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Abstract

We describe the use of optical memory disks in optical pattern recognition
systems. Algorithmic and architectural issues associated with the realization of
such systems are discussed. Experimental demonstrations of several optical disk-
based architectures are included to aid in the understanding of system limitations
and performance issues. First we discuss correlation-based pattern recognition
and describe the relationship between this approach and the neural paradigm.
The need for invariances in image recognition leads to the notion of the reference
image library. This approach is shown to be attractive in the case of limited pro-
cessor and spatial light modulator dynamic range. We characterize the optical
disk as a parallel readout device. An overview of optical storage media is included.
Parallel readout of data from Sony sampled format media is characterized. We
identify a match between the characteristics of the optical disk and the require-
ments for pattern recognition systems. Four optical disk-based image correlators
which may serve as building blocks in disk-based pattern recognition systems
are introduced. These image correlators are experimentally demonstrated and
compared in terms of speed, efficiency, and sensitivity to noise sources and disk

imperfections. We discuss advantages and limitations of these systems.

We include a discussion of learning and generalization in neural networks. We
present a new learning algorithm and discuss its generalization characteristics.
Three disk-based systems for pattern recognition are proposed. The first is a
correlation-based architecture. The performance of this system as compared with
theoretical expectations is encouraging; however, data rate constraints suggest

the investigation of an alternate approach. The next two systems are more
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neurally inspired and realize the k-nearest neighbor and radial basis function
algorithms. An evaluation of the performance of these two systems is presented

with respect to the handwritten digit recognition problem.

Lastly, we present two candidates for future optoelectronic computing and
pattern recognition systems. We detail the operation of these architectures and
discuss the need for a better understanding of the relationship between mass

memory and a general parallel processing environment.
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1. Introduction
1.1 OpTicAL COMPUTING, NEURAL NETWORKS AND OPTICAL DISKS

A great deal of effort today is being devoted to the understanding and devel-
opment of complex multiprocessor-based systems or parallel computers.[!=3 We
can expect the next generation of electronic computing technology to be based
on such a parallel computing paradigm; however, the ultimate capabilities of
such multiprocessor systems can be strongly dependent on effective interprocessor
communications. Since the electromagnetic interaction among nearby electrons
precludes the possibility of high density noninterfering electronic communication
channels, optics becomes a viable candidate technology for use in these next gen-
eration computing systems. Photons do not interact appreciably in vacuum and
therefore can provide extremely high density interconnection capabilities for both

chip to chip and board level multiprocessing schemes.[6-13]

Since the principal strength of optics is in its ability to facilitate high den-
sity communications, future application of optical computing technologies will be
most natural where we find communications intensive processing. A neuronal in-
formation processing system is such a communications intensive environment.[14—17]
The study of neural computing or neural networks as these systems are often
called, is inspired by biological computing techniques. Biological neural networks
are characterized by a large number (> 100 in the human brain) of relatively sim-
ple processing elements or neurons, and a large degree of connectivity (> 10, 000

connections per neuron in human brain). Connections among neurons are made

through synapses which determine the influence the output of one neuron will



have on the input to another. In addition to the strength of the synaptic connec-
tions between neurons, the topology of the dendritic tree (i.e. the wires in the
nervous system) is believed to play an important role in defining the interaction

(18,29 1t is commonly held that the program for our biolog-

among neuronal signals.
ical neural computer or equivalently, the memories that have been stored in the
neural network, reside in the synapse strengths. The distributed nature of such
a storage scheme together with the redundancy present in such a largely parallel
system is believed to result in the apparent robustness exhibited by biological
neural computers. Only recently have many details of biological neural systems
become available owing primarily to improved experimental techniques, yet the
vast majority of complexities associated with the detailed structure/function of
these computers are still unknown or only poorly understood. In order to facili-
tate the study of a neural computing paradigm therefore, we grossly oversimplify
the behavior of the biological components to arrive at a simple working model.
These simplifications are akin to assuming a spherical cow, and only time will tell
whether such models will exhibit behavior like that of their biological cousins;
however, the richness of the collective behavior exhibited by even our simple
models is today, worthy of further study. The details of these neural models are
discussed in Chapter 2 and will not be presented here. We will point out however,
that the highly connected character of neural networks make electronic realiza-
tions of such systems extremely difficult while making an optical implementation

quite natural.[20-26]

Why will we study neuronal information processing? Aside from a fundamen-

tal interest in the workings of the human brain, one of the principal motivations



for studying artificial neural networks is the hope that such systems will provide
useful solutions to problems that have eluded solution via conventional computing
techniques. The human brain is particularly adept at solving pattern recogni-
tion and associative tasks. It is our hope that through simulation of a brainlike
architecture, some of the capabilities of these biological systems will manifest
themselves in our models. We hope that through learning in a neural framework,
collective behavior will emerge that facilitates the solution to pattern recognition
tasks at which programming and conventional computing has failed. Putting the
above discussions into perspective for our purposes it is clear that optical neural
networks for pattern recognition is a natural area of both academic as well as

practical interest.[27-31]

As the title indicates, we will study the use of optical memory disk tech-
nology in the realization of these neural pattern recognition systems. Optical
disks represent a mature storage technology which optical computing systems in
general may use to advantage. [25-38] One issue associated with the realization
of a general optical computing system is the need for an optical interface to the
outside world (I/O) and memory. Spatial Light Modulator (SLM) technology
has matured in the past few years to provide several realistic options for real-
time optical I/O capabilities; however, work in this area is still required so that
SLM device characteristics may be better matched to optical computing system
needs. Optical disks provide the other required capability with a natural optical
interface to mass memory. The conventional mode of access to optical storage
is serial and represents a severe limitation in terms of data transfer rate and

suitability to optical processing schemes so that the approach we will investigate



here is the parallel access mode. Large data rates and a natural mechanism for
the storage of data in two-dimensional format is facilitated by the use of optical
disks in this mode. By the end of Chapter 6 we will have seen how optical disk
characteristics make this optical storage technology one that is well suited to the

optical implementation of neural pattern recognition systems.

1.2 THESIS OVERVIEW

In this thesis we will describe the use of optical memory disks in optical pat-
tern recognition systems. Algorithmic as well as architectural issues associated
with the realization of such systems will be discussed. Experimental demonstra-
tions of several optical disk-based architectures will be included to aid in the
understanding of system limitations and various performance issues. In Chapter
2 we discuss correlation-based pattern recognition and describe the relationship
between this approach and the neural paradigm. The need for invariances in im-
age recognition leads to the use of the reference image library in such correlation-
based systems. This approach is shown to be attractive from the perspective of
limited processor and SLM dynamic range. The optical disk is proposed to pro-
vide the necessary storage for such an image library. At the end of this chapter
we demonstrate a simple incoherent optical image correlator based on acoustoop-
tic technology. This image correlator is used to simulate a single shift invariant

neuron or perceptron.

In Chapter 3 we discuss the characteristics of optical disks. An overview of
optical storage media as well as experimental characterization of some commer-

cially available media is included here. The disk system used in most of our



work is a Sony sampled format disk drive which is capable of reading and writing
both Write Once Read Many (WORM) and MagnetoOptic (MO) media. Par-
allel readout of data from the Sony media will be fully characterized in terms
of phase uniformity, diffraction efficiency, contrast, etc. In this chapter we will
see a match between the characteristics of the optical disk and the requirements
for library-based pattern recognition systems. Chapter 4 introduces four optical
disk-based image correlators which may serve as building blocks in disk-based
pattern recognition systems. These image correlators are experimentally demon-
strated and compared in terms of speed, efficiency, and sensitivity to various
noise sources and disk imperfections. We discuss advantages and limitations of

these systems.

In Chapter 5 we begin with a discussion of learning and generalization in
neural networks. We present a new learning algorithm and discuss its generaliza-
tion characteristics with respect to certain classes of problems. We then present
three disk-based systems for pattern recognition. The first is a shift invariant
correlation-based architecture which we demonstrate using a three-class hand-
written character recognition task. The performance of this system as compared
with theoretical expectations is encouraging; however, data rate constraints sug-
gest the investigation of an alternate approach. The next two systems represent
this alternative approach as they are more neurally inspired. These \two disk-
based systems realize the k-nearest neighbor and radial basis function algorithms
for pattern classification. A comparison between the performance of these two
systems and the expected performance of the algorithms is presented with respect

to the 10 class 0-9 handwritten digit recognition problem. Chapter 5 concludes



with a discussion of the robustness of these optical disk-based pattern classifica-

tion systems.

In the last chapter we present a discussion of potential candidates for fu-
ture optoelectronic computing and pattern recognition systems. We detail the
operation of two suggested architectures and discuss the need for a better un-
derstanding of the relationship between mass memory and a parallel processing
environment. We see that through the incorporation of feedback and the use of
Read-Write-Erase media, interesting optical disk-based systems for neural com-

puting and pattern recognition may be realized.



2. Optical Pattern Recognition

In this thesis, Pattern Recognition (PR) system will refer to an automated
system which for any input provides one of a finite number of classifications or
labels as an output. The outputs of the PR system should correspond to the iden-
tity of some “meaningful regularity” which is present in the input environment.[3]
We should note that PR in this sense differs from the related field of image un-
derstanding in that the output of a system of the later type is a description of
the input scene including the spatial and temporal relationships among the ob-
jects present. Our PR system in contrast is designed to identify or to sometimes
merely indicate the existence of familiar objects and as such may serve as a build-
ing block in a knowledge-based image understanding system. The canonical PR

system consists of three parts as shown in Figure 2.1.

Pattern Recognition System

| |

Input Feature | Classifier IE
Transducer Extractor | Idenftity

’ l Obc)?ect

Figure 2.1 : Block diagram of canonical pattern recognition system.



The first block shown is the input transducer which converts information present
in the observable world, such as electric field intensity or acoustic field amplitude,
into a form suitable for the rest of the PR system, typically an electrical signal.
The feature extraction stage can be considered the most important component of
the PR system since it is assigned the formidable task of projecting a potentially
high-dimensional input space (10% dimensional for a 1000 x 1000 pixel image)
onto a manageable number of relevant feature dimensions. Since this task is
quite problem dependent, the design of the feature extractor remains more of an
art than a science although some recent neural approaches to PR have yielded
interesting results (i.e. useful features) in problem domains such as speech and

[40-42] There is clearly a trade off in complexity

handwritten character recognition.
between the feature extractor and the classifier. The classifier is responsible for
operating on a feature vector to perform the desired identification of the input.
This task can be made trivially simple through the use of an omnipotent feature
extractor or impossibly difficult in the case of an unreliable one. Since we will be
primarily interested in implementational issues associated with the realization of
optical PR systems, we will make some specific assumptions regarding the three
components described above. Firstly, the input transducer for our optical PR
systems will almost always be some form of Spatial Light Modulator (SLM). This
is because our interest here is primarily in the realization of optical PR systems.
The SLM is a key device in such systems since it facilitates the conversion of
an electrical signal or an incoherent optical signal, into an optical signal suitable

for further processing. Furthermore, we will lump the feature extraction and

the classifier stages into a single optical processor so that simple optical systems



may be demonstrated. For the image recognition tasks we will be describing,
this approach is almost certainly suboptimal; however, the resulting systems will

demonstrate the feasibility of more sophisticated architectures.

A very simple approach to pattern classification is the look up table approach.
If for each possible input to our PR system we store the appropriate output re-
sponse, then the process of recognizing a scene would reduce to a search of a
large memory or database of inputs. It is the required memory size that makes
this approach prohibitive. For input images of 1000 x 1000 binary pixels, the
required look up table size would be 210°  This is clearly an unrealistic solu-
tion and most of these images are meaningless for the PR task at hand. The
alternative approach is to find a compact representation of the mapping to be
performed. This representation can be descriptive as for the case of syntactic ap-
proaches or it can be probabilistic as with decision theoretic or statistical pattern

n.[394344] I both of these approaches, the difficulty lies in providing

classificatio
the PR system with the necessary invariances to potentially distorted input fea-
tures. PR systems most often operate on natural inputs such as a visual field or
an acoustic signal. Such natural inputs can exhibit a wide degree of variability
without changing their essential identity. As an example, consider adding noise
to a photograph of your grandmother or changing the lighting conditions under
which the photo was taken. Within reason, these variations in the input should
not inhibit your ability to recognize her face. A system that can recognize an
input object in the presence of such variability is said to exhibit invariance with

respect to that variability. A system for image recognition for example, would do

well to exhibit shift, scale, rotation and illumination invariance as well as other
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potential invariances that will depend on the particular task at hand.[45—48] Some
of these invariances, such as the first three mentioned above, can be described in
a concise mathematical form, whereas others, such as hair length invariance in
grandmother recognition, cannot. Although designing PR systems that exhibit
or learn to exhibit such invariances is a very difficult task, it is also the most

interesting problem associated with real world PR.

Perhaps the simplest form of invariance a PR system can exhibit is noise
tolerance. It is well known from detection theory that the optimal PR system
for a known signal in stationary noise is the correlator. In signal processing, one
is often concerned with white noise in which case the required correlation filter
becomes the so-called matched filter. The matched filter is simply a replica of
the object of interest that is compared against a received signal in order to detect
the presence of that object. The correlation function in one dimension can be

defined equivalently in two ways :

o) = [ fa)g(e - )i (2.1)

= FHF{F@)HF g}, (2.2)

where f(z) is the input function, g(z) is the reference function and F{} represents
the Fourier transform operation. Note that although we will be dealing with two-
dimensional images throughout most of this thesis, in most expressions we will
present only one dimension, the second being implied. The first of the above
equations indicates that the correlation function ¢(Z) at some point # is simply

the inner product between the input image f(z) and a shifted version of the
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reference image, where the required shift is just #. Further, the peak of the

normalized correlation function that we can define as :

Crmaz = mgx[c(:i ] (2.3)

(%)
= max [ ] (2.4)
© T lo(@)Pdz [ |f(2)|Pda

will be the largest when the input and reference images are equal. That is,

Iﬁi*;{[cmaz]zl iff f(z)=g(2). (2.5)

So, regardless of the position of an object in the input scene, the normalized

correlation function will have a peak of ¢(#) = 1 when the reference image is
matched to the input object. This shift invariance coupled with its desirable noise
tolerance, makes the correlation function a powerful tool in image recognition.
Perhaps more importantly for this work, the correlation function is very easily
realized optically. This is due to both the ease with which optics can perform
inner products as well as the ease with which optics can perform 2D Fourier
transforms. The two optical systems required to perform these two operations
are shown in Figure 2.2. In Figure 2.2a we show two SLMs on which the images
f(z,y) and ¢g(z,y) have been recorded. The two SLMs are adjacent so that when
illuminated as shown, the pixel by pixel product of f(z,y) and g(z,y) will appear
immediately to the right of the two SLMs. This product pattern is integrated
by the lens and appears as an electrical signal after the detector. Figure 2.2b
depicts the optical 2D Fourier transform system in which a single lens computes

the transform of the input function ¢g(z,y). The result appears in the back focal
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Input SLMs Lens
> U U Detector
Inner
D> Product
#(x.y) g(x.y)
(a)
y y
——
X x'
AG(ax'.ay')
gxy) [ F Sl F > =1/ \F
(b)

Figure 2.2 : Operations suited to direct optical implementation.
(a) Optical system used to compute inner product.

(b) Optical system used to compute 2D Fourier transform.
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plane of the lens as shown and is scaled by the factor a = 1/Af. Until recently,

optical PR has been almost exclusively correlation-based.[*9=51]

The reason correlation-based optical PR systems have not seen widespread
usage in the solution of real world problems is that the combinatorial explosion
associated with the number of reference images required to achieve the many
desired invariances has been prohibitive. That is, a large library of reference
images must be compared against the input in order to realize a useful system.
Implementation of this image library requires large storage capacity to provide
the necessary invariances (scale, rotation, etc.), programmability to provide novel
filter design capabilities, and a mechanism through which the stored images may
be read into the high speed optical correlator. We will see later in this thesis
that the optical memory disk is a useful technology to utilize in the realization

of the required reference library.

2.1 NEURAL NETWORKS

The relative ease with which humans can perform sophisticated PR tasks is
one of the primary motivations for the study of artificial neural networks. Even
the common house cat can surpass conventional PR systems in terms of both util-
ity and robustness. The nervous systems of even very simple organisms however,
are such incredibly complex computing engines whose structure/performance is
only very primitively understood today, that the artificial network models we
study are gross simplifications of their biological counterparts. Even in these sim-
plified systems though, there is interesting behavior which emerges as a result of

the collective nature of the computing process. There are three characteristics of



14

biological Neural Networks (NNs) that our artificial models share and which dis-
tinguish the neural computer from more conventional digital approaches. Firstly,
the NN is a computational paradigm which exploits a large degree of parallelism.
The human brain contains more than 10!° processing elements or neurons each of
which is connected to as many as 200,000 others forming a highly interconnected
network of relatively simple processors. In analogy to this biological system our
NN models consist of many (e.g., 10* — 10° or more) processing elements whose
function is often taken to be that of a simple thresholding device and each of
these simple processors might communicate with up to 100-1000 others. This is
in contrast to conventional parallel computers in which relatively few complex
microprocessors are arranged so that each communicates with only several oth-
ers. The second departure from conventional computing arises from the analog
and distributed nature of information storage in NNs. In a neural computer,
stored data or memories residé in the analog connection strengths or synapses
of the network and may be retrieved by observing the state of activation that is
present over the array of neurons in response to some input. Since in general this
pattern of activation will depend on all of the synapse strengths, the information
stored in the network is said to be distributed. For this reason, NNs are robust
to perturbations of or damage to individual interconnections since destroying a
single synapse will not tend to destroy any particular stored memory but will
likely degrade slightly the recall of all of the stored data. This is in contrast
with conventional digital RAM in which damage of a single transistor could be
catastrophic. The third aspect of NNs that distinguishes them from conventional

computers is the aspect of learning. In NNs, the output, which is represented
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as the activation over some subset of neurons (output neurons) in response to
an input that is often represented as an external signal received by a subset of
neurons (input neurons), is defined by the synapse strengths. Note here that the
network output may be defined not only by a particular pattern of activation at
one time but could also be defined as the dynamic behavior of the output neurons
over some period. In either case, in order to choose the weights appropriately
to define some desired I/O relationship, the network is shown examples of the
mapping and a learning algorithm is used to evolve a set of connection strengths
to cause the network to generate desirable outputs. This is called the learning
or training phase. This is a convenient method of programming a machine to
perform a PR task since we do not have an algorithm that defines the task to
begin with. As far as we are concerned, the task is defined by examples. It
is certainly true that we, as biological computers, learned to recognize our own
grandmothers. The success of any training algorithm is measured in two ways.
First, the network that results from the learning phase should perform well on
the training data. That is, for a PR task the trained network should correctly
classify those inputs on which it was trained. Also, however, we would like the
NN to perform well on other inputs that are in some sense (defined by the prob-
lem at hand) similar to the training inputs. This second performance criterion is
called generalization. Although good generalization is the universal goal of NN
learning theory, no complete theory of learning and generalization has emerged
to date.[32-6% This is primarily due to the complexity of the relationship among
the network structure, the learning algorithm and its suitability to some partic-

ular class of problems, and the use of a prior: information in the training phase.
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Later in this thesis we will address some of these issues in connection with a new

learning algorithm for NNs that is found to yield good generalization for certain

types of problems.

Neuron i

Neuron j Yy

Figure 2.3 : Simple model of a single neuron.

In order to provide a brief overview of NN-based PR we will begin with the
simplest of NNs, a single neuron. Our model of the neuron is shown in Figure
2.3 and consists of two parts : a weight vector and a threshold function. The

synapse strengths w;; determine how the output of neuron j will affect neuron ¢

as

N
Ti= Y wijy; (2.6)
i=1

where z; is the input to neuron ¢, w;; are the connection strengths shown in the

figure and y; are the outputs of the N neurons to which neuron : is connected.
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The output of neuron i, y; is determined from its input z; as

yi = O(zi), (2.7)

where O is often taken to be a soft threshold function such as

O(z) = tanh(yz) (2.8)
O(z) = H% (2.9)

The parameter « is called the gain of the neuron. It is interesting to note that a
single neuron with infinite gain (i.e. a hard thresholding device) is the optimal
PR system in the Bayesian sense, for a certain class of problem. The resulting
classifier is the linear discriminant function. This fact is interesting because it
provides a mathematical link between neural models, which are only simple-
minded approximations to the biological PR systems that we aspire to mimic,
and traditional statistical PR. Beyond this connection, the single neuron network
is interesting from the perspective of learning as well. The weight vector w
associated with a single neuron can be trained using an algorithm such as the
perceptron, which is an iterative procedure that is guaranteed to converge.[? For
this reason a single neuron is sometimes referred to as a perceptron.[®1-64 The
existence of the perceptron algorithm implies that if a PR problem can be solved
using a single neuron, then the weight vector required to solve that problem can

be found in a simple way. Problems of this sort are called linearly separable
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problems. Furthermore, since the principal operation involved in computing y;

is an inner product

Yi = @(.IQ. : y_)’ (2'10)

optics is a good technology for the realization of such a PR system. In fact, since
optics i1s particularly well suited to performing image correlations, we can define
a slightly more useful PR system for image applications as the Shift Invariant
Neuron (SIN). The SIN is simply a single neuron in which the inner product
operation has been replaced with a full 2-D correlation followed by peak detection.
The output of a SIN, therefore, is a single value representing the thresholded peak

of the discrete correlation c; where

Gi= Y Wiy (2.11)
The SIN input therefore is given by

z; = max|c;], (2.12)

~ (4]
1

and the corresponding SIN output can be written as given by equation 2.7. It
should be pointed out that with this simple extension of the concept of a sin-
gle neuron, we have identified a connection between NN-based PR and optimal

detection theory.

Having introduced the neuron, which is the basic building block of NNs, the
next level of complexity to consider is an array of neurons, which will provide an

array of output signals as shown in Figure 2.4. Such an array of SINs represents,
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Figure 2.4 : Array of neurons with connection matrix w

in a neural framework, the correlation library-based approach discussed in the
previous section. If lateral inhibition is added to the output layer of Figure
2.4, this system exactly implements a correlation-based nearest neighbor PR
classifier. What is the motivation for using multiple filters as opposed to a single
composite filter that we know may be calculated using some procedure akin to the
perceptron algorithm? There are three reasons for considering multiple filters.
First, a single neuron can only solve linearly separable problems. Since almost
all interesting problems are not linearly separable, multiple neurons are required.
Secondly, an optical implementation of a NN will require the use of SLMs, and
most available SLMs are binary. It is possible that the filter that solves the
linearly separable problem at hand requires analog weights. For this reason,
formation of the optimal filter on an optical device may be impossible, thereby

requiring the use of multiple filters. The third reason is also implementational in
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origin and concerns the limited dynamic range available in optical storage media
and optical computation itself. For descriptive purposes, consider the simple sum
algorithm for computing a complex filter from M binary images drawn from two

classes. The filter resulting from this algorithm is given by

M/2 M
G=> 9 - Y g (2.13)
i=1 i=M/2+1

where the training vectors or prototypes gi are N dimensional bipolar vectors

distributed among the two classes £; and € according to

gEM Y i< M/2 (2.14)

GiEQ Y i>M/2 (2.15)

Consider also an unknown input vector f which we will classify as belonging to
21 or Q2 through the use of two different systems. System 1 is the single neu-
ron system whose weights are given by G and system 2 is the reference library
approach in which all M correlation peaks are computed and the class associ-
ated with the largest result is taken as the output. Without consideration of the
actual classification performance of these two systems, we can calculate several
measures of the cost to build such systems. In terms of storage, system 1 re-
quires storage of NV pixels, each with a maximum of 2M possible values yielding
an upper bound on the storage of G equal to Sg = Nlogy(2M) bits. Similarly
for system 2 we require storage of M templates, each comprising N bits yielding
a storage requirement of S, = NM bits. If we consider these storage require-

ments as bounds on the space required to realize the associated system, then the
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composite filter approach requires less space by a factor of M/loga(M) at the
expense of requiring a storage medium with a dynamic range of logy(2M) bits
or 2M levels. The time required to perform the necessary comparisons is equal
for the two systems when system 2 uses spatial multiplexing to allow simulta-
neous calculation of all M correlations; however, the optical power requirements
in this case must increase by a corresponding factor of M. Another difference
between these two approaches is the required processor dynamic range (DR) for
each. For system 1 each pixel of the output correlation pattern is the sum of
2N numbers, each with a DR of 4M levels. The optical system DR required for
system 1 therefore is logo(8M N) bits. For system 2 however, each correlation
peak output is due to 2N numbers each with a DR of only 1 bit which yields
an output DR requirement of logz(4N) bits which is a factor of log2(2M) less
than that required for the complex filter-based system. We know from our previ-
ous discussion that for interesting PR problems, M can be very large (=~ 1000),
yielding an appreciable DR requirement for the optical processor of system 1.
For an optical implementation therefore, in which SLM DR as well as the DR of
the computation itself is limited, the reference library approach or equivalently,
an array of neurons is preferable to an approach based on a single complex filter
when we can afford a factor of M/logs(M) increase in storage requirement. We
will see in later chapters that this is indeed the case for optical disk-based PR
systems and therefore, the reference library approach will be adopted in prefer-
ence to the composite filter approach. We should note here that a hybrid solution
is also possible in which arrays of composite filters are used. This is useful for

example when gray level images must be stored; however, this approach requires
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Output

Signal Flow

Figure 2.5 : Multilayer feedforward neural network.

both large capacity and dynamic range.

The array of neurons shown in Figure 2.4 can be thought to generate some
alternate representation of the input scene on which other neurons may then
operate. This process of designing layers of neurons separated by matrices of
connections will result in the formation of a multilayer feedforward NN as shown
in Figure 2.5. Deeper layers of such networks may consist of conventional neu-
rons as well as SINs. In these NNs there is an identifiable signal flow through the
system from left to right whereby each layer processes the output of the previous
layer to arrive at a new representation of the input space until finally, at the out-
put layer, a representation is achieved which represents the desired classification.
The feedforward nature of these systems simplifies the possible network behavior

considerably by eliminating the complicated dynamics that can arise in feedback
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networks; however, learning in multilayer networks remains a formidable prob-
lem. Although recently there have been numerous heuristic algorithms proposed
for training such networks, very few analytic results analogous to the perceptron
convergence proof exist for these new training procedures.[1%:57,6] Despite the
mathematical difficulty of studying such algorithms, many of these have proven
successful in training networks which have sometimes yielded interesting gener-
alization results. Once again in connection with correlation-based approaches, if
we construct the first layer of a multilayer network from SINs, then this layer
can be viewed as a reference library with deeper layers serving to postprocess the

resulting correlation peaks.

2.2 LED BiroLAR SIN

Now we will demonstrate a simple correlation-based optical PR system that
is modeled after the SIN approach described above. This system utilizes a single
complex correlation filter formed using the perceptron algorithm. The task is to
classify images viewed using a TV camera into one of two classes. One issue that
arises in the optical implementation of such a PR system is the representation
of inhibitory or negative synaptic strengths. Although a coherent optical system
may represent bipolar signals using phase modulation, these systems must use
interferometric detection if the bipolar signals are to be measured. This approach
is somewhat cumbersome and a technique of preference is to operate the optical
system with unipolar signals and to use electrical bias subtraction after detection

to reveal the result of the equivalent bipolar computation.

A class of image correlators that are implemented with minimal use of 2-
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D spatial light modulators and therefore maximize the use of mature device
technologies and make the practical implementation of such systems easier, has
been previously reported.[66=68] These architectures typically use acousto-optic
(AO) input devices in time and space integrating systems to achieve the desired

two dimensional correlation function.

In this section we describe a 2-D incoherent acousto-optic image correlator
operating in the bipolar mode. In addition to the advantages associated with
using the well developed AO technology, the present system is attractive in the
sense that it is fully programmable. The programmability of this system provides
a convenient method by which pattern recognition and classification algorithms
may be realized. We begin with an overview of the bipolar correlator system
operation. What follows is a discussion of the effect of input bias on bipolar
correlation outputs. This sub-section is followed by experimental results obtained
using the bipolar system. The final sub-section describes the results of using the

bipolar system to implement a single SIN or shift invariant Linear Discriminant

Function (LDF).

