe,_,Se, epilayer 0.39 ZnTe 1 pym 2125
o-70 ZnTe-ZnTe,;_,Se, SL | 0.14 ZnTe 20(75 x 75) | 2170
0-73 - | ZnSe-ZnTe,._,Se, SL | 0.95 ZnSe 20(75 x 75) | 2740
-84 ZnSe-ZnTe SL 1.00 ZnTe 56(20 x 20) [ 1980

Zn,_,Cd, Te-ZnTe Samples

Zn,_,Cd, Te Cd Buffer Layer PL
Alloys and superlattices conc. layer thickness peak
Sample # | Sample description x) (A) (meV)

I-29 | ZnTe-Zn;_,Cd,Te SL| 022 | ZnTe |20(100 x 62) | 2211
0-33 | ZnTe-Zn,_,Cd,Te SL | 0.34 | ZnyCd, Te | 20(100 x 50) | 2075
I-35 | ZnTe-Zn;_,Cd,Te SL | 034 | ZnTe | 8(200 x 100) | 2065
[-36 | ZnTe-Zn;_,Cd,Te SL | 034 | ZnTe | 8(300 x 25) | 2165
I-37 | ZnTe-Zn,_ ,Cd,TeSL| 022 | ZnTe | 8(300 x 25) | 2274
I-41 | ZnTe-Zn;,_,Cd,Te SL | 0.10 | ZnTe |20(100 x 50) | 2308
I-43 | ZnTe-Zn,_,Cd,Te SL | 022 | ZnTe |20(100 x 62) | 2192
1I-66 | Zn,_ .Cd,Te epilayer | 0.34 ZnTe 1 pum 2118

I-67 Zn,__Cd_Te epilayer | 0.14 ZnTe 1 pm 2212

Table 4.2: Table of ZnTe,_.Se,-ZnTe and Zn;__,Cd_Te-ZnTe samples used in the

optical investigations of the band alignments.
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By comparing the photoluminescence energy shifts for a series of seven superlattice
samples, we were able to obtain the valence band offset. From our data on the alloy
superlattice samples, we have extrapolated to the binary CdTe-ZnTe values by using
a linear extrapolation. The best fit for the valence band offset of CdTe-ZnTe we
find is (-50 + 160 meV), where the CdTe valence band-edge lies lower than that of
ZnTe.

For the case of the Zn, _,Cd_Te-ZnTe system, we find that it is difficult to obtain
the value of the valence band offset by the optical technique described here. It is easy
to understand this shortcoming by considering a type I superlattice. In this case, the
superlattice band gap is quite insensitive to the band offsets since electrons and holes
sense very little of the top of the barrier. Thus, it is difficult to convert a measurement
of the superlattice band gap to a corresponding value for the valence band offset;
small uncertainities in the band gaps become amplified into large uncertainities in
the band offsets. On the other hand, this technique works remarkably well if the
band alignment is type II. We find that the Zn;_,Cd.Te-ZnTe situation lies at the
Boundary of the validity range of this method (intermediate between type I and type
II). Therefore, we find that it is quite difficult to obtain an upper bound to the valence

band offset, although it is easier to obtain a lower bound.

ZnTe,_,Se,-ZnTe Superlattices

In Fig. 4.6(a) and 4.6(b), the photoluminescence spectra of ZnTe;_,Se,-ZnTe
superlattices for Se alloy compositions of z2=.39 and z=.14 are shown. The photo-
luminescence of the superlattices is significantly red-shifted from the corresponding
bulk alloys, indicating a type II band alignment. The photoluminescence line widths
are 20-40 meV, with increased line widths for the higher Se composition sample.
These are the first reported ZnTe,_,Se,-ZnTe superlattices grown by MBE, and

much of the nature of the photoluminescence and physics of the interfaces is only
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poorly understood. Nevertheless, for the purpose of obtaining the band offsets, we
have assigned the photoluminescence peaks to the band-edges.

The results we obtain for the offsets of ZnTe;_,Se_-ZnTe samples are shown
in Fig. 4.7. We have plotted the valence band position of the ZnTe,__Se, alloy,
compared to the valence band position of ZnTe. The error bars correspond to the
experimental uncertainities in the samples and the uncertainties in the theoretical
parameters. The upper curve with the conduction band position was generated by
adding the band gap to the valence band position. The results indicate that the
component of bowing in the valence band is quite small, and a linear interpolation
for the valence band offset is justified even in the presence of large band gap bowing.

However, since the nature of the photoluminescence from ZnTe,__,Se.-ZnTe su-
perlattices is not completely understood, there can be a systematic discrepancy in the
band offsets we obtain, that is not taken into account in the error bars. If the photo-
luminescence of the superlattices lie 100-150 meV below band gap, analogous to the
situation in the ZnTe;_,Se, alloysi>Y), then our results for the offsets should also be
modified by approximately the same amount. This type of correction would always
reduce the magnitude of the valence band offset we quote here. However, further
investigations of the growth and photoluminescence from these novel superlattices

are necessary to better understand the band offsets.

4.3.4 Discussion of Experimental Results

The results of our investigations indicate that the valence band offset for the
CdTe-ZnTe system is quite small (-50 4+ 160 meV), with the valence band-edge of
CdTe lying lower than that of ZnTe. In this case, a n-CdTe/p-ZnTe heterojunction
would have the possibility of hole injection. Thus, recombination could occur in
the smaller band gap CdTe layer. This band alignment is not very promising for

obtaining green light-emission from ZnTe. Our results on the ZnSe-ZnTe system
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Figure 4.5: Photoluminescence of a Cd ;,Zn 7sTe-ZnTe 62 Ax 100 A superlattice (a),
and a ZnTe epilayer grown on a GaSb buffer-layer (b).
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Figure 4.7: Valence band positions of ZnTe,__Se, alloys obtained by fitting the
photoluminescence data by k - p theory. Notice that the bowing component in the
valence band is quite small. The conduction band positions were plotted by adding

the band gaps to the valence band positions.
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suggest that the valence band offset is quite large (-907 £ 120 meV), with the
valence band-edge of ZnSe lying lower than that of ZnTe. A heterojunction between
n-ZnSefp-ZnTe would be a poor candidate for minority carrier injection since both
electrons and holes are blocked by the large band offsets.

Although the heterojunctions between the binaries are not very promising accord-
ing to our results, there are interesting possibilities that arise in the ternaries, and
the quatemnaries. We have done the preliminary investigations of the band offsets
of Zn, _,Cd,Te and ZnTe,_,Se, ternaries. We find that the common anion rule is
obeyed quite well for the Zn,_,Cd,Te-ZnTe ternary, while a linear interpolation of
the valence band offset between ZnSe and ZnTe is justified for ZnTe,;_,Se, temnar-
ies. However, heterojunctions consisting of Cd,Zn,_,Se,Te,_, quaternaries seem to
offer promise for band gap engineering, to obtain wide band gaps in the blue/green
region of the spectrum and efficient minority carrier injection, with the additional

benefits of improved lattice-match.

4.4 Theoretical Considerations of II-VI Quaternaries

The results of the band alignments of the II-VI ternary alloys such as Zn;_,Cd_Te
and ZnTe,__Se, investigated in Section 4.3 show only limited possibilities for mi-
nority carrier injection. In this section we have theoretically extended our analysis
to II-VI quaternaries with Cd and Mn cations alloyed with ZnTe,_,Se, temaries,
to overcome some of the limitations of the ternaries, and to obtain optimized light-

emitting structures.

4.4.1 Basic Issues

The main reason that motivates the consideration of quaternary alloys, despite

the additional complexity in the growth of these materials, is the increased flexibility
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to tailor material properties such as band-edge positions. The use of quatemnaries
can enhance the dopability range of temaries, offer wider band gaps, obtain separate
confinement of light and carriers, and provide nearly lattice-matched structures.