2.2.1 Bipolar System Operation

The basic incoherent correlator system architecture shown in Figure 2.6 con-
sists of a 16-element vertical LED array in the reference plane, an acousto-optic
device (AOD) in the input plane, and a CCD camera in the output plane. The
associated optical system is shown in Figure 2.7. In the horizontal dimension
this system is essentially responsible for imaging the LED array into the Bragg

cell shown, and imaging the diffracted light once again onto the output CCD.
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In the vertical direction, the light emitted from each LED is collimated so as to
correspond to an entire line on the output CCD. The input scene is detected by
a TV camera, and the video signal is applied to the AOD. An IBM PC is used to
load reference image data into an electronic memory with multichannel readout
capability. The data is read out to the LEDs, 16 nibbles at a time in such a
way as to modulate the intensity of the ith LED with consecutive pixel values of
the ith reference image line. A 2 bit D-A converter preceding each LED allows
for representation of up to 4 distinct intensity levels per pixel. In the system re-
ported here, three of these levels are used to represent an unbiased bipolar signal
(-1,0,1) as a biased unipolar signal (0,1,2). The memory is read out cyclically in
synchronism with the video signal from the TV camera. At the beginning of each
horizontal TV scan, the readout of the memory is initiated. The optical system
shown in Figure 2.7 is a multichannel time integrating correlator that forms on
the 2-D CCD detector the correlation between each of the signals applied to the
LED array and the signal applied to the AOD.[69-T1] The charge stored on the
CCD is transferred vertically by one pixel during the blanking interval of the
TV camera. As a result, the correlation between the current video line and a
particular line of the reference image is added to the correlation between the
previous video line and the adjacent reference line. This procedure results in the
formation of the 2D correlation between input and reference images on the CCD

detector. More precisely, we can say that the ith LED is intensity modulated by

Ty —T1/2

Ai() = [1 + ai(®)]rect (1= ), (2.16)

where a;(t) represents a bipolar signal associated with the ith line of the reference
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image 1 < ¢ < M, M is the number of lines in the reference image, and T3 is
the duration of the reference image. The delay time T3, is equal to the video
horizontal line time plus blanking interval and is necessary so as to ensure that
the entire video line has filled the Bragg cell before the reference image readout
is triggered. The jth line of the input image results in an intensity modulation
of the diffracted light after the AOD (assuming uniform incident intensity) that

is given by

ac/v — Tg/2)
T ’

Bj(t — /o) = [1 4 bi(t — 2 /v)] rect(-= (2.17)

where z is the horizontal coordinate measured from the AOD transducer, v is the
acoustic velocity of the signal in the AOD, b;(t) is the bipolar signal associated
with the jth line of the input image 1 < j < N, and N is the total number of
lines in the input image. Using this notation, the new charge accumulated on the

¢th line of the CCD during the jth horizontal video line is given by

Ti+12
ACi(z) = / Ai(#)B(t + v)dt, (2.18)

where the change of sign in the argument of B; is due to the imaging optics
between the AOD and CCD planes. So, the total charge that accumulates in the
Mth row of the CCD after the nth horizontal video line 1s equal to the charge

accumulated in the M — 1 previous CCD rows plus the charge generated in the
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Mth row during the nth input line. That is

M-1 Th+Te
Co(z) = Y / Apr_i()Bp_i(t + z /v)dt
n'=n Th+Ts
= Y [ Avwrea®Butt+ o/,
n'=n—M+1 0
n'=n T+T, (219)

= Y[ ol b+ 2fo) e
n'=n-M+1 T

n'=n T +T5

= Tp(z)+2 Z / Ay M—n(t)bp:(t + 2 /v)dt,
n'=n—M+1 T

where T,,(z) is the bias signal on the nth output line and for simplicity, we have
assumed that the Bragg cell aperture T is equal to the sum of input and reference

image durations (i.e. T =T + T).

For zero mean signals a;(z) and b;(z) we have that < a;(z) >=< bj(z) >=
0, where <> indicates the expected value over z and ¢ and we can write the

correlation plane bias signal as

T1+T1>
- -T,-T/2
T)(z) =< Typ(z) >=2M / rect(t z/v 7 2= T/ )dt. (2.20)
2
I

In this special case, we can calculate the worst case signal to bias ratio (SBR) as

n=m D1t

= a ()b (£)dt, (2.21)

T, M £
n=1 T,

SBR =

where we have assumed that the correlation signal reaches a maximum at = = 0,

n = M. So we can see that a great deal (more than 1/2 in general) of the output
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signal dynamic range is devoted to representing the bias signal T9(z). In fact,
the SBR reaches a maximum value of SBR=1 only when the input and reference
images are exactly matched, a;(x) = b;j(x). This effect can be costly when trying
to perform image recognition in the presence of noise, so we shall demonstrate a
method of obtaining the true correlation a;(z) * b;(z) by removing the bias term
from Equation 2.19. It is important to note that under the zero mean condition
the bias signal T2(z) is independent of the input and reference signals. In the

next section we will examine the more general case of signal dependent bias.

2.2.2 Bias Considerations

In order to represent a bipolar signal with light intensity, a constant bias
is added to the signal before modulation. The presence of this bias term in
A;(t) and Bj(t) results in the bias term Ty, (z) in the system output. Removal of
Tn(z) is therefore required before the true correlation may be observed. Shown
in Figure 2.8 is a typical line of the signal independent bias T(z). This signal
was obtained by providing a black background to the TV camera and setting the
reference image equal to a constant level of 1. The bias signal is approximately
triangular, characteristic of the correlation between the two rectangular functions

associated with A(¢) and B(t).

Removal of the bias function T2(z) is achieved by first generating constant
reference and input images as described above. A recording of the 2-D output
correlation of these two images is exactly T0(z). Thereafter, in order to retrieve

the true correlation from the system output, T0(z) is subtracted from Cyp(z) on



31

Figure 2.8 : Triangular bias signal measured from optical system

a pixel-by-pixel basis. This yields the desired signal :

an(z) * bo(z) = Co(z) — T (2). (2.22)

If the zero mean condition is not satisfied, then the bias term T,(z) becomes
signal dependent. This is generally the case for two reasons: first, although it
is possible in principle to electrically preprocess an arbitrary input image and
generate a zero mean signal, this procedure is difficult to realize in practice.
Second, the finite extent of the input and reference images as required by the
system, results in effective zero padding outside the image region. This zero
padding changes the effective image statistics near the edges of the correlation

plane. It is easy to show that the bias signal for arbitrary input and reference
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images is given by :

Ti+1> :
Tu(z) = 2M / rect( +Tm/v)dt
LS 2
w'=n D+T2
+2 Y / (s bt —n(t) + bur(t + 2 /0)]dt, (2.23)
n'=n—-M+1 T
n'=n Th+T1%
=T 42 3 [ lawearoa(t) + bt + /)
n'=n—-M+1 T

We see that the first term is the typical triangular bias; however, the second
term is in fact signal dependent. Various schemes for removing the second term
from Equation 2.23 may be envisioned. One particularly straightforward method

would be to simply record the two signals

n'=n Ti+T12
stgnall, = Z / Ay M—n(t)dt (2.24)
n'=n-M+1 T,
and
n'=n Ti+T,

signal2y(z) = Z / bu/(t + z/v)dt, (2.25)
n'=n—M+1 T,

and perform a pixel by pixel subtraction off line as we did with the signal inde-

pendent term.
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2.2.3 Bipolar Correlation Results

We have implemented the above system and have obtained correlation results
as shown in Figure 2.9. The AOD used in our system was a TeO, (Crystal Tech-
nology # 4050s) device with a center frequency of 50MHz, a 35MHz bandwidth
and a 70us aperture. This was more than adequate to accommodate one stan-
dard video line of duration 63us with a bandwidth of 5MHz. In our experiments,
the three images shown in Figure 2.9a were presented to the TV camera as the
input scene. These images were chosen heuristically and satisfy the zero mean
condition. The TV camera signal was highpass filtered in order to remove any
constant bias due to background illumination or camera electronics. After also
removing the horizontal and vertical sync pulses the video signal was amplified
and a constant level was added. This level was adjusted so as to ensure that the

input signal was strictly positive. This signal was used to amplitude modulate a

50MHz RF carrier, which was then applied to the AOD.

The LED array used in these experiments was fabricated by Honeywell and
comprised 180 elements, each capable of transmitting 5uW of optical power.
Various reference images were generated using an IBM PC. Each reference image
was 16 lines high by 32 pixels deep, however by virtue of the bipolar encoding
scheme employed, a data array of 32 bits by 32 bits was necessary to represent
one image. At the beginning of each input image horizontal line time, the 32
lines of the reference image were read out to the LEDs. Preceding each LED
was a 2 bit resistive ladder network used to convert two bits of digital data
into one of the three appropriate analog levels. The output signal from the

correlator was captured using an IBM PC equipped with a frame grabber board
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and software. Using this postprocessing equipment the signal independent bias
was first captured and stored as described earlier. Then, for each 2D correlation
performed, an image subtraction operation was necessary to obtain the desired
bipolar correlation signal. The bipolar correlations obtained using this procedure
are shown in Figure 2.9(b-d) for various reference images. As can be seen from
the figures, the system exhibits good cross correlation suppression and strong

autocorrelation peaks.

In Figure 2.10 we show the Y = 0 cross section of an autocorrelation of the
letter H as obtained before bias subtraction using the bipolar system as well as by
computer simulation. The simulations show, as we would expect, superior peak
signal to sidelobe level ratio in the case of bipolar scenes as compared with the
binary (unipolar) case. This is an advantage not only because of the SBR issue
discussed earlier but also because recognition performance is often a function of
the peak to sidelobe ratio. The peak to sidelobe ratios obtained in the three
cases shown in Figure 2.10(b-d) are 3.3, 2.75, and 6.1 for the biased bipolar,
unipolar and bipolar images respectively. We also see that this performance
criterion places the biased bipolar system on an approximately equal level with
the unipolar case. This is an expected result since we can consider the biased
bipolar system simply as an extension of the binary system to accommodate a
third, higher pixel value. The oscilloscope trace is seen to be of approximately
the same form as these simulation plots and exhibits a peak to sidelobe ratio of

2.8.
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(a)

Biased Correlation Cross Section

Figure 2.10 : Y=0 slice of the 2D autocorrelation of the character H.
(a) Signal obtained from optical system before bias subtraction.

(b) Computer simulation of optical system output before bias subtraction.



38

Unipolar Correlation Cross Section

550

500 —

450 —

350 —

>300 —

at

T
250 —

H cor

200 —

150 —

100 —

50 —

460 —

410

360

n w
[0)] -
o o

n
-
o

Hcor Hat Y =0

160

110

60

10

20 25 30

Figure 2.10 (cont.)
(c) Computer simulation of unipolar autocorrelation slice.

(d) Computer simulation of bipolar autocorrelation slice.
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2.2.4 Implementation of a Linear Discriminant Function

Taking advantage of the flexibility afforded by the computer generated ref-
erence images, it is possible to form arbitrary linear combinations of images to
generate more powerful filters. These filters may in turn be used to perform more
complex pattern recognition tasks as described in the previous section. In this
work, a linear discriminant function (LDF) based on three images was gener-
ated using the perceptron learning algorithm. The perceptron algorithm may be

written as

wtl = wF + b f;, (2.26)

where f; are the images to be classified as elements of either class 1 or class
Q2, w* is the classification filter or weight vector after the kth iteration of the
algorithm and

1 if f; isin Qp and wk - f; < wy

by =< —1 if f;isin Qy and w* - fi > wy (2.27)

0  if f; is classified correctly,
where wy is the correlation peak threshold level. A classification is performed by
evaluation of the 2D correlation between an unknown input image and the stored
weight vector. If the peak of the correlation pattern is above wy then the input
is assigned to class ; otherwise it is assigned to class Q3. In our experiments

the perceptron algorithm was initialized with the filter

w? = Z fi— Z fi- (2.28)

I in Q] fi in QQ

Since only three levels may be represented in our system, a threshold arithmetic
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must be implemented during training. That is, when executing the above algo-
rithm we have that 1 +1 =1 and that —1 — 1 = —1. We say that the algorithm
has converged when all images are classified correctly. Although there is no guar-
antee of convergence in the bipolar case, we observed convergence for all possible
dichotomies. The LDF as found through the above procedure, was used as the
reference image while the three seed images were placed in the input plane of
the optical system. The results for three different class assignments are shown
in Figure 2.11. Specifically, in Figure 2.11a we have formed a filter designed
to classify IMG1 and IMG2 as elements of class Q; while classifying H as Q5.
The two other dichotomies are shown in Figure 2.11b and 2.11c. We see that
successful classification was achieved for all three of the nontrivial dichotomies

possible.

This system is a simple example of the correlation-based approach to optical
PR in which a composite filter is used as a reference image. As we know from the
previous discussion, this approach is suboptimal for an optical implementation
due to DR limitations. In the remainder of this thesis we will describe the
optical disk as it may be used in optical PR systems and we will demonstrate
architectures based on the reference library approach that take advantage of the

characteristics of optical memory disk technology.
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(¢)

Figure 2.11 (cont.)

(¢) Correlator output for filter classifying Q1 = IMG2 4+ H and Q2 = IMG1.
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3. Optical Disk Characterization and Parallel Readout

Ever since the introduction of the videodisc system in the late 1970s and the
compact audio disc player in the mid 1980s, optical disk technology has been
maturing at a rapid pace. Both write once read many (WORM) and magneto
optic read/write disk drives are presently available for high density storage on

[72-76] The conventional mode of both read-

mainframes and personal computers.
ing and writing used in present optical disk systems is serial. Specifically, a laser
source will write one bit of data at a time on the disk, typically through a ther-
mal mechanism. Readout is achieved by using a lower power beam to illuminate
the location of each bit on the disk individually, and based on the reflected or
transmitted intensity detected, the bit is decoded as a logical 1 or 0. Although
serial readout is well suited to conventional computers, the optical disk itself is

[32) To see this, consider illuminating a large

naturally a parallel readout device.
portion of the disk with a collimated beam. The reflected or transmitted light
contains all of the data originally recorded in the illuminated area and a simple
imaging system makes this data available to a detector array. This parallel access
capability can be attractive when trying to solve memory access and contention
problems in parallel computing architectures or when trying to implement an
intelligent memory search procedure as with database machines.[$533.77.78] Fyr_
ther, the optical disk represents a high resolution, computer controllable, spatial
light modulator (SLM) that may be used in various optical computing architec-
tures. For example, images stored on an optical disk may serve as a library of

references in an optical image correlator as we proposed in the previous chapter,

or holograms stored on the disk may serve as interconnect patterns for hybrid



44

optical/VLSI-based neural networks. All of the applications we discuss through-
out the remainder of this thesis are designed to combine the parallelism and
interconnectivity of optics with a mature optical disk technology to result in

feasible optical systems that perform useful computational tasks.

We begin this chapter with a brief overview of optical storage media. Pre-
liminary data on some ablative media from Optotech will be included here for
comparison with the Sony system to be discussed later. We will then go on to
characterize the disk system used in our work, a Sony prototype sampled format
drive with both WORM and magneto-optic media. In the last section we discuss
parallel optical readout of 2-D blocks of data such as images. Issues of contrast

and diffraction efficiency will be analyzed in that section.

3.1 OVERVIEW OF OPTICAL STORAGE MECHANISMS

Recently a great deal of energy has been invested in the science of optical data
storage. This fact is evidenced by the growing number of papers presented an-
nually at conferences devoted to this field. This effort has not gone unrewarded.
Optical storage systems for applications such as providing access to mass pro-
duced information databases, archiving large amounts of data or realtime high
density storage and retrieval for PC systems are all commercially available. Al-
though we will be dealing here with the disk format, optical tape is also available
for archival purposes and many of the mechanisms we will discuss are equally
well suited to a tape format. The principal motivation for the development of
optical data storage systems is their potentially large capacity with relative me-

chanical simplicity of the reading/writing mechanism. While magnetic disks can
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achieve storage densities comparable to their optical counterparts, the mechan-
ical complexity associated with such systems precludes the use of a removable
format. The removability of the high capacity optical disk is one of the princi-
pal attractions of this new technology. Wavelength limited optical recording can
approach a density of 10® bits/cm? as compared with conventional removable
magnetic recording techniques, which achieve densities of 10° bits/cm?.[79-82] A
second motivation for considering optical storage is potentially higher speed. Al-
though this advantage has not yet been realized for random access owing to the
relatively large masses associated with conventional serial optical readout heads,
burst data rates from optical memory can approach 5-10 Mbytes/sec. Because
optical recording mechanisms are most often thermal, recording time is limited
by two factors: minimum heating pulse width and cooling time. The practical
limitation is cooling time. For a typical metal, cooling times are on the order of
0.1us yielding a maximum recording rate of 10 Mpixels/sec making the record-
ing speeds for optical storage systems roughly equal to those of their magnetic

cdunterparts.

A wide variety of materials and recording mechanisms have been proposed for
use in optical disks. An excellent review of these may be found in Reference[79].
Here, we will briefly overview several of the more common optical storage schemes
giving only an abbreviated account of each mechanism in order to provide some

insight into the breadth of the optical storage field.

Optical storage systems may be classified as one of three types; factory repli-
cated read-only memory or CD-ROM, permanent user recordable WORM, and

erasable or read-write-erase (RWE) type. Into the first category falls the most
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successful commercial application of optical storage technology, the audio com-
pact disc or CD. Also in this group are videodisks. These mass produced disks
comprise a glass or more often plasrtic base layer or substrate on ‘WhiCh is de-
posited a thin layer of metal, most often aluminum. The data to be recorded on
the disk is then embossed onto the Al layer through a stamping process using
a metal master disk. Finally, a protective transparent layer is deposited. The
recorded data may then be read out optically as variations in the reflectivity of

the Al layer.

There are two basic mechanisms which hold promise for use in RWE disk
systems: magneto-optic (MO) and chalcogenide. In the first mechanism MO
readout is accomplished through the detection of the polarization of light that
has been reflected from or transmitted through the MO medium.[#2-86] The MO
medium causes the polarization of an incident electric field to rotate on reflection
via the Kerr effect or on transmission via the Faraday effect. The direction of
the induced rotation is determined by the magnetization of the MO medium.
Typically, an output polarizer is used to convert the induced rotation into an
intensity signal, which is interpreted as the stored data. In this way the magnetic
state of the MO disk is detected optically. In order to characterize a particular
magnetic material with respect to optical storage there is the MO figure of merit,
which relates the induced polarization rotation and the optical absorption. For
some of the most attractive MO media, this figure approaches 2F/a = 1°, where
F measures the induced rotation in degrees per cm and a is the optical absorption
coefficient in nepers/cm. Since this figure of merit is quite small even in the best

of material systems, readout SNR in MO storage systems is rather poor and was
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until recently the primary deterrent to the successful commercialization of these

systems.

There are two basic MO recording mechanisms. In Curie point writing, an
incident laser is focused into the MO medium, heating it above its Curie temper-
ature. If we assume that the region surrounding the heated spot is all magnetized
in the same direction (say ‘up’), then the closure flux in the heated region is in
the opposite direction and results in a force being exerted on the heated spot.
Magnetic domains within the heated spot therefore tend to align in the ‘down’
direction. Often, an auxiliary magnetic field is applied to facilitate this alignment
also. On cooling, the region that was illuminated retains the reverse magnetiza-
tion, thereby recording a single bit. The other MO recording mechanisms take
advantage of the temperature dependence of the coersive field (H,) exhibited by
some materials. The application of a heating laser pulse can be used to reduce H,
thereby making it relatively easy for an external field to switch the magnetization
of the heated spot. In both modes, typical writing energies are ~ 0.1nJ/um?
and since submicron sized domains may exist in many magnetic materials, media

resolutions can easily be made >1000 lp/ mm.[84

Another reversible mechanism that may someday lead to erasable optical
storage media is photocrystallization and photoinduced amorphization in chalco-
genide films.[87-%% In these so-called ovonic materials, heating can cause a phase
transition to occur between amorphous and crystalline states with the heating
and cooling rates determining the direction of the transition. An incident laser
pulse then can be used to induce such a phase change with the pulse energy

and duration determining the direction. Since different material states exhibit
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different optical properties, index (phase) modulation or reflectivity (intensity)
modulation may be used as the readout mechanism. Once again we have that
typical writing energies for the least energetically favorable direction in these
materials are roughly 0.1nJ/pm? and resolutions can be >1000 lp/mm. Ovonic
material systems have been demonstrated to yield an 8:1 change in reflectivity
between amorphous and crystalline states, which is more than sufficient for opti-
cal storage applications; however, limited cycling between phases due to material

fatigue remains a serious limitation.

In the WORM category of optical storage media there are many potential
mechanisms. Two approaches that show promise for future optical storage sys-
tems are photopolymerization and photochemical hole burnjng.[go"gzl The most
common WORM mechanism and the approach taken in nearly all commercial
WORM systems is the ablative type. The recording layer of an ablative op-
tical disk is most often a thin layer of some metal (e.g., tellurium thickness
~ 100A), although recently, various organic materials have also been studied in
this regard.[93’94] The metal recording layer may be either deposited directly onto
the substrate or it may be stretched between plastic edge anchors resulting in
the air sandwich configuration. In either case an incident laser heats a spot on
the thin recording layer ablating the material and recording a hole. The debris
material is either left as clumps on the substrate surface or is redistributed over
the recording layer tending to bunch around the edges of the recorded pixels.
On readout, the variation in reflectivity between metal film and ablated hole
is detected either in reflection or transmission and can yield contrasts in the

range 10:1 to 100:1. Writing energies and resolutions here are comparable with
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previously described mechanisms.

During a preliminary characterization phase of this thesis we initially stud-
ied some commercially available ablative recording media from Optotech. The
recording layer of the Optotech disks consists of a 100-200A layer of Te in an
air sandwich configuration with air gaps of approximately 0.3mm on either side.
The required recording energy for these disks was given by the manufacturer as
0.7nJ/pum? corresponding to a 70ns, 8.5mW laser pulse heating a 1um diameter
circular spot. In order to avoid complications in parallel readout owing to the
presence of formatting data, we purchased EA-09-004 unformatted, ungrooved,
single-sided media. Unfortunately, there is no commercially available device for
recording data on this media; therefore, we constructed a recording system com-
prising two computer controlled motor driven micrometer stages, an Art laser,
and a 40x objective lens for focusing. The optical system shown in Figure 3.1
was used for alignment of the optical disk in the z-direction. Notice that when
the disk is in the focal plane of lens L1, a sharp focused spot will appear on
the alignment CCD. Since this optical system achieved a diffraction limited spot
size of 10pum diameter, a factor of 100 increase in writing power was necessary
to achieve recording. This results in a required Ar™ laser power of 1W. Also, as
the media was optimized for recording and readout at laser diode wavelengths
(=~ 800nm), an exposure time of 1-10ms was required in order to compensate
the increased absorption exhibited by the substrate and coating materials at the
Art green line of 514nm. Using this computer controlled recording system sev-
eral patterns were recorded on the Optotech media. An example of five pixels

recorded with center to center spacings of 10um is shown in Figure 3.2.
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Figure 3.1 : Alignment system used for automated Optotech

disk recording system.

This photograph was taken using an optical microscope in transmission mode
at a magnification of x2000. It is interesting to observe the distorted edges of
the recorded pixels and the variations in texture of the recording layer in the
neighborhood of the holes. These effects are indicative of the redistribution of
ablated material on cooling. Shown in Figure 3.3 is the first disk-based image
recorded for parallel readout. The acronym CIT was recorded on the Optotech
disk using 10um spots and is photographed once again in transmission at a
magnification of x500 making the total horizontal image extent 240um. As
we can see from the photo, the readout image contrast is quite good, suitable
for use in an optical information processing system; however, coherent optical
systems will require good phase uniformity of the disk as well. Using a Jamin

interferometer, a 1.25cm diameter region around the recorded CIT was measured
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Figure 3.2 : Five data pixels recorded on Optotech disk showing

distribution of debris material over recording laver.

Figure 3.3 : Acronym CIT recorded on Optotech disk for

parallel readout.
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Figure 3.4 : Interferogram of Optotech disk in 1.25cm diameter

circular region around recorded CIT.

for optical flatness. A photo of the interferogram thus obtained is shown in Figure

3.4.

The photo in Figure 3.4 reveals &~ 2.5\ variation in plastic thickness in the radial
direction over the illuminated 1.25cm. The illumination wavelength in this case
was A = 633nm. This result implies that square regions of 1.25mm on a side
exist, over which phase variations less than A/4 occur. One such region is large
enough to record a 1250x1250 pixel image making parallel readout from these

disks an attractive option for coherent optical processing systems.

Later in this chapter we will discuss parallel readout from optical disks and
the implications this technique might have in confronting parallel access problems

in conventional computing. Parallel access in general can refer to parallel write
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as well as parallel read operations. For available optical disks however, parallel
write is not a realistic operation to consider owing to power limitations. All
of the mechanism discussed in this section require roughly 0.1nJ/pixel writing
energy. In the attempt to write many pixels simultaneously, exposure time will
be limited by thermal diffusion to &~ 100ns in all cases except photopolymer-
based systems. This implies that for a 1000x1000 pixel image, we require an
incident laser power of 10% watts. This is clearly an unrealistic requirement for
any commercially feasible computing system. It is for this reason that throughout
the remainder if this thesis we will consider primarily parallel read out schemes

based on optical disk technology.

3.2 CHARACTERIZATION OF SONY SYSTEM

The prototype Sony disk system used in most of our work (Figure 3.5) can
read and write both write-once and magneto optic 5” reflective optical disks.
The system records data as circular pixels 1um in diameter along a spiral on the
disk with 20,000 turns between an inner radius of 3cm and an outer radius of
6cm. The disk is divided into 32 sectors, and each loop of the spiral from the
beginning of sector 0 to the end of sector 31 is called a track. Because of the
gradual change in the radius of the tracks with angle, we often model the tracks
as concentric circles separated by 1.5um. Pixels are recorded with a constant
angular separation of .001°. This corresponds to an along track pixel-to-pixel
separation that varies between .5um and 1um depending on radial position on
the disk. This pixel recording density yields a storage capacity of over 7x1010

bits on each side of the disk. The system is interfaced to a personal computer
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Figure 3.5 : Photograph of Sony optical disk drive used in our work.
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(PC) that provides serial read/write access to the disks. The system can read
or write up to 15 million bits-per-second and consequently, a 1000x1000 pixel
image can be entered on the disk in 1/15th of a second. Since we can only write
one line of the image per revolution, about 30 seconds are required to record the
image in two-dimensional format on the disk. Notice that a thousand images

using the same tracks could also be written during the same time.

Since it differs from any of the mechanisms discussed above, we will briefly
describe the alloy mode recording mechanism employed in the Sony write-once

[95,96]

disk that we use in our experiments. The disk contains the four thin metal

films SbySes (300A), BiyTes (150A), SbySes (14004), and Al (1000A) formed
by sputtering deposition on a glass or plastic substrate. The thicknesses of the
various layers are chosen so that they form a low (5%) reflectivity interference
filter. During the recording stage, a focused laser beam heats a spot of the
BisTes layer through absorption. The BigTez and SbySes then form a four-
element alloy by diffusion, eliminating the sharp interfaces between the layers.
The low reflectivity interference filter is thus destroyed, increasing the reflectivity
of the medium to 12%. This reflectivity difference is detected during readout and
decoded as a logical 1 or 0. The reflectivity of an interference filter is wavelength
dependent. The thicknesses of the layers are chosen to maximize the change in
reflectivity for the laser diode wavelength of 830nm. An interesting effect occurs
in the Sony media as a result of the wavelength dependence exhibited by the
interference filter structure. A computer model of this structure predicts that
for some wavelengths (i.e., 650nm < A < 750nm) a contrast reversal will occur

wherein the off state reflectivity will become greater than the on state reflectivity.
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This effect may have interesting implications for optical information processing
systems based on the Sony media. Without using additional storage area on the
disk, both a binary image and its complement may be retrieved from the disk
simultaneously using a two wavelength readout scheme. Using this technique, the

storage of 2D bipolar data on the binary Sony storage media becomes possible.