To optimize the parameters for efficient light-emission, we consider the simple
geometries shown in Fig. 4.8 for heterojunction light-emitters. Although there are
several other considerations such as the requirement of ohmic contacts and techniques
for efficient extraction of light, that are important from the device design point of
view, for the purpose of this chapter we have limited our attention mostly to the
issues of dopability, band alignments, availability of wide band gaps, and lattice-
match. The light-emitting structures shown in Fig. 4.8 consist of two major parts.
The first part is the doped injector region (denoted by N and P). The second part
is the radiator region (quantum well denoted I). The radiator region is chosen to
have valence and conduction band-edge positions such that the carriers in the n and
p regions can easily drop into the quantum wells, and recombine efficiently. The
two diagrams of Fig. 4.8 show that it is possible to achieve favorable light-emitting

structures with either type I, or type II band alignments.

Dopability

To determine the doping possibilities for n~ and p-type material, we have made
the assumption that the dopability of semiconductors is related to the absolute po-
sitions of the band-edges. This is quite a reasonable assumption that seems to hold
true empirically for many semiconductors and dopants,[sl We present the following
theoretical argument for the justification of this assumption. However, a further
discussion of this assumption will be given in Section 5.2. Dopants usually induce
states in either the band gaps or the allowed energy bands (valence and conduction
bands) of semiconductors. For instance, if an n-type dopant induces a state in the

conduction band, or if a p-type dopant induces a state in the valence band, then the
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Figure 4.8: Type I and type II light-emitter structures. The injector regions are the
wider band gap n- and p-type cladding layers (denoted by N and P), while the
radiator region is the smaller band gap quantum well region (denoted by I). The
conduction and valence band offsets of these structures help to confine the carriers
in the quantum wells. Both type I and type II band alignments between n and p

layers can be used effectively to obtain efficient light-emitting heterostructures.
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resulting material has a shallow donor or acceptor level, respectively. However, if
the state induced by the dopant lies deep within the band gap of the semiconductor,
then the material has poor electrical properties, and is considered undopable in the
usual terminology. The basic assumption is that from semiconductor to semiconduc-
tor the states induced by the dopants do not change their energy positions very much
on an absolute energy scale, while the band-edge positions can change in energy
significantly.#1] For instance, a shallow donor in a given semiconductor can be a
deep impurity in another semiconductor, depending on the conduction band-edge
position. Given this premise, we have explicitly assumed that the absolute positions
of the band-edges of a material can determine its dopability.

In the case of ZnSe and ZnTe, ZnTe can be easily doped p-type while ZnSe
cannot be doped easily p-type. Consistent with our picture, we argue that the p-type
dopability of a ZnTe,;_,Se, temary alloy should be related to its valence band-edge
position. Similarly, the n-type dopability of a ZnTe,__,Se, ternary alloy should be
related to its conduction band-edge position. Thus, determining the bowing in the
valence and conduction bands provides important information about the dopability
of the temary alloys. To invoke our prescription of dopability, material band-edges
have to be lined up on an absolute energy scale. Theories such as Harrison,32!
Harrison and Tersoffi27] provide such scales, however, with large discrepancies with
experimental results. In this section we have used the experimental band offset
values we obtained from our optical investigations to determine the band lineup of
ZnTe;_,Se, and Zn,_,Cd,Te ternaries.

However, it should be kept in mind that this criterion for determining dopability
is rather empirical, and its validity may depend on specific factors such as which
dopants, which semiconductors, and which band alignments are considered. In the
following analysis, we have used particular thresholds for the conduction band and

valence band-edge positions to determine the n- and p-type dopability limits of
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the quaternaries; these thresholds were picked to agree reasonably with the limited

experimental data available on the dopability of the ternary a]loys.[42]

Interpolation Scheme for Quaternaries

In most calculations of this section, the physical properties of quatemary alloys

are determined by a bilinear interpolation scheme between the properties of the four

binaries given by

F(Zny_,Cd.Te,_,Se,) = (1—=2)(1—y)F(ZnTe)+ (1—z)(y)F(ZnSe)
+(z)(1 — y)F(CdTe) + (z)(y)F(CdSe). (4.5)

Here, F' is a property of the material such as its lattice constant, and z and y denote
the Cd alloy fraction and the Se alloy fraction, respectively. In the case of parameters
that depend nonlinearly on the alloy compositions, (e.g., band gap bowing), we have
performed an interpolation, taking into account the appropriate nonlinearities. Our
experimental results for the valence band offsets of Zn,_,Cd,Te and ZnTe,_.Se,

alloys showed that a linear interpolation for the valence band offset was justified for

temary alloys.

44.2 Zn;_,Cd,Te;_,Se, System

In this section, we present the results for lattice constant, and the band-edge
positions for Zn,_,Cd,Te,_,Se, quaternary alloys, and discuss the possibility for
a type II light-emitting heterostructure as in Fig. 4.8. In Fig. 4.9, we show the
lattice-matched contour lines for Zn;_,Cd,Te,_,Se, quaternaries. In device design,
it is desirable to have the n- and p-type injector layers lattice-matched to each
other, to minimize the detrimental effects from dislocations. Notice that in the case
of Zn,_.Cd,Te,_,Se, quaternaries, lattice-match lines are roughly parallel to the

CdSe-ZnTe diagonal of Fig. 4.9.
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In the Figs. 4.10, 4.11 and 4.12 we show the conduction band positions, valence
band positions, and the band gaps of the Zn,_,Cd,Te,_,Se, quaternary alloys, re-
spectively. All data for the band gaps correspond to 5K values. The band lineups
are calculated according to the results of our optical investigations, with ZnSe-ZnTe
and CdTe-ZnTe valence band offsets of -907 and -50 meV, respectively. We have
assumed that the common anion rule is obeyed by CdSe-ZnSe heterojunctions.

In Fig. 4.10 we have assumed that the n-type doping is not possible for material
with conduction band-edges above ~+100 meV, higher than the conduction band-
edge of ZnSe. The dark region of Fig. 4.10 indicates the n-type dopable region.
Notice that according to our criteria most of the quaternary is n-type dopable, with
the exception of a small area near the ZnTe comer of Fig. 4.10. The large bowing
in the contour lines of Fig. 4.10 result from the fact that we have assigned all of the
bowing to the conduction bands, consistent with our experimental results.

Similarly, we have assumed that the p-type doping is not possible for material
with valence band-edges lower than ~600 meV below the valence band edge of
ZnTe. The dark region of Fig. 4.11 indicates the p-type dopable region. Notice that
according to our criteria, the region of the quaternary that is p-type dopable has a Te
fraction above ~35% as shown in Fig. 4.11. In the valence band positions, there is
only a very small component of bowing. The thresholds for determining dopability
were picked to encompass the dopability data of the ZnTe,_,Se, alloys given by
Aven and Garwacki.4?]

The intersection of the dark regions of Figs. 4.10 and 4.11 shows the quaternaries
where p-n junctions are allowed. Although this is a significant fraction of the alloy
composition space, however, if we limit the band gaps to above 2.10 eV (light-
emission above yellow), then the region of interest shrinks to a small area near the
middle of the ZnTe,;_,Se, temary alloys with small Cd fractions. In Fig. 4.12 we

present the band gap of the quaternary as a function of the alloy composition. The
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Figure 4.9: Contour plot of the lattice constant of Zn,_,Cd,Te,_,Se, quaternary
alloys. The lattice constants are given in Angstroms. The contour lines with equal

lattice constant lie approximately parallel to the CdSe-ZnTe diagonal.
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region with band gaps above 2.1 eV is shaded in light-gray. One possible way to
pick the N, P, and I regions of a type II LED structure is shown in Fig. 4.12. It is
possible to pick a combination of n and p layers that are lattice-matched to each other
for quaternary heterostructures. However, the band alignment for Zn;_,Cd,Te,_,Se,
quaternaries makes it necessary to pick the I (quantum well) layer with a slightly
larger lattice constant than the cladding layers (=~1% lattice-mismatch), to obtain a
favorable band diagram for a type II LED structure as shown in Fig. 4.8; it is not
possible to obtain a type I LED structure that is suitable for green light-emission

within Zn, .Cd,Te,_,Se, alloys.