The Sony system can also read and write on magneto-optic media. Since
the mechanism of recording and readout for the Sony MO media is essentially
the same as described in the previous section, only a few details specific to the
Sony media are summarized here. The Sony magneto optic disk contains a rare-
earth transition-metal alloy of TbFeCo. During the recording stage, the laser
heats a spot on the disk above 180°C, the Curie temperature of the material.
As the spot cools below this temperature, the material within the spot retains
the magnetization of an external field applied perpendicular to the disk surface.
The polarization of a low power readout laser rotates upon reflection from the
'spot by an angle of +.15°, due to the magneto optic Kerr effect. The reflectivity
of the magneto optic disk is 17%, and the sign of the rotation angle depends on
the direction of magnetization in the spot. This rotation is detected through a
croésed polarizer and decoded as a logical 1 or 0. Depending on the setting of
the polarizers, the amplitude of the light corresponding to the two states can be

either on/off or plus/minus.

Throughout the remainder of this thesis we will describe architectures and
demonstrate systems which utilize the Sony WORM media operating in a parallel
readout mode. One potential disadvantage to this approach is that realtime

modification of the recorded data is not possible thereby limiting the possibilities
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of realizing adaptive optical systems. Such systems would be possible using MO
disks; however, the extremely small rotation angle induced by the MO media
results in poor light efliciency in systems that use these devices. Although careful
engineering of such systems may yield realistic adaptive parallel access optical

systems based on MO technology, we will not discuss such systems here.

Current disk systems use either continuous or sampled format schemes to
maintain the position of the head over data in a track. Continuous format systems
use a return signal either from a guide groove embossed on the disk or the recorded
data itself to constantly monitor and correct the position of the head relative to
the data in a track. In contrast, sampled format systems such as the one used
in our experiments, use tracking and timing information embossed along radial
lines on the disk to periodically monitor and correct the head position. These
lines of tracking and timing information appear every 270 pixels. Each radial line
of tracking and timing data consists of a pattern of three embossed pits repeated
in all 20,000 tracks as shown in Figure 3.6. The first two pits provide tracking
information. They are displaced an equal distance from the center of the track,
one toward the inside of the disk and the other toward the outside. If the head
is exactly over the center of the track, the readout signal strength of the two pits
will be equal; otherwise, the signal returning from one of the pits will be stronger
than the other, thus indicating the direction to move the head. The third pit

provides timing information used to synchronize the system clock and the disk.

There are two byproducts of the sampled format scheme that facilitate the
parallel readout of data. First, the across track alignment of tracking and timing

information combined with the synchronization between recorder clock and disk
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Tracking

Figure 3.6 : Schematic of Sony optical disk showing servo areas

which provide tracking and timing information.

rotation allows us to specify the position of individual pixels with submicron
accuracy in any one of more than one billion locations. This provides us with
across track coherence, the ability to radially align pixels across different tracks.
In contrast, with continuous format systems, the position of pixels in different
tracks can drift by several pixel widths within a single sector. Second, the absence
of guide-grooves allows us to retrieve high contrast images from low contrast

media through Schlieren imaging as described in the next section.

When we consider using the disk as a spatial light modulator, a number of
additional performance issues arise. The SLM resolution is determined by the
track spacing in the radial direction (1.5um) and the minimum spot size in the

azimuthal direction (.5um to 1um). Notice that there is an inherent sampling in
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the radial direction due to the tracks. At the outer tracks, where the recorded
pixels do not overlap, the image is also sampled in the azimuthal direction. We
will see later that we can make use of image diffraction caused by this sampling.
The reflectance function of the disk is basically binary both for the write-once and
the magneto optic disks. We have observed some dynamic range in the reflectivity
of the write-once disks, controllable by varying the exposure for each pixel. We
have not characterized fully the grey scale capability of the system; however, we
have demonstrated that area modulation can be used to code multiple reflectivity
levels for superpixels consisting of several bits. For example, turning on n out of
N pixels in a superpixel can be used to represent the integer value n. Various
superpixel coding techniques have been investigated in the past.19 We have
implemented an area modulation scheme which uses a stochastic procedure to
determine the position of on-pixel locations within each superpixel. This scheme
improves the dynamic range of regions of low spatial frequency by stochastically
selecting the value to be recorded in each element of an array of superpixels. This
procedure along with experimental results demonstrating its success is the topic
of another thesis and can be found elsewhere. The contrast of the light reflected
from the disk is low for the Sony write-once disks (2:1). For magneto optic disks,
the polarization of the modulated light is orthogonal to the polarization of the
incident light, and the use of orthogonal polarizers in conjunction with the carrier
encoding method discussed in the next section yields excellent contrast, limited

primarily by the quality of the polarizers.

Many of the processing architectures we propose use coherent processing

techniques requiring phase uniformity across the surface of the disk. We have
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used a Fizeau interferometer to measure the phase uniformity of the Sony disks.
Figure 3.7 shows a Fizeau interferogram of a 24x36mm area of a glass-covered
Sony write-once disk taken with a HeNe laser source providing illumination. The
figure shows numerous regions on the disk with optical thickness variations of
less than a wavelength (A=633nm) over distances of several millimeters. These
regions are sufficiently large to contain images or holograms thousands of pixels
on a side. The greater phase variation toward the outer edge of the disk is most
likely caused by index variations due to stresses induced during manufacturing,
We have also tested plastic-covered disks, which generally show greater phase

variation than the glass-covered ones.

In most applications, it would be most convenient if the optical disk system
recorded pixels on a Cartesian grid. However, as noted earlier, our system actu-
ally writes pixels along curved tracks. We can neglect this curvature if we restrict
attention to a small area of the disk. Consider a portion of the disk, centered a
distance R from the disk center. As shown in Figure 3.8, we establish Cartesian
coordinate axes with x tangent at the origin with the azimuthal or along track

direction and y in the radial or across track direction.
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Figure 3.8 : Geometry used to calculate positional error arising from

Cartesian assumption.

Equation 3.1 converts the polar coordinates of the disk to the Cartesian coordi-

nates in the region of interest:

z = r sin(0)

(3.1)
y =rcos() — R

The center-to-center spacing of the pixels in the radial dimension is §, = 1.5um,
and the angular separation between adjacent pixels is 6y = 0.001° in azimuth. We
now superimpose a Cartesian grid on this pixel structure with z and y spacings

as follows:
Az = R56
(3.2)
Ay = by

This choice for A, and A, provides the best match between the pixels recorded
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on the disk and pixels near the origin on the superimposed Cartesian grid. We
now calculate the deviation of the actual pixel locations from their presumed

Cartesian locations. The presumed coordinates of the points on the Cartesian

grid are
T =nl\;
) (3.3)
y =mly
whereas the actual location of the pixels on the polar grid are
r =R+ mé, -}-7’466‘51r
2 (3.4)
6 = néy
The actual Cartesian coordinates of the recorded pixels therefore are
69 AL A
z=(R+mé +n 6 D)sin(nby) = nly + nm———=
27 R (3.5)

Ay, g A2
orR ' 2R

y=(R+mé, + n%—fs—r-)cos(nég) —Ra~mlAy+n
s

We calculate the deviation between the actual pixel position and the presumed

location on the Cartesian grid by subtracting Equation 3.5 from Equation 3.3.

1.1
, N ANy, 'y
€2 =1 — TR nm = —

R R
AgAy 2 Aazc 1 By z'"

orR " 2R " 27R 2R

(3.6)

&=y —y=n
For an array of 1000x1000 pixels on the Sony disks, the worst case pixel place-
ment error is 1.25% of the array size (12.5 pixels) in the z-direction (at R=3cm,
Ay=.5um, and Ay=1.5um) and .14% of the array size (1.4 pixels) in the y-
direction (at R=6cm, Az=1um, and Ay=1.5um). In applications where this
kind of positional error is not tolerable, we need to compensate the track curva-

ture through optical techniques and/or the recording geometry.
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Diffraction efficiency is a key parameter in determining overall system effi-
ciency since many of the optical systems presented in the following chapters use
light diffracted from the disk. Given an accurate model of the surface reflectiv-
ity of the disk and how it will be used in an optical system, we can calculate
the expected efficiency of the disk in that application. As an example consider
recording all pixel locations over some extended 2D region of the disk near the
center. Since pixels on the innermost radii overlap considerably in the along track
direction we may ignore the azimuthal variation of the 2D recorded pattern. Un-
der this assumption we may consider the recorded region as a rectangular grating
with a period of 1.5um in the radial direction and a duty cycle of 0.67. Ignoring
the effect of track curvature and finite aperture for the present, we can write an

expression for the reflectance function of the disk recording layer as

r(z,y) =ro+ (r1 — ro)rect(y/by) * comb(y/Ay), (3.7)

where 6y is the pixel diameter é, = 1.0um, Ay is the track spacing as before,
ro, 71 are the unwritten and written field reflection coefficients of the recording
media respectively and * here represents the 1D convolution operation. For our
case we have that rg = 1/0.05 = 0.22 and r; = /0.12 = 0.35. Given the pattern
r(z,y) on the recording layer of our disk we may consider illuminating this disk
with a normally incident, unit amplitude, plane wave whose polarization vector
is perpendicular to the plane of incidence. Since the glass protective coating
over the recording layer has an index of refraction different from that of air, the
incident beam will undergo partial transmission at the air-glass interface. The

efficiency with which the incident field will enter the glass layer is given by the
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Fresnel formula 1 = (2/n + 1)2 = 0.64 for n=1.5. This then is the intensity
of the readout field that illuminates the recording layer. The recorded grating
will diffract the incident plane wave into multiple orders. The intensity of the
first order diffracted beam is obtained by computing the Fourier Transform of
the reflectance r(z,y) and choosing the appropriate term. The term of interest

I'| is given by
I' = m(r1 — o) sinc®(8,/8,), (3:8)

and is propagating at an angle of ' = sin7!(A\/nA,) inside the glass layer.
As usual €' is measured with respect to the surface normal and in our case
corresponds to a first order diffracted angle of § = sin™!(A\/A,) = 25° in the air
for an illumination wavelength of A = 633nm. The first order diffracted intensity
in the air I, is obtained from the intensity in the glass I', as I = nyI' where
n2 is the Fresnel transmission coefficient for propagation from glass to air at an

incident angle of § = 16.3° and is given by the Fresnel formula

sin?(6' — 6)
n=1- 520 1 0)’ (3.9)

which yields n2 = 0.95 in our case. We then find the overall first order diffraction

efficiency of the track grating to be
n =mna(ry — r0)2sincz(5y/Ay) = 0.09%. (3.10)

This computed value agrees well with a measured value of 0.11%. We estimate
that the magneto optic disk will be almost 1000 times less efficient than the
write-once disk in most applications. This large loss in efficiency was also exper-

imentally observed.



66
3.3 PARALLEL READOUT

The fact that data can be retrieved in parallel from optical disks creates
the possibility for eliminating some of the bottlenecks that currently exist in
computers due to the mismatch between mass storage media and semiconductor
memories. A parallel random access memory would be one possible way to con-
struct a parallel readout optical memory. In this case, M out of the N bits stored
on a disk could be specified and retrieved simultaneously. In such a system, the
apparatus that would scan the memory to realize this parallel retrieval scheme
would have to be capable of being set in (ﬁ) ~ (N/M)M distinct states in order
to arbitrarily select any M-tuple. With N=101% and M =1000, we obtain about
107000 distinct states. It is clearly not practical to realize an optical scanning
mechanism that can do this. Therefore, we conclude that we must somehow
structure the stored data to reduce the complexity of the access mechanism. The
most straightforward way to impose such structure is to arrange the stored data
in 2-D blocks, M bits each, that are retrievable in parallel. This reduces the num-
ber of choices the access mechanism is faced with to a practical (NﬁM) = 107, for
the previously quoted numbers. Notice that even in the case of structured stor-
age, the entire disk capacity or Space Bandwidth Product, SBP=10'° represents
too severe a requirement for simultaneous parallel readout owing to the cost of
the associated optical system. This fact implies that some scanning mechanism
must be combined with the structured data storage approach in order that all
the disk SBP may be accessed using a simple optical system. In this section, we
discuss several methods, including holographic, for recording and retrieving 2-D

blocks of data from optical disks.
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Figure 3.9 : Photograph of image (CIT) written on Sony disk as viewed

through a microscope.

Figure 3.9 is a photograph of a binary image written on the Sony write-once
disk as viewed through a microscope. This image consists of 4024 x 512 pixels
recorded on a polar grid. Note that the track curvature is not visible. The
parallel lines, evident in the figure, are the radial strips of tracking and timing
information described in the previous section. There are 270 pixels between each
pair of these lines. Individual pixels are not discernible in this figure, but they are
perfectly aligned in the radial direction resulting in the accurate recording of the
letters in the figure. Notice the poor contrast in Figure 3.9. This is due to the fact
that the disk has an off-state (unwritten) reflectivity of 5% while the on-state
(written) reflectivity is only 12%. This large background and low differential
reflectivity results in the poor contrast seen in the photo. Tanguay et.al. used an

interferometric technique to eliminate the background light obtained on reflection
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from a stamped optical disk. We use an alternative means for improving the
contrast of the retrieved image. Since the binary image b(z,y) to be recorded on
the disk is sampled by a polar grid, light reflected from the disk will be diffracted
into many orders or sidebands whose center frequencies will be determined by the
grid spacing. A Schlieren imaging system that captures only one such sideband
will exhibit high contrast since the background reflectivity is not sampled by the
polar grid. This can be seen by once again considering for simplicity an inner
portion of the disk on which we have recorded the binary image b(z,y). At the
outer radii the same analysis will hold except that we would need to include
the effects of diffraction into x-diffracted orders. This would reduce slightly
the overall diffraction efficiency but would otherwise not alter the flavor of this
analysis; therefore, as per our earlier discussion, we will treat the disk sampling
as comprising a rectangular grating in the radial direction only. An expression

for the disk reflectivity in this case is given by

r(z,y) =ro+ b(z,y)(r1 — ro)rect(y/by) * comb(y/Ay), (3.11)

where b(z,y) is sampled by the track grating. Consider the parallel data retrieval
system shown in Figure 3.10, which we have drawn with a transmissive disk for
simplicity. The DC block shown in the Fourier plane will result in an image
of only the £1 orders appearing in the output plane. That is to say that the

intensity in the output plane is given by

F(z,y) = 2mma(r1 — r0)?sinc?(6y/ Ay )b(z, y). (3.12)
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Figure 3.10 : High contrast diffractive parallel readout system.

We see that the output plane contains a replica of the sampled binary image
b(z,y) without the bias term due to the background reflectivity ro. This image
then is a high contrast version of the disk reflectivity function r(z,y) attenuated
by the diffraction efficiency we calculated earlier. The optical retrieval system
shown in Figure 3.10 requires a numerical aperture of N.A. = sinfyq; = sin(6p+
) where 6p is the angle of the first order diffracted carrier and 6, is the angular
bandwidth of the binary image b(z,y). We have 6, < 6p/2 by the sampling
theorem so that N.A. = 0.61. This is a fairly stringent requirement for a simple
imaging system. Since the N.A. calculated above is rather large and since we
will want to work in reflection for the Sony media, we use the readout system
shown in Figure 3.11a. The system shown in Figure 3.11a captures only one
diffracted order resulting in a factor of 2 loss in light efliciency; however, the

numerical aperture of this system has been reduced to N.A. = 0.22. Strictly
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Figure 3.11 : Low N.A. diffractive readout schemes.
(a) Single sideband diffractive readout system.

(b) Optical system of (a) using a grating to correct for trapezoidal distortion.
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speaking, the output image obtained from the system of Figure 3.11a will exhibit
trapezoidal distortion owing to the fact that the object plane is not perpendicular
to the optical axis. This distortion may be compensated through the use of an
auxiliary prism or a grating as shown in Figure 3.11b. For parallel readout from
optical disks we found that since the recorded images are quite small (= 1mm
on a side), the trapezoidal distortion resulting from the use of Figure 3.11a was
undetectable; for simplicity, we will choose to use this system throughout the
remainder of this thesis. An example of a high contrast image obtained by
imaging the first diffracted order is shown in Figure 3.12. The light diffracted by

the tracks was selected to form this image.

Figure 3.12 : High contrast image obtained from disk using diffractive

readout scheme of Figure 3.11a.

As described in the previous section, when we assume that pixels are written

on a Cartesian grid, the presence of track curvature leads to positional errors
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given by Equation 3.6. In the Schlieren imaging system described above, the
positional error of a recorded spot can lead to amplitude and phase errors in its
contribution to the reflected field. We neglect the amplitude error since it only
becomes significant when the position error of recorded pixels is comparable to
the distance between the disk and the image plane. We must consider the phase
error, however. Let us write the expression for a track grating written over some

set of inner radii now including the effect of track curvature.
r(z,y) =ro + (r1 — ro)rect(r/by) * comb(r/Ay), (3.13)

where we have simply replaced the cartesian approximation for the radial coor-

dinate with the true disk radial coordinate r = \/z% + (y — R)?. Once again we
consider a normally incident plane wave readout beam. The first order diffracted
components arise from the fundamental sinusoidal component of r(z,y), which

is given by
rei(z,y) «x sin(r/Ay), (3.14)

where for the purposes of this discussion the amplitude of this component is not

material. So we have that

rai(@,y) = sin(y/a? + (v = R)2/A,). (3.15)

If we assume that the image position R is large compared to the image extents

in both x and y (i.e., R >> Tmaz, Ymaz) then we have

rar(z,9) mm[Aiy(y ~ R)(1 +22/2(y — R)?)

— R 2
Y ) + T
Ay 2A4R

(3.16)

]

~zsin(
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So, finally we have that
ry1(z,y) o elV=R)/ By gic” [2RA, (3.17)

and

r_1(z,y) o e @B/ Ay e i 12ROy (3.18)

We see that for the +1 order diffracted fields, the track curvature introduces a
phase error of @41 = +z2/2RA,. This phase error can be modeled as a cylindri-
cal lens at the disk plane with focal length f=+RA /). For typical experimental
parameters R=4.5cm, Ay=1.5um, and A=633nm, the cylindrical focal length is
10.7cm. This distortion can be corrected by an illumination system containing a
cylindrical lens of focal length F. The product of the incident wavefront and the

reflectance function of the disk in this case is

Er(x,y) - Ei(xay)f(xay)a (319)

where E,(z,y) is the reflected field, Ej(z,y) = e722” is the incident field corrected
by the cylindrical lens, and #(z, y) is the apparent reflectance function of the disk
surface including the phase error. The illuminating optics should be chosen so
that E.(z,y) = r(z,y), which yields o = —k/2f. With this value for «, the
incident illumination is given by E; = exp(—jkz?/2f), which can be generated
by a line source located a distance f in front of the disk. A cylindrical lens with
focal length F, at a distance F' + f in front of the disk, can be used to form the

line source.
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Correcting for this cylindrical lens effect does not, however, account for the
positional errors of pixels due to the polar grid. Earlier we found that the po-
sition error of pixels in large images can exceed the pixel spacing. Since some
applications require pixel position errors less than the interpixel separation, in
order to minimize these errors we must make the interface to the disk conform
to this polar recording format. For example, in order to accurately record an im-
age sensed by a television camera, the camera should be modified to scan along

curved lines matching the shape of the tracks on the disk.

In addition to the recording and retrieval of images, the optical disk is an
ideal medium for the storage of computer generated holograms (CGHs).["7-99]
The diffractive imaging technique described above may be thought of as simply
the reconstruction of an image plane hologram. Any other computer generated
hologram can just as easily be stored on the optical disk. We have investigated
various techniques for the calculation and recording of CGHs on the optical disk.
Once again however, such techniques are not the focus of this thesis and therefore

will not be discussed in detail here. Holographic storage on optical disks has been

discussed in References [100-103].
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4. Optical Disk Based Image Correlators

As we discussed in Chapter 2, optical correlation for pattern recognition has
long been considered a promising application for optical processing, particularly
in the area of pattern recognition. One of the reasons such correlators have not
been used in practice is that in many practical applications a single filter is not
sufficient to produce reliable recognition. In Chapter 2 we saw that this was one
of the primary motivations for considering synthetic discriminants and multilayer
networks for pattern recognition. In the language of image correlators, a straight-
forward solution to this problem is the use of spatial and temporal multiplexing
to search through a library of filters in order to perform nonlinearly separable
dichotomies. The optical disk-based correlation architectures we describe in this
chapter provide an extremely efficient method for performing such a search since
they combine in a single device the large memory required for storage of the
library of reference images, the spatial light modulator needed to represent the
reference in the optical correlator, and the scanning mechanism to temporally

search through the library.[104:105]

The 2D correlation function ¢(Z, §) is defined as

(%, ) =F H{F(wg,wy)G* (wr,wy)} (4.1)

= [ [ #@wta sy - g)dady, (4.2)

where f(z,y) and g(z,y) are two real images, F(w;,wy) and G(wz,wy) are their
respective 2-D Fourier transforms and F~!{} is the 2-D inverse Fourier transform

operator. It is well known that ¢(Z, §) is sharply peaked at the point (zg,yo) when
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f(z,y) = g(z—z0,y—1yo). This property makes the correlation function useful for
pattern recognition because, regardless of the position of the input image g(z,y),
¢(Z,7) will have a peak if f(z,y) and g(z,y) are matched. Since in general there
are many versions of an image g(z,y) that we would like to recognize, a reliable
image recognition system should provide invariance to multiple object attributes
such as scale and rotation. Often the best way to achieve this invariance is to use
a large number of reference patterns f(z,y) against which to compare g(z,y) in

order to obtain reliable recognition.

Optical image correlators based on Fourier Transform (FT) holograms were
proposed by Vander Lugt in 1964.059 In order for optical correlation to be a realis-
tic approach to image recognition, we require a memory device sufficient to store
a large reference image library, an SLM that interfaces with this memory in real
time, and a scanning or addressing mechanism that allows interrogation of the
entire reference library in a reasonable amount of time. The optical disk provides
these three characteristics in one device. In this chapter, we describe several op-
tical disk-based image correlation architectures and present experimental results
taken from selected systems. We will examine critical parameters associated with

each architecture and evaluate each system in terms of power and speed.

4.1 ROTATING MIRROR CORRELATOR

We first discuss two systems that perform 2-D correlations based on Equation
4.2. These systems are referred to as image plane correlators. In this architecture
the correlation function is generated by calculating an inner product for every

relative shift between the input and reference images. Since these shifts will be
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generated sequentially, the correlation will appear as a 1-D signal representing a
raster version of the desired 2-D correlation pattern. As we will see, these systems
sacrifice correlation rate for operational simplicity without alignment criticality,
while at the same time relieving source coherence requirements. As with any
incoherent correlétor however, the present system is a unipolar architecture and
some bias removal mechanism is necessary in order to retrieve a bipolar or high
SNR correlation signal. Such bias removal techniques have been discussed at

length in the literature as well as in the previous chapter.

Rotating

ff Mirror

Y

Optical
Disk

Correlation
Output

Figure 4.1 : Rotating mirror image plane correlator.

A simple image plane correlator is shown in Figure 4.1. An image of the input
scene is formed at the optical disk on which a library of reference images resides.
The total transmitted or reflected light is collected by a detector at the output.

The rotation of a polygon mirror causes the input image to scan the disk radially
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while the disk rotation itself provides scanning in the orthogonal direction. The
detected light therefore, represents the instantaneous inner product between the
input and a shifted version of one of the references. All relative shifts between
input and reference images are generated using these two scanning mechanisms
and as a result, the light collected at the output is exactly a 1-D raster signal
of the desired 2-D correlation. In fact, the rotation of the disk does not provide
the translation required to calculate the true correlation signal; however, the
error induced arises from a reference image rotation equal to the reference image
azimuthal extent. After superimposing the original reference image and a rotated
version of this image, we see that the rotation induced error is given by € =
Nytan(Nybg) pixels, where Ny ié the number of reference pixels in the azimuthal
direction and &y is once again the angular separation between reference pixels. If
the reference image comprises Ny = 100 pixels in the azimuthal direction then
it subtends an angle of 0.1° which is equivalent to less than one pixel of error
(e = 0.2 pixels) in a 100x100 pixel image and may therefore be neglected. An
example of the output obtained from the rotating mirror correlator is shown
in Figure 4.2 along with a computer simulation of the desired autocorrelation
function. In this demonstration of the rotating mirror correlator, the optical
system consisted of a single imaging lens with a focal length of 10cm and an
aperture of 5¢m, which provided a magnification of 1/20 from the input plane to
the disk plane. Figure 4.2a is the reference image written on a Sony write once
disk. This image has up to 6912 pixels along track and comprises 1024 tracks.
The actual pixel size in this reference (= 100pm x 40pum) is quite large compared

to both the disk resolution and the diffraction limited resolution of the imaging
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system, so effects due to these limitations were not observed. The input to the
system was provided by a transparency of the acronym CIT illuminated by a
HeNe laser (A = 633nm). Figure 4.2d shows the correlation signal generated by
the optical system for this input. The asymmetry in the optical autocorrelation

is due to a slight mismatch between the input and reference images.

This system can operate with incoherent light, which simplifies the illumina-
tion source requirements and eliminates speckle. However, one critical limitation
is its speed. The speed in this architecture is dictated primarily by the rates of
the relative scanning mechanisms. Specifically, in order to generate an accurate
correlation signal, the radial scan time (i.e., the time for the input image to shift
radially past the reference image) must be less than the time it takes the refer-
ence to rotate by 1 pixel. The correlation rate is thus limited by factors such
as reference image pixel size in the azimuthal direction Ay (m), radial scan rate
o(s™1), disk rotation speed w(s~!), and ultimately by illumination level and disk
efficiency. These factors may be used to calculate the radial scanning limited
correlation rate (p.). As stated above, we require that the time to complete one
radial scan, t; = 1/0, be less that the time required to rotate the disk by one
reference pixel t, where t, is given by the ratio of the time to complete one full ro-
tation to the number of pixels in a circumference. So we have that ¢, = Ag/27rw
where r¢ is the disk radius at which the reference image is written. We also have

that ts and ¢, must satisfy s < ¢,, which implies that

o > 2rwrg /Ay, (4.3)
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(b)

Figure 4.2 : Rotating mirror correlator results.
(a) Reference image stored on Sony WORM disk.

(b) 2D autocorrelation pattern of (a) by computer simulation.
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Figure 4.2(cont) : Rotating mirror correlator results.
(c) Raster signal of 2D pattern shown in (b).

(d) Optical system output.
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or equivalently

w < 0Ag/27r,. (4.4)

These expressions yield the rotating mirror rotation rate o required given the
various disk parameters, or equivalently, the limit on disk rotation rate for a fixed
mirror scan rate. In our system we utilized a rotating polygon mirror system from
Lincoln Laser Company, which incorporates a 10-sided mirror capable of rotating
at 400Hz yielding a radial scan rate of ¢ = 4k Hz. In this experiment, the speed of
the rotating mirror is the limiting factor, and it results in a maximum correlation

rate of 40 correlations/sec for 100x100 pixel images.

Another limitation of the rotating mirror correlator results from the behavior
of the image plane during scanning. Ideally, the optical disk 7s the image plane of
the optical system responsible for imaging the input onto the reference image. In
reality however, the image plane tilts out of the disk plane as the mirror rotates.
In order to determine the effect of this behavior on the correlation signal we
will consider the geometry shown in Figure 4.3. The relationship between mirror

rotation angle 8 and image plane tilt « is found to be linear

a = 90° — 20, (4.5)

so that as we would expect, when 6 = 45° the image plane and the optical disk
plane coincide. For 6 # 45° however, the parameter of import is the worst case
image plane displacement A shown in Figure 4.3. For a given reference image
extent W, A is determined by the image plane tilt obtained for the mazimum

scan angle required as shown in Figure 4.4a. The maximum scan angle will be
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Figure 4.3 : Geometry used to determine the effect of image plane tilt

on correlation signal quality.

minimized when the distance from the mirror to the image plane is maximized
yielding a best case maximum scan angle of 0,,,, = 45° + %tan_l(W/i) where 17
is the image distance of the imaging system and is approximately equal to the
lens focal length f, since the system realizes a large demagnification. From this

we can derive that

A =Wsin(amasz) (4.6)
w2

VW

(4.7)

Going one step further, we can find the image blurring, which arises from this
image plane error as § = AA/f, where § and A are defined in Figure 4.4b and

we have once again made use of the approximation ¢ ~ f. Notice that é is
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(a) (b)

Figure 4.4 : Image plane tilt geometry.
(a) Maximum image plane displacement A.

(b) Worst case image blurr arising from image plane tilt.

inversely proportional to the diffraction limited spot size ép = 1.22Af/A. Using
some typical system parameters such as f = 10cm, W = 1mm and A = 5cm we
arrive at a diffraction limited spot size of §p = 1.5um and an offset A = 10um,
which corresponds to a blurred spot size of approximately 6 = 5um. This is not
an attractive result since the optical disk itself provides a resolution of 1um yet
we cannot take advantage of all this available SBP due to imperfect imaging.
This imitation was not seen in the experimental results presented here since the
effective reference pixel size was much greater than 5um. We should note here
that in a practical implementation of the rotating mirror correlator, a multiple

lens systems can be designed to eliminate image plane tilt.

The last issue that we will address is power efficiency. Although it is not
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likely that power will be a limitation in this type of system due the relatively
long integration times available, we will include a brief power budget here for
completeness and for comparison to later systems. There are several sources of
loss in the present system. The most dominant loss mechanism arises from low
disk diffraction efficiency (np) and is due to the relatively poor disk contrast as
discussed in Chapter 2. If the incident intensity is given by Iy and we are pri-
marily interested in detecting the autocorrelation peak obtained using the optical
correlator considered in this section, then the autocorrelation peak energy is the
most important system characteristic. If we further assume that we are using
random, unipolar, binary input and reference images that are characterized by
an equal number of ones and zeros on average, then we have that the expected

autocorrelation peak energy Ep is given by

EP = IOntD/27 (48)

where 7 is the optical system efficiency and tp is the peak dwell time given by
tp = 1/(Nyo) where N, is the number of reference pixels in the radial direction.
For 100x100 images, we previously derived a correlation rate of 40 images/sec,
which yields a corresponding peak dwell time of ¢p = 2.5us or a detector band-
width requirement of ~ 0.8 M H z. Assuming n = np we obtain an autocorrelation
peak energy of Ep = 12.5pJ. This peak energy is equivalent to a photon count of
ny =4x 107 photons. As predicted, this is an easily detectable signal making the
rotating mirror correlator the most power efficient of the correlation architectures

we will discuss.
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4.2 AcousTto-OrTIiCc CORRELATOR

The speed limitation of the previous system is due primarily to the mass of
the rotating mirror. Since the speed of commercially available polygon mirror-
based scanners is limited to about 40kHz, it is natural to consider the use of an
alternative radial scanning mechanism in order to improve the performance of the
image plane correlator. In this section we will describe an image correlator based
on the same mutual scanning approach taken in the previous section; however,
in the present system we will replace the rotating mirror with an acousto-optic
radial scanning device that can achieve scan rates up to 10MHz. The AO de-
vice provides the high speed scanning we require. Once again we obtain an
advantage in this architecture in that it operates on light intensity and conse-
quently the requirements for phase uniformity are greatly relaxed. As a result it
is possible to implement this architecture as well as the previous one with most
existing disk systems. The Acousto-Optic Correlator (AOC) described here suf-
fers from more acute wavelength sensitivity than its rotating mirror counterpart
owing to the diffractive nature of the imaging system used; however, the use of
a quasi-monochromatic source is possible and still eliminates the need for laser

illumination.

A schematic diagram of the AOC is shown in Figure 4.5. In this architecture,
a chirp signal propagating in the AO device generates a moving cylindrical lens
with power in the horizontal dimension. This moving cylindrical lens becomes
part of the system that images the input onto the disk. Consequently, as the AO
lens moves horizontally, the image formed on the disk is scanned radially. This

behavior will be described in more detail below. A second lens, which provides
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Figure 4.5 : Schematic diagram of disk-based AOC.

imaging in the other direction, is omitted from the drawing for clarity. As before,
the scanner provides the relative displacement in the radial direction between the
input and reference images that is necessary to calculate the correlation function
and the disk rotation provides scanning in the orthogonal direction. The reflected
or transmitted light is once again collected (integrated) on a single detector, which

produces as its output a temporal video signal of the 2-D correlation.

In order to understand the operation of the AO moving lens scanner, consider
the imaging systems shown in Figure 4.6a and Figure 4.6b. Neglecting finite
aperture effects, and under the paraxial approximation, the effect of a shift of
the lens L1 in a plane perpendicular to the optical axis, is a corresponding shift in
the image. The magnitude of the image shift is equal to the magnitude of the lens

shift multiplied by the absolute value of the magnification m = :/o and the image
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Figure 4.6 : Scanning imaging system using a moving lens.
(a) Lens on axis.

(b) Lens off axis yields shifted image.
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shift is in the same direction as the lens shift. This is shown in Figure 4.6b. For
our application, we would prefer that our moving lens have a very small mass so
that its velocity might be maximized. This is accomplished through the use of an
Acousto-Optic device (AOD) or Bragg cell. A Bragg cell is a device consisting of
an optically transparent photoelastic crystal to which a piezoelectric transducer
is attached. An electrical signal applied to the transducer results in a mechanical
deformation proportional to the applied field. The deformation of the transducer
in turn causes a pressure wave to propagate in the photoelastic medium resulting
in a propagating refractive index variation via the photoelastic effect. This index

d.[106-108) 1 this way,

variation can be used to modulate an incident optical fiel
an electrical signal applied to the AOD can influence light. The details of this
AO interaction will not be discussed here; however, in order that the operation

of the AOC might be better understood, we will derive the behavior of the AO

lens.

Consider the system shown in Figure 4.7, which comprises an AOD to which
we have applied an RF chirp signal with chirp rate b. An RF chirp is an electrical
signal whose frequency ramps linearly for time t. (the chirp time) from a starting
frequency fi to an ending frequency fo = fi + bt.. This applied signal induces
a moving chirp grating in the AOD. We have “frozen” this propagating index
variation in time and will consider the effect of this stationary grating on a plane
wave incident from the left. We first consider diffraction from the leading edge of
the chirp signal. This portion of the chirp grating will be determined by the chirp
starting frequency fi and corresponds to an index grating of spatial frequency

u1 = f1/ve where v, is the acoustic velocity of the index grating in the AQOD.
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Figure 4.7 : Derivation of AO lens focal length.

Light incident on the leading edge of the chirp grating will therefore be diffracted
at an angle of §; = sin"!(\uy) as shown in the figure. Similarly, the trailing
edge of the index grating is characterized by a spatial frequency of us = fa/vq,
which results in a diffracted component at an angle of 8, = sin~!(Auz). From
the figure we can see that the chirp grating acts like a lens whose focal length
is determined from the angles 6; and ;. Clearly, if 6; = 6; then we have only
a single frequency component traveling in the AOD and no focusing will occur;
however, if 6; # 6, then the chirp grating will behave like a lens whose focal

length is given by

fe=v2/Ab. (4.9)

This is a well-known result in AO signal processing and is obtained by a simple

consideration of the geometry shown in Figure 4.7. The preceding analysis has not
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included the effect of Bragg mismatch on the AO lens behavior. In general, Bragg
cells are made thick so as to increase diffraction efficiency by virtue of a volume
optical interaction. In our case however, we would like to ensure good lenslike
behavior at the expense of diffraction efficiency. This means that we would like
to calculate the AOD thickness required to ensure that both ends of the AO lens
are simultaneously Bragg matched. In order to perform this calculation we must
make use of the fact that for a volume hologram, the angular bandwidth A#,
over which an incident field of wavelength A will remain Bragg matched, is given

by

Ab < sin~!(2)\/7L), (4.10)

where L 1s the hologram thickness. For small A§ we can derive the maximum

thickness for which the AO lens analysis is valid as

Limaz < 2v/7bt.. (4.11)

For parameters typical of the application being discussed here, we have t, =
Tus, b = AMHz/us, and v, = 1lmm/pus yielding maximum thickness of L =
23um for good Bragg matching of the lens edges. For this reason the remaining
analysis in this section will assume that the moving chirp grating is thin. While
this assumption is not entirely accurate for commercial devices, a more detailed
analysis would be required in order to exactly model the acousto-optic interaction
in a real device. To further complicate this situation commercial devices make
use of acoustic beam steering in optically anisotropic crystals in order to achieve

decreased Bragg sensitivity. The result of such techniques is that relatively thick
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devices can be used to realize a thick moving lens; however, for our purposes the
thin moving lens assumption will suffice. We will see later using our simple model,
how the AOD SBP and the chirp bandwidth combine to determine the resolution
available in the disk plane of the AOC. It should be noted here that the above
analysis of the AO lens assumed that a stationary chirp grating was present in
the AOD. For a moving grating as would appear in the present application, we
merely generate the desired moving lens together with a slight doppler shift of

the diffracted light. This doppler shift will not affect the operation of the AOC

and will not be discussed further.
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Figure 4.8 : AO lens impulse response measurement setup.

In order to demonstrate the AOC, we first constructed the system shown in
Figure 4.8 to evaluate the AO lens. The system shown in the figure is a simple

imaging system incorporating the AO lens. A chirp rate of b = 23M Hz /5us was
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(a)

Figure 4.9 : AO moving lens impulse response.

(a) Delay time = 2.5us [top = chirp gate and LD pulse, bottom = CCD image].
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(b)

Figure 4.9 (cont)

(b) Delay time = 5.0us [top = chirp gate and LD pulse, bottom = CCD image].
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(c)

Figure 4.9 (cont)

(c) Delay time = 8.0us [top = chirp gate and LD pulse, bottom = CCD image].
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used together with a TeO, Bragg cell with v, = 1mm/us yielding an AO lens
focal length of f. = 40cm. The impulse response of the AO lens scanner is shown
in Figure 4.9. The image of an input transparency was formed on a CCD using
one cylindrical lens with power in the horizontal dimension and the AQ lens for
vertical imaging. The input illumination was pulsed so that the AO lens might
be frozen in various vertical positions. The delay between the onset of the RF
chirp and the laser diode pulse determines the position of the image on the CCD.
Figures 4.9 (b-d) show the CCD output for various delay values. As can be seen

from the figures, the AO lens imaging characteristics are quite good.

The AO chirp scanner acts as a traveling lens that scans the diffracted image
at a rate equal to the acoustic velocity. The correlation rate in the AOC is still
constrained by the radial scan speed; however, since this scanning is generated
by virtue of the propagation of an RF chirp in the Bragg cell, the resulting
correlation rate is much higher than before. The RF chirp parameters are chosen
so as to utilize as much AO space-bandwidth product as the input image requires

while minimizing scan time. Specifically,

te =t40(SBP;y/SBPyo), (4.12)

where t. is the required RF chirp duration, t 40 is the AO aperture and SBP;n
and SBP4o are the input image and AO device space-bandwidth products re-
spectively. We have built this correlator using a TeOy AO cell with a 70us
aperture and an RF chirp centered at 40MHz with a chirp rate of ~ 4 MHz/pus.
Using the above equation with SBP;y = 100 and SBP4o = 1000 the required

chirp duration was calculated to be Tus. A SAW device was used to generate the
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desired chirp signal. The resulting radial scan rate of 1/7usec = 140kHz, yields

a correlation rate of 1400 correlations/sec for 100 x 100 pixel images.

Figure 4.10 : Photograph of AOC experimental apparatus.

A photograph of the AOC is shown in Figure 4.10 and an example of exper-
imental results obtained using this system is shown in Figure 4.11. The input to
this system was, once again, a transparency of the acronym CIT, and the refer-
ence was a duplicate CIT written on an Optotech WORM disk using the simple
recording system described in Chapter 2 because the Sony system was not yet
available at the time of these experiments. The reference image shown in Figure
4.11a is relatively large so that a radial scanning distance of 2em was required
in order to generate an accurate correlation signal. Figure 4.11b 1s an oscillo-
scope trace of the detector signal produced by the optical system of Figure 4.10,

and Figure 4.11c shows the same magnified to reveal the individual correlation
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(b)

Figure 4.11 : AOC results.
(a) Reference image written on Optotech WORM disk.

(b) Correlation signal obtained from AOC.
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Figure 4.11 (¢) Enlarged view of (b) showing individual radial scan lines.

lines produced by the acousto-optic scanner. The format of the detector signal
is similar to a video signal of the 2-D correlation and it can be displayed in 2-D
by raster scanning the detector output on a 2-D monitor. As can be seen from
Figures 4.11b and 4.11c, the optical system output agrees well with the predicted
autocorrelation signal of Figure 4.2¢ showing that the optically calculated cor-
relation is in good agreement with the expected autocorrelation function of the
CIT pattern. Correlations can be produced with our experimental apparatus at
rates up to 1400, 100X 100 pixel reference images per second. Once again this is
an incoherent architecture; however, bipolar input and/or reference images can
also be represented by adding a bias at the input stage and subtracting it from
the output as we described in Chapter 2. It should also be noted here that the

image plane tilt inherent in the previous architecture is not present here thereby
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eliminating the resolution limit arising from image blurring. However, this sys-
tem suffers from several resolution limiting tradeoffs, which we will now discuss

together with the efficiency of this image plane correlator.

There are essentially three effects which in our simple model, limit the resolu-
tion of the AO lens-based imaging system used in the AOC. First, large diffraction
efficiency n40 requires a thick AO crystal (i.e., large L) which in turn results in
Bragg mismatch for large chirp bandwidth Af. So we have that high 140 requires
small A f which results in a long focal length and correspondingly poor resolution.
This effect points out a clear trade off between resolution and efficiency, which
requires that we sacrifice correlation peak detectability for disk plane resolution.
The second resolution limitation arises from our desire to maximize the radial
scan rate in order to achieve a high correlation rate. Large scan rate corresponds
to a small AO chirp time ¢, which results in a small lens aperture and once again,
correspondingly poor resolution. Again, we may trade off correlation rate for disk
plane resolution. These two limitations are manifestations of a more fundamental

limit related to the AOD bandwidth. This limitation may be expressed as
8§p = 1.22)f./A,, (4.13)

where 6p is the diffraction limited resolution and A, is the chirp lens aperture
given by A, = t.v,. We can express the above equation in terms of the AO
bandwidth by substituting the expression for f. derived earlier (see Equation

4.9). We obtain

bp = 1.22v, /bt (4.14)

where bt. is upper bounded by the AO bandwidth (BW). We can calculate the
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important AOC system parameters for two commercially available AQ devices.
For the TeO; AOD used in our experiments, we have SBP4o = 1000 and an
aperture t, = 7T0us yielding a minimum chirp time of ¢, = 7us for 100x100 im-
ages. The corresponding radial scan rate is 0.14M Hz leading to a correlation
rate of 1400 images/sec. With vg = 1lmm/us, and BW = 30M Hz we obtain a
diffraction limited resolution of ép = 40um which once again is not an attrac-
tive result from the perspective of disk SBP utilization. If we consider using a
LiNbOj Bragg cell with SBP40 = 100, and an aperture of t, = lus, then we
can achieve a radial scan rate of 1M Hz corresponding to a correlation rate of
10,000 images/sec. This same device has an acoustic velocity of v, = 6.6mm/us
and a bandwidth of BW = 1GH=z yielding a resolution of §p = 8um which
approaches the resolution limit induced by image plane tilt in the rotating mir-
ror correlator of the previous section while improving on the correlation rate of
that system by almost three orders of magnitude. Using the same procedures
and image statistics as were assumed in the previous section, we can calculate
the expected autocorrelation peak energy for this correlator. Assuming an AQ
diffraction efficiency nao = 10%, Iy = 10mW incident illumination, and using
the LiNbOj3 peak dwell time of ¢, = 10ns we obtain a peak energy of E, = 5fJ

or a peak detectability n, = 1 x 10* photons.
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4.3 EFFECT OF DISK IMPERFECTIONS ON IMAGE PLANE CORRELATORS

The optical disk systems that are commercially available have been designed
to specifications consistent with a serial readout application. Error correction
coding (ECC) is extensively used to deal with media defects and feedback is in-
corporated to offset mechanical imperfections such as wobble, center offset, and
coating thickness variations in real time. These same error sources and imperfec-
tions can affect the performance of the image plane correlation architectures we
have just discussed as well as the Fourier plane architectures we will be discussing
next. Although revised design specifications for commercial systems would elimi-
nate the need for much of the following discussion, the SONY system used in this
work does suffer from the above mentioned limitations and therefore, a discussion

of the effect of such imperfections is included.

In Chapter 3 we characterized the optical disk in terms of the uniformity of
its coating. We found that for glass covered Sony disks, thickness variations were
negligible over areas of several mm?. Since areas of this size may contain up to a
million pixels, we concluded that coating thickness variations will not play a role
in determining the behavior of the systems discussed here; therefore, thickness
variations will not be considered in this section as sources of error in correla-
tion architectures. It should be noted that the thickness variations measured
in Chapter 3 could be reduced even further by more careful processing during
manufacturing, thereby improving the phase characteristics of the optical disk
SLM for other applications. In contrast to the lack of care taken to insure good
coating thickness uniformity in commercial optical disk systems, media defects

are minimized in conventional disks. Since the storage industry is concerned with
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long term, high density memory with high integrity, media defects are minimized
in commercial systems and sophisticated ECC is employed to reduce the system
error rate even further. A typical level of raw media imperfections in a com-
mercial system is 10~* BER and can be compensated using a variety of error
correcting codes to achieve a bit error rate of < 10~!2 at the system level.[?]
For the parallel readout applications discussed here, it is difficult to conceive of
all parallel ECC schemes to combat the relatively high raw media defect rate
quoted above. The use of holographic encoding has been suggested and is dis-
cussed elsewhere. For the correlation architectures discussed here, media defects
may be treated as a noise source in the reference plane and as such are already
compensated to some extent by virtue of the recall mechanism itself. It is well
known that the correlation filter, or matched filter, is the optimal decoder for a
channel that is corrupted by stationary noise. Given that we know the charac-
teristics of the disk, specifically the media noise spectrum, then we may form the
optimal reference filters to be recorded on the disk, thereby achieving the highest
expected performance. This is true for the image plane correlators as well as
for the Fourier plane correlators of the next two sections. The inherent readout
mechanism employed when using an optical disk in an image correlation system
therefore is optimal for the tolerance of media defects when such defects may be

characterized as arising from a stationary noise source.

The previous discussion regarding the effects of disk coating imperfections
and media defects has allowed us to reduce the number of nonnegligible disk
imperfections to just two ; disk wobble and disk center offset. These two imper-

fections play distinctly different roles in each style of correlator, therefore we will
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Figure 4.12 : Schematic depicting disk imperfections.
(a) Disk wobble.
(b) Disk center offset.
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Figure 4.13 : Schematic depicting the effects of disk wobble.
(a) Reference image shift.

(b) Reference image blurr.
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discuss them here in the context of image plane correlators and again later when
we present the Fourier type. Disk wobble and disk center offset are mechanical
imperfections in the disk planarity and track centering respectively. Although
the effects are fairly self explanatory, Figure 4.12 makes the terminology explicit.
In Figure 4.12a we show disk wobble as resulting from a warping of the disk
surface. It can also result from mechanical imperfections in the rotation mecha-
nism; however, we will combine these effects and discuss them together. Wobble
can be characterized by the maximum magnitude and maximum frequency of
Q(0) where Q(6) is the disk surface inclination angle expressed as a function of
disk rotation angle or equivalently timing clock count. For the SONY system,
() is characterized by a maximum angle of 1° and a maximum frequency of
50 cycles/rotation. There are two potential sources of image plane correlation
error arising from wobble. These will be referred to as reference image shift and
reference image blurr and are depicted in Figure 4.13. Figure 4.13a shows the
reference image shift induced by disk wobble. This effect will not play an impor-
tant role in correlation error as the correlation function is shift invariant. If the
reference image shift is too large however, the radial scanner may not scan the
entire reference image. This is easily compensated by insuring that the radial

scanner have a radial scan overhead of

Ar = ro(1 = cos(Qmaz(theta))). (4.15)

where Q0,(0) is the maximum of Q(6). That is, instead of scanning a distance
equal to the radial image extent W, the radial scanner will now be required to

scan a distance of W + Ar. Figure 4.13b shows the maximum reference image
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blurr arising from disk wobble. This effect is similar to the reference image blurr
that results from reference image tilt in the rotating mirror correlator and may
be quantified the same way. For a given Q,4.(6), we calculate the maximum

image plane offset A as before

A = rotan(Qmez(9)), (4.16)

and the resulting blurr spot size as

6= AA/f, (4.17)

which defines the maximum available disk resolution as limited by disk wobble.
For the disk system used here we can calculate the maximum radial scan overhead
as Ar = 9.1um or 10% of the 100 pixel total scan distance, and the effective
minimum spot size as 0.6mm as limited by disk wobble. This result states that for
a commercially available disk system, the tolerance on disk wobble is such that an
uncompensated image plane correlator must sacrifice a factor of 10° in available
disk SBP in order to insure that accurate correlation signals are produced! We
will discuss a compensation mechanism that will allow us to retrieve this SBP in
the next section. The other source of correlation error is disk center offset. Disk
center offset is a manifestation of the fact that the rotational center of the optical
disk differs from the common track center. Since it is the tracks on which we have
written reference image data, we would like the rotational center to coincide with
the track center; however, in the disk system we employed, the disk center offset
can be as large as Ar, = 50um. As in the case of disk wobble induced reference

image shift, this means an increase in radial scan overhead of an additional 50um.
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Note that increasing the radial scanning distance does not actually correct the
error induced by reference image shift. The resulting correlation signal will differ
slightly from the true 2-D correlation pattern; however, the peak of the 2-D
correlation signal will be unchanged. Since the pattern recognition applications
discussed here will make use of the correlation peak exclusively, the details of the

correlation signal distortion may be neglected.

We have seen that the primary imperfection induced limitation of the image
plane correlator is reference image blurr. The question arises whether disk wobble
may be compensated, thereby improving reference image resolution. A potential
compensation scheme is shown in Figure 4.14. The proposed system is very simple
and makes use of feedback from a probe beam to monitor the instantaneous disk
tilt. The feedback signal is applied to a piezoelectric mirror which will tilt the
input image so as to compensate disk wobble. As long as there is no appreciable
departure from planarity over the reference image itself, this scheme will insure
that wobble introduces no error. Since the maximum frequency of (8) is limited
to 50 cycles/rotation or &~ 1kHz for a 20H z disk rotation rate, the time response

of the feedback circuit of Figure 4.14 is not an issue.

44 VANDER LucT CGH CORRELATOR

The next style of correlator we will discuss is based on Equation 4.2. These
correlators are referred to as Fourier-based correlators. This type of system
is well suited to an optical implementation owing to the ease with which 2-D
Fourier transforms may be computed using a simple lens. The basic idea of the

Fourier-based correlator is depicted in Figure 4.15 where we have shown both the
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Figure 4.14 : Candidate wobble compensation scheme for image plane correlators.
(a) No wobble yields equal outputs from segmented detector and no piezo mirror tilt.

(b) Wobble is detected and piezo mirror corrects reference image tilt.
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recording and the readout processes for a simple Vander Lugt correlator. Figure
4.15a shows the recording process in which the interference pattern between the
object beam E,(z,y) and a plane wave reference beam E, = Ae**?¢'™%0% is formed
on a holographic plate. As usual, we have assumed harmonic time dependence
of the electric field and will not be including this dependence explicitly. The

transmittance of the holographic plate after developing is given by

t(z,y) = | Eo(z,y) + Er(z,y)||". (4.18)

Since Ejy is obtained in the back focal plane of the Fourier transform lens L1,

the field Ejp is proportional to the Fourier transform of the input object f(z',y').
That is

Ey(z,y) = BF(u,v), (4.19)

where u and v are spatial frequency coordinates given by u = z/Af and v = y/\f,
f is the lens focal length and B is an arbitrary constant. We have that the

developed plate transmittance is given by

t(z,y) = A2 + BY|F(u,v)||? + ABF(u,v)e 2™ 4 ABF*(u,v)eti?mt? (4.20)

Figure 4.15b shows the reconstruction process in which the developed plate is
placed in the back focal plane of lens L1 and illuminated using a new object
g(z',y') as shown. Lens L2 is used to compute the Fourier transform of the
diffracted light, thereby obtaining the desired signal in the (z”,y") output plane.

The new object beam is proportional to the Fourier transform of the new object
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Figure 4.15 : Vander Lugt correlator.
(a) Recording of Fourier plane filter.

(b) Readout or correlation process.
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g(z',y'), so that the field immediately behind the plate is given by

Ey(z,y) = G(u,v)t(z,y), (4.21)

which will consist of three terms. The DC term will propagate along the z-axis
and the two diffracted orders will propagate at angles of £8 = sin™!(Aug) as
shown. We are interested in the diffracted field arising from the last term in
t(z,y). Specifically, in the back focal plane of the inverse transform lens L2 we

have a term like

c(z",y") <« F{F*(u,v)G(u,v)}, (4.22)

which is just the 2-D correlation of the two images f(z',y') and g(2',y') as defined
in Equation 4.2. So we have seen that an appropriately constructed Fourier plane
transparency t(z,y), may serve as a matched filter. We will now see two ways
in which the optical disk may be used to implement this type of correlation

architecture.

The first Fourier transform-based image correlator to be described is the
simple Vander Lugt correlator shown in Figure 4.16. As can be seen from the
figure, a Fourier transform computer generated hologram recorded on the optical
disk is used as a Fourier plane filter for the input image. As we discussed above,
the product of the transforms of the input and reference images is formed at the
disk and an inverse transform yields the desired 2-D correlation in the output
plane. As the disk rotates, a new correlation pattern is generated every time a
different CGH aligns with the input image FT. Therefore, whenever there is a

match between the input FT and the CGH, a peak occurs in the output plane
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Figure 4.16 : Disk-based Vander Lugt correlator.

of the system. The location of this peak, which corresponds to the location of
the object of interest in the input plane, may be anywhere in the correlation
plane; therefore, a 2-D detector array is required to acquire the correlation data.
Furthermore, since the correct correlation only occurs during the brief periods of
alignment between the input FT and the CGH, the detector array need only be
quefied at these times. A pulsed laser or an electronically gated detector array
could be used to achieve the appropriate sampling. The successful operation of
this system depends on the optical quality of disk coating materials since these are
capable of introducing random phase distortions across the system filter plane.
As we discussed in Chapter 3, the optical quality of several commercially available

disks is sufficient to make them suitable for these applications.

As with other FT-based architectures, one advantage of this correlator is
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its potentially high speed. The correlation rate in this system is limited by
disk rotation rate and detectability of the correlation peak. Taking a typical disk
rotation rate of 40Hz, we calculate a correlation rate p. = 400,000 correlations/sec
for 100x 100 pixel images. This correlation rate implies that in order to detect
a correlation peak, each element of the 2-D detector array in the output plane
must have a bandwidth of > 40MHz. We can once again calculate the peak
detectability n,, given by the number of photons detected at the correlation
peak, by first calculating the peak dwell time tp as before, multiplying this by
the expected power in the autocorrelation peak P,, and dividing by the photon

energy. That is

np = AtpP./hc, (4.23)

where once again, A is the wavelength of the optical field and h is Plank’s constant.
Peak dwell time is given simply by tp = 1/Nyp, where Ny is again the number

of pixels in the reference image in the along track direction.