Conclusions About Zn;_,Cd_Te,_,Se, Quaternaries

Given the band alignment considerations, we have shown that it may be pos-
sible to achieve a type II heterojunction light-emitter. However, it is difficult
to achieve band gaps above the range ~2.1 eV (at room temperature) within the
Zn,_.Cd.Te,_,Se, quatemaries. Thus, this quaternary is of only limited usefulness
for blue/green applications, although it offers excellent possibilities for yellow, or-
ange and red light-emitting application. However, in interpreting these conclusions
it should be kept in mind that we have made several empirical assumptions about
dopability, and that there is still a fair amount of uncertainity about the band offsets

that can change these conclusions.

4.4.3 Other II-VI Quaternary Systems

The limitation of not being able to achieve wide band gaps in the blue green
region of the spectrum with Zn,_,Cd.Te,_,Se, quatemnaries can be overcome by re-
placing Cd with a different cation. We have chosen Mn as a candidate for studying

the possibilities of a quaternary system with a wider band gap; the effect of alloying
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Figure 4.10: Contour plot of conduction band-edge of Zn, _,Cd,Te,_,Se, quaternary
alloys. In the figure, the dark region indicates the n-type dopable compositions. The
energy positions are measured in eV, with respect to the valence band-edge of ZnSe.
We have taken the n-type dopable region to be below 2.9 eV. The contour lines are

curved because there is a large bowing in the conduction band positions.
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Figure 4.11: Contour plot of valence band-edge of Zn,;_,Cd,Te;_,Se, quaternary
alloys. In the figure, the dark region indicates the p-type dopable compositions. The
energy positions are measured in eV, with respect to the valence band-edge of ZnSe.
We have taken the p-type dopable region to be above 0.3 eV. The contour lines
are nearly straight lines because there is only a small component of bowing in the

valence band positions.
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Figure 4.12: Band alignment of Zn,_,Cd,Te,_,Se, quaternaries. The black contours
denote the band gap of the alloy in eV. The light-gray region shows material with
band gaps above 2.1 €V, suitable for wide band gap applications. The conduction and
valence band positions are denoted by the gray and white contour lines, respectively.
A possible set of layer compositions for a type II light-emitting structure is indicated
by the points N, P, and 1.
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Mn to Zn,__.Cd_Te ternaries usually increases the band gaps. We present the lattice
constant, and band-edge positions for Zn;_.Mn,Te;_,Se, quaternary alloys. In Fig.
4.13, we show the lattice-matched contour lines for Zn,_,Mn,Te,_,Se, quaternar-
ies. As in the Zn,_,Cd_.Te,_,Se, system, it is desirable to have the n- and p-type
injector layers lattice-matched to each other, to minimize the detrimental effects from
dislocations.

The band alignment results we present for the Zn,__Mn,Te,_,Se, system are
very similar to the the case of the Zn,_,Cd.Te;_,Se, system. Therefore, we present
only the contour plot corresponding to Fig. 4.12, with all the information about
the valence band positions, conduction band positions and the band gaps. All data
for the band gaps correspond to SK values. The values for the MnTe and MnSe
band gaps were either estimated or extrapolated from the limited data available for
these materials. The band lineups are calculated according to the results of our
optical investigations, with a ZnSe-ZnTe valence band offset of -907 meV. We have
assumed that the common anion rule is obeyed by MnSe-ZnSe, and MnTe-ZnTe
heterojunctions.

In Fig. 4.14 we have assumed that the n-type doping is not feasible for material
with conduction band-edges above ~+100 meV higher than the conduction band-
edge of ZnSe. The gray contour lines of Fig. 4.14 indicate the n-type dopable
region. Notice that according to our criterion, only a small fraction of the quaterriary
near the ZnSe comer is n-type dopable. The large bowing in the band gap contour
lines and the conduction band-edge contour lines of Fig. 4.14 result from the fact
that we have assigned all of the bowing to the conduction bands, consistent with our
experimental results.

Similarly, we have assumed that the p-type doping is not feasible for material with
valence band-edges lower than ~600 meV below the valence band edge of ZnTe.
The white contour lines of Fig. 4.14 indicate the p-type dopable region. Notice that
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Figure 4.13: Contour plot of the lattice constant of Zn;_.Mn,Te,_,Se, quaternary

alloys. The lattice constants are given in Angstroms.
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according to our criteria, the region of the quaternary that is p-type dopable, has a
Te fraction above ~35% as shown in Fig. 4.14. In the valence band positions there
is only a very small bowing effect. The thresholds for determining dopability were
picked to encompass the dopability data of the ZnTe,_,Se, alloys given by Aven
and Garwacki.#?!

The intersection region of the gray contour lines, and the white contour lines of
Fig. 4.14 show the Zn; _,Mn,Te,_, Se, quaternaries where p-n junctions are allowed.
Although this is only a small region of the alloy composition space, however, it is
possible to achieve band gaps above 2.3 eV (for light-emission in the blue/green
region). In Fig. 4.14 we present the band gap as a function of the alloy composition.
The region with band gaps above 2.3 eV is shaded in light-gray. One possible way
to select the N, P, and [ regions of a type I LED structure that has almost lattice-
matched layers is shown in Fig. 4.14. In this case we have picked the N and P

layers from the same composition.

Conclusions About Zn,_,Mn,Te,_,Se, Quaternaries

Given the band alignment considerations, we have shown that it may be possi-
ble to achieve a type I heterojunction light-emitter. It is possible to achieve band
gaps above the range ~2.3 eV (at room temperature) within the Zn,_,Mn,Te,_,Se,
quaternaries, making this quaternary of great usefulness for blue/green applications,
although it offers only a limited region where dopability may be possible. However,
in interpreting these conclusions it should be kept in mind that we have made several
empirical assumptions about dopability, and there is still a fair amount of uncertainity

about the band offsets that can change these conclusions.
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Band Gap
MnSe ZnSe

Se composition

MnTe ZnTe
Zn composition

J

Figure 4.14: Band alignment of Zn, _,Mn,Te, _,Se, quaternaries. The black contours
denote the band gap of the alloy in eV. The light-gray region shows material with
band gaps above 2.3 eV. The conduction and valence band positions are denoted by
the gray and white contour lines, respectively. The band alignments are measured
in eV. with respect to the valence band-edge of ZnSe. A possible set of layer
compositions for a type I light-emitting structure is indicated by the points N, P, and

1. The N and P layers were chosen to be identical.
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4.5 Conclusions

In this chapter, we have shown that the heterojunction approach can be success-
fully employed to obtain wide band gap light-emitters capable of efficient minority
carrier injection. In particular, we find that heterojunctions made of quaternary alloys
offer excellent flexibility to obtain the desired properties such as wide band gaps,
favorable band lineups for minority carrier injection, and lattice match. Although
the long standing problems associated with doping wide band gap semiconductors in
both n- and p-type have yet to be solved, we have shown that modern heteroepitaxial

techniques can be successfully applied to circumvent some of these problems.
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Chapter 5

The Role of Electric Fields in

Suppressing Self-Compensation

5.1 Introduction

Low-temperature growth techniques such as MBE and MOCVD offer the pos-
sibility of producing material in thermodynamically metastable states. The devel-
opment of techniques to control such metastability can lead to semiconductors witl;
novel physical properties. As an example of such a technique, we show how the
application of extemal electric fields during growth of wide band gap II-VI semi-

conductors can lead to a suppression of the self-compensation processes.