In the case of Fourier-based correlation, the autocorrelation peak power P,
is a bit more difficult to calculate than in the previous image plane systems. In
order to compute P, we will first compute the expected fraction of the diffracted
power which will arrive at the peak of the autocorrelation plane. We will assume
that we have random images and will consider two cases. First we will treat the
case of bipolar images. Let a;; € {£1} represent the value of the (7, 7) pixel in

the random image, and let a;; be characterized by the simple statistics

plaij = 1) =p(aij = -1) =1/2 Vi,j (4.24)

p(aij =k,ama = k,) =p(aij = k)p(amn = k,) Vi#m,j #n, (4'25)
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where p(ai; = k) is the probability that the (z,7) pixel takes on the value k.
The second condition denotes statistical independence among pixels. The above
statistics are equivalent to stating that the value of each pixel is determined by
the outcome of a single toss of a fair coin. Given these image characteristics,
we can write an expression for the value of the electric field at each point in the

correlation plane of our Vander Lugt correlator as

N N

t=m+1 j=n+1

N N
coo =YY (a;)?, (4.27)

=1 j=1
where we have ignored unimportant proportionality constants and have just writ-
ten cmp as the value of the 2-D correlation pattern ¢(z"”,y"), at the (m,n) output
pixel. For bipolar images, coo = N2, therefore the optical power diffracted into
the autocorrelation peak goes like ¢2, = N*. In order to find the expected power
outside the peak, we must first calculate the expected power measured at (m, n)
which is

N N

N N
E{cha} =E{ D> > D> Y GijGi-mj-nijiGi_mi_n}. (4.28)

i=m+1{=m+1 j=n+1 j'=n+1
=(N —m)(N —n)

The total power diffracted outside the peak therefore is given by
N N
Pg 242 EE{c'lznn}’ (429)
m=1n=1
where the factor of 4 is used to take into account all four quadrants of the

correlation plane. Finally, we find that the fraction of diffracted power reaching
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the autocorrelation peak is given by

np =cgo/(Ps + cfo) (4.30)

=N*/(2N* - 2N3 + N?), (4.31)
which for large N reduces to
lim np = 1/2. (4.32)
N—o0

This means that one half of the diffracted power from the Vander Lugt correla-
tor reaches the peak when the input and reference images are matched bipolar
images. We can perform a similar analysis for the case of unipolar input and

references. We now consider image statistics given by

plai; = 0) =p(a;; =1)=1/2 Vi j (4.33)
p(ai]- =k, amn = k') :p(a,'j = k‘)p(amn = k") Vi #m,j #* n, (4.34)
where once again we assume statistical independence among pixels. Without

including the details of this computation, we find that in the limit of large N, we

have
lim np = 1/N? (4.35)
N—oo

for unipolar images. Given the correlation peak efficiency np, the disk diffraction

efficiency, np, and the source power, P, the correlation peak power is
P, =npnpP;. (4.36)

Substituting P;=10mW, N = 100 and np=0.1% we find an expected peak power

P.= 5uW for bipolar images and P, = InW for the unipolar case. With a peak
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dwell t; = 25ns we have a detectability n, = 4 x 10° photons for the bipolar
case and a nearly undetectable n, = 165 photons with unipolar images. This
result reveals the fact that in order to realize the optical disk based Vander
Lugt correlator described here operating at 400,000 correlations/sec, a phase-
only input SLM and disk will be required. It has been shown that a polarization
modulation scheme may be used to realize binary phase modulation through
the use of an output polarizer oriented perpendicular to the mean transmitted
polarization, making this constraint less restrictive. Of course, correlation rate
can be traded off for detectability and may yield an acceptable n, for binary

images, given the actual p. required.

Aside from the poor light efficiency shown for the case of unipolar images
above, the three most significant drawbacks of this system are computational
overhead, detector bandwidth, and alignment criticality. For each reference fil-
ter, a 2-D FT CGH must be computed and written on the disk. Although this
computation will take place only once, for a large reference library the time re-
quired for this procedure can be very long. More importantly, the shift invariant
nature of the correlation function that is so attractive from the perspective of
pattern recognition, makes the correlation plane detector array requirement quite
stringent. The output plane must comprise of a 2-D array of 200x200 detectors
each with a bandwidth of 40MHz. Since serial interrogation of this output plane
would require a 1600 GHz channel, we instead must have correlation plane pro-
cessing that is incorporated into the detector array itself. This represents a major
limitation of the proposed system since dedicated, high bandwidth VLSI process-

ing is required in the output plane. Perhaps the most important limitation of
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this system is the alignment criticality. The alignment of the input FT and the
CGH is critical to within the resolution of the CGH (~ 1um). As discussed in
the previous section, nonuniformities resulting from wobble and disk center off-
set lead to nonuniformities in reference CGH location with respect to the optical
system. These nonuniformities must be compensated for the output correlation
to be accurate. Wobble and disk center offset affect the disk-based Vander Lugt
correlator in the same way as they did the image plane correlators discussed ear-
lier. Wobble results in reference image shift and blurr while disk center offset
will result in additional reference image shift. From t(z,y) we can estimate the
resolution tolerance of the disk-based CGH and can compare this result with
the imperfection induced resolution limitations calculated before. The resolution
required in the plane of the disk-based CGH is given by the larger of §p = 1um
the optical disk pixel size, and §pr the resolution of the transparency t(x,y). We

recall that

t(z,y) = A(z,y) + B(z, y)cos(2mupz), (4.37)

and we know that the bandwidth of A(z,y) is equal to twice the bandwidth of
B(z,y). Now in order to avoid aliasing we require that the bandwidth of A(z,y)
be less than half the carrier frequency ug so that the highest frequency present
in t(z,y) is Umas = 3ug/2. This implies that the resolution required is
bpT =2/3ug
. (4.38)
=2)\/3sin(6)

For 6 = 30°, this yields a CGH resolution of épr = 0.8um which is very close to

the disk resolution and far below the best uncompensated resolution achievable
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in the presence of wobble as derived in the previous section. Fortunately however,
the compensation scheme introduced earlier will be sufficient to compensate the
Vander Lugt correlator since the source of the resolution error is identical to that

of the image plane architectures.

The above system requires storage of the reference images in the form of
computer generated Fourier transform holograms. In addition to the compu-
tational overhead incurred, another disadvantage is an increase by a factor of
100 or more in the space bandwidth product required to record the hologram
as compared with the space bandwidth product of the image itself. Also, this
increase in the area required to record each FT CGH results in an increase in
optical power requirements and more stringent phase uniformity specifications.
For these reasons we would prefer that it be only necessary to record the refer-
ence images as binary patterns on the disk, in which case each pixel of the image
can be directly recorded as a separate spot on the disk. Gray scale images can
also be recorded using some form of area modulation as we discussed in Chapter
3. The next Fourier-based system we will present is of this type. In addition to
eliminating the computational and storage overheads associated with the CGH
of the previous system, the next architecture improves the light efficiency and

reduces output detector array requirements without sacrificing correlation rate.

4.5 PHOTOREFRACTIVE CORRELATOR

Since wobble and offset problems introduce slowly varying nonuniformities
( < 50 wobble cycles/rotation), the problem of alignment sensitivity in Fourier-

based correlators can be effectively dealt with using real time compensation with
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feedback of the sort used in commercial disk drives; however, the computational
overhead associated with generating the desired reference library in the previous
system remains a problem. A schematic of the photorefractive (PR) correlator
is shown in Figure 4.17. Since this architecture allows the reference images to
be recorded on the disk instead of Fourier transform CGHs, the PR correlator
significantly reduces both types of overhead associated with the Vander Lugt
system. These savings can be measured in terms of both disk SBP usage for which
the PR correlator can save a factor of several hundred to several thousand (e.g.,
these numbers are typical SBP overheads for high SNR CGH reconstructions)
which arises from CGH modulation encoding, and precomputation time for which
the PR correlator saves a factor of 2N2logy(N) in computation time for an NxN
pixel image. In addition to these savings in overhead, we will see that the PR
correlator is superior to the previous architecture in terms of light efficiency and

output detector simplicity as well.

In the system shown in Figure 4.17, a photorefractive crystal is used to record
a hologram of the input Fourier transform. In place of the PR crystal, any other
realtime holographic storage medium may be used; however, the PR approach
was chosen here to take advantage of the high diffraction efficiency obtainable
from volume holograms while retaining the realtime nature of the recording pro-
cess. During the recording phase, the disk illumination is blocked and the input
transparency is illuminated from the right. For realtime applications, this in-
put transparency may be an SLM interfaced to a video camera for example. A
hologram is formed in the crystal between the input Fourier transform and the

reference beam as shown. This is the same process as we depicted in Figure 4.15a
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Figure 4.17 : Disk-based photorefractive correlator.

where we have simply replaced the holographic plate of that system with a PR
crystal. The hologram thus recorded in the PR crystal will be read out using
the reference library from the disk. On readout, the input is blocked and the
disk 1s illuminated. The product of the input and reference Fourier transforms is
formed in the crystal and the diffracted light is inverse transformed to obtain the
desired correlation pattern in the output plane. Due to the volume nature of the
signal stored in the PR crystal, the above explanation is somewhat incomplete.
In order to better describe the operation of the PR correlator, we will briefly
review the photorefractive effect and the formation of volume holograms in PR

media.[HO-—llZ]

The PR effect can be understood in terms of the three steps depicted in

Figure 4.18. First, an incident intensity distribution excites carriers to the con-
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Figure 4.18 : Diagram depicting three stages of photorefractive recording process.
(a) Photogeneration of carriers (electrons).
(b) Redistribution of carriers and resulting charge distribution.

(c) Space charge field and induced index grating.
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duction band of the PR media where they become free to move throughout the
crystal. The energy of the incident photons must be sufficient to photoexcite
these carriers from the crystal trapping sites. Spatially, the local density of these
free carriers is determined by the incident intensity. This means that in bright
regions there will be a high density of photogenerated carriers whereas in dark
regions there will be few or none as shown in Figure 4.18a. In the figure, the car-
riers are assumed to be negatively charged. By virtue of the free carrier density
gradient or under the influence of an applied DC electric field, the free carriers
will diffuse/drift from bright to dark regions of the crystal and get trapped there,
leaving behind positively charged vacancies. In this way, the incident intensity
distribution is transformed into a volume charge distribution as shown in Figure
4.18b. As a result of this photoinduced charge distribution, a pattern of elec-
tric fields exists within the crystal. This space charge field induces a refractive
index modulation through the linear electro-optic effect. In this way the inci-
dent intensity distribution is transformed into a volume index transparency or
volume phase hologram. When the incident intensity is removed, the induced
index modulation remains. This semi-permanent index pattern will persist in
the dark until erased by the action of thermally induced carriers. The hologram
may also be erased by further illumination. For example, if a crystal in which we
have recorded such a hologram is uniformly illuminated, then the resulting pho-
togenerated charge distribution will be uniform, thereby erasing the previously

induced nonuniform distribution of charge.

The above explanation has shown how in PR media, an incident intensity

distribution may give rise to a semi-permanent volume phase transparency which
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mimics the original intensity pattern. In other words, PR crystals may be viewed
as realtime volume holographic storage media with realtime recording/erasing
capabilities and resolutions on the order of the average crystal trap separation
(= 1004A). In reality the recording and readout processes are more complicated
than we have described above; however, this simplified view will be sufficient
for our purposes. Returning to the PR correlator of Figure 4.17, each point
in the input plane may be thought to give rise to a plane wave in the crystal
which interferes with the reference beam and results in the recording of a single
sinusoidal grating. What about interference between plane waves arising from
pairs of points in the input plane? In the absence of an applied external field,
gratings of such low spatial frequency are suppressed due to the long diffusion
lengths involved. For this reason, we will assume that these intermodulation
terms are not present in the recorded hologram. That is, after recording using
the arrangement shown, the crystal transmittance can be approximated by that
of a thin phase transparency with the low frequency terms suppressed. In order
to take into account the crystal thickness L, we require that on readout the Bragg
condition must be met. This condition will play an important role in the behavior

of the PR correlator as we will discuss below.

If the photorefractive crystal is replaced by a thin medium such as a holo-
graphic plate, then the output pattern is exactly the desired 2-D correlation.
When a thick hologram is used in the filter plane of such a system however, the
resulting output is a 1-D slice of the 2-D correlation pattern.[113=115] Thig can
be simply understood by considering the recording arrangement shown in Figure

4.19. On recording, each plane wave corresponding to each of the points in the
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Figure 4.19 : Diagram depicting loss of horizontal shift invariance.
(a) Recording geometry.
(b) Shifted reference reading out grating recorded in (a).

(c) Centered reference reading out grating recorded in (a).
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input image forms a grating with the reference beam. This process is depicted in
Figure 4.19a. The resulting hologram exhibits Bragg selectivity in the horizontal
direction. On readout, a point along a given radial line on the disk can only
read out those gratings formed by points along one vertical line in the input as
indicated in Figures 4.19b and 4.19c. Each such line on the disk reads out a
corresponding array of holograms and generates a vertical array of spots in the
correlation plane at the horizontal location corresponding to the reference beam
FT. The coherent sum of all such reconstructions comprises the output of the
correlator. This output pattern is the desired 2-D correlation multiplied, in the
horizontal direction, by a sinc function whose width is inversely proportional to
the hologram thickness. In the system of Figure 4.19, this property does not
represent a limitation since all 1-D slices are obtained sequentially via disk ro-
tation as shown in Figure 4.19¢. Furthermore, instead of requiring a full 2-D
detector array at the output, a 1-D array is sufficient to sequentially detect each
slice of correlation output. This is an advantage over the Vander Lugt system
in that only N detectors are required to operate at 40MHz as opposed to N2,
thereby reducing the serial readout channel bandwidth to a more reasonable 4
GHz. Since the crystal thickness results in Bragg selectivity in the vertical di-
rection also, making L too large will limit shift invariance vertically as well. We
can derive a condition such that both of these constraints may be satisfied.[116]
Specifically, we would like to derive the PR crystal thickness required to achieve
one line of correlation in the horizontal dimension while retaining N pixels of

shift invariance in the vertical.

The condition for no shift invariance in the horizontal or x-direction is easily
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Figure 4.20 : Recording arrangement for two input points separated in x.

understood by considering Figure 4.20 where we have shown two input points
located at y=0 and separated by Az. This figure represents two adjacent points
in the input plane of the PR correlator. In the Fourier plane, each input point
gives rise to a plane wave which may be characterized by the x-component of its

propagation vector. Specifically,

kl =rAz/AF (4.39)

k2 = — nAz/)F, (4.40)

where F is the lens focal length and the superscripts indicate the input point
with which the plane wave is associated. We have that in order for the plane
wave arising from point 1 to readout the grating formed by the interference
between point 2 and the reference, from the Bragg condition we require that

Ak, < 2/L where L is the grating extent in the z-direction and Ak, = (kl —
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k2). Conversely, in order to guarantee that points in adjacent columns do not
readout each other’s gratings, we require that Ak, > 2/L. Substituting k.
and k2 from above we have that in order for exactly one line of correlation to
appear in the output plane of the PR correlator, the crystal thickness must
satisfy L > AF/wAz. This equation states that smaller input plane resolution
requires larger crystal thickness to eliminate crosstalk. For reasonable system
parameters such as F' = 10cm, A = 633nm, Az = 10um, we have L > 2mm.
This is a reasonable requirement since in general, large L is desirable owing to the
corresponding increase in diffraction efficiency resulting from the long interaction
length. There is a maximum desirable crystal thickness however since for very
long interaction length, shift invariance may be lost in the y-direction as well. In
order to better understand the following discussion, consider Figure 4.21. The
recording geometry is depicted in Figure 4.21a and resembles the geometry used
above while the input plane now consists of three points along the y-axis at y = 0
and y = £ NAy/2. As before, each point gives rise to a plane wave that interferes

with the reference beam. The four interfering fields of interest are given as

EREF o ei(kzsinﬂ—}-kzcosﬂ) ~ eik.’l:sinoeikz (441)
Ey « e'*? (4.42)
Ey o ¢ikyNBY/2F giks (4.43)
E, o e~FUNOY[2F ks (4.44)

where Ay is the input plane resolution in the y-direction and N is the number

of pixels in a single column of the input. The three gratings arising from these
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Figure 4.21 : Loss of vertical shift invariance.
(a) Recording arrangement for three input points separated in y.
(b) Gratings resulting from recording shown in (a).

(c) Line in input plane along which point 1 is Bragg matched.
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four fields are shown in Figure 4.21b. As an example, we consider the second
of Figure 4.21b and write an expression for one of the grating lines or planes of

constant phase. The grating itself is defined by
g(z,y) x cos(kNyAy/2F + kxsinf + ¢). (4.45)

Since the grating lines are simply lines of constant phase we can write an expres-

sion for one of these as

—NzATyy + zsinf = 0. (4.46)

From this equation we can determine the angle a shown in the figure as
o = tan"1(2Fsin8 /N Ay). (4.47)

If we now go back to the input plane, it is clear that moving away from point
1 along the line shown will not result in Bragg mismatch since we are moving
along a line parallel to the grating lines. Specifically, if we consider a point at
the bottom of the image plane lying along this line, it will be able to read out
the grating from point 1. We would like that point 2 be able to read this grating.
This requires that d < Azpax, where d is the distance shown and Az ax is
the maximum shift in the x-direction that can be tolerated as determined by the

crystal thickness L. Azprax can be determined from our previous result as
Azpyax = AF/mL. (4.48)
Putting these conditions together with our expression for o we have

d <Azpax (4.49)
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d=NAy/Tana, (4.50)

so that

(NAy)?/2Fsinf < A\F/xL, (4.51)

which determines an upper bound on the crystal thickness as
L < 2X\F?sinf/n(NAy)?. (4.52)

For the typical parameters we used before with Az = Ay, N =100, and 6 ~ 60°
we obtain L < 3.5mm. Once again we see that this thickness is in a reasonable
range of available crystal thicknesses and is also compatible with the previous
result. Summarizing these two results we have that in order for our PR correlator
to generate a single line of correlation in the output plane while not sacrificing

shift invariance in the orthogonal dimension, we require that
AF/mAz < L < 2AF%sinf/nY?, (4.53)

where Y is the vertical extent of the input image. It is interesting to see when

such a crystal thickness exists. We find that

1/sinf <2FAz/Y? (4.54)

1/sinf <2F/SBP;y Az, (4.55)

where in the second equation above, we have set Az = Ay and labeled N? =
SBP;y as the space bandwidth product of the input plane equal to the total

number of input pixels.
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The PR correlator shown in Figure 4.17 has been experimentally demon-
strated in two forms. First, we verified the operational principle of the PR cor-
relator using a holographic plate in place of the PR crystal. This approach was
necessitated by our desire to use the SONY WORM disk as an input SLM as well
as the reference image library in the system. The low SONY disk diffraction effi-
ciency made the required hologram writing time unrealistic for the PR media due
to its relatively low sensitivity; therefore, we chose to use a Kodak type 131 high
speed holographic plate as the holographic storage device. In order to compare
this approach to that using the PR crystal, we may consider source illumination
derived from a 5mW He-Ne laser. Given the plate sensitivity of 0.5uJ/cm? and
assuming a factor of 10 loss due to collimating optics, we obtain a required expo-
sure time of tp = 4s, where we have also included losses arising from disk fill fac-
tor and diffraction efficiency. For the case of Strontium(0.6)Barium(0.4)Niobate
(SBN), which in our case has a sensitivity of &~ 200mJ/cm?, the required expo-

sure time would increase to an unreasonable 1.6 x 10%s.[117:118]

The input to the correlator is shown in Figure 4.22a and was recorded in
sector 1 of disk 1 where it measured 2mm x4mm. The photo in Figure 4.22a was
taken from the disk using the diffractive retrieval scheme discussed in Chapter
2. The Kodak plate was exposed for =~ 4s with a 0.125uW Fourier transform
of the input image and was developed and bleached. Following bleaching, the
plate was returned to the system and the resulting autocorrelation peak is shown
in Figure 4.22b. This peak was obtained by illuminating sector 1 of disk 1 and
allowing the Fourier transform thus obtained to read out the stored hologram.

The somewhat broader spot in Figure 4.22b arises as a result of reflection of
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(b)

Figure 4.22 : Results of PR correlator using holographic plate.
(a) Reference image recorded on Sony disk.

(b) Correlation peak obtained using original image as reference.
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(c)

Figure 4.22(cont)
(c) Correlation peak obtained using shifted version of original

image as reference.

the incident disk illumination from the air/disk interface and serves as a spatial
reference position in the correlation plane. Figure 4.22c shows the autocorrelation
peak obtained when the reference is shifted in the plane of the disk which results
in a corresponding shift in the correlation peak. This system is obviously shift
invariant in both x and y. The results of Figure 4.22 were obtained for an input
image which is identical to the reference image. The image of Figure 4.22a was
also recorded in sector 3 of disk 1 as well as in sector 1 of disk 2. Figures 4.23a and
4.23b show results obtained using these other reference images. The alignment
spot is gone in Figure 4.23b owing to the difference between disk 1 and disk 2

surface tilts.
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(b)

Figure 4.23 : Results of PR correlator using holographic plate.
(a) Reference image in different sector.

(b) Reference image on different disk.
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Figure 4.24 : Optical system used to realize PR correlator with SBN.

We were quite satisfied with the above results; however, the use of a holo-
graphic plate eliminates the possibility of a realtime implementation. In order
to realize the PR correlator with PR media, we chose to use a 5W Art laser as
a source, reduce the effective illumination area in the crystal by a factor of 100,
and use the optical setup shown in Figure 4.24 to gain a factor of 2 through the
use of the air/disk interface as a beamsplitter. We should note here that these
power issues will not be a serious concern in practice since an input SLM with
an efficiency greater than np = 0.1% will most likely be utilized. The power
limitations we encountered here arose as a direct result of our desire to use the
optical disk as an input SLM. Returning to the system shown in Figure 4.24,
the modifications outlined above resulted in a saturation exposure time of ~ 16s.
We assume negligible birefringence in the disk coating layer and orient both the

reading and writing polarizations parallel with the crystal c-axis to take advan-
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Figure 4.25 : Results of SBN PR correlator using CIT as input and reference images.
(a-b) Configuration 1 in which horizontal shift invariance is retained (c-axis vertical).
(a) 2D correlation output.

(b) Signal representing slice through (a).
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Figure 4.25(cont)
(c-d) Configuration 2 in which vertical shift invariance is retained (c-axis horizontal).
(c) 2D correlation output.

(d) Signal representing slice through (c).
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tage of the large r33 coefficient in SBN (r33 = 1340 x 10~!2m/V). The correlation
results using this setup are shown in Figure 4.25. Once again the acronym CIT
was recorded on two different sectors of the same disk for use as input and ref-
erence images. There are two distinct configurations for the PR correlator; the
configuration in which the c-axis and the Bragg selectivity are in the horizontal
direction and the complementary configuration in which the system is shift in-
variant in the horizontal direction. In actual practice we would implement the
correlator in the former configuration allowing disk rotation to recover horizontal
shift invariance; however, for the purposes of demonstration, both configurations
were tested. Results from these two configurations are shown in Figures 4.25a to
4.25d. From previous results we know that the autocorrelation of the acronym
CIT has a five lobed structure in the x-direction and essentially no structure in
the y-direction. In Figures 4.25a and 4.25b where we have shift invariance in x,
we do indeed see this structure whereas in Figures 4.25¢ and 4.25d where we have
Bragg selectivity in x, we see none. These results were obtained using identical
recording and readout images (i.e., from the same sector). Referring to Figures
4.25a and 4.25b, we notice that the outermost two sidelobes are missing from
the autocorrelation pattern. This is in agreement with our previous result which
predicted a loss in shift invariance in the direction perpendicular to the Bragg di-
rection owing to excessive crystal thickness. Using values from our experimental
system we have F' = 12cm, A = 488nm, L = 5mm, and 6 = 60° which yields an
allowable image extent of ¥ < \/m = 1.5mm. Our actual image size
was about 4mm so that we would expect to lose the sidelobes of the correlation

pattern. Shown in Figures 4.26a and 4.26b are the correlation peaks obtained for
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readout using the same sector image (4.26a) and different sector image (4.26b).
Although phase nonuniformities due to disk coating materials, as well as holo-
gram erasure due to readout, play minor roles in the signal reduction observed,
the primary factor is disk alignment. As the disk is rotated to illuminate sector
2, disk wobble/tilt results in a slight shift of the Fourier transform and a corre-
sponding reduction in correlation peak intensity. Shown in Figure 4.26c is the
output obtained for the original input image after the disk has completed one full
rotation. Again, the decrease in signal is primarily due to the sensitivity of the
system to mechanical imperfections although it is likely that hologram erasure
plays a role in the signal degradation of Figure 4.26c as well. A more detailed
discussion of the sensitivity of the PR correlator to disk imperfections is included

at the end of this section following the upcoming discussion of light efficiency in

the PR system.

The expected correlation rate for this system is again limited primarily by disk
speed and peak detectability. In contrast to the Vander Lugt system however,
the PR correlator utilizes a high efficiency (n > 50%) volume hologram and
computes adjacent lines in the correlation pattern sequentially, thereby improving
light efficiency drastically. In order to calculate the efficiency, we return to the
image statistics given in the previous section. Once again we can express the

autocorrelation peak power as

Py =c} (4.56)

N N
co = Z > a. (4.57)
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Figure 4.26 : Degradation of correlation peak from mechanical sensitivity.
(a) Original correlation peak signal strength.

(b) Peak signal obtained for readout using reference recorded in different sector.
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Figure 4.26(cont)

(c¢) Peak signal obtained for readout using original input after 1 disk rotation.

In the present case however, the total diffracted power that appears away from
the peak is modified as compared with the Vander Lugt system. Since only one
line of correlation may be detected at any given time, we can write an expression

for the field away from the peak as

N

N
Z Z Qijai ik, (4.58)

j=k+

where a single index, k, indicates the position along the single line of correlation
output. Once again we find the expected value of the power measured at any

pixel off peak as

= E{c%}, (4.59)
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and the total diffracted power off peak has an expected value of
N
Ps=2) E{d}. (4.60)
k=1

Using bipolar image statistics we find that E{c2} = N(N — k) yielding Py =
N3 — N? and Py = N* so that the fraction of diffracted power reaching the peak

is given by

n =ct/(c§ + Ps) (4.61)

=N*/(N* 4+ N® — N?). (4.62)

Once again we can obtain a useful estimate for the efficiency of the PR correlator

by letting N — oo.

A}Enoon =1. (4.63)

This result reveals that for large enough random bipolar input images, we can
expect essentially all of the diffracted light to reach the correlation peak when
there is a match between input and reference. In order to verify this result,
computer simulations of the PR correlator were performed. The simulation pro-
cedure consisted of first choosing a random bipolar image of a particular size.
The 2D autocorrelation of this image was computed and the resulting pattern
was squared to represent correlation plane intensity. The ratio of the peak of this
intensity pattern to the sum of all pixel values in the central column is the desired
efficiency 7. Using image sizes ranging from 2x2 to 50x50 and 100 statistics for

each image size, the plot in Figure 4.27a was generated. As we see from the
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figure for N=50, 98% of the light energy diffracted by the PR hologram reaches

the peak. A similar analysis can be performed for unipolar images and we obtain

Jim n=6/N. (4.64)

Notice that the efficiency of the unipolar PR correlator is higher by a factor of
N than the unipolar Vander Lugt system. Again, this result has been verified by
computer simulation and the result is shown in Figures 4.27b and 4.27c. Fitting
a line to the asymptotic behavior of Figure 4.27c¢ yields a slope of -0.91 and an
intercept of 1.37 resulting in a best fit expression of y = 4/N in good agreement

with the analytic expression obtained above.

Given the efficiencies derived above, we can estimate the peak detectability in
the PR correlator. With reference images of 100x 100 pixels, 10mW readout illu-
mination, and a disk efficiency of np = 0.1%, we obtain a peak dwell of tp = 25ns
for a 400,000 images/sec correlation rate. This corresponds to an autocorrela-
tion peak power of 5uW for the bipolar system and 0.3uW for the unipolar case.
In the previous calculation we have assumed a reasonable 50% photorefractive
diffraction efficiency. Once again we may compute the number of photons in the
autocorrelation peak for these two cases. We will use an illuminating wavelength
X = 633nm in order to make a fair comparison with the Vander Lugt system.
The result is that for the PR correlator operating on bipolar images, we have
a peak detectability of n, = 4 x 10° photons. In the unipolar case for which
the Vander Lugt system performed so poorly, we obtain a peak detectability of

ny = 2.4 X 10% photons which once again, is an easily measurable quantity.
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Figure 4.27 : Autocorrelation peak efficiency vs. image size.
(a) Random bipolar images.

(b) Random unipolar images.
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(¢) Log-log plot of (b) showing asymptotic linear behavior.



147

Despite the advantages gained in terms of computational overhead, detector
simplicity, and light efliciency, alignment compensation remains a critical issue
with this system. We will now go on to discuss alignment criticality and potential

compensation schemes.

Once again we can ignore the effects of coating thickness variations and me-
dia defects for the reasons discussed earlier. In contrast to the Vander Lugt
correlator, we can also ignore disk center offset and reference image shift due
to disk wobble. This is true because we are not storing Fourier transforms on
the disk. The critical alignment constraint imposed on the lateral positioning of
the Fourier transform is removed when we store the reference images themselves
owing to the shift invariance of the system. We do need to insure that the disk
illumination is broad enough to tolerate these shifts however, which will result
in a small loss in light efficiency. The most significant alignment error will come
about by virtue of wobble induced disk plane tilt. Disk tilt will result in a shift
of the reference Fourier transform. As an aside we should note here that this
Fourier plane shift will not take place if a transmissive disk is used. In the case
of a reflective disk-based system however, this shift will cause a misalignment
between the readout illumination and the stored hologram. The misalignment is

easily quantified as
Az’ = Fsiné, (4.65)
where 6 measures the disk tilt angle (< 1° for SONY media) and z' measures

the shift of the Fourier transform in the crystal plane. We may also calculate

the Fourier plane alignment sensitivity as the effective resolution spot size in the
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crystal. This is given by

Az ax = 1.220F/A. (4.66)

We may determine a limit on allowable disk tilt by setting Az’ < Az’ and
we have that sinf < 1.22)/A. So we see that once again, wobble tolerance can
be traded off for disk SBP usage. Since wobble tolerance requires a small Fourier
transform system aperture A, this in turn implies a low system cutoff frequency
which results in a minimum disk plane resolution of Az > 1.22)\F/A. For typical
system parameters, we have § = 1°, yielding A < 44um which is smaller than a
100x100 pixel image on the disk. Another consequence of enlarging the spot size
in the Fourier plane to tolerate disk tilt is the concomitant reduction in writing

energy density and the resulting longer exposure times.

We show a candidate wobble compensation scheme in Figure 4.28. If we insist
that F//A =~ 1 to insure good disk SBP usage, then we have that Az < 1um. The
system of Figure 4.28 can achieve realtime alignment compensation in the Fourier
plane by adjusting the disk illumination angle according to the instantaneous disk
tilt as measured by the probe beam shown. The probe beam may be incident
from the same side as the readout illumination as well; however, it is shown
probing the opposite side of the disk for clarity. If the piezo mirror rotates by
an amount equal to the disk tilt then the reflected light will always be aligned
with the z-axis as shown. Piezo mirrors with the capability to provide up to 1°
of angular displacement and with response times fast enough to respond to the
probe signal (<200Hz) are readily available. The requirement for 1um positioning

accuracy in the Fourier plane and 1000 resolvable spots on the disk, translates to
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Figure 4.28 : Wobble compensation scheme for PR correlator.

(a) No wobble.
(b) Wobble without compensation.

(c) Wobble with compensation.
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a pilezo mirror angular accuracy of Opmin = 0.7mrad. The probe beam therefore,
is required to detect a disk tilt of 0.7mrad out of 1° which requires a detector
sensitivity of at least 1 in 26. This capability is not beyond the reach of present

technology but does represent an engineering challenge.

More than 5 billion bits can be stored in the type of disk that we use for most
of our work. The number of 100 x 100 pixel images that can be stored in such
a disk is more than 5,000, assuming a generous factor of 100 for loss of space
bandwidth product due to representation (e.g., area modulation for gray scale
representation). The rate at which all these images can be interrogated for a
possible match with the input is limited by one or more of the following factors:
the scanning speed of the disk (40Hz in our case), the speed of the radial scanning
mechanism, and the sensitivity and the bandwidth of the output detectors and the
electronics following them. We have seen that this rate can realistically approach
400,000 2D image correlations per second. It would be extremely difficult to
duplicate this capability electronically and it can be achieved with ezisting optical
technology. Moreover it is precisely such capability that is required for practical

pattern recognition problems.

In this chapter we have seen how optical disk-based image correlators can
yield very high correlation rates with good light efficiency. We have explored
potential alignment compensation schemes which may be used in realtime imple-
mentations of these correlators to provide immunity from such disk imperfections
as wobble and disk center offset as well as providing environmental immunity. We
have successfully demonstrated several of these systems, verifying the accuracy of

the image correlations obtained. In the next chapter, we will investigate the use
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of optical disk-based correlators in pattern recognition architectures. The sys-
tems presented in this chapter will serve as building blocks in more sophisticated

optical neural networks.
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5. Optical Disk Based Pattern Recognition

In Chapter 2 we claimed that the correlation function is attractive for pat-
tern recognition owing to its behavior in the presence of noise. Also in Chapter
2 we argued that in order to achieve some measure of success on any interesting
pattern recognition problem, we would need more than noise tolerance in our
recognition scheme, we would need distortion invariance. Distortion here can
refer to common invariances such as shift, rotation or scale or it may refer to
invariances that do not have a concise mathematical description such as author
invariance in handwritten text recognition. The requirement for such invariances
led to the notion of the correlation filter library which provides the desired distor-
tion invariance by storing many correlation filters in an attempt to span the space
of allowed distortions. Using this approach, a distorted input may be recognized
by comparing it with many distorted versions of known objects, again taking
the maximum correlation or correlations as an indication of class assignment. In
Chapter 4 we demonstrated several optical disk-based correlation architectures
which implement both reference library storage and the correlation-based search
mechanism. In this chapter we turn to the description of optical systems for

pattern recognition that benefit from the approach described above.

There are two sets of issues associated with the use of optical disk technol-
ogy in the solution of a pattern recognition problem : architectural issues and
algorithmic issues. In the realm of algorithmic issues, we are primarily concerned
with filter generation; that is, determining what data to record on the optical
disk in order that the correlation library approach may yield good recognition

results. This problem is closely associated with the problem of learning in neu-
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ral networks. In order to generate good correlation filters in the sense defined
above, we are first given a set of labeled samples representing distorted versions
of the objects to be recognized (i.e., the training set) and we would like to design
a correlation library that classifies future samples correctly (i.e., we would like
the system to generalize). In order to test the success of our filter generation
scheme or learning algorithm, we allow the trained pattern recognition system
to classify some known patterns that were not in the training set, and use the
recognition results on this testing set as an indication of future system perfor-
mance. A question that naturally arises is “ how large a training set is required in
order to achieve good generalization?”. Unfortunately, this question has not yet
been answered; however, a recent paper has described the conditions under which

[52,60] That is, we can specify the size of the testing

consistency can be expected.
set that will insure with high probability that the behavior we observe during
testing will continue for future samples. Although we cannot say exactly how
many training samples are necessary to achieve good generalization, our desire
during the training phase is to minimize this number through the incorporation
of a priori knowledge about the problem we are trying to learn. It is our hope
that ¢ prior: problem information can be used to constrain the system so that
with relatively few training samples good generalization is achieved. Since the
problem of filter generation in the correlation library approach is quite similar to
the problem of learning and generalization in neural networks, we have developed
a new learning algorithm for multilayer neural networks which yields good gen-

eralization for certain classes of problems. We will describe results pertaining to

this algorithm in the following section. The filter generation problem is also quite
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similar to various classical pattern recognition and interpolation algorithms such
as k-nearest neighbors and radial basis functions. In the next three sections we
will discuss these algorithms and their application to optical disk-based pattern

recognition architectures.

After describing those algorithms to be used in the disk-based pattern recog-
nition systems, we will turn our attention to architectural issues. There are three
basic architectures we will describe : single layer shift invariant, single layer
shift varient, and multilayer shift variant. In the last half of this chapter we
will present experimental results from optical implementations of these architec-
tures. These systems will be demonstrated in conjunction with the algorithms

mentioned above as applied to the handwritten character recognition problem.

5.1 FILTER GENERATION : THE CLUSTER ALGORITHM

As we saw in Chapter 2, since a single correlator can be viewed as a shift
invariant neuron, a correlation library may be viewed as the shift invariant first
layer of a multilayer neural network. It is this analogy that allows us to dis-
cuss filter generation in correlation based pattern recognition schemes within the
framework of learning and generalization in neural networks. The problem of
learning in multilayer networks has received a great deal of attention recently
owing to the relative success enjoyed by the Backward Error Propagation al-
gorithm (BEP).M In BEP the network mapping is treated as a function with
free parameters (i.e., the interconnection strengths or synaptic weights) and the
learning process is interpreted as an error minimization task over these weights.

In this scheme, the error is defined as the squared distance between the network
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output in response to some input pattern and the desired output as defined by
the correct classification of that pattern. Since the network output is a function
of the weights, a gradient descent procedure can be used to search through the
space of weights for a minimum of the error during training. Although BEP has
been quite successful in providing a technique by which an arbitrary training set
may be loaded onto a network, generalization from the resulting networks has
been poor for most interesting problems. One reason for this poor generaliza-
tion is the lack of incorporation of ¢ prior: problem information into either the

network itself or the training algorithm.

When training neural networks, generally there are many interconnection
solution vectors consistent with a given set of training samples. Under the as-
sumption that the network architecture can indeed represent the problem from
which the training set was drawn, we know that at least one of the possible so-
lution vectors represents the actual problem solution. Since it is typically the
performance of the network in the presence of new data in which we are pri-
marily interested, it becomes important to examine techniques for constraining
the weights to insure the emerging network will perform favorably on samples
drawn from the same mapping as was the training set. Obviously, if we can use
a priori information about the problem to sufficiently constrain the network so
that only one solution is consistent with the training data, then the network will
generalize the training set to the problem represented by that one solution. Such
constraints represent prior knowledge of the problem space, and as a result we

should expect specific constraints to be well suited to specific classes of problems.

In Figure 5.1 we depict the problem space, the space of all functions. A subset
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of the problem space is defined by the set of functions that may be realized using
a specific architecture. In this section we will be primarily concerned with those
functions that can be realized on a 2-layer network architecture (see Figure 5.2).
Within the set of such functions, there is a further subset whose characteristics are
matched to the aforementioned network constraints. Since the constraints have
been chosen to limit the number of solution weight vectors to one, the function
characterized by that one solution must lie in this last subset of all functions. A
detailed understanding of this subset for a specific constraint then is essentially
equivalent to an understanding of that set of problems for which our network /

training algorithm pair will be likely to generalize.

In this section we will examine the generalization that emerges by imposing
the constraint that the number of distinct internal representations allowed during
training is minimized. The section is organized into four subsections. The first
subsection provides the motivation for the above constraint from a topological
point of view and also introduces the energy function used to effect the desired
learning algorithm. The second subsection describes the performance of the al-
gorithm on several problems. In the third subsection, we describe the specific
characteristics of several problems with respect to their input space topology and
the relationship between these topologies and successful generalization under our
constraint. Finally, in the last subsection we discuss training multilayer networks

in the context of image recognition.
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5.1.1 Generating Intermediate Representations

Any network consists of three sets of elements or neurons; input, output, and
hidden neurons. With respect to a specific input vector , we may regard the
resulting pattern of activation over a given set of hidden units as the internal
representation of the input vector over that set of neurons. In a layered feed-
forward network, we generally regard the vector describing the activation in a
particular layer of units as the representation of the input vector in that layer.
The first layer representation of an input vector is defined by a linear transfor-
mation followed by a thresholding function as we have described in Chapter 2.
The thresholding may be hard or soft. For simplicity we will assume here that it
is a hard threshold function. In a 2-layer machine it is the separability of these
first representations that determines the success of the overall dichotomy. The
choice of this first mapping is crucial in order to correctly classify the training
samples. Further, using the same reasoning it is clear that the efficiency of the
first representations with respect to the problem from which the training set was
drawn determines the performance of the machine in the presence of untrained
samples. That is, the choice of first representations determines generalization in

2-layered networks.

The first layer representations label convex regions bounded by hyperplanes
in the input space. Using this view of first representations we can say that it
is the way in which our first layer partitions the input space into regions that
determines generalization with respect to a particular problem. Specifically, in
order that our network generalize from a given training set to the problem from

which it was drawn, we require that the partition of the input space correspond
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not only to the training set but to the problem as well.

The question now becomes, how do we choose a specific partition from the
set of admissible partitions (i.e., the set of partitions that classify the training
set correctly) so that it will favor some specific class of problem topologies? We
propose here that a useful way to constrain the input space topology is to mini-
mize the number of regions into which training points may fall. This is equivalent
to minimizing the number of distinct first layer representations generated during
training. Before discussing this constraint in detail we should make clear an as-
sumption that was mentioned briefly earlier. The space of problems or functions
we are considering are assumed to be doable by a 2-layer network. That is, not
only can the machine classify the training set correctly, but we also require that
there exist a set of weights so that the network’s input/output relationship is
nearly identical to that of the problem. Given this assumption, the minimum
number of representations constraint initially assumes that the introduction of
each new point in the training set does not require an increase in the number of
regions. The algorithm must search for a new configuration of input space hyper-
planes consistent with the new set of data, which does not increase the number
of labeled regions. If this search is unsuccessful then an additional region must

be allowed.

There are many schemes by which one could minimize the number of regions.
One of the methods we have investigated is a gradient descent algorithm that

minimizes an energy function. The criterion function we minimize is
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where z1? and y17 are the first layer representations of the pth and qth elements
of classl and class2 respectively, and M; and M are the number of vectors in

classes 1 and 2.

We will refer to this procedure as the CLUSTER learning algorithm since it
tends to draw same class representations close together while pushing different
class representations apart. Specifically, the first two terms in the above en-
ergy function result in minimum interclass scatter for transformed x’s and y’s ,
while the third term maximizes the between class scatter of the first represen-
tations. This energy function is reminiscent of criterion functions investigated
in the 60’s with regard to linear pattern classifiers.l'!%) The primary difference
between the present approach and those early investigations lies in the fact that
the transformation that defines the first layer representations is nonlinear. The
nonlinear (threshold) function defines a set of disjoint regions in the input space,

the number of which is minimized by the proper choice of first layer weights. The

minimum number of regions is a prior: unknown.

Why is this constraint a good one? It will obviously only be useful when
we are considering a certain class of problems for which it is suited. The first

observation we can make with respect to this class is that the problems of interest
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should be defined by relatively few input regions. At this point the question of
learnability also arises with regard to constructing sample sets from such prob-
lems. In particular, the sample set must capture the topology of the problem
by representing each region sufficiently well to insure it is both represented and
distinct. We would also like it if a random set of points chosen from each class
were very likely to provide these necessary characteristics of region representa-
tion. These aspects of problem topology and learnability will be discussed later

with regard to some specific problems.

5.1.2 Performance of the CLUSTER Algorithm

In order to realize a gradient descent training procedure on the previously
described energy function we must decouple the training of the first layer from
that of the following layers. In the case of 2-layer machines, this is in some sense
suboptimal since a particular set of first representations may not be linearly sep-
arable yet may still represent the minimum of our criterion function. This would
preclude the solution of the problem via our method using a 2-layer machine. It
is our claim however, that problems well suited to this algorithm will contain suf-
ficiently few regions so as to with very high probability, insure linear separability
after the first layer. Following first layer training, the second layer of our example
networks were trained using the well known perceptron learning procedure. The

results of some of our simulations are shown in Figures 5.3-5.8.

Figure 5.3 shows graphically the weight matrix evolution for a 2:3:1 prob-
lem (i.e., 2 inputs, 3 middle layer neurons, and 1 output) as the constraint that

minimizes the number of regions is enforced. It is important to notice that the
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Figure 5.3 : Input space region evolution for a 2:3:1 problem.
(a) Initial input space configuration before training.

(b) Input space configuration using CLUSTER after 10 iterations.
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Figure 5.3(cont).
(¢) Input space configuration using CLUSTER after 30 iterations.

(d) Final input space configuration after training with BEP.
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problem could have been solved following iteration number ten. That is, the in-
termediate representations were linearly separable at this point during training;
however, since the input samples only reflect information regarding two regions,
the algorithm continues until these two regions emerge (see Figure 5.3c). In
contrast to this behavior, Figure 5.3d shows the final solution to this problem
obtained using an output error driven gradient descent procedure described ear-
lier (BEP). The existence of unspecified regions (i.e., regions in the input space
whose representations did not play a role in the training procedure) like the one
shown in the upper left of Figure 5.3d, corrupts the performance of the system
in the presence of new data. Since we do not know where this region will be
mapped in the output, new data falling in this region may be misclassified. In a
more complicated example this characteristic will limit the network’s ability to

generalize.

Since most real world problems are not linearly separable, it is important to
examine the behavior of our algorithm in the presence of non-linearly separable
training data. Figure 5.4 shows both CLUSTER and BEP solutions to the XOR
problem simulated on a 2:3:1 network. Apparently, the region minimization
constraint is well suited to capturing the problem topology in this case regardless
of the number of degrees of freedom (over the minimum required, of course)
we provide to the system. This is an important feature of any algorithm being
utilized to solve a problem whose complexity is @ prior: unknown. Providing a
network that is too large to BEP will very often result in correct classification
of the training set, with poor performance on new data. This is partially the

result of undefined or unclassified regions as have been generated in Figure 5.4b.
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Figure 5.4 : Solution to XOR problem.
(a) Final input space configuration after training with CLUSTER.

(b) Final input space configuration after training with BEP.
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Implementing the representation minimization constraint, however, results in the
elimination of many unclassified regions thereby only using the network degrees
of freedom necessary to solve the problem. The elimination of these undefined
regions contributes greatly to the generalization seen in later simulations using

the CLUSTER algorithm.

It becomes difficult to discuss regions and problem topologies in spaces of
dimension higher than three; however, the problems described in Figures 5.5 and
5.6 do indeed lend themselves to such descriptions. In Figure 5.5 we show the
training functions used in this simulation. Input data to the CLUSTER algo-
rithm consisted of 7 dimensional sample vectors taken from 6 strictly increasing
functions for classl and class6 strictly decreasing functions for class2. As in all
the simulations described here, the weight matrix for this example was initialized
randomly and small. Specifically, the network begins in a fully interconnected
configuration. As can be seen from the resulting weight matrix shown in the
figure, 4 out of 6 middle layer neurons learned to subtract the endpoints of the
input vector in order to determine its nature (i.e., increasing or decreasing). Gen-
eralization in this experiment was very high ( > 95% ) as we would expect from
the resulting hyperplane configuration. The only vectors misclassified on testing
this network were those whose chord slopes (i.e., slope between first and last
points) were particularly small. In Figure 5.6 we modify class2 of the previous
problem so that the classes will no longer be linearly separable. Class2 is now
given by 7 dimensional sample vectors taken from the 6 nonincreasing functions
shown. After training on these 12 vectors, the system generalization was tested

to be 88%. In these two problems the set of vectors used for testing were chosen



167

Network 7:6:1

Training Set :

Class 1 Class 2

1. 10. + exp (z/2) 1. =2 -2z

2. exp (2z) — 4 2. (z-10)*-5

3. z 3. 1.— Tz

4. z+3 4. 4exp (—z/4)

5. (2/2) — 7 5. exp (—(z + 10)/10) — 12
6. (z+10)% — 25 6. 10/(z + 11)

all increasing on [-10,10] all decreasing on [-10,10]

02 00 00 -01 -01 -02 -0.2
1.5 06 -04 -06 -08 -1.0 -1.2
W {07 02 -02 -03 -04 -05 -06
=—cluster | 14 0.5 -04 -0.5 -0.7 -09 -11
19 07 -05 -0.7 -09 -13 -16
\1.7 0.6 -04 -06 -09 -1.1 ——1.4)

(b)

Figure 5.5 : Problem definition and 2-layer solution to the
increasing/decreasing function dichotomy using CLUSTER.
(a) Training functions.

(b) First layer weight matrix after training.
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Network 7:6:1

Training Set :

Class 1 Class 2

1. 10. + exp (z/2) 1. -2 -2z

2. exp (2z) — 4 2. 3(z/10)2

3. z 3.1. -7z

4. 243 4. —(z/5)?

5. (z/2) -7 5. 4exp (—z/4)

6. (z+ 10)% — 25 6. sin(nz/10)

all increasing on [-10,10] all nonincreasing on [-10,10]

Figure 5.6 : Input functions used to train increasing/nonincreasing

function dichotomy.

randomly.

The last two-class problem we simulated is related to visual processing and
consists of training shift and scale invariance. Figure 5.7 shows the training sets
used for this example. They consist of various scaled and shifted horizontal and
vertical lines. The testing set consisted of 14 vectors (again shifted and scaled
horizontal and vertical lines) not presented to the network during the training
phase. Since shift and scale invariance do not represent topological features of the
problem space to which the algorithm is well suited, we expect in this experiment
to be obtaining only a nearest neighbor interpolation characteristic. That is,
since we trained the network on many versions of lines we expect the notion of

nearness in the input space to be the aspect of the system, which will yield correct
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Network CLUSTER BEP
50:30:1 28% 147%
50:10:1 S7% _17%
950:8:1 717% _217%
50:5:1 36% 147

(b)

Figure 5.7 : Horizontal vs. vertical line dichotomy.
(a) Examples of training vectors used to obtain shift and scale invariance.
(b) Generalization comparison between CLUSTER and BEP for

several network sizes.
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classification. In as much as the CLUSTER algorithm will result in input regions
that are as large as possible, we might expect this sort of nearest neighbor feature
to favor our minimization constraint as compared to BEP. The results shown in

Figure 5.7 for networks of different sizes, support this expectation.

The final simulation result included here for completeness, reflects a rather
simple modification of the original criterion function so as to facilitate its function

in a multiclass environment. The new energy function is given by

K My My
== ZMk(Mk — l)ggmp k) — z19(k)|?
Miy M2 (5.2)
TE (Ix — 1)k§:1k22:kl ZZMF’(M) 219(k2))?

where K is the number of classes or clusters, M} is the number of vectors in
class k, and z1P(k1) is the first representation of the pth vector in class k1. This
simple extension of the CLUSTER algorithm to multiclass problems allows it to
be used as a first layer training procedure for three layer networks or in problems
of distribution estimation. A simple example of dichotomizing 3 classes in 2

dimensions using the modified CLUSTER algorithm is shown in Figure 5.8.

Since, using the CLUSTER algorithm, each input vector must be compared
to every other input vector, our procedure will be slower in converging by a
factor of Ef’___le per iteration as compared to BEP. We hope, of course, that in
constraining the allowed solution in the described way, the network will require
fewer samples to specify a problem completely. This being true would reduce

the time factor difference between the two training procedures. Local minima
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Figure 5.8 : Input space configuration after training 2:2:2 network on

a three class problem using CLUSTER.

can become a problem with this as with any other gradient descent procedure.
Perhaps the local minimum problem is a bit worse in this case since local minima
in the choice of intermediate representations may result in a nonlinearly separable

set. This type of behavior was not seen to be critical in the simulations we tried.

5.1.3 Discussion of Problem Topologies

In this subsection we will more closely examine the topologies of several
problems. In keeping with our original assumption that the problem be doable
on a 2-layer machine, we will address two questions with respect to the problems
under consideration here. First, can the problem be adequately described by
relatively few regions? We have already seen that this feature of the problem
space can be used to advantage when it is well represented in the training data.

So the second question naturally arises: Can the input space topology of the
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problem be well represented by a relatively small number of training samples?
To compile a comprehensive list of problems/functions to which the answers to
the above questions are “yes” is a task beyond our understanding at this point.
We instead describe several problems with regard to these questions in hopes

that similar ways of thinking may be used on future problems with success.

The most attractive problem from the perspective of region minimization is
a linearly separable problem. Although treating a linearly separable problem
with a multilayered machine might appear artificial, the discussion of the pre-
vious section regarding a prior: problem information together with the results
accompanying that discussion, make this a logical place to begin. The increas-
ing/decreasing problem consists of 2 regions in a 7 dimensional input space. Since
there are only 2 regions, a particularly small number of points are necessary to
specify this problem topology with high accuracy. The continuous nature of the
input space is an additional feature of this problem making it attractive from the
perspective of a region minimization approach to learning. Specifically, it is quite
likely in learning a piecewise continuous function, that the nearest neighbors of
the training points will lie in the same class. This is to be contrasted with many
problems which operate on a binary input space. In the binary case, the majority
of nearest ‘allowed’ neighbors (i.e., all vectors within unit Hamming distance) of
a particular vector are often to be placed in another class. This feature reflects
a high degree of criticality associated with the presence of a specific point in the
training set. In order to make this point clear, consider the so-called Penzias
problem. In this problem we would like to classify binary vectors as classl if

they contain fewer than 2 contiguous groups of ‘on’ bits while classifying them
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as class2 vectors otherwise. In an input space of reasonable size (N > 4) any
vector in classl has N nearest neighbors and only 4 of these can belong to classl
also. The remaining N-4 nearest neighbors of course belong to class2. Since the
same class nearest neighbor feature is not seen in the Penzias problem, learning
this function via a region minimization type of algorithm would most likely be
unsuccessful. This was in fact the case in the simulation experiments performed
on this problem. We should note here that a “degrees of freedom” minimization
constraint should be considerably more successful in this case since the problem

is represented by local first layer connections.

The increasing/nonincreasing function problem is a good example of a non-
linearly separable problem that is well suited to the CLUSTER algorithm. Classl
is simply defined by one region as z(N) > (N — 1) > ... > z(2) > z(1) where
z(4) is the 7** bit of the input vector. In terms of learnability, we require only that
the classl region is represented and that the class2 vectors are sufficiently well
scattered to have labeled all of the remaining regions. Since class] is represented
as one region, the algorithm will find that one region by virtue of the pulling
together force term in our energy function. At that point, the main limitation to
generalization will be unlabeled regions belonging to class2. Thus, if the points
in class2 are well scattered we expect all the remaining regions to contain a point
in class2 . This will insure correct classification of all points falling outside of

class].

A very common testbed problem in neural networks is the parity problem.
Parity topology is actually fairly well suited to the region minimization constraint

in that there are only N+1 regions. This can be easily seen by considering a 2-
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layered network to solve the parity problem. The first layer may essentially count
the number of ones in the input vector, each middle neuron having a threshold 1
larger than the neuron below it. Having counted the number of ones in a vector,
the resulting representations are now linearly separable for the output layer to
dichotomize. Only N+1 representations may be generated this way reflecting
the N+41 regions specified by the problem. The difficulty however is again in the
training since training vector criticality is even stronger in the parity problem
than with Penzias. Every nearest neighbor of a vector in the parity problem is
in the other class. The somewhat disappointing conclusion then with respect
to the parity problem is that the CLUSTER algorithm s well suited to learn
the mapping given all 2% input output pairs; however, generalization in the case

where the training set is smaller than 2V elements should not be expected.

Problems whose topologies consist of clusters in the input space, or whose
distributions are modal are also well suited to region minimization techniques.
This point may appear obvious since relatively few clusters may be assigned to
relatively few regions by the multiclass procedure described earlier. The pushing
away force term in the CLUSTER criterion function however, provides a means
by which very complicated input space regions might be approximated by hy-
perplanes. By simply adjusting the number of intermediate neurons, the relative
accuracy of this approximation technique could be changed. Using similar rea-
soning, a three layer training algorithm based on the procedure described by
Lippmann may be implemented.[m’m First, the training set would be divided
into K clusters using some classical input space clustering algorithm. Next, these

K clusters would be presented to the pushing apart term of the CLUSTER al-
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gorithm as K different classes. CLUSTER would then bound each input space
cluster by hyperplanes as shown in Figure 5.9 whereupon a neuron in the next
layer could be devoted to each input space region containing a point. Classifica-
tion using such a scheme follows easily and is discussed in reference [27]. This
problem has not been approached yet to any significant degree in simulation;

however, it appears to be an interesting topic for future work.

5.1.4 Multilayer Networks

Many image oriented pattern recognition problems will be suited to a two
layer CLUSTER type solution only after an initial local feature extraction stage of
processing. As shown in Figure 5.10, local features such as eyes and mouths often
define the relevant input space dimensions of the problem at hand. Further, since
it is the global configuration of these features that determines the classification
of the input vectors, the first layer feature extraction must be unsupervised as
shown in Figure 5.11. In this way, the features or principle components of the
training vectors may be learned to define the necessary input space dimensions
for the next layer. The weights in the next layer may then be trained using a
supervised algorithm such as CLUSTER in order to evolve a linearly separable

set of representations that the last layer may classify correctly.