5.1.1 Background and Motivation

The general motivation behind the current study of II-VI semiconductors is to
develop blue/green optoelectronic devices. This has remained a challenging prob-
lem, however, that is due in large part to the difficulties in achieving both n- and
p-type doping in a single wide band gap II-VI semiconductor. In Chapter 4 we

investigated the use of heterojunctions to provide carrier injection as an alternative
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to solving the selective doping problem for II-VI materials. We showed that the het-
erojunction approach could be successfully applied to circumvent doping problems
and to achieve blue/green light-emission in II-VI quaternary heterostructures. In this
chapter, we specifically address the problems of doping II-VI semiconductors, and

propose approaches to control directly the factors that limit dopability.

Background on II-VI Doping

Extensive work in the 1960’s suggested that self-compensation processes in wide
band gap II-VI semiconductors occur through various defect complexes.fl] It was
postulated that at high-temperatures the defect complexes and the original dopants
reached thermodynamic equilibrium, producing donors and acceptors roughly equal
in number, so that the resulting material had very poor electrical properties.[z' 3.4
However, the actual degree of compensation depends on the choice of material as
well as on the choice of dopant species. For instance, ZnTe could be easily doped
p-type but compensated strongly when n-type doping was attempted, while ZnSe
éould be doped n-type but compensated strongly when p-type doping was attempted.

Work done in the 1970°s however, suggested that extrinsic impurities in the wide-
gap II-VI materials were responsible for the inability to achieve selective doping.?!
~1101 Impurities such as Cu were thought to induce deep impurity states in the band
gaps of these materials, thereby degrading the electrical properties of II-VI’s.1 11 It
was quite difficult to separate species such as Cu from the Zn compounds in bulk
growth techniques used in the 1970’s. The general conclusion of these studies was
that if extrinsic impurities could be removed from the II-VI materials, the doping
problems could be overcome.©: 7!

Because of the extensive experimental evidence available to support both of these
arguments, it seems reasonable to assume that both the extrinsic impurity problem

and the intrinsic defect-associated compensation problem may have to be solved in
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some fashion before it is possible to achieve successful doping of the wide band gap

II-VI’s in both n- and p-types.

Implications of Novel Growth Techniques

Progress in heteroepitaxy in the 1980°s has opened up several interesting pos-
sibilities for achieving selective doping in II-VI materials. II-VI MBE growth can
be achieved at temperatures of 200-300°C , much lower than bulk growth temper-
atures, which are usually in the range 1000-1200°C . Experimental studies suggest
that metastable regimes might exist at these low-temperatures, where the compensa-
tion processes associated with defect generation could be frozen out, or blocked by
large kinetic barriers. Metastable growth techniques provide a promising approach
for overcomming some of the difficulties associated with doping II-VI’s. An ad-
ditional advantage of these growth techniques is that it is possible to achieve high
purity growth in an ultra high vacuum enclosure (such as MBE), making it is pos-
sible to minimize to incorporation of extrinsic species, such as Cu, into the II-VI
epilayers.

Modem growth techniques have also allowed the introduction of new doping
techniques such as planar doping!!?! and modulation doping,13! which may offer
additional flexibility in doping II-VI heterostructures. Another recently developed
growth technique, atomic layer epitaxy (ALE) allows the precise control of each
monolayer of material grown, and may help to reduce self-compensation./141-{17]
Finally, techniques such as photo-assisted molecular beam epitaxy (PAMBE) provide
additional methods of controlling the growth and doping process in I-VI’s.[18. 19)
In this chapter we propose and investigate a new approach -electric field-assisted
growth and doping of II-VI materials. We show that it is possible to achieve and

control metastable material regimes by the application of external electric fields.
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5.1.2 Summary of Results

In this chapter, we describe a technique for suppression of self-compensation
processes in semiconductors — the application of external electric fields during crystal
growth. We show that it is possible to enhance doping efficiency by kinetically
burying uncompensated material produced metastably by the application of an electric
field during growth by MBE. An obvious application of this technique is to improve
the doping of wide band gap II-VI semiconductors, where selective doping in both
- n- and p-types is usually not feasible because of extensive self-compensation. In our
calculations, the self-compensating species are modeled as charged, mobile species
that are free to drift and diffuse under electric fields. In the case of MBE growth, we
solve for the equilibrium of these species in a moving coordinate frame, and show that
two important dimensionless parameters determine the effectiveness of suppressing
self-compensation. The first dimensionless parameter that determines the doping
profile is D/Av, where D is the diffusion coefficient, ) is the Debye screening
length, and v is the growth rate; the second dimensionless parameter is gE)/kpT,
where ¢ is the electron charge, F is the electric field, kg is the Boltzmann constant,
and T is the growth temperature. We have applied our analysis to the specific case
of n-type doping in ZnTe, where we have assumed the self-compensating species to
be A-centers?0: 21, 22 The A-center is an acceptor complex with a donor and an
adjacent cation vacancy, as shown in Fig. 5.1. Our results indicate that it should
be possible to achieve n-type doped ZnTe through the application of substantial
electric fields under otherwise normal MBE growth conditions. Theoretical results
are presented for doping concentrations as functions of the growth rate and the

applied electric field.
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A-center
Al

A-center
Cl

Figure 5.1: Schematic of two possible A-centers (donor-vacancy complexes) that can
occur in a semiconductor such as ZnTe. The cation vacancy is denoted by V5,.. In
the case of doping on the cation lattice (Al), the vacancy resides on the next closest
cation site. In the case of doping on the anion site (Cl), the vacancy resides on the

nearest-neighbor cation site.
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5.1.3 Outline of Chapter

In Section 5.2 we survey the reasons for the inability to dope wide band gap II-
VI semiconductors, and discuss specific mechanisms that could limit dopability. In
particular, we emphasize the compensation via vacancy-associated complexes such
as A-centers. In Section 5.3 we discuss our approach to controlling the compensation
process by applying external electric fields. We formulate and solve the equations
goveming the transport of compensating species during crystal growth under external
electric fields. In Section 5.4 we describe the results for the doping efficiency

obtained from the theoretical treatment of Section 5.3. Section 5.5 concludes the

chapter.

5.2 Compensation in Wide-Gap II-VI Semiconductors

Narrow band gap semiconductors such as Si and GaAs can easily be doped either
n- or p-type. However, it has not been easy to extend this success to doping the
vﬁder band gap II-VI materials. In the wider band gap II-VI’s such as ZnSe and
ZnTe, it is usually possible to achieve only one conduction type; ZnSe, for example
can be doped only n-type while ZnTe can be doped only p-type. In this section
we analyze the reasons for this inability to dope selectively wide band gap I-VI’s
from a general theoretical stand point. Many of the considerations of this section are
presented as general arguments for the difficulties associated with doping II-VI’s,
based on empirical information and chemical trends. However, it should be kept in
mind that the particular reason for the inability to dope a specific II-VI material may
not be related to the reasons given here, and could change from material to material.