This type of strategy may be extended to the case of networks with large
numbers of layers. The gradual progression from local features and local connec-
tivity to more global receptive fields in deeper layers as shown in Figure 5.11,
allows for progressively larger features to be built in deeper layers of process-

ing. At the same time there is an increase in the degree of supervision provided
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Figure 5.9 : Three layer construction using Lippmanns approach with
CLUSTER for first layer training.
(a) Define input space clusters with conventional grouping algorithm.
(b) CLUSTER pushing apart terms for learning separating hyperplanes.

(c) Construct second layer 1 neuron per region.
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Figure 5.11 : General multilayer network training philosophy.
Training becomes more supervised and receptive fields become broader

with deeper layers.
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during the training of weights in deeper layers. In analogy with human visual
processing, such a learning scheme may result in useful adaptive image process-
ing networks. A great deal of future work must be directed toward a deeper
understanding of specific network constraints, and the problem characteristics
these constraints favor. Such an understanding would mark a large step in the

direction of understanding generalization in these networks.

5.2 K-NEAREST NEIGHBOR ALGORITHM

The main limitation of the CLUSTER algorithm, as well as BEP, is learning
time. Although in principle relatively few training samples are necessary to
train the network with CLUSTER as compared with BEP, actual training times
in simulation were still quite long for problems with dimensions greater than
~10. For example, the horizontal vs. vertical line problem takes 1-10 days of
computing time on a SUN3/60 workstation. In many cases long training times are
unacceptable and a real time algorithm is required so that new training data may
be incorporated into the pattern recognition system during operation. One such

real time training algorithm is the k-nearest neighbor algorithm (KNN),[120-125]

The procedure defined by the KNN algorithm is simply to accept and store
new training samples along with their classifications in a large memory. Training
time therefore is determined only by the speed at which we can update the refer-
ence library. The bottleneck for the KNN algorithm occurs when we are actually
performing the classification of an unknown input. The algorithm specifies that
given an unknown input vector, it should be classified according to the class most

abundantly represented by 1ts k nearest neighbors. The specific procedure then is



180

to compute the distances between the input and all members of the training set
and allow the KNNs to vote. The class assignment of the majority of the KNNs
is taken as the system output. In the case of a tie, several tie breaking procedures
are plausible among which are letting k=k+1 (i.e., adding a neighbor) or letting
k=k-1 (i.e., removing a neighbor). The success of this algorithm is dependent on
having a relatively large training set so that the underlying problem structure is
well represented over a large portion of the input space. The required training
set is therefore potentially exponential in the dimensionality of the input space,
resulting in a large storage requirement for this approach. The corresponding
calculation time for interrogating such a system is also very long. We will soon
see that these requirements are well matched to an optical disk-based implemen-
tation. The storage capacity of the disk is large enough to store many vectors,
while parallel optical access provides a mechanism through which an unknown
input may be compared against the training set. Later in this chapter we will
describe two different optical implementations of the KNN algorithm, one in
which the correlation peak is used as a distance metric for image classification

and another in which true Euclidean distance is computed optically.

5.3 RADIAL BASIS FUNCTIONS

The radial basis function (RBF') approach to pattern recognition lies between

(56,126] s approach results

the previous two algorithms in terms of learning time.
in a network whose processing units are slightly more complicated than simple

linear thresholding devices; however, the overall network computation required to

perform a single classification is much less time consuming than in the KNN ap-
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proach. The motivation for using a RBF network to perform pattern recognition
tasks comes from the relatively well-established mathematical framework associ-
ated with regularization theory and hypersurface reconstruction. In hypersurface
reconstruction the problem is to construct a machine or function F(K, X), which
takes a vector X into a prescribed output F(X). For simplicity, we will consider
only one-dimensional outputs, the generalization to higher dimensions being ob-
vious. In order to construct F(E, X) a set of training samples taken from the
mapping to be learned (i.e., the underlying hypersurface to be approximated)
is provided {z; — F(z;);¢ = 1,..., M} and the problem becomes to choose the
form of F' and the appropriate parameters W, so that I:‘(E, z;) = F(z;) for
¢t = 1,..., M. This problem is very similar to the pattern recognition problem
where one is given a set of training patterns and is asked to find a classifier £
with the appropriate parameters W, such that the resulting machine classifies
the training set correctly. In both cases we desire that future samples be mapped
correctly and that the system behaves well in the presence of noise. In order to
obtain these desirable characteristics in hypersurface reconstruction, a criterion
of smoothness is often placed on the estimator F. One approach for specifying a

smooth F' is the RBF approach.

If we choose F' to be of the following form

M<M
FW,X)= Y aexp(—|X —ti*/0}) (5.3)
1=1
where W = {t;,04,a; : i = 1,..., M}, then the resulting machine is called a radial

basis function interpolator/classifier. We see that the RBF classifier seeks to

approximate the underlying function as a weighted sum of gaussian “bumps.”
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According to the above expression, the approximation F' comprises M of these
bumps each centered at ¢; with width o; and weighted by a; in the final output.
Given a set of training vectors {z; : ¢ = 1,..., M}, we may estimate the parameters
{ti,oi,a; 11 =1,...,M} so that F(ﬂ) ~ F(z;) using any number of supervised

and/or unsupervised algorithms.

Y=exp(~[X-42/c?) Y=x4
(a) (b)
Figure 5.12 : Processing units proposed for RBF network.

(a) RBF unit. (b) Linear unit.

The RBF approach may be mapped quite naturally onto a neural network
architecture as shown in Figure 5.12. We define the RBF unit in Figure 5.12a as

a neuron with response given by
yi = exp(—|X ~ ti*/o}), (5.4)

where t; is called the center or template associated with neuron . The output
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layer of the RBF network consists of a single linear unit whose output is simply
the weighted sum of its inputs as shown in Figure 5.12b. The overall network
mapping then is defined by

M<M

FW,X)= Y aeap(~|X - ti* /o), (5.5)

1=1

as desired. In Figure 5.13a we show a RBF network for estimating a function of
two variables and in Figure 5.13b we depict an example of an input space config-
uration that may result from the network mapping. The points in Figure 5.13b
represent the training data and the broken circles represent the four gaussian ba-
sis functions that comprise the RBF network. In order to generate Figure 5.13b
we utilized a k-means algorithm with k=4 to determine the centers of the basis
functions. This procedure results in determination of the four centers shown. In
order to determine the widths associated with each center, a KNN algorithm was
used. The five nearest neighbors to each center were chosen and the average of
these five distances was used as the width o, for the associated bump. Note that
these procedures result in the determination of the centers {t;} and the widths
{0;} in a completely unsupervised fashion. Specifically, the first layer of a RBF
network may be trained without using an error driven procedure, thereby signif-
icantly reducing training time. Training of the output layer can be accomplished
through the use of either a mean squared error minimization procedure or the

relatively simple perceptron learning algorithm.

In the next three sections we present experimental results for optical disk-

based systems designed to implement the two previous networks : the KNN
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Figure 5.13 : RBF network.
(a) RBF network for estimating a function of two variables.
(b) Input space configuration arising from the network in (a)

with four RBF units.
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network and the RBF network. Simulation results for these two approaches will

appear in the following sections for comparison with their optical counterparts.

5.4 SHIFT INVARIANT KNN NETWORK

The first optical pattern recognition system to be described here is the shift
invariant k-nearest neighbor classifier shown in Figure 5.14. This system is based
on the rotating mirror correlator and the KNN algorithm discussed earlier. The
optical system consists of two arms as shown. The bottom arm is the input stage
and includes an optical mouse which is used to provide a handwritten character
to the system. For our experiments, the character is written on a 16x16 grid
and appears on the monitor shown. This monitor is imaged onto the write side
of a Hughes Liquid Crystal Light Valve (LCLV) which is then read out using a
linearly polarized 5mW He-Ne laser.l127-12%] The external polarizer P converts
the polarization modulation induced by the LCLV to intensity modulation ap-
propriate for input to the rotating mirror correlator which comprises the top arm
of the system in Figure 5.14. As the disk rotates, the correlation between the
handwritten input character and each member of the correlation library is gen-
erated optically as described in section 4.1. An example of the system operation
is given in Figure 5.15. In Figure 5.15a, the coherent image of an input pat-
tern is shown immediately after the polarizer P. An exact duplicate of the image
shown in Figure 5.15a has been written in sector 0 of the optical disk and the
resulting z and y slices of the 2-D autocorrelation pattern are shown in Figures
5.15b and 5.15¢ respectively. As we can see from Figure 5.15¢ the y-slice of the

correlation pattern is peaked with a width of ~25us corresponding to a mirror
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Figure 5.14 : Optical implementation of shift invariant KNN classifier

for handwritten character recognition.
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Figure 5.15 : Demonstration of shift invariant optical KNN classifier.
(a) Coherent image of handwritten numeral 2 after polarizer P.

(b) x-slice through optically generated autocorrelation pattern of (a).
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Figure 5.15(cont).

(c) y-slice through optically generated autocorrelation pattern of (a).
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scan rate of 2.5KHz and a radial image extent of 16 pixels. The x-slice of the
correlation pattern is much broader and corresponds to a disk rotation rate of
~2Hz. Using a data acquisition board in an IBM PC, the correlation data from
the system is obtained from the detector for postprocessing. The peaks of the 2-
D image correlations are detected and used as a similarity measure to determine
the KNNs of the unknown input character. In this way, a handwritten input
character is classified according to which images on the optical disk it correlates

most strongly.

For this experiment, a relatively small library of reference images was stored
on the disk to discriminate among three classes of handwritten numerals : twos,
threes, and fours. The initial training set comprised 60 images (20 per class)
and an optimization was performed in order to determine the 8 best images per
class for recording on the disk. Only 24 filters were used here so that one filter
could be stored per sector, thereby making the optical system as well as the data
acquisition system more straightforward. The following discussion describes the
algorithm used to choose the 24 best images for disk storage. First we form the
60x 60 matrix of cross correlation peaks p;; = ma:v{gc_’; *zd }, where z* and z? are
two of the 60 initial reference images and the maz function is taken over the 2-D
correlation plane. We then choose the 8 templates per class with the largest x;
where

Xi = > pij — > pi (5.6)

jecorrect class jewrong class

The performance of these 24 filters is then tested on the training set using the

k=1 nearest neighbor rule. If there is an error during testing so that template 2



5

QL

o

o]

[0

n . o
T | e
| =]

| s

: [

¢ =

"y T
wits = gl

©

| O
P =
, 3
| =]
_q—_:n_ﬂ..._lhqfw
W W
L o
. ©
-

Yo

o

=

=

=



191

Figure 5.17 : Photograph of Sony disk containing 2-3-4 filters.
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misclassifies vector j, then template ¢ is replaced by template i’ where pir; < pjj
and x; is maximized. This procedure insures that the new template is less likely
to misclassify vector j while still maintaining a good overall classification score .
This algorithm was found to converge to the set of 24 reference images shown in
Figure 5.16 with correct classification of all 60-24=36 remaining training patterns.
In Figure 5.17 we show a photograph of the optical disk on which these 24 filters
were recorded. Several ‘2’ filters can be seen in the photo, one filter per sector.
Also visible in the photo are the sector markers on the disk which appear as
bright radial lines between filters. The reference images shown in Figure 5.16
were originally drawn on a 16x16 grid but were enlarged before recording on
the disk so that a single reference superpixel actually comprised 128 tracks and
192 pixels along track. In addition to these 24 filters, three master filters were
recorded on the disk for alignment purposes. The layout of the reference library
is shown in Figure 5.18. During testing, it was found that only 16 of the 24
reference images were responsible for performing the classification; therefore, only
these filters were actually recorded on the disk. It is the layout of these 16 filters
together with the master filters that we depict in Figure 5.18. In Figure 5.19 we
show examples of the raw output from the optical system for each of the three
master images as input. The equally spaced peaks of equal height that can be
seen in the photos arise as a result of diffraction from the sector markers on the
disk. In some sectors there are filters so that the peaks seen between some sector
markers represent the correlation between the input pattern and the reference
image stored in that sector. The pattern of full and empty sectors in these photos

enables us to identify sector zero by comparison with the layout in Figure 5.18,
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W

Figure 5.18 : Reference library layout.

thereby allowing us to label each correlation peak with its corresponding class
assignment. Returning to Figure 5.19, since the master image of ‘2’ is exactly
matched to the master reference of ‘2’ written in sectors 0 and 2, a large peak is
obtained from these two sectors as shown in Figure 5.19a. Although the master
images were not part of the training set, we see large outputs from several of
the ‘2’ filters also, indicating that our reference library has classified the input
correctly. Similarly, for ‘3’ and ‘4’ master inputs we see that large responses are

illicited from the correct batches of reference filters on the disk.

The correlation peaks shown in Figure 5.19 must be normalized before they
can be quantitatively compared. Normalization here requires that each corre-
lation peak value be divided by the number of ones in the corresponding filter.
There are two ways of extracting the necessary normalization data (i.e., the num-
ber of ones in each reference image). One way is to simply store the values in

memory while the filters are being written to the disk and synchronously read
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Figure 5.19 : Raw output from optical KNN system.
(a) Input = master image 2.

(b) Input = master image 3.
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Figure 5.19(cont).

(¢) Input = master image 4.
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out this memory during classification. The second way is to present the all one
input image to the optical system and use the resulting correlation peaks as
normalization data. For comparison purposes, both of these methods were used
and the two sets of data are presented in the histogram of Figure 5.20. The
agreement between the optically generated normalization data (open bars) and
the actual filter weights (solid bars) is excellent and leads us to conclude that
the optical system is performing as we expect. Once this normalization data is
stored in normalization memory the system is ready to perform classifications. A
summary of the recognition algorithm used in this experiment is shown in Figure
5.21 and a photo of the optical system is shown in Figuré 5.22. When this system
was tested on a 200 element testing set, a 75% recognition rate was achieved for
the k=1-NN rule. This is in good agreement with a simulation result of 73% for
the same testing set. When the number of nearest neighbors was increased to
k=3, the optical system performance was improved to 85% correct recognition.
System performance was observed to decline sharply for k>7-NN (recognition

<72%) in agreement with theoretical predictions.

Although 85% recognition rate is quite good as compared with the expected
random rate of 33%, a commercially useful PR system recognition rates above
95%. An increase in the size of the reference library which requires the use of
a larger training set could potentially result in this level of performance; how-
ever, the principal limitation of this system is the post processing speed and data
requirements. The need to search an entire 2-D correlation pattern for the nec-
essary peak is quite time consuming. We saw earlier that the correlation peak

width is ~ 15us requiring a sampling rate >~200 kHz with this, the slowest
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Figure 5.20 : Histogram comparing experimental and theoretical

normalization data.

of the disk-based correlators. Further, in order to scan the entire reference li-
brary, a full disk rotation of 0.5s must be sampled resulting in a data array of
100,000 samples representing a maximum of 195 filters. The next optical system
we describe reduces this high output data rate at the expense of a shift and
scale normalizing preprocessor. As a result of this preprocessing, we will have
the potential to realize a much larger reference library (> 10° reference images)
in a realtime implementation requiring a minimum of dedicated postprocessing

hardware.
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Figure 5.21 : Block diagram of recognition algorithm used in 2-3-4 experiment.

= ¥ =
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Figure 5.22 : Photograph of optical KNN classifier for
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5.5 SHIFT VARIANT KNN CLASSIFIER

The capability of optics to compute inner products is one of the most pow-
erful motivators for the use of optics in neural network implementations. In the
previous chapters of this thesis we have exploited this capability in designing im-
age correlators whose operation is defined as the generation of sequences of inner
products. Although shift invariance is achieved in the previous architectures by
virtue of performing many inner products per filter, the complexity of the optical
system as well as that of the postprocessing electronics can be reduced by only
requiring one inner product per filter to be computed. Reducing the complex-
ity of the previous architecture in this way leads to the shift variant k-nearest
neighbor classifier shown in Figure 5.23. In this system the inner product is used
as a similarity measure between the input and each reference image. Since this
distance metric is not invariant to shifts of the input image, the PR system is no
longer shift invariant. This loss of shift invariance can be compensated through
the use of a centering preprocessor based on either a moment or image extent
computation. We found much better performance with the latter approach for
the case of handwritten character input images. In the image extent approach,
the maximum length of the input character is found in both the horizontal (z)
dimension and the vertical (y) dimension resulting in the orthogonal image ex-
tents zdim < 16 and ydim <16. The required centering is performed by shifting
a left/top justified version of the input character by (16 — zdim)/2 pixels in z
and (16 — ydim)/2 pixels in y. During this procedure it is straightforward to
incorporate a scaling operation so that the preprocessed image is centered and

scaled to a 10x10 window. The scaling is achieved by applying the scale factor
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Figure 5.23 : Shift variant optical KNN classifier.

max{zdim,ydim}/10 to both the z and y input dimensions. Following prepro-
cessing, the 10x10 pixel input field is unrastered to form a 100 bit binary vector
as shown in Figure 5.24. Each such vector z corresponding to each preprocessed
filter or reference image, is stored on the optical disk as a radial line. For each
vector z, we also store its complement E in an adjacent sub area. This method
of dual rail encoding allows us to simulate bipolar filters, thus eliminating the
need to remove signal-dependent bias from the detector output. The pixel size
in this experiment was chosen to be 177 tracks by 116 pixels along track. Storing
one vector per sub area allows us to record up to 43 vectors per sector or 1376
templates per disk. The upper bound on template library size is achieved when
every pixel along track is associated with a different stored image. This implies

that a reference library of > 10% images is possible using this scheme.

A schematic of the optical system used to perform the comparison between

some unknown preprocessed input image and the reference library stored on the
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Figure 5.24 : Preprocessing required to convert 16x 16 image into
100 bit binary vector.
(a) Shift and scale normalization with unrastering.

(b) Vectors stored on disk as radial lines.
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Figure 5.25 : Optical system used to compare input vector provided via

1D SLM with optical disk-based library.

disk in the format described above, is shown in Figure 5.25. In this architecture,
a 1-D SLM is used to present the preprocessed input character to the system as a
100 bit binary vector. An image of the input vector is formed as a radial line on
the disk as shown, and the total diffracted intensity is collected by the output lens
and measured using a Photodyne 1500XP detector. The detector output once
again represents the inner product between the input vector and the illuminated
reference vector. The postprocessing system for this experiment consists of two
parts. First, a sample/hold (S/H) circuit is used to detect the peaks of the raw
detector output. These peaks represent the desired inner products. The S/H
circuit is clocked by a signal that is phase locked to the sector markers in the
data stream. The second stage of postprocessing consists of an A/D converter

board in an IBM PC followed by software that implements the desired recognition

algorithm.
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In this experiment we will implement the KNN algorithm in the solution of
the handwritten character recognition problem. We will consider the 10 class
problem of identifying handwritten numerals 0-9. Recently, this problem has
received much attention and several automated recognition techniques have been
quite successful in providing a solution. The U.S. Postal Service is particularly
interested in these recognition systems for application to zip code recognition.
Using a SUN3/60 workstation, several authors were asked to draw the numerals
0-9 on a 16x16 grid. The resulting database of 950 images (95 digits per class)
was separated into a 300 element testing set and a 650 element reference library.
Examples of characters from the training and testing sets are shown in Figure
5.26. The 650 reference images were preprocessed as described above and stored
on the disk along with their complements, as 100 bit binary vectors. Using a
disk rotation rate of 20Hz, these 1300 vectors were processed at a rate of 2600
inner products per second equivalent to 260,000 binary operations per second.
The 300 testing images were preprocessed and stored as 100 bit vectors on a set

of 10 transparencies, an example of which is shown in Figure 5.27.

The topmost and bottommost rows of this transparency represent alignment
markers which facilitate magnification and position calibration during system
operation. The other 30 rows correspond to the 30 preprocessed images from
class zero. An example of the raw detector output for the all one input vector
is shown in Figure 5.28. The two tallest peaks in this trace correspond to sector
markers on the disk and represent the inner product between the all one vector
and itself. From this data we can calculate the effective brightness per input pixel

as measured at the detector to be 0.6nW. This value 1s in good agreement with
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Figure 5.26 : Training and testing sets used in 0-9 handwritten character recognition task.

(a) 10 per class from reference library.



205

1 2 3 4 5 6 7 8 9 10
m T s i
: 8 EEE
1 12 13 14 15 16 17 18 19 20
5 s T £ i Y itz + ", + ::"l
- ] g R , i i :
§ i | i O 2 ;
2 pE] 24 25 26 b7 28 29 30
: o ; s 5 1 =
31 32 33 34 35 36 37 38 “35 40
T Er Hi H H H ‘ it FHH :l; el :s
"4l 42 3 44 45 i 48 49 50
H .- 13 i 147 -«ﬂ-—-— ”r 3 . ]
Beans By H 55 2 23 2. o] % HH THA T Seesel
51 52 3 54 55 56 58 £9 60
it oEEE: 55
e et ot : : st i 3 3, Aoeeey R
61 62 I 64 & 66 7 8 69 70
71 72 73 74 75 76 77 78 79 80
e = : -
[ ety H H | i eozaiins i5ne:
81 82 84 85 86 87 88 89 %0
sz A o T : FFEEE, ST
e H T Th x ' b SR eoi s
£ Y : e S £ T
) 100

93

(b)

Figure 5.26(cont)

(b) 10 per class from testing set.

98



206

Figure 5.27 : Input transparency used in 0-9 experiment.

the known optical losses in the system. The other peaks in Figure 5.28 provide
normalization data as before. An example of the signal following the S/H circuit
is shown in Figure 5.29. This trace includes a portion of sector 0 which is empty
on this disk. The low-level signal seen in sector 0 is indicative of the system
noise level before quantization by the A/D converter in the PC. A discussion of
noise sources and their effect on system performance will be included later in
this section. The PC samples the signal shown in Figure 5.29 once per level,
averages 4 rotations worth of data (total acquisition time ~0.2s) and computes

the Euclidean distances from the inner products as

ly -zl =yl + |z* - 2z - y, (5.7)

where y is the unknown input image and z is a stored reference. Since our optical

system actually measures z -y and Z - y, we may form the distance for binary
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Figure 5.28 : Raw detector output showing normalization signal for 0-9 system.
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Figure 5.29 : Example of inner product signal obtained after S/H circuit.

Low level signal at left of figure represents system noise level.



208

vectors y as

yl* = (y-1) (5.8)
=(y-(z+1) (5.9)
=(y-z+y-I), (5.10)
so that
ly—zP =z’ +y-2-y =z (5.11)

Once again, |zi|? for ¢ = 1,...,650 is stored in normalization memory and read

out during the postprocessing stage.

CLASS SIMULATION | EXPERIMENT|  MODEL
0 28 28 28
1 27 19 17
2 24 28 24
3 23 9 15
4 28 24 26
S 24 26 21
6 22 23 20
7 24 26 17
8 23 21 26
9 26 9 24

837% 71% 73%

Table 5.1 : Recognition results for 0-9 optical KNN network.

The results of classifying the 300 element testing set using the optical system
described here, are given in Table 5.1. Entries in the table indicate the number

of correct classifications made, out of 30, for each of the 10 classes 0-9 for the
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k=5-NN algorithm. The last row in the table indicates the overall classification
rate for the experimental system as compared with an ideal simulation of the
5NN algorithm as well as a computer model of the optical system. Regarding the
experimental column of Table 5.1, we see that the majority of errors occurred
for classes 3 and 9. This is consistent with the observation that in simulation,
threes are often confused with fives and eights while nines are often confused with
fours. These are the primary misclassification trends seen in the optical experi-
ments as well. These sorts of errors imply that a heirarchical or tree-like decision
procedure might be used to improve the recognition rate by separating difficult
class dichotomies and treating them independently. The simulation column of
Table 5.1 is representative of many simulation runs that examined variations in
recognition performance with both k and library size T. It was observed that
for 1 < k £ 5 and for 650 < T < 700, the recognition rate ¥, did not vary
substantially (i.e., 81.3% < X < 84.7%). This relative insensitivity with k was
observed in the experimental system as well where the recognition rate varied
from 67% to 71% for k less than 7. The model column of Table 5.1 was obtained
from a detailed simulation of the optical system which incorporates the various
implementational error sources as measured from the experimental apparatus.

The error sources that were included in the model are :

(1) Beam nonuniformity which accounts for the gaussian nature of the SLM
illumination and was seen to result in significantly reduced beam inten-
sity at the outermost input pixels. The illuminating intensity pattern was

measured and found to be down to 42% at pixel 1 and 56% at pixel 100.

(2) Electrical noise in the amplification and S/H circuits was measured to be
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200mV p-p out of 3.8V peak which corresponds to a SNR before the A/D

converter of ~32 after averaging.

(3) Quantization noise resulting from the 8 bit A/D or 19.5mV per level quan-

tization. This effect reduces the sampled SNR to ~29.

(4) Sampling phase error in the S/H circuit will result in sampling the inner
product off peak. This error was measured to be 2us and was attributable
to motor speed nonuniformity. This effect was not critical however since
the inner product peak width is equal to the vector width in pixels divided

by the pixel rate or 6us.
(5) SLM (LCTV) contrast was measured at the optical disk to be <20:1.

According to our model, finite SLM contrast was by far the dominant er-
ror source in this experiment. Using the model, we have plotted the expected
recognition rate vs. contrast for fixed values of the other error sources as given
above. This plot is shown in Figure 5.30. It can be seen from the figure that for a
value of contrast less than 50:1 as in our system, the recognition rate is strongly
dependent on the contrast. Only when the contrast becomes greater than 50:1
do we see that the asymptotic rate of 81% is achieved. This is less than the 83%
ideal simulation rate owing to the presence of the other error sources (items 1-4

above).

Although the experimental recognition rate of 71% does not agree well with
the simulation result, it does agree quite well with our model. The plot shown in
Figure 5.30 seems to imply that by replacing the input SLM and imaging system

so as to achieve >50:1 contrast at the disk, the performance of the experimental
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Figure 5.30 : Plot of classification rate vs. contrast as predicted using the model

described in the text.
system will approach the noise limited performance of 81%.

We have replaced the input transparencies used in this experiment with an
Epson Liquid Crystal Television (LCTV) which exhibits a measured contrast of
90:1. A photograph of the new optical system is shown in Figure 5.31. According
to the previous discussion, this modification should cause the classification rate of
the optical system to approach the noise limited rate of 81%. The optical system
was once again tested using the 300 character testing set and the classification
results from the modified system are given in Table 5.2. As we expected, the
result of improved SLM contrast is to improve the optical system recognition

rate from 71% to 79% in reasonable agreement with the performance predicted

by our model.
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Figure 5.31 Photograph of high contrast optical KNN classifier

utilizing Epson LCTV as an input SLM.

Class Experiment | Simulation
0 29 28
1 25 27
2 29 24
3 22 23
4 24 28
8] 18 24
6 15 22
7 23 24
8 26 23
9 26 26
Total 237 249
79% 83%

Table 5.2 : Recognition results for high contrast 0-9 optical KNN system.
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5.6 RBF CHARACTER RECOGNITION NETWORK

The final optical pattern recognition system we will demonstrate is based on
the radial basis function approach described earlier. The actual architecture we
have implemented using the optical disk is represented schematically in Figure
5.32. A preprocessed 100 bit binary vector z, is presented to the system as before
and the first layer of RBF units compute the RBF projections y; = ezp(—|z —
t'|?/0?). We will once again use the 10 class handwritten character recognition
problem as a test for this system and have chosen to use as RBF centers {_t_z }, the
650 reference images used in the KNN system described in the previous section.
This choice of centers was primarily motivated by the fact that the required
vectors had already been recorded on the optical disk and that the SONY disks
are somewhat scarce. In addition, this approach will allow us to make a purely
architectural comparison between the 1-layer KNN network and the 2-layer RBF
approach. After the RBF projections are calculated in the middle layer, this 650-
dimensional intermediate representation is transformed using the interconnection
matrix W to arrive at a 10-dimensional output representation as shown. Each
output neuron corresponds to one of the classes 0-9 and a winner-take-all network
then computes the final classification. Since we have chosen to use the 650
templates from the previous system as RBF centers, the only learning required
for the first layer of this network is for the widths {o;}. The second layer of
course must be trained to perform the desired classification on the intermediate

RBF representations.