In a perfect II-VI crystal (such as zincblende ZnSe), a Group I element (e.g.,
Na) substituted on a cation site, or a Group V element (e.g., Sb) substituted on an

anion site can act as an acceptor. Similarly, a Group III element (e.g., Al) substituted
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on a cation site, or a Group VII element (e.g., Cl) substituted on an anion site can
act as a donor. However, substitutional incorporation is neither a necessary nor a
sufficient criterion for obtaining shallow donor and acceptor levels that can lead to
low resistivity n- or p-type material. We illustrate two ideas related to the inability
to achieve selective doping in wide band gap II-VI’s. In both these cases, we assume
that the dopants are incorporated into appropriate substitutional sites, yet successful
doping may not be possible. The first possibility we consider is that under certain
conditions, shallow-deep transitions could prevent dopability. The second possibility
is the formation of vacancy associated complexes that could prevent dopability.
Although we have concentrated on these two issues, there are many other reasons

quoted for the inability to dope I-VI's.[23]

5.2.1 Shallow-Deep Transitions

In general, dopants induce states in semiconductors, either within the band gap
leading to deep traps, or within the allowed energy bands leading to shallow, hy-
drogenlike states. To better illustrate these two possibilities, let us consider a donor
species such as Ga substituted on a cation site of a II-VI material such as ZnSe. In
this case, there will be an (s-orbital like) Ga level induced in ZnSe, which can be
occupied by up to two electrons (spin degeneracy). However, there will be only one
occupying electron in this level because Ga has only one extra valence electron than
Zn. If this donor level is induced within the conduction band of ZnSe, then the extra
electron can drop from this level to the top of the conduction band (ionization). This
electron at the conduction band-edge, and the ionized donor impurity can then fur-
ther interact via the Coulomb interaction to form a hydrogenic donor atom, leading
to the familiar shallow donor level near the conduction band-edge. However, the
situation will be quite different if the original Ga donor level is induced below the

conduction band-edge of ZnSe. In this case, the extra electron bound to the donor
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will not easily ionize. Furthermore, it will be able to trap an extra electron to the
empty level that has been created within the band gap. In this situation, the donor
not only fails to contribute its electron to the conduction band, but it can also act as a
deep trap that can capture other conduction electrons to its empty state. Thus, these
types of deep traps can have severely detrimental effects on the transport properties
of semiconductors. A similar situation can occur for an acceptor state. However,
the details are more complicated since there is a fundamental six-fold degeneracy to
the (p-orbital like) levels in the valence band; in addition the spin-orbit interaction
will complicate matters by splitting this degeneracy to give rise to a four-fold level
near the valence band-edge region. Nevertheless, whether substitutional acceptors
and donors act as electrically active species, or whether they act as deep traps will
depend primarily on the position where the dopant level is induced, in relation to the
appropriate band-edges.

Shallow-deep transitions are responsible for the inability to dope several semi-
conductors. This mechanism is illustrated in Fig. 5.2, adapted from the work of
Hong and Dow.24! Here we show that the position of the conduction band-edge can
determine whether a substitutional donor is a shallow or a deep level. The main
assumption here is that the position of the Ga level does not change much as Mn is
alloyed with ZnSe. As the concentration of Mn increases, the conduction band-edge
can move across the donor level, making it a deep level in Zn,_,Mn_Se , while it
is a shallow donor in ZnSe. Extensive theoretical calculations indicate that these
types of shallow-deep transitions should play an important role in determining the
dopability of semiconductors.

As examples to illustrate the effects of shallow-deep transition in semiconductors,
we consider two cases. Perhaps the best-known case of a shallow-deep transition
occurs with N in GaAs,__P, 126,27 Here N produces an isoelectronic deep level in

the gap for z > 0.2. However, for GaAs, __P,_ alloys with smaller P content (z < 0.2),
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Shallow-Deep Transitions

B} deep

Energy

shallow

VBM:

Zn _Mn 5Se ZnSe
Ga Trap Ga Donor

Figure 5.2: Band diagram of the shallow-deep transition in Zn,_,Mn,Se alloys. In
ZnSe, Ga is a shallow donor while in Zn,_,Mn,Se (z = 0.5), it is a deep electron
trap. These types of shallow-deep transitions can play a crucial role in determining

the dopability of semiconductors. This idea is further discussed in Reference[24] .
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Figure 5.3: Semiconductor band alignment versus lattice constant. The positions of
the band-edges have been determined using the band offset results of McCaldin et
al.23] The valence band-edges are denoted by squares, while conduction band-edges
are denoted by triangles. The filled squares and triangles denote p- and n-type
dopability, respectively. The shaded gray area is the general energy range where
dopable material can be achieved. The II-VI band gaps are indicated by solid lines,
while the III-V band gaps are indicated by dashed lines. Diagrams of this type are
further discussed by McCaldin.23!
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this level moves above the conduction band-edge;281-1301 this is quite similar to the
situation of Ga in Zn;_,Mn,Se as illustrated in Fig. 5.2. The N isoelectronic states
play an important role in the electrical and optical properties of GaAs,_.P, alloys.
As another prominent example of a shallow-deep transition, several researchers have
argued that the DX -center in Al,Ga,;_,As falls under this category.31: 321 Accord-
ing to their theory, the DX -center is associated with a donor species such as Si,
and descends from the conduction band of GaAs into the band gap of Al,Ga;_.As
as z is increased. The D X -center is technologically important because it limits the
fabrication of high electron mobility transistors (HEMTs). However, the origin of
the D X-center itself is a topic of controversy, and the sole purpose of our men-
tioning it here is to illustrate that shallow-deep transitions can be quite common in
semiconductors, and could play a profound role in determining electrical properties.

In Chapter 4 we analyzed the usefulness of II-VI quaternaries based purely on
considerations of the band-edge positions. However, the validity of these assumptions
can be loosely related to shallow-deep transitions in semiconductors. The main idea
of the argument is that the levels induced by various dopants in semiconductors lie
within certain energy bands of the band alignment diagram. If the conduction band
of semiconductors occur too high in energy, then it becomes difficult to dope those
semiconductors n-type, while if the valence bands of sgmiconductors occur too low in
energy, then it becomes difficult to dope those semiconductors p-type. The various
experimental data on dopability of semiconductors compiled by McCaldin?3 is
shown in Fig. 5.3. Here, the absolute energy positions of the valence and conduction
band are plotted based on the absolute energy scale suggested by the results of
McCaldin et al.?5] The gray area indicates the n- and p-type dopable energy range.
Although shallow-deep transitions are by no means the only factor that influences
dopability of semiconductors, the experimental data of Fig. 5.3 is consistent with a

picture where shallow-deep transitions play a crucial role.
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5.2.2 Defect-Associated Complexes

Another major reason quoted for the inability to dope certain II-VI’s is that
many dopants can form alternate compensating species, rather than be incorporated
substitutiona]ly.[zzl For instance, for n-type dopants in ZnTe, a donor can form either
a simple substiturional, or it can form an A-center by the creation of a cation vacancy
at an adjacent site. Depending on the specific thermodynamic conditions, the process
of forming A-centers can compete with the process of simple substitutional doping.
Analogous compensating complexes can also occur for p-type doping.ﬂz] The Figs.
5.1(a) and 5.1(b) show two possible types of A-centers that can occur for Group
HI doping and Group VII doping of ZnTe, respectively. The energy difference
between the A-center and the substitutional state will be the driving force for the
compensation reaction. This can be estimated by considering the quantity 4B — 2E,,
where B is the energy required to break a tetrahedral bond, and E, is the band gap of
the semiconductor. This expression results from the fact that to form an A-center it is
necessary to break four bonds (to form the vacancy) and to change the charge state of
the center by two units (convert +e donors into -e acceptors or, equivalently, moving
two charges across the band gap). For structurally soft materials, such as wide band
gap II-VI’s, B is small, and E,, is large, so that 4B — 2E, can be a negative number,
indicating that it is thermodynamically favorable to form A-centers. In contrast, for
structurally strong materials such as Si, with small band gaps, B is large, and E, is
small, so that 4 B —2E, is typically a positive number. Thus, it is thermodynamically
less favorable to form compensation complexes such as A-centers in Si.

In further agreement with this criterion, in materials such as CdTe, where the
bond energies are small, but the band gaps are also small, it seems that the formation
of A-centers can compete with the production of n-type material; specific conditions
during growth can easily determine whether n-type or p-type material is produced.