There are many potential training algorithms for {7;} and W. We began to

investigate several of these and during these investigations the most successful
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Classification

Figure 5.32 : Multilayer RBF network implemented using optical

disk-based first layer.

algorithm was evolved in a stepwise fashion. Consider the simple case of setting

the RBF widths to be constant

ogi=0 YV i=1,650. (5.12)

We may now specify the second layer weights using the simple sum rule as

650
ﬁ:Z@ZﬁLm (5.13)
—
where f is given by
1 izl e
8= HEEA (5.14)
—1 otherwise ,

and z/ is the jth element of the training set, w' is the weight vector associated

with the ith output neuron 1 <z < 10 and 2; is one of the classifications 0-9,
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Width Training Set Testing Set

o {Correct out of €50) | (Corrrect out of 300)
0.1 850 38
1.0 650 48
2.0 649 73
3.0 628 115
5.0 368 157

Table 5.3 : RBF recognition results obtained using fixed widths and

the simple sum algorithm for second layer weights.

and y_’ is the 650-dimensional RBF representation associated with the jth training
vector z7. This algorithm defines w’ simply as the sum of same class vectors minus
the sum of other class vectors for each class 1. Using these specifications for {o;}
and W, rather poor results were obtained as shown in Table 5.3. In the table we
show the performance of the RBF network on both the training and testing sets
for several values of o. Notice that as the performance on the testing set improves,
classification rate for the training set declines. We were unable to find a network
that exhibited good performance on both the training and testing sets using this
algorithm. A useful adjustment to the above algorithm is to replace the simple
sum with a binary address algorithm for specification of the output weights. This
algorithm does not require specific knowledge of the intermediate representations
generated during training, it only requires knowledge of the class assignment of
each of the 650 RBF centers. This reduces second layer computation time and

improves network performance. The binary address algorithm defines W as

1 if t/ € Q;
wij = { HE€ (5.15)

—1 otherwise.
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Width Training Set Testing Set

o’ {Correct out of 650) | (Corrrect out of 300)
0.25 650 247

0.5 650 248

1.0 650 245

2.0 650 222

3.0 650 180

Table 5.4 : RBF recognition results obtained using fixed widths and

the binary address algorithm for second layer weights.

The network performance resulting from this training procedure is shown in
Table 5.4. The best such network achieved a recognition rate of 82% which is
comparable to the results obtained using the KNN approach. In both of the above
algorithms, we found that broader basis functions resulted in more training set
misclassifications. This is understandable behavior since broader basis functions
correspond to greater overlap between centers from different classes which can
result in confusion of class assignment for the centers themselves. A simple
modification of the above algorithm which incorporates detailed knowledge of
the training representations is to follow the above procedure with the perceptron
learning algorithm for the output weights. The results obtained in three runs
using this approach are shown in Table 5.5. This approach results in the best
fixed width performance of 87.7% on the testing set with 100% recognition of the

training set.

From the above results we may conclude that improved recognition perfor-

mance will require variable RBF widths. The most successful variable width
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Width Training Set Testing Set
o (Correct out of 850) | (Corrrect out of 300)
5.0 850 1892
7.0 650 244
8.0 650 263

Table 5.5 : RBF recognition results obtained by following the previous

algorithm with the perceptron rule to improve second layer performance.

:6.«, Training Set Testing Set
(Correct out of 850) | (Corrrect out of 300)

0.5 6850 226

0.7 650 257

1.0 650 268

1.2 850 2687

Table 5.6 : RBF recognition results obtained using the previous algorithm

with variable centers.
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approach we found was to make o; proportional to the distance between tem-

plate ' and its nearest neighbor. That is
ci=6min|t! —t| j#i. (5.16)
J

Using this approach together with the previous algorithm for training the second
layer, we have a best RBF performance of 89% as shown in Table 5.6. Although
the trend with increasing & is an improvement in network performance, we found
that in general, the broader the basis functions the longer the perceptron al-
gorithm will take to converge. For this reason, Table 5.6 does not contain any
entries for & > 1.2. Note that the best RBF network performance of 89% is
better that the best KNN system performance of 83% using the same template
library. This performance can also be compared with a single layer of 10 neu-
rons, each trained with the perceptron using the 650 image reference library. The
recognition rate in this case is 75% on the 300 element testing set. In general, we
would expect an improvement in RBF network performance with variable centers
where both the number and location of those centers are optimized. This case
was not studied here as we are primarily interested in the performance of the

optical implementation.

In Figure 5.33 we show the RBF widths computed using the best case pro-
cedure described above. Each row in the figure represents the widths associated
with centers in a single class. There are therefore 65 blocks per row and 10 rows
in Figure 5.33. Each small rectangular block in the figure is a grey scale coding
of the width associated with the corresponding template where dark represents

zero width. It is interesting that the second row in Figure 5.33, corresponding
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e

RBF widths associated with best RBF network.

Figure 5.33
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to handwritten ones, is particularly dark, indicating that these vectors tend to
be clustered or, more generally, tend to be located close to other vectors. Also
in Figure 5.33 we can see that the width associated with one particular template
representing a handwritten six (template 15 in row 7), is quite broad, indicating
that this vector is basically isolated in the input space. Using the same display
format as in Figure 5.33, Figure 5.34 shows the second layer weights generated for
the best RBF network found above. The single bright row in each weight vector
indicates that the weight vector is basically tuned to intermediate representations
from only one class. The 89% recognition rate achieved using this RBF network
corresponds to 33 misclassifications out of 300. An example of one misclassifica-
tion from each class along with the intermediate representation associated with
the misclassified input is shown in Figure 5.35. Next to each input character in
the figure is the erroneous class to which it was assigned. Most of these misclas-
sifications, although they would most likely not be made by a human classifier,

can be easily understood by inspection of Figure 5.35.

The optical system used to implement the RBF classifier is identical to that
used in the KNN implementation since the first layer of the present system is
also based on Euclidean distances. The optical disk-based inner product calcu-
lations are once again collected by a postprocessing system which now computes
the required gaussian weighting and simulates the output layer where a classi-
fication is made. The postprocessing steps were carried out in software for our
experiments. Using the low contrast version of the previous KNN optical system,
the classification rate for the optical RBF system was 67.7%, indicating that this

algorithm is more sensitive to the various optical system imperfections than was
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Figure 5.35 : Example of one misclassification per class.

Original 16x16 input vector — class to which it was assigned.

Below each pair is the corresponding intermediate representation.
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CLASS SIMULATION | EXPERIMENT MODEL

0 29 24 30
1 29 18 26
2 28 26 24
3 27 7 19
4 23 <0 12
) 25 24 27
6 24 23 17
7 28 27 26
8 25 21 12
9 29 13 21

897% 68% 1%

Table 5.7 : Recognition results for optical RBF network.

the KNN approach. A comparison between the performances of the low contrast

optical system, a simulation and an experimental model is shown in Table 5.7.

A model once again provides a technique by which we can examine the optical
system performance as a function of the various implementational error sources.
In the present case it was not possible to isolate a single critical variable respon-
sible for the degradation in performance as all variables appear to play a role. In
Figure 5.36 we show the recognition rate vs. contrast for noise levels above, below
and equal to the measured noise levels in the optical system. We notice a sharp
decrease in performance below a contrast level of 10:1 which is an improvement
in contrast tolerance over the KNN approach; however, for a contrast of 20:1 and
a noise level slightly higher than measured, we have a recognition rate of only
72% which is close to the experimental rate. A slightly more critical variable
for this system is the gaussian profile width. A plot of recognition rate vs. log

of the 1/e? gaussian profile width is shown in Figure 5.37 and points out the
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importance of illumination uniformity for the optical RBF classifier. Referring
once again to Figure 5.37, if the measured decline in recognition performance
was due entirely to beam profile nonuniformity then the required beam width
parameter would be 1.52. A plot of the corresponding profile together with the
experimentally measured profile and the profile fit used in the model is given in
Figure 5.38. These profiles match quite well, indicating that an improvement in
beam uniformity together with an improvement in contrast might increase the

optical RBF classification rate to near 90%.

Using the high contrast version of the optical KNN system which incorporates
a LCTV input SLM, we re-tested the optical RBF network performance. During
the analysis of this new data it was discovered that there existed significant
variations in written pixel reflectivity over the disk both in the along track and
across track directions. This effect is demonstrated in Figure 5.39 where we
have plotted normalization data as a function of template number for the all
one input vector. The data we have plotted is the sum of (1-#) and (1 - E_)
as measured using the optical system. This graph should be constant for all j
since [t/ + E|2 = 100. Although disk wobble could be responsible for some of
the variation seen in the figure, the two plots shown were obtained from different
optical alignment conditions so that the observed effect (a prominent increase in
signal between templates 450 and 550) most likely results from nonuniformities
in reflectivity. A direct measurement of the disk reflectivity confirmed that there
is as much as 10% variation in reflectivity between opposing portions of the
disk. In addition to variations in media reflectivity, errors that occur during

the writing process result in reflectivity errors in the written data. This effect
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was verified by observing such errors on the disk under a microscope. These
nonuniformities in reflectivity may be partially compensated through the use of
a model for the optically computed inner products which incorporates calibration
of these variations. We can estimate no more parameters from the experimental
data than the number of known quantities we measure, which in our case is 1300
for normalization data points. Thus, we will assume that the optical system

computes inner products as

(2 t)opt = Bi(z - 1) + 751 (5.17)

where {f;} and {v;} are 1300 unknown constants that quantify the inaccuracy of
the optical disk and the subscript opt indicates a measurement from the optical
system. We can solve for {8},7;,j = 1,650} using the normalization data {(1 -
t_j)opt} and {(1- E)opt}* If we assume that the disk characteristics do not vary

much between adjacent servo areas then we can write
(L )opt = BilE1* + 7 (5.18)
and
(L-Bopt = B[ + ;- (5.19)
Subtracting these two measurements yields
(L E)opt = (L E)op = B(IL1° ~ [2°), (5.20)

so that the {#;} may be derived from the stored normalization data as

5, — (-1— ) t—j)opt — (l ) E)opt
J 2/7]2 — 100

(5.21)
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Using this equation for f;, 7; can be derived as

v = (L )opt — Bl (5.22)

Having derived a relationship between the experimentally measured inner prod-
ucts and the desired values for z - t/, we can now write an expression for the

desired distances as a function of the experimentally measured values as

lz—t2)* =) + |z]* — 2z - (5.23)
_ (l . _tj_)opt - n [(l_ t_j)opt - (l t_j)opt] |§‘2 (524)
Bj (L-22)opt + (1 89)opt — 20575]

where the factor a; is used to account for the fact that classification data and
normalization data are typically taken under slightly different experimental con-
ditions. We assume that this effect results in inner product measurements that
differ from normalization measurements by a multiplicative factor. «; is given
by

(l : E)opt + (.1. : t_j)opt
Bilz|? + 2v;

(5.25)

oy =

In addition to modeling the variations in disk reflectivity and improving the
contrast of the input SLM, the illumination profile was also improved. A more
uniform illumination profile was generated by careful design of the collimating
optics and input aperture. The resulting beam profile parameter was measured
as 1.8 corresponding to a recognition rate of 86% as predicted using the plot of
Figure 5.37. The results of the modified optical RBF classifier are given in Table

5.8. The overall classification rate has been improved from the previous 68%
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Class || Experiment{ Simulation
0 25 29
1 28 29
2 28 28
3 25 27
4 28 23
3] 20 29
6 2O 24
7 23 28
8 24 25
9 22 29
Total 248 267
83% 897%

Table 5.8 : Recognition results for high contrast optical RBF network.

in the uncorrected system, to 83%, which is in good agreement with the profile

limited performance of 86%.

The 6% difference seen in Table 5.8 is one measure of the inaccuracies present
in the optical computation. Another method by which we can compute the cu-
mulative effect of the many optical system imperfections is to consider the sys-
tem performance prior to the recognition algorithm. A calculation of the error
present in the distance computations themselves will provide another measure of
the accuracy of the optical system. In Figure 5.40 we show the 650 distances
computed for a single input image (a handwritten 3) using both the ideal com-
puter simulation (b) and the optical system (a). From the figure we see that
there is a substantial variation between these two plots which may be quantified

by computing the RMS distance error over the entire testing set as
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M 0 im
Vi S (dPP — dgimye

M .
7 iz &

ADpys = , (5.26)

where d?im and diOp * are the Euclidean distances between the 300 input images
and the 650 templates calculated from simulation and the optical system respec-
tively. There are M=195,000 such measurements in our case. For the results
presented here, the RMS distance error was found to be ADgys =28.5%. Al-
though this error is quite large, the recognition rate obtained using the optical
system is in satisfactory agreement with the expected rate, attesting to the ro-

bustness of the RBF approach.

The present system as well as the previous shift variant KNN system is capa-
ble of operating at very high processing rates. If the upper limit on disk storage
is approached wherein 108 vectors each of dimension 10* are stored as radial lines
over the entire disk, then the inner product computation rate for a 100Hz disk
rotation rate becomes 10% inner products per second. This rate of comparison
corresponds to 10!2 binary operations per second. This capability would clearly

be very difficult to duplicate with existing electronic technology.
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5.7 OPTOELECTRONIC MULTILAYER PATTERN RECOGNITION

In this chapter we have described three architectures based on optical disk
technology, that realize optical handwritten character recognition to various de-
grees. A theme common to each of these systems is an electronic postprocessing
stage. These systems might therefore be more appropriately labeled optoelec-
tronic handwritten character recognition systems. This approach represents a
useful implementation philosophy for multilayer pattern recognition in which
high speed, parallel optical preprocessing is used for feature extraction or dimen-
sionality reduction and high accuracy, serial electronics is utilized as a flexible,
algorithmic-based postprocessor. In this way we match the parallelism, and in
the present case the high storage capacity, of optical media and systems with
the maturity and the flexibility of VLSI technology, thereby evolving systems
that may be useful in the solution of real image recognition and understanding

problems.

As an example of this type of hybrid pattern recognition system, consider
the diagram shown in Figure 5.41. The lefthand portion of the figure depicts a
correlation-based feature extraction subsystem that might project some unknown
input image onto feature dimensions such as oriented lines, line stops, angles,

.., etc. These features are stored on disk 1 and can be effectively scanned
using the systems that we have demonstrated in this thesis. The peaks of the
resulting feature maps, as well as their locations as derived using chip 1, can
now be operated on using any number of algorithms, including KNN and RBF as
described here, Parzen windows, associative memories or a VLSI-based multilayer

neural network as shown in the figure. The subsystem comprising disk 2 and chip
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2 has been demonstrated and the details of that work can be found in references
[130-132]. The basic notion here is that an electronic input vector describing the
projections derived using subsystem 1 is presented to chip 2 as shown, on which
a single feedforward layer of a network is implemented. The weights of this layer
are loaded from disk 2 via the third dimension, using photodetectors fabricated
on the surface of chip 2. After the chip has been clocked and one layer has been
implemented, the resulting representation is latched and fed back to the input.
Disk 2 may now rotate, allowing new weights to be loaded onto the chip whereby
on clocking, another layer may be implemented. A severe limitation to the use of
VLSI technology in neural network implementations is the wire routing problem

that arises in large networks.[133-135]

The optical disk-based preprocessor in this
system provides the dimensionality reduction required to realize such a VLSI

based image recognition system.
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6. Conclusions and Future Work

In this thesis we have re-introduced the conventional optical disk as a parallel
access memory. In addition to reviewing various mechanisms for serial optical
data storage, we have presented systems that use parallel retrieval from optical
storage devices to advantage in the context of optical pattern recognition. The
implications of parallel access are manyfold. Parallel access provides the poten-
tial for extremely high data rate transfer from mass memory to RAM or between
mass memory and individual processors. The optical nature of this transfer pro-
vides the potential for simultaneous multiprocessor access to shared memory. In
the more general case of RWE parallel access, the disk can represent in addition
to mass storage, on the order of 10* parallel, moderate bandwidth communica-
tion channels for parallel computing. Specific examples of such systems will be
discussed in more detail below. In this thesis we have seen how parallel access
can provide a simple mechanism for searching through a library of data. In the
systems we have discussed, the optical disk acts as both a memory device and an

SLM.

We have seen how novel pattern recognition systems may be designed to
take advantage of parallel access to optical disks. The basic building block for
many of these systems, as for most optical pattern recognition systems, is the
image correlator. The photorefractive correlator discussed at the end of Chapter
4 was seen to be the most attractive disk-based image correlator owing to its
high speed and superior efficiency. The optical approaches we develop realize ad-
vantages over their electronic counterparts in terms of speed and capacity while

also improving on many optical architectures owing to their utilization of mature
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technologies such as commercially available optical disks and SLMs. With any
analog computing paradigm however, limited accuracy is a potential problem.
Although these accuracy issues remain a problem in analog optical computing
systems, we found that some pattern recognition algorithms are robust enough
to tolerate rather severe optical system inaccuracies. Furthermore, optical disk
imperfections such as wobble, disk center offset, and nonuniform media charac-
teristics including defects, can be compensated using either realtime adaptive

optical systems or offline postprocessing based on characterization data.

Despite the advantages mentioned above, the disk-based systems we have
described suffer from several potential limitations. The WORM nature of the
media used in our work, although not fundamental, is indeed a limitation. As
we have discussed in Chapter 3, many RWE mechanisms exist and show promise
for future storage systems. An interesting area of future work is in adaptive
parallel access systems based on RWE disks. Also, combining RWE technology
with parallel write capabilities might open up new possibilities for ¢rue parallel
access. The second limitation of these systems is the requirement for serial writ-
ing. The serial writing mechanism employed in commercial disk systems limits
the use of such disks in adaptive systems. A delay of 20,000 revolutions is re-
quired before a single radial vector may be completely recorded, corresponding to
roughly a 10 minute response time. The use of a parallel write mechanism would
make such an operation more feasible by reducing the response time to roughly
1us. Several commercial possibilities exist for parallel write. Laser diode arrays
are routinely fabricated with more than 1000 individually controllable sources.

Twenty such source arrays could be used to simultaneously address all 20,000
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tracks on the optical disks we use. In order to reduce the complexity of driv-
ing each source with an independent electrical signal, optical addressing of these
arrays is possible through external optical pumping. This type of system pro-
vides a mechanism through which an optical signal can be used to effect parallel
write operations which may in turn be detected using an optical parallel read-
out scheme. Also, commercially available diode-pumped YAG lasers represent
a compact, high-power source sufficient to realize parallel write systems using
conventional WORM and RWE media. Alternatively, parallel write may become
feasible in the near term through the use of alternate media such as photopolymer

or nonlinear organic compounds.

We will now overview several potentially interesting disk applications that
might take advantage of parallel write and RWE media. We will also discuss
several new architectures for optical and optoelectronic pattern recognition based
on optical disk style systems. The following discussion represents work in progress
as well as interesting candidates for future work in the general area of optical

computing and pattern recognition.

6.1 MoRE OprTICcAL DISKS

Recently, closed loop optical systems have been demonstrated that realize use-
ful memory operations such as autoassociative and heteroassociative recal].[136,137]
These systems are based on spatially multiplexed memories in a Vander Lugt cor-
relation architecture and suffer from limited shift invariance owing to the require-

ment for Fourier plane sampling. In the spirit of these systems, we are interested

here in considering an architecture in which images may be accurately recalled
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from noisy or partial inputs in a shift invariant fashion. An optical disk-based
version of such a closed loop associative memory is shown in Figure 6.1. This
system is based on the photorefractive correlator described in Chapter 4 and uses
temporal multiplexing of stored memories to eliminate the need for Fourier plane
sampling, thereby retrieving full 2D shift invariance. The system operation is as
follows. As we described in Chapter 4, the unknown input image is illuminated
in the input plane of the photorefractive correlator and the Fourier transform
hologram of this pattern is formed in the crystal with the reference beam as
shown. Following this recording stage the readout stage is initiated by illuminat-
ing the optical disk on which the stored memories reside. As the disk rotates, a
2D image correlation is computed between the input and all of the stored mem-
ories. As before, the 2D correlation patterns thus computed appear as sequences
of 1D vertical slices in the output plane and therefore may be detected using a
1D array of NV detectors. The 1D detector array is followed by a winner take
all circuit to choose the largest correlation signal over the N output detectors at
each instant. The largest signal from the output array is thresholded, delayed
and amplified to produce a feedback signal to the disk illumination source. The
disk is allowed to rotate a full 360° under continuous illumination, and thereafter,
the disk illumination is pulsed according to the feedback signal as shown. The
delay time is adjusted so that it corresponds to exactly one disk rotation. In this
way, the memories that best match the input image as measured using the corre-
lation peak will be obtained periodically in the readout plane. Fine tuning of the
threshold will be required in order to obtain a single output memory; however,

adaptive methods can also be used to realize the correct threshold. During the
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first disk rotation for example, the threshold block in the figure can be used to
record the value of the largest peak, and thereafter a value slightly smaller than
this stored value can be used as a threshold. This will insure that only one mem-
ory is retrieved. In this scheme the total readout time is equal to the time for
two full disk rotations or approximately 3 seconds. It is not entirely unreasonable
however, to find the readout of a sequence of associations undesirable. In fact,
the unknown input may comprise some linear combination of stored memories
and the associative system described here could be used to retrieve the strongest
components of such a composite image. Consider setting the threshold to some
intermediate level. Multiple associations will occur for most inputs; however,
due to the nature of the photorefractive retrieval, the recorded hologram will de-
cay with continued readout. During successive rotations then, memories whose
match with the input are smallest will drop below threshold, and thereafter will
not be retrieved. Eventually, all but one of the stored memories will have dropped
below threshold and a single output association will be obtained. The correct
output too will eventually fall below threshold unless some refreshing mechanism
is invoked. Such a mechanism may involve a simple reference beam shutter which
controls reinforcement of the correct pattern in the crystal and is triggered by

the existence of only one pulse in the feedback loop per disk rotation.

The system described above is fully shift invariant in the sense that any
shifted version of a stored memory will be successfully recalled. Horizontally
the photorefractive correlator is shift invariant owing to the disk rotation. The
input image shift therefore is encoded on the feedback signal as a delay. This

delay will result in the retrieval of a shifted memory from the disk. Vertically,
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the winner-take-all circuit insures that the correlation peak is fedback regardless
of its position on the output detector array. In this way, the correct memory is
recalled regardless of the vertical position of the input. The vertical position of
the input image may of course be retained by storing the location of the winning
pixel in the winner-take-all circuit for later readout if the original position of the

input object is required.

The above architecture is in the same vein as those we have been considering
throughout the bulk of this thesis. This is an example of yet another system
that may take advantage of WORM media and in which serial writing is toler-
able since the memory storage phase takes place only once, off line. In order to
see the potential usefulness of parallel write on RWE media, consider a simple
system in which parallel across track writing is used to simulate a multichan-
nel Bragg cell that can support as many channels as there are tracks on the
disk. Readout can be achieved in this mode by illuminating along track for each
channel. Each track therefore represents a single 1D SLM which can be used
to modulate an incident beam in the same manner as are conventional AO de-
vices. The resulting modulated beam is obtained diffracted along the direction
of rotation and contains a doppler shift as with conventional Bragg cells. Each
channel in this configuration is binary; however, 1-D area modulation can be
used to associate a group of sources and a corresponding group of tracks with
a single channel. Analog readout is obtained by illuminating such an array of
tracks and collapsing the diffracted beam to a line that will then display the de-
sired gray levels. Notice that in this scheme, only alignment between the writing

source array and the readout beams is necessary. Since no mechanical alignment
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between sources and the disk is required, the disk rotation rate can easily be
increased above 100Hz, resulting in a modulator channel bandwidth > 50MHz.
In principle, each channel will have an aperture equal to the disk rotation time,
or a SBP= 10°; however, utilization of all of this SBP will be difficult, ovﬁng to
the circular nature of the tracks. A reasonable modulator SBP of 10* however,
will only require readout illumination that covers 3.6° of a single track. This
device is an interesting alternative to conventional AO cells. Using chalcogenide
film-based RWE disks, diffraction efficiencies much greater than those achievable
with MO media will be possible, making the light efficiency of systems using the
disk based device comparable with those using conventional Bragg cells with the
cost of such a disk-based 10* channel AOD being comparable to that of a single
channel conventional modulator. In the same across track write configuration,
a 1D across track readout scheme would correspond to realizing a large array
(20,000 elements) of electrically addressable point modulators. As mentioned in
the beginning of this chapter, these schemes can be made optically addressable
through source-detector integration or through external optical pumping of the

source laser diodes.

The above system is a simple example of how multiprocessor access to mass
memory may be facilitated through the use of optical disk-based architectures
that take advantage of parallel write and RWE media. In a more complex envi-
ronment, the disk can provide a method for simultaneous multiprocessor reading
and writing to portions of mass memory as well as a communication channel over
which moderate bandwidth information can be transferred between processors.

An example of such a complex multiprocessor environment operating within a
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neural computing paradigm is depicted in Figure 6.2. Subnet 1 in the figure
is an example of the sort of neural chip we introduced at the end of Chapter
5. As we described there, subnet 1 implements a single layer of a feedforward
neural network.[13%:131] The connection strengths for this network are loaded via
the third dimension through photodetectors on the chip which encode the con-
nections between neurons. In the scheme shown here these weights are stored
on the disk, and are loaded onto the chip in parallel. Examples of VLSI circuits
that implement relatively small 15x15 subnets of this type have been demon-
strated. Subnet 2 is an alternate, optoelectronic neural network based on GaAs
technology.[138] This chip consists of an array of neurons, each neuron compris-
ing a photodetector, thresholding amplifier, and an optical source (LD or LED).
Communication among these neurons is achieved optically and the interconnec-
tions are specified by holograms stored on the disk. In reality we envision each
subnet operating in some combination of these two modes; however, use of the
later mode should be minimized in order to make the best use of disk SBP since
CGH encoding is costly. A special training network is shown in Figure 6.2 and
may serve as a teacher or central control unit for this processor. The training net
is used to update the weight data stored on the disk as well as the interconnection
holograms thereby programming the future behavior of the system. In addition
to providing interconnect and weight data memory, the disk may also serve as
a moderate bandwidth communication channel. In the scheme envisioned here,
each chip shown would be dedicated one or several communication tracks to
which it may write data. The array of such communication tracks comprise the

disk-based communication channel that may be interrogated by any processor in
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the environment.

The operation of the system may be envisioned as follows. The disk is initial-
ized with both weight data and interconnection patterns for each subnet. Control
data that may be used to configure the subnets could also be pre-recorded on
the disk communication tracks. On receiving external input then, the array of
subnetworks can operate in unison to perform some predetermined task. During
the computation, two communication modes are supported by the disk. High
data rate exchange via disk-based holograms may operate at neuron response
times and represents short range propagation of neuron activities. The other
communication mode is the slow mode facilitated by the disk-based communi-
cation channel. Communications of this sort with the training net represents a
facility through which learning may occur. The time scale of this adaptation
is consistent with the notion that learning is a relatively slow phenomenon as
compared with the neuron response time. Communication among subnets via
the disk-based communication channel may represent long range interactions be-
tween clusters of neurons. Such interactions are believed to be partly responsible
for attention and concept formation mechanisms in biological systems.[139) Once
again, the time scale of these phenomena are believed to be slow and therefore
may indeed be facilitated by this disk-based scheme. This scheme may also fa-
cilitate the representation of global variables such as the state of the intercellular
fluid in biological systems. In this way, such variables may be broadcast with

appropriate latencies so that finite global resources may affect subnet behavior.

Although the above notions are rather heuristic and are specific to a neural

computing paradigm, the capabilities facilitated by the type of system depicted



247

in figure 6.2 are intriguing from the perspective of parallel computing in general.
In order to understand the potential of systems similar to those outlined above,
an investigation of the requirements for the interaction between parallel mass
memory and processors is necessary. A deeper understanding of these relation-
ships in the context of specific classes of problems will represent a major step in

the direction of realizing useful parallel computational paradigms.
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