An annealing study done on CdTel33] shows that it is possible to convert slightly
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p-type CdTe into n-type by heating in a Cd overpressure. Furthermore, reheating
the CdTe in an enclosure without a Cd overpressure produces the original p-type
material. These observations are consistent with the existence of cation vacancy

associated complexes such as A-centers in CdTe.

n-Type ZnTe

Similarly, studies of ZnTe have shown that it has been possible to obtain n-
type material at high-temperature; however, it has not been possible achieve n-type
bulk ZnTe at low-temperature. Other reports indicate that it may be possible to
obtain thin films of n-type ZnTe. This evidence suggests that the conduction band-
edge of ZnTe is probably low enough for n-type dopability to be feasible with
certain donors, and that the n-type doping problem is probably associated with the
formation of compensating complexes such as A-centers. In this chapter, therefore,
we have made the assumption that the solution to doping ZnTe n-type is to control
the concentration of A-centers produced.

" One possibility is to increase the partial pressure of the cations during the growth
process, to suppress the cation vacancy formation, thereby suppressing A-centers.
However, it is quite difficult to induce a large change in the Zn pressure within the
parameter space allowed by growth processes such as MBE. Another possibility is
to utilize atomic layer epitaxy (ALE) to grow cation layers with very little vacancy
formation. This could also help to reduce the formation of A-centers. However, the
approach taken in this chapter is more general, and attempts to control the metastable
growth regimes by systematic approaches such as applying electric fields.

It is well-known that metastability can be controlled under certain circumstances.
For instance, under low-temperature MBE growth conditions, it is possible to achieve
MnTe in the cubic zincblende crystal structure, although the stable crystal struc-

ture obtained by high-temperature, bulk growth techniques is the hexagonal NiAs
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structure.34 Recent attempts to dope ZnSe using Li suggest that p-type ZnSe can
be obtained, although it may be metastable.35: 361 We believe that low-temperature
growth techniques may be the key to suppressing compensation phenomena in many
of the wide band gap II-VI’s. Many other techniques, such as photo assisted molec-
ular beam epitaxy (PAMBE), have also been tried in an attempt to control these
metastable growth regimes with external perturbations. Following the spirit of these
approaches, in the next section we develop the electric field-assisted doping tech-
nique. We show that external electric fields applied during growth can significantly
enhance the possibility of achieving n-type ZnTe.

3.3 Electric Field-Assisted Doping

In this section, we analyze the role of electric fields applied during epitaxial
growth in suppressing compensation in semiconductors. We demonstrate that tech-
niques such as the application of external electric fields should help to achieve and
control metastability. The basic principle is that under electric fields, thermodynamic
equilibrium is determined by the combined electro-che;mical potential. Thus, mate-
rial grown under these conditions could be frozen in metastable states when cooled

down to room temperature, and the electric fields are turned off.

3.3.1 Basic Assumptions

In our analysis we consider the epitaxial growth of a semiconductor such as ZnTe,
under an external electric field parallel to the growth direction. This epitaxial layer
is assumed to be grown on a suitable buffer-layer using a growth technique such as
MBE. Although there are nontrivial practical considerations that must be surmounted
to achieve such electric fields within MBE growth chambers, for the purpose of this

discussion we assume that it is a feasible task. The purpose of this analysis is to
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study how the compensation processes are altered by an external electric field.

We assume that during the growth process, there is a uniform density of n-type
donors incorporated into the semiconductor. To simplify the analysis, we neglect
any dependence of the donor-incorporation rate on the the applied electric field. We
assume that under a zero electric field, the doping efficiency of the material is very
poor; i.e., we assume that a large concentration of compensating species such as
A-centers are formed such that the residual material has a roughly equal number of
donors and acceptors, and that the Fermi level lies close to the midgap region. For
the sake of simplicity, we assume that there is only one type of acceptor species
responsible for the compensation, and that they are mobile, negative, and singly
charged. This is the situation that corresponds to A-centers in ZnTe. For the rest of
this discussion, we will refer to the compensating species as A-centers. However,
the ideas developed in this section are quite general, and should apply for a variety
of compensating species, as long as they obey the basic boundary conditions relevant

for this analysis.

5.3.2 Boundary Conditions

One of the boundary conditions we assume in our analysis is that A-centers are
formed only at the growth interface, and that they are free to drift and diffuse into the
semiconductor. Under certain conditions, it may be possible to produce an interstitial
and a residual vacancy deep inside the semiconductor;[zzl however, we have ruled
out such processes, assuming that they have a very large activation energy. Since
the only sources of A-centers are at the growth interface, if the production rate of the
A-centers at the growth interface can be suppressed, it should be possible to reduce
the occurrence of these species in the bulk and obtain uncompensated material.
If an external electric field is applied in a direction of positive band-bending for

negatively charged species (the situation where the electric field points out of the
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semiconductor in the growth direction), then it should be possible to suppress the
formation of A-centers at the growth interface. In this case, the combined electro-
chemical potential for the A-centers has to be considered; the resulting band-bending
is very analogous to the band-bending of a semiconductor under bias, and arises
purely from the electrostatic screening of the external field by the A-centers. In
Fig. 5.4(a) we describe the anticipated band-bending diagram for the A-centers,
in the moving coordinate frame of the growth front. We expect the depth profile
of A-centers to be small near the growth interface, but increase inside the bulk to
a steady-state value that is smaller than the donor concentration. This situation is

illustrated in Fig. 5.4(b).

5.3.3 Theoretical Analysis

We denote the concentration of A-centers by N4, and the current density of A-
centers by J4. Since we can assume that there are no sources of A-centers within

the semiconductor, we can write the continuity equation

8Ja ON4
5+ o =0, (5.1)

where the current can be expressed as
JA = —-DA——"' hat /J.ANAE‘° (52)

Here E is the electric field, and p4 and D4 are the mobility and diffusion coefficient
of A-centers, respectively. We have defined the mobility of the A-centers to be anal-
ogous to the electron mobility in semiconductors.3?) In writing the above equations
we also assumed that the growth axis is the z-axis, and that there is no variation of
the doping profile in the y and z directions. In the following analysis, most of the
equations will be written in the coordinate frame of reference that moves with the

growth front. We have reserved the independent variables z, and ¢ for the moving
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Electric Field-Assisted Doping
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Figure 5.4: Schematic diagram showing the expected band-bending and the A-center
profile for crystal growth under an external electric field. The distance is measured
from the growth surface into the crystal. The growth surface is assumed to move
at velocity v in the -z direction. The diagrams show the steady-state profiles in the

moving coordinate frame.
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coordinate system. To refer to the semiconductor’s frame of reference, we reserve
the independent variable z’ and ¢’. This is the reason for the primes in Equations 5.1
and 5.2. It is possible to combine the above Equations 5.1 and 5.2 into the following

second-order partial differential equation
aé: DAa;NA + [I,AEaaNfl + pAg—E-;NA (5.3)
The most natural boundary conditions describing the stationary solution of the
above equation under the appropriate conditions for epitaxial growth can be expressed
in the moving coordinate frame that travels with the growth front. In the moving
coordinate system, we expect the A-center concentration to reach a steady-state
profile determined only by the initial conditions at the growth interface. In this
coordinate system, we denote the independent variable by z and ¢. To incorporate
these boundary conditions properly, it is necessary to convert the partial derivatives
of Equation 5.3 into the moving coordinate frame. From the definitions of the

quantities = and ¢,
z = o+t (5.4)

t = ¢t (5.5)

we can derive the following relationships between the partial derivatives:

BNA _ BNA
oz ~— Oz’ (56)
BZNA _ BzNA
o7~ Bt e
3NA _ 6NA aNA
o~ ot "oz ©8)

In Equation 5.8 we have denoted the growth velocity by v. We have selected the
positive direction of the z axis into the semiconductor so that in the coordinate frame
of the crystal, the growth front travels in the -z direction at velocity v. Furthermore,

if we use the relation that
9¢

E=- Oz’

(5.9)
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where ¢ is the electrostatic potential, we can then define the potential V of a neg-
atively charged species such as the A-center by V' = —¢. Using these relations in

Equation 5.3, we obtain

ON, ON, _ 8N, OVON, OV
wrS +v—6z = DA—azcz +I‘AE 5g T Ha 57 Ny. (5.10)

This equation has an additional convection term (vON,/8z) in its left-hand side

compared to Equation 5.3, because of the change into the moving coordinate system.

5.3.4 Stationary Solutions

To obtain the stationary solution, we set 9N, /0t = 0 in Equation 5.10, we can

then rewrite Equation 5.10 as

62NA HAa ov v BNA HA 82V
£ ——— | Ny =0. .
gz (DA 9z Da) 8z T \Dyoa2) V4= (5.11)
The above differential equation is of the form,
d:N, dN4

where P'(z) = Q(z). The formal solution to equations of this form can be obtained
by the method of adjoint operators as described by Morse and Feshbach38]. The

solution that does not diverge at infinity is
Nyg=A e:xp("f= Pd=') /m exp (‘f sz”) dz’, (5.13)

where, A is an arbitrary constant that will be determined later. The integrals in the

above expression are indefinite integrals. In our case, the function P(z) is given by
Plz)= —— — —. (5.14)
4

If we use the Einstein relation

Ba _ 9 (5.15)
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to eliminate the mobility from Equation 5.14, we obtain the relation

/Pd kBT DA (5.16)

where q is the magnitude of the electron charge. The Einstein relations are very
general relationships that arise from the treatment of charged particles that obey
Maxwell-Boltzmann statistics under thermal equilibrium considerations. Substituting

Equation 5.16 into Equation 5.13, we obtain
qv vz ) /“’ A da’
Ny= A exp ( BT + Da exp (———kBT Da z'. (5.17)
Further Assumptions

Until this point of the calculation it was not necessary to make any assumption
about the form of the potential V. However, to proceed further than Equation 5.17
it is necessary to specify the form of V. An exact description of V' requires a
self-consistent solution of Equation 5.17 and Poisson’s equation, given below

o*v

Bz

mln-Q

(Np — Ny —mn), (5.18)

where N, is the concentration of ionized donors incorporated into the semiconductor,
and n is the concentration of free-electrons. For a first approximation we will assume
that linear screening theory is valid, and the form of the potential V is specified by

an exponential relationship of the form

V(z) = Voexp (—§> = AEj exp (—§> : (5.19)

Here ) is the screening length, and V; is the band-bending at the surface. We
assume that V' is measured from the chemical potential of the A-centers deep inside
the semiconductor, where its value is selected to be zero. We have defined the
absolute magnitude of the electric field near the semiconductor surface to be E,.

This electric field will usually point out of the semiconductor (in the -z direction)



187

under the conditions considered in this analysis. For now, we treat the screening
length A simply as a parameter in the equations, although in a later step of the
analysis we will derive an explicit expression for A similar to the Debye screening
length. Linear screening is a good approximation if the condition ¢Vp/kpT < 1 is

satisfied. These substitutions into 5.17 yield

_ _ qAEO -2/ E_ * —va/[Dy - e—a:'n/A q)‘EO " i
Ny=A exp( kBTe +DA)/ e ,Z:% n! P dz’.
(5.20)

Here we have expanded the exponential inside the integral sign by the usual power
series. If we perform the integrals of Equation 5.20, then we obtain
(o] (g_A_‘EQ.) ™ e-‘ﬂ!ﬂ/ A

__ __‘JY_) kpT
Ny= .AeXp( kT ,;, n!(-ﬁ'—A-FL;) .

(5.21)

We prefer to manipulate expression 5.21 because it is very easy to evaluate it nu-
merically, although it is possible to obtain altemnate analytic expressions. If we let

£ — oo in Equation 5.21, we obtain

Na(oo) = Noy = —A (Pﬁ) . (5.22)

v
Here, we have defined N, as the concentration of A-centers deep inside the semi-
conductor. From the above relation, we can find the value of the arbitrary constant
A. Using N,,, we can rewrite the Equation 5.21 for the doping profile as

_ v\ [ (83) e
NA(:D) = Nw exXp <—kB———T) Lzz;j n!B(1+ L‘%A) . (5.23)

If we define the quantity in the square brackets of Equation 5.23 as a function F' of

the parameters gAEq/kgT, D/vA, and z/A, then we can rewrite Equation 5.23 as

oo (-2L) p (2B D @
NA(:c)—Nmexp( = F(kBT’uA’A . (5.24)
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Surface Boundary Conditions

At this point it is necessary to relate the concentration of A-centers at the surface
to the doping concentration. We assume that under zero electric fields, complete
compensation occurs. In this case, the concentration of A-centers at the surface Ng
is equal to the uncompensated donor concentration Np in the bulk. However, when
the electric field is tumed on, we assume that the concentration of A-centers at the
surface will be suppressed by a Boltzmann factor with an activation energy equal to
the band-bending at the surface. This is quite a reasonable assumption that would
be valid if the A-centers at the surface obey Maxwell-Boltzmann statistics, and they
are described by the chemical potential at equilibrium. This is a central assumption
of our analysis, and is expressed mathematically by

Vo

Ns = Npexp (—;B—j_;) . (5.25)

The combination of Equations 5.25, and 5.24 lead to an expression for the A-center
profile in terms of the donor-incorporation rate Np. With a little manipulation of

the equations, this leads to the relation

3
[3]

F (£

M) = oesp (%)

)
ko . (5.26)

’
gAEp
F ( kpT?

5.3.5 Screening

At this point of our analysis, we will derive an explicit relationship for the
screening length. If we simplify the Equation 5.23 for N4, and retain only the

first-order terms in the electric field E,, then we obtain

a)Eq
Ny =N, (1 —~ ——’ﬂ—) : (5.27)
14 2>

A similar relationship can be assumed for the electron concentration n,

B,
n= N (1»— -"B—T_T> , (5.28)
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since electrons are also subjected to drift and diffusion. However, the diffusion
coefficient for the electrons D, is much larger than D, for the A-centers, so in
Equation 5.28 the term with Av/D, can be neglected.

Now, substituting Equations 5.27 and 5.28 into the Poisson’s Equation 5.18, we

obtain
1 q° Ny
- = Np — Ny . .
X T kel [T P J (5.29)

To obtain the above equation, we used the relationship

Np = Ny + s, (5.30)

required by the charge neutrality condition deep inside the semiconductor. We can

further simplify Equation 5.29 by substituting the expression for the Debye screening

GkBT
Ap = ‘/q,‘ND. (5.31)

If we define the dimensionless quantities s = A/Ap, a = ¢gApFEy/kgT and B =

length given by

D, /Apv, the screening parameter s can be expressed as

B + as?

Fiatas (532)

1
‘;‘5:

From this relation, it is possible to obtain the correction to the screening length A
in the presence of electric fields, and moving coordinate frames. When v — 0, then

B — oo, and we obtain s = 1, in agreement with the classical Debye result.

5.4 Discussion of Results

In this section we present the results obtained for the electric field assisted dop-
ing, studied in the above section. First we will show results regarding the doping
efficiency of the material grown by the electric field-assisted, doping technique. Sec-

ond, we will show the compensation profiles calculated as a function of depth, to
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show that it is possible to obtain a reasonably uniform doping profile beyond a few
screening lengths from the surface. The results presented correspond to the moving
coordinate frame, and therefore indicate that arbitrarily thick layers of uncompen-
sated material could be grown with this electric field assisted doping technique. We
will also present results for the screening parameter s, to show that the classical

Debye result is valid for the region of interest.

5.4.1 Doping Efficiency

In this section, we will present a plot of the doping efficiency n = n./Np as
a function of the dimensionless parameters D, /Apv and ApgEy/kpT. Here n, is
the electron concentration deep inside the bulk, and Np is the incorporated donor
concentration. Fig. 5.5 shows that it is quite possible to improve dramatically the
doping efficiency by varying the parameter a = ApqFEy/kgT. This parameter can
be further simplified using Equation 5.31 to give

(5.33)

We present results for the parameter « in the range [0.0-10.0]. It is possible to
increase o by increasing the magnitude of the electric field E;. Thus, the most
straightforward way to improve the doping efficiency is to increase the strength
of the external electric field. However, it is also possible to achieve a larger a by
decreasing the temperature. This is reasonable, because the metastability is enhanced
at lower temperature, and it is easier to achieve electric field enhanced doping at
lower temperature. Furthermore, Equation 5.33 shows that an increase in the donor
concentration also leads to é decrease in o.

There is only a small variation of the doping efficiency as a function of the
parameter D, /Apv. In Fig. 5.5 we have plotted the doping efficiency, assuming

that the screening length is given by the Debye result. The results of Fig. 5.5 indicate
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Doping Efficiency
(n /N,

Figure 5.5: Contour plot of the doping efficiency as a function of the dimensionless
parameters ApqFEy/kpT and D,/Apv. The doping efficiency can be significantly
enhanced by increasing the electric field, while an increase in the growth rate pro-
duces only a slight enhancement of the doping efficiency. For the purpose of this

plot, we assumed that the screening length is given by the Debye result.
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that an increase in the growth velocity always increases the doping efficiency. This
is quite reasonable, because faster growth helps to bury uncompensated material
before the transport of A-centers can penetrate into the semiconductor. It seems that
the parameter range of D 4/Apv required to obtain a good doping efficiency in the

epitaxial layer is D4/Apv <10.0.

5.4.2 Doping Profiles

In the next three figures, we have plotted the profile of (Np — N4(z))/Np for
three different growth rates. We consider three cases - D, /Apv equal to .01, 1.0,

and 100. - to illustrate the doping profile over a large range of parameter space.

Fast Growth Rates

For Ds/Apv = 0.01 growth occurs very fast compared to the diffusion/drift
processes of A-centers. We have shown the results corresponding to this situation
in Fig. 5.6. The boundary-layer in the A-center profile near the growth surface
is much smaller than a screening length Ap. Thus, we obtain an almost uniform
profile of A-centers within the semiconductor. We show that it is possible to obtain
an excellent doping efficiency at this growth rate if substantial electric fields (ie.,

ApqEo/kgT = 5) are applied.

Moderate Growth Rates

For D4/Apv = 1.0 growth occurs at a rate slow enough for the diffusion/drift
processes of A-centers to compete with the rate at which uncompensated material gets
buried. We have shown the results for this case in Fig 5.7. There is a boundary-layer
region near the surface (~1-2 Ap) where the concentration of A-centers is smaller

than deep inside the semiconductor. The overall doping efficiency, however, is
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Figure 5.6: Doping profile (Np — N4(z))/Np is plotted as a function of the dis-
tance from the growth surface. The five curves labeled [1.0-5.0] correspond to the
ApqFEy/kpT values for five different electric field strengths. This figure corresponds
to a fast growth rate D, /Apv = 0.01.
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smaller than for the case of fast growth considered in Fig. 5.6. In this case it is still

possible to obtain excellent doping efficiencies if large electric fields are applied.

Slow Growth Rates

For D4/Apv = 100.0 growth occurs very slowly compared to the diffusion/drift
processes of A-centers. We have shown the results corresponding to this situation
in Fig. 5.8. We obtain a quite poor doping efficiency, and many of the advantages
of the electric field-assisted doping are not fully realized at these slow growth rates.
The boundary-layer near the surface extends deep into the crystal, and the eventual
bulk doping efficiency achieved is quite poor. However, it is still possible to improve

the doping efficiency slightly by increasing the electric field strength.

I-VI MBE Conditions

Although we have analyzed the results of the electric field-assisted doping tech-
nique in terms of dimensionless parameters, it is necessary to relate them to real
physical situations such as the MBE growth of ZnTe to determine the feasibility of
this technique. First we evaluate D,4/Apv. In the case of MBE, v can be about 1
monolayer per second. Assuming a doping concentration of 108 cm~3, the typical
screening lengths are on the order of 100A. If we estimate the diffusion constant
of A-centers by assuming that it is comparable to the self-diffusion coefficients in
ZnTe at 300°C ,40] then we obtain D, ~ 10~ cm?s~1, in this case the value of
the parameter D, /Apv = 1. This value of the diffusion coefficient is also similar to
the value obtained by extrapolating the diffusivity data for CdTe given by Shaw.*1]
The analysis of this chapter is therefore quite relevant for the n-type doping prob-
lem of ZnTe by electric field-assisted MBE. The typical electric field necessary to
achieve substantial doping is determined by the parameter ApgE,/kgT. If the sur-

face band-bending is 100 meV, and kgT is 50 meV (=~ 300°C ), then the value
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Figure 5.7: Doping profile (Np — N4(z))/Np is plotted as a function of the dis-
tance from the growth surface. The five curves labeled [1.0-5.0] correspond to the
ApqE,/kgpT values for five different electric field strengths. This figure corresponds
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to a moderate growth rate D4 /Apv = 1.0.
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Figure 5.8: Doping profile; slow growth rates Doping profile (Np — N4(z))/Np
is plotted as a function of the distance from the growth surface. The five curves
labeled [1.0-5.0] correspond to the ApqFEy/kgT values for five different electric field
strengths. This figure corresponds to a slow growth rate D4/Apv = 100.0.
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of this parameter is 2.0. This falls in the range where the electric field can play
a substantial role, as shown in Fig. 5.5. However, the field required to produce
100 meV of band-bending within a screening length of 1004 is about 10° Vem~!.
Producing such a large electric field inside the semiconductor during growth would
be quite difficult; however, even fields as low as 10 Vem ™! could be employed to

reduce the compensation process qualitatively.

5.4.3 Screening Length

In this section we present the results for the screening parameter s as a function
of the two dimensionless parameters D /Apv and ApqEy/kpT. In Equation 5.32 we
defined this parameter s as the ratio between the screening length that is consistent
with linear screening theory, and the classical Debye screening length. The results
of Fig. 5.9 indicate that the Debye screening length is still a valid approximation
for moving coordinate frames. However, deviations from the Debye result can occur
for very fast growth and low electric fields, as shown in Fig. 5.9. The validity of
the linear screening theory depends on the ability to neglect higher-order terms of
the form ¢V /kpT. However, the analysis of this chapter based on linear screening
theory is quite adequate since very large electric fields are necessary to produce a

situation where the linear screening approximation breaks down.

5.5 Conclusions

In this chapter, we performed theoretical calculations to show that it is possible
to suppress the compensation processes in semiconductors by applying substantial
electric fields during epitaxial growth. We expect that our analysis, and the proposed
electric field-assisted doping technique could play an important role in the effort

to overcome compensation and achieve selective doping in wide band gap II-VI
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Screening Length

Figure 5.9: Contour plot of the screening parameter A/Ap that is determined
self-consistently within the linearized screening approximation. The Ap is the Debye
screening length. This figure shows that for the parameter range of interest, the De-
bye screening model seems to be a good approximation. However, in this analysis

we have ignored the nonlinear screening effects.
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semiconductors.
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